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Abstract: 
The integration of renewable energy systems into smart grids requires dc-to-ac power electronics converters 
for adapting the voltage levels of both sides. In this context, a novel topology of front-end multilevel dc-to-ac 
converter is proposed in order to enhance the integration of renewable energy systems into smart grids, 
preventing power quality problems. The proposed converter is designed to operate as a grid-tied inverter, 
imposing controlled sinusoidal grid currents in phase opposition with the power grid voltage, and establishing 
five distinct voltage levels to improve the current waveform. The dc side is suitable to be connected directly 
to a set of photovoltaic solar panels with an appropriated voltage level, or to an external dc-to-dc 
intermediary converter used to interface other renewable energy sources. An entire analysis of the hardware 
design and the operation principle is presented, including the adopted control strategy for the proposed 
front-end converter in conditions of current control. An accurate computational validation under realistic 
operating conditions for a significant operating power range is presented using a dedicated power electronics 
simulation software, where the obtained results show the advantages and the convenience of the proposed 
front-end converter in detriment of the classical solutions. 
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1. Introduction 
European Union has committed to reduce greenhouse gas emissions by 80% by 2050 and plans to 
set intermediate targets for 2030 [1]. As a contribution to achieve such objective, an increasing 
share of renewable energy systems is fundamental, even considering the discontinuous production 
of energy from wind and solar [2][3]. The introduction of smart and flexible electrical loads, 
monitored and remotely controlled by information and communication technologies, also represents 
a challenge for this new paradigm of energy [4]. Combining all of these scenarios, results in a smart 
power grid, where new challenges and opportunities for technological developments are emerging 
[5][6]. As example, a vision and framework for smart transmission grids considering of 
environmental, market, infrastructure, and innovative technologies challenges is presented in [7], 
and an overview about key players and pilot projects for smart grids and smart homes is presented 
in [8]. 

The emerging reality of smart grids promotes a set of advantages to the global energy management 
at the distribution and transmission levels, as well as to the end-user, since it can operate as an 
energy consumer or producer [5][9][10]. Increasingly, this new paradigm for the electrical sector 
stimulates the energy microgeneration through the integration of renewable energy sources (RES) 
and contributes to improve the energy efficiency in the transmission and distribution levels. The 
future perspectives for RES is presented in [11], the RES operation and optimization in microgrids 
is presented in [12], and the integration of RES in a smart grid scenario is presented in [13]. In this 
context, the collaborative management with electric vehicles and energy storage systems (ESS) also 
represents a new opportunity for RES integration into power grids [14][15][16]. Considering these 
three strands, a demand-side energy management is proposed in [17], an optimization for economic 
deployment is proposed in [18], an integrated management is proposed in [19], a multifunctional 
converter interfacing RES and electric vehicles is proposed in [20], and a review about ESS for 
mitigating the RES variability is presented in [21]. Nevertheless, the RES integration into the power 
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grid requires the use of power electronics in order to convert the energy extracted from RES 
according to the requirements of the power grid. A review about power electronics converters for 
RES is presented in [22], RES with modularity in power electronics presented in [23], and a review 
focusing converters for RES based on photovoltaic (PV) modules is presented in [24]. 

Along the last decades, as a result of advances in power electronics, including new technologies of 
devices and digital control platforms, a large variety of solutions can be adopted to interface RES 
with the power grid [25]. In this circumstance, two main approaches can be adopted: Single stage 
dc-to-ac converter (front-end); Double stage consisting in a dc-to-dc converter (back-end) followed 
by a dc-to-ac converter (front-end). In the scope of this paper, a novel topology of dc-to-ac 
converter operating as a front-end converter is proposed. Since the voltage is imposed by the power 
grid, the front-end converter controls the current in order to inject a sinusoidal current with 
adjustable amplitude and in phase opposition with the power grid voltage [26]. This is more 
relevant considering power quality issues in smart grids [27]. When the front-end converter is 
operating as a grid-tied inverter (injecting energy into the power grid), the voltage established by 
the converter affects directly the waveform of the current injected into the power grid. The classical 
front-end converter to integrate RES into the power grid allows the establishment of three distinct 
voltage levels and, with a passive filter, it is possible to control the injected current into the power 
grid. Improving the voltage established by the front-end converter, for instance, by increasing the 
number of voltage levels, results in a more accurate controlled current. Theoretically, the number of 
voltage levels can be undefined, but the practical implementation and commercialization limits the 
number of voltage to few levels. This limitation is imposed by the requirements in terms of 
hardware components as power semiconductors, gate-drivers and sensors. Typically, the front-end 
converters with capability to establish more than three voltage levels are classified as multilevel 
converters (MLCs) [28]. The use of MLCs is especially relevant for applications with a dc-link 
composed by a series of voltage sources, as, for instance, occurs with the interface of PV panels 
[29]. A review and detailed comparison about the different MLC referenced in the literature is 
presented in [30], and a more comprehensive review about the main single-phase and three-phase 
MLC, including a discussion about power control theories and applications, is presented in [31]. 
Associating in series or parallel a set of MLCs results in a new family of converters identified as 
modular or cascade MLCs. A review about the operation, control and applications of modular 
MLCs for medium or high-power systems is presented in [32], a review of modular MLCs for 
high-voltage dc transmission systems is presented in [33], and the control of a cascaded MLC for 
PV systems is presented in [34]. 

In this context, this paper proposes a novel topology of front-end converter based on a five-level 
MLC. Contextualizing the proposed topology in smart grids, the more relevant advantages are: 
Reduced number of semiconductors in comparison with the state-of-the-art topologies of MLCs; 
Improved efficiency in comparison with the state-of-the-art topologies of MLCs; Possibility to 
operate in bidirectional mode, which is especially useful to interface ESS in the same dc-link; 
Flexibility to accommodate the variations of energy production from RES; Controlled grid currents 
and operation with high-levels of power quality. These advantages are established as a comparison 
with the main state-of-the-art topologies and are contextualized with the presented references. A 
new five-level topology is proposed in [35], however it requires two independent dc-links, 
representing the main disadvantage for front-end MLCs used in RES interface. The same 
disadvantage is presented in the cascade nine-level MLC proposed [36]. New structures of MLC are 
proposed in [37], [38], and [39], but only for unidirectional systems, i.e., they cannot be used for 
applications of RES (injecting energy into the power grid). A new five-level MLC is proposed in 
[40], but it requires more capacitors and controlled semiconductors than the topology proposed in 
this paper. A flexible five-level cascaded MLC is proposed in [41], and a five-level MLC based on 
multistate switching cell is proposed in [42], but, in both cases, the high number of controlled 
semiconductors is the main drawback compared with the proposed topology in this paper. 
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A clarification about power electronics converters in smart grids is presented in section 2. The 
proposed MLC is presented in section 3, illustrating its principle of operation and the proposed 
control structure. The proposed MLC operating as interface of RES in smart grids considering an 
analysis of power quality aspects is presented in section 4, and the main conclusions are discussed 
in section 5. 

 
Fig. 1. Application of power electronics converters for renewable energy systems (RES) and energy 
storage systems (ESS) in smart grids. 

2. Power Electronics Converters in Smart Grids 
Fig. 1 shows the application of power electronics converters for RES and ESS in smart grids. 
Concretely, this figure shows the application of unidirectional and bidirectional dc-to-ac power 
electronics converters, illustrating their use as interface between RES (both from PV panels and 
wind turbines) and ESS (from batteries) with the power grid. As it can be seen, dc-to-ac power 
electronics converters are required for three fundamental levels of energy in smart grids: energy 
distribution; industrial and services; residential. At the distribution level, large scale of RES and 
ESS can be integrated with the power grid, where its controllability and quality of service is directly 
performed and guaranteed by distribution system operators (DSOs) or even by transmission system 
operators (TSOs) toward a demand response (DR) control. At the industrial level, RES can be 
integrated in order to reduce the energy consumption from the power grid and to minimize energy 
costs, where the DSO can play a management role in smart grids. At the residential level, RES and 
ESS can be integrated in small-scale with the purpose of minimizing the energy costs of the final 
energy user, as well as of contributing to define management strategies for DR, allowing to 
establish a distributed scenario of RES. Taking into account the aforementioned three energy levels, 
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and aiming a smart grid operation with a DR management by a DSO, the power electronics 
converters identified in Fig. 1 should be equipped with a communication interface to establish a 
bidirectional communication with a cloud-based service. This communication interface can be used 
to define the status of the converter (controlled as an on-off electrical appliance), to report power 
quality problems and to define set-points of operation, as well as to communicate the values about 
energy transactions. 

Unidirectional converters are used when the energy follows from an energy source to the power 
grid, where the integration of RES is the main application for such converters. In this case, the 
voltage and current levels in the dc-side are adjusted in order to inject a sinusoidal current in phase 
opposition with the power grid voltage, guarantying a high-level of power quality. Depending of the 
operating power level of RES, a single dc-to-ac converter can be applied to interface the power grid, 
however, a dc-to-dc back-end stage can also be used as intermediary between the dc-to-ac front-end 
and the power grid. On the other hand, bidirectional converters are used when the energy flows 
from an energy source to the power grid and from the power grid to an electrical appliance, where 
the integration of ESS is the main application for such converters in a smart grid context. It is 
relevant to highlight that a bidirectional power electronics converter can also be applied as an 
on-board or off-board battery charger for electric vehicles. As explained for the unidirectional 
converters, a single dc-to-ac converter can be used, as well as an intermediary dc-to-dc converter. 
Taking into account the indispensable necessity of dc-to-ac converters for the smart grids growing, 
in the scope of this paper, a novel front-end MLC for application of RES is proposed. However, it 
should be noted that the proposed converter can also be applicable for ESS, since it can operate in 
bidirectional mode. 

3. Proposed Front-End Multilevel Converter 
In order to interface RES (a set of PV panels) with the power grid, power electronics converters are 
required. A classical approach consists in use a back-end converter to interface the PV panels and a 
front-end converter to interface the power grid, both sharing a common dc-link. In this context, 
Fig. 2 shows the proposed MLC operating as front-end converter for RES integration in smart grids. 
It is composed by eight controlled semiconductors (metal oxide semiconductor field-effect 
transistor - MOSFET), by an inductor (L) ac-side passive filter, and by a capacitor (C) dc-side 
passive filter. The ac-side is directly connected to the power grid, and the dc-side is connected to a 
back-end converter, which is connected to a set of PV panels. Controlling the state of each 
MOSFET with a fixed frequency, the proposed MLC can establish five distinct voltage levels, i.e., 
the voltage between the points a and b before the L passive filter. Besides the level 0, this voltage 
can assume the values of +vdc and +vdc/2 during the positive half-cycle, and the values of –vdc and –
vdc/2 during the negative half-cycle. It is relevant to note that classical front-end converters for RES 
only allow the voltage levels of +vdc, 0, and –vdc. 

3.1. Principle of Operation 
Taking into account that the proposed converter is evaluated for applications of RES, i.e., the 
injected current is in phase opposition with the power grid voltage, the analysis is performed in two 
quadrants highlighted in Fig. 3. When the power grid is positive (vg > 0), the voltage established by 
the MLC can assume the values of 0, vdc/2 and vdc. In order to establish the voltage levels of 0 and 
vdc/2, MOSFET s1 is ON, MOSFETs s2, s5, and s6 are OFF, and MOSFETs s3, s4, s7, and s8 are 
switched. To establish the voltage levels of vdc/2 and vdc, MOSFET s1 is ON, MOSFETs s2, s3, s4, 
and s5 are OFF, and MOSFETs s6, s7, and s8 are switched. When the power grid voltage is negative 
(vg < 0), the voltage established by the MLC can assume the values of 0, -vdc/2 and -vdc. In order to 
establish the voltage levels of 0 and -vdc/2, MOSFETs s1, s5, and s6 are OFF, MOSFET s2 is ON, and 
MOSFETs s3, s4, s7, and s8 are switched. To establish the voltage levels of -vdc/2 and -vdc, 
MOSFETs s1, s3, s4 and s6 are OFF, MOSFETs s2 is ON, and MOSFETs s5, s7, and s8 are switched. 
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Table 1 summarizes all of the aforementioned states in both positive and negative half-cycles of the 
power grid voltage. 

 

Fig. 2. Proposed front-end multilevel converter for the integration of renewable energy systems in 
smart grids. 

 
Fig. 3. Quadrants of operation for the proposed front-end multilevel converter. 

Table 1. MOSFETs state in both positive and negative half cycles of the power grid voltage. 

  s1 s2 s3 s4 s5 s6 s7 s8 vab 

vg > 0 

0 < vab < vdc/2 
ON OFF ON ON OFF OFF OFF OFF 0 

ON OFF OFF OFF OFF OFF ON ON +vdc/2 

vdc/2 < vab < vdc 
ON OFF OFF OFF OFF OFF ON ON +vdc/2 

ON OFF OFF OFF OFF ON OFF OFF +vdc 

vg < 0 

0 < vab < -vdc/2 
OFF ON ON ON OFF OFF OFF OFF 0 

OFF ON OFF OFF OFF OFF ON ON -vdc/2 

-vdc/2 < vab < -vdc 
OFF ON OFF OFF OFF OFF ON ON -vdc/2 

OFF ON OFF OFF ON OFF OFF OFF -vdc 

 

ig
C1

C2

S3

vdc2

vdc1

S4

S7 S8

vg

a

b

S1

S2

S5

S6

Front-End Power Converter
(Proposed Multilevel Converter)

idc

vdc

dc-dc
converter

L

Smart Grid

Back-End
Power Converter

PV PanelsPower Electronics Converters (Front-End and Back-End) to Interface RES

vg>0 & ig<0

vg<0 & ig>0
ig(min) ig(max)

vg(max)

vg(min)

operating area

operating area

vg = f (ig) 



PROCEEDINGS OF ECOS 2018 - THE 31ST INTERNATIONAL CONFERENCE ON 
EEFFICIENCY, CCOST, OOPTIMIZATION, SSIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS 

JUNE 17-22, 2018, GUIMARÃES, PORTUGAL 

 

3.2. Proposed Control Structure 
Fig. 4 shows the proposed control structure for the MLC, which is composed by three main parts: 
power theory; grid current control; PWM. The power theory block receives the variables acquired 
from the ADC (vg, ig, vdc1, vdc2, idc) and establishes the current reference (ig*) for the power grid 
current. The dc-link voltage is regulated in this block using a proportional-integral (PI) controller, 
which produces a power component that is added to the dc-side power (determined with the 
variables vdc and idc), resulting in the value of the instantaneous power for MLC operation. Using 
the value of this power, and the root mean square (rms) and instantaneous values of the power grid 
voltage, it is determined the instantaneous value for the power grid current reference (ig*). The 
current control block receives the grid current reference (ig*), the measured grid current (ig), and the 
power grid voltage (vg) as inputs, and using the values of the ac-side passive filter (L) and the 
sampling frequency (fs) (in the scope of this paper, a sampling frequency of 200 kHz was used), 
defines the instantaneous voltage reference (vab*) that the proposed MLC must establish in order to 
obtain the five distinct voltage levels. The PWM block receives the instantaneous voltage reference 
(vab*) and establishes a set of control signals for each MOSFET, which are compared with a 
triangular carrier to define the ON and OFF state of each MOSFET. In the scope of this paper, a 
switching frequency of 100 kHz was used. Taking into account the aforementioned control strategy, 
the PWM can be optimized with only four individual PWM signals, representing an attractive 
strategy mainly considering that the classical converter (full-bridge three-level) also requires four 
individual PWM signals. 

 
Fig. 4. Proposed control structure for the front-end multilevel converter. 

4. Proposed MLC Operating with RES in Smart Grids 
This section introduces the proposed MLC operating as interface of RES in smart grids. For such 
purpose, a detailed simulation model was implemented in the dedicated power electronics software 
PSIM. The main parameters and requirements of the proposed MLC are listed in Table 2. 

Fig. 5 shows the results obtained with the proposed MLC operating in steady-state with the nominal 
power of 3.5 kW. The injected current (ig) is in phase opposition with the voltage (vg), presents a 
total harmonic distortion (THD%) value of 2.5%, and is sinusoidal even with a THD% value in the 
voltage of 3.5%. As highlighted, the five distinct voltage levels established by the proposed MLC 
are clearly identified (vab), proving the proper action of the proposed power theory, current control 
and PWM. This figure also shows the state of each MOSFET during the positive and negative 
half-cycles of the power gird voltage. As shown, MOSFETs s1 and s2 are switched at the power grid 
frequency (50 Hz), representing an important advantage of the proposed MLC. Besides, only 
MOSFETs s7 and s8 are always switched during all the time in both half-cycles. 
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Table 2. Main parameters and requirements of the proposed MLC. 

Parameter Label Value Unit 

Power Grid Voltage vg 230 V 

Power Grid Voltage THD (maximum) THDv 3.5 % 

Power Grid Frequency fg 50 Hz 

Grid Current (@ full power) ig 15 A 

Grid Current THD (@ full power) THDi 2.5 % 

Rated Power Pg 3.5 W 

Power Factor (@ full power) PF 0.99 - 

Dc-link Voltage vdc 200 + 200 V 

MOSFETs Switching Frequency fsw 100 kHz 

Sampling Frequency fs 200 kHz 

L Passive Filter (ac-side) L 300 µH 

C Passive Filter (dc-side) C1, C2 2.2 mF 

 
Fig. 5. Proposed multilevel converter operating in steady-state with nominal power of 3.5 kW. 

Fig. 6 shows the dynamic operation of the proposed MLC in accordance with the energy extracted 
from the simulated PV panels. This simulation result was obtained during four distinct periods of 
operation, illustrating the performance of the proposed MLC and respective control strategy, as 
response to the variations of the energy extracted from the PV panels. During the first period, the 
operating power increases from 0 until a maximum of 3.5 kW without sudden variations and during 
a time period of 0.17 s. During the second period, the operating power is maintained with a value of 
3.5 kW during a time period of 0.13 s. During the third period, the operating power decreases from 
3.5 kW until a minimum of 2 kW, also without sudden variations in the injected current. During the 
fourth period, the operating power is maintained with a value of 2 kW during a time period of 
0.15 s. The injected current is always sinusoidal and in phase opposition with the voltage during all 
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the four periods, validating the proposed MLC for applications of RES. Moreover, this figure also 
shows a detail about the grid current (ig) and grid voltage (vg) crossing the zero value, and a detail 
about the comparison between the reference for the grid current (ig*) and the measured current (ig). 
No power quality issues can be identified in these detailed figures, representing an important 
requisite for the RES integration into smart grids. 

 
Fig. 6. Dynamic operation of the proposed multilevel converter in accordance with the energy 
extracted from the PV panels for four distinct operating levels: (a) Power grid voltage (vg) and grid 
current (ig) waveforms; (b) Detail about the grid current (ig) and grid voltage (vg) crossing zero 
value; (c) Detail about the comparison between the grid current reference (ig*) and the measured 
current (ig). 

Fig. 7 shows a comparison between the proposed multilevel converter and the classical converter 
(three-level full-bridge converter) used to integrate RES with the power grid. 
In Fig. 7(a) and Fig. 7(b) are presented, respectively, the topology of the proposed multilevel 
converter and the topology of the classical converter. For both topologies, the grid current (ig) and 
the voltage levels (vab) are presented in Fig. 7(c) and Fig. 7(d), respectively. As shown, the 
proposed topology permits to establish five distinct voltage levels while the classical topology 
allows only three levels, representing an important advantage of the proposed MLC against the 
classical topology. 
A comparison of both topologies in terms of total harmonic distortion is presented in Fig. 7(e), 
allowing to identify the contribution of the proposed MLC to increase the power quality levels in 
smart grids. The proposed MLC has lower values of total harmonic distortion for all the operating 
powers. The difference is more expressive for low values of operating power, representing an 
attractive solution for RES, mainly considering the uncertainty of energy production. 
A comparison in terms of estimated efficiency for different power levels is presented in Fig. 7(f). 
The results for such comparison were obtained using the thermal module available in the PSIM 
software, where the dynamic behaviour of the semiconductors is considered in order to estimate the 
switching and conduction losses. In the simulation model were considered the MOSFETs 
STW45NM50 from ST Microelectronics (drain-source voltage of 550 V and drain current of 45 A), 
an upper level of gate voltage of 15 V, a lower level of gate voltage of -15 V, turn-on and turn-off 
gate resistances of 5 Ω, and a drain-source resistance of 0.08 Ω. 

0 V

-200 V

-400 V

200 V

400 V

0 s 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s

0 kW < Pg < 3.5 kW Pg = 3.5 kW Pg = 2.0 kW 3.5 kW < Pg < 2.0 kW 

0

0 A

-20 A

-40 A

20 A

40 A

0 V

450 V

-450 V

0 A

45 A

-45 A
0.214 s 0.226 s 0.25496 s 0.25512 s

19.5 A

23 A

(a)

(b) (c)

vg

ig

ig ig*



PROCEEDINGS OF ECOS 2018 - THE 31ST INTERNATIONAL CONFERENCE ON 
EEFFICIENCY, CCOST, OOPTIMIZATION, SSIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS 

JUNE 17-22, 2018, GUIMARÃES, PORTUGAL 

 

 
Fig. 7. Comparison between the proposed multilevel converter and the classical converter used to 
integrate RES with the power grid: (a) Topology of the proposed multilevel converter; (b) Topology 
of the classical converter; (c) Grid current (ig) and voltage levels (vab) of the proposed multilevel 
converter; (d) Grid current (ig) and voltage levels (vab) of the classical converter; (e) Comparison 
in terms of total harmonic distortion for different power levels; (f) Comparison in terms of 
estimated conversion efficiency for different power levels. 

5. Conclusions 
Power electronics converters are fundamental for the integration of renewable energy systems 
(RES) into smart grids. Therefore, front-end converters for interfacing the power grid and back-end 
converters for interfacing RES are used in order to adapt the voltage levels of both sides. In this 
context, a novel topology of front-end converter is proposed, where the multilevel characteristic 
with reduced number of semiconductors and optimized control strategy are the main advantages, in 
comparison with other multilevel converters in the literature. Moreover, the proposed converter 
operates with high-levels of power quality, imposing a controlled sinusoidal grid current in phase 
opposition with the power grid voltage. Along the paper, the proposed front-end multilevel 
converter (MLC) is presented in detail, highlighting the main features, and illustrating the principle 
of operation and the proposed control structure. The paper also presents an analysis based on 
simulation results about the integration of RES into smart grids considering the proposed MLC, and 
a comparison in terms of total harmonic distortion (power quality) and estimated efficiency for 
different power levels, between the proposed MLC and the classical converter used to integrate 
RES with the power grid. The simulation results were obtained under realistic operating conditions 
for a significant operating power range, allowing to validate the superior performance of the 
proposed MLC when compared to the classical solution. 
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