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Abstract. This paper presents the development and performance assessment of textile-based
sensor based on a three layer architecture for the step detection. Two different transducing
elements (EeonTex™ LG-SLPA and velostat) and electrodes (Satatex Techniktex P-130 and
Elitex yarns) were selected for the construction of the sensors. The performance of the
resulting sensors was assessed based on a dynamometer cyclic compression/decompression test
with different compressions loads and at different speeds. Additionally, a real-life experiment
was conducted to evaluate the sensor response during walking. The results show that all
sensors configurations have a non-linear resistance-force relation. The best sensor
configuration for the step detection was the combination of EeonTex™ LG-SLPA as a
transducing element and the Elitex yarns for the electrodes. In this configuration, the resistance
magnitude varies in an order of hundreds of kohms between the stance and the swing phases.

1. Introduction
Position estimation based on the Pedestrian Dead Reckoning (PDR) technique suffer from cumulative
error due to the drift on the inertial sensors measurements. Typically, to prevent the exponential
growth of the error on the position estimation, the PDR-based systems apply the zero-velocity update
(ZUPT) technique. This technique takes advantage of the human gait to minimize the drift impact and
correct the position estimate. I.e., every time the foot is in touch with the ground (stance phase), the
inertial sensors readings are considered drift and the pedestrian position is corrected based on the
magnitude of those readings. However, the ZUPT technique relies on the definition of thresholds on
sensors’ readings (e.g., stance duration, acceleration and angular velocity magnitudes) [1]. These
thresholds make the performance user- and motion-dependent, characteristics that are undesired in
Indoor Positioning Systems (IPSs) for emergency responders [2].

In this paper, we study the viability of embedding textile-based pressure sensors on a sock to detect
the stance phase. To do that, different materials for both the electrodes and the sensing element were
used and the performance of the resulting sensors was assessed based on two different experiments.

Besides improving the stance detection of the conventional ZUPT methods, the proposed solution
is wearable, comfortable, easy-to-use, and cheaper than solutions with pressure sensors embedded on
the insole [3].

http://creativecommons.org/licenses/by/3.0
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2. Materials and Methods
In this section, the assembly details and materials used for the construction of the pressure sensor
prototypes as well as the equipment and experimental setup used/designed to assess their performance
are described.

2.1. Pressure Sensor Prototype
Figure 1 shows the sketch and the fabrication details of the pressure sensors developed. The sensors
are produced in three layers: the top and bottom layer are made with conductive materials (fabric and
yarn knitted on the sock), and the middle layer is a piezoresistive substrate. The sensing element is
placed on the sock’s heel and conductive leads connect the sensor to the acquisition device (placed on
the user’s ankle).

The dimensions of the sensing element and electrodes are 10x10 mm and 7.5x7.5 mm, respectively.
The dimension of the electrodes is smaller than the sensing element to prevent any short-circuit
between the two conductive layers.

Figure 1. A sketch of the three layer textile-based pressure sensor with the conductive leads embedded
on a sock.

2.2. Configuration of the Sensors’ Prototypes
To assess the best combination of materials (electrodes and sensing element), three different sensor
configurations were tested. They differ on the piezoresistive element (EeonTex™ LG-SLPA and
velostat) and the conductive materials (Satatex Techniktex P-130 and a silver coated yarn from Elitex)
used. Table 1 shows the materials used for the construction of each pressure sensor prototype, which
are labeled as S1, S2 and S3.

Table 1. Description of the materials used for the construction of
each pressure sensor prototype.

Sensor
Label Conductive Materials Piezoresistive Sensing

Element
S1 Elitex yarns EeonTex™ LG-SLPA
S2 Satatex Techniktex P-130 EeonTex™ LG-SLPA
S3 Satatex Techniktex P-130 Velostat

2.3. Experimental Setups
Two types of experiments were conducted to assess the viability of using the pressure sensors for step
detection. In the first experiment, a uniaxial dynamometer (Houndsfield, H100KS) and a digital
multimeter (Agilent, 34410A) were used to characterize the electrical behavior of the pressure sensors
during a 10 cycle compression/decompression test. This setting aims to study the sensor’s response, in
terms of electrical resistance, when it is submitted to different pressures. Therefore, for each sensor
configuration, three different compression cycles (2-136N, 2-173N, and 2-210N) were applied. These
compression forces corresponds, based on the ratio between the heel and dynamometer probe areas, to
a body weight of 55, 70, and 85 kg, respectively. The application of different compression forces aims
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to study how the sensor respond to different body weights and if it possible to detect steps for all body
weights and determine the wearer’s weight based on the sensor output. Additionally, three different
speeds (5, 25, and 50 mm/min) were set to evaluate the dynamic sensor response and to assess if the
sensor is able to detect steps at different walking speeds. For the dynamometer experiment, a total of
27 individual tests were performed, 9 per each sensor configuration.

On the other hand, the second experiment consisted on asking a volunteer (male, 30 years old,
70kg) to wear a sock with the pressure sensor embedded, perform five consecutive steps and then
stopped with the heel on the ground. This experiment was repeated five times for each sensor
configuration and the sensor output was recorded using the same digital mutimeter (Agilent, 34410A).
This experiment aims to evaluate the sensor response on a real scenario, since the dynamometer
cannot replicate the velocities experienced during walking (≈1m/s).

3. Results and Discussion
During the stance phase, the heel presses the piezoresistive material and the sensor’s resistance
decrease. In the swing phase, the pressure between the heel and the footwear decreases and the
resistance of the sensor increase. This resistance variation allows the step detection and higher its
variation better the stance phase can be detected.

3.1. Dynamometer Experiment
Figure 2 shows the typical response of the developed pressure sensors during a dynamometer
compression cycle. As can be seen in the figure, the resistance-force relation is non-linear (resembles
to an exponential function), which is in line with the findings of similar research [4,5]. Since the goal
of this work is to detect steps, this behavior of the sensor is beneficial as it allows to easily detect the
step, the difference on the sensors resistance between the stance and swing phases can be in the order
of hundreds of kilo ohms (figure 2). As expected, when the sensor is compressed (stance phase) its
resistance decrease and increases during the decompression phase (swing phase). Additionally, the
sensor response during the 10 compression/decompression cycles is almost the same, meaning that the
sensor output is repeatable.

Figure 2. Example of a sensor output for the 10 cycles of compression/decompression for the
dynamometer experiment. This graph illustrates the response of the S1 sensor configuration, for a
simulated user weight of 70 kg (173 N) and a test velocity of 25 mm/min.

Figure 3 shows the resistance versus time percentage plots for all sensors configurations, weights
and speeds. The time of the plots was converted to a percentage for an easier comparison between the
experiments performed under different speeds.

Based on the results obtained, the S1 sensor configuration stand out as the best option to detect the
steps as the resistance magnitude changes in the order of thousands of kilo ohms between the
compression and decompression cycle. Whereas the sensor configuration S2 has a variation magnitude
in the order of hundreds of kilo ohms and the S3 configuration in the order of hundreds of ohms.
Additionally, unlike S2 and S3 configurations, the response of the S1 configuration is almost the same
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for different speeds. For the S2 and S3 configurations the magnitude of the sensor response at lower
speed is lower than for higher speeds. This phenomenon can be related with the limitations of the
dynamometer. I.e., for higher speeds the applied force is higher than the threshold defined (e.g., see
figure 2).

Although the resistance magnitude seems to decrease during the 10 compression/decompression
cycles, it is not possible to state that the sensor is not repeatable since the dynamometer is not capable
of applying the same force for each compression/decompression cycle. For lower velocities (5
mm/min) the sensors’ magnitude is almost the same. Regarding the different forces applied, by
analysing the graphs of figure 3 does not seem that they have a significant impact of the sensor output.
However, more tests with better equipment should be conducted to assess if it is possible to determine
the wearer’s body weight based on the sensor output.

Figure 3. Resistance versus time percentage plots for the different sensors configurations, simulated
users’ weight, and test velocities.

3.2. Walking Experiment
Figure 4 shows the results of the tests for the walking experiment. As can be seen in the figure, the
best results were obtained for the S1 configuration, followed by the S2 and S3 configurations.
Compared with the results obtained from the dynamometer tests, it is possible to see that the resistance
magnitude for all sensor configurations decreased significantly. This phenomenon can be explained by
the existence of a continuous force applied to the sensor due to its placement between the heel and
shoe. Nevertheless, the stance and the swing phases can be clearly distinguished, validating the use of
these pressure sensors for step detection.

Additionally, we can see that a peak appears in the beginning of the swing phase. This peak refers
to the heel off moment and can be explained by the diminution of the pressure applied by the heel on
the sensor, which is later restored during the swing phase. Moreover, for all the sensor configurations,
the resistance when the heel is pressing the sensor is very stable and its magnitude after the five steps
is very close to the initial value. This means that the sensor is capable of providing reliable results for
stance detection.
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Figure 4. Resistance versus time plots for each sensor configuration while a volunteer performs five
consecutive steps.

4. Conclusions
In this paper, three types of textile-based pressure sensors were proposed and evaluated for the stance
detection. These sensors were evaluated on a dynamometer compression/decompression cycle test and
by a real-life experiment.

As demonstrated in this paper, the steps can be easily detected by means of a textile-based pressure
sensor integrated on a sock. From the three configurations evaluated, the combination of Elitex yarns
as conductive materials and EeonTexTM LG-SLPA as the piezoresistive element provided the best
results. In this first assessment, many relevant aspects of sensor construction have been investigated
and a detailed knowledge about the sensor behavior has been acquired.

As future work, the sensors will be fully characterized in a more advanced dynamometer and more
sensor configurations will be tested. Namely, the creation of 3D structures with conductive yarn to
replace the three layer architecture and simulate the piezoresistive behavior of the sensing elements
used in this work. Additionally, the textile-based pressure sensor will be integrated into PDR system
[6] to assess its viability in the drift control of the inertial sensors.
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