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      Abstract 

 

 
Angiogenesis, the development of new blood vessels from the existing 

vasculature, is controlled by different signaling pathways, where diverse cytokines, 

chemokines and growth factors play important roles. Angiogenesis and blood 

coagulation are key events of vascular biology. Serine protease, thrombin, which 

plays a central role in blood coagulation cascade through its ability to cleave 

fibrinogen and produce fibrin, is also known to be involved in inflammation, wound 

healing and tissue remodeling, growth factor activation, embryogenesis, and both 

normal and aberrant cell growth control. The effects of thrombin are associated with 

the induction of expression of several growth factors including fibroblast growth 

factor (FGF) 2, platelet derived growth factor, insulin-like growth factor 1, and 

vascular endothelial growth factor. In this work, the regulation of expression and 
release of FGF1, a potent pro-angiogenic factor was investigated in the context of 

thrombin activity. 

We found that thrombin has the ability to induce FGF1 transcription and 

redistribution of FGF1 to the inner leaflet of the plasma membrane, resulting in the 

non-classical (ER/Golgi independent) export of this growth factor with fast kinetics. 

FGF1 signaling underlies thrombin mitogenic activity since thrombin does not 

promote cell proliferation in cells expressing a dominant negative form of FGF 

receptor 1. In an effort to further define the mechanisms underlying the observed 

effects of thrombin, we found that both release and expression of FGF1 stimulated by 

thrombin are dependent on protease activated receptor 1 (PAR1). Additionally 

thrombin is capable to cleave full-length transmembrane Notch ligand Jagged1 in its 

extracellular domain and to produce a soluble form of Jagged1 which decreases Notch 

signaling and induces FGF1 expression and export. Interestingly, we also 

demonstrated that the long term thrombin treatment can  
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induce FGF1 release from PAR1 knockout cells, most probably as a result of 

accumulation of soluble Jagged1.  

In conclusion, these studies have identified a novel cross-talk bridging thrombin, 

FGF1 and Notch signaling pathways, which all play important roles in vascular 

developing and remodeling. 
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                   Resumo 

 

 
O processo de angiogénese consiste no desenvolvimento de novos vasos 

sanguíneos a partir de vasos pré-existentes, sendo controlado por diferentes sistemas 

de sinalização, onde diversas citoquinas, e factores de crescimento têm um papel 

crucial. Angiogénese e coagulação sanguínea desempenham importantes papéis em 
biologia vascular. A serina protease trombina, a qual tem um papel principal na 

cascata de coagulação pela quebra enzimática do fibrinogênio e produção de fibrina, 
encontra-se também envolvida na inflamação, cicatrização, activação de factores de 

crescimento, embriogénese e crescimento celular, quer em condições normais quer 

em condições de crescimento aberrante. A actividade celular da trombina é devida, 
em grande parte, à indução de expressão de vários factores de crescimento, tais como 

o “fibroblast growth factor” (FGF) 2, o “platelet derived growth factor”, “insulin-like 
growth factor”, e o “vascular endothelial growht factor”. Neste trabalho, a regulação 

da expressão e libertação do FGF1, um conhecido e potente factor pró-angiogénico, 

foi investigada no contexto da actividade da trombina. 
Os resultados obtidos demonstraram que a trombina tem a capacidade de induzir a 

transcrição e redistribuição do FGF1 na porção celular interna da membrana 

plasmática, resultando na exportação não clássica (por via independente do retículo 
endoplásmico\Golgi) deste factor pró-angiogénico com rápida cinética. A libertação 

do FGF1 evidencia a actividade mitótica da trombina em fibroblastos de ratinho, uma 
vez que a trombina não é capaz de induzir proliferação celular em células que 

expressam um mutante do receptor do FGF1 com efeito negativo dominante. Na 

tentativa de tentar esclarecer este mecanismo, demonstramos que a activação da 
transcrição e o aparecimento do FGF1 no compartimento extra celular era dependente 

do receptor da trombina, denominado por “protease activated receptor 1” (PAR1). 
Adicionalmente, a serina protease trombina foi capaz de clivar o Jagged1 na sua  
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porção extra celular levando à produção uma forma solúvel deste ligando, a qual é 

capaz de inibir a activação do mecanismo de sinalização do Notch1 e ao mesmo 
tempo levar à activação da transcrição e exportação do FGF1. Curiosamente, 

demonstramos também que a incubação com trombina, por longos períodos de tempo, 

em células que não expressam PAR1 conduz a libertação do FGF1, mais 
provavelmente devido à acumulação da forma solúvel do Jagged1. 

 

Em conclusão, estes estudos permitiram no contexto de remodelação vascular 

identificar uma nova via que interliga as vias de sinalização da trombina, FGF1 e 

Notch. 
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The understanding of the mechanisms involved in blood vessels formation and 
growth has recently become a principal, yet challenging, objective of the vascular 

biology. Despite impressive achievements of the last decade, especially in the basic 
molecular regulatory mechanisms and the consequent discovery of candidates able to 

stimulate or inhibit ECs, we are still far from satisfactory understanding of complex 

molecular mechanisms that regulate arteriogenesis, vasculogenesis, and angiogenesis. 
In this connection, it is especially important to elucidate the crosstalks between 

different signaling pathways involved in these processes.  It is particularly interesting 
to explore a possible interconnection between three major signaling systems, FGF, 

Notch and thrombin pathways, that are known to play critical regulatory roles in 

angiogenesis. Leading in the future to the development of new therapeutic approaches 
for the regulation of angiogenesis in various clinical contexts. 

 

GENERAL AIM: 
The general aim of this thesis was to explore the possible role of thrombin as a bridge 
between FGF and Notch signaling pathways, in the process of angiogenesis 

regulation. 
 

SPECIFIC AIMS:  
To achieve our goal, the following specific aims were addressed: 

 
1   TO EXPLORE THE ROLE OF THROMBIN IN FGF1 SIGNALING  
  

Since thrombin induces the expression of several growth factors, such as VEGF 

(76, 149), PDGF (466), and FGF2 (467), we aimed to determine whether thrombin 
was able to induce the expression of FGF1 in NIH 3T3 cells as well in Swiss 3T3 

cells. Additionally, we also explored whether thrombin was able to induce FGF1 
release under non-stress conditions. Since thrombin is known to mediate its biological 
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responses predominantly through the activation of PARs (73), we also characterized 

the role of PAR1 in thrombin-induced expression and release of FGF1. 
 

2   TO CHARACTERIZE THE INTERPLAY BETWEEN THROMBIN, NOTCH AND FGF 

SIGNALING MECHANISMS 
 

Since thrombin treatment, similarly to expression of sJ1 117kDa (393), induced 

the expression and release of FGF1 at non-stress conditions, we aimed to determine 

whether these thrombin effects were due to the production of sJ1 117kDa, as a result 
of thrombin cleavage of Jagged1 expressed on the cell surface. Additionally, we 

evaluated the regulation of these effects by Notch signaling. 

 

3   TO CREATE AN IN VIVO MODEL FOR STUDYING FGF1 RELEASE  
 

Due to the absence of reliable in vivo models, our knowledge about non-classical 
FGF1 release in the organism is still very limited.  Recently, it was demonstrated that 

tetrathiomolybdate (TTM), which is known to block stress-dependent FGF1 release, 

represses restenosis provoked by balloon injury of the artery (171). Interestingly, 
restenosis was also inhibited by adenovirally delivered dnFGFR1. Taken together, 

these data indicate the participation of FGF1 release in vivo. However, there is still no 
in vivo model, which allows direct quantification or study of the regulation of stress-

induced FGF1 export. Therefore, we aimed to create transgenic mice with inducible 

expression of FGF1, which would allow the study of FGF1 release in the bloodstream 
and peritoneal cavity. 

  
These studies are expected to further our understanding of the molecular 

mechanisms involved in the regulation of angiogenesis and to yield insight into the 

complex interactions between blood coagulation and angiogenesis. 
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The present thesis is organized in seven different chapters. In Chapter I a general 

introduction to the theme thesis is presented, including a literature review focused in 

the angiogenesis and haemostasis, FGF and Notch signaling mechanisms. Chapter II 
provides a briefly description of the material and methods used to perform the 

different experiments of this thesis work. In Chapter III a compendium of the most 

relevant results, pertaining to the questions raised in the specific aims is presented. 
The general discussion of the thesis is in Chapter IV, followed by conclusions and 

future perspectives (Chapter V). The Chapter VI includes the published and under 
revision papers, supportive of this thesis work. In the last chapter the list of references 

used is presented (Chapter VII). 
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1. Angiogenesis versus Haemostasis 

 
2. Fibroblast Growth Factor Signaling 

 
3. Notch Signaling 
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1   ANGIOGENESIS VERSUS HAEMOSTASIS 
 

During embryonic vasculogenesis, blood vessels are formed de novo, from 

endothelial cell (EC) precursors (angioblasts) that assemble into a primary capillary 

plexus. This primitive network then differentiates, and new blood vessels sprout and 
branch from pre-existing capillaries during the process of angiogenesis (1, 2). 

Angiogenesis is known to be among the key events in various physiologic processes, 
such as organ growth and development, wound healing (3), reproduction, 

development of the corpus luteum during ovulation, and placental development (4). 

Under these circumstances angiogenesis occurs in a highly regulated manner whereby 
pro-angiogenic factors stimulate a phase of rapid migration, proliferation and 

differentiation of ECs, and new vessels are formed. Eventually, ECs become 
quiescent and a local balance of pro- and anti-angiogenic factors tightly regulates the 

whole process. The moment in which this “normal” balance is disrupted mediates the 

angiogenic switch towards the pathological angiogenesis, in the course of process 
such as tumor growth and metastasis (5), rheumatoid arthritis (6), diabetic 

retinopathy, and psoriasis (7) (4). Although upregulation of angiogenic factors is 
necessary to stimulate angiogenesis, simultaneous downregulation of angiogenesis 

inhibitors is also required to sufficiently turn on angiogenesis. The quiescence of the 

vasculature in a tissue suggests that the tissue either lacks angiogenic stimuli or that 
endogenous inhibitors suppress angiogenesis. 

The haemostatic system (or coagulation cascade), which regulates platelets 

adherence and fibrin formation to prevent blood loss during vascular damage, is 
normally inactive in adults due to a balance between pro- and anti-coagulant proteins 

present in the blood stream. In recent years, it has become more and more evident that 
the blood coagulation system represents a major regulatory tool in vascular 

development. Indeed, the EC surface, which is the area of contact between the fluid 

blood compartment and the vessel wall, is the site where the coagulation cascade 
conducts its activity, especially when the endothelium is injured or denuded. Under 
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these circumstances, the permeability of the damaged vessel is increased resulting in 

the extravasation of fibrinogen and fibronectin and the formation of the fibrin clot 
which acts as temporary scaffold for migrating ECs. In addition to the release of 

clotting factors and inhibitors of coagulant enzymes (8) the activation of platelets 

leads to their degranulation resulting in the release of either positive or negative 
regulators of angiogenesis (9). These events result in the migration of proliferating 

ECs into the fibrin mesh in order to repair the vessel wall and in the further adhesion 
and spreading of ECs. 

An increased knowledge of the factors regulating angiogenesis and coagulation 

has led to the understanding that these two systems are closely interconnected. 
Indeed, proteins of the haemostasis pathway contribute not only to coagulation, but 

also to the regulation of angiogenesis.  
 

1.1   ANGIOGENESIS REGULATORS 
 

The complete set of the molecular players involved in the production of each layer 
of a functional vessel is unknown, even for the most rudimentary of the capillaries. In 

the course of angiogenesis, the preexisting vessel provides some but not all 
components and instructions for the formation of its new sprouts and branches. 

Endothelial and mural cells (pericytes and smooth muscle cells (SMC)) migrate and 

multiply on extravasated clotted plasma. Other participants of angiogenesis are 
fibroblasts, which release angiogenic cytokines, as well as chemokines that attract 

inflammatory cells, and a variety of subtypes of leucocytes. The latter are important 

sources of chemokines and pro-angiogenic factors [matrix metalloproteinases 
(MMPs), interleukin (IL) 1 and 8, fibroblast growth factors (FGFs), interferons 

(IFNs), among others], needed for angiogenesis occurring during wound healing and 
repair. Imbalance between the expression of pro- and anti-angiogenic factors and their 

receptors on EC may determine the generation or regression of new blood vessels.  

Stimulators of angiogenesis include such mitogens as vascular endothelial growth 
factor (VEGF) (10, 11), FGF (12, 13), platelet-derived growth factor (PDGF), 

epidermal growth factor (EGF). Also, hypoxia conditions that frequently occur during 
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the angiogenic process, are known to result in the stabilization of the hypoxia-

inducible factor 1 (HIF1), which up-regulates the expression of certain angiogenic 
proteins (14). Angiogenesis is also known to be stimulated by transforming growth 

factors alpha and beta (TGF-α and -β), interleukins, chemokines, angiopoietins (Ang) 

(15, 16) and small molecules such as sphingosine 1-phosphate (17), that are known to 

promote cell proliferation, survival and differentiation of ECs (18, 19). 
Endogenous inhibitors of angiogenesis include various anti-angiogenic peptides, 

hormone metabolites, and apoptosis modulators (4). A series of endogenous anti-
angiogenic factors have been described, of which many are fragments of naturally 

occurring extracellular matrix (ECM) and basement membrane proteins (20), while 

others are non-matrix derived, such as vasostatin, troponin I and angiostatin, among 
many others (21). Remarkably, many inhibitory molecules, such as “statins”, are 

derived from larger proteins that have no effect on angiogenesis (21). Among these 
are angiostatin (22), a fragment of plasminogen that binds directly to the adenosine 

triphosphate (ATP) synthase on the surface of EC, which might play a role in 

intracellular acidification, thus triggering apoptotic events in EC (23). Other anti-
angiogenic proteins resulting from the proteolysis of larger molecules are endostatin 

(a fragment of collagen XVIII) (24, 25), tumstatin (26), and canstatin (fragments of 

collagens that bind to integrins) (27). Some full-length extracellular proteins also 
display anti-angiogenic activity. Among them are thrombospondin-1, 2 and 3 

produced by normal fibroblasts (28), IFN-α, produced by leukocytes (29), and 

platelet factor 4 (PF4) (30).  
 

1.1.1 COORDINATION OF ANGIOGENESIS BY CELLULAR AND MOLECULAR 

INTERACTIONS 
 

During angiogenesis, vascular cells break up old and establish new contacts (gap, 
tight, and adherent junctions), including contacts with the surrounding matrix (31-33). 

Moreover, angiogenic cells continuously lay down and degrade the ECM to facilitate 

their migration and proliferation. Thus, angiogenesis likely results from the 
simultaneous and harmonized occurrence of multiple cellular and molecular 
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processes. An initial angiogenic stimulus triggers cell activation, which is followed by 

cell migration, division, and alignment, vessel pruning and maturation, and 
phenotypic and organotypic differentiation (34) (Figure 1). The onset of 

hemangiogenesis is the opening of intracellular junctions in the endothelial lining, 

allowing the leakage of plasma into the subendothelial space. Thus, one of its 
possibly earliest modulators is vascular permeability factor (VPF) (10, 35). 

Alternative vasodilators useful in angiogenesis are prostaglandins, lipid products of 
arachiodonic acid metabolism catalyzed by cyclooxygenases (COX-1 and COX-2). 

Resident macrophages, polymorphonuclear leukocytes, and mast cells can be 

attracted to sites in need of blood vessels by proinflammatory growth factors and by 
cytokines and chemokines such as interferon-gamma-inducible protein-10 (IP-10) and 

PF4 (36, 37). Once stimulated under angiogenesis-promoting conditions such as 
hypoxia, high lactate concentrations, and temperature stress these cells release IL1s, 

tumor necrosis factor (TNF), FGFs, and proteolytic enzymes that facilitate ECM 

degradation and activation of MMPs (38). In addition, they also induce ECs, 
fibroblasts, and keratinocytes to release another set of proteases that further degrade 

the basal lamina, facilitating EC migration and growth toward the chemotactic source 
(39). Consequently, there is an overall loosening of the original cell-cell and cell-

matrix contacts during the earliest angiogenic events. These processes involve a large 

group of proteins of the integrin, selectin, and cadherin families, as well as members 
of the immunoglobulins-like gene family, like intercellular adhesion molecule 

(ICAM), vascular cell adhesion molecule (VCAM), platelet endothelial cell adhesion 
molecule (PECAM) (40). Finally, proinflammatory molecules such as TNF, IL1, and 

lipopolysachraride (LPS) as well as VEGF induce the expression of certain ephrins 

(Eph). It is thought that the interaction of Eph receptors (33, 41) with Eph expressed 
on the surface of adjacent ECs promotes their sprouting, migration, and capillary tube 

formation (33, 41). Similar events may also be mediated by the Notch ligands, Jagged 

and Delta (42). 



  
  
                                                                                   Introduction 
 
 
 

 35 

 
Figure1- Regulation of the angiogenic cycle. The major steps involved in angiogenesis are receipt of 
an angiogenic stimulus, disruption of endothelial cell contacts, cell migration, cell alignment and 
tubule formation, and the maturation of vascular structures into vessels by investment with mural cells 
and formation of a continuous lumen with the circulation. Factors that control the various steps are 
listed (from Mouta C, Liaw L, and Maciag T. Handbook of Cell Signaling - chapter 334; 2003; 3: 455-
462).  
 

A primitive vessel thus assembles along the concentration gradient of angiogenic 

factors (mitogens, proteases, and others), laying the foundation for a new branch of 
the vasculature that is still only barely functional. As VEGF, FGFs, and Ang2 levels 

begin to fall, Ang1 produced by mesenchymal cells activates Tie2 receptor on EC, 

and this in turn leads to the production and release of a recruitment signal for 
pericytes (PDGF-BB) and SMCs (PDGF-AA, HB-EGF) (43). Once these cells arrive 

and contact the endothelium, TGF-β may be activated, inhibiting EC proliferation, 

altering integrin expression profiles, and stimulating matrix deposition (44). 

Similarly, it is likely that ECs either secrete or express surface molecules that 
contribute to pericytes and SMC quiescence (45). As blood vessels mature, they also 
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establish a different set of interactions with newly deposited ECM that replaces the 

provisional matrix. These EC-ECM contacts are important in lumen formation, vessel 
elongation, and acquisition of a vessel-specific EC differentiated phenotype. Also, the 

EC-mural cell interaction is important for effective function of the new vessel and not 

just its growth and maintenance (44, 46). 
 

1.2   THE COAGULATION CASCADE  
 

Events that result in vascular damage trigger the blood coagulation cascade in 

which the participating enzymes are activated by proteolysis, and the final product is 

fibrin, which forms the basis of blood clots. In vivo, the coagulation cascade is 
initiated when the damaged endothelium interacts with the platelets. This interaction 

is mediated through von Willebrand factor-GpIbα and collagen-receptor interactions. 

Further, platelets are recruited to the platelet plug due to their interactions with 
adhesive proteins such as fibrinogen. Interaction of platelets with adhesive proteins, 

mediated by integrin receptors results in intracellular signaling and cellular activation. 

The activated platelets provide a surface enriched in negatively charged phospholipids 
upon which coagulation factors can assemble. Tissue factor (TF), which is exposed by 

the vessel injury, is a glycoprotein that forms a complex with Factor VIIa (FVIIa) in 

the presence of calcium ions and phospholipids to catalyze the activation of the Factor 
X (FX) (47)- the extrinsic pathway. FX can also be activated by a catalytic complex 

formed by the intrinsic pathway. This complex is composed of the serine protease 
FIXa and its cofactor FVIIIa assembled on appropriate phospholipids in the presence 

of calcium ions (48). Once FX has been activated, it assembles, together with the 

nonenzymatic cofactor FVa and calcium, on phospholipids surface into a 
macromolecular catalytic prothrombinase complex. This complex cleaves 

prothombin, a serine protease zymogen primarily produced in the liver and secreted 
into the blood, to thrombin (49) (Figure 2). 
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Figure 2- Scheme of 

coagulation cascade showing the 

division of its primary stages into 

the intrinsinc and extrinsinc 

pathways. The blood coagulation 

cascade involves proteolytic 

activation of a series of membrane 

bound proteases. Activated thrombin 

cleaves fibrinogen into fibrin, which 

is crosslinked into clots by the 

transglutaminase activated factor 

XIII. 
 

 
 

 

 
 

 
 

 

In the dynamic process of thrombin generation in blood, some of the early-
generated thrombin feeds back on the cascade system to activate factors V and VII, 

enabling sustained generation of thrombin (50, 51). Thrombin, as the common final 
enzyme of the coagulation cascade, can promote clot formation by catalyzing the 

cleavage of Gly-Arg bonds in circulating fibrinogen converting it to fibrin (52). 

Thrombin continues to be active until the whole platelet plug is surrounded and 
stabilized with crosslinked fibrin. However, as the clot continues to expand it reaches 

areas of intact endothelium, where it encounters thrombomodulin, which has a high 

affinity for thrombin. Thrombomodulin functions as a sink, draining and redirecting 
thrombin activity, thereby protecting the intact endothelium from multiple thrombin 

actions and obstructive thrombus formation (53). All generated thrombin is eventually 
cleared from the circulation in complex with antithrombin or heparan cofactor II (54). 
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1.3 INTERACTIONS BETWEEN PHYSIOLOGICAL ANGIOGENESIS AND 

HAEMOSTASIS 
 

The classical components of the coagulation cascade are well established; 

however, the mechanisms by which some of these molecules participate in 

developmental events within the vascular system are not completely understood. The 
sustained generation of thrombin, for example, at sites of thrombosis has focused 

attention on the role thrombin may play in vascular remodeling in response to 
thrombosis and other vascular injuries. Besides of fibrin generation, thrombin is 

known to stimulate SMCs contraction and proliferation, monocyte chemotaxis, and 

platelet aggregation as well as many other multiple physiological effects (55-59). 
More detailed in vitro studies have aimed to investigate the role of thrombin in the 

individual steps of angiogenesis. Thrombin-induced signaling in the endothelium 
results in multiple phenotypic changes including: alterations in cell shape, direct and 

indirect stimulation of proteases, including MMPs and urokinase plasminogen 

activator (uPA). These enzymes in turn, catalyze the breakdown of the basement 
membrane and local extracellular matrix (60-62), increasing the endothelial 

monolayer permeability (63), mobilization of adhesive molecules to the endothelial 

surface (64), DNA synthesis (65), and cell migration (66). Besides its role in the 
endothelium, thrombin also stimulates proliferation of rat aortic smooth muscle (67), 

keratinocytes (68), and fibroblasts (58, 69).  
Some of these effects necessary for angiogenesis are independent of thrombin’s 

fibrinogen-cleaving activity and are mediated through thrombin receptors activation 

and its downstream signaling networks (70, 71).  
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1.4   THROMBIN RECEPTORS 
 

Thrombin-stimulated cellular events are mediated, at least in part, through the 

proteolytic activation of seven span transmembrane G protein-coupled receptors 

(GPCRs) of the protease activated receptor (PAR) family, by a unique proteolytic 
cleavage of their extracellular domains (72). Thus, the activation of PAR1 occurs 

when a serine protease binds to a unique site in the amino-terminal extracellular 
domain of the receptor, resulting in cleavage between Arg41 and Ser42 leading to the 

exposure of a new amino-terminus (SFLLRN, in human; SFFLRN, in mouse and rat), 

referred as the “tethered ligand” (73) which binds to the second extracellular loop of 
PAR1 to induce transmembrane signaling (67, 74-77). Even without proteolytic 

cleavage, PAR can be activated by short synthetic peptides (of 5-14 amino acid 
residues) based on the sequence of the revealed tethered ligand, such as thrombin 

receptor activator peptides-TRAP (73, 78, 79). 

Currently, four members of the PAR family have been identified in mice and 
human (PAR1, PAR2, PAR3, and PAR4). Of these, PAR1 (73), PAR3 (80), and 

PAR4 (81, 82) are activated by thrombin (83), whereas PAR2 (84) is activated by 
trypsin and tryptase but not by thrombin (85, 86). The prototypic member of the PAR 

family, PAR1 is the predominant thrombin receptor in EC (87) being also detected in 

a variety of other cell types, including platelets, fibroblasts, monocytes, T 
lymphocytes, natural killer cells, SMC, epithelial cells, neurons, glial cells, mast cells, 

cardiomyocytes (88); and in certain tumor cell lines (73, 89-94). PAR1 has been 

shown to respond to a group of serine proteases that includes thrombin (73), plasmin 
(95), FVIIa (86), FX (96), and activated protein C (97, 98). Recently, it has been 

shown that PAR1 could also be activated by matrix metalloprotease-1, a member of 
the zinc-dependent MMP family (99). It is known that PAR1 plays an important role 

in angiogenesis. Disruption of PAR1 gene results in 50% embryonic lethality (100, 

101). At E8.5, PAR1-/- mice are still indistinguishable from wild-type littermates, but 
at E9.5, a cohort of PAR1 null embryos are significantly smaller than their siblings, 

and their hearts do not beat. Hemorrhage, especially in the pericardium, is apparent in 



 
   
Introduction 
 
 
 

 40 

more than a third of the PAR1-/- embryos. Delay in development of the embryo occurs 

in conjunction with abnormalities in placental development. At this stage about half 
of the PAR1-/- embryos die, while the other half “catch up” with theirs PAR1+/- 

littermates. A cause of embryonic death has not been determined definitively, but it is 

noteworthy that failed hemostasis is not present. Thus activity of the plasma 
coagulation cascade is not altered, which is consistent with the fact that thrombin 

ability to cleave fibrinogen is not dependent on the presence or absence of PAR1. 
These observations indicate that PAR1 is not required for proper platelet responses to 

thrombin, and PAR3 is now recognized as the receptor responsible for thrombin 

signaling in mouse platelets (80). Interestingly, transgenic expression of PAR1 under 
the control of an EC-specific promoter is able to decrease the embryonic lethality to ~ 

14% (102). This suggests that lethality in PAR1-/- embryos is related, in large part, to 
lack of PAR1 in ECs.  

 

1.4.1 ACTIVATION AND DESENSITIZATION OF PAR 
 

In common with many GPCRs, PAR1 couples to several different G proteins. The 
principal pathway of PAR-mediated signaling is through Gαq proteins. It results in 

activation of phospholipase C (PLC) which catalyses the hydrolysis of inositol 
trisphosphate to inositol bisphosphate and diacyglycerol, leading to mitogen-activated 

protein kinase (MAPK) phosphorylation and receptor tyrosine kinase translocation 
into the nucleus where it phosphorylates or regulates its targets proteins, inducing 

degranulation and platelets aggregation and integrin activation (103-105). PAR1 is 

also couples to G13, the activation of this G protein leads to thrombin-stimulated 
DNA synthesis and cell migration in SMC, and also to the activation of Rho and 

cytoskeletal changes affecting platelets permeability and cell migration (106, 107). 
Another set of G proteins are the Gβγ which are involved in the activation of 

phosphoinositide 3-kinase (PI3K) (108). A complete overview of PAR1 signaling 

mediated by G-protein signaling is represented in Figure 3. 

Activated GPCRs are rapidly desensitized as a result of their fast phosphorylation 
by G-protein receptor-associated kinases and other kinases (109, 110). In many cases, 



  
  
                                                                                   Introduction 
 
 
 

 41 

phosphorylation enhances receptor affinity to β-arrestin, and β-arrestin binding 

prevents receptor-G protein interaction, thereby uncoupling the receptor from 

downstream signaling. However, in the case of PAR1, the binding of arrestins is 
independent of PAR1 phosphorylation levels (111). Arrestins also interact with 

components of the endocytotic machinery to facilitate recruitment of GPCRs to  

 
Figure 3- Overview of the major G protein-mediated signaling pathways coupled to PAR1 activated in 
different tissues and cell types, upon thrombin stimulation. Dashed lines or circles represent signaling 
pathways or intermediates that are not fully revealed to be activated by PAR1, but are in favor of other 
G protein-coupled receptors or are typical intermediate-accompanying molecules (from Steinhoff, M. 
et al. Endocrine Reviews 2005; 26(1): 1-43).  
 

clathrin-coated pits and their internalization (112-114). Once internalized into 
endosomes, GPCRs dissociate from their ligands, become dephosphorylated, and then 

return to the cell surface where they are capable to mediate the ligand-dependent 
signaling. 

It is possible that proteolytic cleavage of PAR could result in sustained activation 

of the receptor by the tethered ligand, which does not diffuse away. However, 
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signaling by PAR1 is rapidly terminated despite the irreversible proteolytic 

mechanism of receptor activation. It was demonstrated that the cumulative 
phosphoinositide hydrolysis in response to thrombin precisely correlates with the 

absolute rate of receptor cleavage during a given time (115). This suggests that each 

activated PAR1 molecule, generates a defined amount of the second messenger, and 
then shuts down (at least in terms of Gq activation). Given the irreversible nature of 

PAR activation, internalization and lysosomal sorting of proteolytically activated 
PARs may be particularly important for termination of receptor signaling. The 

process of down-regulation, a decrease in total receptor number, occurs after 

prolonged agonist exposure for most classic GPCRs. The regulation of the receptor 
protein levels occurs partially at the level of transcription and RNA stability. 

Activated PAR1 and PAR2 are internalized, sorted predominantly to lysosomes 
and rapidly degraded. Several studies suggest that PAR1 down-regulation by receptor 

internalization and lysosomal sorting are required to terminate signaling by 

irreversibly activated receptors (111). It has been recently demonstrated that 
trafficking of endogenous PAR1 is altered in metastatic breast carcinoma cells, in 

such way that the activated receptor is not sorted to lysosomes. Consequently, 
activated PAR1 causes sustained signaling even after thrombin withdrawal. Thus 

internalization and lysosomal sorting of activated PAR1 is critical for the temporal 

regulation of thrombin signaling (114). PARs at the cell surface are then replenished 
from an intracellular pool of uncleaved freshly synthesized PARs. 

 
1.4.2 INHIBITORS OF PAR SIGNALING 

 

PAR activation can be inhibited by strategies that block extracellular domains of 
the receptor. Thrombostatins, modified bradykinin-derived blocking peptides, appear 

to directly bind PARs and inhibits their activity (116). Monoclonal antibodies 

generated against the cleavage site of PAR1 have also been used to block cleavage 
and activation of PAR1 (117). Small peptide and non-peptide molecule PAR1 

antagonists have also been generated, in the last few years, based on the sequence of 
thrombin receptor activating peptide (118-120). These antagonists function by 
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blocking interaction of the newly exposed tethered ligand binding sites on the 

extracellular face of the receptor but do not inhibit thrombin binding or receptor 
cleavage. However, several limitations such as lack of potency and specificity, low 

affinity and partial agonist activity, have been reported for the majority of these PAR1 

antagonists. Only few PAR1 antagonists have been described in the literature as 
highly potent and specific, like RWJ-56110 (119); SCH 79797 (121); RWJ-58259 

(122) and FR171113 (123).  
Other studies have described intracellular inhibitors that disrupt PAR-G-protein 

interaction. The C-termini of G-protein α subunits are critical for specific binding to 

their cognate GPCRs. Peptides corresponding to the C-termini of Gα subunits have 

been used to block PAR1 coupling to specific G protein subtypes in ECs (124). This 

strategy is useful to dissect out which G protein subtype mediates a particular 
response but lacks PAR specificity since these peptides would presumably block 

coupling of G proteins to other GPCRs expressed in the same cell.  

In summary, PARs are irreversibly activated, thus the mechanisms that contribute 
to the termination of signaling are critical determinants of the magnitude and kinetics 

of PAR1-mediated response in cells. The unusual irreversible proteolytic mechanism 
of PAR activation is clearly distinct from that involved in activation of other GPCRs. 

This mechanism appears to have evolved to deal with termination of signaling by 

these proteolytically activated GPCRs, since all other GPCRs are reversibly activated.  
 

1.4.3 ROLE OF PAR IN VASCULAR BIOLOGY AND TISSUE REMODELING 
 

The activation of PAR triggers a cascade of downstream events, leading to diverse 

cellular outcomes such as calcium signaling, engagement of integrins, cell adhesion 
and migration, gene transcription, and mitogenesis. An emerging common theme is 

that PAR act as high-gain sensors of extracellular protease gradients and allow the 
cell to react to the proteolytically altered environment. This unique ability to sense 

proteases can be utilized both for migration toward proteases and for detection of 

changing microenvironment (125). More recently, PAR have been shown to be 
critically involved in the tissue remodeling processes necessary for normal 
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development including angiogenesis and trophoblastic invasion (76, 102, 126-128). 

Stimulation of PAR1 in atherosclerotic plaques has been implicated in SMC 
proliferation and restenosis as well as in the repair processes and a variety of acute 

and chronic inflammatory conditions (129). PAR1 has been proposed to be involved 

in the invasion and metastasis of cancers such as breast, colon, lung, pancreas, 
prostate cancers and melanomas (126, 130-134). Even-Ram et al. (126) demonstrated 

that PAR1 expression levels were directly correlated with the degree of invasiveness 
in both primary breast cancer specimens and established cancer cell lines. High levels 

of PAR1 were found in infiltrating ductal carcinoma while only undetectable levels 

were observed in normal and premaligmant lesions (130) (135).  
Recent observations support a role of thrombin and PAR1 in the regulation of 

normal (136-138) and atherosclerotic endothelium (129). In normal human arteries, 
PAR1 is mostly confined to the endothelium, whereas during atherogenesis, its 

expression is enhanced in regions of inflammation associated with macrophage 

influx, SMC proliferation, and an increase in mesenchymal-like intimal cells (129). In 

vivo, a neutralizing antibody to PAR1 has been observed to reduce expression of 

messenger RNA (mRNA) for the proliferating cell nuclear antigen, and of the index 
of intimal and neointimal SMC accumulation in rat arteries during balloon 

angioplastly (139). These data suggest that PAR1 regulates proliferation and 

accumulation of neointimal SMC during tissue repair. 
Several lines of evidence suggest that thrombin, acting through PAR1, contributes 

to thrombosis and restenosis in patients after angioplasty procedures (57, 129, 140-
142). Increased levels of thrombin generation in addition to a high level of thrombin 

receptor have been detected at the sites of vascular lesions (57, 129, 140). TRAP 

antagonists and antibodies to PAR1 inhibit thrombin- or TRAP-stimulated platelet 
aggregation in vitro (118, 119, 142-144) as well as experimental arterial thrombosis in 

primates (57, 142).  

The role of PAR1 in vascular biology and tissue remodeling is further stressed by 
the fact that factors activated upon thrombin induced PAR1 signaling are known to 

play a crucial role during the process of vascular remodeling. Malik and coauthors 
(104, 145) studied the involvement of PAR1 in the activation of nuclear factor 
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kappaB (NFkB) in ECs, demonstrating that Gαq and Gβγ dimers are responsible for 

NFkB activation and ICAM1 transcription in ECs which are induced by activation of 

PAR1 by thrombin or by a synthetic peptide. Overall, the expression and/or release of 
several growth factors, including FGF2 (146), PDGF (147, 148), VEGF (76, 149), the 

upregulation of the insulin-growth factor receptor 1 (IGFR1) (150), and the activation 

of fibroblast growth factor receptor 1 (FGFR1) (151) were demonstrated to be 
induced in response to thrombin. 

 
A number of different ligands have been implicated in the development and 

maintenance of the vasculature including: VEGF family, angiopoietins and their 

receptor-Tie2, PDGF, ephrins, and its receptors, FGF family as well as many other 
cytokines and chemokines. The Notch family receptors and ligands also play a 

significant and non-redundant role in angiogenesis and arterial specification.  
In this literature review, we will discuss more in detail the effects of FGF and 

Notch signaling upon vasculature. 
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2   FIBROBLAST GROWTH FACTORS SIGNALING 
 

2.1   FGF AND FGFR  
 

The FGF signaling system has been identified in multicellular organisms ranging 

from C.elegans to vertebrates but not in unicellular organisms (152). FGF1 was first 
isolated as mitogen from bovine and sheep brains tissue in the 1970s (153), and few 

years later Abraham et al. isolated FGF2 (154). By now, 24 structurally-related 
members of the FGF family, with a broad range of biological activities, have been 

identified (152, 155-158). Despite their status of “prototype” FGFs, FGF1 and FGF2 

differ from most other FGFs in several important aspects. Most FGFs (FGF 3-8, 10, 
17-19, 21, and 23) have N-terminal signal peptides (SP) and are secreted from cells. 

By contrast, FGFs 9, 16, and 20 lack a conventional SP sequence, but are nevertheless 
secreted through endoplasmatic reticulum (ER)/Golgi apparatus. FGF1 and FGF2 also 

lack SP, however, unlike FGF9, 16, and 20, the prototypes FGFs are secreted by 

novel secretion mechanisms, independent of the ER-Golgi traffic (159, 160), FGF22 
with a putative N-terminal SP remains attached to the cell surface rather than being 

secreted. FGFs 11-14 lack SP, remain in the intracellular compartment and function 

within cells in a receptor-independent manner. These FGFs might be intracellular 
components of a tissue-specific protein-kinase signaling module and seem to share 

structural, but not functional, homology with other FGFs (161). 
FGFs are widely expressed in developing and adult tissues and have various 

biological activities both in vitro and in vivo, including roles in neurulation, 

mesoderm formation, somite segmentation (162, 163), angiogenesis (164-166), nail 
and teeth growth, tissue injury repair during postnatal life, neurogenesis (167, 168), 

inflammation (169), liver fibrosis (170), restenosis (171), vascular remodeling (172, 
173) and in pathogenesis of some tumors (160, 174-176). 

An important feature of FGF biology involves the interaction between FGF and 

heparin or heparan sulfate (HS) proteoglycan (HSPG) (177). These interactions 
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stabilize FGFs to thermal denaturation and proteolysis and may severely limit their 

diffusion and release into interstitial spaces (178-180). It has been established that 
heparin or HS are required for FGF in order to more efficiently activate its receptors 

(155, 181). 

The FGF receptors, FGFR1-4, are tryrosine kinases that belong to the 
immunoglobulin (Ig) superfammily, with an extracellular ligand-binding domain, a 

transmembrane domain (TM) and a split intracellular tyrosine kinase domain (182). 
The extracellular domain contains two or three Ig loops that arise as a result of 

alternative splicing, and a heparin-binding domain (177, 183). The two membrane 

proximal Ig loops bind the FGF ligand, resulting in the formation of a complex 
containing at least two FGFs, two FGFRs and the glycosaminoglycan moiety (184). 

Upon ligand binding, receptor dimers are formed and their intrinsic tryrosine kinase is 
activated causing phosphorylation of multiple tryrosine residues on the receptors 

(182). These then serve as docking sites for the recruitment of src homology 2 or 

phosphotyrosine binding domains of adaptors, docking proteins or signaling enzymes 
(185). Signaling complexes are assembled and recruited to the active receptors 

resulting in a cascade of phosphorylation events (186). Genetic and biochemical 
experiments have helped to elucidate the signal transduction pathways concomitantly 

activated by FGFs in most cell types. The best understood of these are the RAS-

MAPK pathways which include ERK 1/2, p38 and JNK kinases; the PI3K-AKT 
pathway, and the PLCγ pathway (185). The activation of ERK1/2 and p38 in response 

to FGF has been observed in all cell types, while the activities of other signal 

transduction pathways varies depending on the cell type (187). Receptor signaling can 

be negatively modulated by down-regulation of FGFR through internalization, or by 
the induction of proteins such as Sprouty (188, 189) and Sef (190, 191) that inhibit 

the downstream signaling pathways.  
A central issue in FGF biology is to understand how diverse cellular responses are 

determined and how similar signaling inputs can generate distinct patterns of gene 

expression that govern the specificity of the cellular responses. 
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2.2   FGF TARGET GENES 
 

FGF signaling results in changes in the steady-state levels of many gene transcript 

levels. The mechanism of these FGF-induced alterations has only been studied for a 

few target genes. While in many cases the effects are indirect, FGFs were shown to 
affect the transcription of several genes directly, independently of protein synthesis. 

Exogenous FGFs can be translocated into the nucleus and are found in the nuclear 
matrix, the nucleolus, and in association with chromatin (192). The effect of FGFs on 

gene expression is cell-type dependent. For example, while FGFs increase 

collagenase 1 mRNA levels in fibroblasts, the same FGFs, inhibit the expression of 
this metalloprotease in keratinocytes (193). Among the FGF-regulated genes 

(including direct and indirect targets) are immediate early response genes (c-fos, c-
jun, c-myc, egr-1, thrombospondin-1, fnk, and AP-2), delayed early response genes 

(proliferin, ornithine decarboxylase, glyceraldehydes 3-phosphate dehydrogenase, 

and an aldose reductase-related protein), homeobox genes (msx-1, evx-1, xnot, xcad, 
xhox, eve1, hoxb9, hox-d11-d13, and lim-1), patterning genes (Xbra/ntl, en-2, cad-1, 

and Shh), growth factors and their receptors (nerve growth factor, human chorionic 
gonadotropin, PDGFA, IGFII, IGF-binding protein 6, FGFs, and FGFR2), skeletal 

muscle regulatory factors (myoD1, and myogenin), matrix proteins (integrins; 

collagens I, III, and IV; tenascinC; actin, and neural cell adhesion molecule), 
proteases, protease activators and inhibitors (plasminogen activators, nexin-1, 

collagenases, and metalloproteinase inhibitors), and genes coding for low density 

lipoproteins (LDL) receptor, fatty acid synthase, and ER Ca2+ ATPase, osteocalcin 
and proenkephalin (193-197). While some of the FGF-induced genes encode 

transcription factors (EGR-1, HOX proteins, the zinc finger proteins SLUG, STAT1) 
leading to late responses, others such as proteases and matrix proteins, effect cell 

behavior more directly and rapidly (198, 199).  

FGFs can work either synergistically or antagonistically with other growth 
factors. Some of the growth factors that often colocalize and act in cooperations with 
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FGFs are members of the TGF-β, IGF1, and vertebrate homolog of Drosophila 

wingless families (200).  

 
2.3   THE BIOLOGICAL ACTIVITIES OF FGFS, DIVERSITY OF CELLULAR 

RESPONSES TO FGF SIGNALING 
 

As the name implies, FGFs were originally identified as proteins capable of 

promoting fibroblast proliferation. This proliferative response to FGF is in fact shared 

by a broad range of cell types, including keratinocytes, immature osteoblasts, 
oligodendrocyte progenitors, and ECs (201-203). However, as FGF field developed, it 

has become clear that FGF signaling leads to very different responses in other cell 

types, being implicated in a variety of physiological and pathological processes. FGFs 
can induce in vitro a complex pro-angiogenic phenotype in ECs that recapitulates 

several aspects of the in vivo angiogenesis process, including modulation of EC 
proliferation, migration, protease production, integrin and cadherin receptor 

expression, and intercellular gap-junction communication (Figure 4) (204). However, 

different cell types, or even the same cell, may display alternate, sometimes opposite 
responses to FGFs, depending on the state of differentiation, biochemical status, and 

the cellular, physical and chemical environment of the cell.  
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Figure 4- Schematic representation of the events triggered by FGFs in endothelial cells that contribute 
to the acquisition of the angiogenic phenotype in vitro and to neovascularization in vivo (from Presta et 
al. Cytokine and Growth Factor Reviews 2005; 16:159-178). 

 

The importance of the proper spatial and temporal regulation of FGF signals is 
evident from human and mouse genetic studies, which show that mutations leading to 

the dysregulation of FGF signals cause a variety of developmental disorders including 
dominant skeletal diseases and tumor growth. The analysis of expression patterns and 

activities of FGFs during embryonic development has provided further insight into 

their normal biological functions. In a vertebrate embryo, the activities of FGFs are 
required from the earliest stages of development through the detailed patterning of 

organs. A number of gene knockout experiments in the mouse have shown a 

complementary role of FGFs in several development processes. Many members of the 
FGF family have been disrupted by homologous recombination in mice. The 

phenotypes range from very early lethality to subtle phenotypes in adult mice. The 
major phenotypes observed in FGF knockout mice are shown on Table 1.  
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Table 1 - FGF Knockout mice (adapted from Ornitz, et al. Genome Biology 2001; 2(1): 1-

12) 
  

Gene 
 

Survival of null 
mutant* 

 
Phenotype 

 
References 

 
Fgf1 

 
Viable 

 
None identified 

 
(205) 

Fgf2 Viable Mild cardiovascular, skeletal, 
and neuronal defects 

(205-209) 

Fgf3 Viable Mild inner ear, skeletal (tail), 
and CNS defects 

(210) 

Fgf4 Lethal, E4-5 Inner cell mass proliferation (211) 

Fgf5 Viable Long hair, angora mutation (212) 

Fgf6 Viable Subtle, muscle regeneration (213-215) 

Fgf7 Viable Hair follicle growth, ureteric 
bud growth 

(216, 217) 

Fgf8 Lethal, E7 Gastrulation defect, CNS, 
and limb development 

(218-221) 

Fgf9 Lethal, P0 Lung mesenchyme, heart, 
XY sex reversal, 

gastrointestinal tract, and 
skeleton 

(155, 222) 

Fgf10 Lethal, P0 Development of multiple 
organs, including limb, lung, 

thymus, pituitary 

(223-225) 

Fgf12  Viable Neuromuscular phenotype (155) 

Fgf14  Viable Neurological phenotype (155) 

Fgf15φ Lethal, E9.5 Not clear (155) 

Fgf17 Viable Cerebellar development (226) 

Fgf18 Lethal, P0 Skeletal and lung 
development 

(155) 

*E, embryonic day and P, postnatal day; CNS, central nervous system. φ Human FGF19 and mouse 
FGF15 are orthologous genes 
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2.3.1 FGF1 BIOLOGICAL ACTIVITY 
 

The best known function of FGF1 is the stimulation of DNA synthesis followed 

by cell proliferation (227). But this growth factor is also responsible for many other 
biological effects induced in different cell types. FGF1 is crucial at numerous stages 

of embryonic development, due to its ability to regulate morphogenesis and 
differentiation (228, 229). In adults, FGF1 is involved in the regulation of such 

important physiological processes as angiogenesis, osteogenesis, tissue injury repair 

(172), cell migration, and chemotaxis (227, 230, 231). In animal models of brain 
ischemia, FGF1 has been documented to prevent cell death resulting from ischemic 

damage (232), being effective as a neuro-protective agent (233). It was also shown 
that FGF1 contributed to brain protection after an acute stroke (234), and also 

stimulated spinal injury repair (235). In addition, FGF1 appears to be helpful in the 

healing of non-union fractures, due to its competence to induce osteogenesis in vivo 
(236). However, the widest application of FGF1 can be expected in cardiovascular 

diseases. In particular, patients with coronary artery disease, having occluded vessels 
to be bypassed or with other limitations of surgery are potential candidates for 

angiogenesis-based therapy (228, 237). Nevertheless, the first attempts to use FGF1 

as an angiogenic factor in ischemic dog myocardium were ineffective (238), probably 
due to its rapid inactivation in vivo (239). A subsequent study on an animal model 

demonstrated improved myocardial perfusion and function after administration of 
modified FGF1 with increased half-life (240). FGF1 is known to be susceptive to 

thrombin cleavage that can explain low efficiency of its application in vivo. 

Interestingly, the development of FGF1 thrombin resistant mutant (R136K) 
demonstrated that even in the absence of heparin, FGF1R136K is able to induce more 

pronounced migration of EC than wild type FGF1. Moreover, FGF1R136K 

maintained this heparin-independent pro-migratory activity even after inhibition of 
EC growth with mitomycin D, additionally FGF1R136K does not induce intimal 

hyperplasia suggesting a potential clinical efficacy of this mutant, if delivered to the 
site of vascular intervention (241). Recently, Zakrzewska et al. (242) engineered 
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highly stable FGF1 mutants that show prolonged half-life, strong resistance to 

proteolysis and enhanced mitogenic activity, suggesting their potential role for 
therapeutic applications.  

 
2.4   THE NON-CLASSICAL RELEASE  

 

The majority of FGF family members have been characterized as oncogenes as 
the result of the presence of a classical NH2-terminal SP sequence (159, 160). Indeed, 

early studies from different laboratories, have demonstrated that if one adds a SP 
sequence to either FGF1 or FGF2, it also becomes a transforming gene (243), and if 

one deletes the SP sequence from an oncogenic FGF gene family member, it looses 

its oncogenic potential (244).  
A number of secretory proteins with defined extracellular functions have been 

shown not to contain a functional SP, and they do not represent substrates for the ER 
membrane translocation machinery (245-248). Furthermore, the extracellular 

appearance of such molecules is not sensitive to brefeldin A, a drug known to block 

ER/Golgi-dependent secretory transport. These observations led to the postulation of 
alternative secretory mechanisms that are fully functional in the absence of an intact 

ER/Golgi system and therefore have been collectively termed unconventional or non-

classical secretion (245-248). Intriguingly, unconventional secretory proteins 
comprise growth factors and cytokines including IL1β (249), IL1α (250), FGF2 (251-

254), as well as secretory transglutaminase (255), thioredoxin (256-258), Annexin 1 

and 2 (259, 260), all of these proteins having significant relevance to physiological 
processes such as cell growth and differentiation, inflammation, and angiogenesis 

(Table 2).  
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Table 2 - Proteins exported through non-classical pathways (from Prudovsky et al. 
Journal Cell Science 2003; 116: 4871-4881)   

Protein 
 

Release Characteristics 
 

References 
 

Secretory 
transglutaminase 

 
Constitutive, through membrane blebbing 

 
(255) 

 
Thioredoxin 

 
Induced by antigen-specific T cells, 
intracellular vesicles not involved 

 
(256-258) 

Galectins Constitutive, through membrane blebbing (261-264) 

IL1α Stress-induced, Cu2+-dependent, in complex 
with S100A13 

(250, 265) 

IL1β Stress-induced, ABC-transporter-dependent, 
through the endolysosomal pathway 

(249, 266) 

FGF1 Stress-induced, Cu2+-dependent, in complex 
with S100A13 and p40 Syt1 

(267-272) 

FGF2 Constitutive, Na+/K+ ATPase-dependent (252-254) 

Sphingosine 
Kinase 

Constitutive, inhibited by cytochalasin (273) 

Annexin 1 Glucocorticoid-induced, ABC-transporter-
dependent 

(259) 

Annexin 2 Thrombin-induced, in complex with p11 (260) 

p40 
Synaptotagmin

1 

Constitutive (268, 269) 

S100A13 Constitutive (271, 272) 

HIV Tat Constitutive (274) 

Herpes VP 22 
protein 

Constitutive (275) 

Foamy virus 
Bet protein 

Constitutive (276) 

Engrailed 2 Attenuated by the CK2-dependent 
phosphrylation 

(277-279) 

HMGB1 Stress-induced, through an endolysosomal 
pathway 

(280-284) 

Leishmania 
HASPB protein 

Constitutive, acylation-dependent (285) 
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2.4.1 THE NON-CLASSICAL FGF1 RELEASE 
 

Since 1990’s our group has been studying the non-classical release of FGF1, 

demonstrating that FGF1 could be released in ER/Golgi-independent away in 
response to different cellular stresses, or in the presence of soluble Notch ligands. 

 
2.4.1.1 CELL STRESS-DEPENDENT FGF1 RELEASE 

 

Under normal conditions the cells expressing FGF1 do not release this protein. 
However, several types of stress, such as heat shock (267), hypoxia (286), cultivation 

under low serum conditions (287), and cell treatment with oxidized LDL (288) induce 
release of FGF1 from NIH 3T3 cells. Similar stresses can occur in vivo, in the course 

of inflammation, angiogenesis, and tumor development. The inhibitory analysis of 

stress-induced FGF1 release demonstrated that it is sensitive to methylamine, 
verapamil, and brefeldin A, a drug known to block protein transport from the ER to 

the Golgi apparatus (252, 289). At the same time, FGF1 release requires ATP 
synthesis, translation and transcription (267, 290). 

 FGF1 release from stressed NIH 3T3 cells is exported as a copper (Cu2+) -

dependent multiprotein release complex (MRC) which includes a cysteine-mediated 
FGF1 dimer, a p40 form of the membrane docking protein, Synaptotagmin 1 (Syt1) 

(268, 269), a small calcium-binding protein, S100A13 (270, 271), and sphingosine 
kinase 1(SK1) (Soldi R, Prudovsky I, and Maciag T. unpublished results) (Figure 5).  

p40 Syt1 encompasses the extravesicular domain of p65 Syt1 and contains two 

calcium (Ca2+) -binding C2 domains which are responsible for the binding of Syt1 to 
the plasma membrane. Interestingly, p40 Syt1 is also exported from cells 

independently of FGF1, both at 370C and 420C. p40 Syt1 was considered to be a 

product of proteolytic cleavage of p65 Syt1 in its extravesicular portion close to 
transmembrane domain. However, it has been found that p40 Syt1 is actually a 

product of the alternative translation of p65 Syt1 complementary DNA (cDNA) due 
to translational initiation from one of two closely located internal start codons. 
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Interestingly, the expression of p65 Syt1 cDNA with mutated alternative start codons 

attenuates stress-induced FGF1 release (291). Apparently, the transmembrane p65 
Syt1 binds FGF1 and diverts it from p40 Syt1-mediated non-classical release pathway 

(Figure 5).  

The small Ca2+-binding protein, S100A13, a member of the large S100 protein 
family, is another component of FGF1 MRC. The molecular mechanism of activation 

of S100 proteins in the presence of calcium involves the exposure of two hydrophobic 
patches, which provide the interaction surface for the target proteins (292). In marked 

contrast, in the presence of calcium a drastic decrease in the solvent-exposed non-

polar surface is observed in S100A13 (293). Therefore, it is believed that the 
mechanism of activation of S100A13 is distinctly different from those of the other 

S100 members. Although all S100 proteins lack a SP in their primary structure, 
several members of the family are released into the extracellular compartment (294). 

Our laboratory demonstrated that S100A13 is released from NIH 3T3 cells at 370C 

and 420C and it is involved in the non-classical export of other signal-peptide-less 
proteins such as FGF1 and IL1α (246). The co-expression of S100A13 and FGF1 

results in the inhibition of S100A13 export at 370C. However at heat-shock, S100A13 

is released in complex with FGF1 and p40 Syt1 (271). Amlexanox, an anti-

inflammatory drug known to bind S100A13 with high affinity (295, 296), efficiently 
blocks FGF1 release indicating the importance of S100A13 for this process. Recently, 

Sivaraja et al. demonstrated that S100A13 binds to FGF1 with a moderate binding 
affinity (Kd ~ 80 µM), forming a complex with two molecules of FGF1 and one 

molecule of the S100A13 dimer (297) (Figure 5). 

Timothy Hla and colleagues (273) had reported that SK1 is released through a 

non-classical pathway. SK1 is responsible for the biosynthesis of shingosine-1-
phosphate, a lipid mediator involved in the regulation of a variety of cellular events, 

including apoptosis, growth and motility (298-300). While SK1 lacks a classical SP 
sequence, it is constitutively released at 370C from cells through a brefeldin A-

insensitive pathway (273). Interestingly, when co-expressed with FGF1, SK1 is 

released in response to temperature stress. Moreover, the co-expression of SK1 in 
FGF1 background inhibits the constitutive release of SK1; the immunoprecipitation of 
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FGF1 from cell lysates and media conditioned by temperature stress reveals the 

presence of SK1 as a component of FGF1 MRC, since it is able to interact with 
S100A13 and the presence of SK1 enhances the copper-dependent formation of FGF1 

complex in a cell-free system, suggesting that SK1 may act as a copper donor which 

facilitates the formation of FGF1 MRC in response to temperature stress (Soldi R. 
2005 submitted paper) (Figure 5). 

Annexin 2 is another protein participating in FGF1 release. Interestingly, when 
FGF1 was purified from bovine brain as a non-covalent high molecular weight 

complex containing p40 Syt1 and S100A13, Annexin 2 was also found in this 

complex ((270) and Soldi R, Prudovsky I, and Maciag T. unpublished results). 
Annexin 2 is known to flip from the inner to the outer leaflet of the cell membrane 

(260), where it functions as a receptor for plasminogen activator (301, 302). The N-
terminus domain of Annexin 2 is known to associate with p11, an 11 kDa member of 

the S100 protein family forming a heterotetramer by association of two molecules of 

Annexin 2 and two molecules of p11 (303). Interestingly, studies with affinity 
chromatography were also able to resolve Annexin 2 in a non-covalent complex with 

S100A13 (295). Furthermore, since Annexin 2 associates with the inner surface of the 
plasma membrane (304) and the assembly of the FGF1 MRC also occurs in this locale 

(305), it is possible that Annexin 2 interacts with MRC and participates in its stress-

induced translocation through the cell membrane (Figure 5). Indeed, preliminary 
results from our group demonstrated that the mouse embryonic fibroblasts (MEFs), 

derived from Annexin 2 knockout mice are unable to exhibit FGF1 release, when 
exposed to heat shock conditions. 
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Figure 5 – Overview of the current knowledge regarding stress-induced FGF1 release. Stress induces 
the actin cytoskeleton-mediated transport of FGF1, S100A13, and p40 Syt1 to the cell membrane. SK1 
serves as a donor of copper ions needed to dimerize FGF1 and to form the MRC associated with 
specific pL-mediated flipping of the FGF1 release complex through the cell membrane (with 
permission from Raffaella Soldi). 
 
2.4.1.1.1 THE ROLE OF THE CYTOSKELETON IN STRESS-MEDIATED INTRACELLULAR 

TRANSPORT OF FGF1  
 

Previous data demonstrating that latrunculin (306) and amlexanox (307), reagents 

known to induce the disassembly of F-actin cytoskeleton, are able to attenuate the 
release of FGF1 in response to stress (270, 307), argue that the cytoskeleton plays a 

role in stress-induced FGF export. Further, the expression of a dominant-negative 

(dn) mutant of Src, an established regulator of F-actin stress fiber assembly (308) was 
also able to repress FGF1 release in response to heat shock, suggesting that the F-

actin cytoskeleton participates in the stress-mediated release of FGF1. Indeed, real-
time confocal studies of cells transfected with FGF1:GFP chimera have demonstrated 
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stress-induced migration of the cytosolic FGF1 to the vicinity of cell membrane, and a 

similar pathway is followed by S100A13 and p40 Syt1 (305). Moreover, the stress-
induced redistribution of FGF1 to the cell periphery is inhibited by amlexanox (305).  

Taken together, these data indicate that the stress-induced translocation of FGF1 is 

mediated by the actin cytoskeleton. 
 

2.4.1.2 CELL STRESS-INDEPENDENT FGF1 RELEASE 
 

It has been reported that the suppression of Notch-mediated signaling by the 

ectopic expression of the soluble(s) non-transmembrane form of Notch ligands, 
Jagged1 (sJ1) in NIH 3T3 cells induces a phenotype reminiscent of angiogenic ECs, 

inducing chord formation in vitro and formation of highly vascularized tumors in vivo 
(42, 309). Recently, it has also been shown that NIH 3T3 cells with Notch signaling 

downregulated due to expression of sJ1 117kDa or soluble Delta1 (sD1), released 

FGF1 under non-stress conditions (310, 311). Interestingly, when these cells were co-
transfected with constitutively active Notch1 (caN1), FGF1 secretion was blocked 

under non-temperature stress conditions, however the caN1 is unable to block the 
stress-induced FGF1 release (310). In addition, sJ1 117kDa expression leads to an 

increase in FGF1 transcription, and the development of FGFR1-dependent 

transformed cell phenotype (310). Although, little is known about the mechanism that 
regulates FGF1 release under the conditions of downregulation of Notch signaling, it 

appears clear that these two signaling mechanism are interacting, and this interaction 
plays a role in the regulation of many common physiological process. 

 

2.4.2 POTENTIAL ROLE OF THE MOLTEN GLOBULE STATE OF PROTEINS IN 

FACILITATING NON-CLASSICAL PROTEIN EXPORT 
 

The most enigmatic and intriguing aspect of FGF1 MRC release is the penetration 
of the MRC through the cell membrane. Translocation of a protein across the lipid 

bilayer might require conformational changes that increase its hydrophobicity. 
Proteins can achieve this by adopting a “molten globule” (MG) conformation (312) 
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defined by unfolded states or transitions in which the structure of the protein attains 

multiple conformational states with high secondary but low tertiary structure, and 
contains a loosely packed hydrophobic core that increases the hydrophobic surface 

accessible to solvent (313). As a result, these partially unfolfed protein conformations 

achieve low solubility in aqueous environments resulting in their association with 
lipid bilayers which they are able to traverse (314). A model proposed by Mach and 

Middaugh (315) suggests that FGF1 has a MG character. These MG states are usually 
formed at low pH and physiological temperatures (312) although in the case of FGF1 

this process begin to be exaggerated at temperatures between 370C and 420C reaching 

a maximum at 500C to 550C (315). Further, in the case of FGF1, MG transition is also 
facilitated by the presence of acidic phospholipids including phosphatidlyserine (pS) 

(315). FGF1, p40 Syt1 and S100A13 exhibit pS-binding, an acidic phospholipids 
(316-318), are known to flip from the inner to the outer leaflet of the lipid bilayer in 

response to stress (319) suggesting that transmembrane translocation of MRC FGF1 

may be due to the interaction with acidic phospholipids and further acquisition of the 
MG conformation. 
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3 NOTCH SIGNALING 
 

3.1   NOTCH RECEPTORS AND LIGANDS 
 

The Notch gene family encodes evolutionarily conserved transmembrane cell 
surface receptors that initiate signaling between neighboring cells in multicellular 

organisms (320). There is only one Notch in Drosophila melanogaster (321), but 

mammalian genomes encode four Notch receptors (322-325) (Table 3). The cloning 
of Notch gene showed that it encodes a single transmembrane receptor (324), with a 

N-terminal extracellular domain containing large number of extracellular tandemly 
positioned EGF-like repeats, which mediate direct contact between the ligands and 

the receptor (326). Glycosylation of some of the EGF repeat motifs regulates Notch-

ligand interactions and downstream signaling (327). The extracellular domain 
contains also three cysteine-rich (CR) Lin-12/Notch repeats (LNR) that have negative 

regulatory activities. The intracellular domain containing two nuclear localization 
sequences (NLS) flanking a RAM signaling domain (328) juxtaposed to six ankyrin 

repeat (ANK) domain and a COOH-terminal PEST (proline, glutamate, serine, 

threonine) sequence (329) (Figure 6).  
The ligands for Notch are also transmembranes proteins. There are six ligands, 

including three Delta genes (330), two Jagged genes (320, 331) and F3/contactin 
(332) that have been currently identified (Table 3). The ligands for the Notch 

receptors have traditionally been divided into two subclasses, Delta/Delta-like and 

Jagged/Serrate-like, defined by the absence and presence, respectively, of an 
additional CR domain in the extracellular portion of the polypeptide (333). The 

Jagged and the Delta genes encode an evolutionarily conserved domain structures 

consisting of extracellular, transmembrane and intracellular domain. The N-terminal 
extracellular domain of these ligands contains the SP plus a DSL domain [Delta, 

Serrate, (Drosophila homologues), Lag2 (C. elegans hologue)], a variable number of 
EGF repeats, and in case of Jagged1 a CR domain. The DSL domain is important in 
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the receptor recognizition (334). The intracellular domain contains one or two NLS, 

and a C-terminal PDZ-binding domain (335) (Figure 6).  
 

 

  
Figure 6 – Domain structure of representative Notch receptor and ligands Jagged1 and Delta 1.SP-
signal peptide (yellow), DSL-Delta-Serrate-Lag-2 domain (red), EGF-epidermal growth factor (dark-
blue), LNR- Lin 2/Notch repeats (sky blue), TM- transmembrane domain (gray), NLS-nuclear 
localization sequences (light green), ANK-ankyrin repeats (mustard green), NCR-Notch cytokine 
response element (dark green), TAD-transactivation domain (dark yellow) (with permission from 
Vihren Kolev).  
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Table 3- Notch pathway components in different species (from Haines et al. Nature 
Reviews Molecular Cell Biology 2003; 4: 786-797) 
  

Protein type 
 

Drosophila 
melanogaster 

 

 
Mammals 

 
Caenorhabditis 

elegans 
 
 

 
Notch 

 
Notch1 

 
Lin-12 

   
Notch2 

 
Glp-1 

 
Receptors 

  
Notch3 

 

   
Notch4 

 

  
 

F3/Contactin 
 

  
Delta 

 
Delta1 

 
Lag-2 

   
Delta3 

 
Apx-1 

 
Ligands 

  
Delta4 

 
Arg-2 

  
Serrate 

 
Jagged1 

 
F16B12.2 

   
Jagged2 

 

 
CSL protein 

 
Suppressor of the 
Hairless [Su(H)] 

 
CBF-1/RBF-JK 

 
Lag-1 

 
O-FucT-1 

 
OFUT1 

 
POFUT1 

 
A15C7.1 

 
Fringe 

 
Fringe 

 
Lunatic Fringe  

   
Manic Fringe 

 

   
Radical Fringe 

 

CSL (CBF-1/Suppressor of Hairless/Lag1); RPB-JK(recombination signal-sequence-binding protein)  
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3.2   NOTCH ACTIVATION AND DOWNSTREAM SIGNALING MECHANISMS 
 

The Notch signaling is initiated by the interaction of Notch receptors with their 

ligands, through the DSL domain, on the surface of neighboring cells. This leads to 

two proteolytic cleavages, one outside and one within the transmembrane domain, 
which releases the Notch intracellular domain (NICD) that migrates into the nucleus 

(333, 336). The extracellular cleavage event is catalysed by an ADAM17 protease (a 
disintegrin-metalloprotease) (337), and the intracellular cleavage by a γ-

secretase/Presenilin complex (338, 339, 340).  

The generation and stability of NICD is regulated by several E3 ubiquitin ligases, 

which influence the intensity and duration of Notch signals (341). In the nucleus, 
NICD forms a ternary complex with a highly conserved transcription factor CSL 

(CBF1/Su(H)/Lag-1) (320, 333, 336, 342) and transcriptional coactivators of the 
mastermind-like (MAML) family (343-345). Within the nucleus CSL binds DNA in a 

complex containing histone deacetylase complex (346) and associated corepressors 

[silencing mediator for retinoic acid (347), CBF1-interacting co-repressor (CIR) (348) 
and KyoT2 (349)]. When NICD enters the nucleus and binds the CSL, the 

corepressors are displaced, and coactivators (MAML1, MAML2 (350); p300 (351)) 

and acetlytransferases such as PCAF and GNC5 are recruited (352). Activation of 
CSL-binding promoters upregulates the transcription of target genes (353). The 

primary target genes of Notch signaling are hairy and enhancer of split (HES)- 1, -5, -
7 and HES-related repressor protein (HERP)- 1 to -3 in mammals (354-356). The 

members of HES and HERP families are basic helix-loop-helix-type transcriptional 

repressors that bind E-box motifs of target promoters, acting as Notch effectors by 
negatively regulating expression of downstream target genes (357-359). Other 

identified genes with CSL-binding promoters are: MAPK phosphatase LIP1 (360), 
and the cell cycle regulators p21WAF1/Cip1 (361) and CDK2 (362). Several studies 

support the idea that Notch activation can stimulate or inhibit proliferation by 

modulating target gene expression in a cell type-specific manner (363, 364). While 
the mechanism of Notch activation signaling via CSL factors has been extensively 
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documented in a variety of biological settings, recent genetic and biochemical 

evidence indicates that Notch proteins can also signal via an alternative intracellular 
CSL-independent pathway (365, 366). This alternative pathway, which requires the 

cytoplasmic protein Deltex, known to associate with NICD upon ligand binding (367, 

368), appears to prevent cell differentiation (369). Interestingly, the domains of Notch 
required for this pathway are not the same as those needed for Notch signaling via 

CSL family members (370, 371). Some experiments also suggest that Notch signaling 
via a Deltex-independent and CSL-independent pathway suppresses the expression of 

Wnt target genes (372, 373). 

Notch signaling has also been demonstrated to interact with various other 
pathways that are important in the vascular cell phenotype. In several cases, the 

interactions comprise feedback loops between Notch and the interacting pathway. 
Bone morphogenic proteins (BMPs) in the presence of activated Notch1 have been 

reported to synergistically induce HERP1 in murine embryonic ECs, this synergy is 

thought to be regulated by enhanced association of NICD with Smads, the 
downstream effectors of BMP signaling (374, 375). Several signaling pathways 

(VEGF/ephrin/Ang/PDGF; FGFs) are essential for the complex process of vascular 
remodeling. Both in vivo and in vitro data suggest that Notch signaling interfaces with 

several of these angiogenic signaling pathways. 

VEGF is one of the most critical factors in various aspects of physiological and 
pathological neovascularization including arteriogenesis. VEGF lies upstream of the 

Notch signaling pathway and upregulates Notch1 and Delta4 expression in arterial 
ECs (376, 377). The combination of VEGF and FGF2 upregulates Notch1 and Notch4 

mRNA in human umbilical vein endothelial cells (HUVECs) (377). Notch activation 

in turn downregulates VEGF receptor (VEGFR) 2, suggesting that through this 
negative feedback loop, Notch may stabilize the vasculature by inhibiting vascular 

permeability and uncontrolled proliferation (378). In human microvascular ECs, 

constitutively active Notch4 inhibits both FGF2 and VEGF-induced in vitro tube 
formation and VEGF-induced angiogenesis on the chick chorioallantoic membrane 

(379). Interestingly, it has been shown that upon FGF-stimulated angiogenesis in 

vitro, HUVECs grown on fibrin exhibit dramatic upregulation of Jagged1 expression 
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(380). At the same time, inhibition of Jagged1 using antisense oligonucleotides 

promotes a marked increase in invasion and tube formation by bovine 
microvasculature ECs grown on collagen gel in response to FGF1, but not VEGF 

(42). All these different signaling pathways are tightly regulated and the final balance 

leads to different Notch biological activities. 
 

3.2.1 THE ROLE OF SOLUBLE LIGANDS IN NOTCH SIGNALING 
 

While several studies have suggested that the soluble forms of the Notch ligands 

are able to activate Notch receptors (381-386), there are numerous reports showing 
that the soluble forms of the Notch ligands act as antagonists of Notch signaling by 

impeding the interaction between Notch receptors and their full-length ligands (311, 
387-394). Interestingly, Notch-dependent proteolytical cleavage was observed for the 

Delta and Jagged ligands (395-397). Upon interaction with Notch, the ectodomains of 

Jagged and Delta are cleaved respectively by ADAM17 and Kuzbanian 
metaloproteases, yielding membrane tethered C-terminal fragments. Presenilin/γ-

secretase mediates a second cleavage that releases Delta and Jagged intracellular 

domains (ICDs). Delta1 ICD (Dl1ICD) is able to enter the nucleus (397), and the 

intracellular domain of Serrate1 is known to suppress primary neurogenesis (398, 
399). On the other hand, soluble N-terminal fragments of Notch ligands can induce 

dramatic phenotypic changes. An alternatively spliced transcript encoding Jagged1, 
devoid of transmembrane and intracellular domain, has been isolated from cDNA 

library screening (42), the expression of this soluble non-transmembrane Jagged1 (sJ1 

117kDa) antagonizes Notch signaling in NIH 3T3 cells and induces significant 
changes in their phenotype including FGFR1-dependent transformation (310, 393). 

Intradermal injection of such cells into the flank of nude mice results in formation of 
tissue masses (non-metastatic tumors) with prominent vasculogenesis (309), 

suggesting a positive role of sJ1 in angiogenesis. sJ1 117kDa cells exhibit the loss of 

growth contact inhibition, which is in accordance with their tumor forming ability 
(393). The sJ1 117kDa transfectants also display the attenuation of cell-matrix 

interaction, focal adhesion formation, and migration while exhibit exaggerated 
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expression of N-cadherin on cell-cell contacts (400). The type I collagen (ColI) α1 

and α2 chain synthesis (309) is repressed in these cells. When exposed to ColI as an 

extracellular matrix in vitro, the sJ1 117kDa NIH 3T3 cell transfectants rapidly form 

the chord-like structures similar to those normally formed by EC in vitro (393, 401). 
Interestingly, sJ1 117kDa enhances Src Kinase activity and phosphorylation of a 

major Src substract, the filament binding protein, cortactin. When the sJ1 117kDa 

cells were stably cotransfected with a dn form of Src, the expression of ColIα1 chain 

was rescued and the formation of the ColI-dependent chords repressed (393). 
The transfection of NIH 3T3 cells with the soluble extracellular domains of 

Notch1 (sN1) and Notch2 (sN2) results in a phenotype similar to sJ1 117kDa, 

although not as strongly pronounced. sJ1 117kDa, sN1 and sN2 transfectant cells 
display a significantly attenuated actin cytoskeleton, presenting a low level of actin 

stress fibers as well as a decrease of CSL-dependent transcription activity (393). 
Thus, soluble extracellular portions of Jagged1, Notch1 and Notch2 act as inhibitors 

of Notch signaling probably by interfering with the binding of transmembrane Notch 

receptors and ligands. Recently, Aho et al. isolated an alternatively spliced transcript 
encoding sJ1, by yeast two hybrid screening through interaction with 

thrombospondin-1 (402). This transcript devoid of sequences encoding the 
transmembrane and intracellular domains of Jagged1, is specific for keratinocytes, 

and carries an ability to induce keratinocyte differentiation (402). sJ1 has also been 

reported, in vitro, to play a role in hematopoietic stem cell self-renewal (394). 
According to the authors, Jagged1 immobilization on stromal cell layer or on 

Sepharose-4B beads is required for the induction of self-renewing divisions of days 
28-35 cobblestone area-forming cell. However, sJ1 has a dominant-negative effect on 

self-renewal in the stem cell compartment (394). In contrast, soluble as well as 

immobilized Jagged-1 promoted growth factor-induced colony formation of 
committed hematopoietic progenitor cells (394). Recently, Trifonova et al. reported 

that the extracellular domain of Delta1 induces phenotypic changes similar to sJ1 
117kDa (311). Secreted forms of Delta perturb association between full-length Delta 

and Notch (403) and inhibit the Notch-dependent repression of myoblast (404) and 

hematopoietic progenitor cell (385) differentiation in vitro. Taken together these 
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findings suggest that endogenous Delta1/Jagged1/Notch may act to maintain cell 

interaction with matrix and to activate the migratory ability of cells, possibly by 
decreasing cell-cell contacts. However, the expression of soluble Notch ligands may 

interfere with Notch signaling and attenuate its effects. 

 

3.3   THE CROSS-TALK BETWEEN FGF AND NOTCH SIGNALING 
 

The literature on this subject is scarce, limiting the overview of this important 
signaling cross-talk.  The interaction of FGF and Notch signaling pathways has been 

described in the development of the teeth. FGF10 stimulates the expression of Lunatic 

Fringe, and the activity of Hes1 in the epithelium of developing teeth (405, 406). 
FGF10 also maintains Notch activation in pancreatic progenitors (407) cells by 

inducing the expression of Notch1, Notch2, Jagged1 and Jagged2 (408). Ikea and 
Hayashi established that in the process of tracheal branching in Drosophila, Notch 

signaling is activated by signaling of the FGF homolog, Branchless, through the 

FGFR homolog, Breathless (409). Observations by Faux et al. (410) described the 
stimulation of Notch signaling and treatment with FGF1 and FGF2 inhibits 

differentiation of mouse neuroepithelial precursor (NEP) cells in vitro. The response 
of NEP to FGFs can be overcome by downregulation of Notch1, and by the blockage 

of Notch cleavage (ablation of Presenilin1 gene) (410). Notch1 signaling in the 

embryonic telencephalon has been demonstrated to promote a proliferative response 
due to FGF2 stimulation in vitro (411). Moreover, the same authors described FGFR2 

expression in telencephalic radial glia, and they reported that activation of this 

receptor induces the morphological differentiation of cells (411). Thus, regulation of 
Notch signaling by FGF is demonstrated in several development situations. As 

described in the FGF section of this literature review, there are in vitro data 
supporting the interconnection of Notch and FGF1 signaling pathways, particularly 

the downregulation of Notch signaling correlates with the non-classical release of 

FGF1 (310). These results suggest an important role of Notch/FGF cross-talk in 
vascular biology. 
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3.4   ROLE OF NOTCH SIGNALING IN VASCULAR BIOLOGY 
 

Notch signaling is critical for determination of cell fates in invertebrates, and 

vertebrates (412, 413), in multiple tissues it contributes to self-renewal and survival of 

undifferentiated, multipotent cells throughout development and adulthood (320). The 
Notch signaling pathway is involved in strikingly diverse biological processes 

including neurogenesis (414, 415), retinal development (416-418), somitogenesis 
(419-421), adipogenesis (422), limb development (423), myogenesis (369, 414, 424), 

hematopoiesis (425, 426), vascular development, skin differentiation and immune 

response (427-432). The role of Notch signaling during vascular development as well 
as maintenance of vessel homeostasis is being extensively reported (430, 433). 

Indeed, mice with defects in genes enconding Notch receptors, Notch ligands, and 
components of the Notch signaling cascade invariably display vascular defects (Table 

4) (430). Null mutations of several components of the Notch pathway, including 

Notch1, and Jagged1 resulted in embryonic lethality in mice with vascular remodeling 
defects (434, 435). Vasculogenesis proceed normally in these mutants whereas the 

next step, angiogenesis, was disrupted, suggesting that Notch signaling plays a more 
important role in angiogenesis. Although Notch4 deficient mice were viable and 

fertile (434), embryos with Notch1 and Notch4 knockouts displayed a more severe 

phenotype in angiogenesis than single Notch1 knockout embryos (434). These 
findings suggest a more important role of Notch1 than Notch4, as well as their 

redundant function in angiogenesis. Mouse embryos that are rendered null for 

Jagged1 exhibit defects in vascular remodeling (435). Interestingly, constitutive 
activation of Notch4, specifically in EC, also causes defects in vascular remodeling 

(379, 436). Mutation of the Presenilin1 gene, which is involved in processing of 
Notch, produced a complex phenotype, including abnormal blood vessel development 

and intracranial hemorrage, additionally supporting the idea that Notch pathway 

regulates vascular development (437-439).  Hairy-related transcription factor (HRT)2 
knockout mice displayed significant cardiac development defects, but no vascular 

phenotype (440-442). In contrast, the HRT1/HRT2 double knockout mouse embryos  
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Table 4- Phenotype of mice deficient for components of Notch pathway            
(from Iso et al. Arterioscler Thromb Vasc Biol 2003; 23:543-553) 
   

Gene 

Disrupted 

  
Lethality 

  
Vascular Phenotype 

  
References 

 
Delta like1 

 
E12 

 
Hemorrhage 

 
(452) 

Delta like3 Perinatal 

Viable 

ND 

ND 

(453, 454) 

Jagged1 E11.5 A large hemorrhage adjacent to the optic 
vesicle, lack of obvious large vessels in 

the yolk sac, failure to remodel the 
primary plexus in the yolk sac, less 

intricate network and a reduced diameter 
of vessels in the head 

 

(435) 

Jagged2 Perinatal 

Viable 

ND 

ND 

(423, 455) 

Notch1 E11.5 Lack of large vitelline blood vessels in 
the yolk sac, disorganized, confluent 

vascular plexus in the yolk sac, defect of 
the main trunk of the arterior cardinal 
vein, lack of intersomitic vessels, the 

collapsed aortae 
 

(434) 

Notch2 E11.5 

Perinatal 

ND 

Widespread hemorrhage near the surface 
of the skin, no capillary tuft of mature 

glomeruli (majority), capillary aneurysm-
like structure of glomeruli (minority), 

numerous capillaries emanating from an 
aberrant bulbous structure, at the terminus 

of the hyaloid artery 
 

(456, 457) 

Notch4 Viable Normal development (434) 

Notch1/ 

Notch4 

E9.5 More severe than Notch1 null mutant (434) 

HES1 Perinatal ND (358) 

HES5 Viable ND (458) 

HES7 Perinatal ND (459) 

HERP1 Perinatal No vascular abnormality (440, 441) 
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exhibit a global lack of vascular remodeling and massive hemorrhage after embryonic 

day 9.5 (443). Strongly reduced staining of arterial markers was reported in these 
embryos, and the paired dorsal aorta was poorly developed or absent (443). The 

similar vascular phenotypes that are induced by either constitutive activation, 

constitutive loss and further downstream signaling effects of Notch suggest a 
requirement for specific and finely tuned activation of Notch within the context of the 

developing vasculature. 
 

3.4.1 INVOLVEMENT OF NOTCH IN VASCULAR DISEASES 
 

There are at least two examples of congenital diseases that affect the vasculature 

in which Notch signaling is impaired. Allagile Syndrome (AGS) is an autosomal 
dominant disorder associated with abnormalities of the liver, heart, eye, and skeleton 

with variable expressivity (444). Between 60 to 75% of the patients affected by AGS 

are haploinsufficient for the Jagged1 gene (381, 445). There are also evidences 
showing that AGS patients carry mutant Jagged1 transcripts that are highly stable 

(446). Even if some mutant transcripts are present at low levels, it is believed that 
these residual mRNA can be translated and lead to functionally important expression 

of truncated soluble proteins (447) acting in a dominant negative manner. The most 

frequent cardiovascular anomaly in the patients is peripheral pulmonic stenosis, and 
anomalies of peripheral arteries comprising aneurysms and stenoses have recently 

been recognized (448, 449).  
Cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL) is an autosomal dominant syndrome (450, 451) 

associated with Notch3 mutations commonly clustered in the first five EGF repeats. 
The disease is histologically characterized by deposition in the media of a 

nonatheromatous, nonamyloidotic substance, normally found in the brain as well as in 

the peripheral vascular tree (460). Clinically, the arteriophaty develops slowly, 
resulting in destruction of smooth muscle cells and thickening and fibrosis of the 

walls of small and medium-sized arteries with consequent narrowing of the lumen 
(461). 
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Furthermore, Notch signaling also seems to be involved in arterosclerosis and 

restenosis. Lindner et al. have studied expression of Jagged1, Jagged2, and Notch1-4 
before and after balloon catheter denudation of rat carotid artery (400). Although 

expression of only Jagged1, Jagged2 and Notch1 was observed in intact endothelium, 

all the other Notch components were strongly induced in injured EC. Importantly, all 
the six Notch components were greatly increased in injured SMC after denudation of 

ECs (400), which is in contrast with normal SMCs, which expressed only Jagged1 
and Notch3 (462). 

The Notch signaling is also known to play an important role in tumor 

angiogenesis. It has been reported that Delta4 mRNA is expressed in some but not all 
microvessels of tumors (463). Moreover, examination of human cirrhotic livers 

demonstrated strong Jagged1, as well as Notch2 and Notch3 expression in many of 
the small neovessels, implying a role for Notch signaling in the process of 

neovascularization (464, 465).  
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1   MATERIAL 
 
GENERATION OF EXPRESSION CONSTRUCTS: The descriptions of all mutants and 
expression constructs except FGFR136K:HA in pcDNA3 vector and 

FGF1R136K:HA in pTRE-Tight  vector are detailed in Paper 3.  

A thrombin-resistant human FGF1 mutant was constructed by polymerase chain 
reaction (PCR)-based site-directed mutagenesis of the FGF1pMEXneo expression 

vector (267). The codon encoding arginine 136 (AGA) was changed to a lysine 
(AAA) (FGF1R136K). FGF1R136K N-terminally tagged with a FLAG epitope 

(DYKDDDD) was constructed by PCR-based site-direct mutagenesis of the 

FGF1:FLAG (Soldi R. unpublished results). FGF1R136K was cloned into SalI and 
EcoRI restriction sites of pcDNA3/HA vector (generous gift from Jeong Yoon, Maine 

Medical Research Center, Maine, US) originating FGF1R136K:HA-pcDNA3. Further 
we inserted FGF1R136K:HA into the HindIII and XhoI restriction sites of pTRE-

Tight expression vector (Biosciences Clontech, Worcester, MA, US) to obtain the 

FGF1R136K:HA-pTRE construct. Full-length Jagged1 (FLJ1) (393) was transferred 
to the expression vector pcDNA3.1/Hygro(+). The V5-His tag was excised from the 

pcDNATM4/V5-His vector, and inserted into the FLJ1-pcDNA3.1/Hygro(+) between 

the SP and the DSL domain of FLJ1, originating FLJ1NV5 construct. Soluble 
Jagged1 39kDa (sJ1 39kDa) was obtained from FLJ1NV5 by insertion of a stop 

codon at position 349, followed by a PmeI restriction site, which was then used to 
clone the fragment back into the pcDNA3.1/Hygro(+) vector. Thrombin-uncleavable 

Jagged1 mutant (FLJ1NV5R348K) was obtained through site-direct mutagenesis of 

FLJ1NV5, by changing the codon at position 348 from arginine to lysine. 
Further, FGF1R136K, FLJ1NV5, and sJ1 39kDa were also cloned in the 

adenoviral shuttle vector, pAdlox (generous gift from Lisa Phipps, Somatix Therapy 
Corporation, California, US). All the mutagenesis reactions were performed using the 

Quickchange site-directed mutagenesis kit (Stratagene, La Jolla, CA, US), following 

the manufacturer’s instructions. Generated sequences were confirmed by DNA 
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sequencing. A list of construct, including those already described in the literature, is 

presented below (Table 5). 
  
Table 5- Expression constructs used for transfection and transduction 
experiments   

Gene 
 

Vector References 
 

FGF1 
 

pMEXneo  
 

(267) 
 

FGF1:HA 
 

pCR3.1 
 

gift from Andrew Baird 
(Kings College, London, UK)  

FGF1R136K 
 

pMEXneo 
 

Paper 3 
 

FGFR136K 
 

pAdlox 
 

Paper 3 
 

FGF1R136K:FLAG 
 

pExchange-3 
 

u.d. 
 

FGF1R136K:HA 
 

pcDNA3 
 

u.d. 
 

FGFR136K:HA 
 

pTRE-Tight 
 

u.d. 

dnFGFR1 pcDNA3.1 (466) 
 

IL1α  
 

pMEXneo  
 

(250)   
FLJ1 

 
pcDNA 3.1/Hygro(+) 

 
(393) 

 
FLJ1NV5 

 
pcDNA 3.1/Hygro(+) 

 
Paper 3 

FLJ1NV5 pAdlox Paper 3 
 

FLJ1NV5R348K 
 

pcDNA3.1/Hygro(+) 
 

u.d. 
 

FLJ1NV5R348K 
 

pAdlox 
 

u.d. 
 

sJ1 39kDa 
 

pcDNA3.1/Hygro(+) 
 

Paper 3 
 

sJ1 39kDa 
 

pAdlox 
 

Paper 3 
 

sJ1 117kDa 
 

pcDNA3.1+/Neomycin 
 

(393) 
 

caN1 
 

pAdlox 
 

(310)  
β-galactosidase 

 
pAdlox 

 
(310)  

S100A13:Myc 
 

pAdlox 
 

(467)  
p40 Syt1 

 
pAdlox 

 
Bagala, C. unpublished results 

Luciferase under CBF1 
response elements 

GL2pro (468) 
 
pMEXneo - expression vector; pAdlox – adenoviral shuttle vector; u.d - unpublished data; dn – dominant negative; 
ca – constitutive active 
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STABLE NIH3T3 TRANSFECTANTS AND OTHER CELL LINES: NIH 3T3 cell transfectants 
stably expressing FGF1R136K, FGF1R136K:FLAG, sJ1 39kDa, and insert-less 

control vector pcDNA3.1/Hygro(+) were generated by utilizing the FuGENE 6 

reagent (Roche Molecular Biochemicals, Indianapolis, US), and further selected by 
using 400 µg/L Geneticin (GIBCO, Life Technologies, Piscataway, NJ, US), 2.5 

mg/L Puromycin (Roche Molecular Biochemicals) or 200 µg/ml Hygromycin (Roche 

Molecular Biochemicals), respectively. Selected clones were screened for protein 

expression by utilizing an anti-FGF1 rabbit antibody for FGF1R136K, M2 anti-FLAG 
monoclonal antibody (Sigma, St. Louis, MO, US) for the FGF1R136K:FLAG, and an 

anti-V5 antibody (Invitrogen, Foster City, CA, US) for sJ1 39kDa. The genome 

incorporation of insert-less control vector pcDNA3.1/Hygro(+) was screened by PCR. 
NIH 3T3 cells (ATCC, Manassas, VA, US), Swiss 3T3 cells (ATCC), IL1α (250), 

FLJ1 (393) and sJ1 117kDa NIH 3T3 transfectants (393) were maintained at 37°C, 

5% CO2, humidified atmosphere in Dulbecco’s Modified Eagle’s Medium (DMEM; 

GIBCO, Life Technologies) containing 10% Bovine Calf Serum (BCS; Hyclone, San 

Diego, CA, US) and 1x antibiotic-antimycotic mixture (GIBCO, Life Technologies). 
Human embryonic kidney 293 cell line (HEK 293) (ATCC), PAR1 null MEFs and 

PAR1 null fibroblasts transfected with PAR1, a generous gifts from S. Coughlin 
(University of California, San Francisco, California, US) were grown in DMEM 

supplemented with 10% Fetal Bovine Serum (FBS; Hyclone).   
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2   METHODS  
 
Most methods and techniques utilized in the experiments are described in papers 2, 3, 

4, 5, and 6. Methods, not described in papers, are presented here more in detail. 
 

PRODUCTION OF ADENOVIRUS: Recombinant adenoviruses were produced, purified 

and titrated as described (469). Briefly, CRE8 cells were transfected with SfiI-
digested FGF1R136K, FLJ1NV5, or sJ1 39kDa pAdlox DNA, and infected with the 

ψ5 virus. Lysates were prepared 2 days after infection. Viruses were passed twice 

through CRE8 cells, and purified from the second passage using a Cesium density 

gradient. The viruses were quantified by optical density at 260 nm readings, and the 
bioactivity was determined by the plaque forming unit assay (more detailed 

information can be found on Papers 2, 3, and 5). 
 

ADENOVIRAL TRANSDUCTION: The adenoviral transduction was performed in serum-

free DMEM with approximately 103 viral particles/cell in the presence of poly-D-
Lysine hydrobromide (Sigma) (5x103 molecules/viral particle) for 2 hours at 370C. 

Then the adenovirus-containing media was removed and replaced with serum-
containing medium. Cells were plated for experiments 24-48 hours after transduction. 

The efficiency of transduction for FLJ1NV5, caN1, and S100A13 was assessed by 

immunofluorescence using an anti-V5 monoclonal antibody (Invitrogen), and anti-
Myc monoclonal antibody for S100A13 (OncogeneTM, West Grove, PA, US). 

 
HEAT SHOCK AND THROMBIN/TRAP STIMULATION ASSAYS: The heat shock-induced 

FGF1 release assay was performed by incubation of cells at 420C for 110 minutes in 

serum-free DMEM containing 5 U/ml of heparin (Sigma), as previously described 
(267). Control cultures were incubated at 370C for the same time period. Thrombin or 

TRAP stimulation experiments were performed by incubation of cells at 370C, for 

different time periods, in the presence of 1 U/ml (equivalent to 10 nM) thrombin, (gift 
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from John W. Fenton, New York State Department of Health, Albany, New York, 

US) or 5.7 µM TRAP (Sigma). Control cells were incubated in the absence of 

thrombin or TRAP for the same time periods. Further, conditioned media were 
collected, filtered, and FGF1 was isolated for immunoblot analysis by using heparin-

sepharose chromatography (for details see Paper 3), the IL1α was purified from the 

medium using Cu2+ affinity chromatography, as previously described (250). In both 

heat shock or thrombin/TRAP stimulation experiments cell viability was assessed by 
measuring lactate dehydrogenase (LDH) activity in conditioned medium after 

filtration (269, 470). In pertussis toxin (PTX; Sigma) experiments, FGF1R136K NIH 
3T3 transfectants were pre-incubated with 100 ng/ml of PTX for 60 minutes at 370C.  

 

IMMUNOBLOTTING AND IMMUNOPRECIPITATION: Immunoblot analysis was performed 
using rabbit antibodies against FGF1 (267) and Syt (269), a monoclonal anti-Myc 

antibody (Oncogene) to detect S100A13:Myc, and a goat anti-IL1α polyclonal 

antibody (Roche Molecular Biochemicals). In all the experiments, conditioned media 

were obtained from one 150 mm cell culture dish for each time point. Also 1/10 of the 
cell lysate derived from one 150 mm plate was loaded to each gel for FGF1 

expression control, as described in Paper 3.  
Immunoprecitation was used to assess the thrombin-induced production of sJ1 39kDa 

upon treatment of HEK 293 cells transduced with FLJ1NV5. Control cells were 

transfected with the adenovirus expressing β-galactosidase (β-gal). Conditioned 

media were collected, after thrombin, thrombin plus hirudin or thrombin plus protease 
inhibitor cocktail treatments. sJ1 39kDa was immunoprecipitated from the 

conditioned media using 1 µg of anti-V5 antibody (Sigma), resolved on 12% sodium 

dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), and 

immunoblotted using the anti-V5 antibody.  
 

NUCLEAR RUN-ON, RT-PCR, AND REAL TIME RT-PCR ANALYSIS: Nuclear run-on analysis 
of FGF1 expression, reverse transcription polymerase chain reaction (RT-PCR) and 

Real-time PCR (Q-RT-PCR) was performed as described in papers 2 and 3. In RT-

PCR experiments, jagged1 and fgf1 cDNA were amplified using specific primers, 
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generating a 620 base-pair (bp) and 578bp products, respectively. Amplification of 

the gapdh cDNA was used as the endogenous normalization standard.  Each sample 
was amplified in triplicate. 

 

IMMUNOFLUORESCENCE AND CONFOCAL MICROSCOPY: Cells were plated on 
fibronectin-coated glass coverslips in 6-well TC plates at 105 cells/well. The next day, 

the cells were transfected with FGF1:HA. The following day, the cells were 
stimulated with 1U/ml thrombin or 5.7 µM TRAP, fixed and immunofluorescently 

stained with anti-HA antibodies (Covance, Berkeley, CA, US) followed by a 

fluoresceine-conjugated anti-mouse IgG antibody (Sigma). For the pharmacology 

experiments, 24 hours after FGF1:HA transfection cells were incubated overnight 
with 250 µM TTM (Sigma) or 0.375 mM amlexanox (a generous gift of Takeda 

Chemical Industries, Osaka, Japan). Next day the cells were washed and further 

incubated in the presence of fresh TTM, or amlexanox, plus thrombin or TRAP. 

Control cells were kept all the time in the absence of TTM, or amlexanox. Actin 
stress fibers were visualized by fluorescein isothiocyanate (FITC)-conjugated 

phalloidin (Sigma) in stable FLJ1 NIH 3T3 transfectants (5x104 cell/well) fixed with 
formaldehyde after thrombin or TRAP stimulation.  Untransfected NIH 3T3 served as 

control. Fluorescently stained cells were analyzed and studied using the LTCS-SP 

confocal microscope (Leica) as described in papers 2, 3, and 6. 
 

PREPARATION OF CELL MEMBRANES: Cell fractionation experiments were performed 
as described in paper 3. Briefly, cells were washed with serum-free DMEM 

containing 5 U/ml of heparin, and stimulated with 1U/ml thrombin. Control cells were 

incubated in the absence of thrombin. Next, the cells were washed in phosphate-
buffered saline (PBS), scraped, and quickly spun down. The cell pellet was then 

resuspended in hypotonic buffer and incubated on ice. The pellets were homogenized 
in a Dounce homogenizer and centrifuged. The supernatants were collected and 

further ultracentrifuged to precipitate the membranes. 
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BIOTINYLATION OF CELL SURFACE PROTEINS: After thrombin and heat shock 
stimulation, stable FGF1R136K:FLAG NIH 3T3 transfectants were washed with cold 

PBS (pH 8.0). The biotinylation reaction was performed at 40C for 30 minutes, using 

biotin solution (PBS with 200 mg/L CaCl2, 97.67 mg/L MgCl2, 2.5 mM biotin (EZ-
Link sulphosuccinimidyl-6-(biotin-amido) hexanoate (sulfo-NHS-LC-Biotin)) as 

recommended by the manufacturer (Pierce, Rockford, IL, US). Biotinylated cells 
were lysed in 1ml of buffer containing 0.1% TritonX100, and the lysates were 

immunoprecipitated with M2 anti-FLAG monoclonal antibody (Sigma) overnight 

before being washed three times in ice-cold 0.1% TritonX100, and resolved using 
12% SDS-PAGE followed by Western blotting using horseradish peroxidase (HRP) 

conjugated straptavidin antibody (Pierce). 
 

DNA SYNTHESIS ASSAY: A combination of [3H]-thymidine autoradiography and 

immunohistochemistry was used to evaluate DNA synthesis levels in Swiss 3T3 cells 
expressing a dn FGFR1 (dnFGFR1) mutant as described in paper 3. 

 
CELL-FREE TRANSLATION AND THROMBIN CLEAVAGE: A plasmid containing human 

FLJ1 was transcribed and translated in vitro in the presence of a [35S]-Met/Cys 

protein-labeling mixture, using the T7-coupled reticulocyte lysate system according to 
manufacturer’s instruction (Promega, Madison, WI, US). Thrombin cleavage was 

performed as described in paper 3. The samples were resolved by 12% SDS-PAGE, 
transferred to a polyvinylidene fluoride (PVDF) membrane, and analyzed by 

autoradiography.  

 
AUTOMATED EDMAN MICROSEQUENCING: The bands corresponding to the thrombin 

cleavage products were excised and subjected to automated Edman microsequencing.  

The products of each cycle were collected prior to resolution by high pressure liquid 
chromatography (HPLC) and quantified by liquid scintillation spectroscopy as 

described in paper 3. 
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DUAL LUCIFERASE REPORTER ASSAY OF CSL-DEPENDENT TRANSCRIPTION: Insert-less 
vector control, FLJ1, sJ1 117kDa and sJ1 39kDa NIH 3T3 cell transfectants were 

plated on fibronectin-coated cell culture dishes at approximately 50% confluency, and 

transiently cotransfected using FuGENE 6 (Roche Molecular Biochemicals) with 500 
ng of a luciferase construct driven by four tandem copies of the CBF1 response 

element, and 100 ng of the TK Renilla (Promega) construct used as internal control 
for transfection efficiency. Forty-eight hours after transfection, the cells were 

harvested and the luciferase/renilla activity was measured by utilizing the Dual 

Luciferase Reporter Assay System (Promega).  Each experiment was performed in 
triplicate. 

 
GLYCOSILATION ASSAY: Stable sJ1 39kDa NIH 3T3 cell transfectants were plated at 

equal density. Twenty-four hours after plating the cells were washed in PBS, scraped, 

and quickly spun down. The cell pellet was then ressuspended in 1x glycoprotein 
denaturating buffer (0.5% SDS plus 1% β-mercaptoethanol) and incubated for 10 

minutes at 1000C. The pellets were then incubated in 1xG7 reaction buffer (50mM 

sodium phosphate pH 7.5) in the presence of 1%NP-40 and 1U of peptide N-

Glycasidase (PNGase; New England BioLabs, Beverly, MA, US) for 1 hour at 370C. 
The enzymatic reaction was then stopped with loading buffer.  

 
SOFT AGAR COLONY GROWTH: Approximately a total of 1800 sJ1 117kDa NIH 3T3 

transfectants cells were plated in DMEM containing 10% BCS and 0.5% agar. Every 

2 days, the soft agar culture was overlaid with fresh medium containing 1U/ml 
thrombin or 5.7 µM TRAP. Control plates were kept in DMEM containing 10% BCS. 

Three weeks after plating, colonies were visualized by staining with p-

iodonitrotetrazolium violet (Sigma).  
 

ISOLATION OF JAGGED1 NULL MOUSE EMBRYONIC FIBROBLAST: Pregnant mice 

heterozygous for the Jagged1DSL mutant allele (435) were obtain from Thomas Gridley 
(Jackson Laboratory, Bar Harbor, ME, US). Females were sacrificed at embryonic 
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day (E) 9.5, uteri removed, placed in PBS and embryos extracted. Then embryos were 

dissociated by passing them through an 18-gauge needle. Embryo cells were plated in 
DMEM supplemented with 10% FBS, 100 U/ml penicillin/streptomycin and 2 mM of 

glutamine (GIBCO, Life Technologies). Four days later, a portion of cells was frozen 

down and the rest used to expand cell cultures. We obtained three strains out of 
twelve original embryos. The resultant cultures were checked for the presence of 

Jagged1 by PCR using the following set of primers: forward 5’-GGCGGCTGGGAA 
GGAACAAC-3’ and reverse 5’-TCACCGGCTGGAGACTGGAAGA-3’. One of 

strains was demonstrated to be Jagged1-/-. This strain was propagated and further 

transfected with simian virus 40 (SV40) T-antigen (gift of James deCaprio, Harvard 
University, MA, US) using FuGENE 6 (Roche Molecular Biochemicals) in order to 

obtain a Jagged1 null MEFs immortalized cell line. 
 

DEVELOPMENT OF TRANSGENIC MICE WITH THE INDUCIBLE EXPRESSION OF FGF1: To 

produce transgenic mice with inducible FGF1 expression, we used a Tet-on system.  
Since FGF1 is cleaved by thrombin (241), we utilized a FGF1R136K mutant C-

terminally tagged with the HA epitope, which was clone in the pTRE-Tigth vector. 
The final construct (FGF1R136K:HA-pTRE) was then purified and ressuspended in 

injection buffer (10 mM PIPES, 5 mM NaCL and 150 mM KCl) for the pronuclear 

injection into fertilized oocyte from the Balb/c strain. The microinjection was 
performed by Anne Harrington in the Transgenic Animal Facility of Maine Medical 

Center Research Institute (Scarborough, ME, US). 
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In this chapter, a compendium of the most relevant results is presented. A more 
detailed presentation of results is in papers 2, 3, 4, 5, and 6. The paper 1, a review 

focused on the non-classical export of two pro-angiogenic polypeptides (FGF1 and 
IL1α) gives the general picture of the current knowledge about the routes that FGF1 

and IL1α utilize to be exported. This review also discusses the important questions 

related to non-classical protein release that remain to be answered. Some of these 
questions are further studied and discussed in papers 5 and 6. The papers 2 and 4 

address different aspects of Notch and PAR1 signaling mechanisms, respectively. The 
results of these papers will not be presented here, however they will be discussed 

later, since they provide important information for the understanding of the FGF, 

Notch and thrombin role in angiogenesis and vascular remodeling. 
Following are the results, including some unpublished data, pertaining to the 

questions raised in the specific aims.  

 

1 STUDY OF THROMBIN ROLE IN FGF1 SIGNALING 

 

1.1- STUDY OF THROMBIN ROLE IN THE INDUCTION OF FGF1 EXPRESSION AND 

RELEASE  

1.1.1- THROMBIN INDUCES FGF1 EXPRESSION 

We analyzed by run-on assay the expression of the FGF1 transcript in NIH 3T3 

cells in response to thrombin. The eight-fold induction of FGF1 mRNA was initially 

detected 15 minutes after the addition of thrombin to NIH 3T3 cells. The level of 
FGF1 mRNA increased over time, and reached a plateau after 2 hours of thrombin 

treatment (Figure 7A). Similar kinetics were obtained with Swiss 3T3 cells, although 
for these cells the induction of FGF1 transcript as slower (Figure 7B). 
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1.1.2- THROMBIN RAPIDLY INDUCES THE NON-CLASSICAL RELEASE OF FGF1 

Based on the result that thrombin induced FGF1 expression, we sought to 

determine whether it also induces FGF1 release.  Since FGF1 is susceptible to 

thrombin cleavage at arginine 136 (241), we utilized a thrombin-resistant FGF1 
mutant (FGF1R136K). The heparin binding affinity of FGF1R136K was evaluated, 

and this mutant carries a binding to sulfate glycosaminoglycans similar to the wild 
type FGF1 (12) (data not shown). NIH 3T3 cells stably transfected with FGF1R136K 

were stimulated for 5, 15, 30, and 60 minutes with 1 U/ml thrombin. The addition of 

thrombin to FGF1R136K NIH 3T3 cell transfectants at 370C resulted in the rapid, 
sustainable appearance of the FGF1R136K mutant in the extracellular compartment 

(Figure 8A). We also evaluated the effect of thrombin upon the release of IL1α, a 

proinflammatory cytokine known to exhibit stress-induced non-classical release 
similarly to FGF1 (250, 265). As demonstrated on Figure 8B, similarly to FGF1, 

thrombin induced the IL1α release after 5 minutes of incubation. 

The release of FGF1R136K mutant was dependent on the concentration of 

thrombin with a maximal response at 1 U/ml (10 nM) (Figure 8C). It is worthwhile to 
mention, that thrombin induced FGF1 release pertains to experiments in which the 

concentration of LDH in the conditioned media did not exceed LDH levels in media 

conditioned by non-stimulated cells (466) showing the absence of cell damage.  
 

1.1.3- THROMBIN INDUCES THE REDISTRIBUTION OF FGF1 TO THE CELL MEMBRANE 

1.1.3.1- IMMUNOFLUORESCENCE CONFOCAL MICROSCOPY 

It has been demonstrated that heat-shock conditions stimulating FGF1 release 

induced the translocation of FGF1 to the cell membrane (305). We performed similar 
experiments applying immunofluorescence confocal microscopy to evaluate the effect 

of thrombin on the intracellular localization of C-terminally HA tagged FGF1 
(FGF1:HA). We observed that short term thrombin treatment of NIH 3T3 cells 

transiently transfected with FGF1:HA resulted in the translocation of FGF1 to cell 
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periphery, near the cell membrane (Figure 9A).  

 
1.1.3.1.1- PHARMACOLOGY OF THROMBIN-INDUCED FGF1 REDISTRIBUTION 

The similarity between the kinetics of thrombin-induced FGF1R136K release and 

the peripheral redistribution of intracellular FGF1 prompted us to examine the 
pharmacology of FGF1 redistribution using reagents known to inhibit FGF1 export 

including amlexanox (270) a known attenuator of actin stress fiber formation (307). 
We demonstrated that amlexanox was able to completely repress thrombin induced 

redistribution of the cytosolic FGF1:HA (Figure 9B upper panel). We have also 

studied the effect of TTM a specific copper chelator, known to repress the heat shock 
induced export of FGF1 from NIH 3T3 cells (272). Interestingly, the incubation of 

FGF1:HA NIH 3T3 cell transfectants with TTM did not attenuate the peripheral 

redistribution of cytosolic FGF1:HA upon thrombin treatment (Figure 9B lower 
panel), strengthening previous results from our laboratory, that contrary to 

amelexanox, which was able to completely block stress-induced FGF1 translocation 
to the cell periphery, TTM did not interfere with FGF1 redistribution (305). 

 

1.1.3.2- CELL FRACTIONATION  

In order to confirm the confocal microscopy data, we additionally performed 

subcellular fractionation of FGF1R136K NIH 3T3 cell transfectants, treated and 
untreated with thrombin for 30 minutes at 370C. We found that thrombin induced the 

appearance of FGF1R136K in the membrane fraction (Figure 9C). After thrombin 

treatment, 29% of FGF1R136K was translocated to the membrane fraction, as 
determined by densitometric gel analysis (note that all of the cell lysate from one 150 

mm cell culture dish was used for each treatment analysis). 
 

1.1.3.3- BIOTINYLATION OF CELL SURFACE PROTEINS  

Based on the cell fractionation and immunofluorescence results, we went further 
to evaluate whether FGF1 released upon thrombin treatment is associated with the 
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cell surface. Stable FGF1R136K:FLAG NIH 3T3 cell transfectants stimulated with 

thrombin or heat shock, were subjected to surface protein biotinylation and specific 
immunoprecipitation of FGF1, using anti-FLAG monoclonal antibody. Next the 

precipitated complexes were analyzed by Western blotting using streptavidin-HRP. 

We detected the appearance of biotinylated FGF1 on the cell surface, upon both 
thrombin stimulation and heat shock, and its absence on the surface of non-stimulated 

cells (Figure 9D).  
 

1.1.4- THROMBIN TREATMENT INDUCES THE EXPORT OF S100A13 AND P40 SYT1  

FGF1 is known to be released under stress conditions as a part of a copper (Cu2+)- 
dependent multiprotein complex, which includes S100A13 (270, 271) and p40 form 

of Syt 1 (268, 269) proteins. We assessed whether thrombin was able to induce the 
export of S100A13 and p40 Syt1. As shown in Figure 10 (upper panel), anti-Myc 

immunoblotting analysis of medium conditioned at 370C by NIH 3T3 cells co-

expressing S100A13:Myc and FGF1R136K revealed that upon thrombin stimulation 
S100A13 was released into the extracellular compartment with kinetics identical to 

that observed for FGF1R136K.  Similar results were obtained for p40 Syt1 release 
when thrombin was applied to cells cotransduced with FGF1R136K and p40 Syt1 

(Figure 10, lower panel). 

 

1.1.5- THE MITOGENIC ACTIVITY OF THROMBIN IS FGFR1 DEPENDENT  

Since thrombin induces both the expression of FGF1 and its release into the 
extracellular compartment, it is possible that these two effects contribute to the 

mitogenic activity of thrombin. To assess this hypothesis, we analyzed the ability of a 

dominant-negative mutant of FGFR1 to attenuate cell proliferation stimulated by 
thrombin. We utilized Swiss 3T3 cells since, unlike the NIH 3T3 cells, they exhibit a 

low level of apoptosis and endogenous DNA synthesis in response to serum 

deprivation. Swiss 3T3 cells express significant levels of FGFR1 (467). A dnFGFR1 
construct was transfected into Swiss 3T3 cells, and their proliferative index was 

measured in the presence and absence of exogenous thrombin. The expression of 
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dnFGFR1 was verified by immunohistochemistry, and DNA synthesis was revealed 

by [3H]-thymidine radioautography. As shown in Figure 11, the expression of 
dnFGFR1 not only reduced the ability of FGF1 to induce the appearance of 

replicating nuclei by approximately 70%, but it also decreased the DNA synthesis 

frequency in the presence of thrombin to a level consistent with quiescence.  

 

Thus, thrombin efficiently and rapidly induced FGF1 expression and FGF1 
release under non-stress conditions and the latter effect appears to be mediated by the 

translocation of FGF1 to the cell membrane. Thrombin-induced FGF1 translocation to 

cell membrane seems to be dependent on actin stress fibers. Moreover, similarly to 
the stress-induced FGF1 export (267, 286-288), the release of FGF1 in response to 

thrombin is associated with the export of S100A13 and p40 Syt 1. Interestingly, the 
mitogenic effect of thrombin depends on FGFR1 activity, bringing together thrombin 

and FGF signaling.  

 

1.2- INVESTIGATION OF THE ROLE OF PAR1-MEDIATED SIGNALING IN THE 

THROMBIN-INDUCED FGF1 EXPRESSION AND RELEASE 

 
Since thrombin is known to mediate its biological responses predominantly 

through the activation of PARs (73), we sought to evaluate the role of PAR1 in 
mediating thrombin-induced FGF1 expression and release. 

 

1.2.1- ACTIVATION OF PAR1 BY TRAP RAPIDLY INDUCES FGF1 EXPRESSION  

We assessed whether the PAR1-activating peptide, TRAP, which is devoid of 

proteolytic activity but is well known to induce the activation of PAR1 (78), was able 
to mimic the ability of thrombin to induce FGF1 expression. As shown on Figure 

12A, similarly to thrombin, TRAP was able to induce the expression of FGF1 

transcript in NIH 3T3. 
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1.2.2- PAR1 MEDIATES RAPID THROMBIN-INDUCED FGF1 RELEASE  

To evaluate the role of PAR1 in FGF1 release, we utilized embryonic fibroblasts 

obtained from PAR1 null mice, as well as control PAR1 null fibroblasts transfected 

with PAR1 (100) that were transduced with the FGF1R136K adenovirus. Thrombin 
was unable to rapidly induce the export of FGF1R136K from PAR1 null cells (Figure 

12B, upper panel).  However, PAR1 null cells exported FGF1R136K in response to 
temperature stress (420C), suggesting that they were not defective in mediating stress-

induced non-classical FGF1 export. At the same time, thrombin induced rapid 

FGF1R136K release from control PAR1 null fibroblasts transfected with PAR1 
(Figure 12B, lower panel). Additionally, we assessed whether TRAP, which was able 

to induce FGF1 expression, would also mimic the ability of thrombin to induce 
FGF1R136K release. TRAP rapidly induced the export of FGF1R136K (Figure 12C).  

To further characterize PAR1 role in FGF1 induced release and since PAR1 signaling 

is coupled to PTX-sensitive inhibition of adenylate cyclase, we assessed the ability of 
PTX to block FGF1 release. As expected, PTX was able to repress the release of 

FGF1R136K in response to thrombin (Figure 12D).  

 

1.2.3- TRAP INDUCES FGF1:HA TRANSLOCATION TO CELL PERIPHERY  

Based on the finding that TRAP was able to mimic thrombin-induced FGF1 
expression and release, we performed the immunofluorescence confocal microscopy 

studies in order to evaluate the effect of TRAP on the intracellular localization of 
FGF1:HA, as well as the effects of amlexanox and TTM upon this process . We 

observed that TRAP treatment of FGF1:HA NIH 3T3 cell transfectants resulted in the 

translocation of FGF1 to cell periphery, near the cell membrane (Figure 12E), and 
similarly to thrombin, TTM was not interfering with this translocation process. 

Conversely, amlexanox blocked TRAP-induced peripheral translocation of FGF1:HA 

suggesting the importance of actin stress fibers in this process (Figure 12F).  
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Thus we demonstrated that thrombin-induced FGF1 expression and rapid release 
were mediated by PAR1 activation. Particularly, TRAP, a synthetic peptide known to 

activate PAR1, induces FGF1 expression, rapid FGF1 release and amlexanox 

sensitive peripheral translocation of FGF1. 

 

2 INTERPLAY BETWEEN THROMBIN, NOTCH AND FGF1 SIGNALING 

PATHWAYS  

 

In the past we have demonstrated that the expression of sJ1 117kDa in NIH 3T3 

cells represses Notch-mediated CSL-dependent transcription, and induces both FGF1 
expression and constitutive non-classical FGF1 release at 370C (310). Since thrombin 

was able to induce also the expression and FGF1 release under non-stress conditions, 

and based on thrombin proteolytic activity, we hypothesized that additionally to 
PAR1, thrombin could also act through cleavage of Jagged1 and production of 

soluble ligand Jagged1. 

 

2.1- THROMBIN-MEDIATED CLEAVAGE PRODUCES SOLUBLE JAGGED 1 

2.1.1- IN VITRO TRANSLATED JAGGED1 IS CLEAVED BY THROMBIN  

Computer analysis1 of human Jagged1 amino acid sequence revealed two putative 

thrombin cleavage sites within the extracellular domain of Jagged1 (R113 and R348) 
(Figure 13A). In order to assess Jagged1 as a thrombin substrate, Jagged1 was 

transcribed and translated in vitro in the presence of a [35S]-Cys/Met mixture; and the 

134kDa Jagged1 translation product was incubated with or without thrombin. 
Autoradiographic analysis of the reaction products revealed cleavage of the Jagged1 

                                                
1 www.us.expasy.org/peptidecutter 
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protein into 39 kDa and 95 kDa fragments (Figure 13B), the same sizes as 

theoretically expected according to one of Jagged1 thrombin cleavage site 
(R348↓G349) revealed by computer analysis.  

 

2.1.2- CHARACTERIZATION OF THE THROMBIN CLEAVAGE SITE BY EDMAN SEQUENCING 

Next we sought to confirm the identity of thrombin cleavage site in Jagged1. In 
the human Jagged1 sequence there are three cysteine residues (351, 360 and 362) 

close to the position R348. Based on this fact, we performed the in vitro 
transcription/translation of Jagged1 in the presence of [35S]-Cys/Met mixture, 

following thrombin treatment and electrophoresis. Further, the band corresponding to 

the 95 kDa fragment was excised, and subjected it to automated Edman degradation, 
and the products of each cycle were monitored by liquid scintillation counting.  We 

observed [35S]-Cys radioactivity in cycles 2, 11, and 13 (Figure 13C), which agrees 
with the presence of Cys at positions 351, 360, and 362 (Figure 13A).  These results 

suggest that thrombin cleaves Jagged1 between residues R348 and G349, which are 

located between EGF repeats 3 and 4 (468). This cleavage yields an amino terminal 
fragment with a molecular mass of approximately 39 kDa. To further confirm this 

cleavage site, we utilized a Jagged1 thrombin non-cleavable mutant (FLJ1R348K) N-

terminally with V5 (Figure 13A), to perform the thrombin cleavage experiments. As 
expected, this mutant was not cleaved by thrombin, confirming the identity of 

Jagged1 thrombin cleavage site at position 348 of the amino acid sequence. 
Moreover, we tried another protease involved in blood coagulation process - plasmin, 

however, it was not able to cleave Jagged1 (data not shown).  

 

2.1.3- THROMBIN CLEAVES JAGGED1 EXPRESSED IN CULTURE CELLS 

To verify that thrombin cleaves Jagged1 expressed in living cells, we transduced 
HEK 293 cells with a FLJ1NV5 adenoviral construct (Figure 13A) for 48 hours, and 

used transduced cells for thrombin treatment. The percentage of HEK 293 FLJ1NV5 

positive cells was around 90%, as determined by immunofluorescence using anti-V5 
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antibody.  After 1 hour of treatment at 370C with 1 U/ml of thrombin, the serum-free 

medium was collected, immunoprecipitated with the anti-V5 antibody, resolved by 
SDS-PAGE, and immunoblotted with the anti-V5 antibody. As shown in Figure 13D, 

thrombin induced the cleavage and release of a N-terminal fragment of Jagged1 with 

the molecular weight of approximately 39 kDa into the medium. Jagged1 cleavage 
was completely blocked by a protease inhibitor cocktail (Figure 13D). Moreover, we 

found that hirudin, a highly specific thrombin inhibitor, was able to block the 
appearance of sJ1 39kDa (Figure 13D). 

  

2.2- CHARACTERIZATION OF THE BIOLOGICAL ACTIVITY OF JAGGED1 THROMBIN 

CLEAVAGE PRODUCT (SJ1 39KDA) 

 
The extracellular domain of Jagged1 is involved in receptor binding, and consists 

mainly of 16 EGF-like repeats. Since thrombin cleaves Jagged1 between the third and 

fourth EGF repeat, and because the glycosylation of some EGF repeat motifs is 
essential for the regulation of Notch-ligand interactions and downstream signaling 

(327) we sought to evaluate the biological activity of the resulting soluble Notch 

ligand, particularly its glycosylation pattern, and the ability to regulate Notch and 
FGF1 signaling.  

 

2.2.1- SJ1 39KDA IS NORMALLY GLYCOSYLATED  

We assessed sJ139kDa glycosylation, by incubating stable sJ1 39kDa NIH 3T3 

cell transfectant lysates in the presence of PNGase, an N-endoglycosidase, known to 
cleave polysaccharide chains from glycoproteins. As shown in Figure 14A, PNGase 

treatment results in the electrophoretic shift of sJ1 39kDa to approximately 37kDa, 
revealing the presence of polysaccharide chains in sJ1 39kDa. 
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2.2.2- SJ1 39KDA EXPRESSION DECREASES THE CSL-MEDIATED TRANSCRIPTION  

To determine whether sJ1 39kDa carries the same capacity to decrease Notch 

signaling as sJ1 117kDa, which represents the whole extracellular domain of Jagged1 

(393), we assayed vector control, FLJ1, sJ1 117kDa, and sJ1 39kDa NIH 3T3 stable 
transfectants for CSL-dependent transcription by utilizing a luciferase reporter assay 

(344, 469). While FLJ1 transfectants exhibited an increase in CSL-mediated 
transcription, NIH 3T3 sJ1 39kDa transfectants displayed a decrease of the CSL-

dependent transcription (Figure 14B), which was similar to that in sJ1 117kDa 

transfectants (393).  

 
2.2.3- SJ1 39KDA INDUCES FGF1 EXPRESSION  

We next assessed by RT-PCR untransfected NIH 3T3 cells, vector-transfected 
control, sJ1 117kDa, and sJ1 39kDa transfectant NIH 3T3 cells for the expression of 

fgf1. sJ1 117kDa and sJ1 39kDa transfectants expressed fgf1, while both 
untransfected and vector control transfected cells did not (Figure 14C, upper panel). 

Further (Q)-RT-PCR analysis results demonstrated that sJ1 39kDa induced 

significantly higher fgf1 mRNA levels than sJ1 117kDa (Figure 14C, lower panel).  

 

2.2.4- SJ1 39KDA INDUCES FGF1 RELEASE UNDER NORMAL GROWTH CONDITIONS  

Since sJ1 39kDa induced the expression of FGF1, we next assessed whether it 

induced FGF1 release. Vector control and sJ1 39kDa NIH 3T3 transfectants were 

transduced with FGF1R136K adenovirus, and analyzed for FGF1 release under 
normal or heat shock conditions. Whereas both vector control and sJ1 39kDa 

transfectants exported FGF1 in response to temperature stress (420C), FGF1 release 
under non-stress temperature conditions (370C) was only observed in the sJ1 39kDa 

NIH 3T3 transfectants (Figure 14D). 
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 Thus sJ1 39kDa resulting from thrombin cleavage was not inferior to sJ1 117kDa 
in its ability to repress Notch signaling, and to induce FGF1 expression and release.  

 

2.3- STUDY OF NOTCH SIGNALING ROLE IN THROMBIN-INDUCED FGF1 
EXPRESSION AND RELEASE 

 
To further understand the role of thrombin in bridging FGF1 and Notch signaling 

and based on the results obtained with the sJ1 39kDa transfectant cells, where the 

CSL-dependent transcription was downregulated, we aimed to determine whether 
thrombin treatment, would be able to attenuate Notch signaling, and whether the 

activation of Notch signaling would interfere with thrombin-induced FGF1 release.  

 

2.3.1- THROMBIN ATTENUATES CSL-DEPENDENT TRANSCRIPTION IN JAGGED1 NIH 

3T3 CELL TRANSFECTANTS 

We used the luciferase reporter assay to evaluate the ability of thrombin to 

attenuate the activity of the CSL-dependent promoter in NIH 3T3 cells. While 

treatment of the FLJ1 NIH 3T3 stable cell transfectants with thrombin reduced the 
level of CSL-dependent transcription, TRAP, an agonist peptide of PAR1 devoid of 

proteolyical activity, did not affect it (Figure 15A).  

 

2.3.2- THROMBIN-INDUCED FGF1 EXPRESSION AND RELEASE IS REPRESSED BY THE 

EXPRESSION OF CAN1  

To explore the role of Notch signaling in thrombin effects, we utilized 

FGF1R136K NIH 3T3 cell transfectants adenovirally transduced with constitutively 
active Notch1 (caN1), and stimulated with thrombin for short time periods. About 

90% of the cells expressed caN1 48 hours after transfection (data not shown). 

Interestingly, the expression of caN1 abolished the expression as well the release of 
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FGF1 induced by thrombin (Figure 15B). As shown in Figure 15C, thrombin 

stimulated the release of FGF1R136K from control cells; however, it was unable to 
initiate the release from cells expressing caN1 (Figure 15C). At the same time, the 

expression of caN1 in FGF1R136K NIH 3T3 cell transfectants did not affect the heat 

shock-induced FGF1 release (Figure 15C). 

 

2.3.3- JAGGED1 NULL EMBRYONIC FIBROBLAST CONSTITUTIVELY RELEASE FGF1 

Small et al. data (310) and the results of the present work demonstrate that sJ1, 

either genetically expressed or produced as a result of thrombin-dependent cleavage, 

induces FGF1 release, apparently due to the downregulation of Notch signaling. To 
further verify this working hypothesis, we explored FGF1 release from immortalized 

Jagged 1 knockout fibroblasts. We found that, unlike wild type fibroblasts, these cells 
constitutively released FGF1 at non-stress conditions (Figure 16A). Most probably, 

this effect is the result of downregulation of Notch signaling, by knock out of 

Jagged1, a major Notch ligand. 

 

2.3.4- THROMBIN INDUCES CELL GROWTH IN SOFT AGAR IN THE ABSENCE OF 

EXOGENOUS FGF1   

sJ1 117kDa NIH 3T3 cells transfectants are able to grow in an anchorage-

independent manner and to form colonies in soft agar. The size of these colonies is 
significantly increased when exogenous FGF1 is added to the medium, however the 

number of colonies does not change (310).  Based on these results, we sought to 
determine whether thrombin or TRAP, which both are able to induce the release of 

FGF1, would enhance the anchorage-independent growth. When sJ1 117kDa NIH 

3T3 cell transfectants were treated with thrombin, not only the size but also the 
number of colonies significantly increased (Figure 16B). However, TRAP did not 

have any effect upon colony growth (Figure 16B).  
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2.3.5- FLJ1 NIH 3T3 TRANSFECTANTS EXHIBIT AN ATTENUATION OF ACTINS STRESS 

FIBERS UPON THROMBIN TREATMENT 

Our laboratory in the past had demonstrated that sJ1 117kDa displayed a decrease 

of focal adhesion sites number, exaggerated expression of N-cadherin on the 
intercellular borders and a decrease in actin stress fibers (400). Based on these data, 

we hypothesized that stable FLJ1 NIH 3T3 cell transfectants treated with thrombin, 
should recapitulate the same effects. Indeed, the FLJ1 NIH 3T3 cell transfectants 

exhibited significantly reduced actin stress fibers upon thrombin treatment when 

compared either to control or TRAP treated cells. Thrombin untreated FLJ1 and NIH 
3T3 cell transfectants served as control (Figure 16C).  

 

Based on the disparate effects of thrombin and TRAP upon the anchorage-

independent cell growth, it appears that the long-term mitogenic effect of thrombin is 

mediated by Jagged 1 cleavage followed by downregulation of Notch signaling and 
FGF1 expression and release. Moreover, the difference in actin stress fibers 

abundance between thrombin treated- and TRAP-treated cells also supports this 
premise. The results presented strengthen our hypothesis about the existence of 

Notch-FGF-thrombin signaling triangle. 

 

2.4- STUDY OF THE KINETICS OF THROMBIN-INDUCED FGF1 RELEASE IN PAR1 
NULL CELLS  

 
Since thrombin failed to stimulate rapid FGF1 release from PAR1 null mouse 

embryonic fibroblasts, we explored the dynamics of thrombin-induced FGF1 export 
in order to determine whether the long-term thrombin treatment would produce 

enough sJ1 39kDa to induce FGF1 release, in absence of PAR1. 
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2.4.1- JAGGED1 EXPRESSION IN PAR1 NULL MOUSE EMBRYONIC FIBROBLASTS 

At the beginning of these studies, we assessed Jagged1 expression in PAR1 null 

cells and found, using RT-PCR, that they expressed Jagged1 transcripts at levels 

similar to those found in NIH 3T3 cells (Figure 17A).  

 

2.4.2- LONG-TERM THROMBIN INCUBATION INDUCES FGF1 RELEASE FROM PAR1 

NULL CELLS 

To study the dynamics of thrombin-induced FGF1 release, PAR1 null cells were 

incubated with thrombin or TRAP in complete cell culture medium for 2 or 48 hours. 
In parallel, other PAR1 null cells were transduced with FGF1R136K adenovirus. 

Forty-eight hours after transduction, the cells were carefully washed in serum-free 
medium containing heparin, and incubated for an additional 2 hours in the medium 

conditioned by untransduced PAR1 null cells treated with thrombin or TRAP. As 

shown in Figure 17B, medium conditioned for 2 hours by thrombin-treated cells 
failed to induce FGF1 release. At the same time, the medium conditioned for 48 hours 

by cells treated with thrombin, but not with TRAP, was able to induce FGF1 release 
from PAR1 null cells (Figure 17B).  

 

2.4.3- SHORT-TERM THROMBIN STIMULATION INDUCES FGF1 RELEASE FROM PAR1 

NULL CELLS OVEREXPRESSING JAGGED1 

We hypothesized that the continuous presence of thrombin during 48 hours 
resulted in accumulation of sJ1 39kDa in the extracellular compartment, which 

induced FGF1 export. In order to further assess this hypothesis, we overexpressed 

Jagged1 in PAR1 null cells by adenoviral transduction. Cells transduced with 
FLJ1NV5 were stimulated with thrombin for 2 hours. Conditioned media were 

collected and added for 2 hours to PAR1 null cells transduced with FGF1R136K 

adenovirus. Conditioned medium from thrombin-treated PAR1 null cells 
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overexpressing FLJ1 induced FGF1 release (Figure 17C); however, conditioned 

medium from thrombin-treated control β–gal-transduced cells did not exhibit such an 

effect. These data demonstrate that the accumulation of sJ1 39kDa in the medium 
conditioned by thrombin-treated cells can result in PAR1-independent FGF1 release. 

  

Thus long-term stimulation of cells with thrombin induced FGF1 release even in 
the absence of PAR, apparently due to the accumulation of sJ1 39kDa in the 

extracellular compartment. At the late stages of thrombin stimulation when PAR1 
receptors are desensitized, high levels of extracellular FGF1 may be maintained in a 

PAR1-independent manner, due to continuous sJ1 39kDa production. 

 

3 CREATION OF AN IN VIVO MODEL FOR STUDYING FGF1 RELEASE 

  

Because of the absence of reliable in vivo models, our knowledge about non-
classical FGF1 release in the organism is very limited, and all the studies have been 

performed on cell culture models. The establishment of an in vivo model would allow 

the study of the regulation of FGF1 release in the organism under normal or stress 
conditions. 

 

3.1- DEVELOPMENT OF TRANSGENIC MICE WITH INDUCIBLE EXPRESSING OF FGF1  

 
We used a Tet-based system in order to produce transgenic mice with inducible 

FGF1R136K C-terminally HA tagged expression in all tissues. This system represents 

an easy and reliable approach to reversibly induction of gene expression. Upon 

administration of the tetracycline analog doxycycline (Dox), the reverse tet 
transactivator (rtTA), interacts with tetO element located upstream of the gene of 
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interest and induces activation of gene transcription (“tet-on”). Dox removal switches 

off the transcription. 

 

3.1.1- DOXYCYCLINE TREATMENT INDUCES EXPRESSION OF FGF1R136K:HA 

CLONED IN THE PTRE-TIGHT VECTOR 

In order to check the inducibility of transgene expression and expression leakage 

in the absence of Dox, FGF1R136K:HA-pTRE-Tight was transiently transfected into 
NIH 3T3 stably transfected with rtTA. Cells were incubated with or without 10ng/ml 

Dox for 24 hours. The expression of FGF1R136K:HA transgenes was checked by 

FGF1 immunoblotting (Figure 18A) and by anti-HA immunofluorescence (data not 
shown). FGF1R136K:HA expression was potently induced in response to Dox, and 

no expression leakage in the absence of Dox was observed. 

 

3.1.2- PRODUCTION OF TRANSGENIC MICE 

The production of transgenic mice was performed in the Molecular Genetics Core 
of Maine Medical Research Institute.  Transgenic mice were generated by pronuclear 

injection of the K136RFGF1:HA-pTRE-Tight DNA into fertilized oocytes of the 
Balb/c mouse strain. One month old mice originating from microinjected oocytes 

were genotyped by PCR, using genomic DNA extracted from the tails. Of a total of 

20 animals, 5 of them turned out to be transgenic Figure 18B. At the present moment, 
transgenic mice are being bred with FVB mice to expand the transgenic population. In 

parallel, we are also breeding FGF1R136K:HA transgenic mice with the rtTA 
transgenic mice, received from Jackson Laboratory (Bar Harbor, ME, US) in order to 

produce double transgenic mice with inducible FGF1 expression. 
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Thrombin, FGF and Notch signaling pathways play important roles in 

angiogenesis, vascular repair and remodeling (1, 433, 466, 467). In the past, it has 
been demonstrated that the presence of soluble Jagged1, a Notch 1 ligand, could 

interfere with the regulation of angiogenesis in vitro and in vivo, through cooperation 

with FGF1 signaling (42, 309, 310). Since thrombin has a potential to produce soluble 
Notch ligands, it was interesting to evaluate its role in the interplay between FGF and 

Notch signaling mechanisms. 
 

The results of this study demonstrate the existence of a novel and unanticipated 
cross-talk between three major signaling systems, bringing new insights about FGF, 

Notch and thrombin in the context of angiogenesis. Indeed, we found that: 1) 

thrombin is able to induce FGF1 expression and release under non-temperature stress 
conditions; 2) thrombin cleaves Jagged1 producing a novel ligand that displays 

important biological activities; 3) Notch activation downregulates thrombin induced 
FGF1 signaling; 4) the interplay between thrombin, FGF1 and Notch signaling has a 

biphasic character. 

 

1 THROMBIN IS ABLE TO INDUCE FGF1 EXPRESSION AND RELEASE 

UNDER NON-TEMPERATURE STRESS CONDITIONS 
 

Tissue injury induced by stress as a result of physical trauma, infection, metabolic 

stresses (acidosis, hypoxia, etc) or inflammation is often accompanied by a 
thrombotic event (468), induced by the conversion of prothrombin to thrombin. The 

role of the latter serine protease in the response to an injury is complex, evolving in a 

dynamic way, as the microenvironment of the wound changes over the course of 
healing (469, 470). Initially, thrombin is pivotal in formation of the fibrin clot (52), 

aggregation of platelets, and stimulation of proinflammatory responses. At the 
intermediate stage, thrombin induces a cascade of signaling events, stimulating cell 

proliferation and migration, needed to restore the integrity of vascular wall.  Later, 
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thrombin triggers events that limit its own formation, lead to dissolution of the clot, 

and contribute to cessation of inflammatory cell activity.  
According to several authors, in the vascular injury context, thrombin plays a 

critical role not only by forming the extracellular matrix, but also by regulating 

neovascularization through the induction of expression and/or release of certain 
growth factors in the course of wound healing (76, 146-149). It is well established 

that thrombin mediates its biological responses predominantly through the activation 
of PARs (73, 80, 82, 471-475). 

PAR1 is an important player in promoting inflammation and abnormal remodeling 

during restenosis (neointima formation after vascular injury) and fibrosis in the 
injured lung (476-478). Due to the presence of several PAR1-coupled G-proteins, 

each of which activates different pathways, the signaling network induced upon 
PAR1 activation is complex.  In most cell types, thrombin modulates the activity of 

adenylyl cyclase (67, 74), activates phospholipase C and A2, protein kinase C (PKC), 

Ras/MAPK signaling pathway, and also regulates the expression of a broad range of 
transcription factors. Specific inhibitors of PKC, Src, and PI3K suppress PAR1-

induced VEGF expression (76), demonstrating the need of proper PAR1 downstream 
signaling. 

VEGF (76, 149), FGF2 (479), PDGFA (480), TGF-β (481) have been shown to be 

some of the factors, whose expression is induced in vascular endothelial and smooth 

muscle cells (VSMCs), upon thrombin stimulation. A common and interesting 
denominator among these growth factors is the time that is required for thrombin to 

increase their transcript level, none of them seem to be upregulated with particularly 

rapid kinetics.  
In our study, the expression of FGF1 transcript in fibroblasts increases already 15 

minutes after thrombin stimulation, suggesting that hemostatic and thrombotic events 
occurring during the earliest stages of vascular response to injury might involve FGF1 

signaling. Identical results were obtained, when PAR1 was activated by a synthetic 

peptide - TRAP (73, 78, 79). The nuclear run-on studies demonstrated that either 
thrombin or TRAP induced FGF1 mRNA expression within 15 minutes. We further 

demonstrated that besides the induction of FGF1 expression, thrombin as well as 
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TRAP were able to induce its release, under non-stress conditions, with rapid kinetics. 

The role of PAR1 in mediating the rapid FGF1 release, is crucial since thrombin was 
unable to stimulate rapid FGF1 export from PAR1 null MEFs also suggesting that 

other members of this protease activated receptor family (482), might not be involved 

in the process of thrombin induced FGF1 release.  
It has been extensively demonstrated that proinflammatory cytokines are induced 

very early after vascular injury and may play a crucial role in the attraction of 
mononuclear cells during the early stages of restenosis and experimental 

arteriosclerosis (483). Indeed, the inhibition of mononuclear cells recruitment to 

mechanically injured arteries that are devoid of endothelium may also limit the 
delivery of essential cytokines and growth factors responsible for the initiation of 

migration of the VSMC, a prerequisite for the development of a neointima (484, 485). 
Therefore, it was important to determine whether besides of FGF1, thrombin had the 

capability to stimulate the release of proinflammatory cytokines with rapid kinetics. 

According to our results the release of IL1α was induced after a short period of 

thrombin stimulation. These results indicate that at the early stages of vascular 
remodeling thrombin not only induces the release of a proangiogenic factor, FGF1, 

but it is also involved in the export of proinflammatory cytokines.  

One could argue, whether thrombin really stimulates FGF1 secretion or it simply 
causes a rise in the FGF1 expression level, which, in turn, results in an increased 

secretion rate. However, the pMEXneo mammalian expression construct (486), where 
FGF1R136K was cloned, is a pUC18-based vector in which the polylinker sequences 

are flanked by Moloney murine sarcoma virus long-term repeats. We should not 

expect major fluctuations of transcription driven by this powerful and ubiquitously 
active promoter. When NIH 3T3 cells stably transfected with FGF1R136K were 

stimulated by thrombin, the FGF1 intracellular protein levels were unchanged over 
the incubation period (data not shown). Speaking about the novel cross-talk between 

FGF1 and thrombin, is important to note that thrombin concentrations, for all the 

experiments, were in the physiological range. Thrombin circulates in the plasma in 
micromolar concentrations; indeed the levels of prothrombin in circulation are 1-2 
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µM (487), although the sequestration of thrombin within the clot decreases its local 

concentration to the nanomolar range (10-30 nM) (487).  

Thrombin and TRAP stimulation also lead to the redistribution of FGF1 from a 
cytoplasmatic pool to the inner leaflet of the plasma membrane. The fractionation and 

biotinylation data further demonstrated that upon thrombin stimulation FGF1 

translocates across the cell membrane, getting access to the extracellular 
compartment, where it apparently binds to heparan sulfate proteoglycan sites (12). As 

already discussed, FGF1 contains a thrombin cleavage site (241), but its proteolysis is 
inhibited by heparin (488). Thus, we suggest that the saturation of heparan sulfate 

proteoglycan sites by extracellular FGF1 may assure that excess of FGF1 is 

proteolytically inactivated by thrombin (241, 489). The release of active FGF1 is a 
critical outcome in this new FGF1/thrombin interplay since thrombin has little 

mitogenic activity when NIH 3T3 or Swiss 3T3 cells express a dominant-negative 
form of FGFR1. 

The ability of thrombin to stimulate the rapid non-classical release of FGF1 is 

noteworthy since it appears to utilize proteins involved in the stress-induced FGF1 
release, such as S100A13 (271) and the alternative p40 kDa translation product (291) 

of the Syt1 transcript. Few years ago, the dependency of FGF1 multiprotein release 

complex formation upon copper ions has been demonstrated (272). Interestingly, 
copper depletion of cells by a specific copper chelator did not interfere with the 

peripheral redistribution of cytosolic FGF1, upon thrombin or TRAP stimulation. 
However, the inhibition of the FGF1 intracellular redistribution was observed after 

co-treatment of cells with thrombin or TRAP and amlexanox suggesting that F-actin 

stress fibers may be used by thrombin to direct FGF1 to the inner surface of plasma 
membrane. These observations were similar to what has already been reported 

previously for FGF1 redistribution under stress conditions (305). 
As reviewed by Walter Nickel (248), recent studies have established a subgroup 

of unconventional secretory proteins capable to translocate from the cytoplasm 

directly across the plasma membrane, in order to get access to the extracellular 
compartment. FGF1 is one of these proteins that do not have a SP in their primary 

structure (490). While it was first assumed that angiogenic growth factors might be 



 
 
                                                                   General Discussion 
 
 
 

 121 

released from mechanically injured tissue to promote wound healing (491), several 

evidences demonstrated that FGF1 is exported from cultured cells in the absence of 
appreciable cell death (265, 267, 286). We made similar observations in case of 

thrombin or TRAP treatment, based on low levels of LDH activity in conditioned 

medium.  
The mechanism involved in FGF1 translocation from the cytosol to the 

extracellular compartment remains to be determined. Previously, it was demonstrated 
that at stress conditions, FGF1 is released into the extracellular compartment as a 

multiprotein complex (246). However, the machinery that mediates transmembrane 

translocation of these proteins remains to be elucidated. Translocation of proteins 
across the lipid bilayer might require conformational changes that increase their 

hydrophobicity. It was demonstrated that FGF1 is able to permeabilize membranes 
containing an acidic phospholipid, phosphatidylglycerol (315). Moreover, FGF1, 

Synaptotagmins, and S100 proteins bind to phosphatidylserine (316, 318) known to 

flip from the inner to outer leaflet of the lipid bilayer in response to stress (319), 
suggesting that FGF1 translocation across the membrane may be due to the 

interaction with acidic phospholipids. Another hypothesis explaining FGF1 
translocation involves Annexin 2, a protein known to exhibit a stress-induced flip-flop 

through the cell membrane (304). Annexin 2 has been identified as a member of the 

brain-derived FGF1-containing multiprotein complex and seems to participate in the 
export of the FGF1 release complex (Soldi, R., Prudovsky, I. and Maciag, T. 

unpublished results). Recently, Peterson et al. demonstrated the capability of 
thrombin to enhance the presence of Annexin 2 and p11 (a member of the S100 

family forming heterotetramers with Annexin 2 (303)) on the EC surface, through 

their translocation from the inner to outer leaflet of plasma membrane (260). These 
findings lead us to the hypothesis that thrombin induces the Annexin 2-mediated flip-

flop of the FGF1 release complex across the cell membrane. It still remains to be 

elucidated whether thrombin induces FGF1 translocation through a mechanism 
similar to FGF1 stress-induced release or through an alternative mechanism. 

Since the stress-induced pathway of FGF1 export exhibits slower kinetics (267), 
we suggest that the thrombin-dependent release of FGF1 may be utilized to rapidly 
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establish low levels of FGF1 in the extracellular compartment to function primarily as 

a cell survival factor in vivo.  This event would be the consequence of a tissue damage 
involving the activation of either the intrinsic or extrinsic coagulation pathways, 

which would provide for fibrin deposition as well as for presence of thrombin at the 

damage site. However, should the time period of the initial stress be extended beyond 
this immediate-early phase by additional physiological and/or pathophysiologic stress 

(hypoxia, temperature, etc), it is likely that the non-classical export of FGF1 will be 
further maintained by the function of the stress-induced pathway (267, 286-288) or by 

the accumulation of soluble Jagged1 ligands, as we will suggest in the next part of 

this discussion.  
Within the vascular system, FGF1 has been reported to participate in vascular 

remodeling (172, 492) and to promote angiogenesis after injury (173, 492, 493). 
Indeed, as shown by different groups, the delivery or in vivo expression of FGF1 

enhances the vascularization of the myocardium, and stimulates repair of infarctic 

lesions (166, 466, 494-496). Thus, thrombin-induced FGF1 release mediated by 
PAR1 activation may have a crucial role in initiating the earlier stages of wound 

healing, by providing a potent mitogen and regulator of cell survival (497) in the 
process of neovascularization. 

 

Although the induction of FGF1 expression and release is promoted by thrombin 
stimulation, that leads to PAR1 activation, with rapid kinetics, it can be assumed that 

over a certain period of time this local PAR1 population would get desensitized. 
Indeed, PAR1 is activated by an unusual irreversible proteolytic mechanism in which 

thrombin binds and cleaves the amino-terminal exodomain of the receptor (73). Thus, 

the mechanisms that contribute to the termination of signaling are critical 
determinants of the magnitude and kinetics of the thrombin response in cells (109, 

110, 114).  
Interestingly, we observed that FGF1 amount released into the conditioned 

medium, upon thrombin treatment increases over the time, suggesting that thrombin 
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should be able to induce FGF1 release, through some other molecular mechanism(s), 

when the PAR1 population gets desensitized. 

  

2 THROMBIN CLEAVES JAGGED1 PRODUCING A NOVEL SOLUBLE 

LIGAND THAT DISPLAYS IMPORTANT BIOLOGICAL ACTIVITIES IN VITRO 
 

We demonstrated that the serine protease thrombin is able to induce FGF1 release 
under non-temperature stress conditions. Since it was described that Jagged1 is a FGF 

response gene in human ECs undergoing differentiation on fibrin clots (42, 380), and 

since more recently the constitutive release of FGF1 in the presence of a soluble 
ligand Jagged1 – sJ1 117kDa was demonstrated (310), it was reasonable to 

hypothesize that thrombin, as a protease, could be responsible for the proteolytic 
cleavage of Jagged1, inducing the appearance of FGF1 in the extracellular 

compartment after the desensitization of PAR1 population. 

Based on this hypothesis, we studied the amino acid sequence of human Jagged1. 
Surprisingly, the analysis revealed two putative thrombin cleavage sites within the 

extracellular domain of Jagged1, none of them corresponding to Jagged1 soluble 
forms previously described in the literature (42, 309, 393, 394, 402, 498). After 

thrombin treatment, followed by Edman sequencing, we found that thrombin was able 

to cleave Jagged1 between EGF repeats 3 and 4 (499). This cleavage, that yields an 
amino terminal fragment with a molecular mass of approximately 39kDa (sJ1 39kDa), 

could be completely blocked in the presence of a potent and specific thrombin 
inhibitor – hirudin. 

We further demonstrated that sJ1 39kDa is an active ligand, normally 

glycosylated, that induces downregulation of Notch signaling as indicated by the 
decrease of CSL-mediated transcription in vitro. Our results suggest that the presence 

of sJ1 39kDa may also regulate FGF1 signaling, since FGF1 mRNA is upregulated in 

the presence of this soluble ligand, but not in vector control stable NIH 3T3 cell 
transfectants, indicating that interference with endogenous Jagged1/Notch signaling 

alters the level of FGF1 expression. In addition, the presence of sJ1 39kDa induces 
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FGF1 release under normal growth conditions, as it could be anticipated since Small 

et al. (310) had described similar effects of sJ1 117kDa upon FGF1 transcription.  
Numerous studies have demonstrated that the activity of Notch signaling is highly 

dependent on cell type and environmental context, and this is particularly true for the 

activity of soluble ligands and for Notch regulation of cell growth (402). Thus, in the 
context of NIH 3T3 cells, Jagged1 thrombin cleavage product, sJ1 39kDa, acts as a 

dominant negative regulator of Notch signaling, and induces FGF1 expression and 
release. Interestingly, sJ1 39kDa, roughly three times smaller than the soluble 

Jagged1 previously described by Wong and Small et al. (309, 310, 393), exhibits 

similar biological effects upon Notch signaling, FGF1 expression and FGF1 release. 
Thus, we narrowed down the extracellular Jagged1 region involved in the 

downregulation of Notch signaling, to the DSL and the first three EGF repeats, since 
those were the common domains between these two soluble ligands. These results do 

not support the findings by Li et al. where the addition of a peptide carrying only the 

DSL domain of Jagged1 was shown to activate Notch in hematopoietic precursor cells 
(500). Indeed, the role of soluble ligands in Notch signaling is still poorly understood. 

Naturally occurring soluble forms of Notch ligands arising as a result of proteolytic 
cleavage (383) or differential mRNA processing (42, 381, 402) have been identified; 

yet the functional activities of these modified ligands are not clear, and highly 

controversial. A total of 71.5% of the human Jagged1 mutations found in Alagille 
Syndrome (501, 502) patients (381, 446, 503-505) lead to the appearance of a 

premature termination codon giving rise to sJ1 ligands. Both agonist (381, 384, 386, 
500) and antagonist (311, 387, 388, 391-394, 506) effects of soluble ligands upon 

Notch signaling have been reported. The molecular mechanisms underlying these 

opposite effects are not known. Some explanations involve oligomerization or 
immobilization of the ligands (391, 392), which are needed for efficient stimulation of 

Notch signaling. If these explanations are correct, soluble ligands, unlike 

transmembrane ones, should be unable to activate Notch receptors. It has been 
suggested by Small et al. (393) that the negative effects of soluble ligands upon Notch 

signaling may be explained by competition with functional transmembrane ligands for 
binding to Notch receptors.  
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Over the last three years, there have been a number of publications demonstrating 

that the Presenilin/γ-secretase-mediated cleavage of Notch ligands results in the 

translocation of their ICDs into the nucleus (395-397, 507), suggesting that Notch 
pathway, in addition to signaling through NICDs, includes the activity of soluble 

ligand extracellular domains, as well as the biological effects of ligand ICD. The 

presence of a PDZ binding site (335) within the ICD of Jagged1, was revealed to be 
essential for cellular transformation (508). Also the potential nuclear localization 

sequence in J1ICD, allows to anticipate a relevant role for this domain, similarly with 
what has been, recently, determined for Dl1ICD (399) 1. 

We did not specifically address, in our studies, the role of the J1ICD after 

thrombin cleavage, neither the role of the leftover extracellular portion (from the 
fourth EGF-like repeat to the transmembrane domain) of Jagged1. However, there are 

at least three different situations to consider: i) after thrombin cleavage, both the 
leftover extracellular domain and the ICD are proteolytically inactivated; ii) the 

leftover extracellular domain interacts with Notch receptor, since it still carries a 

reasonable number of EGF-like repeats, inducing the activation of Notch signaling, 
and simultaneously, the formation of J1ICD; and iii) the leftover extracellular domain 

interacts with Notch receptor, but instead of activation it induces downregulation of 

Notch signaling. 
The ICD of Jagged1 might carry an important role in providing the 

bidirectionality of Notch signaling after cell-cell contact establishment. We recently 
demonstrated that the expression of the Dl1ICD resulted in a non-proliferating 

senescent-like phenotype of HUVECs (paper 2) while J1ICD induced a severe 

apoptotic phenotype (Kacer D, Kolev V, Duarte M, and Prudovsky I. unpublished 
results). 

Proteolysis of extracellular matrix components has long been known to play an 
important role in both in vitro and in vivo angiogenesis (401). The capability of 

thrombin to cleave Jagged1 might represent an example of it, since this proteolytic 

                                                
1 A more complete discussion of biological activity of the intracellular domain of Delta can be found in paper 2.  
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modification yields a soluble ligand able to induce the expression and release of 

FGF1, a well-known angiogenic factor.  
Thrombin has been reported to regulate a broad range of biological processes as a 

result of its proteolytic activity. Here we reported a novel and unanticipated link 

between the enzymatic activity of thrombin and Notch signaling. We further 
characterized this new thrombin proteolytic role in Jagged1/Notch signaling, 

demonstrating that thrombin, but not TRAP, was able to induce a prominent 
transformed phenotype on sJ1 117kDa NIH 3T3 cell transfectants enhancing their 

growth in anchorage-independent manner and formation of large multicellular, 

spheroid-like colonies. The colonies formed upon thrombin treatment were bigger 
than ones formed in the absence of thrombin, and even bigger when exogenous FGF1 

along with thrombin was added to the cells, most likely due to a synergy effect 
between FGF1 and thrombin, unmasking the role of sJ1 39kDa in FGF1 and Notch 

signaling.  

Previous reports have described a decreased expression of stress fibers in NIH 
3T3 cells, when Notch signaling was downregulated (393, 400). We obtained similar 

results upon thrombin treatment of NIH 3T3 cells whereas TRAP did not interfere 
with stress fiber organization. It has been reported that the induction of Src activity 

(393) may be responsible for the manifestation of many of the phenotypic 

characteristics in the sJ1 117kDa NIH 3T3 cell transfectants, including the decrease in 
actin stress fibers (400), loss of pro-α 1 (I) collagen expression and decreased 

sensitivity to contact inhibition (309). Moreover, the constitutively active v-src 

induces in a dramatic down-regulation of actin stress fibers (509), and loss of contact 

inhibition is documented as a consequence of v-src expression in a variety of cell 
types (510). Therefore, it is possible that thrombin treatment-dependent alteration of 

stress fibers might be mediated by Src, promoting the stabilization of the chord-like 
phenotype in sJ1 39kDa transfectant cultures, similar to what has been described for 

sJ1 117kDa NIH 3T3 cell transfectancts (393).  

Several reports indicate that sJ1 may play crucial role in hematopoietic stem cell 
self-renewal (394), angiogenesis (42, 309), and vascular repair (400). Jagged1 

knockout (435) resulted in embryonic lethality with major vascular defects in mice. In 



 
 
                                                                   General Discussion 
 
 
 

 127 

vitro studies demonstrated that NIH 3T3 cell stably expressing sJ1 117kDa form 

chord-like structures, similar to those formed by EC in the course of angiogenesis 
(309). In addition, intradermal injection of these cells into the flank of nude mice 

resulted in formation of tissue masses with prominent vascularization (309), 

underlying a crucial role of sJ1 in the process of angiogenesis. 
We hypothesized that the export of FGF1 at the early stage of thrombin-induced 

response may contribute to the increase of Jagged1 expression level. Indeed, the 
induction of Jagged1 transcription by FGF1 stimulation has been described in EC and 

NIH 3T3 cells (42, 310). The continuous presence of thrombin in the extracellular 

compartment may result in the accumulation of sJ1 39kDa, and consequent release of 
FGF1 after the desensitization of PAR1 population. Based on this premise, the role of 

PAR1 signaling may be limited to the immediate-early events of thrombin-mediated 
response upon vascular injury, whereas the activity of sJ1 39kDa may be important 

later, in the process of vascular repair. 

 

According to our hypothesis, thrombin through its proteolytic activity is able to 

induce FGF1 release through PAR1 signaling at the early stages of vascular injury, 
when cell-cell contact have not yet been reestablished. The presence of thrombin 

leads to the formation and accumulation of sJ1 39kDa into the medium. This soluble 

ligand induces FGF1 expression and release, through downregulation of Notch 
signaling. As wound healing proceeds and the cell proliferation is augmented by the 

sustained presence of FGF, cell-cell contacts start to be reestablished, and Notch 
signaling is activated as a result of receptor-ligand interaction between neighboring 

cells. The upregulation of Notch signaling blocks FGF1 expression and release, 

leading to the termination of the proliferative phase of wound healing.  
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3 NOTCH ACTIVATION DOWNREGULATES THROMBIN INDUCED FGF1 
SIGNALING 
 

Notch signaling plays a key role in normal development through diverse effects 
on differentiation, survival, and proliferation and these events are highly dependent 

on signal strength and cellular context (412, 511). Ligand binding to Notch receptors 
triggers a cascade of proteolytic events, resulting in the production of a NICD which 

translocates to the nucleus (338-340, 344, 512-515), where it binds to CSL, displacing 

co-repressors in order to form a ternary complex with coactivating factors, inducing 
transcription activation of Notch target genes (347, 348, 352, 356, 516). According to 

our results, while thrombin antagonizes CSL-dependent signaling in FLJ1 NIH 3T3 
cell transfectants, TRAP, a PAR1 activating peptide devoid of any proteolytic 

activity, does not affect it. These results underlie the proteolytic activity of thrombin, 

which results in cleavage of Jagged1 and production of sJ1 39kDa, a soluble ligand 
able to induce FGF1 expression and export. Interestingly, the interrelations between 

FGF1 and Notch signaling are reciprocal. Indeed, Small et al. (310) demonstrated that 
exogenous FGF1 was able to repress CSL-dependent transcription in NIH 3T3 cells.  

Since we demonstrated that PAR1 activation induced FGF1 expression and 

release, and TRAP was not able to decrease either the CSL-dependent transcription or 
the anchorage-independent cell growth or the actin-stress fibers expression (all 

decreased when Notch1 signaling is downregulated) we suggest that PAR1 induced 
FGF1 transcription and export are not mediated through Notch signaling. Instead, the 

role of sJ1 39kDa in downregulation of Notch signaling seems to be crucial for FGF1 

release, since thrombin was unable to induce both the expression and the export of 
FGF1, when Notch signaling was maximized by adenoviral transduction of caN1. 

Thus, thrombin induced FGF1 expression and release are mediated by PAR1 and 

soluble Jagged1 39kDa, most probably at two different temporal stages. Based on the 
premise that downregulation of Notch signaling is a key step in FGF1 signaling 

activation, we anticipated that in the absence of Jagged1, FGF1 should be 
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constitutively released. Indeed, FGF1 was constitutively released from Jagged1 null 

embryonic fibroblasts, most likely due to the downregulation of Notch signaling. 
Since PAR1 expression levels in Jagged1 null cells were unchanged comparatively to 

control embryonic fibroblasts (data not shown), we expect that those cells would also 

release FGF1 under thrombin stimulation, through PAR1 activation. However, due to 
the constitutive FGF1 release we were unable to verify this premise. 

Although aberrant activation of Notch signaling pathways has been reported to be 
associated with neoplastic growth in mammals (322, 334, 517, 518), it is clear that 

Notch pathway regulates cell growth depending upon cell type and environmental 

context (363, 386, 426, 519). Indeed, Notch has been reported by several groups to be 
a suppressor of cell growth. For example, the activation of Notch1 causes the arrest of 

cell cycle progression in the chicken B-cell line DT40 (520) as well as in small cell 
lung cancer cells (364), and prevents myeloid but not erythroid cell proliferation in 

the absence of polypeptide mitogens (521). Also the proliferation of ECs has been 

shown to be inhibited by Notch activation (361, 377), through inhibition of 
retinoblastoma protein phosphorylation (361). Furthermore, down-regulation, not up-

regulation, of Notch1 signaling is required for progression into the late stages of 
human papillomavirus-induced cervical carcinogenesis (522). The observation that 

thrombin suppresses CSL-mediated transcription suggests that Notch may protect the 

NIH 3T3 cell from abnormal growth through the transcriptional regulation of 
Notch/CSL-responsive genes. FGF1 export, under thrombin stimulation, would then 

reinforce the inhibition of Notch/CSL. This sort of regulatory mechanism is consistent 
with the requirement for Notch/CSL-dependent induction of p21waf/cip for the 

stimulation of keratinocyte differentiation, which involves growth arrest 

(keratinocytes require exogenous FGF for cell division) (363). However, this 
regulatory mechanism may also contain a cell- and tissue-specific as well as an age-

dependent components because in the developing tooth bud, FGF10 is able to induce 

the Notch/CSL-dependent transcription of hes1 (406). It also may be complicated by 
specificity for only some of 24 members of the fgf gene family.  

To our knowledge, the link between Notch and FGF signaling and thrombin 
activity represents a novel facet of the thrombotic cascade in response to vascular 
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injury. Notch signaling is involved in multiple aspects of vascular biology and 

angiogenesis (430, 433). Several studies have found that Notch signaling plays a 
critical role in vascular formation during early embryonic development (376, 434, 

435, 523-526). As recently demonstrated by Limbourg et al. (526) mutant embryos 

lacking endothelial Notch1 died with profound vascular defects in placenta, yolk sac, 
recapitulating the vascular defects and embryonic lethality of global Notch1-deficient 

mice (434), underlying the essential role of Notch1 signaling in physiological 
angiogenesis and vascular development.  

The interaction of Notch signaling with various molecular mechanisms important 

in the vascular cell phenotype, like VEGF (376, 377), BMP/TGF-β (527), hepatocyte 

growth factor (528), HIF1α (529), and FGF1 (42, 310) have been described.  

 

As a result of our studies, we found a new link between Notch signaling and 

haemostasis in the context of vascular remodeling and repair, where thrombin appears 
to be the common denominator between the non-classical export of FGF1 and the 

antagonism of Notch signaling.  

 

4 THE INTERPLAY BETWEEN THROMBIN, FGF1 AND NOTCH 

SIGNALING HAS A BIPHASIC CHARACTER 
 

The long-term thrombin stimulation induced FGF1 release from PAR1 null cells, 

which express endogenous Jagged1 at the level comparable to NIH 3T3 cells. This 
long-term thrombin stimulation rescued the FGF1 export from PAR1 null cells, most 

probably due to the accumulation of sJ1 39kDa into the medium, as a result of 
thrombin proteolytic activity. Additionally, overexpression of Jagged1 in PAR1 null 

cells enabled them to accelerate the process of FGF1 release, indicating that thrombin 

may induce FGF1 export through two pathways: one PAR1-dependent, and the other 
mediated by the cleavage of Jagged1.  

We hypothesize that tissue damage-induced FGF1 release proceeds through at 
least two stages. The early stage is caused by tissue damage and it involves the 
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activation of coagulation pathway, which provides fibrin deposition, as well as 

increase of thrombin level at the damage site. Thrombin induces FGF1 expression and 
release through PAR1 activation. FGF1 serves as a survival and mitogenic factor for 

the cells of damaged tissue. Additionally, released FGF1 enhances Jagged1 

expression as it has been previously demonstrated (42). Interestingly, a marked 
increase of Jagged1 expression has been detected in the regenerating endothelium 

following balloon injury of the rat carotid artery (400). In agreement with these 
observations, MAPK activation upon cell stimulation with growth factors has recently 

been shown to induce Jagged1 expression (530). Since PAR1 signaling is known to 

induce MAPK activation (531-533), we suggest that PAR1 may stimulate Jagged1 
expression not only through FGF1 expression and release, but also directly. The 

persistence of thrombin in damaged tissue results in accumulation of sJ1 39kDa 
(combined effect of induced expression and continuous cleavage of Jagged1). 

While PAR1 population gets desensitized over time, the release of FGF1 at the 

later stage of cell response to tissue damage becomes dependent upon the sJ1 39kDa-
induced downregulation of Notch signaling. As cell-cell interactions disturbed by 

initial tissue damage start to be re-established, inductive signaling between Notch 
ligands and their receptors on neighboring cells ensure the proper development of 

vascular structures. This signaling may have a bi-directional character. Indeed, 

interactions of transmembrane Notch ligands with their receptors results in the 
proteolytic cleavage not only of receptors, but also of ligands and in the production of 

ligand ICDs, untethered to cell membrane (396, 397, 507, 508). We demonstrated that 
Dl1ICD blocked cell proliferation where cell synchronization, tissue sculpting and 

repair might take place (399), while J1ICD induces an apoptotic phenotype (Kacer D, 

Kolev V, Duarte M, and Prudovsky I. unpublished results). In addition to acting as a 
“gatekeeper” and restricting the number of cells responding to various inductive cues, 

bi-directional Notch signaling might also provide stabilization and maintenance of a 

quiescent and mature endothelium. FGF1 and Notch1 signaling pathways apparently 
differentially regulate each other at different stages of tissue stress response. At the 

early stage of vascular repair process, FGF1 plays a pivotal role in providing cell 
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survival and proliferations, and later the activation of Notch signaling drives cellular 

differentiation, and tissue sculpting throughout the vascular tree.  
The interplay between thrombin, Notch and FGF1 signaling pathways may also be 

important for stem cell renewal and differentiaion. Although there is no direct study 

linking the enzymatic activity of thrombin to any aspect of developmental biology, 
Vas et al. (394) described the ability of a soluble form of Jagged1 to promote clonal 

expansion of hematopoietic stem cells in vitro. Combined with our results about 
thrombin proteolytic activity towards Jagged1 protein, these data may link thrombin 

to stem cell biology. Indeed, the observation that PAR1 in one of eight genes 

upregulated in embryonic, neurosphere and hematopoietic stem cell populations (534) 
supports this premise. 

In the process of vascular development, there are two fundamentally different 
processes that establish blood vessels. Initial vasculogenesis generates a primitive 

network of vessels through aggregation and tube formation of angioblast precursor 

cells. Then angiogenesis leads to further growth, branching, and remodeling of the 
vascular tree (1). The formation of capillary sprouts from the existing 

microvasculature occurs secondary to an inciting stimulus that results in increased 
vascular permeability, accumulation of extravascular fibrin, and local proteolytic 

degradation of the basement membrane (535). The ECs overlaying the disrupted 

region become “activated”, change shape, and extend elongated processes into the 
surrounding tissue. Direct migration toward the angiogenic stimulus results in the 

formation of a column of ECs. Just proximal to the migrating tip of the column there 
is a region of proliferating ECs. According to our hypothesis, the edge of the tip 

might represent the cell that has partially lost contact with the neighboring cells, and 

where FGF1, along with other growth factors would induce the active proliferation, 
but where Notch signaling does not play a pivotal role. Proximally to the proliferative 

zone, the ECs undergo another shape change, adhere tightly to each other, and begin 

to form a tube, where cell-to-cell contacts activate Notch signaling. Notch signaling is 
frequently modulated by other proteins expressed on interacting cells, and also by 

intrinsic Notch regulators such as Presenilins, Numbs (536-538), Fringes  (539-541) 
and Deltex (367, 368, 542). These regulatory mechanisms ensure that Notch 
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activation is restricted to discrete cells at specific times of the vascular development. 

Thrombin also may regulate Notch signaling through the production of sJ1 39kDa and 
by stimulation of the expression and export of FGF1. Indeed, mutual regulatory 

relationship between Notch and FGF pathways has been suggested, to play role in 

different biological processes, like oncogenic transformation (543), in vitro 
angiogenesis (42, 380), during development of the teeth (405, 406), in the 

development of Drosophila tracheal system (409) and differentiation of 
neuroepithelial precursor cells in vitro (410). 

After the stimulation of endothelial cell proliferation with growth factors, they 

usually return to the state of quiescence (544, 545). Interestingly, it has been recently 
demonstrated that non-transformed cell cultures stimulated with FGF1 transit through 

only one cell cycle, and then are blocked in the G1 phase of the second cycle (546). 
Various studies raise the notion that Notch activation may be required for the 

establishment of a mature, quiescent endothelial phenotype, in part by downregulating 

VEGFR2 (377, 378), and maybe also through FGF1 signaling. Our model of interplay 
between FGF and Notch signaling pathways is indirectly supported by the phenotype 

of Notch- and Notch ligand-deficient mice that display inappropriate apoptosis and 
(or) proliferation in the vascular system (434, 435, 457). The primary vascular plexus 

is laid down, but remodeling of this initial endothelial network does not take place. 

Thus it is possible that whereas FGF1, most probably along with other growth factors, 
plays an important role in the induction of cell proliferation at the early stages of 

vasculogenesis, Notch activation is required to maintain endothelial viability during 
the reorganization or mature vasculature. 

The crosstalk between thrombin, Notch and FGF1 described here may have 

ramifications for some pathological states, such as restenosis and tumor development. 
The role of PAR1 in restenosis is well recognized, since preclinical studies 

demonstrated that perivascular administration of a selective PAR1 antagonist 

significantly reduced neointimal thickness after balloon angioplasty in a rat restenosis 
model (120) and intravenous administration of a PAR1 antagonist prevented 

thrombotic occlusion of carotid arteries in a nonhuman primate model of vascular 
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injury, (116)2. FGFs are known to contribute to vessel wall pathology in response to 

injury, especially when an excess of FGF family proteins is present (172, 547-550), 
suggesting that these secreted proangiogenic factors function in a dose-dependent 

manner. Moreover, PAR1, FGF1 and Notch-mediated signaling events have been 

implicated in tumor growth (126, 130, 131, 133, 551-554). Therefore, exaggerated 
induction of FGF1 transcription and export through PAR1 activation, and through 

soluble Jagged1 production may play an important role in the context of 
carcinogenesis, where vascular remodeling is a constant requisite, and either Notch, 

FGF1 or PAR1 have been extensively described to play pivotal roles and even 

proposed as strong therapeutic targets.  
Given that thrombin, FGF and Notch as individual signaling systems have a 

significant role in the vascular system, the crosstalk between these three pathways 
might open new routes for the development of new therapeutics and diagnostic 

strategies for vascular related diseases and for the plethora of other pathological 

scenarios. 
 

                                                
2 Integrating in the role of PAR1 in the vascular system we recently characterized the multiple biological effects of SCH 79797 
in different cells lines (Paper 4). 
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CONCLUSIONS 
 

Following are the main conclusions of the present study: 
 

• The serine protease thrombin induces the upregulation of FGF1 transcription and 
redistribution of FGF1 to the inner leaflet of the plasma membrane, resulting in 

the of export this proangiogenic growth factor with fast kinetics.  

  
• PAR1 activation is essential for the rapid induction of FGF1 release.  

 
• Mitogenic activity of thrombin is dependent upon FGFR signaling. 

 

• Thrombin is able to cleave the extracellular domain of Notch ligand Jagged1 and 
to generate the soluble N-terminal fragment sJ1 39kDa. 

 
• sJ1 39 kDa exhibits a normal glycosylation pattern, it is capable to decrease CSL-

mediated transcription and to induce FGF1 expression and export under non-

temperature stress conditions. 
 

• The activation of Notch signaling abrogates thrombin-induced FGF1 expression 

and release. 
 

• Long-term thrombin stimulation of PAR1 null cells induces FGF1 release, most 
probably due to sJ1 39kDa accumulation. 
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The data presented here demonstrate the existence of a link between thrombin/PAR1 
signaling and two other major signaling pathways: FGF1 and Notch1. They indicate 

that thrombin can regulate FGF1 export, by using both PAR1 and Notch pathways.  

We feel tempted to provide a hypothetical scheme for this cross-talk between 
thrombin, FGF, and Notch signaling (Figure 19).  
 

 
Figure 19- Schematic representation of the crosstalk between thrombin, FGF1 and Notch signaling 
pathways in the context of vascular injury.  
Following initiation of coagulation as part of the haemostatic response to injury, thrombin is generated 
from its inactive precursor prothrombin by factor Xa (a part of the prothrombinase complex). One of 
the prime functions of thrombin is conversion of fibrinogen to fibrin, which forms the fibrin mesh. 
Thrombin also activates PARs, inducing the transcription and release of several growth factors, among 
them FGF1, a potent cell survival and pro-angiogenic factor, which is release with rapid kinetics after 
PAR1 activation. The interaction of FGF1 with FGFR induces a broad range of biological responses 
resulting in activation of transcription of FGF1 response genes including Jagged1. Thrombin present in 
the damaged tissue promotes Jagged1 cleavage, resulting in the accumulation of soluble Jagged1 - sJ1 
39kDa. While PAR1 population gets desensitized, the release of FGF1 at the later stages may be 
dependent upon sJ1 39kDa induced downregulation of Notch signaling, which results in FGF1 
expression and release. When cell-cell interactions start to be re-established, binding of transmembrane 
Notch ligands and receptors activates Notch signaling which blocks FGF1 transcription and release.  
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FUTURE PERSPECTIVES 
 

A number of problems concerning the understanding of thrombin role in 

angiogenesis, and translation of information about Notch/thrombin/FGF cross-talk to 
other biological contexts remain to be solved. Our long-term goal has been to 

understand the molecular mechanisms responsible for the regulation of angiogenesis 

in an attempt to apply this information for the repair of tissue and organ damage or for 
the inhibition of angiogenesis during restenosis and solid tumor growth. The results 

present in this thesis add new insights to our current knowledge regarding the roles of 
FGF1, Notch, PAR1 and thrombin in the vascular biology, however, they also raise 

additional questions that should be addressed in future studies: 

 
• Giving the importance of PAR1 for inducing the rapid FGF1 expression and 

release, it is important to elucidate the molecular mechanism underlying this 
induction. 

 

• Since PAR1 upregulation seems to be associated to several pathological 
situations, it would be highly interesting to study the role of FGF1 signaling in the 

processes of PAR1-dependent cancer cell invasion and vascular restenosis. 
 

• It remains to be explored the mechanisms of induction of FGF1 expression and 

release induced by sJ1 39kDa. 
 

• Based on our results sJ1 39kDa in cell culture play an important role upon both 
FGF1 and Notch signaling mechanism. It remains to be determined the role of this 

soluble ligand in vivo. 
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Introduction
Many biological processes involve polypeptide translocation
across phospholipid membranes. Among them are export to the
extracellular milieu (Blobel, 1995), transport in and out of the
nucleus (Weis, 2003), and import into mitochondria (Endo et
al., 2003; Gordon et al., 2000) and peroxisomes (Holroyd and
Erdmann, 2001). These processes use specific transporters and
frequently involve transmembrane pores and channels. The
proteins translocated usually possess appropriate signal
sequences and, in the case of classical protein secretion, this is
a hydrophobic N-terminal sequence that allows the protein to
enter the ER-Golgi pathway (Blobel, 2000).

However, several extracellular proteins lack signal
sequences, and their export proceeds through endoplasmic
reticulum (ER)-Golgi-independent non-classical routes (Table
1) (reviewed by Nickel, 2003). Currently, we know little about
the export mechanisms of most of these proteins, the only two
common features being the absence of a signal sequence in the
protein and the insensitivity of the pathway to brefeldin A [a
drug that specifically inhibits ER-to-Golgi transport (Misumi
et al., 1986)]. Nevertheless, what is apparent is that non-
classical export is not a single pathway but instead comprises
several transport mechanisms. Here, we concentrate on two
biologically important and functionally related proteins,
fibroblast growth factor 1 (FGF1) and interleukin (IL)-1α, and
their non-classical export pathways.

Structure and function of FGF1 and IL-1 α
FGF1 and FGF2 are prototypical members of the FGF family
(Szebenyi and Fallon, 1999). FGFs have a wide variety of
biological activities. During embryogenesis, these growth
factors regulate mesodermal induction, neurulation, and the
formation of the circulatory and skeletal systems (Friesel and

Maciag, 1999). Subsequently, they play a crucial role in
angiogenesis, tissue regeneration, inflammation and the
formation of some tumors (Friesel and Maciag, 1999). Their
biological effects are mediated through activation of four
transmembrane phosphotyrosine kinase receptors (FGFR1-4),
with the participation of cell-surface heparan sulfate
proteoglycans (HSPGs), and consequently require release of
the polypeptide (Friesel and Maciag, 1999). Most members of
the family therefore possess classical signal sequences but
FGF1 and FGF2 are devoid of such sequences and thus are
released by novel secretion mechanisms (Coulier et al., 1997;
Friesel and Maciag, 1999).

The existence of FGF1- and FGF2-specific secretion
pathways might represent a protective mechanism developed
in the course of evolution and might be related to their high
mitogenic potential and widespread expression. Indeed, a
recombinant derivative of FGF1 that has an attached N-
terminal signal sequence is a potent oncoprotein (Forough et
al., 1993). Significantly, the FGFs of Caenorhabditis elegans
and Drosophila have signal sequences (Coulier et al., 1997).
Apparently, strictly programmed mosaic development of these
organisms can rely on the regulation of FGF availability solely
at the level of its expression. The more complicated and less
hierarchical developmental strategies of chordates probably
required the evolution of signal-peptide-less FGFs, whose
accessibility might be more flexibly regulated post-
translationally.

The IL-1 family (Dinarello, 1996; Stylianou and Saklatvala,
1998), of which IL-1α and IL-1β are prototypical members,
numbers at least ten proteins. Nine of these, including IL-1α
and IL-1β, do not have signal sequences despite acting through
transmembrane receptors and thus requiring export (Dinarello,
1998; Stylianou and Saklatvala, 1998). These proteins are
potent pro-inflammatory cytokines (Dinarello, 1996), inducing
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Non-classical protein release independent of the ER-Golgi
pathway has been reported for an increasing number of
proteins lacking an N-terminal signal sequence. The export
of FGF1 and IL-1α, two pro-angiogenic polypeptides,
provides two such examples. In both cases, export is
based on the Cu2+-dependent formation of multiprotein
complexes containing the S100A13 protein and might
involve translocation of the protein across the membrane

as a ‘molten globule’. FGF1 and IL-1α are involved in
pathological processes such as restenosis and tumor
formation. Inhibition of their export by Cu 2+ chelators is
thus an effective strategy for treatment of several diseases.
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biosynthesis of a variety of inflammation-related molecules,
such as tumor necrosis factor (TNF), transforming growth
factor (TGF)-β, granulocyte colony-stimulating factor (G-
CSF), macrophage colony-stimulating factor (M-CSF),
cyclooxygenase 2, endothelin-1, phospholipase A2, and
inducible nitric oxide synthase (Dinarello, 1996). Unlike the
FGFs, IL-1s are synthesized as higher molecular weight
precursor (p) proteins. pIL-1α is cleaved by calpain or calpain-
like proteases to form mature (m) IL-1α, and pIL-1β is cleaved
by the IL-1-converting enzyme to form mIL-1β (Dinarello,
1996; Stylianou and Saklatvala, 1998).

Comparison of the crystal structures of FGF1, FGF2, IL-1α
and IL-1β (Graves et al., 1990; Venkataraman et al., 1999; Zhu
et al., 1991) reveals that they have very similar folds in spite
of their very low sequence similarity (Fig. 1). These proteins
contain β-barrel structures that are often found in
transmembrane proteins, including bacterial pore-forming
proteins (Chen and Funk, 2001; Heuck et al., 2000; Montoya
and Gouaux, 2003) and are crucial for membrane insertion of
some proteins (Heuck et al., 2000). This provided the first
indication that similarities might exist between the release
mechanisms of the IL-1 and FGF prototypes. It was especially
interesting to compare the release of IL-1α and FGF1 since

these two proteins have antagonistic effects upon the
proliferation and migration of endothelial cells (Maier et al.,
1990; Friesel and Maciag, 1999).

Cell stress induces FGF1 and IL-1 α release
Under normal conditions, cells expressing FGF1 and IL-1α do
not release these proteins. However, several stresses, such as
heat shock (Jackson et al., 1992), hypoxia (Mouta Carreira et
al., 2001), cultivation under low serum conditions (Shin et al.,
1996) and cell treatment with low-density lipoproteins (LDLs)
(Ananyeva et al., 1997), induce release of FGF1 from NIH
3T3 cells. Heat shock induces the export of mIL-1α from
human promonocytic leukemia cells and activated peripheral
mononuclear cells (Tarantini et al., 2001; Mandinova et al.,
2003). The two latter cell types also exhibit heat-shock-
induced export of pIL-1α (Mandinova et al., 2003).
Interestingly, similarly to FGF2 (Shi et al., 1997), pIL-1α is
not secreted from stressed NIH 3T3 cells (Tarantini et al.,
2001). The retention of pIL-1α is most likely because of the
nuclear localization sequence (Wessendorf et al., 1993) in its
cleavable N-terminal precursor domain. Although pIL-1α
is cleaved in monocytes/macrophages (Dinarello, 1992;

Journal of Cell Science 116 (24)

Table 1. Proteins exported through non-classical pathways
Signal Export sensitivity 

Protein Reference peptide to brefeldin A Release characteristics

Secretory transglutaminase Aumuller et al., 1999 – Insensitive Constitutive, through membrane blebbing
Thioredoxin Rubartelli et al.,1992; – Insensitive Induced by antigen-specific T cells, intracellular vesicles 

Rubartelli et al., 1995; not involved
Angelini et al., 2002

Galectins Hughes, 1999; Sato et al., – Insensitive Constitutive, through membrane blebbing
1993; Lindstedt et al., 1993

Il-1α Tarantini et al., 2001; – Insensitive Stress-induced, Cu2+-dependent, in complex with S100A13
Mandinova et al., 2003

Il-1β Rubartelli et al., 1990; – Insensitive Stress-induced, ABC-transporter-dependent, through the 
Andrei et al., 1999 endolysosomal pathway

FGF1 Jackson et al., 1992; – Insensitive Stress-induced, Cu2+-dependent, in complex with S100A13 
Tarantini et al., 1998; and p40 Syt1
LaVallee et al., 1998; 
Mouta Carreira et al., 1998; 
Landriscina et al., 2001a; 
Landriscina et al., 2001b

FGF2 Florkiewicz et al., 1995; 
Mignatti et al., 1992; – Insensitive Constitutive, Na+/K+ ATPase-dependent
Engling et al., 2002

Sphingosine kinase Ancellin et al., 2002 – Insensitive Constitutive, inhibited by cytochalasin
Annexin I Chapman et al., 2003 – Not tested Glucocorticoid-induced, ABC-transporter-dependent
Annexin II Peterson et al., 2003 – Not tested Thrombin-induced, in complex with p11
p40 Synaptotagmin 1 LaVallee et al., 1998; – Insensitive Constitutive

Tarantini et al., 1998
S100A13 Landriscina et al., 2001a; – Insensitive Constitutive

Landriscina et al., 2001b
HIV Tat Chang et al., 1997 – Insensitive Constitutive
Herpes VP 22 protein Elliott and O’Hare, 1997 – Insensitive Constitutive
Foamy virus Bet protein Lecellier et al., 2002 – Insensitive Constitutive
Engrailed 2 Joliot et al., 1998; Maizel – Insensitive Attenuated by the CK2-dependent phosphorylation

et al., 1999; Maizel et al., 
2002

HMGB1 Gardella et al., 2002; – Insensitive Stress-induced, through an endolysosomal pathway
Passalacqua et al., 1997; 
Passalacqua et al., 1998; 
Sparatore et al., 1996

LeishmaniaHASPB protein Denny et al., 2000 – Insensitive Constitutive, acylation-dependent
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Dinarello, 1996), the cleavage does not occur in NIH 3T3 cells
(Tarantini et al., 2001), perhaps because of high levels of the
calpain inhibitor calpastatin (Goll et al., 2003) in the cytosol
of these cells. In macrophage-like cells, the control of pIL-1α
nuclear localization is less stringent since these cells display
pIL-1α both in the nucleus and in the cytoplasm (Beuscher et
al., 1988; Kobayashi et al., 1990).

Significantly, co-expression of pIL-1α and FGF1 in NIH
3T3 cells inhibits the stress-induced release of FGF1 (Tarantini
et al., 2001). It appears that the release pathways used by FGF1
and IL-1α interact. Thus, pIL-1α could bind some important
protein(s) shared by these pathways and sequester it in the
nucleus. Indeed, FGF1 and IL-1α release pathways share
several similarities, including the delayed character of export,
which becomes detectable only after 90 minutes of stress
(Jackson et al., 1992; Tarantini et al., 2001). This delay
presumably reflects the need for stress-induced synthesis of
proteins that participate in the export of IL-1α and FGF1
because both IL-1α release and FGF1 release are sensitive to
inhibition of transcription and translation (Jackson et al., 1992;
Tarantini et al., 2001).

FGF2 and IL-1β also exhibit non-classical release. However,
their export mechanisms appear to be quite different. Unlike
FGF1 and IL-1α, FGF2 is exported constitutively (Florkiewicz
et al., 1995; Mignatti et al., 1992). The release of FGF2 is
highly sensitive to the inhibitors of Na+/K+ ATPase (Dahl et
al., 2000; Florkiewicz et al., 1998), whereas the export of FGF1
is refractory to these compounds (F.T., I.P. and T.M.,
unpublished).

The release of IL-1β is induced by lipopolysaccharides
(Andrei et al., 1999; Rubartelli et al., 1990) but not by heat
shock (A.M. and T.M., unpublished). In addition, unlike the
export of FGF1 and IL-1α (Jackson et al., 1992) (F.T., I.P. and
T.M., unpublished), IL-1β release is sensitive to methylamine
(Rubartelli et al., 1990), an inhibitor of exocytosis, and to
sulfonylurea glybenclamide, an inhibitor of the mammalian
ATP-binding cassette (ABC) translocator ABC1 (Andrei et al.,
1999). Another notable difference is that, unlike FGF1 and IL-
1α, which are distributed homogeneously in the cytoplasm
(Prudovsky et al., 2002), IL-1β is contained within cytoplasmic

vesicles expressing lysosomal but not ER-Golgi markers
(Andrei et al., 1999). Export of IL-1β thus appears to be based
on its intracellular translocation into lysosome-like vesicles
and the subsequent exocytotic fusion of these vesicles with the
cell membrane (Andrei et al., 1999). It will be interesting to
determine whether the constitutive release of FGF2 is also
sensitive to these pharmacological agents. Thus, in spite of the
very similar 3D structures of FGF1 and IL-1 prototypes, FGF2
and IL-1β appear to be secreted through pathways different
from IL-1α and FGF1.

The stress-mediated intracellular transport of FGF1
and IL-1 α
The inhibition of FGF1 and IL-1α release by 2-deoxyglucose
(Jackson et al., 1992; Tarantini et al., 2001) demonstrates that
these pathways are dependent on ATP. In addition, an intact
actin cytoskeleton is important, since release of FGF1 and IL-
1α is sensitive to agents that attenuate actin stress fibers, such
as latrunculin and amlexanox (Landriscina et al., 2000; Mouta
Carreira et al., 1998; Tarantini et al., 2001). By contrast,
microtubule inhibitors, such as nocodazole, fail to inhibit FGF1
release (F.T., I.P. and T.M., unpublished). Real-time confocal
studies of cells transfected with an FGF1-GFP chimera have
demonstrated stress-induced migration of cytosolic FGF1 to
the cell membrane 60 minutes after heat shock and this
translocation can be completely inhibited by amlexanox
(Prudovsky et al., 2002). Likewise, heat shock also induces
translocation of an IL-1α-RFP chimera from the cytosol to the
cell membrane (Mandinova et al., 2003). Although the actin
cytoskeleton transports different types of cytoplasmic
membrane vesicle (Rogers and Gelfand, 2000), at least at the
level of fluorescence microscopy, neither FGF1 nor IL-1α
appears to be present in vesicular structures under normal
conditions or during heat shock (Prudovsky et al., 2002).

The stress-induced formation of multiprotein FGF1
and IL-1 α release complexes
FGF1 is released during stress as a covalent cysteine-linked

Fig. 1.Three-dimensional representation of the β-barrel structures of human mIL-1α (Graves et al., 1990) and human FGF1 (Lozano et al.,
2000). β-sheet domains are indicated in yellow and are depicted as rotating counter clockwise around the open centers of the structures. The
structures were downloaded from the Protein Data Bank of the NCBI (http://www.rcsb.org/pdb/).
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homodimer (Jackson et al., 1992). The evolutionarily
conserved Cys30 residue is crucial for its stress-mediated
release (Tarantini et al., 1995). Interestingly, the FGF1
homodimer exhibits a low heparin affinity (compared with the
monomer), as well as low mitogenic activity in vitro (Engleka
and Maciag, 1992). Dimer formation might therefore be a way
of storing and possibly transporting FGF1 in an inactive form.
However, low heparin affinity makes dimeric FGF1 potentially
more susceptible to proteolysis, since heparin and HSPGs
protect FGF family members from proteases (Friesel and
Maciag, 1999; Rosengart et al., 1988). The balance between
the monomeric and dimeric forms of FGF1 in the extracellular
compartment might be regulated by stress-induced
extracellular reducing and oxidizing agents. For example, the
reducing agent thioredoxin is a signal-peptide-less protein
released through a non-classical pathway (Rubartelli et al.,
1992; Rubartelli et al., 1995), and Cu2+ ions are potential
extracellular oxidizing agents that could convert reduced
monomeric FGF1 to the dimeric form. Indeed, in a cell-free
system, Cu2+ efficiently induces FGF1 dimerization (Engleka
and Maciag, 1992). However, the role of intracellular Cu2+ in
the release of FGF1 and IL-1α is even more significant (see
below).

IL-1α release does not appear to depend on covalent
dimerization. mIL-1α is exported as a monomeric, biologically
active cytokine (Mandinova et al., 2003; Tarantini et al., 2001).
Moreover, it has no evolutionarily conserved equivalent of
Cys30 in FGF1 (Furutani et al., 1986; Lomedico et al., 1984),
and a cysteine-free IL-1α mutant is released normally in
response to cellular stress (A.M., I.P. and T.M., unpublished).

Both mIL-1α and FGF1 are exported as components of
multiprotein release complexes that, at least in the case of
FGF1, assemble near the inner surface of the plasma membrane
(Prudovsky et al., 2002). The first evidence for such complexes
resulted from HPLC analysis of high-molecular-weight FGF1-
containing fractions from bovine and ovine brains (Maciag et
al., 1982; Mouta Carreira et al., 1998). Brain-derived FGF1 is
associated with at least four other polypeptides, which include
S100A13 and the p40 form of synaptotagmin 1 (Syt1) (Burgess
et al., 1985; Mouta Carreira et al., 1998). S100A13 belongs to
the S100 family of polypeptides, which are small acidic
proteins that have two Ca2+-binding EF-hand domains
(Heizmann et al., 2002). The biological functions of most
S100s are not defined but, significantly, the intracellular
distributions and/or expression levels of some family members
are modified in response to cellular stress (Breen et al., 1999;
Du et al., 2002; Duarte et al., 1999; Hoyaux et al., 2000; Hsieh
et al., 2002; Kucharczak et al., 2001; Lam et al., 2001;
Mandinova et al., 1998; Migheli et al., 1999; Zhang et al.,
2002). A specific structural characteristic of S100A13 is the
presence of a C-terminal domain rich in basic residues (Wicki
et al., 1996). The expression of S100A13 in NIH 3T3 cells is
detectable by RT-PCR analysis (Landriscina et al., 2001a).

All S100 proteins lack classical signal sequences, but at least
some of them are released into the extracellular compartment
(Heizmann and Cox, 1998). S100A13 transfected into NIH
3T3 cells is constitutively released (Landriscina et al., 2001a);
however, when it is co-expressed with either FGF1 or mIL-1α,
its release becomes stress-dependent (Landriscina et al., 2001a;
Mandinova et al., 2003). This observation in conjunction with
experiments using a dominant-negative S100A13 deletion

mutant lacking the basic C-terminal domain demonstrated that
S100A13 is an indispensable part of the multiprotein FGF1
release complex (Landriscina et al., 2001a). Similar
experiments provided evidence that S100A13 expression is
also critical for IL-1α release (Mandinova et al., 2003).
Interestingly, although a cysteine-free FGF1 mutant is not
released in response to stress (Tarantini et al., 1995), its co-
expression with S100A13 results in the stress-induced export
of both proteins (Landriscina et al., 2001a). It appears that
overexpression of S100A13 induces the non-covalent
dimerization of cysteine-free FGF1.

The p40 Syt1 component of the brain-derived FGF1-
containing multiprotein complex represents the extravesicular
portion of the transmembrane p65 Syt1 protein. Syt1
participates in the docking of a variety of secretory vesicles,
including synaptic vesicles, at the cell membrane prior to their
subsequent exocytosis (Sudhoff and Rizo, 1996). Similarly to
other members of the synaptotagmin protein family, Syt1
displays two Ca2+-binding C2 domains in its extravesicular
portion (Marqueze et al., 2000). p40 Syt1 is believed to be
produced by proteolytic cleavage of p65 near its
transmembrane domain (Marqueze et al., 2000; Sudhoff and
Rizo, 1996). In contrast to p65 Syt1, which displays a classical
N-terminal signal peptide in its primary structure and localizes
primarily to the ER-Golgi apparatus, cytoplasmic vesicles and
cell membrane, signal-peptide-less p40 Syt1 displays a diffuse
cytosolic distribution (C.B., I.P. and T.M., unpublished).
Interestingly, like S100A13, p40 Syt1 is also constitutively
released from cells under normal cell culture conditions
(LaVallee et al., 1998). Experiments using either an antisense
strategy or the expression of a dominant-negative p65 Syt1
mutant, as well as immunoblot analysis of the exported FGF1
complex at non-reducing low denaturation conditions for
electrophoresis, demonstrated that, similarly to S100A13, p40
Syt1 is a crucial component of the FGF1 release complex
(LaVallee et al., 1998; Tarantini et al., 1998).

Surprisingly, unlike S100A13, p40 Syt1 is dispensable for
IL-1α release (Tarantini et al., 2001). However, it is
conceivable that IL-1α uses another member of the
synaptotagmin family or other C2-domain-containing
polypeptides, for example calpain, the intracellular protease
responsible for pIL-1α cleavage, which contains a C2 domain
(Goll et al., 2003) and associates with annexin II (Barnes and
Gomes, 2002). Interestingly, although expression of FGF1 in
the presence of S100A13 inhibits the constitutive release of
S100A13, it does not affect release of p40 Syt1 (LaVallee et
al., 1998).

Annexin II might also be a part of the FGF1 and IL-1α
release complexes. This protein exhibits inducible flipping
from the inner to the outer surface of the cell membrane
(Peterson, 2003), where it functions as a receptor for
plasminogen and plasminogen activators (Hajjar et al., 1994;
Hajjar et al., 1998). Studies using amlexanox affinity
chromatography were able to resolve annexin II in a non-
covalent complex with S100A13 (Oyama et al., 1997), and we
have recently demonstrated the presence of annexin II in the
brain-derived FGF1-containing multiprotein complex (R.S.,
I.P. and T.M., unpublished). Since annexin II forms
heterotetramers with S100A10 (p11) (Kim and Hajjar, 2002),
its participation in the multiprotein complexes might rely upon
interactions with S100A13. Furthermore, since annexin II
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associates with the inner surface of the plasma membrane (Goll
et al., 2003) and the assembly of the FGF1 multiprotein
complex also occurs near the inner surface of the plasma
membrane (Prudovsky et al., 2002), it is possible that annexin
II serves as the site of assembly for the non-classical export of
these multiprotein complexes. However, more experiments are
needed to verify its role in FGF1 and IL-1α release.

The role of Cu 2+ in FGF1 and IL-1 α export
How do the FGF1 and IL-1α release complexes assemble?
Association of the members of these multiprotein aggregates
might involve Cu2+. FGF1, IL-1α, S100A13 and p40 Syt1
are Cu2+-binding proteins (Engleka and Maciag, 1992;
Landriscina et al., 2001b; Mandinova et al., 2003). Also, Cu2+

specifically induces formation of FGF1 but not FGF2
homodimers even though two of the three Cys residues present
in FGF1 are conserved in FGF2 (Engleka and Maciag, 1992).
In addition, several studies have demonstrated angiogenic and
pro-inflammatory effects of Cu2+ (Brewer, 2001; Gullino,
1983; Hannan and McAuslan, 1982; Raju et al., 1982; Zoli et
al., 1998), indicating that Cu2+ might participate in the
non-classical release of angiogenic and pro-inflammatory
polypeptides. The role of Cu2+ in mediating the release of
FGF1 and IL-1α export has been examined in some detail, and
indeed we and others have demonstrated in a cell-free system
that Cu2+ is able to induce the formation of a complex
containing p40Syt1, FGF1 and S100A13 at a molar ratio
of 1:2:2, respectively, as well as the formation of a
heterotetrameric (2:2) IL-1α-S100A13 complex (Landriscina
et al., 2001b; Mandinova et al., 1998). The depletion of
intracellular free Cu2+ through continuous application of a
specific chelator, tetrathiomolybdate (TTM), can attenuate the
stress-induced release of IL-1α and FGF1, as well as of
S100A13 when co-expressed with IL-1α or FGF1 (Landriscina
et al., 2001b; Mandinova et al., 2003). These data indicate that
the stress-induced Cu2+-dependent assembly of IL-1α and
FGF1 multiprotein release complexes is indeed a prerequisite
for the non-classical export of these proteins in vitro (Fig. 2).

The plasma membrane as a platform for the
assembly of release complexes
Considerable experimental evidence indicates that the Cu2+-
dependent formation of IL-1α and FGF1 multiprotein release
complexes occurs at the inner leaflet of the cell membrane.
Indeed, TTM treatment does not prevent the stress-induced
migration of FGF1 to the cell membrane (Prudovsky et al.,
2002), and thus complex formation (including formation of the
FGF1 homodimer) does not appear to be important for the
intracellular transport of FGF1 to the cell periphery. Moreover,
dominant-negative mutants of S100A13 and p40 Syt1 that are
known to inhibit FGF1 release are transported to the cell
membrane in response to heat shock, and they do not prevent
the stress-induced translocation of FGF1 to the periphery
(Prudovsky et al., 2002). Apparently, the members of the FGF1
multiprotein complex follow independent stress-induced
pathways to the cell periphery. Interestingly, FGF1, IL-1α, p40
Syt1 and members of the S100 family can all bind acidic
phospholipids in a cell-free system (Heizmann et al., 1998;
Marqueze et al., 2000; Mandinova et al., 2003; Tarantini et al.,

1995). Furthermore, mutational analyses have revealed specific
acidic phospholipid-binding domains in FGF1 (Tarantini et al.,
1995) and Syt1 (Fernandez et al., 2001). Interestingly, a few of
these acidic phospholipids are asymmetrically distributed
between the leaflets of the plasma membrane (Pomorski et al.,
2001) and thus, under normal conditions, acidic phospholipids
such as phosphatidylserine localize preferentially to the inner
leaflet. However, in response to a variety of different stresses,
including heat shock, phosphatidylserine flips to the outer
leaflet (Sims and Wiedmer, 2001).

Phosphatidylserine could drive the transmembrane
translocation of the IL-1α and FGF1 release complexes since
immunofluorescence data suggest that the inner side of the cell
membrane is a platform for the assembly of IL-1α and FGF1
release complexes after the participant proteins reach the
membrane through heat-shock-induced, actin-dependent
transport. Cu2+ ions needed for the assembly of release
complexes might be provided by transmembrane Cu2+

transporters (Finney and O’Halloran, 2003), and it is
noteworthy that the recently characterized human Cu2+

transporter 1 (hCtr1) is activated by cellular stress (Lee et al.,
2002). Since free Cu2+ is virtually absent from the cytosol
(Rae et al., 1999), the inner leaflet of the cell membrane is the
most likely locale for the function of transient Cu2+ ions in the
assembly of the FGF1 and IL-1α multiprotein complexes.
However, it is unclear whether the Cu2+ ions involved in
the formation of these complexes are released into the
extracellular compartment with the exported polypeptides
or whether they are recycled back to their intracellular
transporters.

Potential role of detergent-like properties and the
molten globule state of proteins in facilitating non-
classical protein export
The key moment in non-classical export is translocation across
the cell membrane. The mechanism might involve local
destabilization of the phospholipid bilayer at the inner surface
of the plasma membrane, which would allow the protein to
insert into the membrane and eventually exit the cell. Several
proteins including bactericidal peptides (Wiese et al., 2003)
and viral fusion proteins (Dutch et al., 2000) have detergent-
like properties that destabilize and permeabilize phospholipid
bilayers. It has been observed that FGF1 has similar properties,
demonstrating that it can induce temperature-dependent
permeabilization of phosphatidylserine/phosphatidylglycerol
liposomes (Mach and Middaugh, 1995). IL-1α also behaves
similarly (Oku et al., 1995; Mandinova et al., 2003). The
phospholipid-binding and detergent-like activities of these
proteins indicate that the inner leaflet of the cell membrane
could contain sites that recognize the multiprotein complexes
destined for release. These sites could contain specific acidic
phospholipid ‘signatures’ that determine both the composition
of assembled protein aggregates and the export mechanism.

Translocation of a protein across the bilayer might require
conformational changes that increase its hydrophobicity.
Proteins can achieve this by adopting a ‘molten globule’
conformation (Ptitsyn, 1995). This is a partially unfolded
intermediate conformation assumed during denaturation and
renaturation (Arai and Kuwajima, 2000; Ptitsyn, 1995). It is
characterized by (1) the presence of secondary structure, (2)
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the absence of most of the tertiary structure normally produced
by tight packing of side chains, (3) a relative compactness (a
radius of gyration only 10-30% larger than that of the native
state), and (4) the presence of a loosely packed hydrophobic
core that increases the hydrophobic surface accessible to
solvent (Arai and Kuwajima, 2000). The fourth characteristic
could allow proteins to traverse lipid bilayers (Bychkova et
al., 1988), and it has been reported that FGF1 exhibits a
temperature-dependent molten globule conformation (Sanz et
al., 2002). Additional studies using two-dimensional nuclear
magnetic resonance have confirmed this and underlined the
importance of an all-β-barrel structure for formation of the
molten globule (Srisailam et al., 2002). This structural feature
might therefore enable FGF1, IL-1α and the other polypeptide

components of the release complex to lose their solubility in
an aqueous environment and simultaneously become soluble in
a non-aqueous lipophilic environment, which is a prerequisite
for their transport through the plasma membrane. It is
interesting to note that the β-barrel structure may be
responsible for the ability of FGF1 to form amyloid-like fibrils
(Srisailam et al., 2003). However, whether this feature
contributes to the Cu2+-induced assembly of the FGF1
(Landriscina et al., 2001b) and IL-1α (Mandinova et al., 2003)
high-molecular-weight complexes formed prior to export is not
known. Interaction with acidic phospholipids might also
significantly contribute to the transition of FGF1 and possibly
IL-1α to a molten globule conformation. The importance of
unfolded or partially unfolded protein conformations is
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stressed by results demonstrating that, upon overexpression of
rhodanese and GFP, excess unfolded proteins are evacuated
from the cells through non-classical export pathways (Sloan et
al., 1994; Tanudji et al., 2002).

Whereas there is no direct biophysical evidence for the
ability of either S100A13 or p40 Syt1 to assume the molten
globule conformation, both proteins are known to be
constitutively released independently of FGF1 or IL-1α
(Landriscina et al., 2001a; LaVallee et al., 1998) and interact
with acidic phospholipids. They could therefore play a role as
chaperones that stabilize FGF1 and possibly IL-1α in a molten
globule conformation. Indeed, observing the interaction
between a bacterial pilin and its chaperone, Knight and co-
authors (Zavialov et al., 2003) have recently demonstrated that
chaperones can maintain polypeptides in a partially folded,
high-energy state. Previously, cytosolic chaperones, such as
members of the Hsp70 family, had been shown to maintain
the mitochondrial pre-proteins in a translocation-competent
conformation, which is crucial for their post-translational
import into mitochondria (Gordon et al., 2000). It is possible
that S100A13 performs a chaperone-like service needed for
membrane translocation since its overexpression alleviates the
requirements of IL-1α and FGF1 export for new transcription
and translation (Landriscina et al., 2001b; Mandinova et al.,
2003). Indeed, some other members of the S100 family have
chaperone activity (Heizmann et al., 2002), and S100A10, also
known as p11, serves as a chaperone for the hepatitis virus B
polymerase and is needed for its nuclear translocation (Choi et
al., 2003). Also, acting as a chaperone, it appears to be crucial
for insertion of annexin II into the plasma membrane, as well
as its thrombin-induced flipping to the outer surface of the
plasma membrane (Peterson et al., 2003).

The pathological significance of non-classical FGF1
and IL-1 α export
The elucidation of the mechanisms responsible for the non-
classical export of FGF1 and IL-1α has required the use of in
vitro methods of analysis and, as a result, it has been difficult
to determine the role of these mechanisms in vivo and/or in
pathological processes. However, clinical studies pioneered by
G. Brewer and S. Merajver (Brewer et al., 2000; Cox et al.,
2001) in which the Cu2+ chelator TTM was used to manage
the progress of stage IV tumors in humans have provided
insight into the potential role of TTM as an angiogenic
inhibitor capable of attenuating mammary gland tumor
formation in the Her transgenic mouse (Pan et al., 2002). Since
these studies suggested that TTM can repress the
transcriptional activation of NF-κB, and NF-κB lies
downstream of IL-1 receptor signaling (Baldwin, 1996), it
appeared possible that TTM functions as a repressor of non-
classical IL-1α export. Both FGF1 and IL-1 play a pro-
angiogenic role in vivo (Friesel and Maciag, 1999; Voronov et
al., 2003) although, in vitro, FGF1 stimulates proliferation and
migration of endothelial cells (Maciag et al., 1979; McMahon
et al., 1997), whereas IL-1α inhibits both of these activities
(Maier et al., 1990). It appears that the regulation of
angiogenesis and inflammation involves a coordination of non-
classical FGF1 and IL-1α release. Indeed, IL-1α stimulates the
infiltration of tissues with macrophages (Dinarello, 1996),
which present an abundant source of the FGF prototypes (Sano

et. al., 1990; Brogi et al., 1993). The absence of extracellular
IL-1α in a tumor setting would limit the recruitment of FGF1-
laden mononuclear cells (Sano et al., 1990; Sano et al., 1992)
to tumor sites exhibiting an anoxic and/or hypoxic
microenvironment. Thus, in the absence of mononuclear cell
infiltration, FGF1 would not be delivered to the tumor
environment and, even if FGF1 was available within the tumor
microvasculature itself, TTM would also repress its export.

Interestingly, a similar mechanism has been proposed to
explain the response to injury in large vessels as a result of
catheter-mediated clinical management of atherosclerotic
arteries (Mandinov et al., 2003). Since the infiltration of
mononuclear cells into the injured area in response to the
release of IL-1α could result in the generation of an FGF1-rich
microenvironment, and FGF1 is a potent mitogen for the
vascular smooth muscle cells (Winkles et al., 1987), its export
into the extracellular compartment could be responsible for the
onset of restenosis. Indeed, the long-term administration of
TTM significantly suppresses restenosis induced by catheter
injury in the rat carotid artery (Mandinov et al., 2003). The
arterial walls of TTM-treated rats display a strong attenuation
of neointimal growth, impaired vasa vasorum formation,
little, if any, macrophage/monocyte infiltration and, most
importantly, very low levels of FGF1 and IL-1α expression
when compared with injured arteries from control animals.
Thus, the inhibition of restenosis by TTM could be due to the
ability of the Cu2+ chelator to repress the stress-induced release
of pro-inflammatory IL-1α, which would prevent infiltration of
mononuclear cells known to be a source of pro-angiogenic and
pro-restenotic FGF1 in the wall of the damaged vessel. These
data also suggest that the repression of non-classical FGF1 and
IL-1α export by Cu2+ chelation might ultimately be useful for
the clinical management of pro-inflammatory angiogenesis in
humans.

These data corroborate the preclinical and clinical reports on
the ability of TTM to inhibit solid tumor growth (Brewer et al.,
2000; Cox et al., 2001), which depends on the availability of
pro-angiogenic polypeptides (Folkman, 2002). Thus, the
potential significance of the role of Cu2+ as a mediator of the
non-classical export of FGF1 and IL-1α could provide an
alternative approach for the clinical management of other
pathological conditions dependent on pro-inflammatory
angiogenesis, such as rheumatoid arthritis (Maini and Taylor,
2000). Indeed, studies have demonstrated that Zn2+/Cu2+

chelation can repress the onset of Alzheimer’s disease in the
β-amyloid transgenic mouse (Cherny et al., 2001). Because the
β-amyloid gene is known to be regulated by IL-1α in human
endothelial cells (Goldgaber et al., 1989), it is likely that the
repression of Alzheimer’s disease is due, at least in part, to the
absence of extracellular IL-1α. The recent report (Voronov et
al., 2003) that IL-1α- and IL-1β-null mice cannot sustain an
active angiogenic environment to support tumor growth is
consistent with the premise that the function of these signal-
peptide-less polypeptides is crucial for the regulation of pro-
inflammatory angiogenic responses in vivo.

Future directions
Several important questions related to non-classical
polypeptide release remain to be answered. Are there other
alternative pathways for non-classical export of FGF1 and IL-
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1α and, if so, how are they regulated? Is the molten globule a
common feature of such mechanisms? What are the transporter
molecules responsible for actin-dependent translocation of the
proteins from the cytosol to the cell membranes? How is this
translocation induced by cellular stress? Which phospholipids
or which groups of phospholipids interact with specific protein
members of the release complexes? Do phospholipid
signatures permanently exist in the inner leaflet of the cell
membrane or are they arranged in response to cellular stress?
How does the Cu2+- and phospholipid-dependent formation of
multiprotein release complexes induce their subsequent
translocation across the cell membrane? What is the source of
energy used for stress-induced transmembrane translocation?
Solving these problems will result in a better understanding of
the non-classical protein release and eventually in an improved
ability to regulate both inflammation and angiogenesis.

We thank Norma Albrecht for expert administrative assistance. This
work was supported in part by NIH grants RR15555, HL35627 and
HL32348 to T.M.

References
Ananyeva, N. M., Tijurmin, A. V., Berliner, J. A., Chisolm, G. M., Liau,

G., Winkles, J. A. and Haudenschild, C. C.(1997). Oxidized LDL
mediates the release of fibroblast growth factor-1. Arterioscler. Thromb.
Vasc. Biol.17, 445-453.

Ancellin, N., Colmont, C., Su, J., Li, Q., Mittereder, N., Chae, S. S.,
Stefansson, S., Liau, G. and Hla, T. (2002). Extracellular export of
sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the
induction of angiogenic vascular maturation. J. Biol. Chem.277, 6667-6675. 

Andrei, C., Dazzi, C., Lotti, L., Torrisi, M. R., Chimini, G. and Rubartelli,
A. (1999). The secretory route of the leaderless protein interleukin 1beta
involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10,
1463-1475.

Angelini, G., Gardella, S., Ardy, M., Ciriolo, M. R., Filomeni, G., di
Trapani, G., Clarke, F., Sitia, R. and Rubartelli, A. (2002). Antigen-
presenting dendritic cells provide the reducing extracellular
microenvironment required for T lymphocyte activation. Proc. Natl. Acad.
Sci. USA99, 1491-1496.

Arai, M. and Kuwajima, K. (2000). Role of the molten globule state in
protein folding. Adv. Protein Chem.53, 209-282.

Aumuller, G., Wilhelm, B. and Seitz, J.(1999). Apocrine secretion – fact or
artifact? Anat. Anz.181, 437-446.

Baldwin, A. S., Jr (1996). The NF-kappa B and I kappa B proteins: new
discoveries and insights. Annu. Rev. Immunol.14, 649-683.

Barnes, J. A. and Gomes, A. V.(2002). Proteolytic signals in the primary
structure of annexins. Mol. Cell. Biochem.231, 1-7.

Beuscher, H. U., Nickells, M. W. and Colten, H. R.(1988). The precursor
of interleukin-1 alpha is phosphorylated at residue serine 90. J. Biol. Chem.
263, 4023-4028.

Blobel, G. (1995). Unidirectional and bidirectional protein traffic across
membranes. Cold Spring Harb. Symp. Quant. Biol.60, 1-10.

Blobel, G. (2000). Protein targeting (Nobel lecture). Chembiochem1, 86-102.
Breen, E. C., Fu, Z. and Normand, H.(1999). Calcyclin gene expression is

increased by mechanical strain in fibroblasts and lung. Am. J. Respir. Cell
Mol. Biol. 21, 746-752.

Brewer, G. J. (2001). Copper control as an antiangiogenic anticancer
therapy: lessons from treating Wilson’s disease. Exp. Biol. Med.226, 665-
673.

Brewer, G. J., Dick, R. D., Grover, D. K., LeClaire, V., Tseng, M., Wicha,
M., Pienta, K., Redman, B. G., Jahan, T., Sondak, V. K. et al. (2000).
Treatment of metastatic cancer with tetrathiomolybdate, an anticopper,
antiangiogenic agent: Phase I study. Clin. Cancer Res.6, 1-10.

Brogi, E., Winkles, J. A.., Underwood, R., Clinton, S. K., Alberts, G. F.
and Libby, P. (1993). Distinct patterns of expression of fibroblast growth
factors and their receptors in human atheroma and nonatherosclerotic
arteries. Association of acidic FGF with plaque microvessels and
macrophages. J. Clin. Invest.92, 2408-2418.

Burgess, W. H., Mehlman, T., Friesel, R., Johnson, W. V. and Maciag, T.

(1985). Multiple forms of endothelial cell growth factor. Rapid isolation and
biological and chemical characterization. J. Biol. Chem.260, 11389-11392.

Bychkova, V. E., Pain, R. H. and Ptitsyn, O. B.(1988). The ‘molten globule’
state is involved in the translocation of proteins across membranes? FEBS
Lett. 238, 231-234.

Chang, H. C., Samaniego, F., Nair, B. C., Buonaguro, L. and Ensoli, B.
(1997). HIV-1 Tat protein exits from cells via a leaderless secretory pathway
and binds to extracellular matrix-associated heparan sulfate proteoglycans
through its basic region. AIDS11, 1421-1431.

Chapman, L. P., Epton, M. J., Buckingham, J. C., Morris, J. F. and
Christian, H. C. (2003). Evidence for a role of the adenosine 5′-
triphosphate-binding cassette transporter A1 in the externalization of
annexin I from pituitary folliculo-stellate cells. Endocrinology144, 1062-
1073.

Chen, X. S. and Funk, C. D.(2001). The N-terminal ‘beta-barrel’ domain of
5-lipoxygenase is essential for nuclear membrane translocation. J. Biol.
Chem.276, 811-818.

Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D.,
McLean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y. et
al. (2001). Treatment with a copper-zinc chelator markedly and rapidly
inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice.
Neuron30, 665-676.

Choi, J., Chang, J. S., Song, M. S., Ahn, B. Y., Park, Y., Lim, D. S. and
Han, Y. S. (2003). Association of hepatitis B virus polymerase with
promyelocytic leukemia nuclear bodies mediated by the S100 family protein
p11. Biochem. Biophys. Res. Commun.305, 1049-1056.

Coulier, F., Pontarotti, P., Roubin, R., Hartung, H., Goldfarb, M. and
Birnbaum, D. (1997). Of worms and men: an evolutionary perspective on
the fibroblast growth factor (FGF) and FGF receptor families. J. Mol. Evol.
44, 43-56.

Cox, C., Teknos, T. N., Barrios, M., Brewer, G. J., Dick, R. D. and
Merajver, S. D. (2001). The role of copper suppression as an antiangiogenic
strategy in head and neck squamous cell carcinoma. Laryngoscope111, 696-
701.

Dahl, J. P., Binda, A., Canfield, V. A. and Levenson, R.(2000). Participation
of Na,K-ATPase in FGF-2 secretion: rescue of ouabain-inhibitable FGF-2
secretion by ouabain-resistant Na,K-ATPase alpha subunits. Biochemistry
39, 14877-14883.

Denny, P. W., Gokool, S., Russell, D. G., Field, M. C. and Smith, D. F.
(2000). Acylation-dependent protein export in Leishmania. J. Biol. Chem.
275, 11017-11025. 

Dinarello, C. A. (1992). The biology of interleukin-1.Chem. Immunol. 51, 1-
32.

Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood87,
2095-2147.

Dinarello, C. A. (1998). Interleukin-1, interleukin-1 receptors and interleukin-
1 receptor antagonist. Int. Rev. Immunol.16, 457-499.

Du, X. J., Cole, T. J., Tenis, N., Gao, X. M., Kontgen, F., Kemp, B. E. and
Heierhorst, J. (2002). Impaired cardiac contractility response to
hemodynamic stress in S100A1-deficient mice. Mol. Cell. Biol. 22, 2821-
2829.

Duarte, W. R., Mikuni-Takagaki, Y., Kawase, T., Limura, T., Oida, S.,
Ohya, K., Takenaga, K., Ishikawa, L. and Kasugai, S.(1999). Effects of
mechanical stress on the mRNA expression of S100A4 and cytoskeletal
components by periodontal ligament cells. J. Med. Dent. Sci.46, 117-122.

Dutch, R. E., Jardetzky, T. S. and Lamb, R. A.(2000). Virus membrane
fusion proteins: biological machines that undergo a metamorphosis. Biosci.
Rep.20, 597-612.

Elliott, G. and O’Hare, P. (1997). Intercellular trafficking and protein
delivery by a herpesvirus structural protein. Cell 88, 223-233.

Endo, T., Yamamoto, H. and Esaki, M.(2003). Functional cooperation and
separation of translocators in protein import into mitochondria, the double-
membrane bounded organelles. J. Cell Sci.116, 3259-3267.

Engleka, K. A. and Maciag, T. (1992). Inactivation of human fibroblast
growth factor-1 (FGF-1) activity by interaction with copper ions involves
FGF-1 dimer formation induced by copper-catalyzed oxidation. J. Biol.
Chem.267, 11307-11315.

Engling, A., Backhaus, R., Stegmayer, C., Zehe, C., Seelenmeyer, C.,
Kehlenbach, A., Schwappach, B., Wegehingel, S. and Nickel, W.(2002).
Biosynthetic FGF-2 is targeted to non-lipid raft microdomains following
translocation to the extracellular surface of CHO cells. J. Cell Sci.115,
3619-3631.

Fernandez, I., Arac, D., Ubach, J., Gerber, S. H., Shin, O., Gao, Y.,
Anderson, R. G., Sudhof, T. C. and Rizo, J.(2001). Three-dimensional

Journal of Cell Science 116 (24)



4879FGF1 and IL-1α release

structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a
phospholipid binding machine. Neuron32, 1057-1069.

Finney, L. A. and O’Halloran, T. V. (2003). Transition metal speciation in
the cell: insights from the chemistry of metal ion receptors. Science300,
931-936.

Florkiewicz, R. Z., Anchin, J. and Baird, A. (1998). The inhibition of
fibroblast growth factor-2 export by cardenolides implies a novel function
for the catalytic subunit of Na+,K+-ATPase. J. Biol. Chem.273, 544-551.

Florkiewicz, R. Z., Majack, R. A., Buechler, R. D. and Florkiewicz, E.
(1995). Quantitative export of FGF-2 occurs through an alternative, energy-
dependent, non-ER/Golgi pathway. J. Cell Physiol.162, 388-399.

Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis.
Semin. Oncol.29, 15-18.

Forough, R., Zhan, X., MacPhee, M., Friedman, S., Engleka, K. A., Sayers,
T., Wiltrout, R. H. and Maciag, T. (1993). Differential transforming
abilities of non-secreted and secreted forms of human fibroblast growth
factor-1. J. Biol. Chem.268, 2960-2968.

Friesel, R. and Maciag, T.(1999). Fibroblast growth factor prototype release
and fibroblast growth factor receptor signaling. Thromb. Haemost. 82, 748-
754.

Furutani, Y., Notake, M., Fukui, T., Ohue, M., Nomura, H., Yamada, M.
and Nakamura, S.(1986). Complete nucleotide sequence of the gene for
human interleukin 1 alpha. Nucleic Acids Res.14, 3167-3179.

Gardella, S., Andrei, C., Ferrera, D., Lotti, L. V., Torrisi, M. R., Bianchi,
M. E. and Rubartelli, A. (2002). The nuclear protein HMGB1 is secreted
by monocytes via a non-classical, vesicle-mediated secretory pathway.
EMBO Rep.3, 995-1001.

Goldgaber, D., Harris, H. W., Hla, T., Maciag, T., Donnelly, R. J.,
Jacobsen, J. S., Vitek, M. P. and Gajdusek, D. C.(1989). Interleukin 1
regulates synthesis of amyloid beta-protein precursor mRNA in human
endothelial cells. Proc. Natl. Acad. Sci. USA86, 7606-7610.

Goll, D. E., Thompson, V. F., Li, H., Wei, W. and Cong, J.(2003). The
Calpain System. Physiol. Rev.83, 731-801.

Gordon, D., Dancis, A. and Pain, D. (2000). Mechanisms of mitochodrial
protein import. Essays Biochem.36, 61-73.

Graves, B. J., Hatada, M. H., Hendrickson, W. A., Miller, J. K., Madison,
V. S. and Satow, Y.(1990). Structure of interleukin 1 alpha at 2.7-A
resolution. Biochemistry29, 2679-2684.

Gullino, P. M. (1983). Angiogenesis and neoplastic growth. Prog. Clin. Biol.
Res.132C, 101-107.

Hajjar, K. A., Jacovina, A. T. and Chacko, J. (1994). An endothelial cell
receptor for plasminogen/tissue plasminogen activator. I. Identity with
annexin II. J. Biol. Chem.269, 21191-21197.

Hajjar, K. A., Mauri, L., Jacovina, A. T., Zhong, F., Mirza, U. A., Padovan,
J. C. and Chait, B. T.(1998). Tissue plasminogen activator binding to the
annexin II tail domain. Direct modulation by homocysteine. J. Biol. Chem.
273, 9987-9993.

Hannan, G. N. and McAuslan, B. R.(1982). Modulation of synthesis of
specific proteins in endothelial cells by copper, cadmium, and disulfiram: an
early response to an angiogenic inducer of cell migration. J. Cell. Physiol.
111, 207-212.

Heizmann, C. W. and Cox, J. A.(1998). New perspectives on S100 proteins:
a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family.
Biometals11, 383-397.

Heizmann, C. W., Fritz, G. and Schafer, B. W.(2002). S100 proteins:
structure, functions and pathology. Front. Biosci.7, d1356-d1368.

Heuck, A. P., Hotze, E. M., Tweten, R. K. and Johnson, A. E.(2000).
Mechanism of membrane insertion of a multimeric beta-barrel protein:
perfringolysin O creates a pore using ordered and coupled conformational
changes. Mol. Cell 6, 1233-1242.

Holroyd, C. and Erdmann, R. (2001). Protein translocation machineries of
peroxisomes. FEBS Lett.501, 6-10.

Hoyaux, D., Decaestecker, C., Heizmann, C. W., Vogl, T., Schafer, B. W.,
Salmon, I., Kiss, R. and Pochet, R.(2000). S100 proteins in Corpora
amylacea from normal human brain. Brain Res.867, 280-288.

Hsieh, H. L., Schafer, B. W., Cox, J. A. and Heizmann, C. W.(2002).
S100A13 and S100A6 exhibit distinct translocation pathways in endothelial
cells. J. Cell Sci. 115, 3149-3158.

Hughes, R. C. (1999). Secretion of the galectin family of mammalian
carbohydrate-binding proteins. Biochim. Biophys. Acta1473, 172-185.

Jackson, A., Friedman, S., Zhan, X., Engleka, K. A., Forough, R. and
Maciag, T. (1992). Heat shock induces the release of fibroblast growth
factor 1 from NIH 3T3 cells. Proc. Natl. Acad. Sci. USA89, 10691-10695.

Joliot, A., Maizel, A., Rosenberg, D., Trembleau, A., Dupas, S., Volovitch,

M. and Prochiantz, A. (1998). Identification of a signal sequence necessary
for the unconventional secretion of Engrailed homeoprotein. Curr. Biol. 8,
856-863.

Kim, J. and Hajjar, K. A. (2002). Annexin II: a plasminogen-plasminogen
activator co-receptor. Front. Biosci.7, d341-d348.

Kobayashi, Y., Oppenheim, J. J. and Matsushima, K.(1990). Calcium-
dependent binding of phosphorylated human pre interleukin 1 alpha to
phospholipids. J. Biochem.107, 666-670.

Kucharczak, J., Pannequin, J., Camby, I., Decaestecker, C., Kiss, R. and
Martinez, J. (2001). Gastrin induces over-expression of genes involved in
human U373 glioblastoma cell migration. Oncogene20, 7021-7028.

Lam, A. G., Koppal, T., Akama, K. T., Guo, L., Craft, J. M., Samy, B.,
Schavocky, J. P., Watterson, D. M. and van Eldik, L. J.(2001).
Mechanism of glial activation by S100B: involvement of the transcription
factor NFkappaB. Neurobiol. Aging22, 765-772.

Landriscina, M., Prudovsky, I., Carreira, C. M., Soldi, R., Tarantini, F.
and Maciag, T. (2000). Amlexanox reversibly inhibits cell migration and
proliferation and induces the Src-dependent disassembly of actin stress
fibers in vitro. J. Biol. Chem.275, 32753-32762.

Landriscina, M., Soldi, R., Bagala, C., Micucci, I., Bellum, S., Tarantini,
F., Prudovsky, I. and Maciag, T. (2001a). S100A13 participates in the
release of fibroblast growth factor 1 in response to heat shock in vitro. J.
Biol. Chem.276, 22544-22552.

Landriscina, M., Bagala, C., Mandinova, A., Soldi, R., Micucci, I., Bellum,
S., Prudovsky, I. and Maciag, T.(2001b). Copper induces the assembly of
a multiprotein aggregate implicated in the release of fibroblast growth factor
1 in response to stress. J. Biol. Chem.276, 25549-25557.

LaVallee, T. M., Tarantini, F., Gamble, S., Carreira, C. M., Jackson, A.
and Maciag, T. (1998). Synaptotagmin-1 is required for fibroblast growth
factor-1 release. J. Biol. Chem.273, 22217-22123.

Lecellier, C. H., Vermeulen, W., Bachelerie, F., Giron, M. L. and Saib, A.
(2002). Intra- and intercellular trafficking of the foamy virus auxiliary bet
protein. J. Virol. 76, 3388-3394.

Lee, J., Pena, M. M., Nose, Y. and Thiele, D. J.(2002). Biochemical
characterization of the human copper transporter Ctr1. J. Biol. Chem.277,
4380-4387.

Lindstedt, R., Apodaca, G., Barondes, S. H., Mostov, K. E. and Leffler, H.
(1993). Apical secretion of a cytosolic protein by Madin-Darby canine
kidney cells. Evidence for polarized release of an endogenous lectin by a
nonclassical secretory pathway. J. Biol. Chem.268, 11750-11757.

Lomedico, P. T., Gubler, U., Hellmann, C. P., Dukovich, M., Giri, J. G.,
Pan, Y. C., Collier, K., Semionow, R., Chua, A. O. and Mizel, S. B.
(1984). Cloning and expression of murine interleukin-1 cDNA in
Escherichia coli. Nature312, 458-462.

Lozano, R. M., Pineda-Lucena, A., Gonzalez, C., Angeles Jimenez, M.,
Cuevas, P., Redondo-Horcajo, M., Sanz, J. M., Rico, M. and Gimenez-
Gallego, G.(2000). 1HNMR structural characterization of a nonmitogenic,
vasodilatory, ischemia-protector and neuromodulatory acidic fibroblast
growth factor. Biochemistry39, 4982-4993.

Mach, H. and Middaugh, C. R. (1995). Interaction of partially structured
states of acidic fibroblast growth factor with phospholipid membranes.
Biochemistry34, 9913-9920.

Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P. R. and Forand, R.(1979).
An endothelial cell growth factor from bovine hypothalamus: identification
and partial characterization. Proc. Natl. Acad. Sci. USA76, 5674-5678.

Maciag, T., Hoover, G. A. and Weinstein, R.(1982). High and low molecular
weight forms of endothelial cell growth factor. J. Biol. Chem.257, 5333-
5336.

Maier, J. A., Voulalas, P., Roeder, D. and Maciag, T.(1990). Extension of
the life-span of human endothelial cells by an interleukin-1 alpha antisense
oligomer. Science249, 1570-1574.

Maini, R. N. and Taylor, P. C. (2000). Anti-cytokine therapy for rheumatoid
arthritis. Annu. Rev. Med.51, 207-229.

Maizel, A., Bensaude, O., Prochiantz, A. and Joliot, A.(1999). A short
region of its homeodomain is necessary for engrailed nuclear export and
secretion. Development126, 3183-3190.

Maizel, A., Tassetto, M., Filhol, O., Cochet, C., Prochiantz, A. and Joliot,
A. (2002). Engrailed homeoprotein secretion is a regulated process.
Development129, 3545-3553.

Mandinov, L., Mandinova, A., Kyurkchiev, S., Kyurkchiev, D., Kehayov,
I., Kolev, V., Soldi, R., Bagala, C., de Muinck, E. D., Lindner, V. et al.
(2003). Copper chelation represses the vascular response to injury. Proc.
Natl. Acad. Sci. USA100, 6700-6705.

Mandinova, A., Atar, D., Schafer, B. W., Spiess, M., Aebi, U. and



4880

Heizmann, C. W. (1998). Distinct subcellular localization of calcium
binding S100 proteins in human smooth muscle cells and their relocation in
response to rises in intracellular calcium. J. Cell Sci.111, 2043-2054.

Mandinova, A., Soldi, R., Graziani, I., Bagala, C., Bellum, S., Landriscina,
M., Tarantini, F., Prudovsky, I. and Maciag, T.(2003). S100A13 mediates
the copper-dependent stress-induced release of IL-1alpha from both human
U937 and murine NIH 3T3 cells. J. Cell Sci.116, 2687-2696.

Marqueze, B., Berton, F. and Seagar, M.(2000). Synaptotagmins in
membrane traffic: which vesicles do the tagmins tag? Biochimie82, 409-420.

McMahon, G. A., Garfinkel, S., Prudovsky, I., Hu, X. and Maciag, T.
(1997). Intracellular precursor interleukin (IL)-1alpha, but not mature IL-
1alpha, is able to regulate human endothelial cell migration in vitro. J. Biol.
Chem.272, 28202-28205.

Migheli, A., Cordera, S., Bendotti, C., Atzori, C., Piva, R. and Schiffer, D.
(1999). S-100beta protein is upregulated in astrocytes and motor neurons in
the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci. Lett.
261, 25-28.

Mignatti, P., Morimoto, T. and Rifkin, D. B. (1992). Basic fibroblast growth
factor, a protein devoid of secretory signal sequence, is released by cells via
a pathway independent of the endoplasmic reticulum-Golgi complex. J. Cell
Physiol. 151, 81-93.

Misumi, Y., Miki, K., Takatsuki, A., Tamura, G. and Ikehara, Y. (1986).
Novel blockade by brefeldin A of intracellular transport of secretory proteins
in cultured rat hepatocytes. J. Biol. Chem.261, 11398-11403.

Montoya, M. and Gouaux, E.(2003). Beta-barrel membrane protein folding
and structure viewed through the lens of alpha-hemolysin. Biochim.
Biophys. Acta1609, 19-27.

Mouta Carreira, C., LaVallee, T., Tarantini, F., Jackson, A., Lathrop, J.
T., Hampton, B., Burgess, W. H. and Maciag, T.(1998). S100A13 is
involved in the regulation of fibroblast growth factor-1 and p40
synaptotagmin-1 release in vitro. J. Biol. Chem. 273, 22224-22231.

Mouta Carreira, C. M., Nasser, S. M., di Tomaso, E., Padera, T. P.,
Boucher, Y., Tomarev, S. I. and Jain, R. K.(2001). LYVE-1 is not
restricted to the lymph vessels: expression in normal liver blood sinusoids
and down-regulation in human liver cancer and cirrhosis. Cancer Res.61,
8079-8084.

Nickel, W. (2003). The mystery of nonclassical protein secretion. A current
view on cargo proteins and potential export routes. Eur. J. Biochem.270,
2109-2119.

Oku, N., Saito, N., Okada, S., Watanabe, N. and Kobayashi, Y.(1995).
Permeability change of liposomal membrane induced by interleukin-1 alpha.
J. Biochem. Tokyo118, 832-835. 

Oyama, Y., Shishibori, T., Yamashita, K., Naya, T., Nakagiri, S., Maeta,
H. and Kobayashi, R.(1997). Two distinct anti-allergic drugs, amlexanox
and cromolyn, bind to the same kinds of calcium binding proteins, except
calmodulin, in bovine lung extract. Biochem. Biophys. Res. Commun.240,
341-347.

Pan, Q., Kleer, C. G., van Golen, K. L., Irani, J., Bottema, K. M., Bias, C.,
de Carvalho, M., Mesri, E. A., Robins, D. M., Dick, R. D. et al. (2002).
Copper deficiency induced by tetrathiomolybdate suppresses tumor growth
and angiogenesis. Cancer Res. 62, 4854-4859.

Passalacqua, M., Zicca, A., Sparatore, B., Patrone, M., Melloni, E. and
Pontremoli, S. (1997). Secretion and binding of HMG1 protein to the
external surface of the membrane are required for murine erythroleukemia
cell differentiation. FEBS Lett.400, 275-279.

Passalacqua, M., Patrone, M., Picotti, G. B., del Rio, M., Sparatore, B.,
Melloni, E. and Pontremoli, S.(1998). Stimulated astrocytes release high-
mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell
differentiation. Neuroscience82, 1021-1028.

Peterson, E., Sutherland, M., Nesheim, M., Pryzdial, E.(2003). Thrombin
induces endothelial cell-surface exposure of the plasminogen receptor
annexin 2. J. Cell Sci.116, 2399-2408.

Pomorski, T., Hrafnsdottir, S., Devaux, P., van Meer, G. (2001). Lipid
distribution and transport across cellular membranes. Semin. Cell Dev. Biol,
12, 139-148.

Prudovsky, I., Bagala, C., Tarantini, F., Mandinova, A., Soldi, R., Bellum,
S. and Maciag, T.(2002). The intracellular translocation of the components
of the fibroblast growth factor 1 release complex precedes their assembly
prior to export. J. Cell Biol.158, 201-208.

Ptitsyn, O. B.(1995). Molten globule and protein folding. Adv. Protein Chem.
47, 83-229.

Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. and O’Halloran, T.
V. (1999). Undetectable intracellular free copper: the requirement of a
copper chaperone for superoxide dismutase. Science284, 805-808.

Raju, K. S., Alessandri, G., Ziche, M. and Gullino, P. M. (1982).
Ceruloplasmin, copper ions, and angiogenesis. J. Natl. Cancer Inst.69,
1183-1188.

Rogers, S. L. and Gelfand, V. I.(2000). Membrane trafficking, organelle
transport, and the cytoskeleton. Curr. Opin. Cell Biol.12, 57-62.

Rosengart, T. K., Johnson, W. V., Friesel, R., Clark, R. and Maciag,
T. (1988). Heparin protects heparin-binding growth factor-I from
proteolytic inactivation in vitro. Biochem. Biophys. Res. Commun.152,
432-440.

Rubartelli, A., Cozzolino, F., Talio, M. and Sitia, R. (1990). A novel
secretory pathway for interleukin-1 beta, a protein lacking a signal sequence.
EMBO J. 9, 1503-1510.

Rubartelli, A., Bajetto, A., Allavena, G., Wollman, E. and Sitia, R.(1992).
Secretion of thioredoxin by normal and neoplastic cells through a leaderless
secretory pathway. J. Biol. Chem.267, 24161-24164.

Rubartelli, A., Bonifaci, N. and Sitia, R. (1995). High rates of thioredoxin
secretion correlate with growth arrest in hepatoma cells. Cancer Res.55,
675-680.

Sano, H., Forough, R., Maier, J. A., Case, J. P., Jackson, A., Engleka, K.,
Maciag, T. and Wilder, R. L. (1990). Detection of high levels of heparin
binding growth factor-1 (acidic fibroblast growth factor) in inflammatory
arthritic joints. J. Cell Biol.110, 1417-1426.

Sano, H., Hla, T., Maier, J. A., Crofford, L. J., Case, J. P., Maciag, T. and
Wilder, R. L. (1992). In vivo cyclooxygenase expression in synovial tissues
of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant
and streptococcal cell wall arthritis. J. Clin. Invest.89, 97-108.

Sanz, J. M., Jimenez, M. A. and Gimenez-Gallego, G.(2002). Hints of
nonhierarchical folding of acidic fibroblast growth factor. Biochemistry41,
1923-1933.

Sato, S., Burdett, I. and Hughes, R. C.(1993). Secretion of the baby hamster
kidney 30-kDa galactose-binding lectin from polarized and nonpolarized
cells: a pathway independent of the endoplasmic reticulum-Golgi complex.
Exp. Cell. Res.207, 8-18.

Shi, J., Friedman, S. and Maciag, T.(1997). A carboxyl-terminal domain in
fibroblast growth factor (FGF)-2 inhibits FGF-1 release in response to heat
shock in vitro. J. Biol. Chem.272, 1142-1147.

Shin, J. T., Opalenik, S. R., Wehby, J. N., Mahesh, V. K., Jackson, A.,
Tarantini, F., Maciag, T. and Thompson, J. A.(1996). Serum-starvation
induces the extracellular appearance of FGF-1. Biochim. Biophys. Acta
1312, 27-38.

Sims, P. J. and Wiedmer, T.(2001). Unraveling the mysteries of phospholipid
scrambling. Thromb. Haemost.86, 266-275.

Sloan, I. S., Horowitz, P. M. and Chirgwin, J. M.(1994). Rapid secretion
by a nonclassical pathway of overexpressed mammalian mitochondrial
rhodanese. J. Biol. Chem.269, 27625-27630.

Sparatore, B., Passalacqua, M., Patrone, M., Melloni, E. and Pontremoli,
S.(1996). Extracellular high-mobility group 1 protein is essential for murine
erythroleukaemia cell differentiation. Biochem. J.320, 253-256.

Srisailam, S., Wang, H. M., Kumar, T. K., Rajalingam, D., Sivaraja, V.,
Sheu, H. S., Chang, Y. C. and Yu, C.(2002). Amyloid-like fibril formation
in an all beta-barrel protein involves the formation of partially structured
intermediate(s). J. Biol. Chem.277, 19027-19036.

Srisailam, S., Kumar, T. K., Rajalingam, D., Kathir, K. M., Sheu, H. S.,
Jan, F. J., Chao, P. C. and Yu, C.(2003). Amyloid-like fibril formation in
an all beta-barrel protein. Partially structured intermediate state(s) is a
precursor for fibril formation. J. Biol. Chem.278, 17701-17709.

Stylianou, E. and Saklatvala, J.(1998). Interleukin-1. Int. J. Biochem. Cell
Biol. 30, 1075-1079.

Sudhoff, T. C. and Rizo, J.(1996). Synaptotagmins: C2-domain proteins that
regulate membrane traffic. Neuron17, 379-388.

Szebenyi, G. and Fallon, J. F.(1999). Fibroblast growth factors as
multifunctional signaling factors. Int. Rev. Cytol.185, 45-106.

Tanudji, M., Hevi, S. and Chuck, S. L. (2002). Improperly golded green
fluorescent protein is secreted via a non-classical pathway. J. Cell Sci.115,
3849-3857.

Tarantini, F., Gamble, S., Jackson, A. and Maciag, T.(1995). The cysteine
residue responsible for the release of fibroblast growth factor-1 residues in
a domain independent of the domain for phosphatidylserine binding. J. Biol.
Chem.270, 29039-29042.

Tarantini, F., LaVallee, T., Jackson, A., Gamble, S., Carreira, C. M.,
Garfinkel, S., Burgess, W. H. and Maciag, T.(1998). The extravesicular
domain of synaptotagmin-1 is released with the latent fibroblast growth
factor-1 homodimer in response to heat shock. J. Biol. Chem.273, 22209-
22216.

Journal of Cell Science 116 (24)



4881FGF1 and IL-1α release

Tarantini, F., Micucci, I., Bellum, S., Landriscina, M., Garfinkel, S.,
Prudovsky, I. and Maciag, T. (2001). The precursor but not the mature
form of IL1alpha blocks the release of FGF1 in response to heat shock. J.
Biol. Chem.276, 5147-5151.

Venkataraman, G., Raman, R., Sasisekharan, V. and Sasisekharan, R.
(1999). Molecular characteristics of fibroblast growth factor-fibroblast
growth factor receptor-heparin-like glycosaminoglycan complex. Proc.
Natl. Acad. Sci. USA96, 3658-3663.

Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D.,
Iwakura, Y., Dinarello, C. A. and Apte, R. N.(2003). IL-1 is required for
tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA100, 2645-
2650.

Weis, K. (2003). Regulating access to the genome: nucleocytoplasmic
transport throughout the cell cycle. Cell 112, 441-451.

Wessendorf, J. H., Garfinkel, S., Zhan, X., Brown, S. and Maciag, T.
(1993). Identification of a nuclear localization sequence within the structure
of the human interleukin-1 alpha precursor. J. Biol. Chem.268, 22100-
22104.

Wicki, R., Schafer, B. W., Erne, P. and Heizmann, C. W.(1996).
Characterization of the human and mouse cDNAs coding for S100A13, a
new member of the S100 protein family. Biochem. Biophys. Res. Commun.
227, 594-599.

Wiese, A., Gutsmann, T. and Seydel, U.(2003). Towards antibacterial
strategies: studies on the mechanisms of interaction between antibacterial
peptides and model membranes. J. Endotoxin Res.9, 67-84.

Winkles, J. A., Friesel, R., Burgess, W. H., Howk, R., Mehlman, T.,
Weinstein, R. and Maciag, T.(1987). Human vascular smooth muscle cells
both express and respond to heparin-binding growth factor I (endothelial
cell growth factor). Proc. Natl. Acad. Sci. USA84, 7124-7128.

Zavialov, A. V., Berglund, J., Pudney, A. F., Fooks, L. J., Ibrahim, T. M.,
MacIntyre, S. and Knight, S. D. (2003). Structure and biogenesis of the
capsular F1 antigen from Yersinia pestis. Preserved folding energy drives
fiber formation. Cell 113, 587-596.

Zhang, T., Woods, T. L. and Elder, J. T.(2002). Differential responses of
S100A2 to oxidative stress and increased intracellular calcium in normal,
immortalized, and malignant human keratinocytes. J. Invest. Dermatol.119,
1196-1201.

Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G. M., Arakawa, T.,
Hsu, B. T. and Rees, D. C.(1991). Three-dimensional structures of acidic
and basic fibroblast growth factors. Science251, 90-93.

Zoli, A., Altomonte, L., Caricchio, R., Galossi, A., Mirone, L., Ruffini, M.
P. and Magaro, M. (1998). Serum zinc and copper in active rheumatoid
arthritis: correlation with interleukin 1 beta and tumour necrosis factor
alpha. Clin. Rheumatol.17, 378-382.



 



 
 
 
 
 
 

 157 

 

 

         Paper 2 
 
 
 
 
 

 
 

“The intracellular domain of Notch ligand Delta 1 induces cell growth 
arrest” 

 
Vihren Kolev, Doreen Kacer, Radiana Trifonova, Deena Small, Maria Duarte, 

 Raffaella Soldi, Irene Graziani, Olga Sideleva, Barry Larman, 

 Thomas Maciag, Igor Prudovsky 

 
FEBS Letters 579: 5798-5802, 2005 

 



 



FEBS Letters 579 (2005) 5798–5802 FEBS 30035
The intracellular domain of Notch ligand
Delta1 induces cell growth arrest

Vihren Kolev1, Doreen Kacer, Radiana Trifonova2, Deena Small3, Maria Duarte4, Raffaella Soldi,
Irene Graziani, Olga Sideleva, Barry Larman, Thomas Maciag, Igor Prudovsky*

Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA

Received 31 August 2005; accepted 17 September 2005

Available online 4 October 2005

Edited by Ned Mantei

The article is dedicated to the memory of Tom Maciag, scientist, friend, and mentor.
Abstract Notch signaling involves proteolytic cleavage of the
transmembrane Notch receptor after binding to its transmem-
brane ligands, Delta or Jagged; and the resultant soluble intra-
cellular domain of Notch stimulates a cascade of transcriptional
events. The Delta1 ligand also undergoes proteolytic cleavage
upon Notch binding, resulting in the production of a free intra-
cellular domain. We demonstrate that the expression of the
intracellular domain of Delta1 results in a non-proliferating
senescent-like cell phenotype which is dependent on the expres-
sion of the cell cycle inhibitor, p21, and is abolished by co-
expression of constitutively active Notch1. These data suggest
a new intracellular role for Delta1.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.

Keywords: Notch; Delta intracellular domain; p21; DNA
synthesis; Senescence
1. Introduction

The Notch signaling pathway plays a critical role in cell fate

determination at all stages of organism development [1]. The

current model of the Notch signaling pathway suggests that
Abbreviations: CSL family, CBF, SuH, Lag-1; cdk, cyclin-dependent
kinase; flDl1, full length Delta 1; HUVEC, human umbilical vein
endothelial cells; Dl1icd, intracellular domain of Delta1; MEF, mouse
embryo fibroblast; N1icd, Notch1 intracellular domain; NLS, nuclear
localization sequence; sDl1, soluble Delta 1
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the Notch transmembrane receptor molecule is activated via

direct interaction with transmembrane ligands expressed on

the surface of neighboring cells. This interaction results in con-

secutive cleavages of Notch by an ADAMmetalloprotease and

by a presenilin-dependent c-secretase. The generated Notch

intracellular domain (icd) translocates into the nucleus where

it interacts with the transcription factors of the CSL family

or activates CSL-independent signaling pathway(s) (for review

see [2]).

We have demonstrated that the expression of the soluble

extracellular domain of Delta1 (sDl1) enhances cell prolifera-

tion, and induces the non-classical release of FGF1 [3]. Re-

cently Notch-dependent proteolytic cleavage was reported

for Drosophila and mammalian Notch ligands of the Delta

family [4–6]. Upon interaction with Notch, Delta is cleaved

by an ADAM metalloprotease and presenilin/c-secretase that

release Delta icd from the plasma membrane. Immunohisto-

chemistry experiments demonstrate that Drosophila Delta icd

is able to enter the nucleus [5]. Interestingly, the icd of mam-

malian Delta1 (Dl1icd) contains a PDZ-binding site [7,8].

The ability of Delta to undergo proteolytic cleavage of its icd

suggests a bidirectional character of Notch signaling. In the

present study, we investigated the biological effects of Dl1icd

expression in cell cultures. We demonstrate that Dl1icd in-

duced p21-dependent blockage of DNA synthesis and cell pro-

liferation arrest. Interestingly, constitutively active Notch1

(N1icd) was able to reverse Dl1icd1- induced phenotype.
2. Materials and methods

2.1. Cell cultures
Human umbilical vein endothelial cells (HUVEC) (ATCC) at pas-

sages 7–12 were grown in EBM medium supplemented with EGM-2
growth factor cocktail (Cambrex). NIH 3T3 murine fibroblasts
(ATCC), HEK293 cells (ATCC), p21�/�, p27�/� and wt mouse em-
bryo fibroblasts (MEF) (gift of Dr. C. Sherr, St. Jude Children�s Re-
search Hospital in Memphis, Tennessee) were grown in Dulbecco�s
modified Eagle�s medium (DMEM; Life Technologies) supplemented
with 10% fetal bovine serum (Hyclone).

2.2. DNA constructs, transfection, preparation of adenoviruses and

adenoviral transduction
To study the biological role of human Dl1icd, nucleotide sequence

coding for amino acids 569–723 was cloned in pcDNA 3.1-Zeo vec-
tor (Invitrogen) in restriction sites XbaI and HindIII. Additionally,
ation of European Biochemical Societies.

mailto:prudoi@mmc.org 
marialaptop
Highlight

marialaptop
Highlight

marialaptop
Highlight

marialaptop
Highlight

marialaptop
Highlight



V. Kolev et al. / FEBS Letters 579 (2005) 5798–5802 5799
the V5 tag was introduced in the N-terminus of Dl1icd. NIH 3T3
cells were transfected using FuGene (Roche) transfection reagent
according to the manufacturer�s instructions. Selection of stably
transfected NIH 3T3 cells was described earlier [9]. Dl1icd was also
cloned in the multiple cloning site of the pAdlox shuttle vector
(Invitrogen). The corresponding adenoviruses were prepared as de-
scribed [10], and used to transduce HUVEC and MEF. In a series
of experiments, an adenoviral construct expressing human N1icd
[10] was used to transduce HUVEC 16–24 h before Dl1icd transduc-
tion. The control LacZ adenoviral construct was described earlier
[10]. Alternatively, the control pcDNA3.1(�) Myc-His/LacZ con-
struct (Invitrogen) was used for transient transfection. Full length
human Delta 1 (flDl1) used for transient transfection was cloned
into the EcoR1 and Bam H1 sites of the plasmid pcDNA3.1A
(�) Myc-His (Invitrogen) [11]. The efficiency of Dl1icd and N1icd
transduction was controlled using immunofluorescence anti-V5 stain-
ing, and it was always above 90%.

2.3. Site-directed mutagenesis
To mutate the nuclear localization sequences (NLS) of Dl1icd, we

used a PCR-based strategy. Mutations were introduced with following
primers: Dl1icd-nls1 – (s) cagaagcacgccccagccgacccctg and ggacggct-
ggggcgtgcttctgcagcc (as); Dl1icd-nls2 – (s) gaagcatctgaacaaaggccggac-
tcgggctgttc and (as) cagccgagtccggcctttgttcagatgcttctccaccc, using a
Stratagene site-directed mutagenesis kit following the manufacturer�s
instructions. PDZ-binding site deletion mutant was generated by intro-
ducing a stop codon at amino acid 720 by using the following primers:
(s) gatgagtgcgtctgagcaactgaggtftaa and (as) cacctcagttgctcagacgcactc-
atccttctc.

2.4. Immunoblot analysis
Lysates of LacZ- and Dllicd-transduced HUVEC were prepared, re-

solved by 12% or 15% SDS–PAGE and immunoblotted as described
previously [12] using either a mouse anti-p21 (BD Biosciences), mouse
anti-p27 (BD Biosciences), rabbit anti-cyclin A (Santa Cruz), rabbit
anti-cyclin E (BD Biosciences), rabbit anti-cyclin D1 (Santa Cruz),
rabbit anti-b-actin (Sigma) or rabbit anti-pErk1/2 antibodies (Cell Sig-
naling).

2.5. Immunofluorescence confocal microscopy
Cells growing on glass coverslips were fixed 24 h after Dl1icd of

flDl1 transfection with 4% (w/v) paraformaldehyde. Anti-V5 (Invitro-
gen) or anti-Myc (Covance) antibodies followed by FITC-conjugated
secondary antibody were used to visualize, respectively, Dl1icd or
flDl1. TO-PRO3 (Molecular Probes) was used to stain DNA as de-
scribed previously [13]. Immunofluorescently stained cells were ana-
lyzed using a TC-SP confocal microscope (Leica).

2.6. DNA synthesis assay
[3H]-Thymidine autoradiography was used to evaluate the levels of

DNA synthesis as described previously [13]. The percentage of 3H-la-
beled nuclei was calculated using an inverted Olympus microscope. In
experiments with transient transfection, transfected cells were identi-
fied by immunoperoxidase staining as described [14] using antibodies
against V5 or against b-galactosidase.

2.7. Acidic b-galactosidase staining
Cells transduced with Dl1icd were washed in PBS, fixed for 5 min in

2% formaldehyde/0.2% glutaraldehyde, washed, and stained for acidic
b-galactosidase as described [15].

2.8. Real time RT-PCR
Total RNA from LacZ- and Dl1icd-transduced HUVEC was iso-

lated using RNAeasy (Qiagen) according to the manufacturer�s proto-
col. cDNA was obtained from 5 lg of total RNA with SuperScripte
(Invitrogen) reverse transcriptase by using an oligo(dT) primer (Invit-
rogen). Real-time PCR was performed using the Icycler IQ Real-Time
PCR (Bio-Rad) according to the manufacturer�s recommendations.
Amplification of the gapdh cDNA was used as the endogenous normal-
ization standard. Each sample was amplified in triplicate. The follow-
ing specific primers were used for RT-PCR analysis of p21: (s)
gattagcagcggaacaagga, (as) caactactcccagccccata.
3. Results

To study the biological effects of Dl1icd in cell culture, we

transfected NIH 3T3 cells for further selection of cells stably

expressing Dl1icd. Surprisingly, unlike sDl1 transfectants [3],

cells transfected with Dl1icd failed to form colonies. Instead,

Dl1icd transfectants surviving selection assumed morphology

reminiscent of senescent fibroblasts: large, well-spread cells

with hypertrophic cytoplasm (Fig. 1A). Since clones of stable

Dl1icd transfectants did not arise, we prepared an adenoviral

construct for Dl1icd expression, which allowed us to efficiently

express Dl1icd in non-immortalized cells, such as HUVEC.

To assess the ability of Dl1icd to inhibit DNA synthesis in

HUVEC, Dl1icd- and control LacZ-transduced HUVEC were

labeled with [3H]-thymidine 48 h after transduction for a peri-

od of 16 h. The expression of Dl1icd resulted in the dramatic

inhibition of DNA synthesis (Fig. 1B). Similar results were ob-

tained with NIH 3T3 (data not shown) or HEK293 cell trans-

duced with Dl1icd (Fig. 1F).

To further evaluate the status of Dl1icd-transduced HU-

VEC, we assessed the expression of b-galactosidase active

at pH 6, a common biomarker of senescent non-immortal-

ized cells [15]. Dl1icd transduction induced the activity of

acidic b-galactosidase in HUVEC after 2 days, and most of

the cells were acidic b-galactosidase positive after 4 days

(Fig. 1C). The growth of Dl1icd-transduced HUVEC

stopped, and cells remained viable and non-proliferating

for at least 2 months (data not shown). Since cell senescence

in vitro is normally accompanied by the reduction of telo-

mere length [16], we assessed this parameter by using the

Telomere Length Assay kit (Roche). Interestingly, no signif-

icant difference in telomere length was observed between

Dl1icd- and LacZ-transduced cells 4 days after transduction

(data not shown).

Recent studies demonstrated nuclear localization of Dro-

sophila Delta icd [5]. To evaluate the ability of mammalian

Dl1icd to localize into the nucleus, we transiently transfected

HEK293 cells with C-terminally Myc-tagged human flDl1

and N-terminally V5-tagged Dl1icd. Confocal microscopy

analysis, using the anti-Myc antibody, demonstrated cytoplas-

mic distribution of flDl1 (Fig. 1E). Conversely, Dl1icd was

found both in the nuclei and cytoplasm of transfected cells

(Fig. 1E). Analysis of the amino acid sequence of Dl1icd re-

veals two potential NLS domains – 575KHRPP579 and
689RKRPP692 (Fig. 1D). To investigate the functionality of

Dl1icd NLS and their importance for Dl1icd biological effect,

we prepared a series of mutants: in Dl1icd-nls1, amino acids
575KHRPP579 were mutated to KHAP; and in Dl1icd-nls2,

amino acids 689RKRPP692 were mutated to RQP. In Dl1icd-

nlsDM (double mutant), both hypothetical NLS in Delta1

were mutated as described above. While both Dl1icd-nls1

and Dl1icd-nls2 exhibited nuclear and cytoplasmic localization

similarly to wild type Dl1icd, Dl1icd-nlsDM was detected

exclusively in the cytoplasm of transfected cells (Fig. 1E).

The autoradiographic studies of DNA synthesis in transiently

transfected HEK293 cells demonstrated that when one or both

of the Delta�s NLS were mutated, the percentage of labeled nu-

clei was similar to that in the cells transduced with wild type

Dl1icd, i.e., 3 times lower than in cells transfected with LacZ

(Fig. 1F). In a similar series of experiments, we assessed the

role of the C-terminal PDZ-binding domain of Dl1icd in its

antiproliferative effect. We produced a deletion mutant of



Fig. 1. Cells expressing Dl1icd adopt a senescent-like phenotype. (A) Cell morphology. Dl1icd-transfected NIH 3T3 cells 4 days after transfection
and zeocin selection (phase contrast). (B) DNA synthesis. HUVEC were labeled for 16 h with 1 lCi/ml [3H]-thymidine starting at 48 h after
transduction with Dl1icd or LacZ. Bars represent average percentage of 3H-labeled nuclei in LacZ- and Dl1icd-transduced HUVEC ± standard
deviation (S.D.). (C) Acidic b-galactosidase expression. HUVEC adenovirally transduced with Dl1icd stained for acidic b-galactosidase 4 days after
transduction. (D) Scheme of Dl1icd structure showing NLS and the PDZ-binding domain. (E) Nuclear localization of Dl1icd and its NLS mutants.
HEK293 cells were transiently transfected either with flDl1, Dl1icd, or its corresponding NLS mutants as indicated. Cells were fixed, immunostained
with anti-V5 antibody (Dl1icd and derived NLS mutants), or anti-Myc antibody (flDl1), and co-stained with TO-PRO3 48 h after transfection, and
studied using confocal microscopy as described earlier [13]. (F) DNA synthesis. HEK293 were transiently transfected with LacZ, Dl1icd or Dl1icd-
NLS mutants. DNA synthesis after transfection was determined using [3H]-thymidine incorporation as described in Section 2. The average
percentage of labeled nuclei ± S.D. is represented.
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Dl1icd lacking the C-terminal PDZ-binding domain

(721TEV723), and found that it induces the inhibition of

DNA synthesis similarly to the wild type Dl1icd (data not

shown). Thus, nuclear localization is not required for the anti-

proliferative activity of Dl1icd, and PDZ-binding domain is

dispensable for this effect. It can be hypothesized that PDZ-

binding site is instead relevant to the interaction of transmem-

brane flDl1 with its cytoplasmic partners. The particular re-

gion(s) of Dl1icd required for the inhibition of cell

proliferation remains to be elucidated.

Progression through the cell cycle is controlled by a group of

cyclin-dependent kinases (cdks) and their inhibitory proteins

[17]. Therefore, we assayed the expression of the cdk inhibi-

tors, p21 and p27, in Dl1icd expressing cells. Western blot

analysis revealed significant induction of p21 and p27 expres-

sion in HUVEC transduced with Dl1icd (Fig. 2A). At the same

time, the expression of cyclins D1, A, and E as well as the lev-

els of phosphorylated Erk 1 and Erk 2 in Dl1icd-transduced

cells were not significantly changed (data not shown). We

hypothesized that Dl1icd may induce growth arrest through
upregulation of p21 or p27 expression or both. To assess this

hypothesis, we utilized p21�/� and p27�/� MEF. Similarly

to wild type (wt) MEF, Dl1icd transduction resulted in

DNA replication blockage in p27 knockout MEF but the

p21 knockout MEF were refractory to the inhibitory effect

of Dl1icd (Fig. 2B). To further elucidate the stage of expres-

sion at which Dl1icd regulates p21 levels, we performed quan-

titative RT-PCR analysis and p21 promoter assay. We

demonstrated that Dl1icd expression resulted in a strong in-

crease of both p21 promoter activity in HEK293 cells (data

not shown) and p21 mRNA levels in HUVEC (Fig. 2C).

Notch signaling determines the fate of many cell types

through regulation of cell proliferation, differentiation, and

apoptosis [1]. Since the expression of Notch1 overlaps the

expression patterns of its ligands, Delta1 and Jagged1 [18–20],

and since ligand-activated Notch cleavage results in the produc-

tion of the soluble intracellular fragment of Notch, we sought to

determine whether N1icd interferes with the biological effects of

Dl1icd. To this end, we transduced HUVECwith N1icd-adeno-

virus 16 h prior to Dl1icd adenoviral transduction. Expression



Fig. 2. Dl1icd-induced proliferation blockage is p21-dependent. (A)
Dl1icd- and LacZ-transduced HUVEC were harvested 48 h after
adenoviral transduction. Cell lysates were resolved by 15% SDS–
PAGE and immunoblotted for cdk inhibitors, p21 and p27. Immu-
noblot for b-actin served as control of equal protein loading. (B) DNA
synthesis in p21 and p27 knockout MEF expressing Dl1icd. p21�/�,
p27�/�, and control wt MEF were labeled for 16 h with 1 lCi/ml [3H]-
thymidine starting at 48 h after transduction with Dl1icd. Bars
represent average percentage of 3H-labeled nuclei ± S.D. (C) Dl1icd
induced expression of p21 mRNA in HUVEC. The expression of p21
was assessed by real time RT-PCR using the primers and conditions
described in Section 2. The bars represent p21 mRNA levels
normalized to gapdh mRNA levels ± S.D.
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of N1icd abrogated the Dl1icd-induced senescence-like pheno-

type, as it was manifested by prevention of the expression of

acidic b-galactosidase and of DNA synthesis blockage
Fig. 3. N1icd expression prevents the effects of Dl1icd. (A) Dl1icd-induced
LacZ, and 16 h later, the second transduction with Dl1icd or LacZ was per
second transduction [13]. The average percentages of [3H]-thymidine-labeled
activity. HUVEC were transduced with N1icd or LacZ; and 16 h later, cells
stained for acidic b-galactosidase 4 days after the second transduction. (C) p2
later, cells were additionally transduced with either Dl1icd or LacZ. 48 h
immunoblotted for p21. Immunoblot for b-actin served as control of equal
(Fig. 3B and A). Also, N1icd expression abrogated the induc-

tion of p21 expression by Dl1icd (Fig. 3C).
4. Discussion

We found that Dl1icd induced a p21-dependent inhibition of

cell proliferation. Under the same experimental conditions the

artificial expression of both LacZ and N1icd failed to inhibit

DNA synthesis and, moreover, N1icd specifically abrogated

the effect of Dl1icd, demonstrating that the antiproliferative

activity of Dl1icd was not due to its overexpression. The irrel-

evance of nuclear localization of Dl1icd for its anti-proliferative

effect indicated that Dl1icd does not participate directly in the

activation of p21 transcription. This effect is most probably

mediated through a cytoplasmic signaling pathway. Interest-

ingly, HUVEC express Notch1, Delta1, and glycosyltransferase

Lunatic Fringe (LFng) (data not shown). LFng potentiates the

interaction between Notch1 and Delta1 [21]. The ability of

HUVEC to proliferate may be maintained due to the simulta-

neous production of N1icd and Dl1icd, which may be a result

of the efficient interaction of Notch 1 and Delta 1 promoted

by LFng activity.

In the developing Drosophila wing, activation of Notch re-

sults in direct upregulation of cell proliferation without affect-

ing cell fate determination [22]. In hematopoietic cells, the

expression of N1icd results in delays of cell differentiation

and diminishes the number of cells in the G0/G1 phase of the

cell cycle, which also suggests induction of cell proliferation

[23]. In order for proper Notch signaling to occur, there must

be a distinction between a signaling cell versus a receiving cell.

Based on the observations that Dl1icd induced non-proliferat-

ing phenotype, we suggest that its role in developing organisms

is related to cell synchronization, tissue sculpting, and repair.

In this scenario, at least three hypothetical situations may ex-

ist: (i) when a cell expressing Delta and Notch is surrounded by
inhibition of DNA synthesis. HUVEC were transduced with N1icd or
formed. Cells were labeled for 16 h with [3H]-thymidine 36 h after the
nuclei ± S.D. are presented. (B) Dl1icd-induced acidic b-galactosidase
were additionally transduced with either Dl1icd or LacZ. Cells were
1 expression. HUVEC were transduced with N1icd or LacZ; and 16 h
later cell lysates were prepared, resolved by 15% SDS–PAGE, and
protein loading.
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similar cells, the signals conducted through ligand and receptor

are balanced and normal tissue homeostasis is maintained; (ii)

when signaling through Notch is downregulated, e.g., by

Numb [24], Delta signaling dominates over Notch signaling

and cells stop proliferating as a result of Delta icd production;

(iii) when Notch activation by Delta from a neighboring cell is

potentiated by Fringe, the balance of signaling through Notch

and Delta is skewed, and cell proliferation is upregulated.
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Summary 

Thrombin, a mediator of blood coagulation, induces cell proliferation and migration upon vascular injury. 

The mitogenic effect of thrombin is not well understood. We report that thrombin induced expression and 

non-classical release of fibroblast growth factor 1 (FGF1). FGF signaling underlies thrombin mitogenic 

activity, since this protease did not stimulate proliferation in cells expressing a dominant-negative form of 

FGF receptor 1. Thrombin failed to induce the rapid release of FGF1 in fibroblasts with the knockout for 

protease activated receptor 1 (PAR1), suggesting that this rapid effect is dependent on PAR1. Thrombin 

cleaved the Notch ligand, Jagged1, in its extracellular domain, and produced a soluble form of Jagged1, an 

inhibitor of Notch signaling and inducer of FGF1 expression and release. Long-term thrombin stimulation 

induced FGF1 release from PAR1 null cells, which express endogenous Jagged1. Overexpression of 

Jagged1 in PAR1 null cells enabled them to accelerate the release of FGF1 in response to thrombin. Thus, 

in addition to its role as an effector of the blood coagulation, thrombin may induce FGF1 release through 

two pathways: one is PAR1-dependent, and the other is mediated by the cleavage of Jagged1. These data 

demonstrate the existence of novel crosstalk between the thrombin, FGF, and Notch signaling. 

 

Introduction 

Thrombin, a multifunctional serine protease released at sites of vascular injury elicits blood coagulation 

(Fenton, 1986). Thrombin is also a well known mitogen (Van Obberghen-Schilling et al., 1985) and 

regulator of angiogenesis (Richard et al., 2001). Thrombin-induced signaling in the endothelium results in 

multiple phenotypic changes including: alterations in cell shape; endothelial monolayer permeability 

(Rabiet, 1996); mobilization of adhesive molecules to the endothelial surface (Kaplanski, 1998); DNA 

synthesis (Herbert et al., 1994); cell migration (Pankonin, 1991); and angiogenesis in vivo (Hirano and 

Kanaide, 2003; Minami et al., 2004; Vu et al., 1991).  Thrombin signaling mediates proliferation of 

vascular smooth muscle cells in vivo (Hirano and Kanaide, 2003). Thrombin induces its biological 

responses predominantly through protease-activated receptors (PAR) (Vu et al., 1991) expressed in various 

cell types (Algermissen et al., 2000).  Activation of these G protein-coupled receptors occurs through a 
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proteolytic modification in their amino-terminal domains, leading to a cascade of downstream effects (Vu et 

al., 1991).  The expression and/or release of several growth factors are induced in response to thrombin 

including fibroblast growth factor 2 (FGF2) (Benezra et al., 1993), platelet-derived growth factor (Daniel, 

1986; Harlan et al., 1986), vascular endothelium growth factor (VEGF) (Bassus et al., 2001; Tsopanoglou 

and Maragoudakis, 1999). Thrombin also upregulates the insulin-like growth factor receptor 1 

(Delafontaine et al., 1996), and induces the activation of fibroblast growth factor receptor 1 (FGFR1) 

(Rauch et al., 2004). However, mechanisms underlying the mitogenic activity of thrombin remain obscure. 

Similarly to thrombin, fibroblast growth factor 1 (FGF1) is involved in the process of tissue and 

vascular repair (Bjornsson et al., 1991), and the mechanism of its mitogenic activity is more clearly defined 

(Grieb and Burgess, 2000).  FGF1 lacks a classical signal peptide sequence and is exported through a non-

classical ER-Golgi-independent pathway (Prudovsky et al., 2003). Other growth factors and cytokines 

including interleukin 1β (Rubartelli et al., 1990), interleukin 1α (Tarantini et al., 2001), and FGF2 (Engling 

et al., 2002; Florkiewicz et al., 1995; Florkiewicz et al., 1998; Mignatti et al., 1992) are also released 

through non-classical pathways, and non-classical protein release is being studied intensively (Nickel, 2005; 

Prudovsky et al., 2003). We demonstrated that FGF1 is released from NIH 3T3 cells into the extracellular 

compartment in response to cellular stress as a non-covalent complex with the small calcium-binding 

protein, S100A13, and the p40 form of the membrane-docking protein, Synaptotagmin 1 (Prudovsky et al., 

2003). These results are consistent with our previous findings that FGF1 is purified from bovine brain as a 

non-covalent complex containing FGF1, p40 Synaptotagmin 1, S100A13, and Annexin 2 ((Mouta Carreira 

et al., 1998) and Soldi, R., Prudovsky, I. and Maciag, T. unpublished results). The assembly of FGF1 

release complex occurs at the inner leaflet of the cell membrane (Prudovsky et al., 2002), which is the 

Annexin 2 localization site (Kim and Hajjar, 2002). The N-terminus of Annexin 2 associates with p11, a 

member of the S100 family (Glenney, 1986). Peterson et al. demonstrated the capability of thrombin to 

enhance the presence of Annexin 2 and p11 on the endothelial cell surface, through their translocation from 

the inner to outer leaflet of plasma membrane (Peterson et al., 2003), leads to the hypothesis that thrombin 
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induces the Annexin 2-mediated flip-flop of the FGF1 release complex across the cell membrane. 

We reported that the suppression of Notch-mediated signaling by the soluble non-transmembrane 

form of the Notch ligand, Jagged1, a 117 kDa soluble Jagged1 (sJ), induces non-classical release of FGF1 

under non-stress conditions (Small et al., 2003). In addition, sJ1 expression induces FGF1 transcription, and 

development of a FGFR1-dependent transformed cell phenotype (Small et al., 2003). Premature truncations, 

leading to the production of non-transmembrane forms of human Jagged1, result in Alagille Syndrome, a 

disease characterized by spontaneous bleeding, congenital heart defects, and pulmonary stenosis (Joutel and 

Tournier-Lasserve, 1998). Since our preliminary amino acid sequence analysis revealed two potential 

thrombin cleavage sites in the extracellular domain of the Jagged1 sequence, we hypothesized that thrombin 

could be a protease involved in the production of soluble non-transmembrane forms of Jagged1. 

We questioned whether thrombin can induce the expression and release of FGF1 into the 

extracellular compartment and, if so, whether this effect is mediated by the cleavage of Jagged1. We 

demonstrated that thrombin stimulated the expression and release of FGF1 under non-stress conditions. We 

also found that thrombin enabled the production of a short extracellular form of Jagged1. The analysis of 

FGF1 release dynamics from thrombin-treated PAR1+/+ and PAR1-/- cells demonstrated that FGF1 export 

could be stimulated by at least two mechanisms, the early one PAR1-dependent and the later mediated by 

Jagged1 cleavage. Our results confirm earlier observations of the interplay between FGF and Notch 

pathways, and add thrombin and PAR1 as new participants in this signaling network. 

 

Materials and Methods 

Generation of expression constructs and stable NIH 3T3 transfectants  

A thrombin-resistant FGF1 mutant was constructed by site-directed mutagenesis of the FGF1pMEXneo 

vector (Jackson et al., 1992). The codon encoding arginine 136 (AGA) was changed to a lysine (AAA) 

(FGF1R136K) by using the primers: 5’-CTGCAAACGCGGTCCTAAAACTCACTATGGAG-3’ forward 

and 5’-CTGGCCATAGTGAGTTTTAGGACCGCGTTTGCAG-3’ reverse. The N-terminally V5-tagged 

full-length Jagged1 (FLJ1NV5) construct was obtained by cloning the complete human Jagged1 ORF into 
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BamHI and XhoI restriction sites of pcDNA3.1/Hygro(+) (Invitrogen). The V5-His tag was excised from the 

pcDNATM4/V5-His vector, and inserted into the FLJ1-pcDNA3.1/Hygro(+) between the signal peptide and 

the Delta, Serrate, Lag-2 (DSL) domain of full-length Jagged1 (FLJ1). For this purpose, the two new 

restriction sites, NotI and EcoRI, were introduced in FLJ1-pcDNA3.1/Hygro(+) construct by PCR 

mutagenesis. sJ1 (39kDa) was obtained from the N-terminally V5-His-tagged FLJ1-pcDNA3.1/Hygro(+) 

construct by insertion of a stop codon at position 349, followed by a PmeI restriction site, which was then 

used to clone the fragment back into the pcDNA3.1/Hygro(+) vector. The mutagenesis reactions were 

performed using the Quickchange site-directed mutagenesis kit (Stratagene), and the generated sequences 

were confirmed by DNA sequencing. NIH 3T3 cell transfectants expressing FGF1R136K, sJ1 (39kDa), and 

insert-less control vector pcDNA3.1/Hygro(+)  were generated by utilizing the Fugene 6 reagent (Roche), 

and selected by using geneticin (GIBCO) or hygromycin (Roche). Transfectants were screened for gene 

expression by utilizing an anti-FGF1 rabbit antibody for FGF1R136K or an anti-V5 antibody (Invitrogen) 

for the sJ1 (39kDa) clones. The genome incorporation of insert-less control vector pcDNA3.1/Hygro(+) was 

screened by PCR. The FGF1R136K, FLJ1NV5, and sJ1 (39kDa) constructs were also cloned in the the 

adenoviral shuttle vector, pAdlox, and recombinant adenoviruses were produced and purified as described 

(Hardy et al., 1997).  

 

Cell culture 

NIH 3T3 cells (ATCC), Swiss 3T3 cells (ATCC), FGF1R136K NIH 3T3 transfectants, and FLJ1 NIH 3T3 

transfectants (Small et al., 2001) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM; Life 

Technologies) containing 10% Bovine Calf Serum (BCS; Hyclone) and 1x antibiotic-antimycotic mixture 

(Life Techonologies, Inc.). Stable NIH 3T3 cell transfectants cultures were supplemented with 400 µg/L 

Geneticin  (GIBCO) or 200 µg/ml Hygromycin (Roche).  PAR1 null mouse embryonic fibroblasts and 

PAR1 null fibroblasts transfected with PAR1 (gifts from S. Coughlin, University of California, San 

Francisco, CA), and HEK 293 cells (ATCC) were grown in DMEM supplemented with 10% Fetal Bovine 
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Serum (Hyclone). The cells used in the FGF1 release experiments were grown on human fibronectin-coated 

(10 µg/cm2) dishes, as described (Jackson et al., 1992).  

 

Adenoviral transduction 

PAR1 null mouse embryonic fibroblasts, NIH 3T3 or HEK 293 cells were transduced with different 

adenoviruses by incubation in serum-free medium with approximately 103 PFU of adenovirus, as described 

(Mandinova et al., 2003).  In addition to FGF1R136K, FLJ1NV5, and sJ1 (39kDa) adenoviruses, we used 

the previously reported adenoviruses expressing β-galactosidase and the constitutively active form of 

Notch1 (caN1) (Small et al., 2003). Adenoviral transductions were performed 24 or 48 hours before plating 

the cells. The efficiency of transduction for FLJ1NV5 and caN1 was assessed by immunofluorescence by 

using an anti-V5 monoclonal antibody. 

 

Thrombin stimulation and immunoblot analysis of FGF1 release  

Stable FGF1R136K NIH 3T3 cell transfectants, adenovirally transduced NIH 3T3 cells or adenovirally 

transduced PAR1 null cells were washed with serum-free DMEM containing 5 U/ml of heparin (Sigma), 

and stimulated with either 1 U/ml thrombin (a gift from J. Fenton, New York State Department of Health, 

Albany, NY) or 5.7 µM Thrombin Receptor-Activator Peptide (TRAP, Sigma) at 37°C for different time 

periods.  Control cells were incubated in the absence of thrombin or TRAP for the same time periods. The 

heat shock-induced release of FGF1 was stimulated by incubation of cells at 42°C for 110 minutes. 

Conditioned media and cell lysates were collected and tested for FGF1 content by heparin chromatography 

and immunoblot analysis (Jackson et al., 1992).  Processed conditioned medium from one 150 mm cell 

culture dish was used at each time point. Also, 1/10 of the cell lysate derived from one 150 mm plate was 

loaded to each gel for FGF1 expression control. Cell viability was assessed by measuring lactate 

dehydrogenase (LDH) activity in conditioned medium after filtration (Mandinova et al., 2003). In the long-

term thrombin stimulation experiments, PAR1 null cells were adenovirally transduced with FGFR136K for 
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48 hours. Further, the cells were washed in serum-free DMEM containing 5 U/ml of heparin, and incubated 

for additional 2 hours in the complete medium that was preconditioned for 2 or 48 hours with untransduced 

PAR1 null cells in the presence of either thrombin (1 U/ml) or TRAP (5.7 µM). To evaluate the effect of 

Jagged1 overexpression upon the ability of PAR1 null cells to release FGF1 in response to short-term 

thrombin stimulation, PAR1 null cells were transduced for 48 hours with FLJ1NV5 or control β-

galactosidase adenoviruses. Then the cells were stimulated for 2 hours with thrombin, and conditioned 

media were collected and added for 2 hours to PAR1 null cells transduced with FGF1R136K. After 2 hours 

of incubation, conditioned media were tested for FGF1 release, as described above.  

 
Preparation of cell membranes  

FGF1R136K NIH 3T3 cells were washed with serum-free DMEM containing 5 U/ml of heparin, and 

stimulated with 1 U/ml thrombin at 37°C for 30 minutes. Control cells were incubated in the absence of 

thrombin for 30 minutes. Next, the cells were washed in PBS, scraped, and quickly spun down. The cell 

pellet was then resuspended in 1 ml of hypotonic solution (2.5 mM HEPES pH 7.0, 25 mM Sucrose and 

protease inhibitor cocktail (Roche)), and incubated on ice for 20 minutes. The pellets were homogenized in 

a Dounce homogenizer and centrifuged for 10 minutes at 10,000 g 4°C. Then the supernatants were 

collected and centrifuged at 40,000 rpm for 18 hours to precipitate the membranes. 

 
The cell-free translation of Jagged1, thrombin cleavage, and automated Edman microsequencing  

A plasmid containing FLJ1 (Zimrin et al., 1996) was transcribed and translated in vitro in the presence of a 

[35S]-Met/Cys protein-labeling mixture (Amersham), using the T7-coupled reticulocyte lysate system 

according to the manufacturer’s instructions (Promega).  After 60 minutes of incubation at 30°C, the 

reaction was stopped by the addition of 0.05% DTT.  Half of the reaction mixture was incubated with 1 U 

of thrombin for 15 minutes at 37°C, and the reaction was stopped by boiling in the presence of SDS-PAGE 

sample buffer.  The samples were resolved by 12% SDS-PAGE, transferred to a PVDF membrane, and 

analyzed by autoradiography.  The bands corresponding to the thrombin cleavage products were excised 
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and subjected to automated Edman microsequencing (Applied Bio Sciences, Maine Medical Center 

Research Institute, Protein, Nucleic Acid, and Cell Imaging Core).  The products of each cycle were 

collected prior to resolution by HPLC and quantified by liquid scintillation spectroscopy (Beckman). 

 
Cleavage of Jagged1 expressed on the cell surface, and immunopreciptation of soluble Jagged1 from 

conditioned medium  

HEK 293 cells were transduced with the FLJ1NV5 adenovirus. Control cells were transfected with the 

adenovirus expressing β-galactosidase. Forty-eight hours after transduction, the cells were washed with 

DMEM and incubated with 1 U/ml thrombin for 1 hour in serum-free medium at 37°C. In control dishes, the 

cells were incubated with or without 1 U/ml thrombin in the presence of hirudin (Sigma) at a final 

concentration of 5 U/ml or in the presence of protease inhibitor cocktail. Conditioned media were collected 

and concentrated by Centricon devices (Millipore). Then, 1 ml of conditioned medium was 

immunoprecipitated with 1 µg of anti-V5 antibody, resolved on 12% SDS-PAGE, and immunoblotted using 

the anti-V5 antibody.  

 
Nuclear run-on, RT-PCR, and real time RT-PCR analysis of FGF1 expression  

Nuclear run-on analysis of FGF1 expression in Swiss 3T3 and NIH 3T3 cells was performed as previously 

described (LaVallee et al., 1998). Linearized and alkali denaturated plasmid constructs (0.4 µg/dot) 

containing either the fgf1 or gapdh cDNA were used as probes. Membranes were analyzed utilizing a 

phosphoimager (Molecular Dynamics). RT-PCR was performed with total RNA isolated, using the RNeasy 

kit (Qiagen) from PAR1 null mouse embryonic fibroblasts, insert-less vector control, sJ1 (117kDa) (Small 

et al., 2001), and sJ1 (39kDa) NIH 3T3 cell transfectants, as well as from NIH 3T3 cells adenovirally 

transduced with β-galactosidase or caN1.  The following PCR primers were utilized: Jagged1 5’-

GGCGGCTGGGAAGGAACAAC-3’ forward and 5’-TCACCGGCTGGAGACTGGAAGA-3’ reverse; 

fgf1: 5’-ATGGCTGAAGGGGAGATCACAACC-3’ forward and 5’-CGCGCTTACAGCTCCCGTTC-3’ 

reverse. RT-PCR was performed with 1 µg RNA, using the Platinum Taq One Step RT-PCR kit 
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(Invitrogen).  gapdh expression served as a control for RNA loading. Real-time PCR was performed using 

the Icycler IQ Real-time PCR (Bio-Rad), according to the manufacturer’s recommendations. Amplification 

of the gapdh cDNA was used as the endogenous normalization standard.  Each sample was amplified in 

triplicate. 

 
DNA synthesis assay 

A combination of [3H]-thymidine autoradiography and immunohistochemistry was used to evaluate DNA 

synthesis levels in Swiss 3T3 cells expressing a dominant-negative (dn) FGFR1 mutant.  Cells were plated 

on coverslips for 24 hours.  The cells were transfected with an X. laevis dnFGFR1 (Neilson and Friesel, 

1995) deletion mutant lacking the FGFR1 intracellular domain, using the Fugene 6 reagent.  After 24 hours, 

the medium was changed to DMEM containing 0.25% BCS; following a 48-hour incubation in low BCS, 

the cells were stimulated for 24 hours with either 1 U/ml of thrombin, 10% BCS or 10 ng/ml of recombinant 

FGF1 plus 10 U/ml of heparin prior to [3H]-thymidine (1 µCi/ml, NEN) addition for 12 hours.  The cells 

were fixed and immunostained using a polyclonal antibody against the extracellular domain of X. laevis 

FGFR1, followed by an immunoperoxidase-conjugated goat anti-rabbit IgG secondary antibody.  

Immunostained cells were processed for autoradiography, as described (Prudovsky and Tsong, 1991).  

 
Dual luciferase reporter assay of CSL-dependent transcription  

Insert-less vector control, sJ1 (117kDa) (Small et al., 2001) and sJ1 (39kDa) NIH 3T3 cell transfectants 

were plated on fibronectin-coated cell culture dishes, and transiently transfected using Fugene 6 at 

approximately 50% confluency with 500 ng of a luciferase construct driven by four tandem copies of the 

CBF1 response element (Small et al., 2001). Cotransfection with 100 ng of the TK Renilla (Promega) 

construct was used as an internal control for transfection efficiency. In additional experiments, stable insert-

less vector control and Jagged1 NIH 3T3 cells transfectants were treated with or without 1, 2 or 4 U/ml 

thrombin or 10, 20 or 40 nM TRAP for 12 hours before and 48 hours after transfection. Forty-eight hours 

after transfection, the cells were harvested and the luciferase/renilla activity was measured by utilizing the 
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Dual Luciferase Reporter Assay System (Promega).  Each experiment was performed in triplicate.  

 
Immunofluorescence and confocal microscopy  

NIH 3T3 cells were plated on fibronectin-coated glass coverslips in 6-well TC plates at 105 cells/well. The 

next day, the cells were transfected with FGF1:HA cloned in the pCR3.1 vector (1µg of DNA per well) (a 

gift from A. Baird, Human BioMolecular Research Institute, San Diego, CA) using the Fugene 6 reagent.  

The following day, the cells were stimulated for 30 minutes with 1 U/ml thrombin. The cells were fixed, 

immunofluorescently stained for the HA tag, and studied using the LTCS-SP confocal microscope (Leica) 

as described (Prudovsky et al., 2002).  

 
Densitometric analysis  

After scanning the immunoblots, the optical densities of individual bands were analyzed by ImageQuant 

software (Molecular Dynamics). The area of each band analyzed was kept constant for each blot. All 

samples were normalized against FGF1 level in cell lysates. 

 

Results 

Thrombin induces the expression of FGF1 

Since thrombin induces the expression of several growth factors (Bassus et al., 2001), we questioned 

whether FGF1 was among them. The expression of the FGF1 transcript in NIH 3T3 and Swiss 3T3 cells, in 

response to thrombin, was analyzed by nuclear run-on assay. Induction of FGF1 mRNA was initially 

detected 15 minutes after the addition of thrombin to NIH 3T3 cells, increased over time, and reached a 

plateau after 2 hours (Fig. 1). Similar results were obtained with Swiss 3T3 cells (data not shown).  

 
Thrombin rapidly induces the non-classical release of FGF1 

The majority of FGF family members contain a N-terminal hydrophobic signal peptide that facilitates the 

direct import into the endoplasmic reticulum for transport via the Golgi apparatus to the extracellular 

compartment (Blobel, 1995). However, FGF1 and FGF2 do not have a signal peptide; they are released 
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through non-classical export mechanisms (Prudovsky et al., 2003; Nickel, 2005). Since thrombin induced 

FGF1 expression (Fig. 1), we sought to determine whether it induces FGF1 release.  Because FGF1 is 

susceptible to thrombin cleavage at arginine 136 (Erzurum et al., 2003), we utilized a thrombin-resistant 

FGF1 mutant (FGF1R136K). NIH 3T3 cells stably transfected with FGF1R136K were stimulated for 5, 15, 

30, and 60 minutes with 1 U/ml thrombin. The addition of thrombin to FGF1R136K NIH 3T3 cell 

transfectants at 37°C resulted in the rapid, sustainable appearance of the FGF1R136K mutant in the 

extracellular compartment (Fig. 2A). At the same time, similarly to wild type FGF1 (Jackson et al., 1992), 

the release of the FGF1R136K mutant required 90 minutes of temperature stress at 42°C in order to be 

detected by immunoblotting (data not shown). Similarly to heat shock, thrombin treatment did not induce 

the release of lactate dehydrogenase from the cells (data not shown); thus neither treatment resulted in cell 

damage.  Furthermore, release of the FGF1R136K mutant was dependent on the concentration of thrombin 

with a maximal response at 1 U/ml (10 nM) (Fig. 2B). This concentration is physiologically relevant 

because the level of prothrombin in circulation is 1-2 µM, and fibrin clot formation occurs at 10-30 nM 

thrombin concentration (Mann, 2003). Heat shock conditions stimulating FGF1 release induce the 

translocation of FGF1 to the cell membrane (Prudovsky et al., 2002). We applied immunofluorescence 

confocal microscopy to evaluate the effect of thrombin on the intracellular localization of FGF1:HA. We 

observed that short thrombin treatment of NIH 3T3 cells transiently transfected with FGF1:HA resulted in 

the translocation of FGF1 to cell periphery, near the cell membrane (Fig. 2C, top panel). We additionally 

performed subcellular fractionation of FGF1R136K NIH 3T3 cell transfectants, treated and untreated with 

thrombin for 30 minutes at 37°C. Thrombin induced the appearance of FGF1R136K in the membrane 

fraction (Fig. 2C, lower panel). After thrombin treatment, 28.7% of FGF1R136K was translocated to the 

membrane fraction, as determined by densiometric gel analysis (note that all of the cell lysate from one 150 

mm cell culture dish was used for each treatment).  Thus, thrombin efficiently induced the release of FGF1 

under non-stress conditions with rapid kinetics, and apparently this effect is mediated by the association of 

FGF1 with cell membrane. 
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The mitogenic activity of thrombin is FGFR-dependent 

Since thrombin induced both the expression of FGF1 and its release into the extracellular compartment, it is 

possible that these two effects contribute to the mitogenic activity of thrombin. To assess this hypothesis, 

we analyzed the ability of a dominant-negative mutant of FGFR1 to attenuate cell proliferation stimulated 

by thrombin. We utilized Swiss 3T3 cells since, unlike the NIH 3T3 cells, they exhibit a low level of 

apoptosis and endogenous DNA synthesis in response to serum deprivation. Swiss 3T3 cells express 

significant levels of FGFR1 (Andreeva, 2004). A dnFGFR1 construct was transfected into Swiss 3T3 cells, 

and their proliferative index was measured in the presence and absence of exogenous thrombin. The 

expression of dnFGFR1 was verified by immunohistochemistry, and DNA synthesis was revealed by [3H]-

thymidine radioautography. As shown in Fig. 3, the expression of dnFGFR1 not only reduced the ability of 

FGF1 to induce the appearance of replicating nuclei by approximately 70%, but it also decreased the DNA 

synthesis frequency in the presence of thrombin to a level consistent with quiescence. Thus, the mitogenic 

effect of thrombin depended on FGFR signaling.  

 
Thrombin cleaves Jagged1 

Previously, we demonstrated that the expression of sJ1 in NIH 3T3 cells represses Notch-mediated CSL 

(CBF1/Su(H)/Lag1)-dependent transcription, and induces both FGF1 expression and constitutive non-

classical FGF1 release at 37°C (Small et al., 2003). We hypothesized that the ability of thrombin to induce 

the expression and release of FGF1 may be due to the production of sJ1, as a result of cleavage of the 

Jagged1 expressed on the surface of NIH 3T3 cells (Small et al., 2003). To evaluate this hypothesis, we 

determined whether the Jagged1 translation product was susceptible to proteolytic cleavage by thrombin.  

Examination of the human Jagged1 amino acid sequence revealed two putative thrombin cleavage sites 

within the extracellular domain of Jagged1 (R113 and R348).  In order to assess Jagged1 as a thrombin 

substrate, Jagged1 was transcribed and translated in vitro in the presence of a [35S]-Cys/Met mixture; and 

the 134 kDa Jagged1 translation product was incubated with or without thrombin. Autoradiographic 
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analysis of the reaction products revealed cleavage of the Jagged1 protein into 39 kDa and 95 kDa 

fragments (Fig. 4A).  Because the fragment sizes were consistent with a Jagged1 cleavage site between 

residues R348 and G349 (Fig. 4B, upper panel), we sought to confirm the identity of this putative site.  The 

95 kDa fragment was excised, subjected to automated Edman degradation, and the products of each cycle 

were monitored by liquid scintillation spectroscopy.  We observed [35S]-Cys radioactivity in cycles 2, 3, 12, 

and 14, which agrees with the position of Cys at residues 351, 360, and 362 (Fig. 4B, upper panel).  These 

analyses suggest that thrombin is able to cleave Jagged1 between residues R348 and G349, which are 

located between epidermal growth factor (EGF) repeats 3 and 4 (Shimizu et al., 1999). This cleavage yields 

an amino terminal fragment with a molecular mass of approximately 39 kDa.  To verify that thrombin 

cleaves Jagged1 expressed in living cells, we transduced HEK 293 cells with a FLJ1NV5 adenoviral 

construct (Fig. 4B, middle panel) for 48 hours, and used transduced cells for thrombin treatment. After 1 

hour of treatment at 37°C with 1 U/ml of thrombin, the serum-free medium was collected, 

immunoprecipitated with the anti-V5 antibody, resolved by SDS-PAGE, and immunoblotted with the anti-

V5 antibody. As shown in Fig. 4C, lane 2, thrombin induced the cleavage and release of a N-terminal 

fragment of Jagged1 with the molecular weight of approximately 39 kDa into the medium. Jagged1 

cleavage was completely blocked by a protease inhibitor cocktail (data not shown). Moreover, we found 

that hirudin, a highly specific thrombin inhibitor, was able to block the appearance of sJ1 (39kDa) (Fig. 4C, 

lane 3).  

 
sJ1 (39kDa) corresponding to the Jagged1 thrombin cleavage product induces the expression and 

release of FGF1  

The extracellular domain of Jagged1 is involved in receptor binding, and consists mainly of 16 tandem 

epidermal growth factor-like (EGF-like) repeats. Since thrombin cleaves Jagged1 between the third and 

fourth EGF repeat, we sought to evaluate the biological activity of the resulting soluble Notch ligand, 

particularly its ability to downregulate Notch signaling, and to induce FGF1 expression and release. We 

prepared a construct coding for the product of thrombin-mediated cleavage of Jagged1, sJ1 (39kDa) (Fig. 
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4B, lower panel). To determine whether sJ1 (39kDa) carries the same capacity to decrease Notch signaling 

as sJ1 (117kDa), which represents the whole extracellular domain of Jagged1 (Small et al., 2001), we 

assayed vector control, FLJ1, sJ1 (117kDa), and sJ1 (39kDa) NIH 3T3 stable transfectants for CSL-

dependent transcription by utilizing a luciferase reporter assay (Hsieh et al., 1996; Jarriault et al., 1995). 

While FLJ1 transfectants exhibited an increase in CSL-mediated transcription, NIH 3T3 sJ1 (39kDa) 

transfectants displayed a decrease of the CSL-dependent transcription (Fig. 5A), which is similar to sJ1 

(117kDa) transfectants (Small et al., 2001). We next assessed by RT-PCR untransfected NIH 3T3 cells, 

vector-transfected control, sJ1 (117kDa), and sJ1 (39kDa) transfectant NIH 3T3 cells for the expression of 

fgf1. sJ1 (117kDa) and sJ1 (39kDa) transfectants expressed fgf1, while both untransfected and vector 

control transfected cells did not (Fig. 5B, top panel). Further (Q)-RT-PCR analysis results demonstrated that 

sJ1 (39kDa) induced significantly higher fgf1 mRNA levels than sJ1 (117kDa). Since sJ1 (39kDa) induced 

the expression of FGF1, we next asked whether it induced FGF1 release. Vector control and sJ1 (39kDa) 

NIH 3T3 transfectants were transduced with FGF1R136K adenovirus, and analyzed for FGF1 release under 

normal or heat shock conditions. Whereas both vector control and sJ1 (39kDa) transfectants exported FGF1 

in response to temperature stress (42°C), FGF1 release under non-stress conditions (37°C) was only 

observed in the sJ1 (39kDa) NIH 3T3 transfectants (Fig. 5C). Thus sJ1 (39kDa) resulting from thrombin 

cleavage was not inferior to sJ1 (117kDa) in its ability to repress Notch signaling, and to induce FGF1 

expression and release. 

 
Thrombin antagonizes CSL-dependent signaling, and constitutively active Notch1 inhibits 

thrombin-induced expression and release of FGF1  

Because CSL-dependent transcription in NIH 3T3 cells is significantly repressed by the expression of sJ1 

(39kDa), we questioned whether thrombin treatment attenuates Notch signaling. We used the luciferase 

reporter assay to evaluate the ability of thrombin (1-4 U/ml) to attenuate the activity of the CSL-dependent 

promoter in NIH 3T3 cells. While treatment of the FLJ1 NIH 3T3 stable cell transfectants with thrombin 

reduced the level of CSL-dependent transcription, TRAP, an agonist peptide of PAR1 devoid of 
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proteolyical activity, did not affect it (Fig. 6A). To further determine whether Notch signaling is involved in 

thrombin-induced FGF1 release, we utilized FGF1R136K NIH 3T3 cell transfectants adenovirally 

transduced with constitutively active Notch1 (caN1), and stimulated with thrombin. About 90% of the cells 

expressed caN1 48 hours after transfection (data not shown). As shown in Fig. 6B, thrombin stimulated the 

release of FGF1R136K from control cells; however, it was unable to initiate the release from cells 

expressing caN1 (Fig. 6B). At the same time, the expression of caN1 in FGF1R136K NIH 3T3 cell 

transfectants did not affect heat shock-induced FGF1 release (Fig. 6B). Interestingly, the expression of 

caN1 also abolished the expression of FGF1 induced by thrombin (Fig. 6C). These data suggest that the 

induction of FGF1 expression and release by thrombin is dependent on the down-regulation of Notch 

signaling. 

 
The role of PAR1-mediated signaling in thrombin-induced FGF1 release and expression 

Since thrombin is known to mediate its biological responses predominantly through the activation of PARs 

(Vu et al., 1991), we sought to evaluate the role of PAR1 in thrombin-induced release of FGF1.  We utilized 

embryonic fibroblasts obtained from PAR1 null mice, as well as control PAR1 null fibroblasts transfected 

with PAR1 (Connolly et al., 1996) that were transduced with the FGF1R136K adenovirus.  Thrombin was 

unable to rapidly induce export of the FGF1R136K from PAR1 null cells (Fig. 7A).  However, PAR1 null 

cells exported FGF1R136K in response to temperature stress (42°C), suggesting that they were not defective 

in mediating stress-induced non-classical FGF1 export. At the same time, thrombin induced rapid 

FGF1R136K release from control PAR1 null fibroblasts transfected with PAR1 (Fig. 7A, lower panel). 

Additionally, we assessed whether the PAR1-activating peptide, TRAP, which is devoid of proteolytic 

activity, was able to mimic the ability of thrombin to induce FGF1R136K release. TRAP rapidly induced 

the export of FGF1R136K (Fig. 7B), as well as the expression of the FGF1 transcript in NIH 3T3 (Fig. 7C) 

and Swiss 3T3 cells (data not shown). Thus, although thrombin produced biologically active sJ1 (39kDa), 

and thrombin-induced rapid stimulation of FGF1 expression and release were inhibited by the expression of 

caN1, these rapid effects of thrombin were dependent on PAR1.  
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Long-term thrombin incubation induces FGF1 release from PAR1 null cells, and overexpression of 

Jagged1 accelerates FGF1 release from PAR1 null cells in response to thrombin 

Because thrombin failed to stimulate rapid FGF1 release from PAR1 null mouse embryonic fibroblasts, we 

were interested in determining whether long-term thrombin treatment results in FGF1 release from PAR1 

null cells due to the accumulation of sJ1 (39kDa) in the conditioned medium. Indeed, we found that PAR1 

null mouse embryonic fibroblasts expressed Jagged1 transcripts at levels similar to those in NIH 3T3 cells 

(Fig. 8A). PAR1 null cells were incubated with thrombin (1 U/ml) or TRAP (5.7 µM) in complete cell 

culture medium for 2 or 48 hours. In parallel, other PAR1 null cells were transduced with FGF1R136K 

adenovirus. Forty-eight hours after transduction, the cells were carefully washed in serum-free medium 

containing heparin (5 U/ml), and incubated for an additional 2 hours in the medium conditioned by 

untransduced PAR1 null cells treated with thrombin or TRAP. As shown in Fig. 8B, medium conditioned 

for 2 hours by thrombin-treated cells failed to induce FGF1 release. At the same time, the medium 

conditioned for 48 hours by cells treated with thrombin, but not with TRAP, was able to induce FGF1 

release from PAR1 null cells. We hypothesized that the continuous presence of thrombin during 48 hours 

results in the accumulation in the extracellular compartment of sJ1 (39kDa), which induced FGF1 export. In 

order to further assess this hypothesis, we overexpressed Jagged1 in PAR1 null cells by adenoviral 

transduction. Cells transduced with FLJ1NV5 were stimulated with thrombin for 2 hours. Conditioned 

media were collected and added for 2 hours to PAR1 null cells transduced with FGF1R136K adenovirus. 

Conditioned medium from thrombin-treated PAR1 null cells overexpressing FLJ1 induced FGF1 release 

(Fig. 8C); however, conditioned medium from thrombin-treated control β–galactosidase-transduced cells 

did not exhibit such an effect. These data demonstrate that the accumulation of sJ1 (39kDa) in the medium 

conditioned by thrombin-treated cells can result in PAR1-independent FGF1 release.  

 

 

Discussion 
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FGF1 participates in vascular remodeling (Bjornsson et al., 1991; Nabel et al., 1993) and promotes 

angiogenesis after vascular injury (Thompson et al., 1988; Bjornsson et al., 1991; Herbert, 1988). Tissue 

injury induced by stress as a result of physical trauma, infection or inflammation is often accompanied by a 

thrombotic event (Taubman et al., 1999). Based on our results, thrombin in sites of injury may play a 

critical role, not only in the formation of a temporary extracellular matrix of fibrin but also in the 

stimulation of expression and export of FGF1. FGF1 contains a thrombin cleavage site (Erzurum et al., 

2003); however, this cleavage is inhibited by heparin (Rosengart et al., 1988). We suggest that extracellular 

heparan sulfates may protect the released FGF1 from thrombin-induced cleavage. On the other hand, 

saturation of heparan sulfate proteoglycan sites by exported FGF1 may assure that excess FGF1 is 

proteolytically-inactivated by thrombin (Erzurum et al., 2003; Lobb, 1988). As we demonstrated, 

thrombin’s mitogenic activity was dependent on the activity of FGF signaling, since thrombin failed to 

stimulate cell proliferation when 3T3 cells expressed a dominant-negative form of FGFR1. 

PAR1 is an important player in promoting inflammation and abnormal remodeling during 

restenosis, neointima formation after vascular injury, and fibrosis in the injured lung (Andrade-Gordon et 

al., 2001; Wahlgren, 2004; Howell, 2005). PAR1 may be a link between blood coagulation and 

inflammation in response to tissue injury. Here we reported that the rapid stimulation of FGF1 expression 

and release by thrombin was dependent on PAR1. Due to the presence of several PAR1-coupled G-proteins, 

each of which activates different pathways, the signaling network induced upon PAR1 activation is 

complex.  In most cell types, thrombin modulates the activity of adenylyl cyclase (Berk et al., 1991; 

Kanthou, 1998; Dery et al., 1998), activates phospholipase C and A2, protein kinase C (PKC), Ras/mitogen-

activated protein kinase (MAPK) signaling pathway, and also regulates the expression of a broad range of 

transcriptional factors. Specific inhibitors of PKC, Src, and phosphatidylinositol-3-kinase suppress PAR1-

induced VEGF expression (Tsopanoglou and Maragoudakis, 1999). It remains to be elucidated which 

signaling pathway is involved in PAR1-mediated stimulation of FGF1 expression and release. Recently, we 

demonstrated that non-transformed cell cultures stimulated with FGF1 transit through only one cell cycle, 

and then are blocked in the G1 phase of the second cycle (Andreeva, 2004). Interestingly, this non-
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proliferative state is characterized by activation of the Ras/MAPK signaling pathway and high levels of 

expression of cyclins D and E.  It is possible that PAR1 stimulation induces expression and release of FGF1 

needed for mitogenic response at the early stage of vascular repair response. 

Thrombin also stimulated expression and release of FGF1 through its ability to cleave Jagged1 

and to produce sJ1 (39kDa), which we demonstrated to induce the expression and release of FGF1 and 

inhibition of Notch signaling. We hypothesize that thrombin-induced FGF1 release proceeds through at 

least two temporally related stages. At the early stage, thrombin-induced FGF1 release is PAR1-dependent. 

This early stage is caused by tissue damage involving the activation of either the intrinsic or extrinsic 

coagulation pathways, providing fibrin deposition, as well as source of thrombin at the damage site and 

consequent PAR1 activation.  Should the time period of the initial stress be extended after this early phase 

by additional physiologic or pathophysiologic stress or both, e.g. starvation, acidosis, and hypoxia and if the 

PAR1 population is desensitized, it is likely that the non-classical export of FGF1 is temporarily maintained 

by the function of the stress-induced pathway (Prudovsky et al., 2003). The export of FGF1 at the early 

stage of thrombin-induced response may contribute to the increase of Jagged1 expression level in thrombin-

treated cells. Indeed, FGF1 stimulation induces Jagged1 transcription in endothelial cells (Zimrin et al., 

1996). Therefore, the continued presence of thrombin in the extracellular compartment may result in the 

accumulation of sJ1 (39kDa), and the release of FGF1 at the latter stage of thrombin stimulation may be 

dependent upon the sJ1-induced downregulation of Notch signaling. The role of Notch signaling in 

formation and remodeling of the vasculature is reported in many publications. Indeed, mice with defects in 

genes encoding Notch, Notch ligands, and components of the Notch signaling cascade invariably display 

vascular defects (Iso et al., 2003). Furthermore, either smooth muscle or endothelial cells greatly increase 

the expression of Notch1, Jagged1, and Jagged2 (Lindner et al., 2001) after balloon catheter denudation of 

rat carotid arteries and aorta. Our results merge FGF1, Notch, and thrombin signaling pathways. The 

crosstalk between these pathways may have an important role in vascular repair and remodeling.

The mechanism involved in FGF1 translocation from the cytosol to the extracellular compartment 

remains to be determined. We previously demonstrated that at stress, FGF1 is released into the extracellular 
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compartment as a multiprotein complex including p40 Synaptotagmin1, S100A13, and a covalent Cys30-

mediated FGF1 homodimer (Prudovsky et al., 2003). The Cu2+ ions are required for the assembly of this 

complex; however, the machinery that mediates the membrane translocation of these proteins remains 

unknown. Translocation of proteins across the lipid bilayer might require conformational changes that 

increase hydrophobicity. It was demonstrated that FGF1 is able to permeabilize membranes composed of 

acidic phospholipids, phosphatidylserine (pS), and phosphatidylglycerol (Mach and Middaugh, 1995). 

Moreover, FGF1, Synaptotagmins, and S100 proteins bind to pS, an acidic phospholipid (Donato, 1999; 

Tarantini et al., 1995) known to flip from the inner to outer leaflet of the lipid bilayer in response to stress 

(Arduini et al., 1989), suggesting that transmembrane translocation of FGF1 may be due to the interaction 

with acidic phospholipids. As mentioned in the introduction, Annexin 2, a protein known to exhibit a stress-

induced flip-flop through the cell membrane (Kim and Hajjar, 2002), and to be associated with FGF1 in 

brain-derived FGF1-containing multiprotein complex (Soldi, R., Prudovsky, I. and Maciag, T. unpublished 

results) may participate in the export of the FGF1 release complex. However, it remains to be elucidated 

whether thrombin induces FGF1 translocation through a mechanism similar to FGF1 stress-induced release 

or through an alternative mechanism. 
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Figure Legends 

Fig. 1. Thrombin induces FGF1 expression. The expression of fgf1 in thrombin-treated NIH 3T3 cells 

was evaluated by nuclear run-on analysis.  Cells were harvested at various intervals after the addition of 

thrombin; the nuclei were isolated and the transcription rate for fgf1 gene was determined as described 

(LaVallee et al., 1998).  The bar graphs represent the normalized ratio of [32P]-labeled fgf1 to the gapdh 

transcript ± s.e.m. Mouse brain endothelial cells (MBEC) that express endogenous FGF1 served as a 

positive control. 

Fig. 2. Thrombin induces non-classical release of FGF1. (A) Thrombin induces rapid release of FGF1 at 

37°C.  FGF1 immunoblot analysis was used to identify the presence of FGF1R136K in media conditioned 

by FGF1R136K NIH 3T3 cell stable transfectants at 37°C, following the addition of thrombin for 5, 15, 

30, and 60 minutes. Media conditioned in the absence of thrombin at 37°C or by heat shocked cells (42°C, 

110 minutes) served respectively, as negative and positive controls. The cell lysate (CL) from these cells 

is shown in the left panel (1/10 of total cell lysate was loaded). Bar graphs represent the percentage of 

FGF1 released from FGF1R136K NIH 3T3 cell transfectants upon thrombin treatment. Densitometric gel 

analysis was used to quantify FGF1 release. The densitometric values for different time points were 

normalized for total FGF1 expression levels. Each bar represents the mean of the normalized FGF1 
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release ± s.e.m. from three independent experiments. (B) Thrombin-induced FGF1 release is dose-

dependent. FGF1 immunoblot analysis of media conditioned by FGF1R136K NIH 3T3 transfectants in 

response to 15 minutes treatment with 0.05, 0.25, 0.5, and 1 U/ml thrombin at 37°C is shown. (C) 

Thrombin induces redistribution of FGF1 to the cell membrane. Top panel: FGF1:HA cell transfectants 

stimulated for 30 minutes with thrombin (b) or untreated (a) were fixed and processed for 

immunofluorescence microscopy as described in “Material and Methods”. Confocal images of median 

horizontal cell sections were taken using the 100X objective. Bar, 20 µm. Lower panel: FGF1R136K NIH 

3T3 cells transfectants were treated with or without 1U/ml thrombin for 30 minutes, and cytosol and 

membrane fractions were prepared as described in the "Matherial and Methods". 

Fig. 3. A dnFGFR1 mutant inhibits thrombin-induced DNA synthesis in Swiss 3T3 cells. Quiescent Swiss 

3T3 cells transiently transfected with a FGFR1 deletion mutant that lacks the intracellular domain were 

stimulated with either 10% BCS (serum), 10 ng/ml FGF1 plus 10 U/ml of heparin or thrombin for 24 

hours.  DNA synthesis in control and dnFGFR1+ cells was determined using [3H]-thymidine incorporation 

assay combined with anti-FGFR1 immunoperoxidase staining, as described in “Materials and Methods”. 

“Q” refers to quiescent cells. 

Fig. 4. Thrombin cleaves Jagged1. (A) In vitro translated human Jagged1 is cleaved by thrombin.  The 

FLJ1 transcript was in vitro translated in the presence of a [35S]-Met/Cys mixture, and the translation 

product was incubated with or without thrombin for 15 minutes at 37°C. The reaction products were 

visualized by autoradiography. (B) Schematic diagram of FLJ1, FLJ1NV5, and sJ1 (39kDa). Top panel: 

Schematic diagram of FLJ1 and the position of the thrombin cleavage site.  The Jagged1 amino acid 

sequence between residues 345 and 364 in context with the thrombin cleavage site (arrow) between the 

third and fourth EGF repeats is presented.  Asterisks identify Cys residues utilized in the identification of 

the NH2-terminal thrombin cleavage product by automated Edman sequencing of the [35S]-Cys/Met-

labeled Jagged1 translation product. Middle panel: The FLJ1NV5 construct sequence showing the V5 tag 

insert between the signal peptide and the DSL domain of the Jagged1. Lower panel: The sJ1 (39kDa) 
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deletion mutant corresponding to the thrombin cleavage product of the human Jagged1. Domains are as 

follows: 

 

 

(C) Thrombin cleaves Jagged1 expressed in HEK 293 cells. HEK 293 cells were transfected with the 

FLJ1NV5 adenovirus. Forty-eight hours after transfection, the cells were treated either with thrombin or 

thrombin plus hirudin for 1 hour at 37°C. Control FLJ1NV5-transduced cells were incubated in serum-

free media without thrombin. Cleaved Jagged1 was immunoprecipitated from the conditioned medium by 

utilizing anti-V5 antibodies. Immunoprecipitated 39 kDa Jagged1 fragment was visualized, using anti-V5 

immunoblotting. The corresponding cell lysates from the FLJ1NV5 transfectant HEK 293 cells are shown 

on the top panel. 

Fig. 5. The Jagged1 thrombin cleavage product  (39kDa fragment) displays biological activities similar to 

sJ1 (117kDa). (A) sJ1 (39kDa) decreases the CSL-mediated transcription in NIH 3T3 transfectants. 

Vector control, FLJ1NV5, sJ1 (117kDa), and sJ1 (39kDa) NIH 3T3 stable transfectants were transiently 

cotransfected with luciferase and renilla constructs. The assay of CSL-mediated transcription was 

performed, as described in the “Materials and Methods”. Renilla activity served as internal control for 

transfection efficiency. The data represent the normalized ratio of luciferase to renilla activity ± s.e.m.  

(B) sJ1 (39kDa) induces FGF1 expression. RT-PCR (top) and Q-RT-PCR (bottom) on total RNA 

extracted from untransfected NIH 3T3 cells, vector control, sJ1 (117kDa), and sJ1 (39kDa) transfectants 

were performed to assay fgf1 expression by using primers and conditions described in the “Materials and 

Methods”.  gapdh served as mRNA loading control.  (C) sJ1 (39kDa) induces FGF1 release under normal 

growth conditions. Immunoblot analysis of FGF1 export into the extracellular compartment by vector 

control and sJ1 (39kDa) stable NIH 3T3 tranfectants transduced with FGF1 adenovirus for 48 hours, and 

then subjected to heat shock or maintained under normal growth conditions for 2 hours.  Bar graphs 

represent the percentage of FGF1 released as described in Fig. 2A.  

: Signal Peptide, : DSL domain, : EGF Repeat domain, : Cys-Rich (CR) 

domain, and : transmembrane domain. 
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Fig. 6. Role of Notch signaling suppression in thrombin-induced FGF1 release and expression. (A) 

Thrombin attenuates CSL-dependent transcription in Jagged1 NIH 3T3 cell transfectants.  Full-length 

Jagged1 transfectants were treated with thrombin or TRAP for 12 hours before and 48 hours after 

luciferase and renilla cotransfection. CSL1-mediated transcription was assayed, as described in the 

“Materials and Methods”.  The bar graphs represent the normalized ratio of luciferase to renilla activity, ± 

s.e.m. as a function of the concentration of thrombin or TRAP. The results from unstimulated NIH 3T3 

cells served as a control. (B) Thrombin-induced release of FGF1 is repressed by the expression of 

constitutively active Notch1 (caN1). FGF1R136K NIH 3T3 cell transfectants were adenovirally 

transduced with caN1; the levels of the FGF1 in media conditioned by the addition of thrombin were 

assessed using immunoblot analysis.  β-galactosidase-transduced cells were used as a control.  The 

representative cell lysate (CL) from FGF1R136K-transduced cells is shown in the left panel. Bar graphs 

represent the percentage of FGF1 released as described in Fig. 2A. (C) Thrombin-induced expression of 

FGF1 is repressed by caN1.  NIH 3T3 cells transduced with caN1 adenovirus and vector control were 

treated for 30 minutes with thrombin.  RT-PCR experiments were performed as described in the 

“Materials and Methods”.  gapdh served as mRNA loading control. 

Fig. 7. The role of PAR1-mediated signaling in the thrombin-induced FGF1 expression and release. (A) 

PAR1 mediates rapid thrombin-induced release of FGF1. FGF1 immunoblot analysis of media 

conditioned by PAR1 null or PAR1-transfected PAR1 null cells adenovirally transduced with 

FGF1R136K at 5 and 60 minutes, after the addition of thrombin is presented.  FGF1 immunoblot analysis 

of media conditioned by heat shocked PAR1 null cells served as a positive control. The cell lysates (CL) 

from PAR1 null and control PAR1-transfected embryonic fibroblast are shown (left panel). Bar graphs 

represent the percentage of FGF1 released, as described in Fig. 2A.  (B) TRAP rapidly induces FGF1 

release. FGF1 immunoblot analysis of media conditioned by FGF1R136K NIH 3T3 cell transfectants in 

response to the addition of TRAP for 5 minutes is presented.  The release of FGF1R136K in response to 

heat shock in the absence of TRAP, and a representative cell lysate (CL) are also shown. Bar graphs 
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represent the percentage of FGF1 released, as described in Fig. 2A (C) TRAP rapidly induces FGF1 

expression. The expression of fgf1 in TRAP-treated NIH 3T3 cells was evaluated by nuclear run-on 

analysis, as described for thrombin treatment (Fig.1). Unstimulated NIH 3T3 cells served as a negative 

control for FGF1 expression. The bar graphs represent the normalized ratio of [32P]-labeled fgf1to the 

gapdh ± s.e.m. 

Fig. 8. Long-term thrombin incubation induces FGF1 release from PAR1 null mouse embryonic 

fibroblasts, and overexpression of Jagged1 accelerates FGF1 release from PAR1 null cells in response to 

thrombin. (A) Jagged1 expression in PAR1 null mouse embryonic fibroblasts. The expression of Jagged1 

in PAR1 null, PAR1 wt control mouse embryonic fibroblast and NIH 3T3 cells was determined by RT-

PCR, using primers and conditions described in the “Materials and Methods”.  gapdh served as control 

for mRNA loading. (B) Long-term thrombin incubation induces FGF1 release from PAR1 null cells. 

PAR1 null cells were stimulated either with thrombin or TRAP for 2 or 48 hours. Conditioned media 

were collected and added for 2 hours to PAR1 null cells transduced with FGF1R136K adenovirus. 

Detection of FGF1 in the conditioned media was performed as described in the “Materials and Methods”. 

The cell lysate (CL) from these cells is shown in the left panel. Bar graphs represent the percentage of 

FGF1 released as described in Fig. 2A. (C) Short-term thrombin stimulation induces FGF1 release from 

PAR1 null cells overexpressing Jagged1. PAR1 null cells transduced with FLJ1NV5 or β–galactosidase 

adenoviruses for 48 hours were stimulated with thrombin for 2 hours. Conditioned media were collected 

and added for 2 hours to PAR1 null mouse embryonic fibroblasts transduced with FGF1R136K. 

Detection of FGF1 in the conditioned medium was performed, as described in the “Materials and 

Methods”.  The representative lysate (CL) from these cells is shown in the left panel. Bar graphs represent 

the percentage of FGF1 released as described in Fig. 2A. 
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Abstract 

Thrombin, a key mediator of blood coagulation, exerts a large series of cellular actions via 

activation of a specific G-protein coupled receptor, named protease activated receptor 1 

(PAR1). Several studies in experimental animals have demonstrated the therapeutic 

potential of small molecules, with PAR1 antagonistic properties, in treating diseases such 

as vascular thrombosis and arterial restenosis. We studied the activity and specificity of 

one highly potent, selective PAR1 antagonist, SCH79797, in vitro. We found that this 

compound was able to interfere with the growth of several human and mouse cell lines 

(A375, NIH 3T3, HEK 293, B16/F10), in a concentration-dependent manner. In HEK 293 

and NIH 3T3 cells, the ED50 for the anti-proliferative effect was 81 nM and 75 nM, 

respectively. The anti-proliferative effect was mediated by the ability of SCH79797 to 

inhibit serum-stimulated activation of p44/p42 Mitogen Activated Protein Kinase (MAPK). 

In addition, at higher doses SCH79797 induced apoptosis in NIH 3T3 cells. The anti-

proliferative and pro-apoptotic effects of SCH79797 were obtained with concentrations 

very close to the reported IC50 for PAR1 inhibition (70 nM). However, these biological 

effects were not mediated by PAR1 antagonism, as they were also observed in embryonic 

fibroblasts derived from PAR1 null mice. In view of the development of PAR1 selective 

antagonists as therapeutic agents, effects potentially unrelated to PAR1 inhibition should 

be carefully scrutinized. 
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Introduction 

Thrombin, a trypsin-like serine protease, is the most potent agonist for platelet 

aggregation and plays a central role in haemostatic processes (Strassen et al., 2004). 

Thrombin  catalyzes the conversion of fibrinogen to fibrin by cleaving the peptide bond 

between an arginine and a glycine residue in the fibrinogen sequence (Walsh, 2004); it 

is also responsible for proteolytic activation of factors V, VIII, XI, XIII and protein C 

(Strassen et al., 2004). However, in addition to its role in blood coagulation, thrombin 

also stimulates mitogenic events in several cell types including fibroblasts, smooth 

muscle cells and astrocytes (Narayanan, 1999), therefore playing a central role in tissue 

repair, fibrosis, inflammation, neurodegeneration, atherosclerosis and restenosis (Derian 

et al., 2002; Junge et al., 2003; Suo et al., 2004; Viles-Gonzales et al., 2005). 

 All cellular actions of α-thrombin are mediated by specific G-protein coupled 

receptors, named protease activated receptors (PAR). Activation of PARs by thrombin 

and other trypsin-like serine proteases is based upon a novel mechanism: the protease 

cleaves part of the N-terminus domain of the receptor, releasing a "tethered ligand" that 

subsequently binds to an extracellular loop of the receptor and activates the G-protein 

coupled signal transduction (Trejo, 2003). Four protease activated receptors have now 

been cloned (Ossovskaya and Bunnet, 2003); in humans, PAR1 is considered the 

primary α-thrombin receptor, although thrombin can activate also PAR-3 and PAR-4 

(Kataoka et al., 2003). Thrombin cleaves PAR1 between Arg41 and Ser42, releasing an 

N-terminal peptide chain that carries the recognition motif "SFLLRN" (Coughlin, 

1993). 

 Several small molecules capable of blocking α-thrombin active site have been 

characterized over the years as anti-thrombotic agents, starting with hirudin, a natural 

leech-derived peptide (Walsmann, 1991). However, the identification of the many 
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biological actions of α-thrombin mediated by PARs has encouraged the quest for 

compounds capable of blocking receptor activation without inhibiting thrombin protease 

activity. These compounds would still modulate platelet activation and aggregation but 

with minimal bleeding side-effects. 

 Potent and selective PAR1 antagonists have been synthesized in the last few years 

(Bernatowicz et al., 1996; Andrade-Gordon et al., 1999; Zhang et al., 2001). These non-

peptide small molecules are designed to mimic the spatial constraints of the PAR1 

recognition motif (SFLLRN) and interfere with the intra-molecular binding of the 

tethered-ligand to the receptor. PAR1 antagonists are now proposed as therapeutic 

options in several human diseases including thrombosis, atherosclerosis and restenosis 

after angioplasty (Ahn et al., 2003). Preclinical studies demonstrated that perivascular 

administration of a selective PAR1 antagonist significantly reduced neointimal 

thickness after balloon angioplasty in a rat model of restenosis (Andrade-Gordon et al., 

2001) and intravenous administration of PAR1 antagonist prevented thrombotic 

occlusion of carotid arteries in a nonhuman primate model of vascular injury (Derian et 

al., 2003). 

 In view of their clinical application it is necessary to examine the full spectrum of 

activities of these compounds. Here we studied the cellular actions of a commercially 

available PAR1 selective antagonist SCH79797 (N-cyclopropyl-7-[4-(1-

methylethyl)phenyl]-7H-pyrrolo [3,2-f] quinazoline-1,3-diamine dihydrochloride) and 

demonstrated that this molecule has biological effects that are unrelated to PAR1 

inhibition. At low doses, SCH79797 directly affected cell proliferation stimulated by 

serum or growth factors other than α-thrombin, in several human and mouse cell lines, 

including PAR1 null cells. At higher doses, this compound was able to induce 

apoptosis. 
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Methods 

Materials: fibroblast growth factor (FGF)-2 was obtained from SIGMA-Aldrich; platelet 

derived growth factor (PDGF) was purchased from PeproTech (PeproTech EC, London). 

Human recombinant FGF-1 was prepared as previously described (Tarantini et al., 1995). 

SCH79797 (N3-Cyclopropyl-7- [[4-(1-methylethyl)phenyl]methyl] -7H-pyrrolo [3,2-f] 

quinazoline-1,3-diamine hydrochloride) (Ahn et al., 2000) was purchased from Tocris 

(Tocris Bioscience, Ellisville, MO, USA) and dissolved in 50 mM DMSO. Two different 

batches were used in the experiments (No. 1A/57193 and No. 1A/61853). Anti- p44/42 

MAP kinases (total MAPK) and p44/42 phospho-MAPK (phospho Ser202/Tyr204) 

antibodies and anti-caspase-3 antibodies, directed against the large 35 kDa and the small 

17 kDa fragments of caspase-3, were from Cell Signaling Technology (Beverly, MA, 

USA).  

Cell culture: mouse NIH 3T3 and B16/F10 cells, and human HEK 293 and A375 cells, 

were obtained from ATCC (Rockville, MD, USA); PAR1 null mouse embryonic 

fibroblasts were a generous gift of Dr. S. Coughlin (University of California, S. Francisco) 

and were previously characterized (Connolly et al., 1996). All cells were grown in 

Dulbecco's modified Eagle's medium (DMEM) (EuroClone), supplemented with 10% 

(vol/vol) fetal bovine serum (FBS) (EuroClone), L-glutamine (EuroClone) and 1% 

(vol/vol) antibiotic/antimycotic solution (Gibco, Invitrogen S.R.L). 

Cell proliferation assay: all cell lines were seeded at low density (4x104 cells/well) in 6-

well cluster plates (Falcon). The next day, the cells were washed 3 times with PBS and 

than starved for 24 hours in DMEM containing 1% FBS. The next day the medium was 

changed with DMEM supplemented with 10% FBS, with PAR1 antagonist or vehicle 

alone (DMSO). When the cultures were stimulated with growth factors, the cells were 

starved for 24 hours in DMEM without serum; the next day the medium was supplemented 

with 25 ng/ml FGF-1, 25 ng/ml FGF-2 or 30 ng/ml PDGF. When FGF-1 and FGF-2 were 
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used to stimulate the culture, 10 U/ml heparin (Pfizer Italia S.r.l.) were added to the 

medium. Cells were fed every two days with fresh medium. When we studied the effect of 

cell density on SCH79797-mediated growth impairment, NIH 3T3 cells were plated at low 

(4x104 cells/well) or high (2x105 or 4x105 cells/well) density in 6-well cluster plates and 

proliferation assay was carried out in 10% FBS, as described above. The number of viable 

cells was counted after trypsinization by hemacytometer at the indicated time, in 

triplicates, using two separate measurements per well. A statistical comparison between 

growth curves at each observation point was performed by using the Student t test. A value 

of p<0.05 was considered statistically significant. 

RT-PCR: total RNA was extracted from embryonic fibroblasts isolated from PAR1 null mice 

(PAR1-/-) and from PAR1-/- embryonic fibroblasts transfected with a mouse PAR1 gene 

construct (PAR1+/+), using RNeasy kit (Quigen Inc. CA, USA), following manufacturer's 

instructions. Reverse  transcription was performed with 1 µg total RNA, using the Platinum 

Taq One Step RT-PCR kit (Invitrogen). PCR amplification was performed with the following 

primers: PAR1: sense: 5’-CTGATTGGCAGTTCGGGTC-3’, antisense: 5’-

GAACAAAGCCCGCGACTTC-3’; gapdh: sense: 5’-CCACCCATGGCAAATTCCATGGCA -3, 

antisense: 5'-TCTAGACGGCAGGTCAGGTCCACC-3'. Amplification was performed by 

denaturation at 95°C for 45s, annealing at 54°C for 40s and elongation at 72°C for 110s, for 

45 cycles.  

Thymidine incorporation: PAR1+/+ and PAR1-/- mouse embryonic fibroblasts were grown 

in 24-well cluster plates (Falcon) in 10% serum, until quiescence was started by exposing 

the cells to 0.25% serum for 48 hours. After quiescence was established, the culture was 

stimulated for 24 hours with fresh medium containing 0.25 % serum (quiescence), 20 

ng/ml FGF-1 plus 10 U/ml heparin or 10% serum. H3thymidine at 1 mCi/ml was added to 

the media for 2 hours, and cells were processed for scintillation counting. A statistical 
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comparison between PAR1+/+ and PAR1-/- cells at quiescence, 10% serum and FGF-1 

stimulation was performed by using the Student t test. 

Analysis of MAP kinase activation: a sub-confluent culture of NIH 3T3 cells was starved 

for 24 hours in DMEM without serum; the next day the cells were pre-treated with 150 nM 

SCH79797 or vehicle for 1 hour, then 10% FBS was added to the medium and the cells 

incubated for 5', 15' and 30', at 37o C.  At the indicated time points, cells were harvested 

and washed in ice-cold PBS, containing 1 mM sodium orthovanadate, 1 mM aprotinin and 

2 mM leupeptin. Cells were then lysed in Triton X-100-based lysis buffer (20 mM Tris, 

150 mM NaCl, 2 mM EDTA, 2.5 mM NaPPi, 1% (vol/vol) Triton X-100, 5% (vol/vol) 

glycerol). Protein concentration was determined using BCA protein assay kit (Pierce, 

Rockford, IL, USA). Total protein samples (100 µg) were resolved by 10% (wt/vol) 

sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), transferred to a 

nitrocellulose membrane (Hybond C) (Amersham Pharmacia Biotech) and immunoblotted 

using anti-phospho MAPK polyclonal antibodies (1:1000) and goat anti-rabbit secondary 

antibodies (BioRad Laboratories S.r.l., Italy) (1:3000). Phospho-MAPK immunoreactive 

bands were visualized by chemiluminescence (ECL) (Amersham Pharmacia Biotech), 

following manufacturer's instructions. The membrane was then stripped and re-probed with 

anti-total MAPK polyclonal antibodies (1:1000) and goat anti-rabbit secondary antibodies 

(1:3000). The experiment was performed three times with similar results; the three 

immunoblots were scanned and quantitative image analysis performed using densitometry. 

Student's paired t test was used for statistical analysis. 

Apoptosis detection: NIH 3T3 cells were seeded at low density (4x104 cells/well) in 6-

well cluster plates (Falcon). The next day, the cells were washed 3 times with PBS and the 

medium was changed with DMEM supplemented with 10% FBS, with the indicated 

concentrations of PAR1 antagonist or vehicle alone (DMSO). At timed intervals, cells 

were resuspended with ice-cold PBS and centrifuge for 5' at 500xg, at 4°C. Cell pellets 
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were resuspended in ice-cold binding buffer and labelled with Annexin V-FICT solution 

and 7-AAD viability dye, following manufacturer's instructions (Beckman Coulter) and 

analyzed by flow cytometry (Coulter XL). Student's paired t test was used for statistical 

analysis.  

Analysis of caspase-3 activation: a sub-confluent culture of NIH 3T3 cells was grown in 

DMEM containing 10% FBS, in the presence or absence of 300 nM SCH79797. At the 

indicated time points, cells were harvested and washed in ice-cold PBS, containing 1 mM 

aprotinin and 2 mM leupeptin. Cells were then lysed in Triton X-100-based lysis buffer (20 

mM HEPES pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA, 1% (vol/vol) Triton X-

100, 10% (vol/vol) glycerol). Protein concentration was determined using BCA protein 

assay kit. Total protein samples (100 µg) were resolved by 15% (wt/vol) SDS-PAGE, 

transferred to a nitrocellulose membrane and immunoblotted using anti-caspase-3 

polyclonal antibodies (1:1000) and goat anti-rabbit secondary antibodies (1:3000). 

Caspase-3 immunoreactive bands were visualized by chemiluminescence, following 

manufacturer's instructions. 



 10

Results 

PAR1 antagonist SCH79797 inhibits serum-dependent growth of several mouse and 

human cell lines: 

NIH 3T3, A375, HEK 293 and B16/F10 plated at low density (4x104 cells/well), were 

grown in 10% serum, in the presence of increasing concentrations of PAR1 antagonist 

SCH79797. In all cell lines, SCH79797 produced a significant, concentration-dependent 

inhibition of serum-stimulated cell growth, compared to control cultures treated with 

vehicle alone (DMSO) (Figure 1). The ED50 for growth inhibition was 75 nM, 81 nM 

and 116 nM for NIH 3T3, HEK 293 and A375 cells, respectively; we also noticed that 

starting from 200 nM, SCH79797 induced a significant amount of cell death within the 

first 3 days in all cultures, except mouse melanoma cells, B16/F10, that were more 

resistant to the anti-proliferative effect (ED50 160 nM) and to the pro-cell death effect of 

the antagonist and started to die at a concentration of 300 nM. 

PAR1 antagonist SCH79797 inhibits proliferation of NIH 3T3 cells stimulated by FGF-

1, FGF-2 and PDGF:  

We also studied the effect of PAR1 antagonist on the growth rate of NIH 3T3 cells 

stimulated by three major growth factors, in serum-free medium: fibroblast growth 

factor (FGF)-1, FGF-2 and platelet-derived growth factor (PDGF) (Friesel and Maciag, 

1999; Khachigian and Chesterman, 1992). Cells were plated at low density (4x104 

cells/well) and FGF-1 (25 ng/ml), FGF-2 (25 ng/ml) or PDGF (30 ng/ml) were added to 

the medium, in the presence or absence of PAR1 antagonist. As shown in Figure 2A and 

B, the antagonist was able to inhibit cell proliferation stimulated by all three growth 

factors. To exclude the possibility that growth factors could indirectly induce activation 

of PAR1, thereby promoting cell proliferation, we stimulated the growth of PAR1+/+ and 

PAR1-/- cells (Figure 3A) with FGF-1 and heparin. As shown in Figure 3B, PAR1-/- cells 
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responded to FGF-1 similarly to wild type cells, demonstrating that FGF-1-mediated 

thymidine incorporation was not dependent from activation of PAR1 receptors. 

PAR1 antagonist SCH79797 inhibits proliferation of PAR1 null cells:   

To confirm that the ability of the antagonist to block cell proliferation was not related to 

its PAR1 inhibitory action, we studied the effect of SCH79797 on the growth rate of 

embryonic fibroblasts isolated from PAR1 null (PAR1-/-) mice (Connolly et al., 1996) 

(Figure 3C). As shown in Figure 3C, SCH79797 was able to slow the growth of PAR1-/- 

cells, in a concentration-dependent manner. 

PAR1 antagonist SCH79797 inhibits serum-stimulated activation of p44/p42 MAPK in 

NIH 3T3 cells:  

Since mitogen-activated protein kinase (MAPK) activity is essential for proliferation in 

many cell types (L'Allemain, 1994), we investigated whether SCH79797 was able to 

interfere with serum-stimulated induction of p44/p42 MAPK. NIH 3T3 cells, starved for 

24 hours, were stimulated to grow by adding 10% serum, in the presence or absence of 

PAR1 antagonist. The cells were harvested at timed intervals (5', 15' and 30'). Because 

upon activation p44/p42 MAP kinases become phosphorylated on threonine and 

tyrosine residues, we analyzed the amount of phosphorylated p44/p42 compared to total 

protein content. As shown in Figure 4, the antagonist was able to significantly inhibit 

phosphorylation of p44/p42 MAPK; the inhibition was evident at 15' and was 

maintained at 30' time point. 

PAR1 antagonist SCH79797 induces apoptosis in NIH 3T3 cells: 

 Since at high doses the antagonist induced cell death, we studied the ability of 

SCH79797 to trigger activation of caspase-3, an effector protein involved in regulation 

of apoptosis (Baker and Reddy, 1998). Activation of caspase-3 requires proteolytic 

processing of its p35 inactive zymogen into two small catalytic subunits, p19 and p17 

(Fernandes-Alnemri et al., 1994). Once activated, caspase-3 is responsible for the 
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proteolytic cleavage of many key proteins of the apoptotic cascade, such as the nuclear 

enzyme poly (ADP-ribose) polymerase (PARP). NIH 3T3 cells grown in the presence 

or absence of the inhibitor, were harvested at timed intervals (3, 6, 8, 12, 20 and 24 

hours) and cell lysates analyzed for the presence of cleaved caspase-3. As demonstrated 

in Figure 5A, after 20 hours incubation with PAR1 antagonist, the small p17 catalytic 

subunit was detected inside the cells. No proteolytic modification of the pro-enzyme 

was noticed in vehicle control cells (DMSO). 

 In order to confirm that activation of caspase-3 was indeed related to programmed 

cell death, we studied apoptosis-associated phosphatidyl-serine (PS) exposure and 7-

AAD viability in cells grown in the presence of the PAR1 antagonist compared to 

vehicle control cells. As shown in Figure 5B a statistically significant increase in the 

percentage of apoptotic cells was detected in cultures treated with 200 nM SCH79797 

compared to vehicle (DMSO) (12.85±3 vs. 2.5±0.3 Annexin-V; 20.1±0.8 vs. 4.3±2 7-

AAD). 

The effect of PAR1 antagonist SCH79797 on NIH 3T3 cell growth and apoptosis is cell 

density dependent: 

When we tested the effect of cell density on SCH79797-mediated growth inhibition, we 

found that the response of NIH 3T3 cells to the antagonist depended on the initial 

number of cells that were plated. Low density cultures (4x104 cells/well) were 

significantly inhibited at a concentration of 100 nM, whereas up to 200 nM 

concentration of the antagonist had no effect on high density cultures (2x105 cells/well) 

after 4 days (Figure 6A). However, NIH 3T3 cells plated at high density, still responded 

to an increase of 5 times in SCH79797 concentration (500 nM) (Figure 6A). The pro-

apoptotic effect of PAR1 antagonist also depended on cell density  (Figure 6B). NIH 

3T3 cells plated at high density (4x105 cells/well) were insensitive to the effect of 300 
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nM SCH79797 and started to die only at a concentration 10 times higher (3 µM) (Figure 

6B). 

Discussion 

Inhibition of thrombin receptor activation is a promising therapeutic approach for 

treatment of several major diseases such as stroke, myocardial infarction and restenosis 

after angioplasty (Andrade-Gordon et al., 2001; Derian et al., 2003; Ahn et al., 2003). 

Thrombin plays a central role in the cardiovascular system as it is the most potent 

agonist for platelet activation, triggers the coagulation cascade (Stassen et al., 2004) and 

stimulates vascular endothelial cells and smooth muscle cells, directly (Ossovskaya and 

Bunnet, 2003). 

 Starting from the sequence of the thrombin receptor activating peptide (TRAP), 

SFLLR-NH2, numerous peptidic and non peptidic antagonists have been synthesized in 

the last few years (Bernatowicz et al., 1996, Andrade-Gordon et al., 1999; Zhang et al., 

2001). However, several limitations such as lack of potency and specificity, low affinity 

and partial agonist activity, have been reported for the majority of them. Only few 

PAR1 antagonists have been described in the literature as highly potent and specific 

(Elliott et al., 1999; Andrade-Gordon et al., 1999) and among them only SCH79797 [N3-

Cyclopropyl-7-{[4-(1-methylethyl)phenyl]methyl}7H-pyrrolo[3,2-f]quinqzoline-1,3-

diamine], is commercially available (Ahn et al., 1999; Ahn et al., 2000). 

 SCH79797 was characterized initially on human platelets as a competitive inhibitor 

of the PAR-1-selective agonist TRAP for binding to the receptor, with IC50 values of 70 

nM. Functionally, SCH79797 blocked platelet aggregation induced by TRAP, but not 

by ADP or collagen (IC50 300 nM), inhibited thrombin and TRAP-mediated thymidine-

incorporation in human coronary artery smooth muscle cells (hCASMC), (Ki values of 

82 and 55 nM, respectively), but it did not affect platelet aggregation induced by PAR-4 

activating peptide and calcium mobilization induced by PAR-2 agonists in hCASMC. 
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These latter observations indicated selectivity of SCH79797 for PAR1 (Ahn et al., 

2000). SCH79797 was also used to characterize the role of PAR1 in complex 

pathophysiological models, including angiogenesis (Ma et al., 2005), as it inhibited 

VEGF and endostatin release mediated by PAR1 activation. Consistent with a role of 

PAR1 in regulation of angiogenesis and wound healing, treatment with SCH79797 for 

one week in rats with established gastric ulcers, resulted in wound healing impairment 

(Ma et al., 2005). 

 We have demonstrated that SCH79797 has a remarkable anti-proliferative effect in 

numerous cell lines, from mouse to human. SCH79797 was able to reduce growth factor 

and serum-stimulated cell growth and serum-stimulated activation of p44/p42 MAPK. 

In addition, the anti-proliferative effect of SCH79797 seemed to depend on cell density: 

at higher density the cultures were less sensitive to the effect of the antagonist and 

required higher concentrations of SCH79797 to reach the same level of cell growth 

inhibition, suggesting the existence of a dilution effect in the presence of an increased 

number of functional binding sites. When the cells were grown in the presence of higher 

doses of the antagonist, we noticed a rapid change in cell shape which was suggestive of 

apoptosis (Jellinger, 2001). Indeed after 24 hours incubation with higher concentrations 

of the antagonist, we could detect activation of programmed cell death. Once more, 

induction of apoptosis was inversely associated to cell density, suggesting that it may 

depend from a dilution-related effect. 

 Because SCH79797 has been characterized as selective for PAR1 at the 

concentrations we used (Ahn et al., 2000; Ma et al., 2005), as it was unable to block 

PAR2, PAR3 and PAR4, and because cell density modulates the response of the culture 

to the antagonist,  it is likely that SCH79797 interacts with a receptor system different 

than PAR. Alternatively, this compound may interfere directly with intracellular 

signaling pathway(s), resulting in a proliferation block. 
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 IC50 of SCH79797 for inhibition of TRAP binding to PAR1 is 70 nM (Ahn et al., 

2000), which corresponds to the concentration that induced a significant anti-

proliferative effect in our system. However, the actions we described are likely not 

mediated by PAR1, as demonstrated by the ability of SCH79797 to slow the 

proliferation rate of mouse PAR1 null cells as well.  These data suggest that this 

molecule has multiple biological effects, which include PAR1 receptor inhibition and 

PAR1-unrelated actions. It is worth mentioning that the concentration of SCH79797 

able to induce cell death in the majority of cell types we tested (150-200 nM) was very 

closed to the concentration that induced growth inhibition (100 nM) and to the reported 

IC50 for platelet aggregation (70 nM), indicating a small PAR1-specific therapeutic 

range for this compound. 

 Whether or not other PAR1 antagonists have similar dual biological effects needs to 

be determined. Here, we studied a second PAR1 antagonist which was based on the 

published chemical structure of RWJ-56110 (Andrade-Gordon et al., 1999). This 

compound produced an anti-proliferative effect only at concentrations (300 µM) well 

over the IC50 for platelet aggregation by α-thrombin (0.8 - 8.0  ± 2.0 µM) (data not 

shown)  (Andrade-Gordon et al., 2001). These latter finding supports the view that the 

anti-proliferative effect of SCH79797 is independent from PAR1 inhibition and may be 

specific for this type of molecule. 

 Thrombin antagonism has been proposed as an attractive new therapeutic option for 

treatment of patients with cardiovascular diseases, such as angina, acute myocardial 

infarction, stroke and patients undergoing coronary angioplasty to minimize restenosis. 

Moreover, PAR1 and PAR4 modulation could be beneficial in inflammatory diseases, 

wound  healing and inhibition of tumor growth (Ahn et al., 2003; Ma et al., 2005). The 

PAR1 unrelated actions of SCH79797 described here, could be consider toxic or else,  

beneficial for certain therapeutic purposes. However, they should be carefully 
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considered for any application of the antagonist to the field of PAR1 related research or, 

even more important, for clinical development of this drug. The present data also 

suggest that other  PAR1 antagonists should be carefully scrutinized for PAR1 unrelated 

actions. 
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Figure Legends: 

Figure 1. Growth curves of NIH 3T3, A375, HEK 293 and B16/F10 stimulated by 10% 

serum in the presence of SCH79797 or vehicle (DMSO). Cells were counted at the 

indicated time points (days in culture). Statistical analysis demonstrated a significant 

reduction of cell number (p≤0.001) at all time points for all concentrations of SCH79797, 

compared to vehicle alone, except for 100 nM at day 3 in HEK 293. 

Figure 2. Effect of SCH79797 on NIH 3T3 cell growth stimulated by FGF-1 (A), FGF-2 

or PDGF (B). Cells were counted at day 3. *p≤0.001. 

Figure 3. A. PAR1 RT-PCR of cDNA derived from PAR1-/- (lanes 1 and 2) and 

PAR1+/+ (lane 3) embryonic fibroblasts. GAPDH was used as control. B. PAR1+/+ and 

PAR1-/- cells were stimulated with 10% serum or FGF-1 (25 ng/ml). DNA synthesis 

was detected as 3Hthymidine incorporation and expressed as arbitrary units. No 

statistically significant difference was detected between PAR1+/+ and PAR1-/- cells. C. 

Growth curve of PAR1-/- stimulated by 10% serum, in the presence of SCH79797 or 

vehicle (DMSO). Cells were counted at the indicated time points (days in culture). 

p≤0.001 for all concentrations of SCH79797, at day 5 and 7 compared to vehicle. 

Figure 4. Effect of SCH79797 on serum-stimulated phosphorylation of MAPK 

(p44/p42), in NIH 3T3 cells. Cells starved for 24 h (C) were pre-incubated with vehicle 

(DMSO) (-) or 150 nM SCH79797 (+) for 1 h, followed by stimulation with 10% 

serum, for the indicated times. Cell lysates were analyzed with anti- phospho p44/p42 

(p44/p42P) and anti- total p44/p42 (p44/p42t) MAPK antibodies (A). The experiment 

was performed three times. The immunoblots were scanned and quantitative image 

analysis performed using densitometry (B). Data are expressed as times of MAPK 

activation in samples treated with SCH79797 or vehicle, compared to control.  

Figure 5. A. Activation of caspase-3 by SCH79797 in NIH 3T3 cells. Cells were incubated 

with 300 nM SCH79797 or vehicle (DMSO) for the indicated time. Cell lysates were 
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analyzed with anti-caspase 3 antibodies. The p35 inactive zymogen and the p17 small 

catalytic subunit are indicated as caspase-3 and cleaved caspase-3, respectively. B.  

Activation of apoptosis by SCH79797 in NIH 3T3 cells. Apoptosis-associated pS exposure 

and cell viability were determined by FICT conjugated Annexin-V and DNA specific 

viability dye 7-AAD respectively, in NIH 3T3 cells incubated with 150 nM and 200 nM 

SCH79797 or vehicle (DMSO), for the indicated times. Results are expressed as 

percentage of positive cells. *p≤0.001. 

Figure 6. The effect of SCH79797 on cell growth and apoptosis in NIH 3T3 cells is 

dependent on cell density. A. Cells plated at low (4x104 cells/well) or high (2x105 

cells/well) density were grown in 10% serum, in the presence of SCH79797 or vehicle 

(DMSO). Cells were counted at day 4. *p≤0.001. B. Cells plated at high density (4x105 

cells/well) were grown in 10% serum, in the presence of SCH79797 or vehicle 

(DMSO). Cells were counted at the indicated time (days in culture). *p≤0.001. 



 19

References: 

 

Ahn HS,Arik L, Boykow G, Burnett DA, Caplen MA, Czarniecki M, Domalski MS, 

Foster C, Manna M, Stamford AW, Wu Y (1999) Structure-activity relationships of 

pyrrolo-quinazolines as thrombin receptor antagonists. Bioorg Med Chem Lett 9:2073-

2078.  

 

Ahn HS, Foster C, Boykow G, Stamford A, Manna M, Graziano M (2000) Inhibition of 

cellular action of thrombin by N3-Cyclopropyl-7-{[4-(1-methylethyl)phenyl]methyl}-

7H-pyrrolo[3,2-f]quinqzoline-1,3-diamine (SCH 79797), a nonpeetide thrombin 

receptor antagonist. Biochem Pharmacol 60: 1425-1434. 

 

Ahn HS, Chackalamannil S, Boykow G, Graziano MP, Foster C (2003) Development of 

proteinase-activated receptor 1 antagonists as therapeutic agents for thrombosis, 

restenosis and inflammatory diseases. Curr Pharm Des 9:2349-2365. 

 

Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, 

Eckardt AJ, Hoekstra WJ, McComsey DF, Oksenberg D, Reynolds EE, Santulli RJ, 

Scarborough RM, Smith CE, White KB (1999) Design, synthesis, and biological 

characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc 

Natl Acad Sci USA 96:12257-12262. 

 

Andrade-Gordon P, Derian CK, Maryanoff BE, Zhang HC, Addo MF, Cheung Wm, 

Damiano BP, D'Andrea MR, Darrow AL, de Garavilla L, Eckardt AJ, Giardino EC, 

Haertlein BJ, McComsey DF (2001) Administration of a potent antagonist of protease-



 20

activated receptor-1 (PAR-1) attenuates vascular restenosis following balloon 

angioplasty in rats. J Pharmacol Exp Ther  298:34-42. 

 

Baker SJ and Reddy EP (1998) Modulation of life and death by the TNF receptor 

superfamily. Oncogene 17:3261-3270. 

 

Bernatowicz MS, Klimas CE, Hartl KS, Peluso M, Allegretto NJ, Seiler SM (1996) 

Development of potent thrombin receptor antagonist peptides. J Med Chem 39:4879-

4887. 

 

Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, and Coughlin SR (1996) Role of the 

thrombin receptor in development and evidence for a second receptor. Nature 381:516-

519. 

 

Coughlin SR, Vu TKH, Hung and Wheaton VI (1992) Characterization of the cloned 

platelet thrombin receptor: issues and opportunities. J Clin Invest  89:351–355. 

 

Coughlin SR (1993) Thrombin receptor structure and function.  Thromb Haemost 

70:184-187. 

 

Derian CK, Damiano BP, D'Andrea MR and Andrade-Gordon P (2002) Thrombin 

Regulation of Cell Function through Protease-Activated Receptors: Implications for 

Therapeutic Intervention. Biochemistry (Mosc) 67:56-64.  

 

Derian CK, Damiano BP, Addo MF, Darrow AL, D'Andrea MR, Nedelman M, Zhang 

HC, Maryanoff BE, Andrade-Gordon P (2003) Blockade of the thrombin receptor 



 21

protease-activated receptor-1 with a small-molecule antagonist prevents thrombus 

formation and vascular occlusion in nonhuman primates. J Pharmacol Exp Ther 

304:855-861. 

 

Elliott JT, Hoekstra WJ, Maryanoff BE, Prestwich GD (1999) Photoactivatable peptides 

based on BMS-197525: a potent antagonist of the human thrombin receptor (PAR-1). 

Bioorg Med Chem Lett 9:279-284. 

 

Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic 

protein with homology to Caenorhabditis elegans cell death protein Ced-3 and 

mammalian interleukin-1 beta-converting enzyme. J Biol Chem  269:30761-30764. 

 

Friesel R and Maciag T (1999) Fibroblast growth factor prototype release and fibroblast 

growth factor receptor signalling. Thromb Haemost 82:748-754. 

 

Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timons C, Tram T and 

Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin recetor in 

humans. Nature 386:502–506. 

 

Jellinger KA (2001) Cell death mechanisms in  neurodegeneration. J Cell Mol Med 5:1-

17. 

 

Junge CE, Sugawara T, Mannaioni G, Alagarsamy S, Conn PJ, Brat DJ, Chan PH, 

Traynelis SF (2003) The contribution of protease-activated receptor 1 to neuronal 

damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci U S A 

100:13019-13024. 



 22

 

Kataoka H, Hamilton JR, McKemy DD, Camerer E, Zheng YW, Cheng A, Griffin C, 

Coughlin SR (2003) Protease-activated receptors 1 and 4 mediate thrombin signaling in 

endothelial cells. Blood 102:3224-3231. 

 

Khachigian LM and Chesterman CN (1992) Platelet-derived growth factor and alternative 

splicing: a review. Pathology 24:280-290. 

 

L'Allemain G (1994) Deciphering the MAP kinase pathway. Prog Growth Factor Res 

5:291-334. 

 

Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL (2005) 

Protease-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from 

human platelets. Proc Natl Acad Sci USA 102:216-220. 

 

Narayanan S (1999) Multifunctional roles of thrombin. Ann Clin Lab Sci 29:275-280. 

 

Nystedt S, Emilsson K, Wahlestedt C and Sundelin J (1994) Molecular cloning of a 

potential proteinase activated receptor. Proc Natl Acad Sci U S A 91:9208–9212. 

 

Ossovskaya VS and Bunnet NW (2003) Protease-activated receptors: contribution to 

physiology and disease. Physiol Rev  84:579-621. 

 

Stassen JM, Arnout J, Deckmyn H (2004) The hemostatic system. Curr Med Chem 

11:2245-2260. 

 



 23

Suo Z, Citron BA, Festoff BW (2004) Thrombin: a potential proinflammatory mediator 

in neurotrauma and neurodegenerative disorders. Curr Drug Targets Inflamm Allergy 

3:105-114. 

 

Tarantini F, Gamble S, Jackson A, Maciag T (1995) The cysteine residue responsible 

for the release of fibroblast growth factor-1 residues in a domain independent of the 

domain for phosphatidylserine binding. J Biol Chem 270:29039-29042. 

 

Trejo J (2003) Protease-activated receptors: new concepts in regulation of G protein-

coupled receptor signaling and trafficking. J Pharmacol Exp Ther 307:437-442. 

 

Viles-Gonzalez JF, Fuster V, Badimon JJ (2005) Thrombin/inflammation paradigms: a 

closer look at arterial and venous thrombosis. Am Heart J 149:S19-31. 

 

Vu TK, Hung DT, Wheaton VI and Coughlin SR (1991) Molecular cloning of a 

functional thrombin receptor reveals a novel proteolytic mechanism of receptor 

activation. Cell 64:1057-1068. 

 

Walsh PN (2004) Platelet coagulation-protein interactions. Semin Thromb Hemost 

30:461-471. 

 

Walsmann P (1991) Isolation and characterization of hirudin from Hirudo medicinalis. 

Semin Thromb Hemost 17:83-87. 

 



 24

Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie 

EW and Foster DC (1998) Cloning and characterization of human protease-activated 

receptor 4. Proc Natl Acad Sci U S A 95:6642–6646. 

 

Zhang HC, Derian CK, Andrade-Gordon P, Hoekstra WJ, McComsey DF, White KB, 

Poulter BL, Addo MF, Cheung WM, Damiano BP, Oksenberg D, Reynolds EE, Pandey 

A, Scarborough RM, Maryanoff BE (2001) Discovery and optimization of a novel 

series of thrombin receptor (par-1) antagonists: potent, selective peptide mimetics based 

on indole and indazole templates. J Med Chem 44:1021-1024. 

 

 
 

 



n.
 c

el
ls

(x
10

4 )

0

100

200

300

400

500

600

1 3 5 7 9

A375

n.
 c

el
ls

(x
10

4 )

0

20

40

60

80

1 3 5 7 9

HEK 293

n.
 c

el
ls

(x
10

4 )

0

25

50

75

100

125

150

1 3 5 7

B16/F10

(days in culture)

n.
 c

el
ls

(x
10

4 )

0
20
40
60
80

100
120
140

1 3 5 7

NIH 3T3

vehicle (DMSO)
100 nM SCH79797
150 nM SCH79797
200 nM SCH79797
300 nM SCH79797
600 nM SCH79797

Figure1



0

10

20

30

FGF-1

40

n.
 c

el
ls

(X
10

4 )

A.

*

0% + vehicle (DMSO)

0% + SCH79797 [200 nM]

FGF-1 [25 ng/ml] + vehicle

FGF-1 + SCH79797 [200 nM]

0

10

20

30

40

50

PDGF FGF-2

n.
 c

el
ls

(X
10

4 )

B.

*
* PDGF [20ng/ml] or FGF-2 [25ng/ml] 

+ vehicle (DMSO)

PDGF/FGF + SCH79797 [150 nM]

0% + vehicle (DMSO)

Figure 2



A.
1 2 3

par1

gapdh

0

100

200

300

400

500

600

D
N

A
 s

yn
th

es
is

(a
rb

itr
ar

y
un

its
)

PAR1+/+ PAR1-/-

FGF-1 [25 ng/ml]

quiescence

10% serum

B.

Figure 3

(days in culture)

n.
 c

el
ls

(x
10

4 ) PAR1(-/-)

0

100

200

300

400

500

600

1 3 5 7

C.

vehicle (DMSO)

150 nM SCH 79797

200 nM SCH 79797

300 nM SCH 79797



C 5 515 1530 30   min.

10% serum

- - - + + + SCH 79797 [150 nM]

p44/p42P

p44/p42t

A.

0

0,5

1
1,5

2

2,5

5 515 1530 30

(x
 c

on
tr

ol
)

SCH 79797
[150 nM]

B.

vehicle 

p≤ 0.05
p≤ 0.01

Figure 4

min.



19

SCH79797 [300 nM]

35

3 24 3 20 246 8

caspase-3

cleaved
caspase-3

DMSO

kDa hours

A.

B.

vehicle (DMSO)
150 nM SCH 79797
200 nM SCH 79797

5

10

15

20

0

%
 o

f c
el

ls

Annexin-V

24 36      hours
0

5

10

15

20

25

%
 o

f c
el

ls

7-AAD

Figure 5

*

*



A.

0

20

40

60

80

100

120

vehicle (DMSO)

100 nM SCH79797

200 nM SCH79797

500 nM SCH79797

low density high density

n.
 c

el
ls

(x
10

4 )

*

*

*

B.

1 4 6
0

25

50

75

100

125

150

n.
 c

el
ls

(x
10

4 )

(days in culture)

vehicle (DMSO)

3 µM SCH79797

300 nM SCH79797

* *

Figure 6



 
 
 
 
 
 

 235 

 

 

         Paper 5 
 
 
 
 
 

 
 

“Sphingosine Kinase 1 Is a Critical Component of the Copper-
Dependent FGF1 Export Pathway” 

 
 

R. Soldi, A. Mandinova, K. Venkataraman, T. Hla, M.A. Vadas, S.M. Pitson, M. 

Duarte, I. Graziani, V. Kolev, D. Kacer, O. Sideleva, T. Maciag and I. Prudovsky 
 

FASEB 
(Manuscript under revision) 

 



 



  
Non-Classical Export of FGF1 and Sphingosine Kinase 1 

 1 

To: FASEB, 2005 
 
 
 

Sphingosine Kinase 1 Is a Critical Component of the Copper-Dependent FGF1 Export 
Pathway. 

 
 
R. Soldi, A. Mandinova‡, K. Venkataramanπ, T. Hlaπ, M.A. Vadas#, S.M. Pitson#, M. Duarteγ, I. 

Graziani, V. Kolev, D. Kacer, O. Sideleva, ς, T. Maciag and I. Prudovsky* 
 

Center for Molecular Medicine 
Maine Medical Center Research Institute 

Scarborough, ME 04074 
 

πCenter for Vascular Biology 
Dept. of Cell Biology 
School of Medicine 

 University of Connecticut 
 Farmington, CT 06030-3501 

  
# Hanson Institute, Human Immunology  

Institute of Medical and Veterinary Science 
Adelaide, SA 5000, Australia 

 
 

Running Title: Non-Classical Export of FGF1 and Sphingosine Kinase 1 
 

*Address Correspondence to: Igor Prudovsky, Center for Molecular Medicine, Maine Medical 
Center Research Institute, 81 Research Drive, Scarborough, ME 04074.  Telephone: 207-885-
8146; Fax 207-885-8179; Email: prudoi@mmc.org 
 
‡Current Address: Cutaneous Biology Research Center, Harvard Medical School and 
Massachusetts General Hospital, Charlestown, MA 
 
γ This work was performed by MD from the Life and Health Sciences Research Institute, School 
of Health Sciences, University of Minho, Braga, Portugal in partial fulfillment of the 
requirements for Ph.D. degree. 
 
This article is dedicated to the memory of Tom Maciag, scientist, mentor, and friend.  
 
 
 
 
 
 
 
 



  
Non-Classical Export of FGF1 and Sphingosine Kinase 1 

 2 

 Summary 
Sphingosine kinase 1 catalyzes the formation of sphingosine-1-phosphate which is 

involved in the regulation of angiogenesis.  Sphingosine kinase 1 lacks a classical signal peptide 
sequence but is constitutively released from cells.  Since the copper-dependent non-classical 
stress-induced release of FGF1 also regulates angiogenesis, we questioned whether sphingosine 
kinase 1 is involved in the FGF1 release pathway. We report that (i) the coexpression of 
sphingosine kinase 1 with FGF1 inhibits the release of sphingosine kinase 1 at 37°C; (ii) 
sphingosine kinase 1 is released at 42°C in complex with FGF1; (iii) sphingosine kinase 1 
associates with S100A13 and p40 Syt1, which are critical components of the FGF1 export 
pathway; (iv) sphingosine kinase 1 knockout cells fail to release FGF1 at stress; (v) sphingosine 
kinase 1 is a high affinity copper-binding protein which forms a complex with FGF1 ex vivo, and 
(vi) sphingosine kinase 1 overexpression rescues the release of FGF1 from inhibition by the 
copper chelator tetrathiomolybdate.  We propose that sphingosine kinase 1 is a component of the 
copper-dependent FGF1 release pathway. 

 
Introduction 

Sphingosine-1-phosphate (S1P), a lipid mediator produced by sphingosine kinase 1 
(SK1), is implicated in a variety of biological processes (1, 2).  While high levels of intracellular 
S1P induce calcium mobilization and enhance cell proliferation and survival (3-5), extracellular 
S1P acts through specific G-protein-coupled receptors to promote cytoskeletal rearrangement, 
cell migration, vascular maturation, and angiogenesis (6-11).  It is suggested that these activities 
are regulated by a dynamic balance between the levels of the sphingolipid metabolites, ceramide 
and S1P, described as the “sphingolipid rheostat” (12). 

SK1 is both a cytosolic and a membrane-associated enzyme. It is activated by several 
biological regulators including tumor necrosis factor-α (13), platelet-derived growth factor (14), 
nerve growth factor (1, 15), muscarinic acetylcholine receptor agonist (16), serum (14) and 
phorbol esters (17).  The expression of SK1 promotes the G1-S transition in NIH 3T3 cells, and 
protects these cells against apoptosis induced by serum deprivation (18). In addition, it is 
suggested that SK1 may act as an oncoprotein (19).  

Interestingly, SK1 is exported from human umbilical vein endothelial cells (20), SK1-
transfected human embryonic kidney 293 cells, and lung smooth muscle cells (21) through a 
non-classical pathway of release (20). A number of other extracellular proteins have been 
demonstrated to follow various non-classical export routes (for review see (22, 23). Among them 
are such potent pro-angiogenic and pro-inflammatory polypeptides as FGF1 (24), FGF2 (25-27), 
IL1α (28), and IL1β (29, 30). The release of SK1 shares several similarities with FGF1, which is 
also an important regulator of cell proliferation and migration (31). Indeed, like FGF1, SK1 lacks 
a classical signal peptide sequence required for release through the endoplasmic reticulum and 
Golgi apparatus (20, 24), and its export into the extracellular compartment is brefeldin A-
insensitive (20, 24), ATP-dependent (20, 32), and requires an intact actin cytoskeleton (20, 33).  
FGF1 is released as a copper-dependent multiprotein complex, which is known to include the EF 
hand-containing protein, S100A13, and the p40 form of synaptotagmin 1 (Syt1) (22). 
Interestingly, all known members of the FGF1 release complex are copper-binding proteins, and 
we demonstrated the ability of FGF1 to form high molecular weight aggregates with both 
S100A13 and p40 Syt1 in presence of exogenous copper in a cell free system (34).  Moreover, 
we reported that the copper chelator tetrathiomolybdate (TTM) inhibits the temperature 
dependent release of FGF1 (35) . Because (i) FGF1 is exported in response to temperature stress 
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(36), (ii) in yeast, SK1 is implicated in the heat shock response by its ability to  enhance cell 
survival upon severe heat stress (37, 38), and (iii) since the export of SK1 (20) exhibits similar 
pharmacologic properties to those described for FGF1 release (33, 35), we sought to determine 
whether SK1 is a component of the FGF1 release pathway. We report that SK1 is released from 
NIH 3T3 cells in response to cellular stress as a component of the FGF1 multiprotein release 
complex, and that SK1 knockout results in the blockage of FGF1 release. Our data also suggest 
that SK1 may act as a copper donor facilitating the formation of the FGF1-containing 
multiprotein release complex. 

 
Experimental Procedures 

Cell Culture. Murine NIH 3T3 cells (ATCC) and stable FGF1 NIH 3T3 (24) cell 
transfectants were maintained in DMEM (Cellgro) supplemented with 10% bovine calf serum 
(HyClone) on human fibronectin-coated dishes (10 µg/cm2) (24).  Stable transfectants were also 
supplemented with 0.4 g/l Geneticin (G418 Life Technologies, Inc.).  SK1 +/+ mouse embryo 
fibroblast cells and SK1 knockout mouse embryo fibroblast cells were maintained in DMEM 
supplemented with 10% fetal bovine serum (HyClone) on human fibronectin-coated dishes (10 
µg/cm2) (24). 

Preparation of Adenoviral Constructs and Cell Infection. The SK1 construct cloned 
into the V5-His-pcDNA3.1 eukaryotic expression vector (Invitrogen) was excised from the 
plasmid by digestion with HindIII and PmeI (New England Biolab); and the fragment was 
subcloned in the multiple cloning site of the adenovirus shuttle vector, pAdlox, using HindIII and 
SmaI sites. The resulting plasmid was digested with SfiI, resolved by 1% agarose gel 
electrophoresis, excised and purified using the QIAquick Gel Extraction kit (Quiagen). The 
fragment containing the SK1 cDNA was co-transfected with ψ5 helper virus DNA into mouse 
epithelial kidney CRE 8 cells; and the recombinant viral product was purified by two sequential 
CsCl gradient centrifugations as previously described (39). The adenoviral S100A13:Myc and 
the S100A13ΔBR:Myc constructs each containing six Myc epitopes, were obtained as previously 
described (35).  NIH 3T3 cells and stable FGF1 NIH 3T3 cell transfectants cells were infected as 
previously described (40). 

SK1 Knockout Mouse Embryo Fibroblast Cells Immortalization. SK1 knockout 
mouse embryo fibroblast cells, generously donated by Dr. R. Proia (NIH, Bethesda, MD), were 
immortalized by stable transfection with SV40 T-antigen in the psg65 vector (gift of Dr. James 
DeCaprio, Harvard University) in parallel with normal mouse embryo fibroblast cells. The 
resulting colonies were tested for lack of SK1 expression by RT PCR analysis using specific 
SK1 primers as described (41). 

Heat Shock and Processing of Conditioned Media. Heat shock induced non-classical 
protein release was studied as previously described (33, 35). NIH 3T3 cell transfectants were 
grown to 70% confluency (7X106 cells per 15 cm Petri dish), and prior to heat shock, the culture 
medium was changed to DMEM containing 5 U/ml of heparin (Sigma). Following temperature 
stress, the conditioned media were collected, filtered, treated with 0.1% DTT (Sigma) for 2 hours 
at 37°C, and adsorbed to a 1 ml heparin-Sepharose CL-6B column (Amersham Pharmacia, 
Biotech.), pre-equilibrated with 50 mM Tris pH 7.4 containing 10 mM EDTA (TEB).  The 
adsorbed proteins were washed with TEB, eluted with TEB containing 1.5 M NaCl, and 
concentrated (Centricon 10; Amicon). The samples were resolved by 15% SDS-PAGE and 
immunoblotted with a rabbit polyclonal anti-FGF1 antibody (42). The flow through media from 
the heparin-Sepharose CL-6B column was collected, concentrated using Ultrafree-15 Centrifugal 
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filter device (Millipore), and incubated with a monoclonal anti-V5 antibody (Invitrogen) 
overnight at 4°C.  Protein G–Sepharose (Amersham Pharmacia, Biotech) was added and the 
mixture was incubated for 2 hours at 4°C.  Immunoprecipitates were resolved by 12% SDS-
PAGE and immunoblotted with the monoclonal anti-V5 antibody. Total cell lysates were 
obtained from the individual populations of cells, as previously described (33). The loading of 
cell lysates and conditioned medium on electrophoretic gels was standard in all experiments. 
Each experimental point corresponded to one 15 cm Petri dish of cell culture. Total processed 
conditioned medium or 1/10 of cell lysate were loaded on one electrophoretic lane. The activity 
of lactate dehydrogenase (Sigma) in conditioned media was utilized as an assessment of cell lysis 
in all experiments, as previously described (43). 

Immunoprecipitation Experiments. 20 ml of conditioned media from 7x106 heat 
shocked or control NIH 3T3 cells were collected, filtered, and concentrated to the volume of 1 
ml by using Ultrafree-15 centrifugal filter device (Millipore) for 1 hour at 2000 g at 4°C. To 
prepare cell lysates, the cells were washed twice with PBS and lysed in NPB buffer (20 mM Tris 
HCl, pH 7.5, containing 300 mM sucrose, 60 mM KCl, 15 mM NaCl, 5% glycerol, 2 mM 
EDTA, 1% Triton X-100, 1 µg/ml leupeptin, and 0.2% deoxycholate).  In some experiments, the 
cells were hypotonically lysed in 5 mM Tris HCl pH 7.4 containing protease inhibitors (50 µg/ml 
pepstatin, 50 µg/ml leupeptin, 10 µg/ml aprotinin, and 1 mM PMSF), using Dounce 
homogenization.  The lysates were centrifuged at 10,000 g for 15 minutes at 4°C, and the protein 
concentration was measured by the BCA method (Pierce).  Equal amount of lysates and 
conditioned media were precleared by incubation for 1 hour at 4°C with protein G-Sepharose 
(Amersham, Pharmacia) and mouse IgG (1 µg/ml).  After centrifugation at 10,000 g for 10 
minutes, the supernatants were immunoprecipitated with a monoclonal anti-FGF1 antibody, a 
monoclonal anti-Myc antibody (Oncogene Research), a polyclonal anti-p40 Syt1 antibody (44), 
or a monoclonal anti-V5 antibody (Invitrogen) overnight at 4°C.  The immunoprecipitates were 
recovered using protein G-Sepharose affinity, washed four times with NPB buffer, the pellets 
were solubilized in 60 µl of boiling Laemmlie buffer, resolved by 12% SDS-PAGE, and 
analyzed using the monoclonal antibodies described above. 

Copper Affinity of SK1 and Gel Shift Analysis.  In order to evaluate the affinity of 
SK1 for copper, it was necessary to delete the His tag sequence from the SK1 construct. This 
was accompanied by the introduction of a termination codon upstream at nucleotide 1054, which 
is located at 5′ of the His sequence within the V5-His epitope tag.  The mutated V5-His-
pCDNA3.1 expression plasmid was translated in vitro using the T7 Quick in vitro transcription 
and translation system (Promega). The reaction product was adsorbed to a HiTrap chelating 
column (Amersham Pharmacia, Biotech.) which was pre-adsorbed with 0.1 M CuCl2 in 20 mM 
sodium phosphate buffer, pH 7.2 containing 1 M NaCl.  The column was eluted with increasing 
concentrations of imidazole (Sigma) in the equilibration buffer.  The eluted fractions were 
concentrated by using Centricon 10 (Amicon), resolved by 10% SDS-PAGE and subjected to V5 
immunoblot analysis.  

To analyze the interactions among the recombinant forms of SK1 (45) and FGF1 (34, 46, 
47), the recombinant proteins were mixed at a molar ratio of 1:1, as previously described (34), 
lyophilized, and resuspended in 50 µl of phosphate buffer, pH 7.2, containing 0.15 M NaCl 
(PBS), in the presence or absence of 1 mM CuCl2.  The samples were incubated at 42°C for 30 
minutes, resuspended in non-reducing SDS-PAGE loading buffer, and resolved by non-
reducing/limited denaturing SDS-PAGE system containing 0.1% SDS within the running gel as 
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previously described (35).  The samples were then immunoblotted using polyclonal antibodies 
against FGF1 and SK1.  When indicated, recombinant SK1 was incubated with 500 mM 
imidazole for 30 minutes at 37°C, dialyzed against PBS, and incubated in a mixture containing 
FGF1 in the presence or absence of CuCl2 as described above. The samples were resuspended in 
a non-reducing SDS-PAGE loading buffer, and resolved by non-reducing/limited denaturing 
SDS-PAGE. 

Assay of Sphingosine kinase activity. Sphingosine kinase activity was determined as 
described previously (48) . Briefly, conditioned media and lysates were obtained from heat 
shocked Flag:FGF1 tagged cells co-transfected with SK1:V5 as described above, and, after 
equalization of the amount of protein per sample, subjected to immunoprecipitation with 
antibodies against flag or V5 tags. The immunoprecipitated proteins were incubated with 20 µM 
of sphingosine, 500 µM [32P] ATP (10 µCi), 5 mM MgCl2, 15 mM NaF, 0.5 mM 40-
deoxypyridoxine, and 40 mM β-glycerophosphate for 30 min at 37°C. After chlorophorm 
extraction, [32P]S1P was resolved by TLC on Silica Gel G60 using 1-butanol/acetic acid/water 
(60/20/20) buffer. The bands corresponding to S1P were also scraped from the plates and 
counted in a scintillation counter. 

 
Results 
FGF1 represses the constitutive release of SK1 from NIH 3T3 cells.  We previously 
demonstrated that the coexpression of FGF1 with the small calcium-binding protein, S100A13, 
which also lacks a signal peptide, resulted in the blockage of S100A13 release at 37°C but not at 
42°C. These data were the first indication that S100A13 is a member of the FGF1 release 
complex (34). Thus, we used a similar coexpression approach to evaluate the possibility of SK1 
participation in the FGF1 release pathway. Since initially FGF1 release was studied in NIH 3T3 
cells, we verified the release of SK1 from these cells.  Because SK1 is released from human 
endothelial cells and from SK1-transfected 293 cells in vitro at 37°C, and its export is enhanced 
at 42°C (20), we investigated whether the release of SK1 is heat shock-dependent in NIH 3T3 
cells. Equal amount of media conditioned by control and heat shocked NIH 3T3 cells transduced 
with adenovirus encoding V5-tagged SK1 were collected, and analyzed using 
immunoprecipitation with antibodies against the V5 epitope. As shown in Figure 1A, SK1 is 
constitutively released from NIH 3T3 cells at 37°C, and its export is enhanced at 42°C. To assess 
the cell damage, we measured the activity of lactate dehydrogenase (43) in both 37°C and 42°C 
conditioned media, and this test demonstrated the absence of any significant cell damage under 
normal or stress conditions. Thus, the results previously obtained using endothelial cells and 
SK1-transfected 293 cells (20) were confirmed.  In contrast, analysis of medium conditioned by 
NIH 3T3 cells coexpressing SK1 and FGF1 revealed that under these conditions the release of 
SK1 at 37°C is drastically reduced, while it normally occurs upon temperature stress (Figure 
1A). Noteworthy, the level of expression of SK1 was equal at 37° and 42°C (data not shown). In 
addition, heparin-binding analysis of this conditioned medium from NIH 3T3 cells coexpressing 
SK1 and FGF1 showed that SK1 associated with heparin-Sepharose (Figure 1B).  Conversely, 
although SK1 was released at 37°C and 42°C from FGF1-free NIH 3T3 cells (39) (Figure 1A), 
the released SK1 did not adsorb to heparin-Sepharose (Figure 1B). These results suggested that 
at stress, SK1 and FGF1 are released as a complex able to bind heparin due to the heparin 
affinity of FGF1.  
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SK1 is associated with FGF1.  The observation that SK1, in media conditioned by heat shock, 
binds heparin in a FGF1-dependent manner (Figure 1B) is consistent with other FGF1-binding 
proteins, S100A13 (49) and p40 Syt1 (47) that are involved in non-classical FGF1 export. 
Therefore, we evaluated the association between SK1 and FGF1 in the co-expressed cells and in 
the conditioned medium. We performed coimmunoprecipitation experiments utilizing NIH 3T3 
cells coexpressing FGF1 and V5-tagged SK1.  Cell lysates and equal amount of conditioned 
media were obtained from control and heat shocked cells, and after equalization of protein 
concentration, the samples were incubated with an anti-FGF1 monoclonal antibody. The 
immunoprecipitates were resolved by SDS-PAGE, and analyzed by V5 immunoblot.  As shown 
in Figures 2A and 2B, SK1 and FGF1 were efficiently coprecipitated from both the cell lysate 
and the conditioned medium derived from temperature-stressed cells. Much less SK1 was 
detected in the anti-FGF1 immunoprecipitate of the cell lysate derived from non-stressed cells 
(Figure 2A). As expected, FGF1 antibodies did not precipitate FGF1 or SK1 from medium 
conditioned by non-stressed cells. These data indicate that SK1 and FGF1 display intracellular 
association, which is significantly enhanced by stress conditions, and results in the release of a 
complex including both FGF1 and SK1. 
 
SK1 knockout abolishes stress-induced FGF1 release.  To evaluate the role of SK1 in FGF1 
release, we performed experiments with SK1 knockout mouse embryo fibroblasts (41) 
immortalized using the SV40 large T antigen as described in the Materials and Methods.  
Immortalized fibroblasts from SK1 knockout and control mice were transduced with adenovirus 
encoding FGF1. We observed that SK1 knockout fibroblasts exhibited a drastic inhibition of 
FGF1 release under heat shock conditions (Figure 3). Thus, SK1 appears to be a critical 
component of the FGF1 multiprotein release complex. Interestingly, it was reported that SK1 
knockout mice do not exhibit a severely abnormal phenotype apparently as a result of normal 
S1P levels in these animals (41) . It has been hypothesized that SK2 and possibly other kinases, 
such autaxin (50, 51) may be alternative sources of S1P production (41). These data are 
intriguing, since they suggest the specificity of the interaction FGF1 and SK1, as well as the 
independency of FGF1 release from S1P production. Indeed, we observed that S1P treatment 
failed to either enhance or inhibit the release of FGF1 from SK1:V5 and FGF1 co-transfectant 
NIH 3T3 cells both at 37° and 42° C (data not shown). To verify whether released SK1 is 
catalytically active during heat shock, we performed the kinase assay of SK1 from both lysates 
and media conditioned by SK1:V5 and FGF1 co-transfectant NIH 3T3 cells at 37° and 42° C 
(20). We were unable to detect any S1P production from SK1 released in association with FGF1 
into the conditioned media (Fig..). However, SK1 displayed catalytic activity when associated 
with FGF1 inside the cells (Fig..). 
 
SK1 associates with S100A13, and rescues FGF1 release from inhibition by S100A13ΔBR. 
We previously reported the important role of S100A13 in FGF1 release (34).  To be exported, 
FGF1 requires homodimerization mediated by its cysteine 30 residue; and the Cys-free FGF1 
mutant is not released (36).  However, the overexpression of S100A13 is able to rescue the 
stress-induced release of Cys-free FGF1 (34).  Another indication of the role of S100A13 in 
FGF1 export is that the expression of the S100A13ΔBR mutant lacking a C-terminal basic amino 
acid rich (BR) domain inhibits the stress-induced release of FGF1 (34).  Interestingly, unlike 
S100A13, SK1 failed to rescue the release of Cys-free FGF1 mutant  (data not shown).  Thus, 
apparently SK1 is not a substitute of S100A13 but is an additional member of the FGF1 release 
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complex. We sought to examine whether SK1 was able to interact with S100A13.  S100A13, and 
FGF1 were co-expressed in NIH 3T3 cells with and without the overexpression of SK1, and the 
cells were subjected to heat shock.  Under these conditions, the expression of SK1 did not alter 
the stress-induced release of FGF1 (Figure 4A). As shown previously, the expression of 
S100A13ΔBR, in the absence of SK1, inhibited FGF1 export (15). Interestingly, however, in the 
presence of SK1 expression the S100A13ΔBR mutant was unable to repress the stress-induced 
release of FGF1 into the extracellular compartment (Figure 4A).  The stress-induced release of 
SK1 was also unaltered by S100A13ΔBR (Figure 4B).  These data demonstrate that the 
expression of SK1 compensated for the inhibitory effect of the S100A13ΔBR mutant on FGF1 
export in response to temperature stress. In addition, these data imply that there are interactions 
between SK1 and S100A13ΔBR, which are mediated by the association of SK1 with a S100A13 
domain other than the BR sequence.  

We further sought to determine whether SK1 associates with both S100A13 and 
S100A13ΔBR by utilizing FGF1-free NIH 3T3 cells (40) coexpressing V5-tagged SK1, and 
either myc-tagged S100A13 or myc-tagged S100A13ΔBR for the immunoprecipitation 
experiments.  As shown in Figure 5A and B, SK1 coimmunoprecipitated with both S100A13 and 
S100A13ΔBR in a heat shock-dependent manner from conditioned media.  SK1 also associated 
with S100A13 in the cytosol in a heat shock-dependent manner (Figure 5A). Interestingly, 
however, we observed a significant association of SK1 and the S100A13ΔBR mutant in the 
cytosol at 37°C (Figure 5B).  These data suggest that the mechanisms utilized by S100A13 and 
SK1 to constitutively enter the extracellular compartment at 37°C are likely to be different from 
the stress-induced release, and do not involve the participation of the BR domain of S100A13. 
 
p40 Syt1 is associated with SK1.  Since p40 Syt1 is a critical component of the FGF1 stress-
induced release pathway (47), we questioned whether p40 Syt1 is also able to associate with 
SK1.  As shown in Figure 5C, p40 Syt1 coimmunoprecipitated with SK1 from both cell lysates 
and conditioned media from heat shocked NIH 3T3 cells coexpressing these two proteins.  
Interestingly, unlike FGF1 and wild type S100A13, the association between p40 Syt1 and SK1 in 
cell lysates obtained from non-stressed cells is as intensive as it is in heat shocked cells. These 
data suggest that SK1 and p40 Syt1 may interact in the cytosol in a temperature stress-
independent manner, while the association of SK1 with FGF1 and S100A13 is drastically 
enhanced by stress.  
 
SK1 is an avid copper-binding protein, yet its release is not blocked by copper chelation. 
The FGF1 release pathway requires intracellular copper, which facilitates the assembly of the 
FGF1:S100A13:p40Syt1 multiprotein release complex (35).  Because FGF1 (46), S100A13 (35), 
and p40 Syt1 (35) have all been characterized as copper-binding proteins, and SK1 appears to be 
a component of the FGF1 release pathway, we hypothesized that SK1 may also bind copper.  We 
demonstrated that the in vitro translation product of the SK1 transcript is an avid copper-binding 
protein, since it requires 0.5 M imidazole for elution from a copper affinity column (Figure 6A). 
Notably, p40 Syt1, FGF1, and S100A13 are eluted from this column at 0.05 M imidazole (35). 
Furthermore, the analysis of the copper-binding affinity of FGF1 and SK1 from lysates of NIH 
3T3 cells coexpressing these proteins demonstrated that a portion of FGF1 is able to gain higher 
affinity for copper, when co-expressed with SK1 (Figure 6B). These results indicate that the 
intracellular complex of FGF1:SK1 exhibited copper affinity characteristic of SK1. 
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Since we previously reported that the copper chelator tetrathiomolybdate (TM) is able to 
repress the heat shock-induced release of FGF1 (35), we investigated whether the constitutive 
and stress-induced release of SK1 were also copper-dependent.  Surprisingly, TM treatment was 
unable to inhibit the release of SK1 at 42°C in the presence or absence of FGF1 (Figure 7A), 
although some decrease of SK1 release at 37°C was observed.  In addition, the coexpression of 
SK1 and FGF1 abolished the ability of TM to repress FGF1 export in response to heat shock 
(Figure 7B). These data suggest that that SK1 may be involved in facilitating the intracellular 
trafficking of copper needed for the formation of the FGF1 release complex. 
 
SK1 associates with recombinant FGF1 in a cell-free system. Since SK1, like FGF1, 
S100A13, and p40 Syt1 is a copper-binding protein, and copper is able to mediate in vitro 
interactions between FGF1, S100A13, and p40 Syt1 (35), we questioned whether SK1 is able to 
form copper-dependent complexes with FGF1. Recombinant FGF1 and SK1 were mixed at 
equimolar ratio in the presence or absence of 1 mM CuCl2. After 30 minutes of incubation at 
42°C, the reaction products were resolved by non-reducing/limited denaturing (0.1% SDS) SDS-
PAGE. We utilized this electrophoretic system, since it enables the resolution and detection by 
immunoblot analysis of high molecular weight multiprotein aggregates at the top of the stacking 
gel (35).  FGF1 immunoblot analysis revealed the appearance of a band at the top of the stacking 
gel when SK1 was mixed with FGF1 (Figure 8A). Interestingly, however, the appearance of the 
high molecular weight aggregate was observed even in the absence of 1 mM CuCl2, suggesting 
that SK1 does not require the addition of exogenous copper to associate with FGF1 in a cell-free 
system.  

Because SK1 may facilitate the copper-induced formation of the FGF1 release complex, 
we sought to assess whether the interactions of SK1 with FGF1 were mediated by endogenous 
copper bound to SK1.  Incubation of recombinant FGF1 with SK1 at 42°C for 30 minutes in the 
absence of CuCl2 and in the presence of 500 mM imidazole, significantly reduced the appearance 
of the FGF1 band resolved at the top of the stacking gel (Figure 8A).  These data, and the 
observation that the coexpression of SK1 rescued the export of FGF1 when incubated with TM, 
suggest that SK1 may be involved in the redistribution of intracellular copper required for the 
assembly of the FGF1 multiprotein release complex. 

 
Discussion 

FGF1 contributes to the regulation of cell proliferation, migration, and differentiation 
during angiogenesis and inflammation. Although FGF1 mediates its biological activity through 
interactions with cell surface receptors (31), it lacks a conventional signal peptide sequence that 
is necessary to access the endoplasmic reticulum/Golgi apparatus (24).  However, it was 
demonstrated that FGF1 is released into the extracellular compartment through a stress- and 
copper-dependent non-classical pathway. The stress-dependent release of FGF1 requires the 
formation of a multiprotein complex containing the calcium- and acidic phospholipid-binding 
proteins, S100A13 and the p40 form of p65 Syt1.  
 Like FGF1 (31), SK1 is a regulator of angiogenesis (52, 53) through its ability to 
synthesize S1P (20).  Interestingly, S1P may be involved in the determination of cell fate (54), 
and may also play a role in the inhibition of apoptosis (55), and in the regulation of the allergic 
response (56).  Similar to FGF1, SK1 participates in the regulation of cell proliferation, 
migration, and vascular maturation (7). Our data suggest that SK1 is also a component of the 
FGF1 multiprotein release complex, and that it is involved in the regulation of the stress-induced 
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non-classical export of FGF1. Indeed, non-classical export of SK1 shares pharmacologic 
properties with the FGF1 release pathway (20, 24, 32).  The expression of FGF1 is able to 
repress the constitutive release of SK1 from NIH 3T3 cells, and it restricts the export of SK1 to 
the stress-induced pathway.  In addition, the observation that SK1 is associated with FGF1 in 
heat shock-conditioned medium suggests that SK1 participates in the FGF1 multiprotein release 
complex. In fact, SK1 also associates with S100A13 and p40 Syt1.  Further, the BR domain of 
S100A13 is involved in binding FGF1, since deletion of the BR domain of S100A13 acts as a 
dominant-negative for FGF1 export in response to stress (34).  Our observation that SK1 
expression is able to rescue the release of FGF1 in the presence of the dominant-negative 
S100A13ΔBR mutant suggests that SK1 may associate with the FGF1:S100A13 heterotetramer 
at a site in S100A13 other than the BR domain.  Furthermore, the ability of the S100A13ΔBR 
mutant to coprecipitate with SK1 is consistent with this premise.  Most importantly, the critical 
role of SK1 in the non-classical stress-induced release of FGF1 is clearly demonstrated in the 
experiments with SK1 knockout mouse embryo fibroblasts. 

It is noteworthy that the expression of SK1 is able to overcome the TM-induced 
inhibition of FGF1 release, implying a functional role for SK1 in the copper-dependent assembly 
of the FGF1 multiprotein release complex.  Interestingly, SK1 exhibits an avidity for copper 
which is significantly higher than that of FGF1 (46), S100A13 (35), or p40 Syt1 (35).  The 
observation that SK1 is able to alter the electrophoretic mobility of FGF1, in an imidazole-
sensitive manner, in a cell-free and copper-free system is significant. Indeed, prior 
electrophoretic analysis of FGF1, S100A13 and p40 Syt1 complex formation revealed a mobility 
shift in response to the presence of exogenous copper (35). Thus we anticipate that SK1 may be 
able to function as an intracellular “copper sink”, and SK1 may be responsible for the 
distribution of intracellular copper to the polypeptide components of the FGF1 non-classical 
export pathway. Our data demonstrate that SK1 released into the conditioned media upon heat 
shock was catalytically inactive when associated to FGF1.   Moreover, significantly reduced 
enzymatic activity of SK1 was observed in presence of copper (45). The lack of biological 
activity appears to be a common characteristic of at least some of the proteins of the FGF1 
release complex. Indeed, it has been reported that FGF1 dimer released upon temperature stress 
(32) in association with the other components of the FGF1 release complex (47, 49, 57), does not 
exhibit biological activity (46). However, the capacity to induce mitogenesis is re-gained once 
the FGF1 dimer is reduced to monomer (46) . Apparently, SK1 released as a member of the 
FGF1 export complex shares a similar behavior. 
 On the other hand, we observed SK1 catalytic activity when it was associated with FGF1 
inside the cells. The observation that S1P was unable to interfere with FGF1 secretion, suggests 
the possibility of a new role of SK1 in the angiogenic processes. It is interesting to note that the 
enzymatic activity of SK1 is significantly enhanced by interactions with acidic phospholipids, 
particularly phosphatidylserine (pS) and phosphatidylinositol (pI) (45).  Although specific acidic 
phospholipid-binding domains within the structure of SK1 have not been identified, it was 
reported that the interaction with pS may double the kcat of the enzyme (45).  It is noteworthy that 
FGF1 is characterized by the presence of a consensus sequence for acidic phospholipid-binding 
in the carboxy-terminal domain (36, 58). Moreover, the ability of FGF1 (58) to assume molten 
globule character in the presence of acidic phospholipids suggests that the FGF1 multiprotein 
release complex may utilize the flipping of pS or other acidic phospholipids for their export 
through the plasma membrane (22, 59).  This premise is particularly interesting since pS, as well 
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as other acidic phospholipids, are known to exhibit electrostatic interactions with sphingosine, 
which is largely protonated at a physiological pH (60). 
 Although the biological significance of SK1 as a component of the FGF1 multiprotein 
release complex is not fully understood, recently the biological relevance of copper as a mediator 
of the assembly of this complex was deduced.  Indeed, the response to injury in the rat aorta is 
sensitive to TM treatment by its ability to repress the release of IL1α, FGF1, and S100A13, as 
well as reducing the appearance of pS on the surface of cells involved in mediating this response 
(61).  Since S1P is a mediator of angiogenic response in vivo (10, 53, 62), it is interesting that 
SK1, which is responsible for the production of S1P, is a component of the pro-angiogenic FGF1 
release complex.  It is not known whether the regulation of tissue response to injury in vivo 
involves the function of S1P generated in the extracellular compartment by SK1 released through 
stress-induced pathways.  However, it is likely that at least one of the functions of intracellular 
cytosolic FGF1 may be to assure that SK1 remains within the cytosol, since its constitutive 
release may lead to premature angiogenic and inflammatory responses in vivo.
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Figure Legends 
Figure 1.  Release of SK1 in Response to Temperature Stress In Vitro. NIH 3T3 cells and FGF1 
NIH 3T3 cell transfectants were adenovirally transduced with AdSK1:V5, and subjected to heat 
shock. After treatment with 0.1% DTT, conditioned media were subjected to 
immunoprecipitaion with V5 antibodies (A) or adsorbed to and eluted from a heparin-Sepharose 
column (B), as described in the Material and Methods. The samples were resolved in a 12% 
acrylamide SDS-PAGE, and subjected to immunoblot analysis with V5 (A, upper panel of B) or 
FGF1 antibodies (lower panel of B). 
 
Figure 2.  SK1 is Able to Coprecipitate with FGF1. Conditioned media (CM) and cell lysates 
(Lys) from heat shocked SK1:V5-transduced FGF1 NIH 3T3 cell transfectants were collected, 
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filtered, and subjected to immunoprecipitation with a monoclonal FGF1 antibody.  (A)  FGF1 
immunoprecipitates were resolved by 12% acrylamide SDS-PAGE, and subjected to V5 
immunoblot analysis.  (B) The FGF1 immunoprecipitates from (A) were subjected to FGF1 
immunoblot analysis.  
 
Figure 3.  SK1 Knockout Blocks the Release of FGF1. FGF1 was adenovirally transduced in 
immortalized SK1 knockout and normal mouse embryo fibroblast cells, as previously described 
(40). The heat shock-conditioned media were adsorbed to heparin-Sepharose, eluted by 1.5 M 
NaCl, resolved by 15% acrylamide SDS-PAGE, and subjected to FGF1 immunoblotting (A). (B) 
SK1 expression in knockout and control cells was monitored with specific SK1 primers by RT 
PCR. 
 
Figure 4.  The Expression of SK1 is Able to Rescue the S100A13ΔBR-Induced Inhibition of 
FGF1 Export. Media conditioned by heat shocked and control SK1:V5- and S100A13-
transduced FGF1 NIH 3T3 cell transfectants or by heat shocked and control SK1:V5- and 
S100ABΔBR-transduced FGF1 NIH 3T3 cell transfectants. The media were filtered, and either 
(A) adsorbed to heparin-Sepharose columns, and eluted with 1.5 M NaCl and the eluates were 
resolved by 15% acrylamide SDS-PAGE, and subjected to FGF1 immunoblot analysis, or (B) 
subjected to immunoprecipitation with monoclonal V5 antibodies, and the immunoprecipitates 
were resolved by 12% acrylamide SDS-PAGE and subjected to V5  immunoblot analysis. 
 
Figure 5.  The Association of SK1 with S100A13, S100A13ΔBR and p40 Syt1.  NIH 3T3 cells 
cotransduced with either SK1:V5 and S100A13:Myc (Panel A), SK1:V5 and S100A13ΔBR:Myc 
(Panel B) or SK1:V5 and p40 Syt1 (Panel C) were subjected to heat shock for 110 minutes at 
42°C.  Conditioned media (CM) and cell lysates (Lys) were collected and concentrated as 
described in the Materials and Methods.  (A) and (B) The samples were immunoprecipitated 
with a monoclonal Myc antibody, resolved by 12% acrylamide SDS-PAGE, and subjected to V5 
immunoblot analysis. (C) The samples were immunoprecipitated with a polyclonal p40 Syt1 
antibody, resolved by 10% acrylamide SDS-PAGE and subjected to V5 immunoblot analysis. 
 
Figure 6.  The Ability of SK1 to Bind Copper.  (A) The SK1:V5 translation product from an in 
vitro translation reaction was adsorbed to a HiTrap chelating column previously loaded with 0.1 
M CuCl2.  The column was washed with 1 M NaCl, and eluted with increasing concentrations of 
imidazole (0.1 mM to 1.0 M).  The eluted fractions were subjected to V5 immunoblot analysis. 
(B) Copper-binding affinity shift of FGF1 and SK1 in NIH 3T3 cells.  Lysates of FGF1 NIH 3T3 
transfectant cells (top left), FGF1 NIH 3T3 transfectants cells transduced with AdSK1:V5 (top 
right; bottom right), and NIH 3T3 cells transduced with AdSK1:V5 (bottom left) were adsorbed 
to copper columns, and eluted with increased concentrations of imidazole, as described in the 
Materials and Methods. The eluates were resolved by 12% acrylamide SDS-PAGE, and 
subjected to FGF1 immunoblot analysis (top) or to V5  immunoblot analysis (bottom). 
 
Figure 7. The Effect of Tetrathiomolybdate on SK1 Release In Response to Heat Shock.  
AdSK1:V5-transduced NIH 3T3 cells and AdSK1:V5-transduced FGF1 NIH 3T3 cell 
transfectants were incubated for 18 h at 37°C in the presence or absence of 250 nM TM.  After 
incubation, the cells were subjected to heat shock for 110 minutes at 42°C in DMEM with or 
without 250 nM TM. (A) Conditioned media from AdSK1:V5-transduced NIH 3T3 cells, and 
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AdSK1V5-transduced FGF1 NIH 3T3 transfectant cells were subjected to immunoprecipitation 
and V5 immunoblot analysis. (B) Conditioned media from either FGF1 NIH 3T3 cells or 
AdSK1:V5-transduced FGF1 NIH 3T3 cell transfectants were processed for heparin-Sepharose 
chromatography, as described in Materials and Methods.  The heparin-Sepharose column was 
eluted with 1.5 M NaCl, and the fractions were resolved in a 15% acrylamide SDS-PAGE, and 
subjected to FGF1 immunoblot analysis.  
 
Figure 8.  Evaluation of the Cell-Free Interaction Between the Recombinant Forms of SK1 and 
FGF1. The recombinant forms of FGF1 (100 ng) and SK1 (250 ng) were resuspended in 50 µl of 
PBS in the presence or absence of 1 mM CuCl2, incubated for 30 minutes at 42°C, diluted in 
non-reducing SDS-PAGE loading buffer, resolved by 12% acrylamide non-reducing/limited 
denaturing SDS-PAGE (35), and subjected to immunoblot analysis, as described in the Material 
and Methods. SK1 facilitates the aggregation of FGF1 independent of the presence of copper. 
FGF1 was resuspended with or without an equimolar amount of SK1 in PBS in the presence or 
absence of 1 mM CuCl2.  Note the multiprotein aggregate band (at the top of the stacking gel) 
resolved by FGF1 (top panel) and V5 (bottom panel) immunoblot analysis.  
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ABSTRACT

Fibroblast growth factor (FGF)1 is released from cells as a constituent of a

multiprotein complex that contains the calcium binding proteins, S100A13, and the p40 kDa

form of Synaptotagmin (Syt)1, through an ER-Golgi-independent stress-induced pathway.

FGF1 and the other components of its secretory complex are signal peptide-less proteins, and

their secretion mechanism is not fully understood. Since, when co-expressed in NIH 3T3

cells, S100A13, FGF1 and p40 Syt1 accumulated during stress in the vicinity of the cell

membrane, we examined their capability to directly permeabilize lipid bilayers by studying

protein-induced carboxyfluorescein (CF) release from liposomes of different phospholipid

(pL) composition. FGF1 and S100A13 permeabilized acidic pL liposomes in a dose-

dependent manner.  The extent of CF released was more significant from

phosphatidylinositol (pI) and phosphatidylglycerol than from phosphatidylserine liposomes.

Surprisingly, p40 Syt1 exhibited a dose-dependent permeabilizing activity towards pI

liposomes only. None of the proteins induced CF leakage from zwitterionic liposomes

consisting of phosphatidylcholine. In order to identify the domain of p40 Syt1 involved in

liposome permeabilization, we produced a mutant in which three lysine residues (K326,

K327 and K331) in the C2B domain of p40 Syt1 were substituted with glutamines, and

demonstrated that the ability of the mutant to induce pI liposomes permeabilization was

strongly attenuated, and it did not exhibit either spontaneous or stress-induced release. Our

results suggest that specific acidic pL in the inner leaflet of the cell membrane and basic

amino acid-rich domains of constituent proteins are involved in the non-classical export of

FGF1.
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Fibroblast growth factor (FGF)1 regulates embryonic development of vertebrates (1)

and plays important roles in angiogenesis, inflammation, wound healing, and as a

neurotrophic factor (2, 3). Similar to FGF2, FGF1 belongs to a large group of proteins that

lack a conventional signal sequence and are able to gain access to the extracellular

compartment, independently of the endoplasmic reticulum (ER)-Golgi apparatus (3-9).

Indeed, FGF1 release is insensitive to Brefeldin A, which blocks ER-to-Golgi vesicular

transport (10), and FGF1 does not appear to be present in the cytoplasmic vesicles (11). Thus,

FGF1 export through exocytotic fusion of secretory vesicles with the cell membrane is

unlikely. FGF1 is secreted from cells upon stress stimuli such as heat shock (12), hypoxia

(13), serum starvation (14), and treatment with oxidized LDL (15). The availability of free

intracellular copper ions is necessary for FGF1 release, and in vitro data suggest the

formation of a copper- and stress-dependent multiprotein export complex (16) containing

calcium-binding proteins, S100A13 and p40 Syt1 (17, 18). p40 Syt1 is a non-transmembrane

isoform of the integral component of secretory vesicles, Synaptotagmin (Syt)1, that is

involved in the calcium (Ca2+)-triggered fusion of vesicles with the plasma membrane (19).

Our laboratory demonstrated that p40 Syt1 is produced by alternative initiation of translation

of p65 Syt1 mRNA (20).

Both S100A13 and p40 Syt1 are components of the heparin-binding aggregate

containing FGF1 that was isolated from the brain (21-23). p40 Syt1 and S100A13 display a

constitutive as well as a stress-induced release from transfected NIH 3T3 cells. Their

constitutive release is blocked when they are cotransfected into the cells along with FGF1;

however upon stress, they are released in a complex with FGF1 (17, 18). Specific deletion

mutants of S100A13 and Syt1 block stress-induced FGF1 release, demonstrating that these

proteins are necessary for FGF1 export (17, 18, 24).
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Although significant progress has been achieved in the study of non-classical protein

release, the final step that allows these polypeptides to translocate across the cell membrane

remains unknown. Confocal immunofluorescence microscopy studies demonstrated that, in

response to stress, cytosolic FGF1, S100A13, and p40 Syt1 traffic to the inner surface of the

plasma membrane (11). It has been suggested that the assembly of the FGF1 release complex

may occur in this locale through the interaction of the individual polypeptide components

with membrane phospholipids (pL). Indeed, it is known that: (i) FGF1 is able to bind acidic

pL in a solid phase pL assay (25), (ii) Syt1 can bind pS through its C2A domain and

phosphorylated forms of phosphatidylinositol (pI) through its C2B domain (26), and (iii)

some members of the S100 family, such as S100A6 and S100A10, bind pL and they are

important regulators of the functions of pL-binding proteins (27, 28). However, the ability of

S100A13 to interact with pL has not yet been evaluated.

It is known that FGF1 disrupts acidic pL-containing liposome integrity (29), is able to

deform lipid bilayers (30), and it exhibits molten globule character at temperatures above

30°C  (31, 32), at acidic pH, and also in the presence of anionic pL (29). Indeed, molten

globule is a partially unfolded conformation that allows the protein to penetrate lipid bilayers

(33). Given the pL binding capability and pL-induced molten globule state of FGF1 (25, 29),

we investigated whether membrane pL play a role in FGF1 non-classical release. To this end,

we studied the interaction of FGF1, S100A13, and p40 Syt1 with liposomes of various pL

compositions, and we produced a p40 Syt1 mutant with reduced pL binding activity. Our

results indicate that all three studied members of the FGF1 release complex permeabilized

membranes composed of acidic pL. In addition, the mutation of specific basic amino acid

residues in the C2B domain of p40 Syt1 blocked its ability to permeabilize liposomes and its

release from the cells.
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MATERIALS AND METHODS

Materials. Dioleoylphosphatidylinositol (pI), dioleoylphosphatidylglycerol (pG),

dioleoylphosphatidylserine (pS), and dioleoylphosphatidylcholine (pC) were purchased from

Avanti Polar Lipid (Alabaster, AL). The fluorescent dye, 5,6-carboxyfluorescein (CF), was

purchased from Molecular Probes, Inc (Eugene, OR).

Plasmids and mutagenesis. The plasmids for eukaryotic expression of FGF1 (pXZ38)

and p40 Syt1 (p40-Syt1:Myc pMEX hygro) were prepared as previously described (12, 17,

18). The K326,327,331Q mutant of p40 Syt1 was produced from the p40 Syt1:Myc pMEX

Hygro and GST-p40 Syt1-pGEX-KG original plasmids (18, 24) by mutagenesis, using the

QuickChange Site-directed Mutagenesis kit (Stratagene, Cedar Creek TX), and the following

primers: 5’ G CTG AAG AAG GAA GAG ACG ACG ATT GAG AAG AAC ACA CTC 3’

(sense), 5’ GT GTT CTT CTC AAT CGT CGT CTC TTC CTT CTT CAG CCT C 3’

(antisense).

Recombinant protein purification. The recombinant FGF1, S100A13, and p40 Syt1

were prepared as previously described (17, 24, 34). Briefly, DH5α E. coli cells containing

plasmids for the prokaryotic expression of FGF1 (FGF1-pET3C), S100A13 (GST-S100A13-

pGEX-KG), or p40 Syt1 (GST-p40 Syt1-pGEX-KG), were grown at 37°C in selective

medium containing ampicillin (150 µg/ml) to OD ∼ 0.5 (wavelength: 600 nm); then 0.5 mM

isopropyl-beta-D-thiogalactopyranoside (IPTG) was added to induce protein expression.

Bacteria were harvested by centrifugation (6000 g), lysed in a lysis buffer (1X phosphate

buffered saline, 2 mM EDTA, 0.05% Tween 20 for S100A13 and p40 Syt1 and 50 mM Tris

pH 8.8, 10 mM EDTA, 10 mM glucose for FGF1) containing lysozyme (10 µg/ml), sonicated

on ice (4 times X 15 sec), and centrifuged (10000 g for  10 minutes). The supernatant
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containing the recombinant protein was incubated for 2 hours at 4°C with heparin sepharose

(Amersham Pharmacia Biotech, Uppsala, Sweden) for FGF1, and glutathione sepharose

(Amersham Pharmacia Biotech) for p40 Syt1 and S100A13. FGF1 was eluted from the

heparin sepharose with 1.5 M NaCl in 50 mM Tris-HCl, 10 mM EDTA, pH 7.4 (TE), and

dialyzed overnight against 1X phosphate buffered saline (PBS). Additionally, FGF1 was

purified by High Pressure Liquid Chromatography (HPLC), using a cationic exchange

column (Mono S HR 5/5, Amersham Pharmacia Biotech). For p40 Syt1 and S100A13

preparation, sepharose was treated with cleavage buffer (50 mM Tris pH 8.0, 150 mM NaCl,

2,5 mM CaCl2) containing thrombin (3 µg/ml) for 45 minutes at room temperature. p40 Syt1

and S100A13 present in the supernatant were separated by HPLC, using respectively a

cationic exchange column (Mono S HR 5/5, Amersham Pharmacia Biotech) and a reverse

phase column (Luna C8, Phenomenex). p40 Syt1 K326,327,331Q mutant was purified by the

same method as used for the wild type (wt) form of  p40 Syt1.

Liposome Preparation. 1 ml of pL dissolved in chloroform (10 mg/ml) was dried

under a nitrogen stream and resuspended in 100 mM CF solution at pH 7.0. The lipid

suspension was sonicated for 30 minutes at 40 KHz, extruded 10 times through an Avanti

Polar Lipids Mini-extruder, and passed through a 10 ml dextran desalting column (Pierce,

Rockford, IL) pre-equilibrated with 10 mM HEPES, 150 mM NaCl at pH 7.0. The eluate was

collected in several aliquots. The pL concentration of the liposome suspension in each aliquot

was assessed by phosphorus assay according to Avanti Polar Lipids, Inc. instructions. Briefly,

different amounts of phosphorus standard (Sigma, St. Louis, MO), 0 µmoles (0 µl) blank,

0.0325 µmoles (50 µl), 0.065 µmoles (100 µl), 0.114 µmoles (175 µl), 0.163 µmoles (250

µl), and 0.228 µmoles (350 µl), and 100 µl  from each liposome fraction were placed in

different tubes. 8.9 N H2SO4 was added, and the tubes were heated at 200-215°C for 25
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minutes. 150 µl of H2O2 was added to the bottom of the tubes, and the tubes were heated for

an additional 30 minutes. Sequentially, 3.9 ml deionized water, 0.5 ml of 2.5% ammonium

molybdate tetrahydrate solution, and 0.5 ml of 10% ascorbic acid solution were added to all

the tubes. The tubes were heated at 100°C for 7 minutes. Spectrophotometric analysis of the

samples and standards was performed at 820 nm. A calibration curve of the absorbance

generated using the standards was used to determine phosphorus concentration in the

samples.

Fluorescence measurement. The fluorescence of liposomes resuspended in 10 mM

HEPES, 150 mM NaCl (pH 7.0 unless differently indicated) was monitored for 10 minutes by

a Fluorolog-3 spectrofluorimeter (Jobin Yvon Horiba, Edison, NJ) at an excitation

wavelength 470 nm and an emission wavelength 520 nm. The temperature of the sample was

controlled by a Peltier system. Different concentrations of FGF1, S100A13 and p40 Syt1

recombinant proteins were added to the cuvette at the second minute of the experiment. α-

chymotrypsin (Sigma), at the maximal concentration employed for studied proteins, was used

as a negative control and 0.1% Triton X-100 served as a positive control for complete

liposome permeabilization (maximal CF release).

Cell culture. NIH 3T3 cells were grown to 70% confluence in Dulbecco’s-modified

Eagle’s medium (DMEM; HyClone, Logan, UT) supplemented with 10% bovine calf serum

(v/v) (BCS, HyClone) and 1X antibiotic/antimycotic mixture (Gibco, Grand Island, NY) on

human fibronectin-coated (10 µg/cm2) 10 cm dishes (Corning). The cells were transiently

transfected with 10 µg p40 Syt1 wt or p40 K326,327,331Q Syt1 DNA, using JetPEI

transfectant reagent according to the manufacturer’s instructions (Qbiogene Inc.). For

transient co-transfections, 5 µg of either p40 Syt1:Myc wild type (wt) DNA or p40
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K326,327,331Q Syt1:Myc DNA, in combination with 5 µg of FGF1 DNA were added to a 10

cm dish. Twenty-four hours later, the cells were plated on 15 cm dishes.

Heat shock, conditioned media processing and immunoblot analysis. Transiently

transfected NIH 3T3 cells grown to 70-80 % confluency were washed with DMEM

containing 5 units/ml heparin (Sigma), and heat shock was performed as previously described

(12) in DMEM containing 5 U/ml heparin (Sigma) for 110 minutes at 42°C; control cultures

were incubated at 37°C in the same medium. Following heat shock, the media were collected,

filtered through a 0.22 µm filter, and adsorbed to a heparin-sepharose CL-6B (1 ml) column

(Amersham Pharmacia Biotech) preequilibrated with TE. The adsorbed proteins were washed

with TE buffer, eluted with 1.5 M NaCl-TE  buffer, and concentrated by Amicon Ultra

(Millipore). The samples were resuspended in Laemmlie buffer, resolved by 12% (w/v)

sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE), transferred to a

nitrocellulose membrane, and immunoblotted with rabbit anti-FGF1 or anti-Syt1 antibody,

followed by a goat anti-rabbit peroxidase-conjugated secondary antibody (Biorad). Proteins

in the blots were detected using an ECL kit (Amersham Bioscences).

Confocal microscopy analysis. NIH 3T3 cells were plated on fibronectin-coated glass

coverslips in 6-well plates, grown to 70% confluence in DMEM supplemented with 10%

BCS and 1X antibiotic/antimycotic mixture, and then transiently transfected as described

above with 1 µg per well of p40 Syt1:Myc or p40 Syt1:Myc K326,327,331Q DNA. After 24

hours, the culture medium was substituted with DMEM containing 5 U/ml heparin (Sigma),

and heat shock was performed as described above. Cells were fixed with 4% formaldehyde

and immunostained for Myc tag. Briefly, after fixation for 10 minutes, the cells were washed

twice with PBS, blocked for 1 hour in blocking buffer (PBS containing 10% bovine serum

albumin, 0.1% Tween 20, 0.1% Triton X-100, and 0.1% NaN3), incubated for 1 hour with a
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monoclonal anti-Myc antibody (Oncogene, 1 µg/ml), washed three times with PBS,

incubated for 1 hour with a 1:100 dilution of fluorescein-conjugated anti–mouse IgG

antibody (Molecular Probes) and 1 µg/ml Hoechst 34580 (Molecular Probes), washed three

times with PBS, and embedded in Vectashield mounting medium (Vector Laboratories Inc,

Burlingame CA). A LTCS-SP confocal system (Leica) was used for these studies. Cells were

examined using a 100x objective and the 237 µM confocal pinhole of the Leica 2000

confocal software program.

RESULTS

Proteins of the FGF1 release complex induce liposome permeabilization that is dependent

on liposome composition and protein concentration.

CF-loaded liposomes present a convenient model for studying the membrane

permeabilizing activity of proteins. FGF1 was previously demonstrated to permeabilize

mixed pG/pC liposomes (29). To investigate the interaction of FGF1 with various plasma

membrane pL, we compared the permeabilizing effect of FGF1 on liposomes consisting of

several acidic (pS, pI, pG) and a zwitterionic pL (pC). We also evaluated whether the other

components of FGF1 release pathway, i.e. S100A13 and p40 Syt1, induce liposome

permeabilization (Figure 1A, B, C). The recombinant forms of FGF1, S100A13, and p40

Syt1 were added to the pL liposome suspension in the cuvette, and the CF release was

detected fluorimetrically. The final protein concentrations in the cuvette were 1 µM, 0.5 µM,

0.25 µM, 0.125 µM, and the pL concentration was 2 µM. A temperature of 50°C was chosen

in accordance with published data regarding FGF1-induced liposome permeabilization (29).

The dependence of the ability of FGF1 to induce liposome permeabilization upon pL
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composition may be represented by the following relationship: pI > pG > pS > pC (Figure

1A). Interestingly, we observed that S100A13 also exhibited permeabilizing effects on

liposomes with a similar relationship as FGF1: pG > pI > pS > pC (Fig. 1B). Conversely, p40

Syt1 was not able to induce any CF release from pC, pS, and pG liposomes, but very

efficiently permeabilized pI liposomes (Figure 1C). It is important to stress that none of the

studied proteins was able to induce a CF release from zwitterionic (pC) liposomes (Figure

1A, B, C). The extent of CF release was proportional to protein concentration. S100A13 at 1

µM induced a maximal CF release from pG liposomes almost equivalent to complete

liposome permeabilization induced by 0.1% Triton X-100 (Figure 1B).

Thus we conclude that all the studied proteins of the FGF1 release complex were able

to induce permeabilization of liposomes composed of acidic pL, but not zwitterionic pL, in a

protein concentration-dependent manner. In addition, at least for p40 Syt1, this ability

exhibited selectivity towards a specific acidic pL (pI).

S100A13- and p40 Syt1-induced permeabilization of acidic phospholipid liposomes is

temperature- and pH-dependent.

Since the export of the FGF1 complex from cells (17, 24) and FGF1-induced

liposome permeabilization are temperature-dependent (29), we evaluated the effect of

temperature upon S100A13- and p40 Syt1-induced CF release from liposomes (Figure 2A).

125 nM S100A13 was added to a 1 µM pG liposome suspension, and fluorescence

measurements were performed at 27°, 32°, 37°, 42°, 47° and 52°C. The release induced by

the protein at each specific temperature, and, in further experiments, at each specific pH, was

estimated as percentage of the maximal CF release obtained by subtracting the spontaneous

liposomes leakage (untreated liposomes), which was equivalent to the leakage of liposomes

in the presence of 125 nM α-chymotrypsin (data not shown), from the release induced by
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0.1% Triton X-100. S100A13 started to induce CF release at 37°C, with the maximum

release observed at 47°C. The temperature-dependent liposome permeabilization showed

biphasic behavior. We evaluated the effect of temperature on p40 Syt1-induced CF release

similarly to S100A13, however, because we observed that p40 Syt1-induced liposome

permeabilization was pI-selective (Figure 1C), we employed pI liposomes (Figure 2B). Like

S100A13, p40 Syt1 started to induce CF release at 37°C, but the permeabilizing activity

increased progressively with temperature; in this case, the dependence of CF release upon

temperature exhibited monophasic features. Interestingly, Mach et al. have previously

demonstrated a similar monophasic temperature dependence for FGF1, that induced maximal

release at 50°C (29).

Since the intracellular pH changes with specific physiological conditions, such as

stress, (35), we considered the possibility that this factor may also influence the structure of

the FGF1 release complex components and their interaction with pL. In order to evaluate the

effect of pH upon S100A13-induced liposome permeabilization, 125 nM S100A13 was

applied to 1 µM pI liposomes at 37°C and at pH 6.0, 7.0, and 8.0. The maximal CF release

occurred at pH 6.0 (Figure 2C). The analysis of the pH-dependence of p40 Syt1

permeabilizing effect revealed an enhancement of the release at pH 6.0, similar to S100A13

(Figure 2D), suggesting that changes in intracellular pH may play a role in non-classical

protein release. Interestingly, the FGF1-induced CF leakage from liposomes was also

demonstrated to be enhanced at acidic pH (29).

p40 Syt1 K326,327,331Q mutant is not released by NIH 3T3 cells.

The ability of all three members of the FGF1 release complex to permeabilize acidic

pL membranes prompted us to use mutagenesis in order to investigate whether this property

is related to the ability to exhibit non-classical release. To that end, we have chosen Syt1,
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whose interaction with membranes is well studied (26). A loss of pI binding capability was

described for Syt2 after substitution of three closely located lysine residues in the C2B

domain (36). Particularly, it was demonstrated for the binding of PIP2, which is present only

at the plasma membrane (37). Since these residues in the C2B domain are highly conserved

among the Syt family members, we mutated them in p40 Syt1, in order to evaluate the release

of the resultant mutant during stress and at normal conditions. Heat shock experiments

performed on NIH 3T3 cells transiently transfected with either the mutant or the wt form of

p40 Syt1 demonstrated that the p40 Syt1 K326,327,331Q mutant was not released either at

37º or 42ºC, unlike the wt form (Figure 3A). This suggests that the lysine residues at position

326, 327, 331 are required for both stress-induced and constitutive release of p40 Syt1 from

cells. However, unlike the deletion mutant of p65 Syt1 lacking most of the C2A domain (18)

p40 Syt1 K326,327,331Q was not able to prevent FGF1 release from NIH 3T3 cells upon

heat shock when it was co-expressed with FGF1 (Figure 3B).

p40 Syt1 K326,327,331Q does not display perimembrane localization in transfected cell.

Previously, by confocal microscopy, we demonstrated that when co-expressed with

FGF1, the wt form of p40 Syt1, like the other members of the FGF1 release complex,

migrates to the plasma membrane under stress conditions (11). Since p40 Syt1

K326,327,331Q is not released by cells, we evaluated its localization by confocal

fluorescence microscopy during heat shock and at normal conditions in transiently transfected

NIH 3T3. Our study demonstrated that p40 Syt1 K326,327,331Q presented a diffuse cytosolic

distribution pattern both at 37º (Figure 4C) and at 42ºC (Figure 4D) unlike the wt form which

displayed a perimembrane localization under both conditions (Fig. 4A, B). Additionally,

while p40 Syt1 wt exhibited nuclear and cytoplasmic localization, p40 Syt1 K326,327,331Q

was localized only in the cytoplasm. Apparently lysine residues 326, 327, 331 of p40 Syt1,
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which are necessary for its interaction with the cell membrane, can alternatively serve as a

nuclear localization sequence.

K326,327,331Q mutations in the p40 Syt1 C2B domain lead to a sharp decrease of pI

liposome permeabilization activity.

The inability of p40 Syt1 K326,327,331Q to be released by NIH 3T3 cells and to

exhibit localization at the plasma membrane, prompted us to explore its liposome

permeabilizing activity. As shown in Figure 5, the p40 Syt1 K326,327,331Q-induced CF

release from pI liposomes was significantly (approximately 70%) reduced compared to wt

p40 Syt1. Taken together, these data suggest that the lysine residues at positions 326, 327,

and 331 play a crucial role in the ability of p40 Syt1 to bind the plasma membrane,

permeabilize it, and exit to the extracellular compartment.

DISCUSSION

It is known that, despite the absence of a classical signal sequence in its structure,

FGF1 exhibits stress-induced release (12). However the mechanism used by this growth

factor to cross the cell membrane is still not sufficiently understood. Previously it was

demonstrated that FGF1 binds acidic pL (25), and assumes a partially unfolded molten

globule conformation in the presence of acidic pL (29). In this conformation, FGF1 maintains

its secondary structure but loses almost completely its tertiary structure. It acquires

hydrophobic characteristics that, theoretically, can allow it to gain solubility in lipid

membranes and to permeabilize them (29, 33). However, since FGF1 is released in

association with S100A13 and p40 Syt1 (17, 18), the question arises whether the two latter

proteins could also display membrane permeabilizing properties. It is known that Syt1,

similarly to FGF1 (25), is able to associate with pL, and particularly pS and pI (26). In
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addition, some S100 family members have been demonstrated to bind pL or pL-binding

proteins (27, 28). These previous observations prompted us to undertake a comparative study

of the interaction of FGF1, p40 Syt1, and S100A13 with artificial membranes. We observed

that the three proteins were able to permeabilize lipid membranes composed of acidic but not

of zwitterionic pL. While FGF1 and S100A13 exhibited permeabilizing activity towards pG,

pS, and pI membranes, p40 Syt1 induced selective permeabilization of only pI liposomes.

We previously demonstrated that when the components of the FGF1 release complex

are co-expressed, they localize at the plasma membrane in response to stress (11). The

observation that FGF1 release complex members are able to permeabilize acidic pL

liposomes led us to hypothesize a critical role of plasma membrane pL in the assembly and

export of the FGF1 release complex. Particularly, the preference exhibited by p40 Syt1 in

permeabilizing pI liposomes suggests the possibility of the existence of specific pL sites,

which recruit different constituents of the FGF1 release complex at the inner leaflet of the

plasma membrane. Therefore, it is likely that specific pLs may function as anchors for

individual proteins, facilitating the formation of the FGF1 multiprotein release complex at the

inner face of the cell membrane. Additionally, acidic pLs might be responsible for inducing

tertiary structure modifications that allow the proteins to translocate across the plasma

membrane.  This might be the case for p40 Syt1, which is known to bind pS and pI

respectively through the C2A and C2B domains (26), but exhibits permeabilizing activity

only towards pI liposomes. It is also important to remark that the well-known capability of

some pLs, such as pS, to flip from the inner to the outer face of the plasma membrane in

response to stress (38, 39) might be involved in this translocation process.

As already mentioned, conformational changes of FGF1 induced by acidic pL may

play a crucial role in the translocation of the protein across the cell membrane (29). The

calcium-binding protein, S1001A13, which is released from cells in association with FGF1,
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and exhibited permeabilizing activity upon acidic pL liposomes similarly to FGF1, is a

member of the S100 proteins family. S100 proteins are known to regulate partner proteins

functions by inducing their structural modification, i.e. acting as chaperones; in particular,

S100A10 regulates the process of insertion of annexin II into the membrane (40). Similarly to

S100A10, S100A13 might promote FGF1 and p40 Syt1 plasma membrane penetration and

translocation.

The establishment of membrane permeabilizing properties of the FGF1 release

complex components prompted us to use mutational analysis to identify the permeabilizing

domain of one of them, p40 Syt1. In these studies, we used the previously published

information about the pI-binding residues of Synaptotagmin (36, 37). We found that mutation

of lysines 326, 327 and 331 to glutamines resulted in the inability of p40 Syt1 to be released

from NIH 3T3 cells both at 37º and at 42ºC, and in a strong decrease of pI liposome

permeabilization. Additionally, we found that, while p40 Syt1 wt exhibited perimembrane

localization, p40 Syt1 K326,327,331Q was distributed diffusely in the cytoplasm of

transfected cells. Thus, lysines K326, 327, and 331 (i) may be responsible for the interaction

of p40 Syt1 with plasma membrane pI, (ii) are required for its release, (iii) are at least

partially responsible for the permeabilization of artificial pI membranes. Interestingly, p40

Syt1 K326,327,331Q did not inhibit the stress-induced release of FGF1. Apparently, the

inability of the mutant p40 Syt1 to associate with the cell membrane both at stress and at

normal conditions precludes its interference with FGF1 release.

In conclusion, the results of this work demonstrate that the members of non-classical

FGF1 release complex exhibited the ability to permeabilize artificial membranes composed

of acidic pL, which are known to be preferentially localized in the inner leaflet of the cell

membrane (41, 42). Moreover, at least for p40 Syt1, its permeabilizing ability correlated with

its non-classical release from NIH 3T3 cells. Further identification of the membrane
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permeabilizing domains of FGF1 and S100A13 and structural characterization of the

interaction of the FGF1 release complex components with lipid membranes is important for

the understanding of the mechanism of non-classical protein release and may lead to design

of compounds to interfere with this process for therapeutic applications.
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FIGURE LEGENDS

Figure 1:  The release of carboxyfluorescein (CF) from acidic and zwitterionic phospholipid

liposomes by FGF1, S100A13, and p40 Syt1. CF-containing liposomes were added to the

cuvette to produce a 2 µM final pL concentration. CF release was fluorimetrically detected at

520 nm emission wavelength for 600 seconds.  Following an equilibration time (120

seconds), the recombinant forms of FGF1 (A), S100A13 (B), and p40 Syt1 (C) were

independently added to the cuvette at concentrations of 1 µM (o-o), 500 nM (▲-▲), 250 nM

(x-x) and 125 nM (◊-◊). The data are reported in fluorescence units as a function of time in

seconds. The addition of 0.1% Triton X-100 ( -) served as a positive control of

permeabilization, the addition of 1 µM α-chymotrypsin (—) served as a negative control.

Figure 2:  Effect of temperature and pH upon protein-induced permeabilization of pG

liposomes. (A) 125 nM S100A13 was added to 1 µM suspension of CF-containing pG

liposome suspension. The S100A13-induced pG liposome permeabilization was studied at

the following temperatures: 27°C, 32°C, 37°C, 42°C, 47°C and 52°C. (B) 125 nM p40 Syt1
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was added to 1 µM suspension of CF-containing pI liposomes. The effect of  temperature on

p40 Syt1-induced pI liposome permeabilization was studied as described in A. (C) 125 nM

S100A13 was added to 1 µM suspension of pI liposomes at pH 6.0, 7.0, and 8.0 at 37°C. The

effect of pH upon pG liposome permeabilization induced by S100A13 was studied. (D) 125

nM p40 Syt1 was added to 1 µM suspension of pI liposome at pH 6.0, 7.0, and 8.0. The effect

of pH upon pI liposomes permeabilization induced by p40 Syt1 was studied. The protein-

induced CF release from liposomes in A, B, C, and D was evaluated as a percentage of the

maximal release induced by 0.1% Triton-X100 at each specific temperature and pH (see in

“Results”).

Figure 3:  The release of p40 Syt1 K326,327,331Q from NIH 3T3 cells. (A) NIH 3T3 cells

transfected either with p40 Syt1 wt or with p40 Syt1 K326,327,331Q were heat shocked.

Lane 1 - p40 Syt1 wt transfectant cells lysate. Lane 2 - p40 Syt1 K326,327,331Q transfectant

cells lysate. Lanes 3 and 4 - conditioned media from p40 Syt1 wt transfectant cells

respectively at 37°C and at 42°C. Lanes 5 and 6 - conditioned media from the p40 Syt1

K326,327,331Q transfectant cells respectively at 37°C and at 42°C. (B) Heat shock was

performed on NIH 3T3 cells co-transfected with FGF1, and either p40 Syt1 wt or p40 Syt1

K326,327,331Q. Lane 1 - FGF1/p40 Syt1 wt co-transfectant cells lysate. Lane 2 - FGF1/p40

Syt1 K326,327,331Q co-transfectant cells lysate. Lanes 3 and 4 - conditioned media from the

FGF1/p40 Syt1 wt co-transfectant cells at 37°C and at 42°C. Lanes 5 and 6 - conditioned

media from the FGF1/p40 Syt1 K326,327,331Q co-transfectant cells at 37°C and at 42°C.

Figure 4:  Confocal fluorescence microscopy analysis of p40 Syt1 K326,327,331Q cellular

localization at normal and stress conditions. NIH 3T3 transfected with either p40 Syt1 wt or
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with p40 Syt1 K326,327,331Q were heat shocked. (A) and (C) represent the control cells

respectively transfected with p40 Syt1:Myc wt and p40 Syt1:Myc K326,327,331Q

maintained at normal conditions (37°C). (B) and (D) represent heat shocked (42°C) cells

respectively transfected with p40 Syt1:Myc wt and p40 Syt1:Myc K326,327,331Q.

Figure 5:  Analysis of CF release from pI liposomes induced by the p40 Syt1 K326,327,331Q

mutant. 1 µM p40 Syt1 wt (o-o), or p40 Syt1 K326,327,331Q (▲-▲) was added to 2 µM pI

liposome suspension in the cuvette, and CF release from liposomes was monitored. 0.1%

Triton X-100 served as a positive control (-), and 1µM α-chymotrypsin as a negative

control (—).
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