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ARTICLE INFO ABSTRACT

Keywords: Curcumin nanoemulsions stabilized by whey protein isolate were successfully developed using high-pressure
Nanoemulsions homogenization. The effect of a chitosan layer deposition using the layer-by-layer technique on nanoemulsions'
Lipolysis stability was evaluated during storage conditions, as well as during gastrointestinal tract passage. Lipids’ hy-
Bioaccessibility

drolysis and curcumin bioaccessibility was assessed using a dynamic gastrointestinal model (simulating the
stomach, duodenum, jejunum and ileum) and the cytotoxicity, cellular antioxidant activity and permeability
analyses were carried out using Caco-2 cells. Results showed that both nanosystems were stable during one
month of storage and at stomach pH conditions, whereas creaming and phase separation occurred at intestine pH
conditions. The addition of a chitosan layer increased curcumin bioaccessibility, whereas cellular antioxidant
activity studies revealed that nanoemulsions and multilayer nanoemulsions exhibited 9 and 10 times higher
antioxidant capacity at the cellular level, respectively, when compared to free curcumin. Permeability assays
showed that the use of a chitosan layer significantly increased the apparent permeability coefficient of curcumin
through Caco-2 cells by 1.55-folds.

Caco-2 cells
Cellular antioxidant activity
Cellular uptake

(11 ngmL™"), sensitivety to oxygen, pH, solvents and light (Plaza-
Oliver et al., 2015; Siviero et al., 2015; Zhao et al., 2012). Hence, ex-

1. Introduction

Curcumin is a natural polyphenolic compound extracted from the
rhizome of Curcuma longa, being commercially available as turmeric
extract, curcuminoids containing 70-80% of curcumin, 15-25% of de-
methoxycurcumin and  2.5-6.5% of bisdemethoxycurcumin
(Jayaprakasha et al., 2006; Siviero et al., 2015). Curcumin is a food
additive (E100) well known for its wide range of beneficial activities,
including antioxidant, anti-inflamatory, antimicrobial, anticancer, an-
tiviral, anti-mutagen and wound healing (Jayaprakasha et al., 2006;
Kaur et al., 2015; Liu et al., 2016; Siviero et al., 2015). Also, it can act as
natural dye in food products and recent studies have shown its capacity
to detect heavy metals, which can be of great importance in the field of
water and food monitoring (Raj and Shankaran, 2016). However, the
use of curcumin is limited by its poor solubility in aqueous media

ploitation of curcumin as part of functional foods deeply relies on
strategies that overcome these limitations, triggering their incorpora-
tion into foods and beverages (Cerqueira et al., 2014; Pinheiro et al.,
2016; Plaza-Oliver et al., 2015). Recently, many researchs have sought
to overcome these limitations using lipid-based nanosystems (e.g. na-
noemulsions composed of only bio-based compounds) to encapsulate
liphophilic bioactive compounds, such as curcumin. Nanoemulsions can
be used to i) increase their solubility in aqueous media; ii) provide
protection from environmental stresses, chemical, enzimatic and oxi-
dative degradation; iii) allow their controlled release; and iv) promote
greater bioaccessibility and bioavailability, while also enhancing their
permeability of across mucus layer and epithelium cells (Sun et al.,
2015; Ting et al., 2014; Zou et al., 2015). Also, the deposition of
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charged polyelectrolyte layers onto oppositelly charged nanoemulsions
using the layer-by-layer (LbL) technique, forming multilayer nanoe-
mulsions, can be used as a strategy to further increase the nanoemul-
sions' physical stability to environmental conditions, control the lipids'
digestibility and the release of bioactive compounds in response to
specific environmental triggers, while further increasing the bioactive
compounds' bioavailability (Acevedo-Fani et al., 2017). Chitosan, a
naturally occurring cationic polysaccharide, is one of the polyelec-
trolytes most used for LbL deposition. It is known to act as a permeation
enhancer by opening the tight junctions of the epithelium, facilitating
both bioactive compounds' paracellular and transcellular transport. In
fact, the positively charged chitosan interacts with the negatively
charged mucus to form a complex by ionic or hydrogen bonding, as well
as though hydrophobic interactions (Mohammed et al., 2017). The
development of tailored nanosystems using the LbL technique relies on
their final application, from nanosystems designed to delay lipids' di-
gestability, inducing satiation, to nanosystems designed to enhance
permeability across the intestinal membrane, improving bioavailability
and consequently, potentiating curcumin's benefitial effects (Maljaars
et al., 2009; Pinheiro et al., 2016; Ting et al., 2014).

Despite of the enourmous potential of lipid-based nanosystems,
there is still a lack of knowledge about the behavior of these nanosys-
tems after ingestion, from their behavior during digestion, to their ab-
sorption through the intestine, bioactive compounds' bioavailability
and potential toxicity (McClements, 2013; Pinheiro et al., 2016). Caco-
2 cell line, derived from human colon adenocarcinoma, is one of the
most used intestinal absorption models for studying bioactive com-
pounds’ permeability and transport characteristics, once it resembles
morphologically the enterocytes of the small intestine (i.e. their
monolayers have intercellular tight junctions, microvilli and exhibit
brush-border characteristics at the apical side after confluence) (Zeng
et al., 2017). Generally, there are two pathways to transport bioactive
compounds through the small intestine epithelium which can be
modulated to enhance the absorption of bioactive compounds in the
gastrointestinal tract: the paracellular and the transcellular pathways
(Li et al., 2015a, 2015b; Wang et al., 2015; Yu and Huang, 2012). In
paracellular transport, lipid-based nanosystems below 50 nm may be
able to directly diffuse (passive diffusion) through the cell tight junc-
tions (Li et al., 2015b; Wang et al., 2015). Transcellular transport re-
presents the classic digestion-diffusion route, where the bioactive
compounds entrapped within lipid-based nanosystems below 500 nm
may be absorbed by the epithelial cells passing through the Caco-2 cell
monolayer via passive or active transport mechanisms (Li et al., 2015b;
Yu and Huang, 2012).

The main purposes of this study were the understandment of the
behavior of curcumin nanoemulsions and multilayer nanoemulsions
under in vitro digestion (e.g. in terms of curcumim bioaccessibility) and
the evaluation of their cytotoxicity, cellular antioxidant activity, ap-
parent permeability coefficient and cellular uptake using Caco-2 cell
line.

2. Materials and methods
2.1. Materials

Neobee 1053 medium chain triglycerides (MCTs), a caprylic/capric
triglyceride oil with a fatty acid distribution of 55% of C8:0 and 44% of
C10:0, was kindly provided by Stepan (The Netherlands) and was used
without further purification. Curcumin (Mw = 368.38 Da), 1,1-di-
phenyl-2-picrylhydrazyl (DPPH), the salts used for preparing the gastric
and small intestinal electrolyte solutions, hydrochloric acid, sodium
bicarbonate, Nile Red 9-diethylamino-5H-benzo[a]phenoxazine-5-one
and dimethyl sulfoxide were purchased from Sigma-Aldrich (St Louis,
MO, USA). Whey Protein Isolate (WPI) (Lacprodan DI-9212) was pur-
chased from Arla (Denmark); its protein content was 91% dry basis, the
moisture was 5.5% in maximum, the ash content was 3% and the ion
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content was: sodium, < 0.1%, phosphorus, 0.2%, chloride, 2.2%, po-
tassium, < 0.1% and calcium, < 0.1%. Chitosan (deacetylation de-
gree = 95%) was obtained from Golden-Shell Biochemical CO., LTD
(Zhejiang, China) and lactic acid (90%) from Acros Organics (Geel,
Belgium). Sodium hydroxide and phenolphthalein were obtained from
Panreac (Spain), chloroform from Fisher Scientific (NJ, USA) and
acetone from Fisher Chemical (UK). The reagents for cell-based assays,
RPMI 1640 medium, Fetal Bovine Serum (FBS), Penicillin-Streptomycin
(PS), trypsin/EDTA and Hanks' Balanced Salt Solution (HBSS) were
purchased from Invitrogen (Paisley, UK). Phosphate buffered saline
(PBS) powder, 2’,7’-dichlorofluorescin diacetate (DCFH-DA), 2,2’-
Azobis(2-methylpropionamidine) dihydrochloride (AAPH), quercetin
and CelLytic™ MT Cell Lysis Reagent were obtained from Sigma-Aldrich
(St. Louis, MO, USA). CellTiter 96° AQueous One Solution Cell
Proliferation Assay (MTS) was obtained from Promega (Wisconsin,
USA), Protease Inhibitor Cocktail Set III from Merck Millipore
(Darmstadt, Germany), dimethyl sulfoxide (DMSO) from Carlo Erba
Reagents Srl (Milan, Italy) and ethanol from Scharlab S.L. (Barcelona,
Spain). Distilled water (Milli-Q apparatus, Millipore Corp., Bedford,
MA, USA) was used to prepare all solutions.

All the enzymes (i.e. pepsin from porcine gastric mucosa (600
U.mL™ 1), lipase from porcine pancreas (40 U.mL ™), pancreatin from
porcine pancreas (8 x USP)) and bile extract porcine were purchased
from Sigma-Aldrich (St Louis, MO, USA). Caco-2 cells were purchased
from Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany).

2.2. Experimental procedures

2.2.1. Preparation of curcumin nanosystems

2.2.1.1. Curcumin nanoemulsions preparation. Curcumin oil-in-water
nanoemulsions were prepared according to a previous work (Silva
et al., 2015), with minor modifications. Briefly, 0.1% (w/w) of
curcumin was solubilized at 70°C in medium chain triglycerides
(MCTs) and an aqueous phase containing 1.5% (w/w) of whey
protein isolate (WPI) was prepared in distilled water. 10% of MCT
solution containing curcumin were homogenized with 90% of WPI
aqueous solution (surfactant/oil ratio (SOR) of 0.135) using an Ultra-
Turrax homogenizer (T 25, Ika-Werke, Germany) during 2 min at
5000rpm, followed by a passage through a high-pressure
homogenizer (EmulsiFlex-C3, Avestin, Canada) at 40 bars, during 20
cycles of homogenization (conditions resulting from preliminary tests
conducted to optimize processing conditions).

2.2.1.2. Curcumin multilayer nanoemulsions preparation. Multilayer
nanoemulsions were formed through the deposition of one chitosan
layer onto curcumin nanoemulsions using the LbL electrostatic
deposition technique. The saturation method was applied, i.e. the
layers were constructed by subsequent adsorption of polyelectrolytes
from their solutions without the intermediate rinsing step and avoiding
particle aggregation at the same time (Adamczak et al., 2014). Briefly,
anionic curcumin nanoemulsions (at pH 7) were coated with a layer of
positively charged chitosan solution (at pH 3), added dropwise with a
syringe pump (NE-1000, New Era Pump Systems, Inc., USA) to fresh
curcumin nanoemulsions (ratio nanoemulsion:chitosan solution of 1:1),
under stirring for 15 min. The pH values of each solution correspond to
the ones at which the solutions present higher charges, in order to
maximize the electrostatic interactions between WPI and chitosan.
Different concentrations of chitosan were tested in order to optimize the
formulation, being the chitosan saturation concentration determined
empirically by monitoring the changes in the zeta potential (Zp) and
size (Adamczak et al., 2014; Madrigal-Carballo et al., 2010). A
screening of chitosan concentration between 0% and 0.1% (w/w) was
performed in order to evaluate the influence of chitosan in the
nanoemulsions properties, i.e. hydrodynamic diameter (Hy),
polydispersity index (PdI) and Zp. These properties were measured
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immediately after production.

2.2.2. Nanosystems size measurements

Particle size distribution and PdI of nanoemulsions and multilayer
nanoemulsions were determined using Dynamic Light Scattering (DLS)
(Zetasizer Nano ZS-90, Malvern Instruments, Worcestershire, UK).
Nanoemulsions and multilayer nanoemulsions samples were diluted
100 x in distilled water at room temperature. Data was reported as the
mean droplet diameter. Pdl is a dimensionless and indicates the het-
erogeneity (monodisperse or polydisperse) of particles size in a mixture
(Malvern, 2011). Each sample was analyzed in a disposable polystyrene
cell (DTS0012, Malvern Instruments). The measurements were per-
formed in duplicate, with three readings for each of them. The results
are given as the average * standard deviation of the six values ob-
tained.

2.2.3. Nanosystems charge measurements

Droplet charge (Zp) of the nanoemulsions and multilayer nanoe-
mulsions was determined using a particle micro-electrophoresis in-
strument (Zetasizer Nano ZS-90, Malvern Instruments, Worcestershire,
UK). Samples were diluted 100 x in distilled water prior to measure-
ments, in order to avoid multiple scattering effects at ambient tem-
perature, and placed into disposable capillary cells (DTS 1060, Malvern
Instruments) (Ozturk et al., 2014). The measurements were performed
in duplicate, with three readings for each of them. The results are given
as the average * standard deviation of the six values obtained.

2.2.4. Stability of the nanosystems under storage

In order to evaluate the stability of nanoemulsions and multilayer
nanoemulsions during storage, Hy, Pdl and Zp were evaluated during
three months of storage at 4 °C in the absence of light.

2.2.5. Nanosystems stability and curcumin release at gastrointestinal
environmental conditions

Curcumin nanosystems stability under gastrointestinal environ-
mental conditions was accessed by a dialysis method. 2 mL of aqueous
curcumin nanosystems were added into a dialysis membrane (mole-
cular weight cut-off 15kDa; Cellu-Sep H1, Membrane filtration pro-
ducts, USA). The sealed dialysis membrane was then placed into 50 mL
of buffer solution (phosphate buffer, PBS, for pH 7.4 and KCI-HCI buffer
for pH 2) under magnetic stirring at 37 °C. At appropriate time inter-
vals, 0.5mL of supernatant were taken and 0.5 mL of fresh acceptor
medium was added to keep the volume of the release medium constant.
Nanosystems stability and the released amount of curcumin from the
nanosystems was evaluated by measuring the Hy after 54 h (in order to
evaluate if there were changes on nanosystems' behavior over time) and
the absorbance at 425nm (maximum curcumin's absorbance peak)
(Elisa Biotech Synergy HT, Biotek, USA). All stability/release tests were
run in triplicate. This assay was only performed to understand the
stability of these nanosystems at the pH and temperature values of the
gastrointestinal system.

2.2.6. In vitro digestion

2.2.6.1. Dynamic gastrointestinal model. A dynamic gastrointestinal
system was used in the in vitro digestion experiments using the
methodology developed in a previous work (Pinheiro et al., 2016).
This model simulates the main events that occur during digestion and
consists of four compartments simulating the stomach, duodenum,
jejunum and ileum. Each compartment consists in two connected glass
reactors with a flexible wall inside and water is pumped around the
flexible walls to maintain the temperature at 37 °C and to enable the
simulation of the peristaltic movements (by the alternate compression
and relaxation of the flexible walls). The changes in water pressure are
achieved by peristaltic pumps which alter the flow direction according
to the time controlled devices connected to them. The compartments
are connected by silicone tubes and, at a predefined time, a constant
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volume of chyme is transferred. All compartments are equipped with
pH electrodes and pH values are controlled by the secretion of HCIL
(1molL™Y) into the stomach and NaHCO; (1molL™!) into the
intestinal compartments. The gastric and intestinal secretions are
added via syringe pumps at pre-set flow rates. The jejunum and ileum
compartments are connected with hollow-fiber devices (SpectrumLabs
Minikros®, M20S-100-01P, USA) to absorb digestion products and water
from the chyme and to modify electrolyte and bile salts concentration of
the chime (Pinheiro et al., 2016). It should be noted that, although at
the mouth stage there may be changes in emulsions' size and interfacial
characteristics, influencing the emulsions' behavior in the GI tract
(McClements and Xiao, 2012; Pinheiro et al., 2016), this phase was not
included once the samples are in the liquid state (and therefore the
mastication is not relevant and the residence time in the mouth is very
low) and the samples do not contain starch (i.e. the primary enzyme
present in saliva, amylase, would not act) (Pinheiro et al., 2016).

2.2.6.2. Experimental conditions. In vitro digestion was performed as
described by other authors (Pinheiro et al., 2016) with minor
modifications. A volume of 40 mL of curcumin nanosystems (both
nanoemulsions and multilayer nanoemulsions) was introduced into the
dynamic gastrointestinal system (gastric compartment) and the
experiment was run for a total of 5h, simulating average
physiological conditions of GI tract by the continuous addition of
gastric, duodenal, jejunal and ileal secretions. The gastric secretion
consisted of pepsin and lipase in a gastric electrolyte solution (NaCl
48gL™ !, KCl 2.2gL71, CaCl, 0.22g.L~! and NaHCO; 1.5g.L™1),
secreted at a flow rate of 0.33mLmin"'. The pH was controlled to
follow a predetermined curve (from 4.8att = 0 to 1.7 att = 120 min)
by secreting HCI (1 mol.L.™"). The duodenal secretion consisted of a
mixture of 4% (w/v) porcine bile extract, 7% (w/v) pancreatin solution
and small intestinal electrolyte solution (SIES) (NaCl 5g.L_1, KCl
0.6 g.L_l, CaCl, 0.25 g.L_l) secreted at a flow rate of 0.66 mL min~’.
The jejunal secretion fluid consisted of SIES containing 10% (v/v)
porcine bile extract solution at a flow rate of 2.13 mLmin ™. The ileal
secretion fluid consisted of SIES at a flow rate of 2.0 mL min~'. The pH
in the different compartments of small intestine was controlled by the
addition of 1 mol.L. ™! NaHCOj solution to set points of 6.5, 6.8 and 7.2
for simulated duodenum, jejunum and ileum, respectively. During in
vitro digestion, samples were collected directly from the lumen of the
different compartments and from jejunal/ileal filtrates and ileal
delivery. Jejunal and ileal filtrates were used to determine the
curcumin's bioaccessibility. The samples were analyzed in terms of
Hy, Zp and free fatty acids (FFA). Both curcumin nanosystems were
tested in the dynamic gastrointestinal model at least in triplicate.

2.2.7. Morphological characterization

Nanosystems’ morphology was evaluated by transmission electron
microscopy (TEM) (EM 902A, ZEISS, Germany) operating at 80kV.
TEM samples were prepared by depositing the nanoemulsion suspen-
sions on a carbon-coated copper grid, which were negatively stained
with 1% (w/v) uranyl acetate for observation. Samples were air-dried
before analyses. Also, the oil droplets in the emulsions were studied
using an epifluorescence microscope (BX51 OLYMPUS, Tokyo, Japan)
with an X 100 oil immersion objective lens. Samples were stained with
Nile Red (9-diethylamino-5H-benzo[a]phenoxazine-5-one,
0.25mgmL~" in dimethyl sulfoxide, 1:10 (dye:sample), v/v), which
enabled the oil droplets to become visible. Slides were prepared by
taking 10 pL of the stained emulsion solution, placing it in a glass mi-
croscope slide and covering with a glass cover slip.

2.2.8. Free fatty acids release

The digestion activity was measured by determining the amount of
FFA released from curcumin nanoemulsions using a titration method
(Pinsirodom and P, 2005). Briefly, 5 mL of jejunal filtrate, ileal filtrate
and ileal delivery samples were collected, 10 mL of acetone were added
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to quench the enzymes' activity and 3 drops of 1% (w/v) phe-
nolphthalein were added as an indicator. A direct titration with
0.1 mol.L™! NaOH using a burette was performed and the volume of
NaOH added until the titration end point was determined and used to
calculate the concentration of FFA produced by lipolysis. Therefore, the
percentage of FFA released was calculated from the number of moles of
NaOH required to neutralize the FFA divided by the number of moles of
FFA that could be produced from triglycerides if they were all digested
(assuming 2 FFA produced per 1 triacylglycerol molecule) (Li et al.,
2011; Pinheiro et al., 2016):

% X m X M
% FFA = 100 X ( 'NaOH NaOH llpzd]

Wiipia X 2

(€8]

where Vyqop is the volume of sodium hydroxide required to neutralize
the FFA generated (in mL), myqop is the molarity of the sodium hy-
droxide used (in mol.L 1), Wigpias is the total weight of MCT's oil initially
present and Mg is the molecular weight of the MCT's oil (based on
their average fatty acid composition the molecular weight of MCT's oil
was considered to be 503 gmol ~%).

2.2.9. Curcumin bioaccessibility

It was assumed that the fraction of the curcumin present in the in-
itial nanosystem that ended up in the micelle phase was a measure of
curcumin bioaccessibility (Ahmed et al., 2012) and that the mixed
micelles that contained the bioaccessible curcumin fraction were able to
pass the hollow-fiber membranes (i.e. corresponds to jejunal filtrate and
ileal filtrate samples), while undigested emulsions were retained, ac-
cording to other authors (Minekus et al., 2005). Curcumin bioaccessi-
bility was determined based on the methodology described by other
authors (Ahmed et al., 2012; Pinheiro et al., 2016). Briefly, 5 mL of the
sample (jejunal or ileal filtrate) were vortexed with 5 mL of chloroform
and then centrifuged (Sigma 4K15, Germany) at 1750 rpm, at room
temperature, for 10 min. The bottom chloroform layer was collected
and the extraction procedure was repeated with the top layer. The
second bottom chloroform layer was added to the previously set aside
chloroform layer, mixed, and analyzed in a UV-VIS spectrophotometer
(Elisa Biotech Synergy HT, Biotek, USA) at 425 nm (absorbance peak).
The concentration of curcumin was determined from a previously
prepared calibration curve of absorbance versus curcumin concentra-
tion in chloroform.

2.2.10. Cell based assays

2.2.10.1. Cell culture. Caco-2cell line was selected for cytotoxicity
experiments, cellular antioxidant activity evaluation and permeation
studies. Caco-2 cell line were routinely grown in RPMI 1640 culture
medium supplemented with 10% (v/v) of inactivated FBS and 1% (v/v)
of PS. Stock cells were maintained as monolayers in 75cm? culture
flasks. Cells were subcultured every week at a split ratio of 1-4 by
treatment with trypsin/EDTA (0.25%) and incubated at 37 °C in a 5%
CO, humidified atmosphere (Matias et al., 2014). For all cell-based
assays Caco-2 were used between passages 30 and 50.

2.2.10.2. Cytotoxicity assay. Caco-2 cells were seeded at a density of
2 x 10* cells/well in 96-well plate and the medium was changed every
48 h. The experiments were performed through method previously
described by other authors, using completely differentiated cells (after
reaching confluence, ~96h) (Serra et al., 2011b, 2013). An initial
stock solution of curcumin in ethanol was prepared (4 mg mL~1). In the
day of the assay, curcumin, nanoemulsions and multilayer
nanoemulsions were diluted in RPMI medium supplemented with
0.5% inactivated FBS (4.8-19.0 pgmrcumin.mL_1 and 31.25-250.00
Ugchitosan-ML 1) and added to Caco-2cells in triplicate. After 4h of
incubation at 37 °C in a 5% CO, humidified atmosphere, samples were
removed and cells were washed twice with PBS. Then, 100 uL of
CellTiter 96° AQueous One Solution Cell Proliferation Assay reagent
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(MTS) diluted in RPMI 1640 medium supplemented with 0.5% FBS was
added to each well and left to react for 2h, at 37°C in a 5% CO,
humidified atmosphere. MTS enters in cells and it is bio-reduced into a
colored formazan product that is soluble in the culture medium. The
quantity of formazan produced was measured spectrophotometrically
at 490 nm in a microplate reader (EPOCH, Bio-Tek, USA) and is directly
proportional to the number of living cells in culture. Results were
expressed in terms of percentage of cellular viability relative to a group
control (cells only with RPMI medium). Experiments were performed in
triplicate in three independent assays.

2.2.10.3. Cellular antioxidant activity. Cellular Antioxidant Activity
(CAA) was determined using the method previously described by
other authors with some modifications (Serra et al., 2011a). In this
assay, dichlorofluorescein is trapped in the cells and is oxidized to
fluorescent dichloroffluorescein. This method measures the ability of
antioxidants to  prevent the formation of fluorescent
dichloroffluorescein by AAPH-generated peroxyl radicals(Serra, 2010;
Wang and Joseph, 1999). Thus, the decrease in the cellular fluorescence
when compared to the control cells indicates the antioxidant activity of
curcumin. Briefly, Caco-2cells were seeded at a density of
2 x 10* cells/well in a 96-well plate and the medium was changed
every 48 h. After reaching confluence (~96 h), cells were washed twice
with PBS and triplicate wells were treated for 1h with 100 uL of
different concentrations of curcumin (5-40 pg mL~ 1) or nanoemulsions
and multilayer nanoemulsions (0.95-7.60 ug mL~') plus 25 pmol.L ™!
of DCFH-DA diluted in PBS. Then, the medium was removed, cells were
washed with PBS and 100 uL of 600 umol L™ ' of AAPH was added in
each well. The 96-well microplate was placed into a fluorescence reader
(FL800, Bio-Tek Instruments, Winooski, VT, USA) at 37 °C. Emission at
530 + 25nm was measured after excitation at 485 + 20nm every
5min for 1h. Each plate included triplicate control and blank wells:
control wells contained cells treated with DCFH-DA and oxidant
(AAPH); blank wells contained cells treated with DCFH-DA without
oxidant. Other control test has been performed, which consisted in
wells containing cells treated with DCFH-DA with just water or ethanol,
in order to evaluate the ethanol (used to dilute free curcumin) oxidation
capacity. Quercetin, previously dissolved in DMSO (20 mmol.L ™ ') was
used as standard (1.25-10.00 umol.L_l) for the calibration curve. CAA
of samples was quantified as described by other authors (Wolfe and Liu,
2007). Briefly, after blank and initial fluorescence subtraction, the area
under the curve for fluorescence versus time was integrated to calculate
the CAA value at each concentration of the sample:

it=1— SA
CAA unit =1 (f ) o)

CA

Where [SA is the integrated area under the sample fluorescence
versus time curve and [ CA is the integrated area of the control curve.
The median effective concentration (ECsy) was determined for the
sample from the median effect plot of log(f,/f,) versus log (dose), where
fa is the fraction affected (CAA unit) and f,, is the fraction unaffected (1-
CAA unit) by the treatment. The ECs, values were stated as mean *+ SD
for triplicate sets of data obtained from the same experiment. Also, ECso
were converted to CAA values, expressed as micromoles of quercetin
per mg of curcumin, using the mean ECs, value of quercetin from three
independent experiments, 3.52 + 0.42umol.L ™",

2.2.10.4. Permeability studies. For transport studies, Caco-2 cells were
seeded in 12mm i.d. Transwell’ inserts (polycarbonate membrane,
0.4 um pore size, Corning Costar Corp.) in 12-well plates at a density of
1 x 10°cells/well. The basolateral (serosal) and apical (mucosal)
compartments contained 1.5 and 0.5mL of culture medium,
respectively. Cells were allowed to grow and differentiate to
confluent monolayers for 21 days by changing the medium (RPMI
1640 supplemented with 10% of FBS and 1% of PS) three times a week
(Serra, 2010). By culturing them for 21 days, Caco-2cells are
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spontaneously differentiated and tight junctions are formed between
the cells, microvillus structures are formed on the apical cell surface
and a variety of brush-border digestive enzymes, transporters and
receptors are expressed (Langerholc et al., 2011; Shimizu, 2010).
Transepithelial electrical resistance (TEER) of cells grown in
Transwell was measured using an epithelial Volt-Ohm-meter (WPI,
Berlin, Germany). The measurement of electrical resistance across the
monolayer is a measure of passive ion transport across the cell and cell
junctions and can be used as a criterion for the tightness of the cell
monolayer in order to evaluate and determine the monolayer integrity.
The TEER value was measured from the following equation:

TEER = (Rmonolayer — Rpiank) X A 3)
where Rponolayer is the resistance of the cell monolayer along with the
filter membrane, Ry« is the resistance of the filter membrane and A is
the surface area of the membrane (1.12 cm? in 12-well plates). Only
monolayers with TEER value higher than 500 Q cm?® were used for
experiments (Matias et al., 2014).

In the day of the experiment, the medium was removed and cells
were washed twice with HBSS (pH 7.4, 37 °C) to remove traces of RPMI
medium. After washing, cells were incubated with transport buffer
(HBSS) for 60 minat 37 °C in a 5% CO, incubator. For permeability
transport studies, 500 uL. of nanosystems (nanoemulsions and multi-
layer nanoemulsions) diluted in HBSS (19 ugmrmmin.rnL_l) was added
to the apical compartment and 1.5mL of transport buffer to the baso-
lateral side. The transepithelial transport was followed as a function of
time: after 0, 15, 30, 45, 60 and 120 min of incubation, TEER was
measured and the basolateral and apical samples were collected and
frozen until analysis. The apparent permeability coefficient (Pg,p) of
nanosystems were calculated using the following equation:

aQ
dt

Fopp = Cox A

4

where dQ/dt is the cumulative transport rate (pg.minfl) defined as the
slope obtained by linear regression of cumulative transported amount
as a function of time (min), Co is the initial nanosystems concentration
in the donor compartment and A is the membrane surface area
(1.12 cm? in 12-well plates).

In addition, the cellular uptake of curcumin was also quantified. For
this purpose, after 15, 30, 45, 60 and 120 min of incubation with
samples, the Caco-2 monolayer was washed with 100 uL of HBSS to
remove traces of nanosystems from the apical compartment and then
cells were incubated for 5 min with 100 uL of CelLytic™ MT Cell Lysis
Reagent containing 1% (v/v) of Protease Inhibitor Cocktail (Matias
et al., 2014). After scrapping, cells were collected and frozen until
quantitative analysis by the high performance liquid chromatography
(HPLC) method described below.

2.2.11. HPLC analysis of curcumin

HPLC system comprised a Varian Prostar 210 pump, a Varian
Prostar 410 autosampler and a Jasco FP-920 fluorescence detector
(MNexe = 420nm and Ae,, = 540 nm). The instrument and the chroma-
tographic data were managed by a Varian 850-MIB data system inter-
face and a Galaxie chromatography data system, respectively. The
chromatographic separation was performed on a C18 reversed-phase
YMC-Pack ODS-AQ analytical column (250 X 4.6 mm L.D., 5pum) that
was fitted with a pre-column with the same stationary phase. The
compounds were eluted using a flow rate of 1.0 mLmin~! during a
15 min isocratic run at a temperature of 30 °C. The injection volume
was 20 pL. The mobile phase was a mixture of acetic acid (2% v/v), pH
2.5, and acetonitrile (at a ratio of 47:53 v/v) that was filtered and
degassed with a 0.2 um membrane filter (GHP, Gelman). A calibration
curve was prepared with standard solutions containing 0.1 pgmL™" to
10.0pgmL ™' of curcumin in acetonitrile. Curcumin, demethox-
ycurcumin, and bisdemethoxycurcumin were quantified by comparing
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the peak areas with the calibration curve. Retention times were 10.5,
11.5, and 12.5 min, respectively.

2.3. Statistical procedures

2.3.1. Data analyses

Data analyses were performed using Microsoft Windows Excel 2011,
using the Tukey's Multiple Comparison Test with a confidence interval
of 95% in GraphPad Prism 5 (GraphPad Software, Inc.) and using
ANOVA in STATISTICA 7.0 (Statsoft, Tulsa, OK, USA).

Regarding the cell assays all data are expressed as means =+
standard error and individual experiments were performed at least in
triplicate. The statistical analysis was done using SigmaStat 3.0 soft-
ware. All values were tested for normal distribution and equal variance.
When homogeneous variances were confirmed, data were analyzed by
One Way Analysis of Variance (ANOVA) coupled with the Tukey's post-
hoc analysis to identify means with significant differences (p value of
p < 0.05 was considered significant).

3. Results and discussion
3.1. Curcumin nanosystems development and characterization

Different concentrations of WPI were tested aiming at preparing
curcumin nanoemulsions using 10% (w/w) of MCTs as the oily phase
(results not shown). The minimum concentration of WPI required to
form stable nanoemulsions was found to be 1.5% (w/w) presenting
values of Hq of 186 + 3.9nm and a PdI of 0.124 + 0.014, regarding
the electrical charge (Zp) a value of —51.9 * 2.4 mV was obtained.

Fig. 1a shows that the addition of chitosan results in a change of Zp
values, where the increase of chitosan concentrations (0%-0.1%)
changes the Zp values from highly negative to highly positive values,
reaching a positive constant value around 42mV, when the con-
centration ranged between 0.05% and 0.1% (w/w). This saw-like pro-
file in the Zp values indicates that chitosan was adsorbed to the surface
of the nanoemulsions, forming multilayer nanoemulsions
(Szczepanowicz et al., 2015). At chitosan concentrations ranging from
0.01% to 0.02% (w/w) large “clumps” and oily droplets were observed
at the upper surface of the samples. This behavior can be explained by
the insufficient amount of chitosan present to coat all the nanoemul-
sions droplets, reflected by the Zp of the samples that achieved an in-
crease from —51.9 for the nanoemulsions to only —15.1 and 0.8 mV for
0.01% and 0.02% w/w, respectively. In Fig. 1b it is possible to observe
the effect of these large clumps in the H; of the samples, increasing the
sizes and presenting a high PdI. The presence of clumps indicates that
bridging flocculation occurred. Charged polyelectrolytes can trigger
bridging flocculation, as there is an insufficient amount of chitosan to
completely coat the nanoemulsions, chitosan could link to the surface of
more than one nanoemulsion droplet coupling nanoemulsions together
(Cui et al., 2014; Guzey and McClements, 2006; Mora-Huertas et al.,
2010). Similar behaviors were presented by Aoki et al. (2005) and Mun
et al. (2005). Both authors verified that concentrations of chitosan
below the saturation point resulted in droplets with negative surfaces,
allowing chitosan to adsorb to the surface of two or more droplets si-
multaneously, forming large aggregates and clumps (Aoki et al., 2005;
Mun et al., 2005).

From 0.02% to 0.1% (w/w) a change from neutral to highly positive
Zp was observed, suggesting that chitosan adsorbed to the surface of the
nanoemulsions (Szczepanowicz et al., 2015). However, the effect of pH
decrease in WPI charge should not be excluded and could also con-
tributed to this high positive Zp value. Increasing the chitosan con-
centration above 0.05% w/w did not significantly increased (p > 0.05)
the Zp value, leading to a constant value around 42 mV, however re-
sulted in a significant (p > 0.05) increase of the H; values from
189.1 + 3.4 to 198.7 * 5.4nm, for 0.05% and 0.1% (w/w) of chit-
osan, respectively. It also promoted an increase of PdI values from
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Fig. 1. Development of multilayer nanoemulsions as a function of chitosan concentrations: a) Change in the zeta potential (Zp); b) Change in the hydrodynamic
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analysis to identify means with significant differences (p value of p < 0.05 was considered significant); *f Different superscripts indicate significant differences

among samples.

0.167 = 0.004 to 0.191 + 0.024, for the same range of concentra-
tions. Results suggest that the nanoemulsions become saturated with
chitosan, where the strong electrostatic repulsions present prevented
droplet aggregation by bridging and depletion flocculation (Li et al.,
2010; Pinheiro et al., 2016). Hence, 0.05% (w/w) of chitosan was se-
lected for the build-up of the multilayer nanoemulsions, without sig-
nificant excess of polyelectrolytes in solution. The developed multilayer
nanoemulsions presented a final Hy of 189 + 3.4nm, with a PdI of
0.167 = 0.004 and a Zp value of 40.1 = 1.2mV. TEM and fluores-
cence microscopy confirmed the mean droplet diameters achieved and
confirmed the development of nanosystems with spherical morphology
(Fig. 2, microphotographs of initial nanoemulsions and multilayer na-
noemulsions). Also note that nanoemulsions probably have a quite rigid
surface coating on the droplets, once they remained stable and spherical
after the drying process applied in sample preparation for TEM analysis.

3.2. Nanosystems stability under storage conditions

Both developed nanosystems showed no macroscopic sign of in-
stability phenomena (i.e. creaming or phase separation) after 35 days of
storage. Fig. 3 shows that curcumin nanoemulsions and multilayer
nanoemulsions maintained their Hy during storage. These results show
that the storage conditions used (4 °C in the absence of light) did not
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statistically influence (p > 0.05) the H; values when compared to the
values obtained after nanosystems production (Fig. 3).

Similar results were obtained by other authors, which showed that
curcumin nanoemulsions also stabilized by a bio-based surfactant (in
this case, with 2.0% lecithin) did not suffer destabilization phenomena
during almost 86 days of experiment (Artiga-Artigas et al., 2018).

3.3. Evaluation of nanosystems responsiveness at gastrointestinal
environmental conditions

The stability/responsiveness of both nanosystems was accessed at
gastrointestinal pH and temperature conditions (i.e. at pH 2 and 7.4 and
37 °C) during 54 h, by performing release assays and by measuring the
absorbance of curcumin in the acceptor mediums. Also, after 54 h of
release assays, the Hy and PdI of the nanosystems were evaluated in
order to determine the changes in these parameters over time.

At pH 7.4 none of the nanosystems released curcumin during the
evaluation period, maintaining curcumin entrapped within the nano-
systems. Considering the Hy stability, it was observed that after 54 h of
assay, at pH 7.4, the nanosystems maintained values of H,; closer
(p > 0.05) to the initial value, with 187.3 * 2.7 nm for the nanoe-
mulsions and 189.1 = 2.8nm for the multilayer nanoemulsions. At
these conditions, i.e. pH above the pK, of chitosan, the amino groups of
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Fig. 3. Hydrodynamic diameter (H,) during 35 days of storage for nanoemul-
sion and multilayer nanoemulsion. Each value represents mean = SD (n = 6);
One Way Analysis of Variance (ANOVA) coupled with the Tukey's post-hoc
analysis to identify means with significant differences (p value of p < 0.05 was
considered significant).

chitosan are entirely deprotonated (Vachoud et al., 2000), although, it
is feasible that chitosan held some positive charge. Previous works
showed that pK, of charged groups can change when entangled be-
tween polyelectrolytes of oppositely charges, improving the stability of
the multilayer nanoemulsions to pH changes (Burke and Barrett, 2003a;
b; Li et al., 2010).

At pH 2, the nanoemulsions loss WPI to the acceptor medium (data
not shown), being unstable at this pH after 54 h of assay, thus rendering
it impossible to measure Hy. However, for the multilayer nanoemul-
sions, the H; remained stable after 54h of assay
(Hg = 190.4 = 3.1 nm), while no sign of curcumin was present in the
acceptor medium (OugmL~', below the detection limit of
0.01 pgmL~1). Curcumin is reported as having low solubility in aqu-
eous systems, 11ngmL~', which could explain the absence of
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Fig. 2. TEM microphotographs of negatively stained
nanosystems with wuracyl 1% w/w and epi-
fluorescence microphotographs stained with Nile Red
as they undergo through the dynamic in vitro diges-
tion. The scale bar for all TEM images and epi-
fluorescent images are 400 nm and 20 um, respec-
tively. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web
version of this article.)

curcumin release (Jelezova et al., 2015; Zhao et al., 2012). The fact that
at pH 2 the loss of WPI only occurred in nanoemulsions suggests that
the chitosan layer was able to protect the WPI-stabilized nanoemul-
sions, improving their stability at acidic pH.

3.4. Dynamic in vitro digestion

LbL technique can be used to modify the interfacial composition of
nanoemulsions increasing their stability under gastrointestinal tract
conditions, delaying lipid digestion (Hu et al., 2011; Klinkesorn and
Julian McClements, 2010; Yang et al., 2014). These experiments eval-
uated the influence of a chitosan layer in nanoemulsions behavior
under in vitro digestions, mimicking the human gastrointestinal tract.

3.4.1. Influence of chitosan on nanosystems characteristics during in vitro
digestion

The effect of the deposition of a chitosan layer on the nanoemul-
sions' Hg, morphology and Zp was evaluated at each stage of the in vitro
digestion. Initially the nanosystems had a Hy around 186 and 189 nm
for the nanoemulsions and multilayer nanoemulsions, respectively.
After being subjected to stomach conditions, the nanoemulsions Hy
values significantly increased (p < 0.05) to 258.3 + 26.7 nm (Fig. 4a)
evidencing some coalescence phenomena, confirmed by microscopy
images that shows an increase in droplet size (Fig. 2). For multilayer
nanoemulsions, the Hy value obtained under the gastric conditions was
205.4 = 16.8 nm, which does not present a statistically significant
difference (p > 0.05) when compared with the initial value. From
microscopy images (Fig. 2) some larger droplets can be observed,
nonetheless droplets’ size remained in the nano-size range. This beha-
vior can be related with the interfacial characteristics of the nanosys-
tems and their surface charge. Under gastric conditions (pH around 2),
both nanosystems are positively charged: nanoemulsions presented a
positive Zp of 29.7 + 5.3mV and the multilayer nanoemulsions pre-
sented a Zp of 36.6 = 3.0mV (Fig. 4b), exhibiting strong electrostatic
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Fig. 4. a) Hydrodynamic diameter (H,) for the nanosystems as they undergo
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repulsion between droplets and thus avoiding droplet aggregation,
flocculation and coalescence (Klinkesorn and Julian McClements, 2010;
Pinheiro et al., 2016; Zhang et al., 2015). The change in the Zp values,
from negative to positive, for nanoemulsions at gastric conditions can
be attributed to changes in solutions conditions, pH and ionic strength.
In fact, at pHs below WPI isoelectric point (pI ~5.2), the WPI-stabilized
nanoemulsions would be positively charged, which is in agreement
with other published works (Rodrigues et al., 2015).

Under intestinal conditions, both nanosystems exhibited an increase
in the Hy; due to particle aggregation either by flocculation or coales-
cence of droplets (Figs. 2 and 4). At the duodenal stage, the Hy values
increased to 815.2 *+ 13.5nm for nanoemulsions, presenting a Zp
value of —22.7 + 7.2mV; in the case of the multilayer nanoemulsion,
the H; increased to 1218.6 = 205.7nm and the Zp to
—19.1 = 2.7 mV. Microscopy analyses showed that at this stage, both
nanosystems exhibited droplets at the nano and micro-scale, confirming
the H, values presented in Fig. 4a. At jejunum and ileum stages both
nanosystems presented a high Hy. For all of the intestinal stages of di-
gestion, sizes at the micro-scale were found (Fig. 2), still, TEM analyses
showed some structures at the nano-scale.

The results from the evaluation of nanosystems responsiveness at
gastrointestinal pHs (section 3.3) revealed that both nanosystems are
more stable at intestinal pH, however, with the addition of all the other
gastrointestinal components (e.g. enzymes, bile salts, simulation of
peristaltic movements), the higher changes in nanosystems' properties
occurred at the small intestinal stages. This suggests that the higher
nanosystems' instability (e.g. higher H,) observed at the these stages are
due to the ability of bile salts to displace WPI and chitosan from the
droplets’ surface and to the capacity of lipase to conduct the hydrolysis
of the triacylglycerol molecules present into FFA, monoacyglycerides
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Fig. 5. Percentage of free fatty acids (FFA) released from the nanosystems as
they undergo through the dynamic in vitro digestion. Each value represents
mean * SD (n = 3); One Way Analysis of Variance (ANOVA) coupled with the
Tukey's post-hoc analysis to identify means with significant differences (p value
of p < 0.05 was considered significant); *f Different superscripts indicate sig-
nificant differences among samples.

and/or diacylglycerides (Pinheiro et al., 2016). This hydrolysis can also
generate structures such as micelles, vesicles or other colloidal struc-
tures, which also contributed to the changes observed in Hy and mor-
phology of the nanosystems (Mu and Hgy, 2004).

Regarding the effect of intestinal conditions on the droplet charge,
results show that the Zp values decreased, changing from positive to
negative charges for both nanosystems, reaching to values ranged be-
tween —28mV and —23mV for the nanoemulsions and around
—18mV for the multilayer nanoemulsions (Fig. 4b). These results
suggest that the anionic components present in the intestinal juices (e.g.
bile salts and FFA) might have displaced the WPI and chitosan from
droplet surface or that bile salts or FFA adsorbed onto the surface of the
nanosystems, conferring the negative charge (Klinkesorn and Julian
McClements, 2010; Pinheiro et al., 2016; Salvia-Trujillo et al., 2015;
Zou et al., 2015). There were no significant differences (p > 0.05)
between the values of Zp of both nanosystems at intestinal conditions.

3.4.2. Influence of chitosan layer on lipids digestion

The effect of chitosan layer in the lipids digestion was examined by
determining the release of FFA, generated by the hydrolysis of the
triacylglycerol molecules, at each stage of the small intestine digestion
(Fig. 5). The deposition of a chitosan layer onto nanoemulsions did not
had a significant effect (p > 0.05) on the extent of lipid digestion,
achieving a similar overall extent of released FFA (Fig. 5) of
96.14 + 1.36% and 95.52 + 4.93% for nanoemulsions and multilayer
nanoemulsions, respectively. These results suggest that the chitosan
layer did not prevent lipid digestion, rather delayed it during the je-
junum stage, which might be indicated its degradation or disintegra-
tion. In fact, some studies suggest that pancreatic lipase has the ability
to hydrolyze chitosan, explaining the lack of efficiency of the developed
layer (Pantaleone et al., 1992; Shin et al., 2001). Nonetheless, this study
shows some differences in the rate at which the nanosystems were di-
gested. In Fig. 5 it is possible to see that in the jejunum, the multilayer
nanoemulsions presents a significantly lower (p < 0.05) amount of
FFA released when compared with the nanoemulsion, suggesting that
the multilayer nanoemulsions were digested at a slower rate. At this
stage, chitosan reduced the lipid digestion from 77.67 + 1.19% to
65.29 = 2.92%, being these results in agreement with previous studies
(Klinkesorn and McClements, 2009; Pinheiro et al., 2016; Tokle et al.,
2012). The decrease of the FFA release at jejunum when using chitosan
layer may be explained by the ability of bile salts to form electrostatic
complex with chitosan, reducing the digestibility of the lipids by
sterically hindering the lipase (Klinkesorn and Julian McClements,
2010; Klinkesorn and McClements, 2009). Also, large aggregates of
chitosan could restrict the access of lipase to the lipids (McClements
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Fig. 6. Percentage of bioaccessibility as the nanosystems undergo through je-
junal and ileal stages of the dynamic in vitro digestion. Each value represents
mean * SD (n = 3); One Way Analysis of Variance (ANOVA) coupled with the
Tukey's post-hoc analysis to identify means with significant differences (p value
of p < 0.05 was considered significant); *° Different superscripts indicate
significant differences among samples.

and Li, 2010; Zhang et al., 2015).

These results suggest that the presence of a chitosan layer on the
nanoemulsions may be useful to control the rate of lipid digestion and
FFA adsorption within the gastrointestinal tract, although being in-
efficient in preventing lipid digestion.

3.4.3. Influence of chitosan layer on curcumin bioaccessibility

Curcumin bioaccessibility from the nanosystems was measured
based on the curcumin concentration present in mixed micelles after
digestion at jejunum and ileal filtrate samples. Curcumin bioaccessi-
bility increases during the digestion once the FFA, monoacyglycerides
and diacylglycerides produced are able to form mixed micelles capable
of solubilize curcumin (Pinheiro et al., 2016). Fig. 6 shows that the use
of a chitosan layer significantly increased (p < 0.05) the curcumin
bioaccessibility, reaching a value of 37.2 = 7.6% for multilayer na-
noemulsions when compared to 29.8 = 0.5% for the nanoemulsions’
bioaccessibility (Fig. 6). For both nanosystems, the bioaccessibility of
curcumin was higher in the jejunal filtrate, when compared to the ileal
filtrate fraction. When comparing the results of the curcumin bioac-
cessibility at ileal filtrate between nanoemulsions and multilayer na-
noemulsions, it can be observed that multilayer nanoemulsions pre-
sented higher (p < 0.05) bioaccessibility of curcumin regarding to
nanoemulsions (15.5 * 1.92% and 9.3 * 2.63%, respectively). These
results are in agreement with the results of FFA released from lipid
digestion, Fig. 5, i.e. the higher curcumin bioaccessibility observed in
the ileal filtrate for the multilayer nanoemulsions can be related to the
higher amount of FFA observed in the ileal filtrate. Since the access of
lipases to lipids is crucial for a good bioaccessibility, the observed
higher amount of FFA that could be part of mixed micelles could in-
crease the solubility of curcumin, increasing therefore its bioaccessi-
bility (Pinheiro et al., 2016; Porter et al., 2007). Free curcumin (i.e.
curcumin solubilized in MCTs) bioaccessibility was also evaluated (data
not shown), achieving only a value of 0.15 * 0.01% at the jejunal
filtrate, while there was no evidence of curcumin at the ileal filtrate
fraction. Therefore, both nanosystems were able to increase curcumin
bioaccessibility.

3.5. Cytotoxicity assay

The cytotoxicity of curcumin, nanosystems and chitosan were as-
sessed using MTS test through the evaluation of Caco-2 cells viability.
As shown in Fig. 7, free curcumin and nanosystems were not toxic
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relatively to the control group (cells with RPMI medium), indicating
that none of the samples had effect in Caco-2 cell viability after 4 h of
incubation in the tested concentrations (between 4.8 and 19.0
pgcurcumm.mL_l). Similar results showing that curcumin do not present
any cytotoxicity have been obtained in a previous work (Silva et al.,
2018).

Furthermore, chitosan did not present toxicity towards the control
group (data not shown). These results ensure the safety of curcumin and
nanosystems to be further tested for cellular antioxidant activity and for
permeability studies.

3.6. Cellular antioxidant activity

Curcumin is a well-known antioxidant compound (Pinheiro et al.,
2016; Siviero et al., 2015; Zou et al., 2015). Several in vitro chemical
antioxidant assays have been performed to evaluate the antioxidant
activity of curcumin in the presence of different free radicals (Ak and
Giilcin, 2008; Jayaprakasha et al., 2006). Nonetheless, the wide usage
of these antioxidant chemical assays do not account for some physio-
logical conditions that happens in vivo, such as, cell uptake, metabolism
and distribution of the bioactive compounds (Wolfe and Liu, 2007). For
this reason, in this work the CAA of free curcumin and curcumin en-
trapped within nanosystems was quantified using the human cell model
Caco-2. Table 1 presents the ECsp (U€eurcumin-mL™ ') and CAA
(melquercetin equivalents (QE)~L_1~mgcurcumin_l) values for free curcumin
and curcumin entrapped in the nanosystems. It shows that curcumin
encapsulated in the nanosystems exhibited a significantly (p < 0.05)
higher CAA value than curcumin solubilized in ethanol (0.21 + 0.01
pmolog.L ™ Y.mgeyrcumin~ *)- Nanosystems exhibited 8.5 and 9.9-fold
higher values of CAA for nanoemulsions and multilayer nanoemulsions,
1.79 + 0.08 and 2.08 + 0.16 pmolog.L ™. Mgeyreumin ', Tespectively.
Results suggest that nanoencapsulation of curcumin using WPI as
emulsifier lead to an increase of the cellular antioxidant activity of
curcumin in Caco-2 cells. The use of a chitosan layer did not have sig-
nificant impact (p > 0.05) in the CAA value, suggesting that chitosan
did not enhance the cellular antioxidant capacity of curcumin. The low
CAA promoted by the free curcumin may be explained by the fact that
curcumin was solubilized in ethanol and cell media, which could have
limited the solubility of curcumin. On the other hand, curcumin en-
capsulated in the nanosystems has a larger surface area, therefore in-
creasing the CAA values (Sessa et al., 2011; Yu et al., 2011). Another
explanation may be the fact that curcumin suffers rapid hydrolysis at
weak basic conditions (ethanol and media) that may induce their rapid
degradation. On the contrary, both nanosystems stabilized curcumin
against hydrolysis (Yu et al., 2011). Other authors suggested that mi-
celle encapsulation enhanced the CAA of curcuminoids in HepG2 cell
line (liver hepatocellular carcinoma cells) by 2-fold when compared to
free curcuminoids solubilized in DMSO (Yu et al., 2011), which is in
accordance with the present work.

3.7. Permeability assay

The transport mechanisms of curcumin loaded in the nanosystems
were evaluated using Caco-2 cell monolayers, aiming at simulating the
small intestine epithelium. The selected concentration of curcumin for
the permeability studies was 19 ug mL ™ since at this concentration the
nanosystems did not show cytotoxicity. The P, of most compounds
ranges between 1.0 X 10”7 and 1.0 x 10 °cms ™~ *. Usually a poorly
transported compound exhibits a Pgy, value of ~1.0 X 10”7 cm s,
whereas a well transported compound has a P, value of
~1.0 x 10"°cm s~ 1. Otherwise, average permeable compounds will
exhibit P, values of ~1.0 X 10 ®cms™" (Gao et al., 2001; Sessa
et al., 2014). Curcumin permeation rates for nanoemulsions and mul-
tilayer nanoemulsions are showed in Fig. 8a). The permeation rate for
curcumin nanoemulsions was determined as
1.25 + 0.05 X 10" ®cms™!, that falls in the range of the averagely
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Variance (ANOVA) coupled with the Tukey's post-hoc analysis to identify means with significant differences (p value of p < 0.05 was considered significant).

Table 1
ECsp and CAA values for the inhibition of Peroxyl Radical-Induced DCFH
Oxidation by curcumin and nanoemulsions.

Samples ECs0 (UgeureuminML ™) CAA (umolor.L ™. MGeurcumin
o
Curcumin 16.4 = 0.6 ° 0.21 + 0.01%
Nanoemulsion 1.97 + 0.09° 1.79 + 0.08°
Multilayer 1.69 + 0.13° 2.08 * 0.16°
nanoemulsion

Each value represents mean + SD (n = 3); One Way Analysis of Variance
(ANOVA) coupled with the Tukey's post-hoc analysis to identify means with
significant differences (p value of p < 0.05 was considered significant); *®
Different superscripts within the same column indicate significant differences
among samples.

permeable compounds. The rate of permeation of curcumin across the
cells monolayer increased as function of time (data not shown) and the
TEER values (not shown) did not change significantly (p > 0.05),
suggesting that curcumin permeated the cells monolayer through
transcellular pathway (Li et al., 2015a; Sun et al., 2015; Yu and Huang,
2012). Nevertheless, these results do not show if nanoemulsions
permeate directly across the Caco-2 cell monolayers (Yu and Huang,
2012). Also, the permeation rate for curcumin multilayer nanoemul-
sions was determined as 1.93 + 0.02 X 10 ®cms™! (Figs. 8a), 1.55-
fold higher (p < 0.05) than the value obtained for nanoemulsions.
Chitosan is known for its ability to facilitate the widening of tight
junctions, enhancing the paracellular transport of bioactive com-
pounds, such as curcumin, across the Caco-2 cells monolayer (Smith
et al., 2004; Ting et al., 2014). In our study, the presence of chitosan
significantly decreased (p < 0.05) the TEERS value, suggesting that
curcumin multilayer nanoemulsions were also able to directly diffuse
through Caco-2 cell tight junctions. A reduction of ~90% in TEER va-
lues can indicate that nanosystems could disrupt the tight junctions,
enhancing the transport of the bioactive compounds via paracellular
pathway (Li et al., 2015b; Wang et al., 2015). Despite the reduction of
the TEER values, Caco-2 cells monolayer did not show visual signs of
damage. Thus, these results suggest that both transcellular and para-
cellular pathways may exist at the same time when nanoemulsions with
a chitosan layer are absorbed.

In addition, the cellular uptake of curcumin delivered by nanoe-
mulsions and multilayer nanoemulsions was quantified (Fig. 8b)). The
use of a chitosan layer significantly increased the cellular uptake by
endocytosis from 4.44 = 0.11% to 10.50 = 0.15%, which represents
an increase of 2.36-fold on the cellular uptake. Since size and surface
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Fig. 8. a) Apparent permeability coefficient (Py,) for nanoemulsions and
multilayer nanoemulsions; and b) Cellular uptake in percentage for nanoe-
mulsions and multilayer nanoemulsions. Each value represents mean + SD
(n = 3); One Way Analysis of Variance (ANOVA) coupled with the Tukey's post-
hoc analysis to identify means with significant differences (p value of p < 0.05
was considered significant); *PDifferent superscripts indicate significant dif-
ferences among samples.

properties (such as charge and hydrophobicity) of the nanosystems
governs the cellular uptake, this result may be explained by the positive
charges of multilayer nanoemulsions, due to chitosan amino groups,
being the multilayer nanoemulsions internalized into the Caco-2 cells,
whereas the negative charge of WPI, due to electrostatic repulsions, can
decrease the uptake efficiency (Li et al., 2015b). Hydrophilic poly-
electrolytes such as chitosan can enhance nanosystems transport
through Caco-2 cells via specific interaction between nanosystems and
intestinal epithelium (des Rieux et al., 2006; McClements, 2015). For
instance, other authors reported that negative nanoparticles, due to
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repulsions between the nanoparticles and negative charged HeLa cells,
had a lower cellular uptake, when compared with positive charged
nanoparticles (Harush-Frenkel et al., 2007; Li et al., 2015b).

The mass balance performed (data not shown) presented a low
value of curcumin recovery (between 30% and 40%), which suggests
that curcumin could have been metabolized by the Caco-2 cells, accu-
mulated in the cell monolayer, bind to the plate, as well as lost during
the washing step or during sample preparation for HPLC (Li et al.,
2015b; McClements, 2015). After being internalized in the Caco-2 cells,
curcumin nanosystems may have been consumed in metabolic pro-
cesses such as reduction, conjugation, dehydroxylation, cyclization, and
methylation(Li et al., 2015b; McClements, 2015). In fact, curcumin
undergoes metabolic O-conjugation to curcumin glucuronide and cur-
cumin sulfate and bioreduction to tetrahydrocurcumin, hexahy-
drocurcumin, octahydrocurcumin, and hexahydrocurcuminol (Prasad
et al., 2014).

4. Conclusions

The purpose of this study was to develop lipid-based nanosystems
for curcumin encapsulation, while evaluating the effect of the addition
of a chitosan layer on nanosystems stability during storage and in vitro
digestion (i.e. lipids’ digestibility and curcumin bioaccessibility). Also
the cytotoxicity, cellular antioxidant activity and transport properties
through a Caco-2cell monolayer of undigested nanosystems were
evaluated. Results showed that both nanosystems (nanoemulsions and
multilayer nanoemulsions) can increase the bioaccessibility of cur-
cumin. Also, WPI-stabilized nanoemulsions and multilayer nanoemul-
sions can significantly increase the cellular antioxidant activity of
curcumin, suggesting that both systems can be used for the delivery of
water-insoluble curcumin. Permeability assays performed in Caco-
2 cells showed that the use of chitosan can enhance the apparent per-
meability coefficient of curcumin by 1.55-fold. Although the permea-
tion rate of multilayer nanoemulsions was higher than that of nanoe-
mulsions, both the transcellular and paracellular pathways may exist at
the same time.

This study suggests that food grade lipid-based nanosystems can be
designed as delivery systems offering the opportunity to create func-
tional foods able to maximize curcumin antioxidant capacity.
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