
Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Quantification of pharmaceutical compounds in wastewater samples by near
infrared spectroscopy (NIR)
C. Quintelasa,⁎, D.P. Mesquitaa, E.C. Ferreiraa, A.L. Amarala,b

a CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
b Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

A R T I C L E I N F O

Keywords:
NIR spectroscopy
Pharmaceuticals
PCA
PLS

A B S T R A C T

The quantification of pollutants, as pharmaceuticals, in wastewater is an issue of special concern. Usually, ty-
pical methods to quantify these products are time and reagent consuming. This paper describes the development
and validation of a Fourier transform near-infrared (FT-NIR) spectroscopy methodology for the quantification of
pharmaceuticals in wastewaters. For this purpose, 276 samples obtained from an activated sludge wastewater
treatment process were analysed in the range of 200 cm−1 to 14,000 cm−1, and further treated by chemometric
techniques to develop and validate the quantification models. The obtained results were found adequate for the
prediction of ibuprofen, sulfamethoxazole, 17β-estradiol and carbamazepine with coefficients of determination
(R2) around 0.95 and residual prediction deviation (RPD) values above four, for the overall (training and va-
lidation) data points. These results are very promising and confirm that this technology can be seen as an
alternative for the quantification of pharmaceuticals in wastewater.

1. Introduction

Emerging contaminants, as pharmaceuticals, are compounds of
special concern due to the widespread usage and growing presence in
aqueous systems. The increased environmental presence of these com-
pounds is mainly due to the exponential growth of human population
and the development of industrial, agricultural, and health care activ-
ities required to suport their well-being. Acording to Gomes et al. [1],
many of these new substances are being marketed with little informa-
tion about their ecotoxicity to non-target species and their risks to the
environment. These lack of information results of several factors: i) the
required information often depends on the quantities produced and
placed in the market; ii) the ecotoxicological evaluation is sometimes
performed after their entrance in the market, and iii) the lack of fast
and reliable methods to quantify these compounds in the environment.

Several studies have shown the relevance and impact of the pre-
sence of these compounds in water bodies. Houtman [2] studied the
emerging contaminants in surface waters, and their relevance for the
production of drinking water in Europe, and found that compounds as
the natural estrogenic hormones 17β-estradiol, estriol and estrone, the
synthetic estrogenic hormone 17α-ethynylestradiol, and pharmaceu-
ticals as bezafibrate, ibuprofen, sulfamethoxazole, metoprolol, carba-
mazepin, as well as compounds used as X-ray contrast media, are the
most significative compounds found in Europe's surface waters. A

similar panorama was found by Castiglioni et al. [3], which analysed
the presence of 80 emerging contaminants and realise that almost all
emerging contaminants were ubiquitous in untreated wastewater, at
concentrations up to the µg/L range, with the most abundant classes
being pharmaceuticals and anthropogenic markers. Also Han Tran et al.
[4] analysed the ocurrence of 60 emerging compounds in Asia, Europe,
and North America and verified that the concentrations of the most
important emerging compounds in raw influents in the Asian region
tend to be higher than those in European and North American coun-
tries. Furthermore, these authors state that these discrepancies could be
attributed to the differences in usage patterns in each region, climate
conditions, population size and/or density, analytical methods and
particularly, sampling strategies.

The traditional techniques used for the determination of pharma-
ceuticals and other emerging compounds include titrimetric techniques,
chromatografic techniques, high-performance liquid chromatography
(HPLC), gas chromatography (GC), and electrochemical and electro-
phoretic methods [5]. These techniques are time or reagent consuming
and faster, and labour and environmental friendly methods are wel-
come. In this context, this study presents a very simple, non-destructive,
inexpensive and green strategy applied to the determination of ibu-
profen (IBU), carbamazepine (CRB), β-estradiol (E2), ethinylestradiol
(EE2) and sulfamethoxazole (SMX) concentrations using FT-NIR spec-
troscopy, in aqueous solutions. This technique presents, as most
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interesting advantages, the absence of reagents use, its nondestructive
character allowing to reuse the sample after measurement [6], speed
and the possibility of online monitoring. The main difficulty of this
technique is the complexity of the spectra due to their nature, and for
this reason FT-NIR is not used as a direct analysis technique. Recent
developments in chemometrics allowed to overcome these difficulties
and the combination between FT-NIR and chemometrics is now con-
sidered as a promising technology able to quantify a wide range of
organic compounds.

2. Materials and methods

2.1. Sample preparation

Experiments with different initial ibuprofen (IBU), carbamazepine
(CRB), β-estradiol (E2), ethinylestradiol (EE2) and sulfamethoxazole
(SMX) concentrations (within the range of mg L−1) were conducted in
Erlenmeyer flasks, with 300 mL of working volume in batch mode,
operated at room temperature during, approximately, five days. The
agitation was kept constant at 150 rpm. The flasks were inoculated with
activated sludge from a domestic wastewater treatment plant with the
use of an initial mixed liquor suspended solids (MLSS) concentration of
3 g L−1. A synthetic medium was fed to the system in the beginning of
each experiment and contained (per liter): 2.55 g C2H3O2Na·3H2O,
0.34 g C3H5NaO2, 0.59 g NH4Cl, 0.95 g MgSO4·7H2O, 0.44 g
CaCl2·2H2O, 0.03 g EDTA, and 3.16 mL of a trace metals solution. The
trace metals solution is described in Smolders et al. [7]. Samples were
taken at different time intervals, varied from 0 h to 53 h, centrifuged
(13400 rpm for 10 min) and the aqueous phase was stored at 4 °C. Prior
to analysis, the liquid samples were thawed and homogenized by vor-
texing. The pharmaceuticals concentrations were determined using a
UHPLC system.

2.2. UHPLC analysis

The chromatographic analysis was performed using a Shimadzu
Corporation apparatus (Tokyo, Japan) consisting of a UHPLC equip-
ment (Nexera) with one multi-channel pump (LC-30 CE), an auto-
sampler (SIL-30AC), an oven (CTO-20AC), a diode array detector (M-
20A) and a system controller (CBM-20A) with built-in software
(LabSolutions). For the analysis of all the five compounds a Kinetex 5 u
EVO C18 column (150 × 4.6 mm i.d.) supplied by Phenomenex, Inc.
(CA, USA) was used. For IBU, the mobile phase, with a flow rate of
1.5 mL min−1, consisted of sodium phosphate (20 mM; pH 2.4) (pump
A) and acetonitrile (pump B). The starting mobile phase composition
was 80% A, decreasing to 30% A in 10 min and remaining in this
percentage for 5 min. The sample was monitored by the diode array
detector from 190 to 400 nm, and the chromatograms were extracted at
225 nm. The column oven was set to 40 °C and the volume of injection
was 10 µL. For SMX, the mobile phase, with a flow rate of
0.3 mL min−1, consisted of water (pump A) and acetonitrile (pump B)
and the isocratic mode, with 40% A and 60% B, was used. The sample
was monitored by the diode array detector from 190 to 400 nm, and the
chromatograms were extracted at 267 nm. The column oven was set to
25 °C and the volume of injection was 20 µL. For CRB, The mobile
phase, with a flow rate of 1.0 mL min−1, consisted of water (pump A)
and acetonitrile (pump B) and the isocratic mode, with 70% A and 30%
B, was used. The sample was monitored by the diode array detector
from 190 to 400 nm, and the chromatograms were extracted at 220 nm.
The column oven was set to 25 °C and the volume of injection was
10 µL. For E2 and EE2, the mobile phase, with a flow rate of
0.8 mL min−1, consisted of water (pump A) and acetonitrile (pump B)
and the isocratic mode, with 55% A and 45% B, was used. The sample
was monitored by the diode array detector from 190 to 400 nm, and the
chromatograms were extracted at 220 nm. The column oven was set to
25 °C and the volume of injection was 20 µL. The standard errors for the

HPLC measurements were 0.029 mg L−1, 0.016 mg L−1, 0.122 mg L−1,
0.043 mg L−1, and 0.077 mg L−1, respectively for IBU, SXF, CARB, EE2

and E2 and the values of R2 for the calibration curves were around 1 for
all the compounds.

2.3. Near infrared scanning

Near infrared (NIR) spectra were recorded on a Fourier-transform
near infrared spectrometer (FTLA 2000, ABB, Thermo Electron
Corporation) equipped with an indium–gallium–arsenide (InGaAs) de-
tector, from 14,000 to 200 cm−1, in transmitance mode using a flow
cell with a 0.7 mm pathlength. For each sample, 32 scans were made
with a spectral resolution of 8 cm−1 and then averaged. Samples were
temperature equilibrated at 23 °C (approximately 3 min) in the instru-
ment before scanning. The integration time was adjusted until the peaks
at 1100–1200 nm for NIR were close to 60,000 intensity units. Grams/
AI software (Thermo Electron Corporation) was used for spectrometer
configuration, control, and data acquisition. Distilled water was used as
background. A typical NIR spectrum is presented as Supplementary
material (Fig. S1).

2.4. Kolmogorov–Smirnov test and boxplot analysis

The Y dataset employed in the chemometric analyses consisted of
the IBU, SMX, E2, EE2 and CRB concentrations, monitored throughout
the time length of the different experiments in this work, whilst the X
dataset consisted of the collected FT-NIR spectra (ranging from 14,000
to 200 cm−1). The following chemometric techniques were employed
to this data in a sequential manner, as follows: i) Kolmogorov–Smirnov
test and boxplot analysis to infer normal distributions and identify Y
dataset outliers; ii) principal component analysis (PCA) to identify
samples interrelationships (clusters) and X dataset outliers; and iii)
partial least squares (PLS) regression to derive the models for each
studied compound.

The first test employed was the Kolmogorov–Smirnov test to infer
the null hypothesis that a given dataset is normally distributed. This test
was first employed for the Y datasets, and then for selected X datasets
(suspected of presenting X outliers). Next, a boxplot analysis was per-
formed, given that a normally distributed data was observed, returning
a box graph with the median as the central mark, the 25th and 75th
percentiles as the edges, and the most extreme data points (not con-
sidering the outliers) as the whiskers. The whisker length was defined
as a factor (1.5) of the interquartile distance between the 25th and 75th
percentiles, covering 99.3% of the normally distributed data. As a re-
sult, outliers are plotted individually, outside the box, and can be
identified by visual inspection.

2.5. Principal components analysis

A principal components analysis (PCA) was further performed to the
X dataset (wavelengths values), in order to both allow for the re-
cognition of possible interrelationships (clusters) between samples as
for the identification of possible outliers. For the performed PCA study,
as well as for the PLS, the complete datasets, upon the exclusion of the
found E2 outlier, were employed resulting in a total of 36, 60, 59, 60
and 60 samples for the IBU, SMX, E2, EE2 and CRB datasets, respec-
tively. Subsequently, 2/3 of these samples were used for modeling
(calibration) purposes and 1/3 for validation in the PLS analysis.

2.6. Partial least squares regression

Next a PLS analysis was employed in order to predict the studied
pharmaceuticals concentrations from the wavelength dataset. A stan-
dard normal variate (SNV) methodology was employed to remove un-
desirable X data matrix variations, alongside a cross-validation (CV)
technique to test its predictive significance.
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Two different methodologies were employed regarding the per-
formed PLS analysis, the first [M1] employing the raw dataset, and the
second [M2] employing on an iterative method. The second metho-
dology consisted of the following sequential steps: i) determination of
each wavelength weights for the entire wavelength range in an initial
PLS analysis, ii) arrangement of the wavelength values according to
weight similarity and, iii) final PLS analysis with the averaged wave-
length values [8].

Furthermore, a total of 500 possible random samples combinations,
for each dataset, were screened to select the most unbiased calibration
and validation datasets. For all PLS analyses, the maximum number of
PLS components allowed was set at half of the calibration data.

All of the above analyses were performed in Matlab 7.11 (The
Mathworks, Inc. Natick, USA). Further details regarding the PCA and
PLS techniques can be found in Einax et al. [9].

3. Results and discussion

3.1. Analytical data

The minimum, average and maximum values for the ibuprofen
(IBU), sulfamethoxazole (SMX), β-estradiol (E2), ethinylestradiol (EE2)
and carbamazepine (CRB) concentrations in the experiments are pre-
sented in Table 1. A total of 6 experiments were employed for the IBU
study, whereas 10 experiments were used for the SMX, E2, EE2 and CRB
studies. Each of these samples was then divided into two groups, the
calibration (modeling) group, with 2/3 of the samples, and the vali-
dation, with the remaining 1/3 of the samples. The number of samples
used for each studied pharmaceutical is presented in Table 2.

3.2. Kolmogorov–Smirnov test and boxplot analysis results

Prior to the boxplot analysis, a Kolmogorov–Smirnov test was first
employed in order to determine if the Y datasets (IBU, SMX, E2, EE2 and
CRB concentrations) were normally distributed. The obtained results,
for all the studied datasets, allowed confirming that all Y datasets were
not normally distributed. For that reason, the boxplot analysis was not
performed for the Y dataset (although it was performed further on
within the PCA analysis), and no Y dataset outliers’ exclusion was
performed, at this time.

3.3. PCA results

A principal components analysis (PCA) was further performed to the
X dataset (wavelengths values), as depicted in Fig. 1. The first, second
and third principal components (or latent variables – LV) explained a
total of 45.2%, 68.7%, 77.1%, 81.0% and 83.8% respectively for the
IBU, SMX, E2, EE2 and CRB X dataset variation in the performed PCA
analyses.

The PCA analysis revealed an outlier (Fig. 1c in the corner box
analysis), for the E2 wavelength dataset, later removed for the sub-
sequent analysis (thus leading to a final 59 samples dataset). To that
purpose, a boxplot analysis was also performed and presented in Fig. 2.
The whisker length for this analysis was of 1.5, that is, 1.5 times the

interquartile distance between the 25th and 75th percentiles, for the
identifications of samples falling outside a 99.3% coverage of a nor-
mally distributed data. Taking into consideration the obtained results, it
could be seen that one data point regarding the E2 X dataset fell outside
this limit, regarding the 3rd LV. A Kolmogorov–Smirnov test was then
performed allowing confirming that the 3rd LV data was normally
distributed and, hence, the data point that fell outside the 99.3% cov-
erage of a normally distributed data was removed from subsequent
analyses. No further outliers could be determined for the IBU, SMX, EE2

and CRB datasets.
It could also be found for the IBU, SMX, E2, EE2 and CRB (Fig. 1)

that a number of possible clusters seem to emerge. Analyzing these
clusters in detail, it was possible to infer some dependency of the
overall spectra over time, but not strictly with respect to the studied
compounds concentration, and rather related with the fact that, being
the biological wastewater treatment a dynamic and multifaceted
system, a significant number of changes in the wastewater composition
occur over time. It should be kept in mind that, being the synthetic
medium constant for all the experiments, changes not relating to the
pharmaceutical concentrations could be attributed to small alterations
in the activated sludge inoculum and/or to the biota composition and/
or activity evolution over time. Furthermore, it could be seen that both
the number of possible different clusters and the time span that they
cover diverge from experiment to experiment and, therefore, it was
considered not to be of practical use (for real wastewaters monitoring)
to divide the dataset into such clusters in the subsequent analysis re-
garding the pharmaceutical compounds concentration prediction.

3.4. PLS results

A partial least squares (PLS) regression was performed to the IBU,
SMX, EE2 and CRB data obtained by the UHPLC analysis as Y dataset
and the FT-NIR spectra (14,000–200 cm−1) as the X dataset. In order to
determine the best model results for the studied pharmaceutical com-
pounds, the obtained equations, coefficients of determination (R2), root
mean square error (RMSE) (in relative percentage of the samples range)
and residual predictive deviation (RPD) values were obtained and are
presented in Table 3. According to Fearn [10], the RPD parameter,
defined as the ratio between the standard deviation (SD) of a popula-
tion and the standard error of cross validation (SECV) for a prediction,
when larger than 3 is considered fair and recommended for screening
purposes. Both the RMSE and RPD values for the overall (tr+val) and
the validation (val) data points are presented.

In order to select the most unbiased calibration and validation da-
tasets, a screening of 500 possible random combinations, for these da-
tasets, was employed. In accordance, the best overall (calibration
+validation) results were chosen, reflecting the most unbiased datasets
combination. This procedure ensured that both calibration and vali-
dation datasets were distributed along the full range of the pharma-
ceuticals’ concentrations.

For the SMX prediction, the iterative [M2] methodology provided
the best results, whereas regarding the IBU, E2, EE2 and CRB predic-
tions, the best results were obtained by the raw dataset [M1] metho-
dology. For the overall samples of the SMX prediction, an R2 value of
0.948, an RMSE value of 4.91% (7.90% for the validation samples) and
an RPD value of 4.41 (2.74 for the validation samples) were obtained.

Table 1
Minimum (Min.), maximum (Max.) and average (Avg.) values in mg L–1 in the
IBU (ibuprofen), SMX (sulfamethoxazole), E2 (17β-estradiol), EE2 (17α-ethy-
nylestradiol) and CRB (carbamazepine) concentrations (Y) dataset.

Samples No. Min. Max. Avg.

IBU 36 0.05 1.99 0.24
SMX 60 0.31 7.60 2.96
E2 59 0 2.75 1.22
EE2 60 0.44 6.93 3.15
CRB 60 0.56 8.12 4.02

Table 2
Calibration and validation datasets size for the each studied pharmaceutical.

Samples Calibration Validation

IBU 24 12
E2 40 19
EE2 40 20
SMX 40 20
CARB 40 20
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Considering the overall data RPD value of 4.41, and even though falling
short of the value 3 regarding the validation data, these values confirm
the potential of the developed iterative model [M2] for the SMX pre-
diction. In fact, taking into account that the RMSE did not surpass 8% of
the studied concentration range, regarding both the overall and the
validation samples, this methodology seems to be quite promising.

Regarding the E2 and EE2 estrogens prediction, the overall samples
presented R2 values of 0.951 (E2) and 0.858 (EE2), RMSE values of
6.16% (E2) and 10.12% (EE2) and RPD values of 4.69 (E2) and 2.83
(EE2). These results, alongside the validation data RMSE (10.72% for E2

and 17.50% for EE2) and RPD (2.70 for E2 and 1.64 for EE2) values were
worse than for the SMX prediction. Indeed, for the EE2 prediction the

obtained results are still somewhat far from the desirable RMSE values
below 10% of the studied range and RPD values above the value 3, thus
further development on this methodology should be envisaged.

On the other hand, the best prediction results of the studied phar-
maceuticals were obtained for the CRB compound. In fact, the obtained
values for the overall samples, were as follows: R2 value of 0.963, RMSE
value of 5.10% (8.79% for the validation samples) and RPD value of
5.44 (3.16 for the validation samples). Indeed, both the overall and the
validation data RPD values (5.44 and 3.16, respectively) were higher
than the value 3, whereas the RMSE values remained below the 10%
value of the studied range. Thus, the raw dataset [M1] methodology
seems to be quite promising regarding the CRB prediction.

Fig. 1. PCA analysis of the X dataset, showing the first (LV1), second (LV2) and third (LV3) latent variables. a) IBU, b) SMX, c) E2, d) EE2, and e) CRB.
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With respect to the IBU compound prediction, by the raw dataset
[M1] methodology, the overall samples presented an R2 value of 0.943,
an RMSE value of 5.47% (9.17% for the validation samples) and an RPD
value of 4.261 (2.54 for the validation samples). Again, the obtained
RPD values (though falling short of the value 3 for the validation data)
and RMSE values (below 10% of the studied concentration range in
both cases) confirm the potential of the raw dataset model [M1] for the
IBU prediction. It should be noted, though, that a quite different result
was obtained for the iterative model [M2] for the IBU prediction, pre-
senting a much worsen prediction ability with respect to the other
studied compounds.

It should also be noticed that, in all cases, the number of PLS
components or latent vectors (LVs), was larger for the raw dataset
model [M1] with respect to the iterative model [M2]. This is in ac-
cordance to the fact that the raw model dataset is larger than the
iterative model dataset (original variables transformed prior to the final
PLS analysis into fewer averaged wavelength values) fed to the PLS
analysis. Nonetheless, the number of LVs found for the optimal models
(ranging from 6 for the IBU model to 17 for the CRB model), re-
presented a massive decrease from the initial 3578 different wave-
lengths, while comprising the rule of being less than half of the cali-
bration data points for each studied compound.

The studied prediction model results, regarding both the raw da-
taset [M1] and the iterative model [M2] methodologies, for all the
studied pharmaceutic compounds concentrations, are next presented in
Fig. 3. In all cases there seems to be a clear overfitting of the calibration
data, regarding the [M1] methodology, explained by the large amount
of the X dataset original variables (3578 different wavelengths). That
being the case, the wavelengths selected by the model LVs concerning
the calibration dataset may not be the most adequate with respect to

the validation dataset. This overfitting seems to be less profound for the
iterative [M2] methodology given that it employs solely a fraction of
the X dataset variables (original variables transformed prior to the final
PLS analysis into fewer averaged wavelength values). Indeed, regarding
the difference between the overall and the validation RMSE values,
smaller differences were obtained, in most cases, for this methodology.

The use of FT-NIR by the pharmaceutical industry is well known.
The main applications include quality control, raw materials identifi-
cation, water content, active drug identification and in the control of
individual steps in the production process ([6,11–14]) and are main
focused in the evaluation and determination in solid dosage forms
(tablets). More recently, some works describe the quantification and
identification of active drugs in other pharmaceutical matrices as
acetaminophen determination in low-dose pharmaceutical syrup [15],
non-invasive quantification of 5 fluorouracil and gemcitabine in aqu-
eous matrices by direct measurement through glass vials [16], de-
termination of amoxicillin in suspension formulations [17] and quan-
tification of active ingredients (metronidazole, erythromycin, salicylic
acid and urea) in creams and ointments [18].

FT-NIR techniques are also frequently used to monitor wastewater
treatment processes. The parameters usually evaluated by this tech-
nique include polyhydroxyalkanoates, extracellular polymeric sub-
stances, biochemical oxygen demand, chemical oxygen demand, total
suspended solids, total organic and inorganic carbon, bicarbonate al-
kalinity, biochemical methane potential, volatile fatty acids, nitrate,
ammonia [19] and volatile organic pollutants as tetrachloroethylene
and dichlorobenzene ([20,21]) and fenitrothion [22]. However, the
quantification of pharmaceuticals in wastewaters by FT-NIR is a field to
explore and, to the authors’ knowledge, no relevant works exist in the
literature describing the use of this technique at this level. On the other
hand, the growing increase of pharmaceuticals presence in wastewaters
claims for rapid measurements, such as the approach described in the
present report. In fact, the technology presented here presents several
advantages over the traditional analytical procedures and is very pro-
mising for near real time monitoring of wastewater treatment pro-
cesses.

4. Conclusions

A FT-NIR transmission spectroscopy methodology was developed
for the determination of IBU, CRB, E2, EE2 and SMX concentrations in
wastewaters. To achieve this aim, a chemometric approach was used
employing first a Kolmogorov–Smirnov test to check the normality of
the data, a boxplot analysis for outliers identification and a PCA ana-
lysis aiming to identify samples interrelationships and define the final
datasets. Next, a PLS analysis was performed in order to obtain a pre-
diction model suitable for the pharmaceuticals quantification purposes.
This procedure resulted in relatively high coefficients of determination
(R2), and low root mean square errors (RMSE), for the prediction ability
of almost all the studied compounds. Furthermore, the residual

Fig. 2. Boxplot analysis of the three first LV's (representing 75.0%) of the E2 X
dataset for a 1.5 whisker length.

Table 3
Equation (Eq.), coefficient of determination (R2), root mean square error (RMSE) (%), number of samples (nS), number of PLS components or latent vectors (LVs) and
residual predictive deviation (RPD) of the PLS analysis for the studied model results.

Eq. (tr+val) R2 (tr+val) RMSE (tr+val) RMSE (val) RPD (tr+val) RPD (val) nS LVs

IBU M1 y=1.022x 0.943 5.47 9.17 4.26 2.54 36 6
M2 y = 0.714x 0.644 13.71 21.07 1.70 1.11 36 1

SMX M1 y = 0.998x 0.923 5.89 10.20 3.67 2.12 60 15
M2 y=1.001x 0.948 4.91 7.90 4.41 2.74 60 11

E2 M1 y=0.987x 0.951 6.16 10.72 4.69 2.70 59 12
M2 y = 0.994x 0.927 7.62 12.64 3.74 2.28 59 10

EE2 M1 y=0.981x 0.858 10.12 17.50 2.83 1.64 60 16
M2 y = 1.018x 0.840 10.77 17.54 2.66 1.63 60 10

CRB M1 y=1.000x 0.963 5.10 8.79 5.44 3.16 60 17
M2 y = 1.002x 0.950 6.03 8.93 4.60 3.11 60 9

* All the p-values were below 0.0001.
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Fig. 3. Model results for the IBU, SMX, E2, EE2 and CRB predictions. a) M1 model, b) M2 model. The orange circles represent the calibration data and the gray circles
represent the validation data (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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prediction deviation (RPD) for the overall (training and validation)
samples was above three (except for EE2) configuring its adequacy to-
wards these compounds monitoring. The proposed method is not only a
simple procedure, non-expensive and fast technique, but also it has
relatively high sensitivity for the studied pharmaceutical compounds.
Therefore, this methodology can be considered as promising towards
the replacement of HPLC and GC analysis for routine pharmaceuticals
quantification in wastewater, decreasing costs in reagents and analysis
time.
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