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Abstract 

Interleukin (IL)-10, an anti-inflammatory cytokine produced in all immune responses, stands out as a 

major inhibitor of inflammation. While the effect of pro-inflammatory cytokines in hematopoiesis is well 

recognized, little is known about the role that anti-inflammatory cytokines portray in the homeostasis 

maintenance of the hematopoietic system. The work described in this Doctoral Thesis aimed at 

expanding the current knowledge of how IL-10 impacts hematopoietic differentiation, and to what 

extent anti-inflammatory scenarios can modulate hematopoietic homeostasis, contributing to the 

development of hematologic disorders.  

 We described a novel mouse model of inducible IL-10 expression (pMT-10 mice) and 

investigated how an anti-inflammatory scenario, provided by transient IL-10 over-expression, could 

modulate cell maturation profiles in response to induced pathology. Our approach consisted in using a 

model of dextran sulfate sodium (DSS)-induced colitis, as IL-10 signaling, particularly in macrophages, 

is essential for intestinal homeostasis. pMT-10 mice pre-conditioned with IL-10 for 8 days before DSS 

administration showed a milder colitic phenotype. This protection was due to a reduction in the 

inflammatory profile of Ly6C+ cell subset. Finally, we observed that IL-10 protection against DSS-

induced colitis was not long-lasting. Further studies are required to fully elucidate the cellular and 

molecular bases of IL-10 short-term induced protection. However, this work highlights new possibilities 

for the mechanisms allowing IL-10 to control intestinal inflammation.  

 We next aimed at exploring a role for IL-10 in medullary hematopoiesis. It is well established that 

the cell fate decisions occurring during the hematopoietic process depend on external cues. 

Immunologic stress, as in the context of neoplasias and infection, changes the hematopoietic output to 

guarantee a constant supply of required immune cells. A role for IL-10 in hematopoiesis, although 

largely unknown, is expected, as several studies show the involvement of this cytokine in the 

pathogenesis of hematopoietic disorders. We found that IL-10 over-expression in pMT-10 mice led to 

several hematological alterations, namely i) increased myeloid cell production in the BM; ii) anemia; 

and iii) extramedullary myelopoiesis. The hematologic alterations observed required signaling through 

the IL-10 receptor (IL-10R) complex, since pMT-10 animals deficient in the IL-10Rα chain display a 

normal phenotype. Moreover, transplantation assays showed that both lymphoid and myeloid cells are 

key players in IL-10-driven myeloexpansion. We hope to wrap our findings by identifying the IL-10 target 

population and assessing the existence of other mediators involved in the phenotype.  

  Overall, this work reveals how IL-10 over-expression impacts hematopoiesis, and adds to our 
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understanding of the control of normal hematopoietic differentiation.  

 

Keywords: IL-10, hematopoiesis, myeloid, commitment and T cells 
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Resumo 

A interleucina (IL)-10 é uma citocina anti-inflamatória produzida no decorrer de todas as respostas 

imunes, que se destaca como um importante inibidor de inflamação. Apesar de o efeito das citocinas 

pró-inflamatórias na hematopoiese estar bem descrito, pouco se sabe sobre o papel que as citocinas 

que inibem as reações inflamatórias apresentam na homeostase do sistema hematopoiético. O 

trabalho descrito nesta Tese de Doutoramento teve como objectivo enriquecer o conhecimento atual 

de como a IL-10 afeta a diferenciação hematopoiética e, em que medida cenários anti-inflamatórios 

podem regular a homeostase hematopoiética, levando ao desenvolvimento de doenças hematológicas. 

 Exploramos o modo como um cenário anti-inflamatório, proporcionado por uma sobre-expressão 

transitória de IL-10, pode modular os perfis de maturação celular em resposta a uma patologia 

induzida. Para este efeito, a nossa abordagem consistiu em usar um modelo de colite induzida por 

DSS, pois a sinalização de IL-10, particularmente em macrófagos, é essencial para a homeostase 

intestinal. Usando um modelo novo de sobre-expressão condicional de IL-10 (pMT-10),  pré-

condicionamos os ratinhos com IL-10 durante 8 dias, antes da induzirmos a doença. Os animais 

mostraram uma patologia menos acentuada. Esta proteção foi ainda mais notória aquando de um 

aumento da concentração de zinco no organismo dos animais. Esta observação deve-se possivelmente 

a uma redução no perfil inflamatório na população de células Ly6C+. Por fim, observamos que a 

proteção conferida pela IL-10, contra a colite, não é persistente. Deste modo, são necessários mais 

estudos para esclarecer as mecanismos celulares e moleculares pelos quais a IL-10 confere uma 

proteção transitória contra colite. No entanto, este trabalho demonstra novas possibilidades para o 

mecanismo pelo qual a IL-10 controla a inflamação intestinal. 

 Exploramos depois um papel definitivo para a IL-10 na hematopoiese. As decisões que 

determinam o diferente tipo de diferenciação celular, que ocorrem durante o processo hematopoiético, 

dependem de sinais externos. O stress imunológico, por exemplo, durante cancro e infecção, altera a 

produção de células hematopoiéticas, de modo garantir um fornecimento adequado de células 

imunes. Uma função para a IL-10 na hematopoiese é esperada, dado que vários estudos mostram o 

envolvimento desta citocina no desenvolvimento de doenças hematopoiéticos. Neste trabalho 

descobrimos que a sobre-expressão de IL-10 em ratinhos pMT-10 leva a várias alterações 

hematológicas, como, i) aumento da produção de células mielóides na medula; ii) anemia; e iii) 

mielopoiese extramedular. As alterações hematológicas observadas requerem sinalização através do 

receptor da IL-10 (IL-10R), uma vez que os animais pMT-10, sem o IL-10R, apresentam um fenótipo 

normal. Além disso, experiencias de reconstituição do sistema imune demonstraram que tanto as 
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células linfóides como as mielóides estão envolvidas na  expansão mielóide induzida pela IL-10. 

Esperamos fechar este mecanismo de expansão mielóide identificando a população-alvo da IL-10 e 

avaliando a existência de outros mediadores envolvidos no fenótipo. 

 Em suma, este trabalho demonstra como a sobre-expressão de IL-10 afeta a hematopoiese e 

enriquece o nosso conhecimento sobre o controle da diferenciação hematopoiética normal. 

 

Palavras-chave: IL-10, hematopoiese, mielóide, diferenciação e células T  
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1.1 Hematopoiesis 

Hematopoiesis refers to the process by which mature blood cells are produced [1-3]. During 

embryonic development, sequential independent waves of hematopoiesis have been described 

[4-7]. The mature blood cells produced in the first wave are referred to as primitive. Later, 

enucleated erythrocytes, macrophages, megakaryocytes and even some lymphoid cells 

appear, being the hematopoietic stem cells (HSCs) the last ones to be produced [4, 6]. Two 

major properties define these cells. Firstly, they possess the ability of self-renewal, being able 

to generate more HSCs. Second, they have the capacity to differentiate into all the progenitor 

subsets that give rise to all the different hematopoietic lineages [8, 9]. The end result of these 

events is the sustained and balanced production of cells of all lineages.  

 In the next sections two particular topics will be discussed. Following a brief introduction 

to the origin of HSCs, the mechanisms modulating hematopoietic commitment and the 

outcome when the organism faces the failure of these regulatory factors will be addressed. 

 

1.1.1 Ontogeny of Hematopoietic Stem Cells  

Hematopoiesis develops in primary hematopoietic organs. These differ between fetal and adult 

life and provide the signals necessary to sustain blood cell differentiation [9]. In vertebrates, 

definitive HSCs first emerge during embryonic development near the dorsal aorta-gonad-

mesonephros (AGM) region [10, 11]. Analysis of the AGM niche has unveiled the support of a 

number of major signaling and physiological pathways, such as inflammation, in the 

generation of HSCs [12, 13]. Interestingly, it has been shown that the inflammatory response 

pathway is required for HSC emergence. This pathway is triggered by the toll-like receptor 

(TLR) 4 [12, 13], which is normally activated by bacterial infection. However, in the context of 

development, where there is no infection, its mechanism of activation remains unknown.  

 The first hematopoietic precursors are generated in the yolk sac (YS) around embryonic 

day 7 and give rise, mainly, to primitive erythrocytes and macrophages. The first steps of 

hematopoiesis are transitory, and are characterized by several consecutive waves with 

increased complexity [4-7, 9]. Their main function is to support the development of the growing 

embryo by supplying oxygen, tissue remodelling and conferring immunity [12]. Definitive HSCs 

emerge at embryonic day 8 in the paraaortic splanchnopleura that evolves to the AGM around 

embryonic day 9.5. Upon fetal liver (FL) colonization, at embryonic day 10, the HSC pool 
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rapidly expands and starts differentiation [9, 14, 15]. Fetal thymus (FT) also plays a role in the 

hematopoietic process, from its development to throughout life. Around embryonic day 11, T 

cell migration initiates FT colonization. As FT does not contain self-renewing progenitors, it 

requires a constant replenishment of progenitors to sustain thymopoiesis [16]. Fetal spleen 

(FS) has also a transient contribution to the early steps of hematopoiesis by supporting myeloid 

differentiation from embryonic day 13 until shortly after birth [17]. Finally, HSCs colonize the 

bone marrow (BM) around embryonic day 15, where they become resident cells. At the end of 

gestation, FL hematopoiesis decreases and the BM assumes the production of hematopoietic 

cells throughout life [9]. While HSCs expansion in the FL is accompanied by active precursor 

proliferation, the majority of HSCs in the BM becomes quiescent shortly after birth [18, 19].   

 

1.1.2 The Hematopoietic System 

Circulating blood cells are the key mediators of organism homeostasis. As mature blood cells, 

they have relatively short life spans, requiring a constant turnover in order to maintain normal 

physiological numbers. Hematopoiesis refers to the overall process of blood cell production, 

beginning in the embryo and continuing throughout life [3, 20]. The hematopoietic process is a 

complex and hierarchic set of differentiation steps, at the apex of which is a rare subpopulation 

of cells, the HSCs. These cells have unique renewing abilities and, as they mature, their 

progeny varies widely [3, 8, 20, 21].  

 Initial studies, using cell transplantation, established the definition of HSCs and allowed 

for their isolation and characterization. Thus, the ability of normal adult single cells to renew 

and contribute to blood cell formation is the definitive piece of evidence that HSCs exist and 

are maintained throughout life [9, 20, 22-24]. Recent lineage tracing studies, in mouse 

models, corroborate findings in transplanted recipients that certain intermediate progenitors 

have a vast but finite proliferative potential [25-27]. Hence, over time there is a decreasing 

correlation between the numbers of primitive and differentiated cell types present.  

 Hematopoiesis is a systematic process, in which pluripotent HSCs give rise to a large 

number of self-renewing committed precursors that differentiate into mature blood cells. This 

process is marked by a progressive loss of the differentiation potential, traceable by changes in 

cell surface markers [8, 28]. The identification of stem and progenitor cells by Weissman and 

collaborators led to the construction of a hematopoietic lineage tree that is characterized by a 
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cascade of binary decisions [29-31]. In the BM, different progenitors were described: the 

common lymphoid progenitors (CLPs) that give rise to all lymphoid cells [30]; the common 

myeloid progenitors (CMPs) that generate granulocytes and macrophages progenitors (GMPs) 

and the megakaryocyte and erythrocyte progenitors (MEPs) [29].  

 The lymphoid lineage is responsible for the adaptive immunity and provides a life-long 

immunity following exposure to pathogens. CLPs give rise to natural killer cells (NK), pro-B and 

pro-T cells, uncommitted lymphoid progenitors that will differentiate further into mature B and 

T cells (Figure 1.1) [30]. NKs are considered to be the bridge between the innate and adaptive 

immunity [32]. Aditionally, CLPs generate innate lymphoid cells (ILCs), that include the 

lymphoid tissue inducer cells (LTis), a subset of cells responsible for the generation of 

secondary lymphoid tissues during embryonic development [33, 34].  

 Curiously, functionally equivalent and phenotypically indistinguishable myeloid and 

lymphoid dendritic cells (DCs) can be derived from either CMPs or CLPs (Figure 1.1) [35, 36]. 

The myeloid linage comprises the first line of defense of the organism against external stimuli, 

being the foundation of innate immunity. GMPs give rise to macrophages (Mϕ), neutrophils, 

eosinophils and basophils/mast cells (Figure 1.1) [29, 37]. MEPs will originate erythrocytes 

and megakaryocytes that are respectively responsible for oxygen delivery and clotting [29]. The 

erythro-megakaryocytic lineage rapidly branches out, being currently accepted by many that 

this differentiation is the first branching point during hematopoiesis [38].  
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Fig1.1. Schematic of adult mouse hematopoiesis.  

 

1.1.3 Lineage Restriction 

HSCs are the first identified and best characterized adult stem cells. The hematopoietic 

process is conventionally described as a hierarchical system, where HSCs undergo lineage 

restriction as they are progressively driven down specific pathways into distinct cell types, 

losing their renewing properties until they terminally differentiate. The long-term (LT)-HSCs 

reside at the top of the hematopoietic pyramid [8, 20]. The LT-HSCs first differentiate into 

short-term (ST)-HSCs, which comprise the multipotent progenitors (MPPs). MPPs can be 

found, in the mouse model, in a fraction of BM cells that lack the expression of differentiated 

cell surface markers and express high levels of c-Kit (CD117) and Sca-1 [8, 31, 39]. They are 

referred to as lineage negative (Lin-) Sca-1+ c-Kit+ cells (LSKs).  

 In the LSK pool, LT-HSCs and ST-HSCs can be distinguished by the expression of 

additional markers as Thy, Flt3 and CD34 (Thy1lo Flt3- CD34- and Thy1lo Flt3- CD34+ 

respectively) [22, 40]. LT-HSCs can be further discriminated by using the CD150 and CD48 

markers (CD150+ CD48-) [41]. Importantly, Flt3 expression within LSKs marks the loss of self-

renewal ability and identifies MPPs with transient multilineage reconstitution ability (LSK Flt3+) 
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[42, 43]. At this stage, a crossroad for the different lineage pathways appears, as MPPs give 

rise either to CLPs (Lin- Interleukin (IL)-7Rα+ Thy1- c-Kitlo Sca-1lo) or CMPs (Lin- IL-7Rα- c-Kitlo Sca-

1lo FcγRlo CD34+) [29, 30]. Subsequently, CMPs give rise to MEPs (Lin- IL-7Rα- c-Kitlo Sca-1lo FcγR- 

CD34lo) and GMPs (Lin- IL-7Rα- c-Kitlo Sca-1lo FcγR+ CD34hi) [29]. The identification of CLPs and 

CMPs led to the hypothesis that the first commitment step occurring at the MPP stage is a 

binary event, where cells become committed either to the myeloid/erythroid or lymphoid 

lineages. However, several groups have questioned this model as they identified a lymphoid-

myeloid progenitor with no erythrocyte/megakaryocytic potential. Adolfsson and colleagues 

showed that the Flt3hi fraction of MPPs contains a lymphoid MPP with lymphoid and myeloid 

potential but no erythroid/megakaryotic (Ery/Mk) potential [44]. Additional reports 

demonstrated the heterogeneity of the MPP compartment using VCAM-1 and Flt3 [45, 46].  

They showed that VCAM-1+ Flt3+ LSKs can reconstitute the granulocytic-macrophage (GM) and 

lymphoid compartment, while VCAM-1- Flt3hi LSKs have a residual Ery/Mk and GM potential, 

giving rise mainly to lymphoid cells. Thus, they were able to define that the high expression of 

Fl3 in the LSK compartment marks the loss of Ery/Mk potential and expression of lymphoid 

transcripts, defining the lymphoid-primed MPPs (LMPPs). Single cell analysis also showed that 

lymphoid and Ery/Mk transcriptional programs are exclusive to MPPs, thus suggesting that the 

Ery/Mk potential is lost before lymphoid priming in LMPPs [47].  

 Hematopoiesis current model acknowledges that HSCs self-renewal ability is associated 

with multipotency and that HSCs lose differentiation potential in a stepwise manner in the 

process of leukocytes maturation. According to this model, hierarchical differentiation proceeds 

with the first lineage commitment at the MPP stage, giving rise to all mature blood lineages. 

Despite wide acceptance of this concept, evidence from which hierarchical associations were 

built are sometimes doubtful. Recently, several groups questioned the current scheme of 

lineage commitment mostly because LMPPs with both GM and lymphoid potentials, but little or 

no Ery/Mk potential, have been detected, suggesting an alternative Ery/Mk differentiation 

pathway. These observations led to a revised model of hematopoiesis where the first event in 

HSC differentiation is the loss of their self-renewal capability and progression to the MPP stage 

[44, 45, 48]. However, the issue of a branching point of Ery/Mk lineage remains controversial. 

Interestingly, recent studies suggest a model in which there is no linear lineage restriction 

where commitment occurs gradually, by self-regulation of lineage-associated programs in 

intermediate progenitors [47, 49].  
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 The establishment of all hematopoietic lineages during development is tightly controlled 

by transcription factors that act in a sequential and parallel fashion, building lineage-specific 

networks and circuits. Lineage commitment can be induced by several factors, as external 

cues, cytokines, direct cell-cell interactions or transcription factors [8, 20]. Recently, 

microRNAs have also been shown to play a regulatory role in lineage commitment [50, 51]. 

Both extrinsic and intrinsic factors may have an instructive role and actively induce 

commitment and differentiation or simply be tolerant for the growth of pre-committed 

progenitors by promoting cell survival and/or expansion.  

 

1.1.3.1 Lymphoid Commitment 

Lymphoid commitment is marked by the upregulation of the IL-7Rα [52]. The characterization 

of the CLP subset was difficult to achieve, as the cues leading to maturation of the lymphoid 

subsets are unique to the different mature populations. The establishment of a functional 

immune system with diverse antigen receptors is dependent on the V(D)J recombination 

activating gene (Rag)1 and Rag2 products. These two proteins constitute the key lymphoid 

components required for the activation of antigen receptor rearrangement. Thus, functional 

disruption of either Rag1 or Rag2 genes leads to immunodeficiency due to lymphoid arrest at a 

stage prior to the recombination of the antigen receptor loci. In Rag-deficient mice, both T and 

B-cell differentiation is impaired due to the absence of antigen receptors.  

 T lymphocytes differentiate in the thymus from progenitors that migrate from the FL, 

during embryogenesis, and the BM, after birth and throughout life [9, 53]. Thymopoiesis is a 

well-described process where antigen receptor genes rearrangement and determination 

mechanisms of self-tolerance ensure a well-balance development. T cell differentiation, on one 

hand, requires activation of the Notch signaling pathway and repression of transcription 

factors, vital to B cell development, as Pax5 [54, 55]. Considering the different developmental 

perspectives discussed in the previous section, it becomes evident that the process of B-

lymphocyte commitment involves two basic features, one being the loss of all other lineage 

potentials and the second being a gain of characteristics crucial for differentiation of the B-

lineage pathway. 

 Hardy and colleagues established one of the major schemes of B cell development, 

based on the combined expression of B220, BP-1, CD24 and CD43, and by their 
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Immunoglobulin (Ig) gene rearrangement status [56]. Later on, CD19 expression was 

described as a key marker of commitment to the B cell lineage, allowing discrimination of B 

cell precursor populations [57]. A fully rearranged B cell receptor (BCR) defines immature B 

cells [58]. Cells are then evaluated for self-tolerance and migrate to the spleen were they 

maturate. The molecular mechanism surrounding B cell development involves a series of 

transcription factors, such as Purine rich box-1 (PU.1), Ikaros, early B cell factor (EBF), E2A 

and Pax5 [52, 54]. Inactivation of any of these factors induces a severe phenotype by 

impairing B cell differentiation at an early stage [59-63]. Importantly, Pax5-deficient pro-B cells 

can also originate macrophages, DCs and granulocytes in response to macrophage (M)- colony 

stimulating factor (CSF), granulocyte-macrophage (GM)-CSF and granulocyte (G)-CSF, 

respectively [64].  

 ILCs are typically classified into three distinct groups based on their production of T 

helper (h) cell-associated cytokines [33]. Thus, group 1 comprises interferon (IFN)-γ-producing 

ILCs, including NK cells and ILC1 cells. Group 2 comprises IL-5 and IL-13-producing ILCs, 

which are dependent on GATA-binding protein 3 (GATA3) and retinoic acid receptor-related 

orphan receptor-α (RORα) for their development. Group 3 comprises IL-17 and/or IL-22-

producing ILCs that are dependent on the transcription factor RORγt for their development 

[33]. ILC development is dependent on the common cytokine receptor γ-chain (γc). While ILCs 

are dependent on IL-7 signaling, NK cell development requires IL-15 signaling [34, 65].   

 Despite the fact that NK cells mainly differentiate in the BM, several reports describe the 

presence of immature forms of NKs in extra-medullary sites as the thymus suggesting that NK 

development can occur, in some rare cases, in different organs [66, 67]. NK progenitors (NKp) 

have high NK cell potential but lack B, T, erythroid and myeloid potential. NKp give rise to 

immature NKs that start to express NKp46 and NK1.1 [68-70]. Maturation of NK cells occurs 

through the upregulation of DX5 and CD43 proteins [68, 71]. Similarly to T cells, NKp pass 

through a selection process were they acquire self-tolerance. Mature and competent NK cells, 

with cytotoxic activity, leave the BM and colonize different organs as spleen, lungs and gut.  

 Several reports suggest that not only transcription factors have regulatory roles in 

hematopoiesis, but also cytokine receptor signaling. The involvement of cytokines in 

hematopoiesis will be addressed in section 1.1.4.  
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1.1.3.2 Myeloid Commitment 

The most abundant populations of mature immune cells are of myeloid nature. The myeloid 

compartment includes circulating monocytes, tissue specific Mϕ, DCs, granulocytes 

(neutrophils, eosinophils and basophils) and mast cells, being all of them progeny of GMPs 

[72, 73]. The distinguishable feature of terminal subsets of the myelopoietic branch is their 

ability to broadly recognize invading pathogens and endogenous danger signals.  This key 

surveillance role leads to the rapid engagement of key mechanisms that facilitate the 

elimination of infectious agents and the restoration of homeostasis.  

 Monocytes circulate in the bloodstream and enter tissues, mainly under emergency 

conditions, where they differentiate into tissue Mϕ. However, they provide only a limited 

contribution to the tissue-resident populations of Mϕ that are seeded early in embryogenesis 

[72, 73]. Neutrophils and monocytes are circulating cells that enter the tissues under 

homeostatic conditions, where they are phagocytized and eliminated by resident Mϕ [74]. 

Under emergency conditions, they display essential effector antimicrobial activities that range 

from the production of large amounts of reactive oxygen species (ROS), to the decondensation 

and consequent release of chromatin to generate the neutrophil extracellular traps (NETs) [75]. 

 Conventional DCs (cDCs) differ from other myeloid cells due to their capacity for 

efficient antigen presentation and their ability to secrete high levels of cytokines [73]. 

Eosinophils are cytotoxic effector cells with antimicrobial and antiviral activity [76]. Basophils 

and mast cells, generally associated with type 2 inflammatory responses, are key effector cells 

for the clearance of parasitic infections. However, they can also play a role in allergic 

responses [77]. Although most circulating granulocytes are short-lived cells, with a lifespan of 

only a few hours or days, mast cells, which share some basic features with basophils, never 

circulate in the peripheral blood as mature cells and can survive in their tissue of residence 

four weeks or months [78].  

 The machinery governing lineage commitment is undoubtedly very complex.  The 

regulation of gene expression is not a linear process, but it is instead the result of a 

multifarious interplay between chromatin modifications, transcription factors and signaling 

molecules [50]. Interestingly, it has been found that the cell fate and identity within the myeloid 

lineage is controlled by a limited number of key transcription factors [50]. Levels of these 

molecules are therefore tightly regulated within the hematopoietic tree, hinting that any 

alteration in their expression may impact the outcome of mature cells drastically. One of such 
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transcription factors is PU.1 that controls HSCs maintenance as well as the production of CLPs 

and CMPs, as stated before [79-81]. Low expression of PU.1 favors B cell differentiation while 

high concentration of this factor promotes macrophage differentiation [82]. Disruption of GATA-

2, a transcription activator mostly expressed at early progenitor level, perturbs HSCs niche, 

leading to a monocytopenia, mild neutropenia, and DCs, B and NK deficiency [83-86]. Within 

the myeloid branch, the CCAAT/enhancer-binding protein alpha (C/EBPα) is also a key 

transcription factor for GM commitment. Conditional inactivation of C/EBPα leads to reduced 

numbers of CMPs and block their differentiation into GMPs, affecting the numbers of all 

downstream lineages [87]. While, C/EBPα-deficient mice do not express the G-CSF receptor 

(R), exhibiting a blockade in early granulocyte development, C/EBPε expression is required 

only at the final steps of granulocyte maturation [8]. Similarly to C/EBPε, absence of the 

growth factor independence (GFI) 1, known to preserve HSC functional integrity [88], blocks 

the later steps of granulocyte development [89]. Another important transcription factor is IFN 

regulatory factor 8 (IRF-8), as its deficiency causes an increased granulocytic output and the 

defective production of monocytes, mast cells and basophils [90]. An important role was also 

attributed to GATA-1 regarding erythropoiesis, as its deficiency in embryos, blocks the 

development of erythroid cells, leading to a lethal anemia. GATA-1 was also shown to be 

essential to the maturation of Mk [91].  

 Other molecular players involved in lineage commitment are the miRNAs. Several 

miRNAs, such as miR-233, miR146 and miR155, were shown to affect myeloid cell 

differentiation and function [50]. Overall, the main message is that differentiation of the distinct 

cell subsets within the myeloid lineage involves several complementary factors that are not 

exclusive to a single cell type.  

 While the aforementioned factors are absolutely essential for the survival and 

proliferation of progenitor cells, other molecules, such as cytokines, strongly impact the cell 

fate decisions of stem cells, both for symmetric expansion and lineage commitment.  

 

1.1.4 Modulation of Hematopoiesis by Cytokines 

Most breakthroughs regarding lineage commitment were derived from technologies allowing for 

cell isolation and combination of different cell surface markers and, genetic strategies, by gene 

targeting deletion and over-expression experiments. Numerous groups, over the past years, 
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have uncovered a great deal of information regarding the mechanisms by which cytokines 

modulate hematopoiesis [8, 92, 93]. Several transcription factors are induced by the presence 

of cytokines in the microenvironment where lymphopoiesis and myelopoiesis are occurring.  

 IL-7 plays an essential role in B cell differentiation, due to the fact that this cytokine is 

uniquely able to maintain the expression of EBF in BM derived CLPs and to promote the 

expansion and survival of pro-B cells [94]. Other studies demonstrated that IL-7 also impacts T 

lymphopoiesis, since in the presence of mutations in IL7 or IL7R genes result in a dramatic 

block of T cell development in the thymus [94-98]. Interestingly, another study shows that the 

administration of IL-7 stimulates the proliferation of the myeloid lineage indirectly, by the action 

of IL-3 and G-CSF [99]. Like IL-7, IL-21 has also been shown to play a key role in B cell 

development. However, in contrast to IL- 7, IL-21 exerts its effects not only at early stages of 

the development, but also at later stages, inducing the growth and differentiation of mature B 

cells into Ig-secreting plasma cells [100-102]. Other cytokines, such as type I IFN, are known 

to strongly inhibit proliferation of pro-B cells and consequently B cell development [103]. IFNα 

in particular, is able to activate dormant HSCs, by promoting their efficient exit of G0 phase 

and entrance in the active cell cycle, thus stimulating the proliferation of HSCs. However, 

IFNαR-mediated signaling is not required for the HSCs proliferation and differentiation [104].  

 Two experimental approaches were developed to quantify myeloid progenitors, that 

allow for an assessment of progenitor frequency and their proliferative and differentiation 

potential [105]. The first one is based in quantifications of progeny cells, through in vitro 

colony-forming unit (CFU) assays; and the second one is based in phenotypic characterization, 

using monoclonal antibodies. Clonal assays for GMPs demonstrated the essential requirement 

for M-CSF, GM-CSF and IL-3 for the generation of macrophages in vitro [106]. Interestingly, 

this does not seem to be the case in vivo as M-CSF/ GM-CSF or IL-3-deficient mice, develop 

normally, presenting only a slightly lower number of GMs than their wild type counterparts 

[107, 108]. Moreover, mice deficient for all M/G/GM-CSF still present all GM populations, 

despite a pronounced phenotype, characterized by a high susceptibility to bacterial pneumonic 

when challenged with thioglycolate [109]. GM-CSF also presents an important role in cell 

differentiation since its deficiency leads to impaired pulmonary homeostasis and increased 

splenic hematopoietic progenitors, with unimpaired steady-state hematopoiesis [110]. 

Nonetheless, they still present all GM populations. Additional evidence for the role of G-CSF 
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signaling in myelopoiesis came through a study reporting that mice lacking G-CSFR exhibit a 

chronic neutropenia and decreased numbers of progenitors [111]. 

 IL-3 was also shown to act synergistically with other cytokines, such as IL-6 and G-CSF 

on committed and uncommitted myeloid progenitors [92, 112]. IL-6 is able to support 

emergency granulopoiesis in animals that lack G-CSF and GM-CSF, two critical cytokines 

necessary for myelopoiesis [113, 114]. Also, in vivo studies demonstrated that IL-12 plays an 

important role in hematopoiesis, by suppressing cell differentiation in the BM, enhancing 

(splenic) extramedullary hematopoiesis and mobilizing hematopoietic progenitor cells to the 

peripheral circulation [115, 116]. The ensemble of these studies shows a partial, and often 

synergistic, effect of these cytokines in myelopoiesis, suggesting the involvement of additional 

factors in this process. 

 In addition to lymphopoiesis and myelopoiesis, the generation of erythrocytes is also 

regulated by cytokines such as IL-3, that has been shown to positively regulate early 

erythropoiesis, causing rapid cell proliferation and increased cell survival of myeloid 

progenitors [117-120]. 

 Altogether, the role of cytokines, mainly pro-inflammatory ones, in hematopoiesis has 

been addressed and their contribution to the hematopoietic decision is well established. An 

important piece of information to have in mind is the fact that cytokine expression varies during 

life, either because of external cues, as infection, or by intrinsic changes as homeostatic 

imbalances. All of these fluctuations impact hematopoiesis homeostasis leading, in extremes 

cases, to the development of hematologic pathologies.  

 

1.1.5 Deregulation of Hematopoiesis 

As aforementioned, hematopoiesis is a highly regulated process that consists on a strict 

balance between self-renewal and differentiation of HSCs along lymphoid or myeloid lineages. 

Among the hematopoietic modulators growth factors as ILs, IFNs and transcription factors 

have been shown to play key roles in cell differentiation and maturation, by delivering critical 

cues to HSCs and progenitors. Interestingly, a connection between several of these molecules, 

their receptors and hematopoietic malignancies was also shown, demonstrating that 

alterations in their expression are at the base of many hematopoietic disorders such as 

leukemias, lymphopenias and myeloproliferative neoplasms (MPNs) [121-124].  
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 MPNs comprise a group of hematologic disorders characterized by an HSC-derived 

expansion of at least one myeloid subset [125]. These conditions develop primarily in the BM, 

but depending on the disorder subtype can impact the liver and/or the spleen [125]. According 

to World Health Organization (WHO) guidelines, myeloid neoplasms are classified as chronic 

neutrophilic leukemia, chronic eosonophilic leukemia, chronic myelogenous leukemia, 

mastocytosis, essential thrombocytopenia (ET), polycythemia vera (PV) and primary 

myelofibrosis (PMF) [125]. These last three disorders are subcategorized as Philadelphia-

chromosome-negative classic MPNs [126-128]. PMF in particular is caused by an expansion of 

HSCs in the BM [127, 128]. In this pathology cell proliferation is accompanied by a reactive 

nonclonal fibroblastic proliferation and fibrosis of the BM. The proliferation of HSCs leads to 

the production of several factors, such as platelet derived growth factor, epidermal growth 

factor and basic fibroblastic growth factor, causing the fibrosis of the BM [126-128]. As the BM 

becomes fibrotic and normal hematopoiesis can no longer happen, extramedullary 

hematopoiesis starts taking place – leading to a splenomegaly and liver enlargement [129].  

 The most commonly recognized mutation in classic MPNs is the JAK2 V617F mutation 

[128]. This mutation is found in more than 90% of patients with PV and in approximately 50% 

of those with ET or PMF and is responsible for constitutive activation of the JAK/ signal 

transducer and activator of transcription (STAT) signaling pathway [128]. These percentages 

reinforce the idea that other genetic factors and even signaling pathways are involved in the 

development of MPNs. In PV patients lacking this mutation, a similar activating JAK2 exon 12 

mutation can be found [128]. Approximately 10% of patients with PMF and ET who lack JAK2 

mutation may instead demonstrate activating mutations of c-MPL, such as MPL W515K or 

MPL W515L, which produces a protein that responds to a growth factor that stimulates platelet 

production [128]. Other genes, such as IDH1/2, ASXL1, DNMT3A and CalR, were found to 

contribute to epigenetic regulation of JAK2 [128, 130, 131]. Mutations in ten-eleven-

translocation (TET2), required for DNA hydroxymethylation, affect mostly HSCs and progenitors 

and are found in approximately 14% of MPNs [128, 132]. Also, mutations in RUNX1 have been 

associated with transformation of MPNs to acute myeloid leukemia, contributing to the severity 

of the hematological disorder [128].  

 The importance of JAK-STAT pathway in MPNs is demonstrated by the wide availability 

of target therapies, classified as single-agent JAK inhibitors or combination of drugs with JAK-

inhibitors [124, 133, 134]. For example, ruxolitinib (Ruxo) is a JAK inhibitor Food and Drug 
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Administration and European Medicines Agency approved, and most prescribed drug to treat 

MPNs, being associated with symptom improvement and reduction of risk of death [135]. 

Other JAK2 inhibitors are currently under clinical trials, nonetheless, due to the importance of 

this signaling pathway to a plethora of organism functions, several have been discontinued own 

to high toxicity [136]. In addition to JAK-STAT signaling, other molecular pathways are under 

study as therapeutic targets for MPNs [137, 138]. Aberrant phosphoinositide 3-kinase (PI3K) 

signaling has already been extensively associated with several types of neoplasms, due to its 

role on cell proliferation and survival [139, 140]. Unveiling the association of PI3K with 

hematologic conditions allowed the discovery of several genetic mutations associated with the 

increased risk of disease. In MPNs, BM samples from patients showed an increased 

phosphorylation of AKT, which is indicative of the activation of the PI3K pathway [141]. Owing 

to the numerous reports on PI3K aberrant activation in hematologic conditions, a large number 

of inhibitors have been developed, as is the case of Buparlisib (Bupa)[133].  

 Despite the importance of these discoveries and their applications, much remains to be 

elucidated as for the mechanisms that link imbalances in hematopoietic modulators to disease 

initiation and maintenance, and how this knowledge can be translated into specific, 

mechanism-based therapies.  
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1.2 IL-10 

Mosmann and collaborators firstly described IL-10 as “cytokine synthesis inhibitory factor” 

(CSIF), a product of Th2 cells, that inhibited IFN-γ production by Th1 cells [142]. Subsequently 

they characterized cDNA clones encoding mouse and human IL-10 that were found to share a 

sequence homology with a gene in the Epstein-Barr virus genome [143, 144]. Later on, IL-10 

was shown to have other remarkable immunomodulatory properties by impairing cytokine, 

chemokine and nitric oxide production from macrophages upon bacterial lipopolysaccharide 

(LPS) stimulation [145]. In 1993, Kuhn and colleagues made an important discovery in the 

field, establishing a correlation between IL-10 expression, T cells, myeloid cells and intestinal 

homeostasis [146]. The group demonstrated that IL-10 is a critical molecule for the balance of 

intestinal homeostasis, by showing that IL-10 deficient mice spontaneously develop 

inflammatory bowel disease (IBD) promoted by the animal facility conditions. This was 

subsequently supported by the observation that IL-10R-deficient mice also develop 

spontaneous colitis under the same conditions [147]. These findings uncovered IL-10 role in 

mediating immune cell functions, and led to an extensive research effort aiming to elucidate 

the role of IL-10-dependent signaling in the regulation of intestinal immune function [148, 

149].  Until today IL-10 remains one of the most studied and enigmatic regulatory molecules, 

with several different functions attributed to this cytokine.  

 

1.2.1 IL-10 in Health and Disease 

The immune response has evolved to protect the host from a wide range of potentially 

pathogenic microorganisms. Nonetheless, if unregulated, the same mechanisms have the 

potential to cause damage to the host. IL-10 has a unique role in the negative regulation of 

inflammatory responses, primarily through selectively limiting the expression of genes encoding 

pro-inflammatory cytokines, chemokines, and cell-surface molecules [145, 149]. However, IL-

10 expression can also inadvertently hamper immune responses, contributing to chronic 

infection. Therefore, IL-10 is an important immunoregulatory cytokine and understanding the 

mechanism underlying IL-10 regulation is crucial for the development of new therapeutics.  

 IL-10 has been shown to play an important role in the pathogenesis of numerous 

disorders, such as IBD, Systemic lupus erythematosus (SLE), rheumatoid arthritis, psoriasis, 

multiple sclerosis and certain lymphomas, through its immunosuppressive properties [148, 
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150-155]. As previously mentioned, IL-10 was shown to have an important role in IBD as its 

deficiency leads to pathology [148-150]. IL-10 conferred protection in various models of colitis 

such as T cell transfer induced colitis [156], DSS-induced colitis [157, 158] and in colitis 

induced by streptococcal peptidoglycan-polysaccharide polymers [159]. Also, IL-10 production 

is required for recovery, since patients that respond to steroids have high IL-10 levels during 

and after treatment [160]. The treatment of IL-10 deficient mice only fully protects from colitis 

if administered before the disease is established [161]. Taking into consideration the results 

obtained in murine models of IL-10 perturbation and the anti-inflammatory properties of IL-10, 

this cytokine presented as a very promising candidate for the treatment of IBD. In fact, there is 

now proof that similarly to the clinical cases of IL-10 and IL-10R loss of function mutations, 

steroid therapy does not work in patients that have low levels of IL-10. However, in the clinical 

trials performed so far, IL-10 offered modest effects of protection only [162]. More recently, 

genome wide association studies (GWAS) further demonstrated that IL-10 is associated with 

the development of IBD [150, 163, 164]. 

 IL-10 has also been studied in the context of other autoimmune diseases. Numerous 

groups have demonstrated the complexity of IL-10 axis in the pathogenesis of murine lupus 

[165-168]. However, conflicting findings have been reported too as to whether IL-10 may play 

a disease promoting or protective role in lupus-prone mice models. In most lupus animal 

models, elevated IL-10 production has been described. Interestingly, IL-10 polymorphisms T-

3575A, G-2849A and C-2763 (that enhance Il10 expression) are associated with an increased 

risk in patients with SLE [169]. In a clinical trial, anti-IL-10 administration to lupus patients with 

cutaneous and joint manifestations resulted in improvement to clinically inactive disease in five 

of six patients within 6 months of the 3-week treatment regimen [170]. A better understanding 

of the regulation of IL-10 and signaling pathway may likely provide more valuable information 

to the pathogenic mechanisms underlying specific forms of SLE, so as to pave the way toward 

more effective therapeutics.  

 Finally, IL-10 also regulates immune responses against pathogens [171]. In the context 

of infection, excess of IL-10 is often associated with chronicity as in the case of Streptococcus 

pneumoniae and Klebsiella pneumoniae [172, 173], whereas its absence can lead to an 

excessive uncontrolled pro-inflammatory response during infection with Toxoplasma gondii, 

inducing exacerbated host tissue damage [174].  
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 These studies, altogether, highlight that IL-10 function may result in distinct outcomes 

during different pathologies, ranging from the control of otherwise protective T-cell responses, 

mediating the pathway to chronic infection, to fatal host-mediated pathology. Thus, IL-10 

manages a delicate balance between suppressing and activating host responses to wide range 

of pathogens.  

 

1.2.2 IL-10-mediated effects in the immune response 

Induction of the IL-10-mediated anti-inflammatory responses occurs through the binding to its 

surface heterodimeric membrane receptor, the IL-10R, a transmembrane protein formed by 2 

subunits, a α and β chain [145, 175-177].  IL-10Rα is expressed in most leukocytes and 

serves as the ligand binding subunit. IL-10Rβ is constitutively expressed in most cell types and 

serves as the signaling subunit [145]. Most hematopoietic cells express the IL-10Rα at a basal 

level. Nonetheless it can be upregulated upon activation, highlighting IL-10 importance in the 

modulation of multiple steps of the innate and adaptive immunity.  Huber and colleagues have 

shown that in vivo anti-CD3 treatment induces IL-10Rα expression on Th17 cells in the small 

intestine [178]. In addition, in vitro stimulation of mouse naïve T cells with anti-CD3, effector T 

cells and regulatory T cells (Tregs) leads to upregulation of IL-10Rα expression [179]. Similarly, 

at steady state, human neutrophils express basal levels of IL-10Rα. However, following LPS or 

IL-4 stimulation, IL-10Rα expression is upregulated [180]. Moreover, Corinti and colleagues 

have shown that human DCs become unresponsive to IL-10 after maturation by 

downregulating IL-10Rα surface expression, enabling them to produce higher levels of pro-

inflammatory mediators and to prime T cells [181]. Unlike IL-10Rα, which is unique to IL-10, 

the IL-10Rβ subunit is shared by receptor for other type-II cytokines including IL-22R, IL-26R, 

IL-29R and IFNγ [145].  

 

1.2.2.1 IL-10 signaling through the IL-10R 

The interaction between the protein IL-10 and its receptor leads to the activation of 

transduction pathways, via the JAK/STAT complex [182] (Figure 1.2). Upon IL-10 binding, the 

interaction between IL-10/ IL-10Rα leads to conformational changes required for the 

engagement with IL-10Rβ to be possible [183]. Once the IL-10/ IL-10Rα/ IL-10Rβ complex is 

assembled, tyrosine kinases JAK1 and tyrosine kinase (Tyk) 2 are recruited and associated 
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with IL-10Rα and IL-10Rβ, respectively [175, 177, 184]. The tyrosine kinases become active 

and promote the phosphorylation of the IL-10Rα on two tyrosine residues, leading to the 

recruitment of STAT. Following its recruitment, phosphorylation of STAT3 by Jak1 and Tyk2 

occurs, leading to its homodimerization and subsequent translocation to the nucleus, where it 

binds to STAT3-binding elements of IL-10-responseive genes [184, 185]. STAT3 also induces 

the expression of STAT3-dependent suppressor of cytokines (SOCS3), which binds to PRR-

induced expression of various inflammatory cytokines including TNF, IL-6 and IL-1β [184]. 

Interestingly, both IL-10 and IL-6 highly induce SOCS3 expression in Mϕ with different 

outcomes, as the inhibitory role of SOCS3 appears to be restricted to IL-6 [186, 187]. While 

SOCS3 may play a role in driving-specific outputs, the details underlying those mechanisms 

remain unknown.  

  STAT3 is essential for all known functions of IL-10, as this molecule mediates gene 

expression that executes IL-10-mediated anti-inflammatory responses [186]. Nonetheless, the 

involvement of other proteins of the STAT family has been shown in the context of IL-10 

signaling. Interestingly, IL-10R activation via JAK2 has also been reported in the context of in 

vitro stimulation of lymphoma cells from patients with diffuse large B-cell lymphoma [188]. 

Moreover, a different signaling pathway for IL-10 responsiveness was unveiled recently: the 

PI3K/ AKT/ Glycogen synthase kinase (GSK) 3 pathway [189] (Figure 1.2). This pathway is 

associated with several cellular functions, including proliferation, differentiation, metabolism, 

growth and survival [190]. Several groups have studied the role of PI3K signaling in response 

to IL-10 [189, 191, 192]. Their findings on human Mϕ stimulated with LPS have shown that 

PI3K is able to increase IL-10-mediated inhibition of induced IL-1, IL-8 and cyclo-oxygenase-2 

[189]. Moreover, Gunzl and colleagues, who used a model of constitutive activation of PI3K on 

Mϕ, observed that cells adopted a strong anti-inflammatory profile via up-regulation of IL-10 

[191]. These studies reinforce the relevance of PI3K signaling pathway on the response to IL-

10 and IL-10 action.  
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Fig 1.2. The IL-10/IL-10R signaling pathway. 

 

1.2.2.3 IL-10 target cells and molecules 

IL-10 is a key anti-inflammatory cytokine produced and recognized by a wide range of 

leukocytes, as well as non-hematopoietic cells. IL-10-producing cells include populations from 

both innate and adaptive immunity. Among innate immune cells, Mϕ and classic DCs are the 

main producers of IL-10, although eosinophils, neutrophils and mast cells are also able to 

produce this cytokine in response to a variety of stimulus. Among adaptive immune cells, B 

cells and different subsets of T cells, such as Th1, Th2 and Th17 cells, have been shown to 

secrete IL-10 [145, 193, 194].  

 Triggering of the IL-10R, by IL-10, dampens the cytokine and chemokine production, 

and expression of co-stimulatory molecules, such as CD80, CD86, and major 

histocompatibility complex (MHC) Class II, and of its receptors in monocytes/ Mϕ and DCs 

[195-199]. It also increases nitric oxide production in Mϕ [200]. Due to the autocrine inhibitory 

effect of IL-10 on Mϕ and DCs, IL-10 inhibits the development of Th1 type responses but also 

leads to the suppression of Th2 cells and allergic responses [201]. Therefore, an additional 

feedback loop exists to limit the innate effector functions of Mϕ and DCs and their subsequent 

activation of T cells [201, 202]. However, IL-10 enhances the differentiation of IL-10-secreting 

Treg cells, thus providing a positive regulatory loop for its induction [203]. In some situations, 
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IL-10 also activates mast cells and enhances the functions of CD8+ T cells, NK cells and B cells 

[145, 204-207]. So, IL-10 is a cytokine with important effector properties that impacts the 

development of an immune response.  

 

1.2.3 IL-10 in hematopoiesis 

Placing IL-10 as a modulator of cell differentiation and maturation can be expected as most 

hematopoietic cells express the IL-10R, thus being potential targets of IL-10. In fact, since its 

discovery, several groups have shown evidence that IL-10 may play a role in hematopoiesis. 

Kang and colleagues reported that HSCs stimulation with IL-10 enhances their self-renewal 

potential [208]. Through the use an IL-10 deficient mouse model and ex vivo cultures, the 

authors observed a decrease of progenitor hematopoietic populations in the BM of IL-10 

deficient mice; an enhanced HSC regeneration in stromal cultures that produce IL-10; and, 

induction of HSC self-renewal in purified LSK cultures stimulated with exogenous IL-10. Based 

on these observations, the authors hypothesized that IL-10 may constitute a bridge between 

the immune and hematopoietic systems. Another ex vivo study showed a pronounced 

expansion of myeloid progenitor cells when CD34+ cells, cultured with a standard cocktail for 

cell survival, were supplemented with recombinant IL-10 [209]. Oehler and colleagues studied 

the effect of IL-10 on spontaneous hematopoietic colony formation in normal human peripheral 

blood mononuclear cells (PBMCs) [210]. Their findings place IL-10 as a regulator of 

hematopoiesis by mediating the release of GM-CSF by accessory cells. They concluded that IL-

10 suppresses spontaneous myeloid colony formation by PBMCs, and its suppressive potential 

is restored upon the addition of GM-CSF. In all, results from the different studies seem to be 

contradictory, but one has to consider that the different isolation techniques used, as well as 

the different culture conditions, may account for the differences observed. Other reports 

evaluating the role of cytokines in hematopoiesis have positioned IL-10 as an indirect 

modulator of this process. Vlasselaer and co-workers showed, that IL- 10 was able to stimulate 

the production of GM colony forming units by blocking transforming growth factor (TGF)-β 

synthesis by the osteogenic stroma, promoting hematopoiesis in this microenvironment [211, 

212]. Thompson-Snipes and colleagues showed that IL-10, synergistically with IL-3 and IL-4, 

modulates cell proliferation by its growth-promoting activity on mast cells, megakaryocytes and 

multilineage colonies derived from committed progenitors and Thy1low SCA-1+ [204]. In another 

study, by Rennick and colleagues, the differentiation potential of IL-10 was measured by 
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colony-forming assays, having the authors concluded that IL-10 alone does not lead to the 

generation of any mature cells, yet, when in combination with other cytokines, such as IL-3, IL-

6, Epo or IL-11, promotes the growth of megakaryocyte colonies [213]. There are also 

evidence, in vitro, indicating that IL-10 acts synergistically with Epo significantly increasing 

erythroid differentiation and proliferation [214].  

 An additional piece of evidence arose, though indirectly, from the results of IL-10 clinical 

trials. IL-10 administration was reported to cause anemia and splenomegaly, characteristic 

features of myelopoiesis-associated pathologies.  

 Interestingly, a bidirectional effect of IL-10 on early B cell development has been 

reported. By stimulating Flt3 with IL-7, IL-10 can induce pro-B cell formation and growth before 

differentiation into a more mature form, characterized by CD19 expression. On the other hand, 

IL-10 has been suggested to inhibit the growth of pro-B cells after differentiation, i.e., after they 

start to express CD19 [215].  

 Overall, these reports were unclear in providing a specific role for IL-10 in hematopoietic 

differentiation. The overall action of IL-10 in lineage commitment, how IL-10 might regulate the 

hematopoietic system, or the molecular pathways involved in IL-10-induced HSCs self-renewal 

remains vague and awaits clarification.  
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1.3 Context and Aims of this Thesis 

Cell fate decisions within the hematopoietic process result from interactions between the BM 

microenvironment and external cues.  Immunologic stress, such as cancer and infection, 

changes the magnitude and composition of the hematopoietic output to guarantee the supply 

of immune cells to the increased demand. IL-10, produced during all immune responses, 

stands out as a major inhibitor of inflammation. Interestingly, while the effect of pro-

inflammatory cytokines in hematopoiesis is well described, little is known of the role that 

cytokines that inhibit inflammatory reactions, such as IL-10, play in the homeostasis of the 

hematopoietic system. 

  To contribute for a better understanding of how IL-10 impacts hematopoietic 

development and to which extent anti-inflammatory scenarios can modulate hematopoietic 

homeostasis, adding or aiding to hematologic diseases, I took advantage of a genetically 

modified mouse line (pMT-10) previously generated, in our lab, to over-express IL-10. Thus, in 

the present thesis, I sought to:  

 

To characterize a novel mouse model of inducible IL-10 expression and probe it in the 

experimental colitis model. [Thesis Chapter II] 

 

To determine in detail the effect of IL-10 expression in the differentiation of the different 

hematopoietic cell lineages and the molecular mechanisms underlying it. [Thesis Chapter 

III] 
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Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions 
of the colon and small intestine. These conditions are characterized by exacerbated 
inflammation of the organ that greatly affects the quality of life of patients. Molecular 
mechanisms counteracting this hyperinflammatory status of the gut offer strategies for 
therapeutic intervention. Among these regulatory molecules is the anti-inflammatory 
cytokine interleukin (IL)-10, as shown in mice and humans. Indeed, IL-10 signaling, 
particularly in macrophages, is essential for intestinal homeostasis. We sought to 
investigate the temporal profile of IL-10-mediated protection during chemical colitis and 
which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 
overexpression (pMT-10), described here, we show that mice preconditioned with IL-10 
for 8 days before dextran sulfate sodium (DSS) administration developed a milder colitic 
phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria 
showed a decreased inflammatory profile. Because our mouse model leads to transcrip-
tion of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, 
we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus 
conferring sustained protection to colitis. We show that this was not the case, as IL-10-
afforded protection was only observed if IL-10 induction immediately preceded DSS-
mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies 
are required, specifically to achieve long-lasting protection.

Keywords: interleukin-10, macrophages, inflammation, colitis, therapy

INTRODUCTION

Inflammatory bowel disease (IBD) comprises a complex group of inflammatory conditions of the 
gastrointestinal tract (1) affecting an increasing number of patients worldwide (2–4). Both forms 
of IBD, Crohn’s disease (CD) and ulcerative colitis (UC), result from alterations in the immune 
homeostasis of the intestinal tissue leading to local uncontrolled inflammation (5, 6). The gut is a 
very particular site in terms of immune repertoire and regulation, as even in homeostatic conditions 
constant exposure to antigens occurs (7). Thus, the maintenance of intestinal homeostasis, primarily 
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carried out by intestinal macrophages, requires a constant and 
fine-tuned balance between the state of tolerance and inflam-
mation (8). In the gut environment, macrophages encounter a 
plethora of stimuli, from dietary antigens to commensal bacteria, 
yet, due to their unique tissue-specific characteristics, remain 
tolerant (9). In the predisease stage, the epithelial or mucosal 
barriers become compromised allowing bacteria from the lumi-
nal side to invade the lamina propria of the gut (10). This event 
triggers an acute inflammatory response due to the activation of 
immune cells by direct contact with bacterial products (10). The 
induced inflammation results either in elimination of the foreign 
bacterial incursion or in an exacerbated immune response that 
can result in tissue damage. The damage caused by deregulated 
inflammation will perpetuate the activation of effector cells and 
ultimately lead to the clinical onset of IBD (10, 11).

Epidemiological studies have shown that the etiology of IBD 
is multifactorial, with genetic predisposition, dysfunctional intes-
tinal barrier and imbalances of the microbiome all contributing 
to this condition (12–15). Genome-wide association studies 
revealed that the main genetic alterations associated with IBD 
are found in genes encoding proteins linked to innate or adap-
tive immunity, such as the nucleotide-binding oligomerization 
domain-containing protein 2, Janus kinase (JAK) 2, and tumor 
necrosis factor superfamily 15 (16–18). Other alterations are 
associated with molecules involved in leukocyte trafficking, 
regulation of barrier function and secretion of defensins (17). 
Two reports associate loss-of-function mutations in interleukin 
(IL)-10 or IL-10R subunits with severe IBD (19, 20). These muta-
tions result in severe enterocolitis, with onset before one year of 
age, and unresponsiveness to immunosuppressive therapies. The 
only available therapy for these patients is immune reconstitu-
tion with hematopoietic stem cells (21–23). Although complete 
loss-of-function mutations in IL-10 and IL-10R strongly correlate 
with IBD, they have an extremely low occurrence rate (19, 24). 
The most frequent mutations affecting the IL-10 genes associated 
with IBD are in fact single-nucleotide polymorphisms associated 
with low expression of this molecule (25). However, harboring 
such mutations does not always translate in low serum levels 
of IL-10 (23) during the disease stage. This is likely due to the 
significant increase on the number of IL-10-producing myeloid 
cells in CD patients (26–29), to the extent that elevated serum 
levels of IL-10 correlate with disease activity in CD (30–32).

The role of IL-10 in intestinal inflammation is also seen in 
the mouse model, as IL-10-deficient mice develop microbiome-
dependent spontaneous enterocolitis (33). Furthermore, mice 
with macrophage restricted IL-10R deficiency also develop a 
spontaneous colitic profile (34), stressing the critical role of the 
monocyte/macrophage axis in the immunologic events leading to 
IBD. Interestingly, it has been shown, in a model of infection that 
IL-10 can exert a direct effect on monocytes/macrophages subsets, 
leading to changes in their inflammatory profile and survival (35). 
Moreover, IL-10 has been shown to confer protection from hyper-
inflammatory states by the induction of the JAK1/STAT3 signaling 
pathway that suppresses expression of proinflammatory mediators 
and activates expression of anti-inflammatory genes (36).

Taking into account the results obtained in murine models 
of IL-10 perturbation, the genetic correlation established in 

humans, and the anti-inflammatory properties of IL-10, this 
cytokine emerged as a very promising candidate for IBD therapy. 
However, in IBD patients IL-10-based therapy has not resulted in 
substantial clinical improvements (37). The main caveats in these 
clinical trials were the subcutaneous route of administration 
and the concentration of the recombinant molecule that did not 
ensure that IL-10 levels reached the mucosal sites, pointing out 
the importance of novel-locally targeted therapeutic strategies. 
Furthermore, IL-10 administration to IL-10-deficient murine 
models only protected from colitis if administered before disease 
establishment (38).

In this study, we report a novel mouse model of IL-10 over-
expression (the pMT-10 mouse) and use it to better explore 
the mechanisms of immune regulation elicited by IL-10 in the 
context of intestinal inflammation. We show that a short period of 
IL-10 overexpression prior to the induction of colitis ameliorates 
the disease outcome, despite the presence of CD11b+ Ly6C+ 
cells in the gut, previously associated with the development of 
detrimental inflammation. As compared to control animals that 
do not overexpress IL-10, Ly6C cells isolated from the gut lamina 
propria of colitic pMT-10 mice showed a decreased inflammatory 
profile. Thus, we propose that IL-10 overexpression impaired the 
response of these cells to the stimulus. In addition to the local 
effect of IL-10 in controlling exacerbated immune responses, our 
model allows for the study of IL-10 in imprinting de novo gener-
ated and circulating monocytes. This is because, constant IL-10 
expression is found in specific tissues, in pMT-10 mice, culminat-
ing in a systemic effect. Therefore, IL-10 is likely to affect other 
important compartments, such as the bone marrow (BM) and 
spleen. IL-10-afforded protection was only seen if IL-10 trigger-
ing immediately preceded dextran sulfate sodium (DSS)-induced 
colitis, thus calling for novel strategies that sustain the effect of 
IL-10 to offer long-lasting protection.

MATERIALS AND METHODS

Ethics Statement
In Portugal, all animal experiments were performed in strict 
accordance with recommendations of the European Union 
Directive 2010/63/EU and previously approved by Portuguese 
National Authority for Animal Health–Direção Geral de 
Alimentação e Veterinária (DGAV). Mice were euthanized by 
CO2 inhalation with efforts to minimize suffering.

In France, all animal procedures were approved by the Pasteur 
Institute Safety Committee and conducted according to French 
and European Community Institutional guidelines.

Animals
The study involved the use of the following 7–14-week-old female 
mice: wild-type C57BL/6j, pMT-10-IL-10 inducible mice, and 
pMT-10 crossed with IL-10Rα-deficient mice (39) (pMT-10.
IL-10Rα− /−). Food was ad libitum for all animals.

Generation of pMT-10 Mice
pMT10 mice were generated by A. Gil Castro and Paulo Vieira. 
Mouse IL-10 cDNA was cloned into the p169ZT vector, which 
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FIGURE 1 | A novel mouse model for inducible interleukin (IL)-10 expression: pMT-10 mice. (A) Schematic representation showing the targeting vector and insertion 
site. (B) Kinetics of IL-10 overexpression in the serum at different time points post Zn administration and Zn withdrawal. pMT-10 mice were fed with normal 
(pMT-10-Zn) or Zn-enriched (pMT-10 + Zn) water and at the indicated time points blood was harvested and the amount of IL-10 in serum measured by 
immunoassay. (C) qRT-PCR identified CD45− TER119− cell subsets from skin, bone marrow, and small intestine (SI) as the main producers of IL-10 in pMT-10 mice 
fed for 8 days with Zn-enriched water. In both (B,C), each point or bar represents the mean ± SEM for three independent mice. Data were analyzed with  
(B) two-way analysis of variance (Sidak’s multiple comparisons test) or (C) Student’s t-test, *p < 0.05; **p < 0.01; ***p < 0.001.
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carries a sheep metalloprotein (MT) 1a promoter, a β-globin 
splice site and a SV40 polyadenylation (polyA) signal. The result-
ing vector—pMT-10 (see Figure  1A)—was then injected into 
C57BL/6j eggs and transgenic founders were identified by PCR 
using MT and IL-10-specific primers. IL-10 overexpression was 
induced by feeding the mice a 2% sucrose solution with 50 mM 
of zinc (Zn) sulfate.

DSS-Induced Colitis
Mice were fed for 8 days with 3% DSS (TdB consultancy) in the 
drinking water, and were monitored, daily, for weight loss and 
disease progression. Colitis progression was measured by the 
Disease Activity Index (DAI), as previously described [Table 1 
(40)].

Assessment of Intestinal Inflammation
Mice were euthanized on day 8 post-DSS administration or 
earlier if the symptoms of clinical disease (significant weight 
loss or diarrhea) became apparent. Samples from colons were 
immediately fixed in 4% paraformaldehyde. Then, 5 µm paraffin-
embedded sections were stained with hematoxylin and eosin, and 
inflammation was assessed in a blinded fashion using a previously 
described system [Table 2 (41)]. Samples were graded semiquan-
titatively from 0 to 3 for the four following criteria: (i) degree 
of epithelial hyperplasia and goblet depletion; (ii) leukocyte 
infiltration in the lamina propria; (iii) area of tissue affected; and 
(iv) the presence of markers of severe inflammation such as crypt 
abscesses submucosal inflammation and ulcers. For each sample, 

criteria scores were added to give an overall inflammation score 
of 0–12.

Cytokine Quantification
Interleukin-10 concentration in the serum was quantified using a 
commercially available ELISA kit (R&D systems).

Preparation of Cell Suspensions
Isolation of non-hematopoietic cells (CD45− TER119−) or hemat-
opoietic (CD45+) BM cells followed standard protocols. Briefly, 
hematopoietic BM  cells were extracted by flushing the femurs 
and tibias with 2  mL of HBBS repeatedly. To obtain the BM 
non-hematopoietic cells, the bone fragments were incubated in 
RPMI medium with Liberase TL (0.5 mg/ml; Roche) for 30 min 
at 37°C. To help dissociation of non-hematopoietic cells from the 
bone, after each incubation period, the femurs and tibias were 
flushed with RPMI. We repeated this step three times after which 
we flushed the bones one last time, harvested the cell suspen-
sions and added 1 volume of RPMI containing 10% FCS. Small 
intestine (SI), non-hematopoietic cells were isolated as previously 
described (42). Skin non-hematopoietic cells were isolated from 
ear samples. Samples were harvested and the epidermis exposed 
by separating the external layers. Epidermis was incubated for 
45 min at 37°C with Liberase HL (0.5 mg/ml; Roche) and DNase I 
(1 U/mL; Invitrogen). After 45 min, non-hematopoietic cells were 
dissociated from the tissue by mechanical disruption, collected, 
washed in HBSS containing 10% FCS and recovered. At the 
end, non-hematopoietic cells were sort-purified by excluding all 
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TABLE 2 | Parameters for histological analysis of colitis severity.

Score Epithelial 
hyperplasia 
and goblet 
depletion

Leukocyte 
infiltration in 
the Lamina 
Propria

Area 
affected

Markers 
of severe 
inflammation

0 None None/rare None None
1 Minimal Increase 1/3 Minimal
2 Mild Confluent 2/3 Increased
3 Marked Transmural All Confluent

The final score is obtained by the sum of individual scores. Markers of severe 
inflammation included ulceration and crypt abscesses.

TABLE 1 | Disease Activity Index (DAI) parameters.

Score Weight loss Stool consistency Bleeding

0 No loss Normal No blood
1 1–5% Mild soft Brown color
2 5–10% Very soft Reddish color
3 10–20% Diarrhea Bloody stool
4 >20% Gross bleeding

DAI is obtained by the sum of each individual score.
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CD45+ TER119+ cells (Figure S1A in Supplementary Material). 
Cell suspensions for all other organs were obtained by mechanical 
disruption.

Lamina propria leukocytes (LPLs) were prepared as previously 
described (43). Briefly, LPLs were harvested, dissociated and 
resuspended in Hank’s Balanced Solution (HBSS) supplemented 
with 1% fetal calf serum (FCS; Gibco). To isolate LPLs, the colon 
was flushed with phosphate-buffered saline (PBS; Gibco), opened 
and cut into 1 cm pieces. To eliminate epithelial cells these frag-
ments were incubated at 37°C in Ca- and Mg-free PBS containing 
10% FCS and 5.0 mM EDTA under strong agitation for 30 min. 
For LPL isolation, the remaining fragments were incubated in 
RPMI medium with Liberase TL (0.5 mg/ml; Roche) for 30 min 
at 37°C. To complete the digestion, the suspension was repeatedly 
passed through a 10 ml syringe for 5 min, filtered through a 40 μm 
cell strainer (BD Bioscience) and collected by centrifugation. The 
cell pellet was resuspended in 44% Percoll (GE Healthcare), laid 
over 67% Percoll, and centrifuged at 600 g for 20 min at 20°C. 
Cells at the interface were collected, washed in HBSS containing 
1% FCS and recovered.

Antibodies
Antibodies were conjugated to fluorochromes (FITC, PE, PECy7, 
APC, APCCy7, Pacific Blue, and BV711) and were specific for the 
following mouse antigens: CD3 (145-2C11; Biolegend), CD11b 
(M1/70; Sony), CD11c (HL3; Biolegend), CD19 (6D5; Sony), 
CD45.2 (104; Biolegend), Ly6C (Hk1.4; eBioscience), Ly6G 
(RB6-8C5; BD Pharmingen), CD45 (30F11; Sony), and TER119 
(Ter119; BD Pharmingen).

Cell Sorting and Multiplex Real Time-PCR 
Analysis
CD45−  TER119−  or CD45+ cells were sort-purified based on the 
expression of CD45 and TER119 using an Aria sorter (BD). Dead 

cells were eliminated by exclusion with propidium iodide (PI). 
mRNA from sorted cells was extracted using RNeasy Micro kit 
(Qiagen) and converted into cDNA by reverse transcription with 
PrimeScript RT Reagent kit (Takara, Clonetech). qRT-PCR was 
performed using Taqman primers (see Table S1 in Supplementary 
Material for references) and Taqman Universal Master Mix 
(Applied Biosystems). qRT-PCR reactions were performed on a 
ABI 7300 thermocycler (Applied Biosystems).

Lamina propria leukocytes were FACS-sort purified based on 
the expression of CD45.2, CD11b and Ly6C, using an Aria III 
sorter (BD). Cells expressing CD3, CD19, CD11c, and Ly6G were 
excluded. Dead cells were eliminated by exclusion with PI. CD45.2+ 
CD11b+ Ly6C+ cells were sorted directly into a mix of 9  µl of 
CellsDirect One-Step qRT-PCR kit (Life Technologies), contain-
ing a mixture of diluted primers (0.05× final concentration, see 
Table S1 in Supplementary Material for references). Preamplified 
cDNA (18 cycles), was obtained according to the manufacturer’s 
instructions and was diluted 1:5 in TE buffer (pH = 8; Ambion). 
The sample mixture was as follows: diluted cDNA (2.9 µl), Sample 
Loading Reagent (0.32 µl; Fluidigm), and Taqman Universal PCR 
Master Mix (3.5 µl; Applied Biosystems). The assay mixture was 
as follow: Assay Loafing Reagent (Fluidigm) and Taqman Mix. A 
48 × 48 Dynamic Array integrated fluidic circuit (IFC; Fluidigm) 
was primed with control line fluid, and the chip was loaded with 
assays and samples with and X IFC Controller (Fluidigm). The 
experiments were run on a BioMark HD (Fluidigm) for 40 cycles. 
Gene expression was normalized for Hprt and assessed by the 
2ΔCt method.

Statistical Analysis
Statistical analysis was performed with the Student’s t-test or two-
way analysis of variance as indicated in the figure legends. The 
analysis was performed with Prism Software (GraphPad). Graphs 
containing errors bars show means ± SEM. Statistical significance 
is represented as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

RESULTS

Generation of a Novel Mouse Model of 
IL-10 Overexpression
To study the biological impact of IL-10 overexpression in dif-
ferent settings, we engineered a novel mouse model to allow 
for inducible IL-10 expression, the pMT-10 mouse (44). For 
this, a construct containing the IL-10 cDNA under the control 
of the inducible sheep MT promoter was introduced in the 
genome of wild-type BL/6 mice (Figure 1A). Whole genome 
sequencing revealed a single insertion of the transgene in chro-
mosome 10, between positions 78.813.656 and 78.992844  bp 
(Figure 1A). We estimated, by qRT-PCR, the number of cop-
ies of the transgene to be 50–100 (data not shown). The MT 
promoter is activated in the presence of 50 mM of Zn in the 
organism, administered in the drinking water. Kinetic analysis 
of IL-10 in the serum of pMT-10 mice fed with Zn-enriched 
water showed a rapid increase of circulating IL-10 (Figure 1B). 
Indeed, as soon as day 3 after IL-10 induction, the levels of 
this cytokine in the serum were very high (7–12  ng/ml) 
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FIGURE 2 | Dextran sulfate sodium (DSS)-induced pathology is ameliorated 
by preexposure to interleukin (IL)-10. (A) BL/6, pMT-10, and pMT-10.
IL-10Rα− /− mice were fed for 8 days with normal (BL/6-Zn, pMT-10-Zn, and 
pMT-10.IL-10Rα− /− Zn, respectively) or Zn-enriched (BL/6 + Zn, pMT-
10 + Zn, and pMT-10.IL-10Rα− /− + Zn) water, followed by 8 days of 3% DSS 
administration also in the drinking water. (B,F) Disease progression based on 
DAI parameters was registered every day for 8 days. Each point represents 
the mean ± SEM for three to five independent mice, in two independent 
experiments. (C) Colon length measurement at day 8 of DSS administration. 
(D) Representative H&E-stained sections of large bowel at 40× magnification 
(scale bar = 200 µm). (E) Colitis scores derived from evaluation of colon and 
cecum from either group. Each dot represents one independent animal; 
represented is also mean ± SEM. Data were analyzed with (B,F) two-way 
analysis of variance (Sidak’s multiple comparisons test) or (C,E) Student’s 
t-test. (B) # compare BL/6-Zn against BL/6 + Zn; ^ compare BL/6-Zn 
BHBJOTU�Q.5����;O��t�DPNQBSF�#-���;O�BHBJOTU�Q.5���ø+ Zn; ∅ compare 
BL/6 + Zn against pMT-10-Zn; x compare BL/6 + Zn against pMT-10 + Zn,  
* compare pMT-10-Zn against pMT-10 + Zn. One symbol, p < 0.05; two 
symbols, p < 0.01; three symbols, p < 0.001.
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(Figure 1B). Moreover, suspending Zn administration led to 
a sharp drop in IL-10 in sera in only 24  h, to below detec-
tion levels in only 48 h (Figure 1B). As expected, circulating 
IL-10 was undetectable in pMT-10 mice fed with normal water 
(Figure  1B). Transcriptional analysis of different organs and 
cellular compartments of induced pMT-10 mice revealed that 
the expression of the exogenous IL-10 cDNA was restricted 
to CD45−TER119−  cells from the SI, skin and, to a less extent, 
BM (Figure 1C). IL-10 induction was not detected in the other 
organs analyzed (liver, spleen, kidney, choroid plexus, lung, 
and colon) nor in hematopoietic cells isolated from the BM 
(Figure S1B in Supplementary Material). Thus, the pMT-10 
mouse model allows for timely controlled IL-10 overexpres-
sion in specific anatomic locations, accompanied by a strong 
increase of the levels of this cytokine in the serum.

DSS-Induced Colitis Is Ameliorated in 
IL-10 Preexposed Mice
Despite the clear link between low levels of IL-10 and suscep-
tibility to colitis in human (45) as well as in mouse models (33, 
34), administration of IL-10 to treat this condition showed only 
limited effects (37). A possible reason may be the poor acces-
sibility of IL-10 to the site of inflammation. In this context, and 
in view of the high expression seen in the SI of induced mice, the 
pMT-10 mouse model offers an opportunity to further address 
the effects of IL-10 expression in the gut in the context of colitis. 
For this, we used the DSS experimental model, a highly reliable 
and reproducible way of causing UC-like symptoms in the mouse 
model by inducing acute inflammation with the recruitment of 
inflammatory cells (46).

We investigated the impact of IL-10 overexpression prior to 
DSS-induced colitis. For this, pMT-10 mice were induced to 
overexpress IL-10 for 8 days, before initiation of DSS adminis-
tration (Figure 2A). As controls, non-induced pMT-10 or BL6 
mice fed with control or Zn-enriched water were used. In our 
experimental setting, wild-type BL/6 mice started to show signs 
of disease from days 4 to 5 after administration of 3% DSS in 
the drinking water (Figure 2B). Control pMT-10 mice showed 
a progression of the DAI very similar to BL/6 mice (Figure 2B). 
As compared to pMT-10 or BL6 fed with control water, mice 
preconditioned with IL-10 showed significantly lower DAI 
after day 5 (Figure  2B) indicating that IL-10 conferred partial 
protection. Zn administration to BL6 mice prior to DSS, resulted 
in partial protection. Indeed, by day 7 of DSS administration, 
a significantly lower DAI was observed in BL/6 mice fed with 
Zn-enriched water as compared to BL6 control (Figure  2B). 
Nevertheless, the maximal protection was observed for pMT-10 
mice overexpressing IL-10, which suggests a synergistic effect 
of IL-10 and Zn in the amelioration of the disease (Figure 2B). 
The DAI encompasses three scores, one of which is the weight 
loss. Relatively to control animals, both pMT-10 and BL/6 mice 
fed with Zn prior to DSS administration showed less weight loss 
(Figure S2 in Supplementary Material). pMT-10 mice preexposed 
to IL-10 showed the least reduction in colon length as compared 
to all control groups (pMT-10 or BL/6 fed with control water, 
and BL/6 fed with Zn-enriched water – Figure 2C), in line with 

maximal protection being conferred by IL-10. Histologic analysis 
of the organ, comprising the analysis of inflammatory infiltrates, 
architectural distortion (crypt shortening and branching) and 
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FIGURE 3 | Ly6C+ cells preexposed to interleukin (IL)-10 reveal a less inflammatory profile upon DSS-induced colitis than those preexposed to Zn. (A) pMT-10 or 
BL/6 mice were fed with Zn-enriched water for 8 days, followed by 4 days of 3% DSS administration. (B) At the end of the DSS treatment, Lamina propria 
leukocytes (LPLs) were isolated and Ly6C+ cells sort-purified. Shown is the gating strategy for Ly6C+ cells purification. (C) Sort-purified Ly6C+ cells (n = 25 cells) 
were analyzed by qRT-PCR for a total of 22 genes using the BioMark HD system. Samples were normalized for Hprt expression. Represented is the expression 
heatmap compiling the genes which expression was detected in either mouse group. Each heatmap rectangle represents the mean of gene expression obtained for 
cells isolated from five independent mice. (D) The frequency of the different leukocyte subsets was determined upon staining of LPLs for Ly6C+ cell sorting. Each 
dot represents one independent animal; represented is also mean ± SEM. Data were analyzed with Student’s t-test, *p < 0.05.
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ulceration, showed an improvement in pMT-10 mice preexposed 
to IL-10 as compared to BL/6 preexposed to Zn (Figures 2D,E). 
However, despite a reduction in the histological score of some 
pMT-10 mice preexposed to IL-10, the overall group did not 
reach statistical significance when compared to the other control 
groups (Figures 2D,E).

Thus, our data showed that IL-10 overexpression prior to 
intestinal insult afforded a significant degree of protection 
from DSS-induced colitis. Additionally, our data also suggest 
a synergistic effect of IL-10 and Zn in the amelioration of the 
disease. To investigate this issue, we repeated the experiment 
using pMT-10 mice crossed with IL-10Rα− /−  mice. Since pMT-
10.IL-10Rα− /−  double mutant mice are unresponsive to IL-10, 
the effects observed would only be due to Zn administration. In 
these mice, we observed an accelerated disease progression upon 
DSS administration, with an elevated DAI score as early as day 
3, in line with the known role of IL-10 in controlling the disease 
(Figure 2F). In these mice, Zn administration did not confer pro-
tection against DSS-induced colitis (Figure 2F). Taken together, 
our findings support the notion that the protection conferred by 
Zn requires IL-10 signaling.

Preexposure to IL-10 Promotes a More 
Controlled Inflammatory Response
Previous studies have shown that monocytes and macrophages 
are the major effector subsets of colonic inflammation (34, 47). 
Mice with macrophage-specific IL-10R deficiency develop a 
spontaneous colitic profile, emphasizing the importance of IL-10 
in regulating the macrophage response to prevent uncontrolled 
inflammation (34). Thus, we next investigated whether IL-10 
ameliorated DSS-induced colitis by restricting the monocyte/
macrophage response. Considering that Zn administration also 
improved the outcome of DSS-induced colitis in BL/6 mice, we 
compared the transcriptional profile of monocytes/macrophages 
from BL/6 or pMT-10 mice preexposed to Zn and subjected to 
DSS administration for 4 days. We chose this time point, since 
signs of colitis induced by DSS in both BL/6 and pMT-10 mice 
only become obvious after day 4 of DSS administration. Thus, 
BL/6 and pMT-10 mice were fed with Zn-enriched water for 
8 days and then received DSS for 4 days (Figure 3A). At this time 
point, Ly6C+ cells from each mouse from the different groups 
were FACS purified (Figure 3B). Expression of 22 genes (Table 
S1 in Supplementary Material) associated with the uncontrolled 
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FIGURE 4 | The interleukin-10 protection conferred against DSS-induced colitis is not long lasting. (A) pMT-10 mice were fed with control (pMT-10-Zn) or 
Zn-enriched (pMT-10 + Zn) water for 8 days, followed by a 7- or 21-day resting period where only normal water was available, and by 8 days of 3% DSS.  
(B) Disease progression based on Disease Activity Index (DAI) parameters was registered every day for 8 days. (C) Colon length measurement at day 8 of DSS 
administration. (D) Representative H&E-stained sections of large bowel at 40× magnification (scale bar = 200 µm). (E) Colitis scores derived from evaluation of colon 
and cecum from both groups. Each dot represents one independent animal, in two independent experiments; represented is also mean ± SEM. Data were analyzed 
with (B) two-way analysis of variance (Sidak’s multiple comparisons test) or (C,E) Student’s t-test.
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immune response developed in IBD were analyzed by multi-
plex RT-PCR. All samples, from both groups, expressed three 
house-keeping genes (Hprt, Actb, and Gapdh). Of the 22 genes 
analyzed, we failed to detect expression of 9 (Il4, Il9, Il12α, Il12β, 
Il13, Il17, Il23, Ifnγ, and Cx3cl1) in Ly6C+ cells isolated from the 
lamina propria in both groups. We detected expression of the 10 
remaining genes in Ly6C+ cells, in Zn-fed BL/6 and pMT-10 mice 
after DSS administration (Figure 3C), but no expression in the 
absence of insult (data not shown). Thus, Ly6C+ cells alter their 
expression profile in response to DSS insult. Most interestingly, 
on day 4 post-DSS administration, Ly6C+ cells isolated from 
induced pMT-10 mice presented an overall less inflammatory 
profile than those isolated from BL/6 mice (Figure 3C). In the 
case of Tnfα and Cd86, the differences observed between the two 
mouse groups were statistically significant (Figure  3C). In all, 
these findings suggest that exposure to IL-10 before DSS induc-
tion acts by preventing an inflammatory profile in Ly6C+ cells. 

Of note, the frequency of inflammatory macrophages recruited 
to the inflamed gut was similar between the two groups, and the 
same was true for CD3 T cells and CD19 B cells, showing that 
IL-10 overexpression does not impact the recruitment of immune 
cells to the gut (Figure 3D).

IL-10 Protection against DSS-Induced 
Colitis Is Not Long Lasting
In our mouse model, IL-10 is also overexpressed in the BM and 
is found at high levels in the serum, possibly creating an anti-
inflammatory environment that could precondition de novo 
generated or circulating monocytes. In this setting, the circulat-
ing monocytes could thus be educated to be less responsive once 
recruited to the colon during DSS-induced colitis. To study this 
possibility, we combined a period of IL-10 overexpression with 
a resting period of 7 or 21  days prior to DSS administration 
(Figure 4A). As shown in Figure 1B, the levels of IL-10 return 
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to basal ones as soon as 24  h after the zinc administration is 
suspended. Thus, after a 7-day rest, the circulating levels of IL-10 
are normalized. Furthermore, we chose the 21 days time-point, 
because previous reports showing that resident intestinal mac-
rophages have a life span of approximately 3 weeks (48). After 
7-day rest period, the protection in DAI afforded by previous 
IL-10 exposure was partly lost (Figure 4B), being less pronounced 
than when no resting was performed and only observed at later 
time-points. After the 21-day resting period, the protection in 
DAI of pMT-10 previously overexpressing IL-10 was completely 
ablated (Figure 4B). Furthermore, independently of the resting 
period, no differences were observed between the experimental 
groups in what concerned colon length (Figure 4C) or histology 
(Figures  4D,E). Thus, we conclude that IL-10 overexpression, 
over a period of 8 days, does not confer long-lasting protection 
against intestinal inflammation.

DISCUSSION

Despite the fact that IBD is a treatable condition, there are many 
limitations to the therapeutic approaches currently available 
(5). Major obstacles in this context are the heterogeneity of the 
disease, which implies that dosage and schedule may differ across 
disease conditions, and the requirement of a localized action of 
the therapeutic agent. In view of the strong immune component 
associated with disease development, it is not surprising that 
therapeutic manipulations of the immune response have been 
widely sought approaches to tackle IBD. Indeed, a commonly 
used therapy for IBD is the administration of anti-tumor necrosis 
factor alpha (TNF-α) antibodies (49). However, in line with the 
above mentioned limitations, up to one-third of IBD patients do 
not respond to this therapy, and those who respond eventually 
develop some degree of intolerance to the medication (50). In 
this context, several animal models of IBD, both spontaneous 
and experimentally induced (such as DSS), were developed to 
investigate the role of various factors on the pathogenesis of the 
disease and to evaluate the different therapeutic options. A mol-
ecule that has been widely studied in the context of IBD is IL-10. 
This cytokine keeps intestinal inflammation in check by exerting 
a direct effect on monocyte/macrophage populations (34). Thus, 
it is not surprising that IL-10-based therapies have been tested in 
IBD. However, both in human (51–54) and mouse models (38), 
administration of IL-10 did not significantly improve intestinal 
inflammation, perhaps in part due to the fact that administered 
IL-10 did not reach the inflamed tissue.

In this study, we report a novel transgenic mouse model of 
inducible IL-10 overexpression, the pMT-10 mice, in which 
high IL-10 transcription is observed in the intestine, skin and 
BM. Upon induction of the transgene, high levels of IL-10 are 
detected also in the serum. Taking advantage of this novel mouse 
model, we investigated the dynamics of IL-10 afforded protection 
during DSS-induced colitis. We found that induction of IL-10 
prior to DSS administration impacted the progression of colitis. 
We show that a short period of IL-10 overexpression before the 
induction of colitis ameliorated the disease outcome, despite the 
presence of CD11b+ Ly6C+ cells in the gut, previously associated 
with the development of detrimental inflammation. However, 

in comparison to control animals that do not overexpress IL-10, 
Ly6C cells isolated from the lamina propria of colitic pMT-10 
mice showed a decreased inflammatory profile. Thus, we hypoth-
esize that IL-10 overexpression impairs the response of these cells 
to the insult, reaffirming both the critical role of these cells on 
intestinal inflammation (47) and that of IL-10 in regulating their 
inflammatory responses (34). In line with a previously described 
protective role for Zn in the context of intestinal inflammation 
(55, 56), we show some effect of Zn in reducing the severity of 
colitis, which occurred both later and to a lower extent than that 
observed for the combined condition Zn + IL-10. In addition, the 
protective effect of Zn failed to overcome the exacerbated colitis 
observed in mice that did not respond to endogenous IL-10. The 
mechanistic bases underlying the protection conferred by Zn 
alone remain unknown. One possibility is that Zn may contribute 
to diminish the amount of free radical species generated during 
acute colitis which contribute to protein, DNA chain and lipid 
damage (57). In any case, as IBD patients often present a Zn defi-
ciency and respond well to Zn supplementation therapy (58), the 
exploitation of combined IL-10 and Zn therapies may be worth 
considering. In line with this, the benefits of combined Zn and 
anti-TNF therapy were previously described (55).

The pMT-10 mouse model allows for local, as well as systemic, 
IL-10 overexpression. The fact that we detected increased tran-
scription of the IL-10 transgene in the BM and elevated levels of 
seric IL-10 led us to hypothesize that preexposure to IL-10 might 
induce long-lasting transcriptional changes in circulating mono-
cytes, for example through epigenetic imprinting. If this were the 
case, we might be able to educate these cells to gain long-lasting 
tolerance to DSS-induced colitis. Our data obtained after a 1- or 
3-week rest post-IL-10 exposure show that recent IL-10 exposure 
is required for maximal protection. Thus, the protective effects of 
IL-10 were not sustained over time, implying that IL-10 presence 
at the time of insult is necessary to prevent colitis. Therefore, 
inducing IL-10 expression in our mouse model at the beginning 
of disease would be of interest. Unfortunately, we were unable 
to explore this possibility because the Zn necessary to activate 
the transgene precipitates in the presence of DSS, when both are 
provided in the drinking water. In addition, we were unable to 
induce high levels of IL-10 expression in the serum of mice fed 
with a Zn-enriched diet and ethical issues prevented us from 
attempting to induce sustained high levels of IL-10 by frequent 
gavage or i.p. injections of Zn-containing preparations.

In conclusion, we herein present a novel mouse model of 
inducible IL-10 overexpression. We also show the potential of this 
model for the study of the IL-10 biology in the specific setting of 
DSS-induced colitis. Our data further support the protective role 
for IL-10 in intestinal inflammation, showing that this cytokine 
delays disease progression even when delivered before DSS 
administration. However, the effect is not long-lasting, which 
calls for alternative approaches to prevent IBD.
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Supplementary Figure 1.  (A) Gating strategy for CD45- TER119- cells sort purification. Live 
non-hematopoietic (CD45-TER119-, gate 1) and hematopoietic (CD45+, gate 2) cells were sort 
purified based on the lack of expression of CD45 and Ter119. (B) Cell suspensions were prepared 
from the indicated organs as specified in the Methods section, from pMT-10 mice fed with normal (-) 
or Zn-enriched (+) water. Il10 mRNA expression was measured by qPCR as indicated in the Methods 
section.  
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Supplementary Figure 2. Progression of weight loss in DSS-induced BL/6 and pMT-10 mice. 
BL/6 and pMT-10 mice, fed with control (-Zn) or Zn-enriched water (+Zn), were administered, for 8 
days, 3% DSS in the drinking water. Body weight was registered every day for 8 days. Data were 
analysed with two-way ANOVA (Sidak's multiple comparisons test). # compare BL/6-Zn against 
BL/6+Zn; ^ compare BL/6-Zn against pMT-10-Zn; ∅ compare BL/6+Zn against pMT-10-Zn; * 
compare pMT-10-Zn against pMT-10+Zn. 1 symbol, p<0.05; 2 symbols p<0.01; 3 symbols, p<0.001. 
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Supplementary Table 1. List of Taqman assays used for the BioMark, related to Figure 4.	 

Probe Taqman Reference 

Hprt Mm03024075_m1 

Gapdh Mm99999915_g1 

Actb Mm02619580_g1 

Il1α Mm00439620_m1 

Il1β Mm00434228_m1 

Il4 Mm00445259_m1 

Il6 Mm00446190_m1 

Il9 Mm00434305_m1 

Il10 Mm01288386_m1 

Il12α Mm00434169_m1 

Il12β Mm01288989_m1 

Il13 Mm00434204_m1 

Il17 Mm00439618_m1 

Il23 Mm0110011_g1 

Tnfα Mm00443258_m1 

Ifnγ Mm01168134_m1 

Cxcl1 Mm00436454_m1 

Arg1 Mm00475988_m1 

Cxcl9 Mm00434946_m1 

Cd86 Mm00444543_m1 

cMyc Mm00487804_m1 

Flt1 Mm01210866_m1 
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Abstract 

IL-10, a cytokine commonly produced during immune responses, stands out as a major 

inhibitor of inflammation. Inflammatory cytokines play a recognized role in modulating 

hematopoiesis to ensure the readjustment of the hematopoietic output to infection. However, 

and despite the fact that IL-10 production accompanies that of pro-inflammatory cytokines, 

little is known on whether IL-10 may play a similar role. Using an IL-10 over-expression 

conditional mouse model (pMT-10), we show that an excess of IL-10 in the organism promotes 

myelopoiesis, leading to aberrant myeloproliferation and extramedullary hematopoiesis. 

Furthermore, genetic manipulation of the pMT-10 model combined with reconstitution 

experiments support a key role for T cells in IL-10 driven myelopoiesis. Finally, through 

chemical inhibition of intracellular signaling pathways, we report an involvement of PI3K in IL-

10-mediated myelopoiesis. Taken together our data places IL-10 as a new factor modulating 

the hematopoietic output to danger signals.  
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Introduction 

Hematopoiesis is the process that controls the differentiation of hematopoietic cells (HSCs) 

into lymphoid and myeloid lineages, maintaining the organism homeostasis and conferring 

protection against pathogens [1-4]. This ability of HSCs to perpetuate through self-renewal and 

generate new blood cells is regulated by several mechanisms, including signals delivered by 

the stromal microenvironment [5-7]. These signals regulate proliferation, survival and 

differentiation of HSCs by activating molecular programs that determine the specification of the 

precursors along the different lineages [1-4, 8]. Immunologic stress, such as that occurring 

during neoplasms and infection, changes the magnitude and composition of the hematopoietic 

output to guarantee proper supply of immune cells to the increased demand, resulting in a 

process defined as emergency hematopoiesis [9-11]. However, the precise mechanisms that 

initiate emergency hematopoiesis remain largely unknown.  

 Interleukin (IL)-10, produced during most of the immune responses, stands out as a 

major inhibitor of inflammation [12]. During infection, the production of IL-10 is critical to 

manage the delicate balance between suppressing and activating host responses, hence 

between the establishment of chronicity or of pathogen clearance, often accompanied by tissue 

damage detrimental to the host [13, 14]. Understanding the various implications of IL-10 to 

immune homeostasis is of unquestionable importance, due to potential IL-10 administration 

for clinical therapy of inflammatory diseases [15]. Indeed, long-term administration of IL-10 

may culminate in immunodeficiency, whereas continuous use of anti-IL-10 may lead to 

hyperimmune reactivities [11, 16-23]. Interestingly, several studies have shown an association 

between IL- 10 and the pathogenesis of hematopoietic disorders, such as B cell lymphomas 

[24-27], thus suggesting a possible involvement of IL-10 as a regulator of the hematopoietic 

process. Altogether, a better understanding of IL-10 potential in regulating hematopoiesis holds 

the promise to translate into new approaches for treating a variety of human infectious, 

hematologic, and malignant diseases.  

 Using a mouse model of inducible IL-10 over-expression (pMT-10) [28, 29] we show 

that an excess of IL-10 in the organism drives profound hematological alterations, most notably 

increased myeloid cell production by the bone marrow (BM), development of anemia and 

extramedullary myelopoiesis with splenomegaly. The hematologic alterations observed required 

signaling through the IL-10 receptor (IL-10R) complex, since pMT-10 animals deficient for the 

IL-10Rα chain display a normal phenotype upon induction of IL-10 expression. Further genetic 
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manipulation of the pMT-10 model combined with reconstitution experiments support a key 

role for T cells in the mechanism of IL-10 driven myelopoiesis. Finally, through chemical 

inhibition of intracellular signaling pathways, we report an involvement of the phosphoinositide 

3-kinase (PI3K) molecule in IL-10-mediated myelopoiesis. Taken together, our data show that 

IL-10 over-expression changes the normal hematopoietic output, triggering myelopoiesis. These 

data add to the complexity of emergency hematopoiesis and to our understanding of 

hematopoietic deregulation by inflammation and infection.   
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Material and Methods 

Animals 

BL/6 mice were purchased from Janvier Labs or Charles River, pMT-10 mice [28], IL-10Rα-/- 

mice (kindly provided by Werner Müller), pMT-10.IL-10Rα-/- mice (pMT-10Tg+ IL-10Rα-/-), Rag2-/- 

mice, Mµ-/- mice, Rag.γc-/- mice (Rag2-/- γc-/- or y/-), CD3ε-/- mice, pMT-10.Rag.γc-/- mice (pMT-10Tg+ 

Rag2-/- γc-/- or y/-), pMT-10.Rag-/- mice (pMT-10Tg+ Rag2-/-)  and pMT-10.CD3-/- mice (pMT-10Tg+ CD3ε-/-

), were bred either at ICVS, i3S or Pasteur Institute mouse facility under pathogen free 

conditions. 

All animal experiments were done in strict accordance with recommendations of the European 

Union Directive 2010/63/EU and previously approved by Portuguese National Authority for 

Animal Health–Direção Geral de Alimentação e Veterinária (DGAV). Mice were euthanized by 

CO2 inhalation or cervical dislocation with efforts to minimize suffering.  

 

IL-10 induction 

IL-10 over-expression was induced via administration of zinc (Zn) sulfate heptahydrate (Sigma-

Aldrich, USA). A solution of 50nM Zn with 2% sucrose was prepared in the drinking water and 

was deliver to the mice ad libitum, during the experimental period [29].  

 

BM Transplantation Assays 

Lethally irradiated (850 rad) pMT-10.IL-10Rα-/- 5.2 mice were grafted with 4x106 of CD3, TCRβ 

and TCRγδ-depleted BM cells isolated from BL/6 5.1 mice or Rag.γc-/- 5.1 mice. In cotransfer 

experiments, BL/6 5.1 BM was injected intravenously (iv) mixed in a 1:1 ratio with BM taken 

from IL-10Rα-/- CD45.2 mice into pMT-10.IL-10Rα-/- recipients. Recipient mice received 4x106 T-

depleted BM cells in total. Donor reconstitution was assessed by peripheral blood analysis 4 

weeks after transplantation. Sub-lethally irradiated (300 rad) pMT-10.Rag.γc-/-5.1/5.2 mice 

were grafted with 4x106 BM cells isolated from BL/6 5.2 mice, Rag2-/- 5.1 mice, Mµ-/- 5.2 mice 

and CD3ε-/- 5.2 mice. 
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Buparlisib and Ruxolitinib Administration  

Ruxolitinib (Ruxo; NVP-CCA0022, Novartis) – a Janus kinase (JAK) 1/JAK2 inhibitor and 

Buparlisib (Bupa; NVP-BKM120, Novartis) – a PI3K inhibitor, were used to evaluate the 

signaling pathways activated during IL-10 over-expression. Ruxo and Bupa administration was 

performed by oral gavage, once daily, during the experimental period. Inhibitors concentration 

was determined based on previous reports [30-34]. Vehicle solution alone was used on the 

control groups.  

 

Histology 

Samples from the spleen were fixed in 4% paraformaldehyde immediately after mice were 

sacrificed. The 5µm paraffin-embedded sections were stained with hematoxylin and eosin, and 

tissue structure was assessed in a blinded fashion. 

 

Preparation of Cell Suspensions  

Lymphoid organs – femurs, tibias, thymus and spleens – were recovered into Hank’s Balanced 

Solution (HBSS; Gibco) with 2-4% of FCS. BM cells were extracted by flushing the femurs and 

tibias with 2mL of HBBS supplemented with 2-4% of FCS. Thymus and spleens were 

mechanically disaggregated with curved tweezers to obtain single cell suspensions. Cell 

suspensions were filtered with a 70µm nylon mesh. 

 

Flow Cytometry and Cell Sorting 

Cell suspensions were stained with antibodies purchased from eBioscience, Biolegend, BD 

Bioscience, Sony and Serotec. Briefly, cell suspensions were labeled with lineage (Lin) 

antibodies (anti-CD3 (145-2C11), anti-CD4 (A161A1), anti-CD8 (53-6.7), anti-CD11c (HL3), 

anti-CD19 (6D5), anti-B220 (RA3-6B2), anti-Mac1 (M1/70), anti-Gr1 (RB6-8C5), anti-NK1.1 

(PK136) and anti-Ter119 (TER119)) for 20min at 4°C and subsequently depleted using 

Miltenyi Biotec magnetic cell separation system. Remaining, Lin positive (+), cells were 

identified with Pacific Blue-coupled Streptavidin incubated for 15min at 4°C. The Lin negative 

(-) fraction obtained was stained with specific antibodies for progenitor markers (anti-IL-7Ra 

(A7R34), anti-c-Kit (2B8), anti-Sca-1 (D7), anti-FcγR (24G2) and anti-CD34 (RAM34)). Mature 

populations from BM and spleen were labeled for anti-CD11b (M1/70), anti-CD11c (N418), 
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anti-Ly6C (HK1.4), anti-Ly6G (1A8), anti-CD64 (X54-5/7.1), anti-Siglec-F (E50-2440), anti-MHC 

II (M5/114.15.2), anti-F4/80 (CI:A3-1), anti-B220 (RA3-6B2), anti-CD19 (6D5), anti-CD43 

(90), anti-IgM (RMM-1), anti-IgD (11-26c.2a), anti-CD3 (145-2C11), anti-CD4 (GK1.5) and anti-

CD8 (5H10-1). Antibodies against Ki67, BrdU and Annexin V were also used. Dead cells were 

excluded with propidium iodide (PI). Stained cells were analyzed using LSR Fortessa, LSR II or 

Canto II or purified through a FACSAria III (all from BD Biosciences). Cell numbers were 

estimated using CountBright Absolute Counting beads (Invitrogen) or Cellometer Auto T4 Bright 

(Nexcelom).  

 

In vitro Cell Cultures 

Single cells from common myeloid precursors (CMPs), granulocyte-macrophage precursors 

(GMPs) or megakaryocyte-erythrocyte precursors (MEPs) subsets were sorted into 60-well 

Terasaki plates containing 30µl of complete medium (optiMEM supplemented with 20% FCS, 

Penicillin (50 units/mL), Streptomycin (50 µg/mL) and β-mercaptoethanol (50 µM) all from 

Gibco,) and supplemented with c-kitL, macrophage (M)- colony stimulating factor (CSF), 

granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, Erythropoietin (Epo) and 

Thrombopoietin (Tpo). Recombinant cytokines were either purchased from R&D systems or 

obtained from cell line supernatants. Cultures were supplemented with fresh cytokines at day 

3. Frequency scores were assigned based on the frequency of colonies positive wells at day 4 

of culture. A day 7 of culture, cells from wells showing colonies were transferred to a slide 

using a Cytopsin centrifuge at 1000 rpm for 4 min at room temperature. Slides were stained 

with May-Grünwald for 5min, washed with PBS and stained with Giemsa for 15min. Slides 

were rinsed with deionized water, and let to dry. Cell morphology was analyzed by microscopy. 

 

RNA extraction, cDNA and classic quantitative real time PCR (qRT-PCR) 

mRNA from sorted cells (CMPs, GMPs, MEPs and mature subsets) was extracted using 

RNeasy Micro kit (Qiagen, 74004) and converted into cDNA by reverse transcription with 

PrimeScript RT Reagent kit (Takara, Clonetech). qRT-PCR was performed using Taqman 

primers (Hprt - Mm03024075_m1;  CEBPα - Mm00514283_s1; EPOR - Mm00833882_m1; 

and Il10 - Mm01288386_m1) and Taqman Universal Master Mix (Applied Biosystems). qRT-

PCR reactions were performed on an ABI 7300 thermocycler (Applied Biosystems), gene 
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expression levels were normalized to Hprt and relative expression was determined using the 

2ΔCt method. 

 

Cytokine Quantification 

IL-10 concentration in the serum was quantified using a commercially available ELISA kit (R&D 

systems). Luminex technology was used to specifically measure IL-10 and G-CSF, GM-CSF, M-

CSF, IL-3, IL-1, IFN and TNF, following the manufacturer’s instructions (eBioscience).  

 

Statistical Analysis 

Statistical analysis was performed with the student’s t test, one-way analysis of variance 

(ANOVA) or two-way ANOVA as indicated in the Figure legends. These tests were performed 

with Prism Software (GraphPad). Graphs containing errors bars show means ± SD. Statistical 

significance is represented as follows: *p < 0.05, **p < 0.01, and ***p< 0.001. 
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Results 

IL-10 over-expression associates with increased mature myeloid cells 

To investigate the biological impact of IL-10 in hematopoiesis, we resorted to our previously 

developed and characterized mouse model of IL-10 over-expression, the pMT-10 mice. This 

mouse model allows for timely controlled IL-10 over-expression in specific anatomic locations, 

notably in the BM, accompanied by a strong increase of the levels of this cytokine in the serum 

[29]. 

 For our initial analysis, we have sustained IL-10 expression for 30 days. Serum analysis 

of IL-10 in induced (Zn-fed) pMT-10 mice showed constant IL-10 over-expression at this time-

point, whereas circulating IL-10 was undetectable in pMT-10 mice fed with normal water or in 

control BL/6 mice (Supplementary Fig. 3.1a). After 30 days of IL-10 over-expression, a striking 

splenomegaly with increased spleen weight and cellularity, accompanied by a structural 

disorganization of the tissue were observed (Fig. 3.1a-c). These alterations were not seen in 

non-induced pMT-10 or BL/6, or in Zn-fed BL/6 (Fig. 3.1a-b), demonstrating that the observed 

phenotype does not result from pMT-10 genetic background, nor is it driven by Zn 

administration. Interestingly, the observed increased cellularity was related to a significant 

increase in myeloid cells, with no major alterations in lymphoid populations (Fig. 3.1d and e 

and Supplementary Fig. 3.1b). These hematologic alterations required signaling through the IL-

10R complex, since induced pMT-10 animals deficient in the IL-10Rα chain displayed a normal 

phenotype (Fig. 3.1f). 

 

In view of the described alterations, we next hypothesized that the IL-10-driven pronounced 

alterations in the spleen may result from upstream effects at the hematopoiesis level. To 

investigate this hypothesis, we performed a detailed analysis of how IL-10 over-expression 

affected the BM compartment. In line with the spleen data, the BM of induced pMT-10 showed 

a significant increase in the frequency of the CD11b+ Gr1+ population (comprising the CD11b+ 

Ly6Chi Ly6G- and CD11b+ Ly6C+ Ly6G+ subsets) as compared to non-induced pMT-10 mice (Fig. 

3.1g). In contrast, a reduction of the frequency of the B cell population was observed in pMT-

10 mice fed with Zn-enriched water as compared to pMT-10 fed with control water (Fig. 3.1g). 

 These hematopoietic changes in the BM and spleen were also reflected in increased 

percentages of myeloid cells in the blood of induced pMT-10 mice (Supplementary Fig. 3.2a). 
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Moreover, pMT-10 mice over-expressing IL-10 showed a decreased percentage of B cells and 

number of red blood cells (RBCs) and platelets in the blood, indicating the occurrence of 

anemia (Supplementary Fig. 3.2a). Of note, no alterations were observed in the thymus of 

pMT-10 mice over-expressing IL-10 (Supplementary Fig. 3.2b). These data support the concept 

that sustained IL-10 exposure impacts on the outcome of the hematopoietic process. Indeed, 

IL-10 exposure enhanced the myelopoietic output in the BM, and increased the BM and 

circulating myeloid cell populations with effects on the spleen, cellular composition, size and 

structure. 

 

IL-10 over-expression alters medullary and extra-medullary hematopoiesis 

Considering the substantial changes in mature cell composition imposed by IL-10 over-

expression within the BM, we next investigated whether the upstream progenitor populations 

were also affected. Upon IL-10 over-expression, the cellular composition of the progenitor 

populations in the BM, suffered remarkable alterations. The percentage of Lin- SCA-1+ cKIT+ 

(LSK) cells in pMT-10 mice over-expressing IL-10 was 10-fold higher than that observed in 

control mice (Fig. 3.2a). Moreover, a 3-fold increase of the BM GMPs population was also 

observed in induced pMT-10 mice (Fig. 3.2a). This increase in the GMPs frequency was 

accompanied by a substantial decrease in CMPs and MEPs in the BM of pMT-10 mice over-

expressing IL-10 (Fig. 3.2a). Therefore, the alterations induced by sustained IL-10 exposure in 

mature myeloid cell populations in the BM seem to result from increased LSK cell frequency 

and their deviation towards GMPs lineage. These data implicate, for the first time, IL-10 as a 

modulator of medullary hematopoiesis. 

 

Given the parallel in the phenotype observed for the mature cells in the BM and the spleen, we 

investigated whether the splenomegaly observed in pMT-10 mice over-expressing IL-10 might 

be dependent of alterations in the progenitor populations in the spleen. To assess this 

hypothesis, we analyzed the spleens of control versus pMT-10 mice over-expressing IL-10, for 

the presence of multipotent and lineage specific hematopoietic progenitors. A significant 

accumulation of LSK cells was observed in the spleens of induced pMT-10 mice (Fig. 3.2b). In 

addition, the GMP population, that as expected was very rare in the spleens of control pMT-10 

mice, was readily detectable in pMT-10 mice over-expressing IL-10 (Fig. 3.2b). Transcriptional 
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analysis of the GMPs sort purified from spleens of induced pMT-10 mice showed a profile 

marked by high levels of cEBPα and low expression of EpoR (Supplementary Fig. 3.3a). This 

profile is similar to that of BM-purified GMPs (Supplementary Fig. 3.3a), thus attesting the GMP 

identity of this splenic population. Furthermore, splenic GMPs of pMT-10 mice over-expressing 

IL-10 were functionally competent, as they showed the ability to differentiate into mature 

myeloid cells when cultured in vitro (Supplementary Fig. 3.3b). These results support the 

occurrence of extramedullary hematopoiesis in the spleens of pMT-10 mice over-expressing IL-

10.  

 

The BM is the initial target of IL-10 

Our data show an accumulation of LSK cells and GMPs in the BM and spleen after 30 days of 

IL-10 over-expression. We next sought to investigate the temporal kinetics of the observed IL-

10-mediated myeloexpansion. pMT-10 mice over-expressing IL-10 showed a striking increase 

in the percentage of LSK cells in the BM and spleen as early as day 7 of Zn administration 

(Fig. 3.2c). Moreover, an increase in the percentage of GMPs in pMT-10 mice over-expressing 

IL-10 was observed as soon as day 4 of Zn administration (Fig. 3.2c). Next we investigated 

whether the expansion of LSK cells and GMPs observed in pMT-10 mice over-expressing IL-10 

was due to alterations in their proliferative capacity, or associated with altered survival rates. 

Proliferation and death assays showed that BM LSK cells from pMT-10 mice over-expressing IL-

10 for 7 days are proliferating more and dying less than those from control pMT-10 mice (Fig. 

3.2d). These observations are compatible with a model where the initial changes driven by IL-

10 occur in the BM, where LSK cells proliferate more and differentiate into GMPs even before 

starting accumulating. Later on, as the spleens of induced pMT-10 mice are able to support 

extramedullary hematopoiesis, LSK cells may undergo locally differentiation into GMPs, which 

in turn further increases the numbers of the splenic mature myeloid populations. 

 Finding that the impact of IL-10 over-expression in hematopoiesis can be detected at 

LSK and GMPs level as early as day 7, allowed us to perform an additional experiment to 

further confirm the involvement of IL-10 in this process. Injecting an IL-10-expression plasmid 

into BL/6 mice mirrored the myeloexpansion observed in induced pMT-10 mice 

(Supplementary Fig. 3.4). Indeed, as compared to BL/6 mice injected with an empty vector, 

BL/6 mice injected with the IL-10 plasmid presented an LSK and GMPs expansion in the BM 
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and spleen, as soon day 7, as observed previously for induced pMT-10 mice (Supplementary 

Fig. 3.4).  

 

The IL-10-driven myeloexpansion requires IL-10R signaling in the hematopoietic 

compartment, and occurred via direct and indirect effects 

The myeloexpansion observed in pMT-10 mice requires IL-10R signaling (Fig. 3.1f). Most 

hematopoietic cells, including stem and progenitor subsets, express the IL-10R [35], thus 

being potential targets of IL-10. However, IL-10 cellular target and whether the observed effects 

result from a direct or indirect action of IL-10 remain unknown. To start dissecting the 

mechanisms underlying the IL-10-driven myeloexpansion in pMT-10 mice we used a BM 

transfer model.  In this model, irradiated recipient pMT-10.IL-10Rα+/+ mice or pMT-10.IL-10Rα-/- 

mice were reconstituted with T cell-depleted BM from BL/6 CD45.1 mice (Fig. 3.3a). After 

reconstitution, the chimeric mice were fed with Zn-enriched water for 15 days, at which time 

the presence of precursor cell populations was quantified in the BM or spleen. Data from the 

chimeric mice were compared to control pMT-10 mice. Independently of the presence or 

absence of IL-10R in the recipient mice, an expansion of both LSK and GMP populations and a 

contraction of CMP precursors were observed in the BM (Fig. 3.3b) and the spleen (Fig. 3.3c). 

These observations indicate that aberrant myeloexpansion triggered by IL-10 required IL-10Rα 

signaling in hematopoietic cells, and not in stromal cells, as the recipient mice were IL-10Rα 

deficient.  

 

To further understand whether the expansion of the progenitor populations was solely and 

directly mediated by IL-10, we performed a second set of immune reconstitution experiments. 

Irradiated pMT-10.IL-10Rα-/- mice were reconstituted with a mixture of T cell-depleted BM 

obtained from BL/6 5.1 and IL-10Rα-/- 5.2 mice (Fig. 3.4a). As before, after reconstitution, the 

mice were fed with Zn-enriched water for 15 days and the LSK and GMPs cell populations 

present in their BM and spleens analyzed as proxies for the IL-10-driven phenotype (Fig. 3.4b 

and c). Due to the differential expression of CD45.1 and CD45.2 in donor BL/6 wild type or IL-

10Rα-/- mice, respectively, we were able to determine the origin of the expanding populations. 

Both in the BM (Fig. 3.4b, d-e) and the spleen (Fig. 3.4c, f-g), the expansion of LSK cells in the 

reconstituted mice was decreased, while that of GMPs was unaffected, as compared to control 



Chapter III | The anti-inflammatory cytokine IL-10 is a new determinant of hematopoietic lineage commitment 
 

	 76 

induced pMT-10 mice. Whereas in the BM no significant changes were seen in the proportion 

of IL-10R-competent versus -deficient LSK cells (Fig. 3.4d), in the spleen, IL-10R-competent 

LSK cells proliferated more than IL-10R-deficient ones (Fig. 3.4f). These data indicate that both 

a direct and an indirect effect of IL-10 on hematopoietic cells might be in place and that LSK 

cells are likely more dependent on the IL-10R signaling than GMPs.   

 

T cells are required for the IL-10-driven myeloexpansion 

We next sought to investigate IL-10 primary cell population target, among hematopoietic cells. 

For this, we generated pMT-10.Rag.γc-/- mice and induced IL-10 over-expression. Of note, Rag-/- 

mice have impaired T and B-cell differentiation due to the absence of antigen receptors while 

deficiency in the γc receptor blocks differentiation of natural killer (NK) cells and innate 

lymphoid cells (ILCs) [36, 37]. Induced pMT-10.Rag.γc-/- mice showed no hematopoietic 

alterations in any of the tested progenitor cell subsets, presenting a BM and spleen 

comparable to control pMT-10 mice (pMT-10-Zn) (Fig. 3.5a-d). These results suggest that a 

lymphoid cell population plays an essential role in the IL-10-driven myeloexpansion. 

 To investigate which hematopoietic populations are targeted by IL-10, we resorted to 

another set of reconstitution experiments. Irradiated pMT-10.Rag.γc-/- mice were reconstituted 

with either T-depleted BM Mµ-/- mice or total BM of Rag-/- mice (Fig. 3.6a and b). As controls we 

used pMT-10 fed with normal or Zn-enriched water, and irradiated pMT-10.IL-10Rα-/- mice 

reconstituted with Rag.γc-/- BM cells (Fig. 3.6c). pMT-10.Rag.γc-/- mice reconstituted with Mµ-/- 

showed an expansion of both LSK cells and GMPs population in BM and spleen after 15 days 

of IL-10 over-expression (Fig. 3.6a and Supplementary Fig.5a and b). Mice reconstituted with 

Rag-/- BM cells showed no LSK or GMPs expansion either in the BM or spleen when compared 

to induce pMT-10 mice (Fig. 3.6b and Supplementary Fig.5a and b). These results exclude B 

cells as IL-10 target cells, whilst suggesting a contribution of T cells to the IL-10-induced 

myeloproliferation. Surprisingly, pMT-10.IL-10Rα-/- mice reconstituted with Rag.γc-/- BM cells 

and over-expressing IL-10 mirrored the phenotype developed by control pMT-10 over-

expressing IL-10 (Fig. 3.6c). Indeed, induced pMT-10.IL-10Rα-/- mice reconstituted with Rag.γc-/- 

cells presented a marked increase of the GMPs population both in the BM and spleen when 

compared to control pMT-10 mice (Fig. 3.6c). This was unexpected, as we had previously 

shown that pMT-10.Rag.γc-/- over-expressing IL-10 failed to develop the myeloexpansion 
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phenotype (Fig. 3.5a). Together, these observations suggest the involvement of a radioresistant 

T cell subset in IL-10 driven myeloexpansion, as T cells are the only remaining lymphoid 

population in the induced pMT-10.IL-10Rα-/- mice reconstituted with Rag.γc-/- cells (data not 

shown).  

 To further confirm the role of T cells in IL-10 driven phenotype, we crossed pMT-10 with 

CD3ε-/- mice and induced IL-10 over-expression in both pMT-10.CD3+/- and pMT-10.CD3-/-mice. 

pMT-10.CD3-/- mice over-expressing IL-10 showed no hematopoietic alterations in any of the 

tested progenitor cell subsets in the BM and spleen, while its littermate control, pMT-10.CD3+/-  

mice, developed the characteristic LSK and GMP expansion of pMT-10 mice (Fig. 3.7a-d). 

Together, these set of experiments suggest that T cells are required for the IL-10-driven 

myeloexpansion, although not being IL-10 first cell target. 

 

Signaling cascades mediating IL-10 induced myelopoiesis 

Among the well-described signaling cascades triggered upon activation of the IL-10R are the 

JAK/ Signal transducers and activators of transcription (STAT) and PI3K/AKT/ Glycogen 

synthase kinase 3 (GSK3) pathways [38, 39]. Importantly, both JAK/STAT and PI3K signaling 

cascades have been implicated in aberrant myelopoiesis, such as during myeloproliferative 

disorders [40-43]. 

 To investigate if JAK/STAT and PI3K cascades were involved in the IL-10-driven 

myeloexpansion, we resorted to specific JAK1/2 (Ruxo) and PI3K (Bupa) inhibitors. We 

questioned whether these inhibitors reverted the myeloexpansion developed upon IL-10 over-

expression. For this, we induced IL-10 over-expression for 30 days, followed by 7 days of Ruxo 

and/ or Bupa treatment in parallel with Zn administration in the drinking water. Treatment with 

Ruxo, Bupa or Ruxo+Bupa impacted the outcome of sustained IL-10 over-expression in pMT-10 

mice. Animals treated with Bupa or Ruxo+Bupa showed a reduction in spleen weight and size, 

with a recovery of the spleen histological structure (Fig. 3.8a and b). Treatment with Ruxo was 

not as efficient, with a less marked reduction of the spleen weight and size, and no signs of 

recovery of the spleen structural organization (Fig. 3.8a and b).  

 BM analysis revealed a reduction of the LSK compartment in all treated animals. 

Percentage of LSK cells in Ruxo, Bupa and Ruxo+Bupa treated groups was decreased when 

compared to the group pMT-10+Zn, but still higher than the pMT-10-Zn (Fig. 3.8c). Both these 
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control groups were treated with vehicle solution. Additionally, GMPs showed no alterations 

when compared to non-treated pMT-10 mice over-expressing IL-10 (Fig. 3.8c). These 

observations were reflected in the spleens of treated mice, as no alterations in the LSK 

population were observed when compared to pMT-10+Zn (Fig. 3.8d). Splenic GMPs remained 

altered in all treated groups (Fig. 3.8d). Further analysis of the different mature subsets 

revealed a slight reduction of BM monocytes (CD11b+ Ly6Chi Ly6G-) in Bupa and Ruxo+Bupa 

treated groups, in comparison to the pMT-10+Zn (Fig. 3.8e). However, no differences were 

observed in the neutrophil subset (CD11b+ Ly6Cint Ly6G+) in the BM (Fig. 3.8e). Spleen analysis 

of Bupa and Ruxo+Bupa treated groups, showed a decrease of the monocyte subsets that 

paralleled the one observed the BM (Fig3.8f).  Interestingly, the effect of Bupa and Ruxo+Bupa 

in splenic neutrophils was obvious, as the treated mice showed a marked decrease of the 

CD11b+ Ly6Chi Ly6G- population when compared to pMT-10+Zn (Fig.3.8f). Of note, BL/6 fed or 

not with Zn, treated with Ruxo+Bupa Zn showed a marked reduction in the percentage of 

CD11b+ Ly6Chi Ly6G- cells in the BM but no alterations in the neutrophil subset (Supplementary 

Fig. 3.7a). Moreover, no alterations were observed in the spleen of treated BL/6 mice 

(Supplementary Fig. 3.7b).  

 In all, these data demonstrates that JAK and PI3K inhibition allows for partial recovery 

of the spleen structure, with a more pronounced effect being observed with PI3K inhibitors. 

However, these inhibitors do not allow for recovery at the progenitor level, thus likely 

compromising a long-term positive effect.  
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Discussion 

Hematopoiesis ensures the daily replenishment of most mature blood cells. In addition to this 

homeostatic cellular amplification and differentiation, the hematopoietic system is capable of 

adapting its cellular output in response to stress, for example during infection or chemotherapy 

recovery. This process, generally termed emergency hematopoiesis, is regulated through a 

complex network of molecules and results in an increase output of myeloid cells [44]. Among 

the signals triggering emergency hematopoiesis are the CSF M-CSF, G-CSF and GM-CSF, and 

several cytokines, as type I and type II interferon (IFNs), IL-1β and IL-6 [44]. We here propose 

a previously unappreciated contribution of the anti-inflammatory cytokine IL-10 in reprograming 

hematopoiesis, leading to a greatly increased myeloid cell output. 

Previous studies suggested a role for IL-10 in hematopoiesis. HSCs stimulation with IL-10 

enhanced their self-renewal potential [45] and an increase of myeloid progenitor cells was 

observed when CD34+ cells were cultured with the classical cocktail for cell survival 

supplemented with recombinant IL-10 [46]. Furthermore, several reports have shown an 

association between IL-10 and the pathogenesis of hematopoietic disorders, such as B cell 

lymphomas [24-27]. To the best of our knowledge, our study is the first to report the impact of 

IL-10 in hematopoietic cell commitment in an in vivo model and to provide evidence on the 

underlying mechanisms, despite some still outstanding questions. 

 

Considering that IL-10 is produced by many immune cells in response to various stimuli [12], 

the presence of this cytokine in the BM niche during infection or other stress signals is not 

unexpected. Our findings are compatible with a mechanism wherein IL-10 acts at the BM level, 

initiating an expansion of LSK cells. This response of the hematopoietic niche to IL-10 is 

independent of IL-10R signaling in the stroma, thus indicating that a hematopoietic cell is the 

initial target of IL-10. During emergency hematopoiesis, myeloid-restricted progenitor cells 

normally identified as Lin−Sca-1−c-Kit+, become positive for Sca-1 and can no longer be 

distinguished from the real multipotent population of LSK, often resulting in an overestimation 

of the latter population. Thus, to exclude this possibility and confirm the authenticity of the 

expanded BM LSK population in pMT-10 mice over-expressing IL-10, a more detailed FACS 

analysis of the progenitor cells, including the surface markers CD34, CD48, CD150 and Flt3, 

is required. These markers will allow us to identify the different progenitor subsets enclosed in 
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the normal LSK compartment and reveal which particular LSK population is expanded in the 

presence of IL-10. This will be of utmost importance for the performance of more detailed 

molecular studies focused in the cellular population mostly affected by IL-10, by single cell 

RNA Seq, elucidating how the presence of IL-10 alters the transcriptional identity of progenitor 

cells. On-going studies are now being performed to evaluate if the presence of IL-10 impacted 

on the LSK capacity to give rise to all cells from the different lineages through in vitro assays.  

 Notably, LSK cells express the surface receptor for IL-10 [35], attesting their ability to 

respond to IL-10. Nevertheless, IL-10 on its own may not be enough to promote LSK 

expansion, as in the absence of T cells this phenotype is lost. We thus hypothesize that in 

response to IL-10 another molecular mediator is required to instruct the downstream T cell 

response. Importantly, our experiments with reconstituted pMT-10.IL-10Rα-/- mice show that T 

cells are not responding directly to IL-10, hence the need of an intermediate signal. In 

response to this IL-10-dependent signal, T cells further alter the hematopoietic niche, favoring 

myelopoiesis. Further studies, as depletion of the CD4 and CD8 populations in induced pMT-

10 mice, and reconstitution of pMT-10.CD3-/- mice with BM depleted in TCRαβ or TCRγδ cells 

will help elucidate the missing links in this mechanism. Once a target T cell population is 

found, we will purify it from induced and non-induced pMT-10 mice and perform RNA-Seq. This 

will indicate what alterations are seen in T cells upon exposure to IL-10, which in turn will offer 

candidates bridging IL-10 and T cell responses, as well as linking T cell responses and 

myelopoiesis.  

 Interestingly, the reported effects of IL-10 are reversible, as once Zn administration is 

suspended and the IL-10 expression returns to basal levels, we observe a retraction of 

myelopoiesis to homeostatic levels (Supplementary Fig. 3.8a-c). This indicates that transient 

administration of IL-10 does not lead to long lasting cellular transformation, but instead 

transiently deregulates the system.  

 

Despite these still unanswered questions in what regards the mechanistic details of IL-10-

driven myelopoiesis, our study bares unquestionable important implications. The immune 

response is shaped by the ability of the hematopoietic system to expand and contract 

populations of myeloid and lymphoid lineages upon different stimuli. Over the past years, a 

special attention has been given to the factors that modulate the cell output during emergency 
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hematopoiesis. Our findings now place IL-10 in this circuit, revealing how complex the 

hematopoietic process really is. We further offer T cells as important mediators of 

myelopoiesis. It is tempting to speculate that T cells may also be involved in emergency 

hematopoiesis during for example infection, a fascinating hypothesis that awaits clarification. 

 In summary, our study enhances our understanding of the complex regulatory links 

operating in hematopoiesis, unlocking IL-10 as a regulator of myeloid cell differentiation, in 

addition to being a regulator of myeloid cell responses. These data thus illustrate the 

intertwining and complexity of the immune system functioning. 
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Figure Legends 

Fig 3.1.  pMT-10 mice over-expressing IL-10 present splenomegaly, spleen 

histological disorganization and increased cellularity. Normal or Zn-enriched 

water was fed to BL/6, pMT-10 and pMT-10.IL-10Rα - / -  mice for 30 days. At day 30, (a)  

spleen size and (b) total number of leukocytes of pMT-10 mice fed with normal (pMT-

10-Zn) or Zn-enriched (pMT-10+Zn) water was recorded. (c)  Representative images of 

each group spleen size and histology. (d)  Numbers of splenic DCs (CD11b- CD11c+), 

eosinophils (CD11b+ Siglec-F+), monocytes (CD11b+ Ly6Ch i  Ly6G-) and neutrophils 

(CD11b+ Ly6C+ Ly6G+) were assessed in both groups. (e)  Numbers of B cel ls (B220+ 

CD19+), T cells (CD3+). (f)  Spleen weight, total number of leukocytes and total number 

of monocytes/ neutrophils (CD11b+ Gr1+) in pMT-10.IL-10Rα - / -  mice fed with Zn-enriched 

water and respective controls. (g)  Representative plots and statist ics of the mature 

populations in the BM of pMT-10-Zn or pMT-10+Zn. Each bar represents the Mean±SD 

for 3-6 independent mice, in 2 independent experiments. Data were analyzed with 

student’s t - test **p<0.01; ***p<0.001. 

 

Fig 3.2.  Myeloexpansion in the BM of pMT-10 mice is readily observed after 

4 days of IL-10 induction. (a)  Normal or Zn-enriched water was fed to pMT-10 mice 

for 30 days. At day 30, after l ineage depletion, cel l suspensions were stained for IL-

7Rα ,  cKIT, SCA-1, FcγR, CD34 and Flt3. Representative plots of BM LSK (Lin -  cKit +  Sca-

1+), CMPs (Lin -  IL-7Rα -  c -Kit l o  Sca-1 - FcγRl o  CD34+), GMPs (Lin -  IL-7Rα -  c -Kit +  Sca-1 - FcγR+ 

CD34h i )  and MEPs (Lin -  IL-7Rα -  c -Kit +  Sca-1 - FcγR- CD34l o )  and statist ics in both groups. 

(b)  Representative plots and statist ics of LSKs and myeloid precursor populations in 

the spleen of pMT-10-Zn and pMT-10+Zn after 30 days of Zn. (c)  Kinetics of IL-10 

driven myeloexpansion. The cellular composit ion of the BM and the spleen was 

determined on days 0, 4, 7, 14 and 30 of IL-10 induction. Each point or bar represents 

the Mean±SD for 3-6 independent mice, in 2 independent experiments. (d)  At day 7 of 

induction, prol i feration and survival of the different progenitor populations, in pMT-10-

Zn and pMT-10+Zn, was evaluated using Ki67 and Annexin V. Data were analyzed with 

(a, b and d) student’s t test or (c) two-way ANOVA (Sidak's multiple comparisons test) 

*p<0.05; **p<0.01; ***p<0.001. 

 

Fig 3.3.  The IL-10-driven myeloexpansion requires IL-10R signaling in the 

hematopoietic compartment. (a) Transplantation assays were performed by 



Chapter III | The anti-inflammatory cytokine IL-10 is a new determinant of hematopoietic lineage commitment 
 

	 89 

injecting 4×106 T cel l -depleted BM donor cells from BL/6 5.1 mice into lethally 

irradiated pMT-10.IL-10Rα + / +  or pMT-10.IL-10Rα - / -  mice. Five weeks after reconstitut ion 

Zn was administered to the animals for two weeks. As controls, non-induced pMT-10 

mice were used. Progenitor cel l populations in the (b) BM and (c) spleen were 

assessed at 15 using the same cell surface markers as before. Representative plots 

and statist ics of LSKs and myeloid precursor populations in the (b) BM and  (c) spleen 

of each group. Each bar represents the Mean±SD for 3-6 independent mice, from one 

representative experiment. (b-c) Data were analyzed with one-way ANOVA *p<0.05; 

**p<0.01; ***p<0.001. 

 

Fig 3.4.  The IL-10-driven myeloexpansion occurs via direct and indirect 

effects. (a) Transplantation assays were performed by injecting 4×106 T cel l -depleted 

BM donor cells from BL/6 5.1 or IL-10Rα - / -  5.2 mice into lethally pMT-10. IL-10Rα - / -  

mice. Five weeks after reconstitut ion, Zn was administered to the animals for two 

weeks. Progenitor cel l populations in the (b) BM and  (c) spleen were assessed at day 

15 using the same cell surface markers as before. Representative plots (b-c) and 

statist ics  (d-g) of LSKs and GMP populations in the  (b, d, e) BM and  (c, f, g)  spleen 

of each group. Each bar represents the Mean±SD for 3-6 independent mice, from one 

representative experiment. (d-g) Data were analyzed with one-way ANOVA or student’s 

t test *p<0.05; **p<0.01; ***p<0.001. 

 

Fig 3.5. Lymphoid cells mediate IL-10-driven myeloexpansion.  Normal water or 

Zn-enriched water was administered to pMT-10 and pMT-10.Rag.γc - / -  mice for 15 days. 

(a-b)  At day 15, progenitor subsets were assessed as before, both in the BM and 

spleen. (c-d)  Representative plots and statist ics of LSKs and myeloid precursor 

populations of each group. Each point or bar represents the Mean±SD for 3-6 

independent mice, from one representative experiment. (c-d)  Data were analyzed with 

one-way ANOVA **p<0.01; ***p<0.001. 

 

Fig 3.6. Radioresistant lymphoid cells mediate IL-10 effects in pMT-10 mice.  

Transplantation assays were performed by injecting either: (a)  4×106 T cel l -depleted 

Mµ - / -  BM cells, (b)  total BM of Rag- / -  mice into pMT-10. Rag.γc - / -  mice or (c)  irradiated 

pMT-10.IL-10Rα - / -  mice reconstituted with Rag.γc - / -  BM cells. As controls for al l 

reconstituted group we used pMT-10 fed with normal or Zn-enriched water, and 5 
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weeks after irradiation and reconstitution, Zn was administered to the animals for two 

weeks. Progenitor populations in the BM and spleen were assessed at day 15 using the 

same cell surface markers as before. Each point or bar represents the Mean±SD for 3-

6 independent mice, from one representative experiment. (a-c) Data were analyzed 

with one-way ANOVA *p<0.05; **p<0.01; ***p<0.001. 

 

Fig 3.7. T cells mediate IL-10-driven myeloexpansion.  Zn-enriched water was 

administered to pMT-10.CD3+ / -  and pMT-10.CD3- / -  mice for 15 days. (a-b)  At day 15, 

progenitor subsets were assessed as before, both in the BM and spleen. (c-d)  

Representative plots and statist ics of LSKs and myeloid precursor populations of each 

group. Each point or bar represents the Mean±SD for 3-6 independent mice, from one 

representative experiment. (c-d)  Data were analyzed with one-way ANOVA) **p<0.01; 

***p<0.001. 

 

Fig 3.8. JAK2 and PI3K inhibitors attenuate effects of IL-10 over-expression. 

IL-10 over-expression in pMT-10 mice was induced for 30 days. At day 30, inhibitors or 

vehicle were administrated by oral gavage in parallel with Zn in the drinking water.  (a) 

At day 37, BM and spleens were harvested and their weight determined. (b) 

Histological analysis was done with HE staining. (c-f) Leucocyte populations were 

assessed using the same cell surface markers as before, for both progenitors and 

mature subsets in the BM and spleen. Data from two experiments, with Mean±SD for 6 

independent mice. Data were analyzed with one-way ANOVA *p<0.05; **p<0.01; 

***p<0.001. 
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Fig. 3.5, Cardoso et al	
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Fig. 3.6, Cardoso et al	
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Fig. 3.7, Cardoso et al	
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Supplementary Material 

 

Supplementary Fig 3.1. Kinetics of IL-10 over-expression in the serum at 

different time points post Zn administration. (a)  BL/6 and pMT-10 mice were fed 

with normal or Zn-enriched water and at the indicated t ime points blood was harvested 

and the amount of IL-10 in serum measured by immunoassay. (b)  Shown is the gating 

strategy for lymphoid and myeloid cells analysis, in pMT-10 mice.  
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Supplementary Fig 3.2. Peripheral blood analysis showed a marked reduction 

of red blood cells and platelets in mice expressing IL-10. IL-10 over-expression 

in pMT-10 mice was induced for 30 days. (a)  At day 30, percentage of CD11b+ Gr1+ 

and B cells, and number of red blood cells and platelets in the peripheral blood of 

pMT-10-Zn and pMT-10+Zn was recorded. (b)  Numbers of T cel ls in the thymus, at day 

30 0f IL-10 over-expression, based on the cell surface expression of CD3, CD4 and 

CD8. Data from one representative experiment with Mean±SD for 6 independent mice. 

Data were analyzed with student’s t test **p<0.01; ***p<0.001. 
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Supplementary Fig 3.3. pMT-10 mice over-expressing IL-10 develop 

extramedullary myelopoiesis. IL-10 over-expression in pMT-10 mice was induced for 

30 days. At day 30, BM and splenic GMPs from pMT-10-Zn and pMT-10+Zn were sorted 

based on the expression of IL-7Rα ,  c-Kit, Sca-1, FcγR and CD34. (a)  Transcriptional 

analysis of sorted GMPs. (b)  Representative photos of GMPs colonies, from all groups, 

after 6 days of dif ferentiat ion and respective May-Grünwald staining.  
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Supplementary Fig 3.4. The IL-10-driven myelopoiesis is phenocopied in a 

different induction model. (a)  An IL-10-expressing plasmid was injected into BL/6 

mice, in PBS. Vehicle control was PBS alone. James di Santo and Yan Li provided the 

plasmid used and helped with animal handling. After 7 days, leucocyte populations 

were assessed using the same cell surface markers as before in the (b) BM and  (c) 

spleen. Data from one experiment with Mean±SD, for 3-6 independent mice. Data were 

analyzed with student’s t test *p<0.05; **p<0.01.  
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Supplementary Fig 3.5. B, NK and ILCs play a redundant role in IL-10 driven 

myelopoiesis. Transplantation assays were performed by injecting 4×106 T cel l -

depleted Mµ - / -  BM cells or total BM of Rag - / -  mice into pMT-10.Rag.γc-/- mice. As 

controls we used pMT-10 fed with normal or Zn-enriched water, and irradiated pMT-

10.IL-10Rα - / -  mice reconstituted with Rag.γc - / -  BM cells. 5 weeks after irradiation and 

reconstitut ion, Zn was administered to the animals for two weeks. Representative plots 

of (a)  BM and  (b)  spleen LSK cells and myeloid precursor populations of each group.  
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Supplementary Fig 3.6. JAK2 and PI3K inhibitors administration impact 

myeloid subsets in normal mice. Normal or Zn-enriched water was administered to 

BL/6 mice for 30 days. At day 30, inhibitors or vehicle were administrated by oral 

gavage in paral lel with Zn in the drinking water.  At day 37, (a)  BM progenitor 

population were assessed using the same cell surface markers as before. Myeloid 

mature subsets in the (b)  BM and (c) spleen. mature subsets in the BM and spleen. 

Data from one representative experiments, with Mean±SD for 5-6 independent mice. 

Data were analyzed with one-way ANOVA *p<0.05; **p<0.01; ***p<0.001. 
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Supplementary Fig 3.7. IL-10 withdrawal restores normal hematopoiesis.  At 

day 45, 15 days after the end of Zn administration, spleens from pMT-10 previously fed 

with normal or Zn enriched water were harvested, and spleen (a)  weight, (b)  total 

number of leukocytes and (c)  number of monocytes/ neutrophils (CD11b+ Gr1+) 

assessed. Each bar represents the Mean±SD for 6 independent mice, in 2 independent 

experiments. Data were analyzed with student’s t - test *p<0.05; **p<0.01. 
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General Discussion 

Interleukin (IL)-10 was described over two decades ago as a factor produced by T helper (h) 2 

cells, that inhibited interferon (IFN)-γ production by Th1 cells [1]. However, it later became 

evident that IL-10 is, in fact, produced by many cell types [2]. The expression of IL-10 is tightly 

regulated, and this cytokine exerts an anti-inflammatory effect in many cells, thus playing a 

prominent role in the regulation of the immune response. Furthermore, because IL-10 is 

deregulated in the context of several diseases, its biological activity has been targeted for 

therapy [3, 4].  

The main goal of this work was to unveil novel aspects on the role of IL-10 in the homeostasis 

of the hematopoietic system. Although IL-10 is amply studied in the context of disease, as 

infection, cancer and autoimmunity, its impact in homeostatic conditions is largely unknown. 

This is however important, especially considering the potential therapeutic applications of IL-

10. Furthermore, this knowledge is expected to strengthen the connection between all the 

players during the inflammatory response and hematopoietic output.  

 In this Thesis, we proposed to study the role of IL-10 in experimental-induced disease 

conditions, while also analyzing its impact alone on organism homeostasis. In short, we 

attempted to provide evidence that would place IL-10 as non-redundant modulator of the 

hematopoietic process. To address this, two main goals were defined: i) to understand how an 

anti-inflammatory scenario, provided by transient IL-10 over-expression, could modulate cell 

maturation profiles in response to gut induced pathology; and ii) to explore the effects of IL-10 

in medullary hematopoiesis. 

 

Most research focused on investigating the role of IL-10 in cell-mediated and humoral 

immunity has involved the administration of neutralizing antibodies or of large amounts of 

recombinant IL-10 to experimental animals or cultured cells. While these studies are helpful in 

outlining IL-10 functions, it is difficult to regulate cytokine dose and timing by these means. 

Thus, several genetic tools were generated throughout the years to dissect the precise cellular 

consequences of loss or over-expression of IL-10 expression and its signaling [5-10]. The first 

part of this work involved the characterization of a novel mouse model for inducible IL-10 over-

expression. The strain was generated using a construct containing IL-10 cDNA under the 

control of the inducible sheep metalloprotein promoter. This promoter is activated in the 
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presence of 50mM of Zinc (Zn) in the organism, administered in the drinking water, with IL-10 

being expressed by CD45-TER119- cells from the small intestine (SI), skin and, to a less extent, 

bone marrow (BM). Thus, the pMT-10 mouse model allows for timely controlled IL-10 over-

expression in specific anatomic locations, in addition to a significant increase of the levels of 

this cytokine in the serum. Importantly, the pMT-10 mouse model is not dependent on cell 

activation as the previous reported models [5-8], providing an unbiased tool to explore the role 

of IL-10 in the organism.  

 IL-10 is an essential molecular effector of intestinal regulation. Thus, the study of the 

mechanisms that promote IL-10-mediated protection is crucial to unveil novel therapeutic 

targets for Intestinal bowel disease (IBD). Our approach, as described in Chapter II, consisted 

in using a well-described model of dextran sulfate sodium (DSS)-induced colitis [11]. pMT-10 

mice pre-conditioned with IL-10 for 8 days before DSS administration showed a milder colitic 

phenotype. This protection was partially enhanced by the increased concentration of Zn in the 

organism of these animals, possibly due to a reduction in the inflammatory profile of Ly6C+ cell 

subset. The fact that we detected increased transcription of the IL-10 transgene in the BM and 

elevated levels of seric IL-10 led us to hypothesize that pre-exposure to IL-10 might induce 

long-lasting transcriptional changes in circulating monocytes, for example through epigenetic 

imprinting. If this were the case, re-educating these cells to gain long-lasting tolerance to DSS-

induced colitis would become an attractive possibility. However, this did not occur, as the 

protective effects of IL-10 were not long lasting, implying that IL-10 presence at the time of 

insult is necessary to ameliorate colitis.  

 Nonetheless, dissecting the properties and functions of the Ly6C+ cell subset that 

encounter an IL-10 environment in the gut, could bring additional information on how this 

population is delaying disease progression, revealing new molecules for future targeting. Our 

results show that IL-10 impacts the inflammatory profile of the Ly6C+ cell subset in the lamina 

propria of pMT-10 mice. In the future, a RNA Seq analysis of the Ly6C+ cell population obtained 

from the different environments (control, IL-10-enriched or Zn–enriched) may be important to 

reveal the on-going specific molecular alterations and their functional impact on disease 

progression. Furthermore, it will be of interest to combine the RNA Seq with ChIP Seq analysis, 

to evaluate the occurrence of epigenetic modifications, and how they may modulate the 

transcriptional profile of the Ly6C+ cell subset during IL-10 over-expression. 
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 In all, this part of the work offered a novel mouse model of induced IL-10 over-

expression and highlighted new possibilities for the mechanism that allows IL-10 to control 

intestinal inflammation.  

 

The second part of this Thesis focused on hematopoietic regulation by IL-10. The signals that 

regulate cell differentiation, proliferation and survival are activated by molecular programs that 

determine the specification of the precursors along the different lineages [12-16]. The 

influence of several cytokines, such as IL-3, granulocyte-macrophage colony stimulating factor 

(GM-CSF) and IL-7, in hematopoiesis has been well reported over the years [17-22]. However, 

a role for IL-10 in this process remained unknown.  

 During infections, the hematopoietic output may be dramatically altered, as steady-state 

hematopoiesis switches to emergency hematopoiesis by triggering a unique hematopoietic 

response program that is aimed at increasing myeloid cell output to meet the organism 

demand [23, 24]. Though the molecular mechanisms underlying regulation of emergency 

hematopoiesis are not fully understood, recent evidence suggests that the expression of 

various mediators, notably cytokines, have a non-redundant role on this switch in cell 

differentiation [25]. Understanding whether IL-10 may modulate hematopoietic differentiation 

is of unquestionable importance, considering the possible applications of IL-10 modulation in 

inflammatory diseases [4].  

 In this study, we provide evidence that IL-10 over-expression impacts hematopoiesis, by 

promoting a deviation of the hematopoietic process towards myelopoiesis, a process that 

parallels emergency hematopoiesis. Indeed, we show that high levels of IL-10 lead to an 

increase of Lin- SCA-1+ cKIT+ (LSK) and granulocytic-macrophage progenitors (GMPs) 

population in the BM, along with extramedullary accumulation of the same subsets in the 

spleen. The expansion of LSK cells and GMPs started in the BM soon after IL-10 induction in 

pMT-10 mice, while its splenic counterparts only became significantly altered later on. These 

observations suggest that IL-10 modulates medullary cell differentiation leading to an 

extramedullary hematopoiesis upon the egress of progenitors from the BM to the spleen. The 

cause of this cell migration from the BM to the spleen may reside on an altered BM niche. It is 

conceivable that IL-10 impacts not only hematopoietic cell differentiation, but also niche 

homeostasis, promoting signals for cell migration to organs able to support hematopoiesis. On 

the other hand, the hematopoietic progenitors may be successful in colonizing the spleen 
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simply because there are more progenitors in circulation. All these hypothesis may be coupled 

with the fact that the splenic niche is also affected, expressing signals for cell recruitment and 

colonization of the organ. It will be important, in the future, to address this various possibilities 

and to define in a more detailed way the molecular cues underlying the IL-10-driven 

extramedullary myelopoiesis. 

 We describe an enhanced LSK proliferation and survival, both in the BM and spleen, 

correlating with a sustained expansion of the GMPs during IL-10 over-expression. An 

outstanding question relates to the identification of the populations that, within LSK cells, are 

altered by IL-10. Preliminary data show that pMT-10 mice over-expressing IL-10 present a 

higher expression of CD48 in BM LSK CD150+ cells than that observed in controls (data not 

shown). To further investigate the authenticity of the expanded BM LSK cell subsets in pMT-10 

mice, a more detailed FACS analysis, comprising IL-7Rα, Sca-1, c-Kit, FcγR, CD34, CD48, 

CD150 and Flt3 altogether is currently on going. The combination of these markers will allow 

us to identify long-term (LT)-hematopoietic stem cells (HSCs), short-term (ST)-HSCs, lymphoid 

primed progenitors (LMPPs) and multipotent potent progenitors (MPPs) enclosed in the LSK 

compartment [26, 27]. Differentiation potential, through in vitro assays, will provide further 

evidence that the expanded LSK subsets correspond to bona fide BM progenitors. 

Furthermore, single cell RNA Seq on LSK cells as well as conventional RNA analysis would be 

of interest to check for their transcriptional identity. However, the final evidence that those cells 

are hematopoietic progenitors would reside on their ability to successfully reconstitute 

hematopoietic lineages in lethally-irradiated recipient mice.  All these experiments are currently 

on going.  

 Another interesting question raised by this study is how IL-10 promotes a bias for 

myeloid differentiation. One possibility is that IL-10 might induce transcriptional changes in BM 

progenitors, for example through epigenetic imprinting that could modulate cell fate. Therefore, 

the RNA Seq analysis of the BM progenitor populations will also be shed light into lineage 

commitment molecular alterations and their functional impact during IL-10 conditioned 

differentiation.  

 

 Using BM transfer models, we have further showed that IL-10 modulates hematopoiesis 

through a direct and indirect mechanism. Our findings suggest that IL-10 acts at the BM level, 

initiating an expansion of LSK cells. However, IL-10 requires the action of other intermediate 
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cell subsets for LSK expansion, as in the absence of T cells the phenotype is lost. We thus 

hypothesize that, in response to IL-10, another molecular mediator is required to instruct the 

downstream T cell response. Importantly, our experiments with reconstituted pMT-10.IL-10Rα-/- 

mice show that T cells are not responding directly to IL-10, hence the need of an intermediate 

signal. Thus, RNA Seq analysis of the different T cell subsets would be of interest, as it could 

provide further evidence on the upstream and downstream factors involved on IL-10-driven 

myelopoiesis.  

  Several reports demonstrated that myeloid differentiation is regulated by key growth 

factors, such as GM-CSF. GM-CSF signaling is critical for monocyte differentiation and survival 

[20, 22, 28], and an association between GM-CSF receptor (GM-CSFR) hypersensitive and 

myeloproliferation has been described [29-31]. Combining this information with our results, we 

hypothesized a role for GM-CSF in our model of IL-10-driven myeloexpansion. Serum analysis 

of induced pMT-10 mice showed no alteration in the GM-CSF expression when compared to 

control pMT-10 mice (Annex I, Supplementary Fig. 4.1). Of note, we also failed to detect 

differences in other most probable candidates, namely cytokines that are known to regulate 

myelopoiesis, as M-CSF, IL-3 and G-CSF (Annex I, Supplementary Fig. 4.1). Still, it is 

conceivable that IL-10-induced cytokine deregulation operates in specific anatomical locations 

and is, thus, not reflected in the serum. To address this problem, we will evaluate the 

transcriptional profile of different cell subsets from different organs, as the BM, SI and spleen. 

Administration of anti-GM-CSF to pMT-10 mice over-expressing IL-10 had no effect on the 

characteristic myeloexpansion (Annex I, Supplementary Fig. 4.2).  

 Interestingly, the phenotype revealed upon IL-10 over-expression mainly parallels that of 

myeloproliferative neoplasms (MPNs) in animal models and humans [32-34]. MPNs are a 

heterogeneous group of clonal diseases characterized by the excessive and chronic production 

of mature cells from one or several of the myeloid lineages [32]. Due to the relevance of Janus 

Kinase (JAK) 2 mutations for the etiology of MPNs, several JAK inhibitors are used in the 

clinics, with very positive results. Most interestingly, JAK inhibitors also work in individuals who 

do not present (known) JAK2 mutations, thus suggesting that hyper-activation of JAK2 may be 

a common factor driving myeloproliferation.  

 Administration of JAK2 (Ruxolitinib (Ruxo)) and/or phosphoinositide-3-kinase (PI3K) 

(Buparlisib (Bupa)) inhibitors to pMT-10 mice over-expressing IL-10 showed small only effects. 
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Despite the fact that PI3K inhibitor was able to block BM LSK proliferation/ differentiation in 

pMT-10 mice over-expressing IL-10, we must consider  

that these inhibitors act by impairing actively proliferating cells. Thus, the effects of the PI3K 

inhibitor might not be due not the fact that IL-10 is signaling through this pathways, but rather 

because the progenitors have an enhanced proliferation profile. Since our results suggest that 

pMT-10 mice over-expressing IL-10 develop several alterations that parallel MPNs, it would be 

of interest to in the future expand our observations by evaluating a possible association of 

genetic variants in IL10 or in genes involved in the IL-10 signaling and MPNs in human 

patients.  

  

IL-10 expression is one of the most important mechanisms evolved by many immune cells to 

counteract damage driven by excessive inflammation. Thus, downregulation of IL-10 

expression may lead to the development of severe forms of immunopathologies through a 

sustained or enhanced inflammatory response as an upregulation can lead to chronicity. 

Considering the poor outcomes of the past IL-10 clinical trials for the treatment of autoimmune 

disorders, it has become clear that a more detailed appreciation on how the source and 

kinetics of IL-10 expression modulates an effective immune response and interaction with 

different cell subsets is in order.   
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Appendix I - Chapter IV: supplementary data 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig 4.1. Cytokine profile in induced pMT-10 mice. (a)  Serum 

was collected at day 15, 30, 90 and 120 after the beginning of zinc administration 

from induced animals.  
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Supplementary Fig 4.2. GM-CSF is not a key factor in IL-10 driven myeloexpansion. (a) Induced pMT-10 mice were injected every two days for 3 weeks 

with either anti -GM-CSF mAb or isotype control, and compared with non-induced mice. (b-e)  Progenitor populations in BM and spleen were assessed at day 15 

using the same cell surface markers as before. (b-e)  Data from one representative experiment with Mean±SD, for 3-6 independent mice per group. Data were 

analyzed with one-way ANOVA*p<0.05; **p<0.01; **p<0.001. 


	Página 1
	Página 2
	Página 3
	Página 4



