HIGHER ORDER ASYMPTOTICS OF TOEPLITZ
DETERMINANTS WITH SYMBOLS
IN WEIGHTED WIENER ALGEBRAS

ALEXEI YU. KARLOVICH

ABSTRACT. We extend a result of Bottcher and Silbermann on higher order
asymptotics of determinants of block Toeplitz matrices with symbols in Wiener
algebras with power weights to the case of Wiener algebras with general weights
satisfying natural submultiplicativity, monotonicity, and regularity conditions.

1. INTRODUCTION

Let Z,N,N_,Z, and C be the sets of integers, positive integers, negative inte-
gers, nonnegative integers, and all complex numbers, respectively. Suppose N € N.
A block Toeplitz matriz is a matrix of the form

ag a_1 a_—»9

a Q a_
(1) 1 0 1

az ai aop

where {ay }rez is a sequence of N x N matrices. For a Banach space X, let X and
Xnxn be the spaces of vectors and matrices with entries in X. We will consider
the norm [|(21,...,2n8)|lxy = (lz1]l% + - + ||.77N||3X)1/2. Let T be the unit circle,
L*>® := L>™(T) and H? := H*(T) be the standard Hardy space of the unit circle. It
is well known that the matrix (1) induces a bounded (Toeplitz) operator T'(a) on
H3, if and only if there exists a matrix function a € L%,y such that

1 2
is the sequence of Fourier coefficients of a. The function a is called the symbol of
T(a). Let Tn(a) := [aj—k]} t—o (n € Z4) be the truncated Toeplitz matrix. We are
interested in the asymptotic behavior of the determinants of the truncated block
Toeplitz matrices (Toeplitz determinants) Dy, (a) := det T,,(a) as n — oo.

The strong Szeg6 limit theorem (in the scalar case N = 1) states that under
certain conditions one has for the Toeplitz determinants the asymptotic formula

(2) D,(a) ~ G(a)""' E(a),

ay, a(e®®)e*0dp (k€ 7)
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with completely identified constants G(a) and E(a). Sufficient conditions for the
validity of (2) have been given by many authors. Widom [22] extended these results
to the block case (IV > 1) and proved that if a € LY, satisfies

o
3) Y llaxlP (k] +1) < oo,
k=—o0
where || - || is any matrix norm on Cnyxn, and T'(a) is a Fredholm operator on H%

of index zero, then (2) is fulfilled with

1 27 9 9 e} )
. H i 0y . |n| ind
(4) G(a): Tlgrlo exp (2#/0 log det a,(e )d0> . ap(e): n:E_Oo a,r'™e™,

and E(a) := det T'(a)T (a~'), where the last det refers to the determinant defined for
operators on Hilbert space differing from the identity by an operator of trace class
[17, Chapter 4]. Bottcher and Silbermann [5] proved the formula (2) in the block
case N > 1 for various classes of symbols. We refer to [6, Chapter 6], [7, Chapter 10],
[8, Chapter 5] for the history, exact references, and proofs. We mention here also
recent papers [9, 10, 18],where alternative approaches to the proof of the strong
Szegt-Widom limit theorem are suggested, and the author’s paper with Santos
[19], where the strong Sezg¢ limit theorem is proved in the scalar case for a new
class of symbols with nonstandard smoothness.

Note that the perhaps simplest proof of the strong Szeg-Widom limit theorem is
based on the so-called Borodin-Okounkov identity (this is a commonly used name,
although it is not entirely historically correct)

det T, (a) = G(a)™ ' E(a) det (1 _ QnH(b)H(E)Qn) for all n €N,

where the projections @, are defined in Section 4.1. One can show that if (3) is
fulfilled and T'(a), T'(a), where a(t) := a(1/t) for t € T, are invertible on H%, then
the product of Hankel operators H(b)H(¢) is correctly defined as in Section 2.2
and it belongs to the trace class. This beautiful identity has a complicated history.
As far as we know, it was first obtained and used to prove the Szegd strong limit
theorem by Geronimo and Case [13] in 1979. Then it was rediscovered (in the scalar
case) by Borodin and Okounkov twenty years later [2], who answered a question
posed by Deift and Its. This identity was extended to the block case by Basor and
Widom [1], who found three proofs of it. Several simpler proofs were also found
by Bottcher [3] (see also references given there). For a further development of this
topic we recommend to consult a recent monograph by Simon [21]. However, the
problems remain when we cannot guarantee that the product of Hankel operators
H(b)H(¢) is of trace class. We will touch the situation when H(b)H (¢) belongs
only to the Schatten-von Neumann class C,(H%;) for p € N\ {1}.

Fisher and Hartwig [11] were probably the first to draw due attention to higher
order correction terms in Szegd’s asymptotic formula (2). Bottcher and Silbermann
(see [5], [6, 6.15-6.23], [7, 10.32-10.36]) gave higher order asymptotic terms in the
asymptotic formulas for Toeplitz determinants with symbols in weighted Wiener
algebras

(Wy)nxn == {a : T = Cnxn @ a(t) = i ant”, i llan|lw(n) < Oo}

n=—oo n=—oo
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with the power weight

®  ww=em={ (T e @0

They considered also many other classes of symbols, for instance, the algebras of
Holder continuous functions.

The aim of this paper is to extend Bottcher and Silbermann’s higher order as-
ymptotic formulas for Toeplitz determinants (see Theorem 21) to the case of sym-
bols that belong to more general weighted Wiener algebras (W, )nx, where the
weight w : Z — [1, 00) satisfies

(6) 1<w(i+j) Sw(@w(i) (0,5 €Z),
(7) w(*n) Sw(£(n+1)) (n€Zy),
(8) lim 3/w(n)= lim 1 1.

n—-+00 n—-+oo W

The paper is organized as follows. In Section 2 we study canonical right and left
Wiener-Hopf factorizations in weighted Wiener algebras (W, )nxn- In Section 3 we
collect necessary facts about p-regularized determinants of operators I+ K, where K
belongs to the Schatten-von Neumann classes C,(7) and p € N. Section 4 contains
a preliminary asymptotic analysis of Toeplitz determinants based on right and left
canonical Wiener-Hopf factorizations of the symbol a. We write down explicitly
asymptotic formulas for Toeplitz determinants 7, (a) if a admits canonical right and
left Wiener-Hopf factorizations and the operators H (b)H (¢) and H (¢)H (b) belong
to C,(H%). This approach goes back to Bottcher and Silbermann [5], [6, 6.15-6.23],
[7, Theorem 10.35]. Theorem 15 is contained there implicitly. However, we wish to
give a self-contained proof. In Section 5 we apply Theorem 15 to weighted Wiener
algebras with weights satisfying (6)—(8) and the following two regularity conditions.
If

9)

M8

(wkpw(-1) " < o,

~
Il
-

then H(b)H (¢) and H(¢)H (b) belong to Cp(H% ). If, in addition,

1-p " -1
(10) Tim (w(n)w(-n)) Z (wG(=1) =0,
then we can simplify a little bit the asymptotic formulas (see Theorem 20(c)),
removing the correcting term F, , ;. For the power weight (5), our conditions
(9) and (10) hold if @ + 8 > 1/p (see Theorem 21). Finally, we show that our
Theorem 20 is stronger than Bottcher and Silbermann’s Theorem 21, constructing
an example of a weight w and a function a € W, (see Theorem 23) such that

Theorem 20 is applicable to a, but Theorem 21 is not.

2. WIENER-HOPF FACTORIZATIONS IN WEIGHTED WIENER ALGEBRAS

2.1. Weighted Wiener algebras and their maximal ideal spaces. It is well
known that if (6) is fulfilled, then (W, )nxn is a Banach algebra with respect to
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the norm

lallo,y =Y llaxllw (k)

k=—o00

and (W,)nxn C Wnxn C Cnxn. Here W is the standard Wiener algebra of
scalar functions with absolutely convergent Fourier series and C = C(T) is the set
of all continuous scalar functions on T. Condition (6) implies that the limits

R_(w):= lim _ Ri(w):= lim 3/w(n)

n—+00 1”/(,()(—71) ’ n—+00

exist and 0 < R_(w) <1 < Ry (w) < oo. In the scalar case (N = 1) the weighted
Wiener algebra is commutative and the maximal ideal space of W, := (W,,)1x1 is
homeomorphic to the annulus

0, = {zGC : R_(w)§|z|§R+(w)}.

The Gelfand transform of a € W, is given by

(11) a(z) = Z anz" (2 € Q).

n=—oc

These results can be found in [12, Chapter III, Section 19.4] and in [14].

2.2. Canonical right and left Wiener-Hopf factorizations. Let I be the
identity operator, P be the Riesz projection of L? := L?(T) onto H?, @Q :=
I — P, and define I, P, and Q on L% elementwise. For a € LY,y and t €
T, put a(t) := a(1/t) and (Ja)(t) := t la(l/t). We consider Toeplitz opera-
tors T(a) := PaP|ImP,T(a) := JQaQJIm P and Hankel operators H(a) :=
PaQJ|Im P, H(a) := JQaP|Im P. For a Banach algebra A we will denote by GA
the group of all invertible elements of A. Put

HY.ny = {a€LPn : a,=0 for neN},

HY.ny = {a€lf¥n : an=0 for neN},
Proposition 1. Let a € LY, 5 admit two factorizations a = u_u4 = vyv_, where
uy,vy € GHR n andu_,v_ € GHR . Put

(12) b:= U_U_T_I, c:=utuy.

The operator I — H(¢)H (b) = T(¢)T'(b) is invertible on HZ,.

Proof. Widom [22] (see also [6, Proposition 2.7] and [7, Proposition 2.14]) formu-
lated explicitly the very useful formula

(13) T(f9) =T(f)T(9)+ H(f)H(g) for f,g€ L¥xn-

Clearly, cb = (u="vy)(v_ui") = u"aul' = u='(u_uy)ui' = Ey, where Ey is
the N x N identity matrix. From this and (13) and it follows that

[ - H@H(b) = T(&) - HQH(b) = T@T().
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From (13), in view of H(u_') = 0 for u_' € Hy, 5 and H(vy') = 0 for v;' €
HF, n, we obtain

TOHTWNTEY) = TE-ui'eZ)T(EF) = T(Za T (@)

= T o )T(EF) = Ty VT@T) = T(o; o7) = 1.

Analogously T(E)T(T;};)T(g) =1 SoT '(b) = T(E)T(ﬁ;) and similarly
~1(€) = T(02)T (u;*). Thus, T(&)T(b) is invertible, too. O

For A C L™, put A}, = Anxny NHP, y and Ay, n = Anvxv N HP, y-

Proposition 2. Let w be a weight satisfying (6). Every matriz function f in
G(W,)NxN admits a right Wiener-Hopf factorization in (W, )N« N, that is, there
exist f+ € G(W,)E, y such that f(t) = f_(t)diag {t*,...,t*¥}fi(t) for allt € T,
where ki,...,kN are some integers.

Proof. Obviously, W,, C L, the set of all trigonometric polynomials is dense in
W,, and W Cc W,. So W, is a decomposing algebra in the sense of [7, Sec-
tion 10.14]. Then the assertion follows from [7, Theorem 10.19]. O

Proposition 3. Let w be a weight satisfying (6) and (8). If a € (W,)nxn and

the Toeplitz operators T'(a) and T'(@) are invertible on H%,, then a admits canonical

right and left Wiener-Hopf factorizations in (W, ) NN, that is, there exist functions
- € GWy)yun and ug, vy € G(W,) kN such that

(14) a(t) =u_(t)uy(t) =vp(t)v_(t) forall teT.

Proof. Tt is very well known (see, e.g., [16, Sections 2.4-2.5]) that if T'(a) with
a € Wy is invertible on H;, then a is invertible in Wy v,

(15) deta(t) #0 forall te T,

and a admits a canonical right Wiener-Hopf factorization a = a_ay in Wy« n, that
is ax € GWx«n- But, actually, a belongs to the smaller algebra (W, ) yxn- Under
the condition (8), the maximal ideal space Q, of the algebra W, coincides with T.
In this case, in view of (11), the Gelfand transform of a € W, is simply given by a(t)
for t € T. Therefore, due to [14, Chap. XXX.8, Theorem 8.1], the condition (15)
is equivalent to the invertibility of a in the algebra (W, )nxn. By Proposition 2,
a admits a right Wiener-Hopf factorization a(t) = u_(¢)diag {t"1,...,t"~ }us(t)
for all t € T in the algebra (W, )nxn, that is, ux € G(W, )ﬁxN So, we have

two factorizations @ = a_a4 = u_diag {t",...,t*¥ }uy in the algebra Wyxn.
Since the partial indices kq,...,%nN are unique up to their order (see, e.g., [16,
Theorem 1.2]), we conclude that k; = --- = ky = 0.

Let us prove that a admits also a canonical left factorization in the algebra
(Wo)nxn- By [7, Proposition 7.19(b)], the invertibility of T'(a) is equivalent to the
invertibility of T(a~!) (we have already known that a=! € (W, )nxn). By what
has just been proved, there exist f1 € G(W,)%, N such that a=t(t) = f_(t)f+(t)
forall t € T. Put vy = fjE Then vy € G(W, )NxN and a(t) = f_:l(t)f:l(t) =
vy (t)v_(t) for all t € T. O
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3. SCHATTEN-VON NEUMANN CLASSES AND OPERATOR DETERMINANTS

3.1. Schatten-von Neumann classes. Let H be a separable Hilbert space. We
denote by L£(H),Co0(H), and Co(H) the set of all bounded, compact, and finite rank
operators on H, respectively. Given an operator A € L(H) define for n € Z .,

sn(A) := inf {||A —Flleay : F€Co(H), dimF(H)< n}

For 1 < p < oo, the collection of all operators K € L({H) satisfying

1/p

IKllp =Y s2(K)] <o

n>0

is denoted by C,(#) and referred to as a Schatten-von Neumann class. Note that
| K|oo := sup s,(K) is equal to the operator norm [|K|| (4.
n>0

Lemma 4. (see [17, Chapter IIL, Section 7.2]). If K; € Cp,(H) for j =1,...,m
and 1/p1 +1/ps + -+ 1/py < 1, then K = Ky...K,;, € Cp(H), where 1/p =
1/pr+1/pa+ -+ 1/pm, and ||K|lp < [[Killp, | K2|lp, - - - | Kmllp,, -

Lemma 5. (see [22, Proposition 2.1]). Let B, € L(H) converge strongly to B €
L(H) and let C} € L(H*) converge strongly to C* € L(H*). If1 < p < oo and
K € C,(H), then |BpKCp, — BKC||, = 0 as n — cc.

We refer to [17] for more information about Schatten-von Neumann classes.

3.2. Trace. One can show that for every K € C;(#) and every orthonormal basis

{en}nez, of H the series »  (Kep,e,) is absolutely convergent and that its sum
neZy

does not depend on a choice of a basis {e,}nez,. This sum is denoted by tr K

and referred to as the trace of K € C1(H). The operators in C1(H) are called trace

class operators. For every A € L(H) and K € C;1(H), we have [tr K| < ||K||; and

tr AB = tr BA.

Proposition 6. Let A, and B, be sequences of operators in Co(H) such that
[|[An|loc = O(1) and ||Bnllcc = O(1) as n — oo. If || Bnll1 = o(1) or

(16) |AnBrlli =0(1), ||BrBnlli =0(1), trB,=0(1) (n— o),
then for m € N,
1 1
Z— [A +B)] Z—_trAﬁL-i-o(l) (n = 00).
j=1 J ]71J
Proof. Since tr Ap,B,, = tr B, Ap, we have tr [AYB2] = tr [B5A2] for all a,8 € N.
Using this property one can get
m 1 j m j—1 P
S, = Z;tr (4 +B,)] - Z loa =33 (7w (4 By]
j=1 j=1 k=0

= trB,+ izzz ( )tr [Alegb—k].

j=2
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Then, by using |tr A| < || 4|1, we get

m j—1 .
_1 .
) sl <leBa+Y 3 (771453

=2 k=0
If || Bu|lr = o(1), then [tr B,| = o(1). By Lemma 4, we obtain from (17) that
1
J— o
( )|An||’;o||Bn||go'° 1Bl
0

Jj—

EARS:A S

j=2k=
Taking into account that ||4,||lcc = O(1), ||Bnllec = O(1) as n — oo, we get
ISn| < I1Bnllx + O([|Bnll1) = o(1)  (n = o0).
If (16) holds, then from (17) and Lemma 4 we obtain

m
|Sn| < |tan|+z(”Ban“l”Bn“?;2

i=2

i-2 ,.
j—1 _ g
+Z( i )nAanulnAnu';o1||Bn||go'° )
k=1

= [tr Bn| + O(|BnBull1) + O([|AnBull1) = o(1)  (n — o0).
O

3.3. Operator determinants. Let A € £L(?) be an operator of the form I + K
with K € Ci(H). If {X;(K)};>0 denotes the sequence of the nonzero eigenvalues

of K (counted up to algebraic multiplicity), then > |A;(K)| < co. Therefore the
(possibly infinite) product H (1+X;(K)) is absolutélz;convergent. The determinant
of A is defined by =0
det A = det(I + K) = [ (1 + A;(K)).
Jj=20
In the case where the spectrum of K consists only of 0 we put det(I + K) = 1. The

number det A is called the determinant of A. The next statement follows from the
definition.

Lemma 7. If P is a finite rank projection, then
det P(I + K)P = det(I + PKP),

where the det on the left refers to the ordinary finite-dimensional determinant for
operators acting on Im P, the image of P.

3.4. Regularized operator determinants. Let K € C,(#), where p > 1is an
integer. A simple computation (see [20, Lemma 6.1]) shows that then

p— 1 j
R,(K) := (I + K)exp Z ~T€Ci(H)
7j=1
Thus, it is just natural to define det ,(I + K) := det(I + R,(K)). One calls
det ,(I + K) the p-regularized determinant of I + K.
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Lemma 8. (see [20, Theorem 6.2]). If K € C1(#), then

p—1 i
tr (K
det ,(I + K) = det(I + K)exp (—1)9“(]7_)

j=1
Lemma 9. (see [20, Theorem 6.5]). Letp € N. If |K,, — K||, — 0, then
|det ,(I + Kp) — det ,(I + K)| = 0.

Lemma 10. (see [20, Corollary 6.3]). Let p € N and K € Cp,(H). The operator
I + K s invertible on H if and only if det ,(I + K) # 0.

More information about operator determinants can be found in [15, 17, 20].

4. ASYMPTOTIC ANALYSIS

4.1. The Bottcher-Silbermann formula. Following [22] and [7, Sections 7.5—
7.6], for n € Z, and f € LY,y define the operators P,,W,, and Q, on Hx
by

oo n oo n
Py fitt o Y fuths Woi Y fit" = D fakt®, Qni=1I- P
k=0 k=0 k=0 k=0

Let a € LY, y- The operator P, T(a)P, : P,H% — P,H% may be identified with
the finite block Toeplitz matrix Ty (a) := [a;—&]};—o- The following identities can
be checked straightforwardly:

Wn2 =PZ =P, W,P,=PFPW,=W,, WnTn(a)Wn :Tn(a)-

The following result is the starting point for our asymptotic analysis of block
Toeplitz determinants. It was obtained by Bottcher and Silbermann in the late
seventies [5] and is contained in [6, Section 6.15] and [7, Section 10.32].

Lemma 11. Suppose a € L, y satisfies the following assumptions:

(i) there are two factorizations a = u_uy = viv_, where uy,vy € GHRY, N and
u_,v_ € GHR, n;

(ii) u— € Cnxn or ur € Cnxn-
Then D, (a) # 0 and

G(a)"‘H _ oo
m = det1 (I— ;Fn,k>

for sufficiently large n, where G(a) is given by (4), the series converges in the
operator norm of Hx;, and its terms F,, ;. are given for n,k € Z by

(18) Fro = PuT()QuT(b)Pn = WnH (@) H(b)Wy,
(19 Fux = PIOQ(QHOHE@Q) QI0)P, (k1)
with b, ¢ given by (12).

o
It is easy to see that the operator ) Fj is of finite rank, so the operator
k=0
determinant in the above lemma is well defined.
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4.2. Estimates for norms of operator series. Let b,c € LY, y and F, ; be
given for n, k € Z4 by (18)—(19). For p € N, put

p_l [o)e]
An(p) == ZF"J“ Bn(p) := Z Euk
k=0 k=p

where the latter series is understood as a formal expression.

Proposition 12. Suppose p € N and functions b,c € LY, n are such that H(b)H (c)
belongs to C,(H%). Then

(20) 1Bn(Dllp = o(1),  [[Bu(p)llh = o(1) (n — o0).

Proof. By Lemma 5, because @, — 0 strongly and H (b)H (¢) € C,(H%), we have
(21) lim [[QuH(D)H(@Qall, = 0.

Hence, there is a number ng € N such that for all n > ng,

(22) 1QnH (D) H (€)Qnlloo < |QnH (b)H (¢)Qnll, < 1/2.

For n € Z4 and k € N, by Lemma 4,

(23) I1Fnilly < [1PaT(c)Qnlloo|@nH (b) H () @nllp

x[|QnH (0)H (€)Qu |5 1QnT (0) Palloo

< O(,0) |QuH D) H(©@)Qnlly |QnH(B)H(&Qull% !
with C(b, ¢) := [|T(c)l| (a2 IT'(0) || a2~ From (23) and (22) it follows that

24)  1BaWlly, < C0, ) |1QuHOH@Qully Y 1QnHB)H(@QnllE
k=1

< C,9) |IQuHOBH@Qull, 2" 7"

k=1
= 0(IIQnH®H@Qull, )-
Similarly, by Lemma 4, for ¥ > p and n € Z,
(25) [Fnills < C(b,) |QnH (b) H(©)Qull} |QnH (b)H () Qnlls -
From (25) and (22) it follows that for n > ny,

(26)  [IBa@)lli < C(b,¢) |QuHB)H@QulE Y 1QnH (D) H@QnllE™

k=p

Il

O(IIQnHB)H@Qn1)-
Combining (24) and (26) with (21), we immediately get (20). O

Proposition 13. Suppose p € N\ {1} and functions b,c € LY, n are such that
H(¢)H (b) and H(b)H (¢) belong to Cp(H%). Then

”Fn,p—an,p—l”l = O(I)a ”An(p - l)Fn,p—IHI = 0(1) (TL - OO)
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Proof. Since H(¢)H (b) and H(b)H (¢) belong to C,(H%), the operators F, ; Fy, p—1,
where j € {0, ...,p—1}, contain at least p terms in C,(H%). Therefore, by Lemma 4,
we can estimate the 1-norms of F}, ; F}, ,_1 by products of p p-norms of those oper-
ators in C,(H%) and oo-norms of the rest operators. More precisely, be Lemma 4,

@) 1FnoFap-ill < [Wallool H@H®)|pWalloo
X|IPaT (€) Qulloo | Qn H(B) H@@Qn 15~ 1QnT (5) Palloo
O(IQuHBHOQuIE™)-

Similarly, for j € {1,...,p— 1},
(28) 1Fn.iFnp-1lls < Cj(b, ) [[QnH (D) H(S)Qnll7,

2 .
where C;(b,¢) = (IT®)llcearg) IT(©)llcgarz) ) IHOH@l: yz ) From (27) and
(28) it follows that

a0~ D Fnpo1lh = O(IQaHO)H@QaIL ™ + 1QuH O HEQuIE).

From this equality and (21) we get ||An(p — 1) Fpp—1|l1 = 0o(1) as n — co. By (28)
and (21), ||Fnp—1Fnp-1ll1 =0(1) as n — oo. O

The trick of the estimate of the 1-norm of F, ;F, , 1 with j € {0,...,p—1}
via exactly p p-norms and the rest oco-norms is crucial in the above proof. It was
communicated to the author by Albrecht Bottcher [4].

Proposition 14. Ifp € N and b,c € L, 5 are such that H(b)H(C) is compact on
H%;, then ||4,(p)||oo = O(1) and || Bn(p)|lo = O(1) as n — .

This proposition is proved by analogy with Propositions 12 and 13.

4.3. Higher order asymptotic formulas for Toeplitz determinants. The
following theorem is implicitly contained in [5, Theorem 8], [7, Theorem 10.35], and
especially [6, Section 6.23]. This theorem is “smoothness free” in the sense that we
assume only that H(¢)H(b) and H(b)H (¢) belong to the Schatten-von Neumann
class C,(H%). Notice also that necessary and sufficient conditions guaranteeing
that the product of two Hankel operators belongs to C,(H?) are unknown (see [7,
Sections 4.50 and 10.56]).

Theorem 15. Let a € L,  satisfy the conditions (i) and (ii) of Lemma 11.
Define the constant G(a), the functions b,c, and the operators F, ; by (4), (12),
and (18)—(19), respectively. If p € N and H(¢)H (b), H(b)H (¢) belong to C,(H%),
then

_ — J
. Da(a) iy = 1
29 lim —————exp( — —tr E;, = .
(29)  Jlim G(a)t! ];J ,; ¢ det ,T(¢)T(b)

Proof. Let us prove that the formula holds for p = 1, that is,

. Dna) _ 1
(30) % GO~ de, T@OT)
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From Lemma 11 it follows that for sufficiently large n,
G( a)n+1 e

31 ———— =dety | — F, .

Gy Da@ o\

From Proposition 12 and Lemma 9 we get

(32) det ¢ (I — iFnJC) = det 1(I — Fn’()) + 0(1)

k=0
From Lemma 7, taking into account that Pfl = P, and
(33) F,o=W,H(@C)H(b)W, = P,T(c)Q,T(b)P,.

we obtain det 1 (I — F,0) = det1 P, (I — F,, 0)P,. From the latter equality and the
obvious identity det, P, AP, = detW, AW, it follows that

(34) det 1(I - Fn,o) = det 1Wn(I — Fn’o)Wn.
On the other hand, since W? = P, = P2, we have
(35) Wo(I — Fpo)Wy = Py (I - PnH(E)H(b)Pn) P.

Combining (34), (35), and Lemma 7, we obtain

(36) det (I — Fjo) = det; (1 - PnH(?:')H(b)Pn) .
Since H(c)H (b) € C1(H%) and P, — I strongly, by Lemma 5,
@) i |

P H(OH(OD)P, — H(E)H(b)”l = 0.

From (37) and Lemma 9 it follows that

(38)  det, (1 - PnH(E)H(b)Pn) =det1(I — HRH®)) +o(1) (n— o0).
Combining (31), (32), (36), and (38), we arrive at

G(a)"t!
Dy(a)

By Proposition 1, the operator 7'(¢)T'(b) = I — H (¢)H (b) is invertible on H3.. From
(39) and Lemma 10 we conclude that (30) holds.

(39) =det1(I — F0) +0(1) =det (I — H(@)H(b)) + o(1).

0 p—1 o)
Let pe N\ {1}. It is clear that > Frp = > Fur+ > Fnr =: An(p) + Bn(p)
k=0 k=0 k=p

is of finite rank. Therefore we can apply Lemma 8 and get

(40)  det, (1 - iFnk> = det1(I — An(p) — Bn(p))

From (31) and (40) it follows that

(41) % exp {pf ;tr [(Anp) + Bn(p))j] } = det, (I - i Fnk> :

Jj=1
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From Proposition 12 and Lemma 9 we get
o0
(42) det ,, (I -y Fn,k> = det ,(I — F,0) + o(1).
k=0
Due to Propositions 14 and 12, ||A,(0)|lcc = O(1), ||Ba(p)|lec = O(1), and

||Br(p)||1 = 0(1). Then applying Proposition 6 with A,, = A,,(p), B, = B.(p), and
m=p-—1, we get

(43) pz_:l s [(4n0)+ B.)’] = %_1 St [410)] o) (0> o).

Combining (41)—(43), we arrive at

(44) C@™ {pZ_: %“ [Ai(p)] } = det p(I — Fn0) + 0(1).

D, (a)

Since F,, ¢ is a finite-rank operator, it belongs to C1(H%). Then, by Lemma 8,

j=1

p—1
1 .
(45) det ,(I — Fy0) = det1(I — Fy,0) exp {Z ;tr [FT]LO]} .
j=1
From (33) and W2 = P, it follows that for j € {1,...,p — 1},
F2 o = WoH(@)H(b) Py H(E)H (b)Py x - -+ x PyH(@)H(b) Wi

From the latter equality and the obvious identity tr W,, AW,, = tr P, AP, it follows
that for j € {1,...,p— 1},

(46) tr[F o) = tr [(PHH(E)H(b)Pn)j] .
From (45), (36), (46), and Lemma 8 it follows that
(47) det (I — Fno) = det; (I - PnH(a)H(b)Pn)
X exp {Z %tr [(PHH(aH(b)Pn)J] }

- det,,(f - PnH(E)H(b)Pn).
Since H(¢)H (b) € Cp(H?%) and P, — I strongly, by Lemma 5,

(48) lim

n—oo

P H(@)H(b) P, — H(&)H(b)”p —0.

From (48) and Lemma 9 we obtain

(49) detp(I - PnH(E)H(b)Pn) = det ,(I — H@H(b)) +o(1) (n — o0).
Combining (44), (47), and (49), we arrive at

1 p—1 p—1 J
(50) Gl()a)(a—; exp {Z %tr (Z Fn,k)
n j=1 k=0

} = det ,(I — H@H()) +o(1).
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By Proposition 1, the operator T'()T'(b) = I — H(¢)H (b) is invertible on H%. From
(50) and Lemma 10 we get (29) for p € N\ {1}. O

5. REFINED ASYMPTOTIC FORMULAS FOR WEIGHTED WIENER ALGEBRAS

In this section we will show that under natural conditions on the weight w : Z —
[1,00), the invertibility of T'(a) and T'(a) with a € (W,,)nxn implies the existence
of canonical factorizations a = u_u, = v_v, such that H(¢)H (b) and H(b)H(c)
belong to C,(H%), so all the conditions of Theorem 15 are fulfilled. Moreover,
we will show how to remove the term F), , ; on the left of (29) under one more
condition on the weight.

5.1. Estimates for norms of truncated Hankel and Toeplitz operators.
Now we prove estimates for norms of truncated Hankel and Toeplitz operators with
symbols in weighted Wiener algebras.

Proposition 16. Let w be a weight satisfying (6)—(7). Ifb,c € (W,)nxn, then for
everyn € Z,

(51) NQuH®) ) < ﬁ S lbellek),
k=n+1
(52) IH@Qullczy < m S e gllo(=).
k=n-+1

Proof. It is not difficult to show that
(53) QnH(b) = QnH(Pb - PnPb)v H(E)Qn = H((QC)~ - Pn(Qc)N)Qn

It is well known (and not difficult to prove) that || H(f)[|zaz) < [|flli,~ for f €
Whnxn- Applying this fact to (53), we get

(54) 1QnH®)llcerzy < IPb— PuPbllin = > [Ibxll;
k=n+1
(55) IH@Qnllzaz) < Q)™ = Pa(Q) iy = D llekll-
k=n+1

Taking into account that w(+k) < w(x(k + 1)) for k € Z,, from (54) and (55)

we obtain (51) and (52), respectively (notice that the series in (51) and (52) are

convergent since b,c € (W) nxn). O
Put Ag := Py and A]' = P]' — Pj,1 for j € {1, .. .,n}.

Proposition 17. Let w be a weight satisfying (6)—(7). Ifb,c € (W,)nNxn, then for
every n € Z4 and every j € {0,...,n},

1 o0
QTOA ey € —— s el ()
10T ey < ey, X

1 o0
IAT@OQulley € ——mte 3 lleillo(—F).

=g+ 1) &=
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Proof. Manipulating with Fourier coefficients of the functions Q,T(b)Aj ¢ and
A;T(c)Qney, it is not difficult to show that

1QuT®)Ajllcmzy < Y okl 1AT@Qullemzy < D llekll-

k=n—j+1 k=n—j+1

From these inequalities and (7) we immediately get the assertion. a

5.2. Sufficient conditions guaranteeing elimination of F;, ;,_,. Using the re-
sults of the preceding subsection, we prove now that if b and c¢ are sufficiently

smooth, then the conditions of Proposition 6 are fulfilled with m = p—1, 4, =
p—2

F, i, and B, = F,, ,_1 For a weight w : Z — [1, 00), put
k=0

1
Ph= ol + Dw(—k — 1)
Lemma 18. Suppose p € [1,00) and w is a weight satisfying (6)—(7). Assume

byc€ (Wy)nxn and Y ok < co. Then H(¢)H(b), H(b)H (¢) € Cp(HE).
k=0

(56)

(k € Zy).

Proof. This lemma is proved by a repetition with minor changes of the proof of [6,
Lemma 6.19(i)] (see also [7, Lemma 10.34(i)]). O

Proposition 19. Suppose p € N\ {1} and w is a weight satisfying (6)—(7). If
b,ce W,)nxn and

3 p—1 | =
(57) lim b ZO @i | =0,
J:

then tr Fy, ,_1 = o(1) as n — oco.

Proof. If A € L(H%), then

(58) tr PaAP, =) trAjAA;.

=0
Each of the operators A;AA; is of rank one. For a rank one operator its 1-norm
coincides with its oo-norm. Therefore from (58) it follows that

n n n
(59) (PP <3 lor A AN < S I1AAAN I = S 1A ANl )

Jj=0 j=0 4=0
Let A = F,, 1. Taking into account that A;P, = P,A; for j € {0,...,n}, we
obtain for n € Z,

(60) 14 Fnp-18illez) < ”AjT(C)Qn”L(HJQV)||QnH(b)||ZZZ;II2V)

x| @) Qalll s 1T (B otz -

Since b, c € (W, )nxn, there exists ng € N such that for all n > ny,

oo o

(61) Do lbellwr) <1, D flemkllw(=k) < L.

k=n+1 k=n+1
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From (60)—(61) and Propositions 16-17 it follows that for n > no,

(62) ”A]Fn,pflA]”E(H?v) S <Pn—j90z_1; .7 € {0,,7’L}
From (59) and (62) we obtain for n > ny,

n
(63) |tr Fn,p—1| = |t’r PnFn,p—IPn| < ‘1011);1 (Z ‘pj) .
=0
From (57) and (63) we immediately get tr F}, ,_1 = o(1) as n — oo. O

5.3. The case of general weights.

Theorem 20. Let w be a weight satisfying (6)—(8) and ¢y, be given for k € Z
by (56). Suppose a € (W,)nxn and T(a),T(a) are invertible on H3.. Define the
constant G(a) by

(64) G(a) := exp {% /0 " log det a(e”)de}

and define the functions b, c, and the operators F, by (12), and (18)—(19), respec-
tively.

(a) If § pr < 00, then

k=0
(65) H@H(®b) =I-T@T(®) € Ci(Hy),
(66) H(a)H(a ') =I-T(a)T(a™") € C1(HY),
(67) lim Dna) ! — =detT(a)T(a™?).

n—oo G(@)™ et , T(OT D)
(b) If pe N\ {1} and § ph < 0o, then
k=0

(68) H(@)H(b) =I-T@T(b) € Cp(HE)

and (29) holds.
(c) Suppose the conditions of (b) are fulfilled and

n
. —1 _
Jun ¢4 (Z 0%’) =0
J:

then (68) holds and one can remove F, , 1 in (29), that is,

p—2 J 1
@ F) } ~ det, T@T()

Proof. Let p € N. By Proposition 3, the function a admits canonical left and right
factorizations (14) in the algebra (W, )nxn. Therefore, the functions b and ¢ are
correctly defined by (12) and b,c € (W,,)nxn. Lemma 18 gives that H(¢)H (b) and
H(b)H (¢) belong to Cp(H%).

. Dya) g



16 ALEXEI YU. KARLOVICH

(a) Let p = 1. Since a,a™! € (W,)nxn, by Lemma 18, H(a)H (@™ ') € C1(HZ,).
In view of (13), I — H(a)H(a™!') = T(a)T(a"'). Due to the corollary from [6,
Lemma 6.8],

. Dn(a) _
e Glay
The rest follows from Theorem 15. Part (a) is proved.
(b) This immediately follows from Theorem 15.
(c) Tt is sufficient to show that
p—2 J
k=0

p—1 1 p—1 J p—1 1
(70) ) =tr (Z Fn,k) =y =tr
j=1 J k=0 j=1 J

p—2
Let A, == A,(p—1)= > Fox, B, = F, ,_1. By Proposition 14, [|A,|lcc = O(1)
0

k=

and it is easy to see that || Bn||cc = O(1). In view of Proposition 13, |4, Bxn|l1 = o(1)
and || B, Byll1 = o(1). Applying Proposition 6 with A,,, B,, and m = p— 1, we get
(70). Then (69) follows from (29) and (70). O

det ,T(a)T(a™ ).

+0(1) (n— o).

5.4. The case of power weights. For a, > 0 denote by W# the weighted
Wiener algebra W, with the power weight ¢ given by (5).

The next theorem was obtained in the late seventies by Bd&ttcher and Silber-
mann [5, Theorem 8] and it is contained in their books [6, Theorem 6.20] and [7,
Theorem 10.35]. It is easy to see that it follows from Theorem 20(a), (c).

Theorem 21. Suppose a € WX‘,EN and T(a),T(a) are invertible on H%. Define
the constant G(a), the functions b,c, and the operators Fy; by (64), (12), and
(18)—(19), respectively.

(a) Ifa+ B > 1, then (65)—(67) hold.

(b) If pe N\ {1} and a + B8 > 1/p, then (68)—(69) hold.

5.5. Example. In this subsection we will show that Theorem 20 is stronger than
Theorem 21.

Proposition 22. Suppose w : Z — [1,00) is a weight such that w(0) =1, (7) holds,
and there exist constants Cy > 0 such that w(+2n) < Crw(£n) forn € Z4. Then
(8) holds and w(i+ j) < Cw(i)w(j) for alli,j € Z with C := max{Cy,C_}.

The proof of this statement is straightforward and it is omitted.
Theorem 23. There erist a weight w : Z — [1,00) satisfying (6)—(8) and

00 9 . 1 - 1 _
> (wk)w(—k)) ~ <o, lim w(n)w(—n) (Z w(j)w(—j)) -

k=1 j=1

and a function a € W, such that a ¢ WP for all a + B > 1/2, a(t) # 0 for all
t € T, and the winding number of a(t) about the origin is equal to zero. That is,
Theorem 20(c) is applicable to the function a with p = 2, but Theorem 21(b) is not.

Proof. Let

5(k) = (VIR T log(lH +e))1/2 (k€ 2).
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Obviously, @(0) = 1, @(xn) < @(£(n + 1)) and &(£2n) < (2v2)Y25(£n) for

n € Z,. By Proposition 22, the weight w(k) := (2v/2)'/2%(k) =: Cw(k), where
k € Z, satisfies (6)—(8). Clearly,

oo o
w(k)w(—k) =Cc* < 0,
,;( ) ]; k+110g(k+e)
Flw \/—logn+e = NG
_ 1 1-1/2
~ /n log(n +e) (n )=0 logn+e as oo
Let the function a : T — C be given by
ad 1
a(t) := a9 + ar(* +t7%), ap = ke
(t) = a0 kz::l Kl ) e (k + 1)5/410g? (k + €) (keN
and ap will be chosen later. It is easy to see that
arw(—k) + ap@(k < 0,
; (=#) ; kz k+110g3/2(k+e)

whence a € W,,,.
Suppose a + 3 > 1/2. If a € W*# then the series

oo oo

> 1 +3 ;
= (k+1)3/4log*(k+e) = (k+1)>4Plog’(k +e)

is convergent. But this is possibly only when 5/4—a > 1 and 5/4— 8 > 1. Therefore,
a+ B < 1/2 and we get a contradiction. Thus, a ¢ W*# for o+ 8 > 1/2. That is,
it is not possible to apply Theorem 21(b) to a with p = 2.

Finally, let us choose ag so that a(t) # 0 and the winding number of a about the
origin is zero. These conditions are equivalent to the invertibility of both T'(a) and
T(@) on H? (in the scalar case!) (see [7, Theorem 2.42(c) and Proposition 7.19(c)]).
So, all the hypotheses of Theorem 20(c) are fulfilled for a and p = 2. O
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