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ABSTRACT

Nitrogen is one of the four most common elements in any cell and thus, it is needed
to sustain all kinds of life, making the nitrogen cycle crucial to life on Earth. However hu-
man activities have doubled the transfer of the reactive nitrogen into the biosphere, largely
through the excessive use of fertilizers. This lead to eutrophication of aquatic systems, a
negative ecosystem response usually associated with reduction of the biodiversity in it.

This work is set to improve the removal technique of reactive nitrogen by transform-
ing it into non-reactive nitrogen - through Nitrosomonas europaea, an essential and ubiquitous
bacteria in the nitrogen cycle. By using it in wastewater treatment plants, it is possible to
overcome a limiting step of this transformation, which ultimately helps to stop eutrophica-
tion.

N. europaea is the most studied ammonia-oxidizing bacteria to date and has various
pathways that involve different compounds of nitrogen, making it metabolically versatile
and, therefore, suitable for wastewater treatments. In this work, it was reconstructed a
genome-scale metabolic model of N. europaea, using merlin (a specialized software for this
task), to allow performing in silico simulations with different environmental conditions,

providing knowledge of its underlying metabolic fluxes.

This reconstruction was made through computational means (including several it-
erative steps such as automatic and manual annotation of the genome, curation of the
metabolic pathways, among others), was validated through laboratorial means (by grow-
ing the organism in a chemostat and quantifying the compounds of its biomass), and was
supported by literature in many cases.

This validation was represented by the accuracy of the model (a comparison between
the in vivo with the in silico data), and was equal to 98,36 %.

Now, with a metabolic model of the organism, a guided approach may be developed
to optimize the conversion of ammonia into nitrite, to be later metabolized by other organ-
isms to produce molecular diatomic nitrogen (inactive nitrogen), thus providing a solution
to eutrophication.

Keywords: Nitrosomonas europaea, Genome-scale metabolic model, Nitrogen, Eutroph-

ication
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RESUMO

O Azoto é um dos quarto elementos mais comuns na célula, e por isso é necessario
para sustentar qualquer tipo de vida, tornando o ciclo do azoto crucial para a vida na Terra.
Mas as actividades humanas duplicaram a transferéncia de azoto reactivo para a biosfera,
maioritariamente através do uso excessivo de fertilizantes. Isto conduziu a eutrofiza¢do
de sistemas aquéticos, uma resposta negativa do ecossistema normalmente associada a sua
reducdo da sua biodiversidade.

Este trabalho esta focado em melhorar a técnica de remogédo de azoto reactivo ao trans-
formaé-lo na sua forma inactiva - através da Nitrosomonas europaea, uma bactéria essencial e
ubiqua no ciclo do azoto. Ao usé-la em plantas de dguas residuais, é possivel ultrapassar
um passo limitante desta conversao, que por sua vez ajuda a parar a eutrofizagdo.

N. europaea é a bactéria oxidante de amoniaco mais estudada e esta contém vérias
vias metabdlicas que envolvem diferentes compostos de azoto, tornando-a metabolicamente
versitil, e assim é adequada para tratamento de dguas residuais. Foi reconstruido, neste tra-
balho, um modelo metabdlico a escala genémica da N. europaea, usando merlin (um software
especializado para esta tarefa), para permitir a realizacdo de simulagdes in silico sujeitadas

a diferentes condi¢des ambientais, fornecendo informacao sobre os seus fluxos metabélicos.

Esta reconstrugdo foi feita através de meios computacionais (incluindo varios passos
iterativos, como a anotagdo automética e manual do genoma, a curagdo das vias metabdlicas,
entre outros), foi validada através de meios laboratoriais (ao crescer este organismo num
quimiostato e ao quantificar os compostos da sua biomassa), e foi apoiada e justificada
através da literatura, em muitos casos.

Esta validagdo foi representada através da exatiddo do modelo (uma comparagdo
entre informacao in vivo e in silico), e foi igual a 98,36 %.

Agora, com o modelo metabdlico deste organismo, uma abordagem orientada para
a optimizacdo da conversdo de amoniaco para nitrito poderd ser desenvolvida, para este
composto ser metabolizado por outros organismos para ser produzido azoto diatémico

molecular (azoto na sua forma inactiva), e assim, fornecer uma solugdo para a eutrofizagao.

iii



CONTENTS

1

INTRODUCTION

1.1  Context and motivation

1.2 Goals

1.3 Structure of the document

STATE OF THE ART

2.1 Environmental background

2.2 Eutrophication

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

History and relevance
Mechanisms of effect
Causes

Possible solutions

Nitrosomonas europaea

2.3 Metabolic Engineering

2.3.1
2.3.2
2.3.3
2.3.4

Systems Biology
Metabolic models
Genome-scale metabolic models

Structure of the model

2.4 Systems Biology frameworks

2.4.1

2.4.2

Software for genome-scale metabolic model reconstruction

Software for genome-scale metabolic model simulation

METHODS AND DEVELOPMENT

3.1 Reconstruction of the draft model

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11

Finding organisms for comparison
merlin automatic annotation
Determining the « value

Setting the thresholds

Setting a new metric

Manual annotation

Integration with the model
Correct the reversibility of reactions
Correct EC numbers

Predict transporters

Convert the network to model

3.2 Curation of the genomic-scale metabolic model

iv

O O O Ul U1 W N R R

N HoR R R
=R A~ W N O

21
22
31
34
35
35
35
35
37
39
40
43
43
43
43
43
44



3.2.1
3.2.2
3.2.3
3.2.4

Remove dead ends
Reactions balance
Verify biomass precursors

Environmental conditions

3.3 Experimental material and methods

3.3.1
3.3.2
3-3-3
3-3-4
3-3:5
3.3.6
3-3-7
3.3.8

Organism

Medium and growth conditions
Chemostat setup

N-compounds analysis
Quantification of macromolecules
Quantification of aminoacids
Quantification of iron and copper

Scanning electron microscope

4 RESULTS AND DISCUSSION

4.1 Laboratorial results

4.1.1
4.1.2
4.1.3
4.1.4

Analytical analysis preformed in the chemostat
Quantities of metabolized compounds

Quantities of transported compounds

Scanning electron microscope

4.2 Computational results

4.2.1
4.2.2
4.2.3
4.2.4

4.2.5
4.2.6
4.2.7
4.2.8

4.2.9
4.2.10

Finding organisms for comparison

Determining the « and thresholds with new metric

Genome annotation

Contents

44
45
45
47
47
48
48
48
49
49
52
52
52
54
54
54
55
56
56
56
56
57
58

Correction of the reversibility of reactions and of EC numbers in the

model

Transporters prediction
Removal of dead-ends
Balance of reactions

Biomass precursors

Genome-scale metabolic model of N. europaea

Simulation and validation of the genome-scale metabolic model

5 CONCLUSIONS AND FUTURE WORK

5.1  Conclusions

5.2 Future work

A ANNEX

59

59
60

60
60
62
63
64
64
65

76

v



LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Figure 11

Figure 12

Nitrification and denitrification pathways 11
Representation of the metabolic model structure 22
Scheme of the four different status of reactions in the model 31

Scheme of the methodology used to reconstruct the GSM model of

N. europaea 34
Scheme representing how merlin distributes genes, by score 38
Workflow of the manual annotation 42
Workflow for the characterization of transport systems 44
Schematics of the chemostat used for N. europaea culture 50
Graphs of N. europaea chemostat parameters 55
N. europaea freeze dried biomass SEM images 57

Graph of the distribution of accepted and rejected genes, along with
the Accuracy and the Accuracy per number of entries to be curated,
by « 59
Wild-type simulation of the model, using OptFlux with pFBA 63

vi



LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Table 8
Table 9
Table 10

Useful databases to reconstruct genomic-scale metabolic models 16
Classification of genes on the Accuracy confusion matrix 37
Classification of genes on the lower threshold confusion matrix 37
Classification of genes on the upper threshold confusion matrix 39
Confidence level of homologues found in Swiss-Prot 40
Confidence level of homologous genes found in TrEBML 41
Number of genes annotated on Translated EMBL Nucleotide Se-
quence Data Library (TrEMBL) and Swiss-Prot of all the species of

the genus Nitrosomonas 58
Quantity of each macromolecule in the biomass 60
General information of the model 62

Comparison of models of organisms of reference 62

vii



ACRONYMS

ABHT Amonibacteriohopanetriol.

AIBENCH Artificial Intelligent workBench.
AMO Ammonia Monooxygenase.

ANAMMOX Anaerobic Ammonium Oxidation.
A0B  Ammonia-Oxidizing Bacteria.

ATP Adenosine Triphosphate.

BLAST Basic Local Alignment Search Tool.
BRENDA Braunschweig Enzyme Database.

BSA Bovine Serum Albumin.

ca Correctly annotated and Accepted.
cHR Charge Reduction Sample Holder.
COReECO Comparative Reconstruction.
crR Correctly annotated and Rejected.

css Cascading Style Sheets.

DAPI 4,6-Diamidino-2-Phenylindole Dihydrochloride.
DNA Deoxyribonucleic Acid.
po Dissolved Oxygen.

DpTDPA 3.3 Dithiodipropionic Acid.

EC Enzyme Commission.
EDS Energy-Dispersive X-ray Spectroscopy.

EDTA Ethylenediaminetetraacetic Acid.

viii



Acronyms

eTC Electron Transport Chain.

ExPASY Expert Protein Analysis System.

FAME Flux Analysis and Modeling Environment.
FBA Flux Balance Analysis.

PN False Negative.

Fp  False Positive.

FVA Flux Variability Analysis.

GEMSIRV GEnome-scale Metabolic model Simulation, Reconstruction and Visualization.
GLPK GNU Linear Programming Kit.
GPR Gene-Protein-Reaction.

GsM Genomic-Scale Metabolic.

HAMAP High-quality Automated and Manual Annotation of Proteins.
HAO Hydroxylamine Oxidoreductase.
HrLC High-Performance Liquid Chromatography:.

HTML HyperText Markup Language.

1A Incorrectly annotated and Accepted.
1ce-Ms  Inductively Coupled Plasma Mass Spectrometry.

IR Incorrectly annotated and Rejected.
KEGG Kyoto Encyclopedia of Genes and Genomes.

MATLAB Matrix Laboratory.

ME Metabolic Engineering.

MEMOSYS Metabolic Model research and development System.

MERLIN Metabolic Models Reconstruction Using Genome-Scale Information.

MIRIAM Minimal Information Required In the Annotation of Models.

ix



MOMA Method Of Minimization of Metabolic Adjustment.

MUSCLE Multiple Sequence Comparison by Log-Expectation.

N Nitrogen.

NA Non-annotable and Accepted.

NAD Nicotinamide Adenine Dinucleotide.

NADH Reduced Nicotinamide Adenine Dinucleotide.
NcBl  National Center for Biotechnology Information.
NoB Nitrite-Oxidizing Bacteria.

Npv  Negative Predictive Value.

NR Non-annotable and Rejected.

NR non-redundant.
ORF Open Reading Frames.

r Phosphorus.

pBS Phosphate-Buffered Saline.

pCc Phosphatidylcholine.

pDME Phosphatidyl-N,N-dimethylethanolamine.
PE Phosphatidylethanolamine.

PFBA Parsimonious Flux Balance Analysis.

PG Phosphatidylglycerol.

prGDB Pathway or Genome DataBases.

pHP Personal Home Page.

RAVEN Reconstruction, Analysis and Visualization of Metabolic Networks.

RNA Ribonucleic Acid.
ROOM Regulatory On/Off Minimization.

RRNA Ribosomal Ribonucleic Acid.

Acronyms



Acronyms

SBML Systems Biology Markup Language.

SEM Scanning Electron Microscope.

TC Transporter Classification.

TcDB Transporter Classification Database.

TMHMM Transmembrane Helices prediction by Hidden Markov Models.
TN True Negative.

TP True Positive.

TREMBL Translated EMBL Nucleotide Sequence Data Library.

TRIAGE Transport Proteins Annotation and Reactions Generation.

TRNA Transfer Ribonucleic Acid.

UNIPROT Universal Protein Resource.

UNIPROTKB Universal Protein Resource Knowledgebase.

xi



INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Nitrogen (N) is required by all organisms and it is one of the four most common
elements in the cell (Tamm, 1991; Galloway, 1998; Conley and Likens, 2009). Thus, the
distribution of this element in the biosphere is required to sustain all kinds of life, making
the N cycle crucial to survival on Earth (Sprent, 1987).

Prior to the anthropogenic input of bioavailable N, this cycle was balanced, however,
human activities have doubled the transfer of the reactive N into the biosphere, largely
through the misuse use of fertilizers, setting in motion a variety of environmental conse-
quences (Chindler and Ilman, 1997; Galloway, 1998). The excessive disposal of nutrients
into an aquatic system lowers the quality of the water and promotes the overabundance of
algae, aquatic plants and phytoplankton (Smith, 2003; Kemp and Stevenson, 2005; Conley
and Likens, 2009). This leads to a lower concentration of dissolved oxygen in the aquatic
system and consequent death of many species from all trophic levels, drastically reducing
the biodiversity in the habitat (Chindler and Ilman, 1997; Conley and Likens, 2009). The
reduction of biodiversity in aquatic systems is a serious issue that has ecologic, economic,
societal and health impacts (Chapin et al., 2000; Hooper et al., 2005). For example, reduc-
tion of algae diversity alone, diminishes the removal of pollutants in the water, promoting
waterborne pathogens (Cardinale et al., 2012). The reduction and reduction of fish diversity
promotes the spread of human diseases and loss of water quality either to drinking or to
irrigate (Moyle and Leidy, 1992).

The impact of over-addition on nutrients in the ecosystem is called eutrophication
(Schindler and Vallentyne, 2008). To stop eutrophication, improve the quality of water
for human consumption, and to sustain the species diversity in the aquatic systems, an
action must be made to reduce the input and concentration levels of nutrients (Chase and
Leibold, 2002; Smith, 2003; Galloway, 2005). There are many approaches to decrease the
concentration of the different nutrients in a water body. In this work we set to improve

a removal technique of one of those nutrients - the N by transforming this element from



1.2. Goals

reactive into non-reactive - using anaerobic ammonia-oxidizing bacteria (Bagchi and Nandy,
2012). This technique is one of the most used in the industry and is implemented in various
wastewater treatment plants (Bagchi and Nandy, 2012).

Nitrosomonas europaea, a gram-negative bacterium, is the most studied Ammonia-
Oxidizing Bacteria (AOB) to date, especially at the molecular level (Chain and Whittaker,
2003; Bagchi and Nandy, 2012). This organism has various pathways that involve different
compounds of N, making it metabolically versatile and, therefore, suitable for wastewater
treatments (Schmidt and Jetten, 2002; Bagchi and Nandy, 2012). To optimally use this or-
ganism in wastewater treatments, the underlining reactions of it must be fully understood.

Reconstructing a Genomic-Scale Metabolic (GSM) model of N. europaea, will allow
performing in silico simulations with different environmental conditions, providing knowl-
edge of the underlying metabolic fluxes (Villadsen, 2009; Dias et al., 2015). This work
envisages the use of various bioinformatic tools, including Metabolic Models Reconstruction
Using Genome-Scale Information (merlin), a software to reconstruct the GSM model of N. eu-
ropaea. Then, a guided approach may be developed to optimize the conversion of ammonia
into nitrite, to be later metabolized by other organisms to produce molecular diatomic N
(non-reactive N), thus providing a solution to eutrophication (Conley and Likens, 2009).

By studying a relevant microorganism, this work may represent an important step
for the solution of the eutrophication problem, a serious issue for Mankind. The current
knowledge on the N on eutrophication, as well as, lack of it on N. europaea is a great
opportunity to tackle the problem in a new angle, providing new perspectives to scientific
research by using this organism more efficiently. Reconstructing a functional GSM model
of this organism allows a better management of in vivo experiments, by reducing wet-lab
costs and time spent designing. Hence, these models prove to be an advantage to research
departments as budgetary restrictions are increasing, constraining the capital spent on wet-
lab resources and studies. This relative new approach in science, has proven to be reliable,
as Bioinformatics is an area that stands out for being accurate and for keeping up with the
ever-growing knowledge of Biology, using many state-of-the-art methods available today
(Samish and Najmanovich, 2015).

1.2 GOALS

The goal of this work is the reconstruction of the GSM model of N. europaea, and the
definition of strategies for improving production of nitrite. This work consists of several
technical objectives:



1.3. Structure of the document

e Studying of the background of the eutrophication problem and the organism is case,
and reviewing of the state-of-the-art GSM model reconstruction and validation soft-

ware.

e Drafting of the metabolic model by performing genome annotation, identifying the
metabolic reactions, verifying the stoichiometry of the reactions, confirming the lo-
calization of the reactions, constructing the biomass equation and adding other con-

straints to the model.

e Validating of the metabolic model, iteratively, by comparing in silico simulations with

in vivo experiments under specific conditions.

1.3 STRUCTURE OF THE DOCUMENT

This document is organized in the followings parts:

Chapter 2
State-of-the-art

Environmental background on eutrophication. Current solutions to the eutrophica-
tion problem. Introduction to the Metabolic Engineering, its goals and strategies. Nature of
metabolic models and its mathematical representation. Presentation of the reconstruction
and the validation process of the GSM model, and the available software.

Chapter 3

Methods and Development

N. europaea draft GSM model reconstruction, including the automatic and manual
annotation of the genome. Experimental material and methods for the growth the organism
and for the quantification its compounds.

3



1.3. Structure of the document
Chapter 4
Results and Discussion

Results from the reconstruction of the GSM model, from the growth of the organism
and from the quantification of its compounds, by in vivo data. Results from simulations, by
in silico data. Discussion of the validity of the GSM model. Comparison with other GSM
models.

Chapter 5

Conclusions and Future work

Summary of the work accomplished and next tasks for future efforts to solve the
eutrophication problem.



STATE OF THE ART

2.1 ENVIRONMENTAL BACKGROUND

The Biosphere is the ”peripherial envelope” of the planet Earth, along with the or-
ganisms that naturally inhabit it (Lieth and Whittaker, 1975; Veziroglu, 1984, Kumar, 1998).
Humans and all of the other species draw the essential resources such as air, water and
food from the Biosphere, and thus are consequently dependent on its ecological integrity
and great cycles, for survivability (Lieth and Whittaker, 1975, Kumar, 1998). However,
Mankind has a powerful influence over it, and can disturb the Biosphere balance - even
though Mankind is in absolute dependence of it (Veziroglu, 1984; Vernadsky, 1998). One of
the most serious damaging activities is the pollution (Kumar, 1998).

Pollution is the introduction of substances, in the environment, where their distri-
bution, concentration or physical behavior have undesirable or deleterious consequences
(National Research Council, 1978; Harrison, 2001). This can occur on the atmosphere, the
hydrosphere or on the lithosphere and all of these three systems are equally important on
this issue, meaning that dumping the residues into one of them cannot solve the problem,
as it is only shifting the problem from one element to another (Kumar, 1998). However this
work focus on the hydrosphere, the water system.

Water is one of the most important molecules for life - in fact all organisms require
it and biological evolution could not be possible without it (Agarwal, 2005). It is also one
of the most important resources, which Mankind has exploited for the sustenance of life.
However, only about 3 percent of water can be used for human daily requirements, being
this portion distributed in the form of ice sheets, underground sources, lakes, rivers, ponds,
atmosphere and biological water contained in the living organisms (Agarwal, 2005). This
fact makes it more important to preserve the quality of the water overall (the physical,
chemical and biological characteristics able to fit for some use) by not polluting it (Agarwal,
2005).

The input of pollutants, chemicals causing environmental harm, leads to an array of

effects of water pollution, such as: (1) Aesthetic disruption - Causes visual nuisances; (2)



2.2. Eutrophication

Temperature issues - Usually, causes the aquatic system to overheat; (3) Deoxygenation -
Removes oxygen from the water; (4) Toxicity - Leads to acute or chronic toxicity, causing
damage to aquatic or human life; (5) Sublethal toxicity - Disrupts or changes the biodi-
versity; (6) Acidity/Alkalinity: Disturbs the pH regime of the water; (7) Eutrophication -
Nutrients give rise to excessive growth of some organisms (Harrison, 2001). This set of
problems triggers a cascade of events, leading to other problems in the aquatic system
(Harrison, 2001). The urgent development and enhancement of biotechnological to solve

the eutrophication problem is the main motivation of this work.

2.2 EUTROPHICATION

Eutrophication is a form of pollution that can be described as the natural or artificial
addition of nutrients to bodies of water, its increased production associated with it, and the
environmental effects that come as a result (National Academy of Sciences, 1969; Pfafflin
and Ziegler, 2006). The called eutrophication sensu stricto is the addition into a body of
water nutrient supply and does not affect the quality of the water per se, but the effects of
eutrophication can induce a course of action leading to undesirable consequences (National
Academy of Sciences, 1969).

Eutrophication is a natural process, and it reflects the aging of the body of water (this
differs according to the characteristics of each body of water, i.e., lakes, rivers and others) -
the more aged, the more is effected by eutrophication (National Academy of Sciences, 1969).
However, when accelerated by man-made activities, it can result an a serious problem to

the environment and human health (Pfafflin and Ziegler, 2006).

2.2.1 History and relevance

The earliest scientific reports of eutrophication dates to 1907, however it only got
attention from the scientific community to develop the management of this ecological prob-
lem and to lead the course of future research in 1967, with the International Symposium on
Eutrophication (National Academy of Sciences, 1969). In this symposium, speakers agreed
that prevention of further damage to water resources was a matter of great urgency, and
other participants agreed that there should be a greater acquirement of knowledge about
the processes involved in eutrophication (National Academy of Sciences, 1969).

Eutrophication has been accelerating in the last decades due human activities that in-
crease the rate of nutrient input in a water body, due to rapid urbanization, industrialization
and intensified agricultural production (Yang et al., 2008).

This issue is so aggravating for the fact that it can affect different important areas:

by detracting natural beauty, reducing of property values, destructing of water resources,



2.2. Eutrophication

making the water effected non-potable and increasing the cost of filtration - making it
a political, societal and economical problem (Committee on Environmental and Natural

Resources, 2003; Pfafflin and Ziegler, 2006).

2.2.2  Mechanisms of effect

One of the various ways eutrophication can affect the aquatic system is by promot-
ing the productivity of some species of the phytoplankton community and its derived or-
ganic matter (Kemp and Stevenson, 2005). In lakes, the increasing productivity makes a
succession of stages on the body of water: starting with the oligotrophic stage (low produc-
tivity), becoming mesotrophic (medium productivity) eventually eutrophic (highly produc-
tive) and finally dystrophic - a stage in which the lake has almost been filled in by weeds
and the productivity has been greatly decreased (Pfafflin and Ziegler, 2006). The progres-
sion of this body of water, along with other typed of aquatic systems, can be explained by
a cascade of chemical and biological processes (Committee on Environmental and Natural

Resources, 2003; Yang et al., 2008).

First, the input of nutrients into a aquatic system leads to a direct primary production
(Rabalais et al., 2002). In some cases, even when the fluxes of nutrients is often high in a
system, biological uptake is frequently comparable to its magnitude, meaning that the nu-
trients were rapidly transformed into organic matter in this system because there is, in these
instances, a great nutrient demand from phytoplankton to its primary production (Lohrenz
et al., 1997). The nutrient loaded into the system, controls the size and the species composi-
tion by selecting the species with lower requirements of that specific nutrient (Dortch et al.,
2001). Aside from each species population growth, the species composition is influenced
by the cellular sinking rate of each specie (leading the cells into their death) - this rate is
caused by environmental stress and it varies markedly between taxa (Harper, 2012). The
sedimentation of this cells eventually leads to accumulation of it in the bottom of the body
of water (Harper, 2012).

This growth of population of some phytoplankton species, but not others, changes
dramatically the dynamic of the body of water and its characteristics (Yang et al., 2008).
The rapid changes in phytoplankton community composition, where it becomes dominated
by a single (or a few) species, over the course of days, is called algal bloom (Egerton and
Mulholland, 2014). This overabundance of one species not only reduces diversity in the phy-
toplankton community but, associated with the nutrient input, it also increases the primary
production of the body of water for the fact that the prevalent specie has a great capability
of growth with an excessive quantity of its limitant nutrient (Lohrenz et al., 1997; Egerton
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and Mulholland, 2014). Studies done by Egerton and Mulholland (2014) demonstrated a
correlation between increased phytoplankton biomass overall and decreased diversity in
the phytoplankton community, in these circumstances.

Eventually, this overproduction of primary production in the lake, along with its
sedimentation, leads to decay of this biomass (Dortch et al., 2001). This decomposition is
done by aerobic bacteria, that use Dissolved Oxygen (DO) of the the water, as a electron
acceptor in the electron transport chain (Rabalais et al., 2002). Also, massive quantities
of phytoplankton may act as a barrier to the penetration of oxygen into the water as well
as a barrier to sunlight, reducing the transparency of the water and weakeing or even
stopping the photosynthesis of plants underwater (Pfafflin and Ziegler, 2006; Yang et al.,
2008). Because of this, the aquatic system starts lacking DO (this condition is called hypoxia
and the most severe form of is called anoxia, where there is no DO in the system) (Chindler
and Ilman, 1997). Studies by Kemp and Stevenson (2005) have confirmed a correlation

between number of algae, DO and nutrient loads into aquatic systems.

Ultimately, the hypoxia state of the aquatic system contributes substantially to the
destabilization of food chains by killing fish, shellfish, and benthic organisms (Committee
on Environmental and Natural Resources, 2003; Kemp and Stevenson, 2005). The blooming
algae can even start releasing toxins and render the organic matters in water to be decom-
posed into harmful gases, which will also poison the fish and seashell (Yang et al., 2008).
At last, the DO levels becomes so aggravating that the environment kills every species ex-
cept a few anaerobic bacteria, converting the ecosystem into a nearly sterile state (National

Academy of Sciences, 1969; Othman et al., 2014).

Eutrophication can also alter further the quality of the water, by releasing harmful
toxins to the human health when the blooming algae die and attracting waterfowl which
contribute to the pollution of the water, among many other ways (Pfafflin and Ziegler,
2006; Yang et al., 2008). The massive death of the species of different trophic levels has
a great negative impact on the habitat and on the environment in general (Committee on

Environmental and Natural Resources, 2003).

2.2.3 Causes

There are many factors that lead to the eutrophication of the general aquatic sys-
tem (Chindler and Ilman, 199y; Pfafflin and Ziegler, 2006). The common sources of the
most relevant nutrients are rainfall, ground water, urban runoff, rural runoff, agricultural
runoff, industrial wastes, municipal water treatment, waterfowl and domestic sewage ef-

fluent (Pfafflin and Ziegler, 2006). The domestic sewage effluent (being the origins, the
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nutrients derived from human wastes, waste food and synthetic detergents) is one of the
greatest contributors to eutrophication, however, the agricultural runoff is considered by
the scientific community to be the most influential one (being the origins, the wastes from

farm animals and the overuse of fertilizers) (Pfafflin and Ziegler, 2006; Yang et al., 2008).

Although vitamins, growth hormones, amino acids and trace elements can all con-
tribute to eutrophication, N and Phosphorus (P) have been assign as the most influential
in this issue (only a mere 0,3 to 0,015 ppm of nitrates, in the water, is enough to produce
blooms of certain species of algae, in some conditions) (National Academy of Sciences,
1969). N and P are considered the limiting factor that triggers the algal bloom and are the
only ones thoroughly studied in the field and in the laboratory (Conley and Likens, 2009;
Pfafflin and Ziegler, 2006).

This work focused on N, as one of the most important factors leading to eutrophica-

tion.

2.2.4 Possible solutions

Since the alarming consequences of eutrophication has been sensibilized to the scien-
tific community, measures were taken by namely research on the subject and developing
various technological solutions to this problem (National Academy of Sciences, 1969).

There are two ways to stop eutrophication and its effects from occurring: prevention
of introduction of nutrients resulted from Man activities into the aquatic systems, and en-
hanced the removal of those nutrients present in it (National Academy of Sciences, 1969).
While prevention is generally perceived as a greater solution, it is necessary to apply tech-
niques to remove the reactive N from the current bodies of water subjected by it (National
Academy of Sciences, 1969; Bagchi and Nandy, 2012). There is a plethora of removal tech-
niques used in the modern day: Drenching; Removal of algae, aquatic weeds and other
organisms; and other techniques (Pfafflin and Ziegler, 2006).

Specifically about the N, there are an array of removal techniques that can be applied
in a water treatment: (1) Land application - a method to make ammonium in the water to be
adsorbed when its soil is percolated; (2) Ammonia Stripping - an aeration process, making
the N (as non-reactive molecule) liberate into the atmosphere; (3) Anaerobic Ammonium
Oxidation (ANAMMOX) - a biological process performed by bacteria that converts nitrite
and ammonium into diatomic Nj; (4) Anaerobic denitrification - process that reduces nitrate
to diatomic N and nitrous oxide by denitrifying bacteria; (5) Nitrification and Denitrification
- process that reduces ammonia into nitrate, and then nitrate to diatomic N (Pfafflin and
Ziegler, 2006; Bagchi and Nandy, 2012). The technique proposed in this work is the latter
process.
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Nitrification and Denitrification

Nitrification and denitrification are two processes that can be coupled to be a solution
to remove ammonia (reactive N) from water to the atmosphere as diatomic N (non-reactive
N) (Bagchi and Nandy, 2012). Nitrification is the process that can be done by AOB that
transforms NHj (rather than NHI, for the fact that this molecule is not permeable to cell
membrane) into nitrite (NO,), and by Nitrite-Oxidizing Bacteria (NOB), that transforms
nitrite into nitrate (NO3) (Baribeau, 2006). Then this nitrate is transformed by denitrifier
bacteria into diatomic N, in a process called denitrification (Baker and Irvin, 2007; Bagchi
and Nandy, 2012). A simplified pathway of these processes is presented in Figure 1.

There has been studies concerning these communities of bacteria, which established
taxonomic groups based on their capability to perform each of the denitrification process
(Baribeau, 2006). The fact that AOB and NOB have low growth rates, and therefore have
doubling times (time needed for the biomass or population to double in number) ranging
between 11 and 50 hours, slows the study of these organisms (Baribeau, 2006). However, the
bottleneck of the N removal is at the AOB performance, because usually NOB are facultative
chemolitoautotrofic bacteria which can use organic carbon as substrate and AOB are often
chemolithoautotrophic bacteria, which means the only source of carbon is derived from
CO, fixation (Mandana and Tahmurespour, 2012). Unfortunately, this fixation requires a
great amount of energy, which further slows down the growth rate of AOB comparatively
to NOB. For this, there is a great interest for studying the AOB to improve their growth and
optimize the whole nitrification process.

And so, this work is focused on N. europaea ATCC 19718, for the reason that it is the
most studied AOB, especially at the molecular level and because it has a rich and complex
network of N pathways (Chain and Whittaker, 2003; Bagchi and Nandy, 2012).

Also, there was previously made a plethora of research on N on the eutrophication
issue, however, there has not been relevant study on the N. europaea using the strategy
proposed by this work. Even though there is a sufficient amount of information on scientific

articles and databases to make this work possible.

2.2.5 Nitrosomonas europaea

N. europaea, a gram-negative bacterium, is considered an obligate chemolithoautotroph
that obtains energy from ammonia oxidation and assimilate carbon from atmospheric car-
bon dioxide fixation (Chain and Whittaker, 2003; Bagchi and Nandy, 2012). This organism

has various pathways that evolve many different compounds of N, which makes it metabol-
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Nitrification

pos] - [nos]

NH; ———— NO, ——— NO;

Denitrification

N;

Figure 1.: Nitrification and denitrification simplified pathways. Representation of AOB and NOB
activities in the nitrification pathway. Figure based on Peng and Zhu (2006).

ically versatile, and therefore suitable for wastewater treatments (Schmidt and Jetten, 2002;
Bagchi and Nandy, 2012). The main metabolic features are the ability to oxidize ammonia
to nitrite (via aerobic and anaerobic pathway), and reduce this nitrite generated to nitrous

oxide through nitrifier denitrification, in anoxia conditions (Bagchi and Nandy, 2012).

N. europaea uses the advantageous pathway depending on the environmental condi-
tions. This bacterium, through the use of the different enzymes it can synthesize, it can
metabolically produce or degrade an array of N compounds for different purposes. There
are even strains of N. europaea that metabolize NH3 into Ny, however, this work is trying
to elaborate on a proof of concept that states that the N removal is more efficient through
a series of operations, each one performed by a species, than the whole process performed

by a single organism (Shrestha et al., 2001).

In laboratory, N. europaea is a difficult organism to work with. Additionally, it has a
low specific growth rate, which makes the develop of new approaches and improvements
of N removal techniques even more inefficient. The main reason for this inefficiency is due
to the chemolithoautotrophic possess a growth efficiency ranging between 4,4 to 21,3 %,
due to a part of the energy generated by autotrophs is used to fix CO, (Baribeau, 2006).

To understand and improve the ways N. europaea can be grown and multiplied, as well as

11
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metabolically studied, it has to be approached at a molecular level.

This work uses metabolic engineering to do this, and the final objective is to recon-
struct a metabolic model of N. europaea. The following sections will detail on what are
metabolic models, and how, ultimately, it can help improve on N removal techniques to

stop eutrophication.

2.3 METABOLIC ENGINEERING

Metabolic Engineering (ME) can be defined as the construction, redirection and ma-
nipulation of cellular metabolism through the introduction, deletion, and/or modification
of metabolic pathways, commanded by enzymes, to achieve biosynthesis or biocatalysis
of desired natural and non-natural compounds (Lee and Papoutsakis, 1999; Smolke, 2009).
The roots of ME have started being developed in the 1970s with the advancement of one
important tool in the field of genetic engineering - recombinant Deoxyribonucleic Acid
(DNA) technology (Nielsen, 2003; Smolke, 2009). With the advent of this technique, ME
has differed from the initial applications of genetic engineering, in the way that this new
approach could not only work in one or a few reactions in an organism, but in multiple
reactions (through genes) to create entirely new pathways that could produce a wide range
of compounds (Nielsen and Arnold, 2005). This allowed the manipulation of the organisms
as a whole, as one of the defining aspects of the ME is the focus on integrated metabolic
pathways instead of individual reactions - this means that it examines entire biochemical re-
action networks, concerning itself the pathway fluxes and its control (Stephanopoulos et al.,
1998). Another defining aspect of ME is the strongly directed effort to cell improvement,
compared to random mutagenesis (Stephanopoulos et al., 1998; Nielsen and Arnold, 2005).

The major aspect of ME, along with its goal, is the large-scale production of useful
chemicals (Kulkarni, 2016). This is achieved by controlling the biochemical pathways fluxes,
that determine the cell physiology, leading to the overproduction of different compounds
(Stephanopoulos et al., 1998). There are different approaches of ME for the production of
these biochemicals: (1) by overexpressing the gene encoding the enzyme that participates in
the biosynthetic pathway of the desired product; (2) by inhibiting the competing metabolic
reactions that use the same precursor of the desired product for another biochemical; (3)
by carrying out the production of the desired biochemical to a non-native organism, i.e., by
isolating the gene responsible for the production of the desired biochemical and import it to
another organism that can do the same biosynthesis more easily - this is called heterologous
expression; (4) by mutating genes, altering the resultant amino acids, to synthesize non-
natural chemicals not found in Nature (Kulkarni, 2016). However, the traditional method
of ME have focused on the modification of enzymatic pathways near to the end-product

(Lee and Papoutsakis, 1999).
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Although there are competitive areas of study to provide compounds of interest, there
are many advantages of synthesizing chemicals, materials or energy via ME, in contrast
to the traditional chemical synthesis methods: Firstly, many chemicals remain difficult to
synthesize with the latter strategy, whereas the former one has demonstrated to provide
adaptability to be enable the production of complex molecules. Secondly, unlike the latter
strategy, the former is often conducted under mild conditions, enabling the production of
fewer toxic-byproducts. And thirdly, ME strategies use the cell natural ability to replenish
enzymes, and to provide precursors from inexpensive and renewable starting materials,
which ultimately softens the global environmental impact (Smolke, 2009). The presented
reasons and the fact that the ME is multidisciplinary, are advantages in meeting goals of
this field (Stephanopoulos et al., 1998).

ME contributes in the measurement and understanding of the control of fluxes in vivo
by revealing the degree of pathway engagement in the metabolic process (Stephanopoulos
et al., 1998). This provides insights into yield optimization (through optimal flux distribu-
tion), being it important to approach some common challenges of bioprocessing (Nielsen
and Arnold, 2005). Besides biotechnology, medicine and agriculture can also benefit from
advances in ME which can contribute to overcome their challenges (Nielsen and Arnold,
2005). More specifically, ME can improve the processes of fermentation engineering, drug
target identification, and microbial engineering (Jing and Alashwal, 2014). ME will con-
tinue to progress, considering the incorporation of new experimental and computational
tools (Nielsen, 2003). The implementation of these tools may expand ME into new areas of
application, being the industrial an important one, as the economic potential of biotechnol-
ogy is increasing (Nielsen and Arnold, 2005).

ME focuses on the development of new cell factories and on the improvement of
existing cell factories and is an application of Systems Biology (Nielsen and Jewett, 2007).

2.3.1  Systems Biology

Systems biology can be described as a multidisciplinary science that works with math-
ematical modelling, global analysis, mapping of interactions between cellular components
and quantification dynamic responses on living cells (Nielsen and Jewett, 2007). The goal
of Systems Biology is to describe quantitatively biological systems in the form of a mathe-
matical model to predict the behavior of the biological system under specific circumstances,
providing new insight into the molecular mechanisms occurring in living cells (Nielsen and
Jewett, 2007) . This is only possible through the combination of mathematical modeling and
experimental biology (Nielsen and Jewett, 2007).

13
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2.3.2  Metabolic models

It has been determined that genes inherently can determine one or more functions in
the cell, by producing its respective protein or proteins, and as a consequence changing the
cell phenotype (Crick, 1970; Malcolm and Goodship, 2001). These enzymes (proteins with
biological catalytic activity) promote biochemical reactions by converting reactant metabo-
lites into product metabolites (Champe et al., 2005; Benner et al., 2014). The set of these
reactions is defined as the metabolic network which is responsible for the uptake and degra-
dation of substrates and for the synthesis of building blocks and energy that the whole cell
requires (Baart and Martens, 2009; Benner et al., 2014). In other words, enzymes are re-
sponsible for catalyzing biochemical reactions within the cell, and the complete set of these
reactions represents the metabolism of the cell (Baart and Martens, 2009).

Understanding of the metabolic networks has become an important aspect of biology,
as more knowledge is being generated, and allows studying how the system responds to the
ever-changing external environment (Wittmann and Lee, 2012). Metabolic modeling aims at
the quantitative understanding of the cell reaction networks to predict the intracellular dy-
namic behavior with reasonable precision (Kholodenko and Westerhoff, 2004; Rocha et al.,
2008). Metabolic networks are largely studied, among the different biological network, and
have been used in many ways, such as drug target identification, gene deletion predictions,
and cellular regulatory network elucidation and industrial production (Wittmann and Lee,
2012; Jing and Alashwal, 2014).

To elucidate a better understanding of the response of systems to various environ-
mental stimuli, a gathering of three different networks are optimal to have in a model: (1)
Metabolic networks - system of biochemical reactions; (2) Transcriptional networks - system
of the genome expression; (3) Signaling networks - system of proteins that transduce infor-
mation, leading to changes in the transcriptional state of the cell (Villadsen, 2009; Wittmann
and Lee, 2012). However, this work is focused only on the metabolic networks, considering
it is the reconstruction of a metabolic model.

Metabolic models are representations of the full or part of the metabolism of a cell
(Baart and Martens, 2009; Terzer and Stelling, 2009). They can be represented using a formal
mathematical description: (1) A stoichiometric matrix is build according to the metabolic
reactions; (2) Each row of the matrix represents one metabolite and each column represents
one reaction; (3) Each element of the matrix is the stoichiometric coefficient of the corre-
spondent reaction and metabolite(s) - if negative the metabolite is consumed, if positive
the metabolite is produced, and if it is zero the metabolite is not produced nor consumed
(Savinell and Palsson, 1992; Benner et al., 2014). This matrix allows performing several anal-
yses to identify flux distributions, such as Flux Balance Analysis (FBA), Parsimonious Flux
Balance Analysis (pFBA), Flux Variability Analysis (FVA) or others methods (Wittmann and
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Lee, 2012; Benner et al., 2014). These analyses provide an alternative to the more expen-
sive and time-consuming “wet-lab” experimental work, by performing in silico simulations
which have been shown to provide reliable results (Villadsen, 2009; Dias et al., 2015). These
simulations can be used to predict the phenotypical behavior of the organism from growth
on different substrates to changes associated to gene knockouts, providing essential infor-
mation for a better understanding of the overall metabolism to identify metabolic genes
that can be manipulated and to understand complex biochemical processes (Smolke, 2009;
Wittmann and Lee, 2012; Hartmann and Schreiber, 2014). With the full genome sequence,

it is possible to reconstruct models at the genome-scale (Wittmann and Lee, 2012).

2.3.3 Genome-scale metabolic models

GSM model are used to analyze and characterize their respective organisms, and
to investigate their physiological characteristics or to suggest engineering strategies for im-
proving the overproduction of a desired compound (Wittmann and Lee, 2012). GSM models
are metabolic models with, usually, several hundred up to several thousand reactions and
metabolites within it, leading to a more accurate representation of the cell (Benner et al.,

2014).

Reconstruction of genome-scale metabolic models

Reconstructing a GSM model involves collecting information from various fields of study,
from genomics and metabolomics to cellular physiology, thus it is important to retrieve
as much relevant information as possible to obtain a more accurate representation of the
organism (Dias and Rocha, 2015). Online databases, along with literature, are the data
source that provide most of this information (Terzer and Stelling, 2009). A collection of
different databases that are usually used for this purpose is shown in Table 1.

The reconstruction of a GSM model is a very complex process in which various fields
of study are involved and an array of computational tools and laboratorial methods have to
be applicated (Stephanopoulos et al., 1998; Thiele and Palsson, 2010). This process may take
weeks to years, depending on its complexity, hence automated, or at least semi-automated
tools developed with the aim of generating high-quality GSM model should be considered
(Thiele and Palsson, 2010). The reconstruction of GSM models comprises hundreds of steps
distributed by four stages (Thiele and Palsson, 2010; Dias and Rocha, 2015).

Each stage presented above have a plethora of intricacies, making the reconstruction
of GSM model a complicated process, with different subjects of study, types information
and details. To grasp the big picture, it is here presented next the most important concepts

15
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of each stage based on Dias and Rocha, explaining the different aspects of bioinformatics

within it (Dias and Rocha, 2015).

According to Dias and Rocha (2015), the reconstruction of GSM models can be sum-
marized on four stages: (1) Genome annotation; (2) Assemblage of a metabolic network
from the genome; (3) Conversion of the network to a stoichiometric model; (4) Validation
of the metabolic model. These stages are repeated iteratively to increase the accuracy of the
GSM model, and thus better represent the organism in vivo. As these steps require compil-
ing information from distinct data sources, the reconstruction process involves curating the

retrieved data to improve the GSM model.

Initially, the genome of the organism is retrieved from public repositories of genomic
data, such as NCBI or KEGG, in which a manual curation may have been performed, how-
ever, if the genome annotation of the organism is not available, it can be performed by a
series of processes. Regarding the latter case, is important to retrieve certain data for each
gene namely the gene or Open Reading Frames (ORF) names, product names and Enzyme
Commission (EC) numbers (if possible). Some tools use Basic Local Alignment Search Tool
(BLAST) and HMMER to perform an automatic annotation of the whole genome.

Genes with scores above a user determined threshold (upper threshold) are automati-
cally annotated and considered correct, whereas gene annotations with scores below a user
defined lower threshold should be rejected and considered incorrect. The gene annotations
with scores between the two thresholds should be reviewed manually to identify which
metabolic genes should be integrated in the GSM model. The manual curation of these
genes annotation involves determining and following a series of steps to assign a function
to each gene and to determine the confidence level of that assignment, called an annotation
workflow.

Genes annotated as metabolic should be identified with EC numbers, whenever possi-
ble. The EC number of each gene can be confirmed through BRENDA to eliminate possible
errors due to: transfer of the EC number to other EC code, deletion or mismatch between
EC number and enzymatic function. This step is crucial to the genes found between the

two thresholds and therefore present in the annotation workflow.

When the gene annotation is completed, it is possible to assemble the metabolic net-
work.

The first step on this stage is to collect the reactions promoted by the proteins encoded
in the genome (called the Gene-Protein-Reaction (GPR) association). This is performed by
searching databases with the protein name, EC number(s) and other identifiers (such as
KEGG reaction number) identified in the previous step to find the promoted reaction. Like-

wise, the transport proteins, i.e., proteins that transport metabolites through biomembranes,
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identified with a Transporter Classification (TC) number can also be used to infer transport
reactions. TCDB can offer information about transport proteins. Both enzymatic and trans-
port reactions must be added to the draft network.

The reactions that do not need enzymes or other external factors to occur, called
spontaneous reactions, should be automatically inserted into the metabolic network.

Afterwards, the stoichiometry of the reactions in the network should be revised with
the help of BRENDA, KEGG, and/or MetaCyc.

Then, the next step is to investigate where de reactions occur in the cell. As cell have
distinct compartments (prokaryotes: cytosol, periplasmic space and extracellular space;
eukaryotes: Golgi apparatus, the lysosome, the mitochondrion, the endoplasmic reticu-
lum and the glyoxysome among several others) consecutive reactions may take place in
different compartments. This step is called the compartmentalization of the model, and
is determined by the localization of the enzymes. To predict the localization of the en-
zymes, different tools such as the ones from the PSort family, TargetP, SignalP, ChloroP or
Transmembrane Helices prediction by Hidden Markov Models (TMHMM). Also, this in-
formation can be found in literature and some online databases, such as Universal Protein

Resource (UniProt).

The last step of the assembly of the metabolic network is the manual curation. Since
automated steps are fallible, the GSM model should be revised with the help of organism-
specific databases, expert researchers and literature, including publications and textbooks.
This validation allows gap-filling of the metabolic networks. The problems to fix can vary
in its nature: the protein and function identifier may have inconsistencies; the addition
of new organism-specific reactions can be unavailable in the queried data sources; or the
assignment of reactions can have ambiguous identifiers (Dias and Rocha, 2015).

Another thing to consider revisiting is the reversibility of the reactions, determined
by the standard Gibbs free energy of formation and of reactions.

This reconstruction can be supported by another curated model from closely related
organisms, to fix de gaps in the network.

There are also problems with its own nature that can only be solved by a case-to-case
method, therefore, with the help of the available biological and chemical databases it is
hoped to build a bug free GSM model able to have the metabolic network consistent with
the literature and current knowledge of the organism, using information retrieved from

curated sources and from deduction.

The next stage is to convert the metabolic network into a stoichiometric matrix through

the addition of constraints to the model and an abstraction, in the form of a reaction, which
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represents the drain of biomolecules (such as amino acids, nucleotides, lipids and others)
to the formation of biomass. This reaction can be represented by the following Equation 1:

P
Z ¢ Xy — biomass (1)
k=1

in which ¢, represents the stoichiometry of metabolite Xj. As this equation repre-
sents the growth rate of the organism, it should also include growth energy requirements,
represented in the reaction as the depletion of Adenosine Triphosphate (ATP). Whenever
wet-lab experiments cannot be performed to determine the amount of each biomolecule
present in the biomass formulation, the biomass equation from a related organism may be
used, though the simulation results are approximations of the correct results.

Once the metabolic model is completed with the biomass equation, all reactions can
be transposed into a stoichiometry matrix. By representing each metabolite concentration,
in face of the rate of its production or degradation (by each of its fluxes), with ordinary
differential equations, it is obtained the following Equation 2:

ax;, X ,
L P A I @
j:O

where the rate of variation of the concentration of metabolite i with time ¢ is repre-
sented. X; is then the concentrations of metabolite i, v; is the rate of reaction j (ie., its
metabolic flux), and §;; is the stoichiometric coefficient of metabolite i in reaction j. The
growth rate of the system is represented by uX.

As these models are stoichiometric, steady-state condition on the whole system are
considered, meaning that all fluxes are constant, as the concentration of the metabolites,
through time.

By considering this state, the rates of production and degradation of all metabolites
are equal, providing the following equation:

5-v=0 )

where v is the flux vector and S is the stoichiometric matrix, where the columns
represent the reactions and the rows represent the metabolites.

This mathematical representation should be saved with Minimal Information Re-
quired In the Annotation of Models (MIRIAM) annotations into the Systems Biology Markup
Language (SBML), which is the standard format for exporting GSM models (Hucka and
Wang, 2003; Juty et al., 2012).
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Validation of Genome-scale Metabolic Models

The GSM model should be iteratively validated by comparing computer simulations to
laboratory data (Kholodenko and Westerhoff, 2004; Smolke, 2009). This assessment allows
improving the model as it measures the accuracy of the model (Dias et al., 2015). The GSM
model does not intend to represent all the characteristics of the in vivo cell, but to effectively
explain certain metabolic properties under given conditions (Kholodenko and Westerhoff,

2004; Smolke, 2009).

There is an array of methods used to measure, in vivo and in silico, fluxes of the
metabolites in the cell (Kholodenko and Westerhoff, 2004; Smolke, 2009). Wet laboratory ex-
periments may involve: (1) Gas chromatography/mass spectrometry or Nuclear magnetic
resonance spectroscopy and enzyme assays to monitor the metabolic response, performing
a non-stationary (steady state, being the status of the sys-tem when the exchange of energy
and/or matter with its environment is at a constant rate, stated by Tschoegl (2000) pulse
experiment. However, this method is limited to relatively small-size central metabolisms;
(2) 13C flux analysis to determine the metabolic fluxes in central metabolism, using dif-
ferent stationary experiments under different conditions to picture a metabolic regulation;
(3) Performing cell extracts to determine enzyme activities; (4) Most kinetic parameters of
enzymes can be found in databases, and are usually reliable (Kholodenko and Westerhoff,

2004; Smolke, 2009).

Regarding software for measuring fluxes, there are algorithms that can determine the
fluxes of the metabolic networks of the GSM model: (1) FBA identifies the flux distributions
responsible for making the network in steady state. This algorithm usually uses the max-
imization of the biomass flux as objective function to simulate the cellular growth, or the
maximization of ATP to simulate the natural objectives of the cell (Benner et al., 2014); (2)
Method Of Minimization of Metabolic Adjustment (MOMA) is based on the same stoichio-
metric constraints as FBA, but has a relaxed display for optimal growth flux when genes are
deleted. Therefore, MOMA mimics with higher accuracy the metabolic networks of a mu-
tant cell to determine its growth than FBA. This is due to its sub-optimal flux distribution
that reasult from the minimization of adjustments after the gene knockout. Consequently,
MOMA performs better than an optimal algorithm like FBA (Segre et al., 2002); (3) Regu-
latory On/Off Minimization (ROOM) predicts the flux of metabolic networks of cells with
knockout genes such as MOMA (with the minimization of changes in the cell, minimizing
the adaptation costs). However ROOM implicitly prefers high growth-rate solutions, lead-
ing to enhanced predictions (Shlomi et al., 2005). (4) pFBA is an improved approach that
considers that there is a selection for the strains that minimize the production of enzymes,

and therefore require the lowest overall flux in the metabolic network (Lewis et al., 2010);
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(5) The FVA even further supports the suppression of non-functional metabolic reactions
(Lewis et al., 2010). There are other algorithms used to predict phenotypes with different
approaches as the ones above, yet FBA is the most widely used (Maranas and Zomorrodi,
2016). Although the algorithms previously presented allow performing simulations with
the GSM model, which provide predictions of the phenotypical behavior of the organism
on different substrates and/or gene knock-outs, there are other methodologies which can
be used to analyze the GSM models, such as pathway analysis, elementary flux analysis,

gene expression analysis and adaptive evolution analysis (Wittmann and Lee, 2012).

The number of reconstructed GSM model is expected to increase rapidly, as recent ad-
vances in high-throughput technologies provide substantial quantities of data. Hence, the
automation of this process with computer sowftware became a requirement for the novel
ME approaches. There are several software available, with different tools and characteris-

tics, for reconstruction and validation of GSM model (Dias et al., 2015).

2.3.4 Structure of the model

Pathways are abstract concepts of networks of reactions, that represent part of the
metabolism of the cell. This metabolism is enclousered by the frontier that separates the
inside from the outside of the cell, the membrane. From the membrane the transport reac-
tions occur, however, aside from metabolic reactions and transporters, another concept to
consider is the drain, which are reactions used to unbalance the model allowing to perform
simulations. Drains are abstractions of the environmental conditions, when simulating the
GSM model. These simulate both the growth medium and the by-products.

The biomass equation is an abstraction of organism biomass, which simulates the
drain of building blocks required for replicating the organism. These concepts are repre-
sented in Figure 2.

2.4 SYSTEMS BIOLOGY FRAMEWORKS

In this section, different software developed for reconstructing and validating GSM
model are presented and compared. Several of these software are specific for a group of
species, or may have peculiar and unique characteristics, turning the selection of the best

framework a case-by-case scenario (Jing and Alashwal, 2014; Weber and Kim, 2016).
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Figure 2.: Representation of the GSM model structure. The red colored arrows represent the drains,
the blue arrows represent transport reactions and the black arrows represent the metabolic
reactions inside the cell. Compounds A, B and C are available in the extracellular space
through a drain, with a certain flux defined for the simulation. These compounds are im-
ported inside the intracellular space through a transporter and metabolized into biomass
and into compounds D and E.

2.4.1  Software for genome-scale metabolic model reconstruction

Since 2010, 11 high-throughput software programs were developed for the reconstruc-
tion of GSM models (Weber and Kim, 2016). In this section, the main characteristics, the
advantages and disadvantages of each of the software programs able to reconstruct GSM
models are presented. Nevertheless, there are other programs that may help in the recon-

struction protocol, but do not provide the actual model.

Metabolic model research and development System

Released in 2011, Metabolic Model research and development System (MEMOSys)
is a versatile platform for the management, storage, and development of genome-scale
metabolic models. MEMOSys was implemented in Java uses the JBoss Seam framework

(Pabinger et al., 2011).

22



2.4. Systems Biology frameworks

ADVANTAGES

1.

2.

Support for the laborious reconstruction process with accessible intermediate versions
of the GSM model to enable iterative changes, enhancing the reconstruction process;

It uses SBML to represent the different models using unambiguous identification of
components, such as EC numbers on enzymes and KEGG Compound Database on

compounds , to enable the comparison with other models (Pabinger et al., 2011).

DISADVANTAGES

10.

. Does not perform the enzymes annotation;
. Does not perform the transport annotation;

. Cannot create the biomass reaction;

Lacks a graphical interface for manual curation;

. Does not provide pathway visualization;

Cannot create GPR rules;

Does not highlight metabolic dead-ends;

Does not reconstruct eukaryotic models;

It only has the feature to manually insert the compartmentalization;

Does not generate automatically the biomass equation (Dias et al., 2015).

Flux analysis and modeling environment

Released in 2012, “Flux Analysis and Modeling Environment (FAME) is the first web-

based modeling tool that combines the tasks of creating, editing, running, and analyzing/vi-

sualizing stoichiometric models into a single program”. Apart from the visible HyperText
Markup Language (HTML) and Cascading Style Sheets (CSS), FAME was implemented in

Personal Home Page (PHP) 5 and Java-Script. PHP was chosen because it is a fast browser

that possess independent language which works well with other programs (Boele et al.,

2012).

ADVANTAGES

1.

2.

No installation procedures;

Does not have requirement of proprietary software;
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3. Supports the interpretation of results with an user-friendly environment that allows
biologists to ask questions;

4. Has an incorporated simulator (Boele et al., 2012).

DISADVANTAGES

)

. Does not perform the enzyme annotation;

2. Does not perform the transport annotation;

3. Inability to run locally;

4. Lacks a graphical interface for manual curation;

5. Cannot create GPR rules;

6. Reaction stoichiometry validation;

7. Does not reconstruct eukaryotic models;

8. It only has the feature to manually insert the compartmentalization;

9. Does not generate automatically the biomass equation (Dias et al., 2015).

MicrobesFlux

Released in 2012, “"MicrobesFlux is a semi-automatic, web-based platform for gener-
ating and reconstructing metabolic models for annotated microorganisms”. The front end
of MicrobesFlux is written in Google Web Toolkit technology and the back end is written

in Python using the Django web framework (Feng et al., 2012).

ADVANTAGES
1. Has a high-throughput metabolic models generation;
2. Customizes metabolic models drafting;

3. Does constraint-based flux analyses in steady and dynamic metabolic states (Feng
et al., 2012).

DISADVANTAGES
1. Does not perform the enzyme annotation;

2. Does not perform the transport annotation;
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3. Inability to run locally;

4. Lacks a graphical interface for manual curation;
5. Cannot create GPR rules;

6. Does not reconstruct eukaryotic models;

7. Does not generate automatically the biomass equation (Dias et al., 2015).

Pathway Tools

Released in 2012, "The Pathway Tools is a reusable, production-quality software en-
vironment for creating a type of model-organism database called a PGDB”. The PGDB
gathers knowledge about genes, the respective proteins and metabolic network that is in-
serted into, and the genetic network of the organism (Karp et al., 2002).

ADVANTAGES

1. Visualizes and interacts with contents of PGDB;

2. Performs complex queries, symbolic computations, and data mining on the contents
of PGDB;

3. Able of Web publishing in PGDB (Karp et al., 2002).

DISADVANTAGES

Y

. Does not perform the enzyme annotation;
2. Does not export model in SBML format;
3. Does not predict compartmentalization;
4. Cannot create GPR rules;

5. Does not generate automatically the biomass equation (Dias et al., 2015).

Comparative reconstruction

Released in 2014, Comparative Reconstruction (CoReCo) is a computational approach
for comparative metabolic reconstruction. It generates reliable GSM model semi-automatically
for a series of organisms, with minimal amount of curation. This comparative reconstruc-
tion can help to refine already existing metabolic models when genomes of related species
have been sequenced. It also can help in the reconstruction of species with distant but
extensively studied model species (Pitkd nen et al., 2014).
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ADVANTAGES
1. Reconstructs GSM models of a large number of related species;
2. Fills automatically the gaps of GSM models;

3. Reconstructs GSM models with high accuracy (Pitkd nen et al., 2014).

DISADVANTAGES
1. Does not perform the transport annotation;
2. Does not predict compartmentalization;
3. Lacks a graphical interface for manual curation;
4. Does not provide pathway visualization;
5. Cannot create GPR rules;
6. Does not highlight metabolic dead-ends;
7. Does not reconstruct eukaryotic models;

8. Does not generate automatically the biomass equation (Dias et al., 2015).

Reconstruction, analysis and visualization of metabolic networks

Released in 2013, Reconstruction, Analysis and Visualization of Metabolic Networks
(RAVEN) toolbox is a software that allows reconstructing genome-scale models automati-
cally. This toolkit allows analyzing, simulating and visualizing GSM model within Matrix
Laboratory (MATLAB) (Agren et al., 2013).

ADVANTAGES

1. Reconstruct eukaryotic models;

2. Reconstructs GSM model based on the orthology between its proteins sequences and
the target model proteins sequences;

3. Fills automatically the gaps of GSM models;

4. Has an incorporated simulator (Agren et al., 2013).
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DISADVANTAGES

1. Does not perform the transport annotation;

2. Requires commercial software;

3. Lacks a graphical interface for manual curation;
4. Does not provide pathway visualization;

5. Cannot create GPR rules;

6. Does not validate reaction stoichiometry;

7. Does not generate automatically the biomass equation (Agren et al., 2013; Dias et al.,

2015).

Model SEED

Released in 2010, Model SEED is a web-based resource for high-throughput gener-
ation, optimization and analysis of GSM models. It is built upon the genome annotation
provided by SEED (Henry et al., 2010).

ADVANTAGES
1. Performs the enzyme annotation;
2. Perform the transport annotation;
3. Predict compartmentalization;
4. Export model in SBML format;
5. Provides pathway visualization;

6. Creates GPR rules (Henry et al., 2010).

DISADVANTAGES
1. Inability to run locally;
2. Lacks a graphical interface for manual curation;
3. Does not highlight metabolic dead-ends;
4. Does not reconstruct eukaryotic models.

5. It only has the feature to manually insert the reactions stoichiometry validation (Dias
et al., 2015).
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SuBliMinaL Toolbox

Released on 2011, the SuBliMinaL Toolbox facilitates the reconstruction process with
features such as generating draft reconstructions, adding transport reactions and a biomass
function, and many more. It is written in Java, yet it has third-party dependencies Swain-
ston et al. (2011).

ADVANTAGES
1. Performs the enzyme annotation;
2. Perform the transport annotation;
3. Predict compartmentalization;
4. Has a graphical interface for manual curation;
5. Provides pathway visualization;
6. Creates GPR rules;
7. Merges models;
8. Determines metabolite protonation state;

. Does pre-draft reconstructions Swainston et al. (2011).

\O

DISADVANTAGES
1. Relies on various third-party packages to run all the features;

2. Does not highlight metabolic dead-ends (Swainston et al., 2011; Hamilton and Reed,
2014).
Genome-scale metabolic model simulation, reconstruction and visualization

Released in 2012, GEnome-scale Metabolic model Simulation, Reconstruction and
Visualization (GEMSIRV) is a user-friendly software able to reconstruct, simulate and visu-
alize GSM model. It is written in Java and it uses the solver GNU Linear Programming Kit
(GLPK) (Liao et al., 2012).

ADVANTAGES
1. Has a graphical interface for manual curation;

2. Provides pathway visualization;
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3. Creates GPR rules;
4. Highlights metabolic dead-ends;
5. Has an incorporated simulator;

6. Generates robust images for presentations (Liao et al., 2012).

DISADVANTAGES

)

. Does not perform the enzyme annotation;

N

. Does not perform the transport annotation;
3. Does not predict compartmentalization;
4. Does not validate reaction stoichiometry;

5. Does not generate automatically the biomass equation Liao et al. (2012).

Metabolic models reconstruction using genome-scale information

Released in 2015, merlin is a friendly user software that help the GSM model re-
construction. Is an open-source application implemented in Java and built on top of the
Artificial Intelligent workBench (AIBench) software development framework (Dias et al.,
2015).

ADVANTAGES

1. Performs the enzyme annotation;
2. Perform the transport annotation;
3. Predict compartmentalization;
4. Export model in SBML format;
5. Runs locally;
6. Does not require software;
7. Has a graphical interface for manual curation;
8. Provides pathway visualization;
9. Creates the GPR rules;
10. Highlights metabolic dead-ends;

11. Reconstructs eukaryotic models (Dias et al., 2015).
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DISADVANTAGES

1. Does not generate automatically the biomass equation (Dias et al., 2015).

Most of these softwares are still growing and are still being implemented with innova-
tive tools able to diminish their weaknesses, including merlin, with its great features. merlin
is one of the best choices for a reconstruction from scratch or based on a relative close GSM
model, being for prokaryotic or eukaryotic organism. Furthermore, this work is executed
with the help of the staff responsible for producing and maintaining merlin, which may
give support when needed. Therefore, in this work it is going to be used merlin as the GSM
model reconstruction tool for the reason that it can make most of the step of this reconstruc-
tion automatically, however still being able to manually cure the model contents - making
this semi-automated software a great tool to facilitate and quicken all of the process.

One of the major aspects of merlin is helping in the curation of the model, by updating
the KEGG pathways maps, which allows to understand better the status of the current
reactions integrated in the model or the missing link in the network. merlin colors each

reaction in the map with one of four color, which have different meanings.

When reactions are colored in green, all metabolites involved in them are being con-
sumed and produced in the network and the EC number promoting the reaction is available
in the model. If the EC number was unavailable in the model, the reaction would be col-
ored in blue. The third case is when one or more compounds of the reaction are not being
synthesized or consumed (colored red in the maps). These compounds are called dead
ends. The fourth is when a reaction is connected to an unconnected reaction (colored cyan
in the maps). This mechanism eases the detection and traction of dead end metabolites, as

a chain sequence of cyan colored reactions will eventually lead to an unconnected reaction.
All of these four types of reactions are exemplified in Figure 3.

As mentioned before, a functional GSM model, must have each compound metab-
olized in equal rates of production and degradation. Hence, reactions associated with
dead-end metabolites cannot be part of the model. Therefore, it is important to detect these
reactions, conveniently hinted by the cyan colored reactions. This system was one of the

major reasons why merlin was favorable for this work.
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Figure 3.: Scheme of the four different status of reactions in the GSM model. The green colored
arrows represent reactions associated with compounds that are always consumed or pro-
duced by other reactions. The blue colored reactions not catalyzed by the enzymes indi-
cated in the pathway. The red colored arrows represent reactions with dead-end metabo-
lites. The cyan colored arrows represent reactions affected indirectly by dead end metabo-
lites. While the compounds A, B, C, H and I and correctly metabolized, the compounds E,
F and G cannot be because they are associated, directly or indirectly, with the dead-end
metabolite D. Metabolite D is a dead-end because there is no reaction to synthesize it.

2.4.2  Software for genome-scale metabolic model simulation

In silico metabolic network analysis software can be used to perform simulations with
GSM model, to predict the phenotype of the modeled organism (Weber and Kim, 2016).
There is a plethora of standalone tools, toolbox-based tools, and web-based tools that are
able to perform this analysis (Jing and Alashwal, 2014). Reportedly, there were at least 21
different tools in 2014, and each of these are different in terms of the features and usability
(Jing and Alashwal, 2014). Each tool has its own advantages as well as disadvantages that
can become a limitation, thus for each particular research project should select the one that
allows reaching its objective (Jing and Alashwal, 2014). For this work, Optflux was chosen,
as it fulfilled the project requirements as shown below.

OptFlux

Optflux is an open-source user-friendly software, implemented in Java, that applies
steady-state stoichiometric models to study the phenotype of microorganisms, under differ-

ent environmental and genetic conditions (Rocha et al., 2010). Optflux is also the first tool
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that aims to be the reference platform for the ME community. This platform makes avail-
able the GSM models from both academia and industry, to their further development and
exploitation. It is also a modular software, meaning that facilitates the addition of specific
features by computer scientists, and is compatible with the SBML (Rocha et al., 2010).

Along with the tools researched and presented by Jing and Alashwal (2014), Optflux
is the only tool that has the three metabolic network analysis algorithms presented earlier
(FBA, MOMA and ROOM) plus two other algorithms (Optknock, to identify best set of
genes to be knockout in order to increase the production of metabolites; and OptGene, an
extension of OptKnock which utilize genetic algorithm to increase the prediction capability)
(Rocha et al., 2010; Jing and Alashwal, 2014). It also provides a build-in visualization to
facilitate the interpretation of the results, a graphical user interface and many other features,
making it of the best choices to simulate accurately the GSM model (Rocha et al., 2010; Jing
and Alashwal, 2014).

Transport proteins annotation and reactions generation

Transport Proteins Annotation and Reactions Generation (TRIAGE) is a tool devel-
oped in Java with MySQL relational databases that detects and classifies potential transport
proteins upon analyzing genes that encode transmembrane proteins (Dias and Rocha, 2017).
The TCDB classification system for transport proteins are used in this work, for that fact
that this database is the most comprehensive one, in storage of the manually annotated cel-
lular transport systems (Dias and Rocha, 2017). This tool was chosen because of to the lack
of good transporters annotation (Dias and Rocha, 2017). Also, merlin has TRIAGE included

in its core.

This tool detects and classifies potential transport proteins with a TC numbers, which
are identifiers similar to EC numbers though also including phylogenetic information. TC
numbers are associated with proteins that transport one or more substrates, in a certain
direction, using a certain mechanism and most of the times associated to a single organism.
Hence, these proteins should not be directly classified with TC numbers from homology
alone, unlike the classification with EC numbers.

To detect potential transport genes, initially TRIAGE identifies genes with trans-
membrane helices using TMHMM or Phobius (Krogh and Sonnhammer, 2001; Kéll and
Sonnhammer, 2007).

These tools can predict transmembrane domains in amino acid sequences. Genes’
amino acid sequences with at least one transmembrane helix are considered potential trans-
port proteins. Then TRIAGE compares these potential transport systems to all the proteins
available in TCDB, using the Smith-Waterman algorithm to perform local alignment (Smith
and Waterman, 1981).
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TRIAGE'’s algorithm creates new transport reactions, associated with the potential
transport systems. This algorithm is similar to the one used to annotate enzymes, requiring

an « value leverage the frequency and the taxonomy and a cut-off threshold.



METHODS AND DEVELOPMENT

In this chapter, methods used in both the in silico and the in vivo approaches will be
presented. merlin will be used to reconstruct the GSM model of N. europaea, as mentioned
before. Through an iterative process, with validation from data obtained through wet-lab
experiments, the model is going to be increasingly improved until these results match with

the simulations performed with the model.

The methodology for reconstructing this GSM model, as described in the previous
chapter are shown in Figure 4. First, the GSM model draft has to be assembled and then
a series of iterations to validate the model, comparing simulations to wet-lab experiments,

are performed.

Curated KEGG
annotation metabolic data

i

Figure 4.: Scheme of the methodology used to reconstruct the GSM model of N. europaea based on

(Dias et al., 2014).
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Each step of this process will presented in detail in the following sections.
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3.1. Reconstruction of the draft model

3.1 RECONSTRUCTION OF THE DRAFT MODEL

The first step to reconstruct the draft GSM model is the genome annotation. The
genome sequenced by Chain and Whittaker (2003) was used as the base of this reconstruc-
tion.

3.1.1 Finding organisms for comparison

This process involved determining a taxonomically close organism for which a GSM
model was already reconstructed, thus accelerating the process of reconstructing a model
for N. europaea. A phylogenetic tree was built using Multiple Sequence Comparison by Log-
Expectation (MUSCLE), with the nucleotide sequence of 16S Ribosomal Ribonucleic Acid
(rRNA) of each bacteria on three different GSM models databases
(http://darwin.di.uminho.pt/models,

http://systemsbiology.ucsd.edu/InSilico0rganisms/OtherOrganisms and http://www.

maranasgroup.com/models.htm).

Another method to find organisms for comparison consists in searching in the genus,
for species with a high percentage of curated data. Each species of the genus Nitrosomonas
was assessed in UniProt to find the better organism for this purpose (i.e., with the highest

number of reviewed proteins). The organism with the most curated genes was selected.

3.1.2  merlin automatic annotation

The first step was to use merlin’s remote BLAST to compare the genome of N. europaea
to all sequences available in the non-redundant (nr) database. merlin annotates each gene
balancing two factors: the frequency and the taxonomy of the homologous genes’ functions.
Both of these factors are calculated independently. However, a third parameter (the a value)
is used to leverage the weight of each of these scores, according to Equation 4:

Score = & X 5corefroquency + (1 — &) X Scoresaxonomy (4)

3.1.3 Determining the « value

The first stage was to determine the « value, to annotate correctly the majority of the

genes automatically.
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3.1. Reconstruction of the draft model

Initially, a random sample of 50 genes (10 samples of 5 genes) was selected. Each
sample was composed of genes with scores from o to 1, with intervals of 0.1, providing for
an uniformly random sample of genes throughout the score range.

The 50 genes’ annotation was manually curated and how many of the number of
correct merlin automatic annotations was determined. The manual curation was performed

with the standard « value of 0.5, as it is the mean between o and 1.

The automatic annotation of each gene by merlin, can be classified accordingly to
truthfulness and status. Truthfulness indicates whether merlin’s automatic annotation was
correct, when compared to the manual curation. The status indicates if the automatic anno-
tation was accepted or rejected by merlin, by setting a threshold to reject annotations. For
instance, a gene whose annotation is correct (truthfulness) and accepted (status) means that
the automatic annotation is the same as the manual annotation and its score is above the

threshold. The combination of these classifications provides six classes:

1. Correctly annotated and Accepted (CA);
2. Incorrectly annotated and Accepted (IA);
3. Correctly annotated and Rejected (CR);
4. Incorrectly annotated and Rejected (IR);
5. Non-annotable and Accepted (NA);

6. Non-annotable and Rejected (NR).

The Non-annotable (NA and NR) are genes with no manual annotation, retrieved from

information gathered from databases and literature.

The second step was to verify which « had better overall Accuracy (described in Equa-
tion 5). To ease data analysis, a confusion matrix based of each instance of the a value,
with the following four classifications: (1) True Positive (TP), (2) True Negative (TN), (3)
False Positive (FP) and (4) False Negative (FN), was created. TN in the confusion matrix
are NR and not IR genes. The latter genes annotation should be revised, as these may
yet provide useful information for the model, whereas the former are non-metabolic genes.
The classification of genes for the Accuracy confusion matrix are presented in Table 2.

A confusion matrix was assembled for each a ranging between 0 and 1 with 0.1
increments. However, annotation status are as important as its truthfulness, thus for each
«, changes in the annotations threshold between 0.1 and 0.9 with 0.1 increments were also

considered.
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Table 2.: Classification of genes on the Accuracy confusion matrix, based on their description.

Confusion matrix Genes .
e s Observations
classification description

automatically

P cA integrated into the model
automatically

N NR discarded from the model

FP IA + NA

FN IR + CR

After calculating the Accuracy for each a-threshold pair, the average of each a’s Accu-

racy was determined.

TP+TN CA+NR
Total ~  Total

(5)

Accuracy =

3.1.4 Setting the thresholds

The Accuracy indicated which « had the most CA and NR genes, overall. The thresh-
olds indicate which annotations should be revised . Thus, the third step was to set a lower
and an upper threshold. As shown in Figure 5, the lower threshold sets a value for discard-
ing genes as metabolic. Whereas, the upper threshold separates genes can be automatically
integrated into the model. Genes with scores in between the thresholds are should be

manually annotated.

The lower threshold was calculated by the NPV, which is described in Equation 6. A
higher NPV allows automatically discarding genes with (NR) annotations. For calculating
this parameter, TN are NR genes and TP are CA and IA genes. Conversely, FP are NA
and FN are IR and CR genes. The classification of genes for the lower threshold confusion

matrix are presented in Table 3.

Table 3.: Classification of genes on the lower threshold confusion matrix, based on their description.

Confusion matrix Genes .
e .. Observations
classification description
TP CA + 1A
Pretended to be automatically
N NR discarded from the model
FP NA
FN IR + CR
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3.1. Reconstruction of the draft model

Table 4.: Classification of genes on the upper threshold confusion matrix, based on their description.

Confusion matrix Genes .
e L Observations
classification description

automatically

P CA integrated into the model

TN IR + NR

FP IA + NA

FN CR

TN NR
NPV (6)

T TN+FN NR+IR+CR

The upper threshold was calculated by the Precision metric, which is described in
Equation 7. A higher Precision allows automatically annotating genes (CA). TP are CA
genes and TN are IR and NR genes. Conversely, FP are IA and NA genes and FN are CR
genes. The classification of genes for the upper threshold confusion matrix is presented in
Table 4.

TP CA
TP+FP  CA+IA+NA

Precision =

(7)

This information is concisely presented in Table 4.

The upper and lower thresholds are selected after selecting the best « (highest). Select-
ing the highest NPV and Precision, allows decreasing the number of genes to be manually
curated.

3.1.5 Setting a new metric

The ideal NPV and Precision values are 1, as both threshold separate correctly the
genes in question with 100 % efficiency. The best thresholds selected for this projects were
0.2 and 0.8, lower and upper respectively, for an « of 0.0.

However, the number of genes to be manually annotated was overwhelming (around
50% of the genes of the genome). Hence, a new metric that would take into compromise
Accuracy to the number of genes to be manually curated was implemented. This metric is

described in Equation 8 and the higher it gets, the more CA and NR genes (automatically
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3.1. Reconstruction of the draft model

accepted and rejected genes, respectively) whilst decreasing the number of genes to be

curated.
‘— Accuracy _ Accuracy _ Accuracy x Total _
% of genes to annotate ~ No- of B t;) annotate — NJo. of genes to annotate
ora (8)
B TPETN  Total TP+ TN CA+ NR

~ No. of genes to annotate ~ No. of genes to annotate ~ No. of genes to annotate

3.1.6  Manual annotation

Phylogenetically close organisms are more prone to have similar protein structure-
function than distant ones. From this premise, an annotation workflow based on the phy-
logeny of some organisms relatively close to N. europaea, was developed The phylogenetic
distance between N. europaea and other organisms will influence the curation confidence
level. Likewise, the curation status of the homologous gene was also taken into account
for the confidence level. In summary, manually curated homologous genes from organisms

phylogenetically close to N. europaea have a greater confidence level.

This selection was of paramount importance, as this workflow emphasizes first on

the gene’s curation status and afterwards on the organisms of comparison (curation over

phylogeny).

Initially, a BLAST search against Swiss-Prot (curated) was performed. Using the hit
list from BLAST, merlin annotates automatically each gene, by selecting the EC number
with the highest score according to Equation 4. The level of confidence was assigned to the
gene according to which organism the homologous genes belong to, after curation.

If none of the four organisms was available in the hit list, merlin annotation was
accepted and the confidence level was lowered. In Table 5, the confidence levels of the

organisms are presented.

Table 5.: Confidence level of homologues found in Swiss-Prot.
Species Confidence Level
Nitrosomonas europaea ATCC 19718
Nitrosomonas europaea
Nitrosomonas eutropha
Escherichia coli
Other organism

= DO | >
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3.1. Reconstruction of the draft model

Genes without homologies to Swiss-Prot entries were annotated against TrEMBL,
which is a non-curated database. The resulting annotations will therefore have lower con-
fidence levels. Regarding these genes, the number of hits with EC numbers associated
are scarce, thus EC numbers automatically selected by merlin are meaningless most of the

times.

The same methodology (giving importance to phylogeny) was used, thus the order of
the confidence levels remains the same for the four organisms, except on N. europaea ATCC
19718, as TrEMBL includes all entries for this organism, which unbalances merlin’s scorer.
Yet, it was still used as a reference to compare with the function of other homologous genes.

The annotation and the respective level of confidence assignment was performed
by comparing the homologous genes’ functions. Although EC numbers were scarce in
the hit list, the function description allowed inferring these with help of other databases.
The number of homologous genes with the same function and EC number of these three
organisms: (N. europaea ATCC 19718, N. europaea and N. eutropha) dictated the level of
confidence of the annotation. The levels of confidence are clearly represented in Table 6.

This workflow will always try to annotate the function and EC number of the gene,
except when is not possible (when it is an uncharacterized protein, or a non-metabolic
annotation). These cases are described before as NA for their nature of not being possible

to infer a EC number in any way.

Table 6.: Confidence level of homologues found in TrEMBL.

Nitrosomonas europaea | Nitrosomonas eutropha | Confidence level
Case 1 Equal Equal F
Case 2 Equal Different G
Case 3 Different Equal H
Case 4 Different Different I

For the manual curation, all genes classified between both thresholds, of the case
study organism and respective homologous genes were carefully revised.

Their function and EC number proposed by UniProt (Swiss-Prot and TrEMBL) were
confirmed using databases such as Expert Protein Analysis System (ExPASy) (including EN-
ZIME, PROSITE and High-quality Automated and Manual Annotation of Proteins (HAMAP))
and BRENDA. However, it is important to note that some of the manual annotations may be
changed in further steps of the reconstruction of the GSM model, and for different reasons
that may lead to an annotation associated with a different function and EC number.

The Figure 6 describes all of the workflow, simplified, without depicting all of the
confidence levels.
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Figure 6.: Workflow of the manual annotation.
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3.1. Reconstruction of the draft model

3.1.7 Integration with the model

The next step was to integrate the annotation in the model database. Hence, merlin
retrieved all metabolic information from KEGG, namely enzymes, pathways, metabolites
and reactions. Then, merlin uses these data, together with the annotation, to assemble the
draft network. This way, it was possible to use KEGG pathways as a template to ease this

reconstruction.

3.1.8 Correct the reversibility of reactions

The reversibility of the reactions in the model was automatically corrected using mer-
lin. However, some reactions were needed to be manually confirmed by comparing with
the direction exhibited in the KEGG pathways.

Other tools used encompass MetaCyc and eQuilibrator (an web interface for thermo-
dynamic analysis of biochemical reactions), although occasionally it was necessary addi-
tional evidence by other sources (Caspi and Karp, 2016; Flamholz and Milo, 2012).

3.1.9 Correct EC numbers

Using different databases as data sources for the annotation can lead to contradictions
because EC numbers may have been updated since they were firstly described, may have
been deleted or transferred to other EC numbers. EC number entries not available in KEGG
were manually updated, by inspecting carefully their function using other databases, such
as BRENDA or ExPASy.

3.1.10 Predict transporters

TRIAGE was used to predict transporter proteins. merlin’s default « value of 0.3 and
cut-off threshold of 0.2 were used, for this performance. The alignment results were used
to determine, for each transport system, which metabolites are transported, the transport
type and direction, using a workflow presented in Figure 7.

Then, the transport reactions were directly integrated into the model.

3.1.11  Convert the network to model

With the reactions set, these were integrated as a stoichiometric matrix, as described
in the previous chapter. This matrix represents the model fluxes, with all the metabolites
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3.2. Curation of the genomic-scale metabolic model

Annotate as
unknown

Level E

Has direction Has metabolite(s) Has reversability Has reacting Has equation
information? information? information? metabolite(s)? information?

Go to

7 — — next level

Figure 7.: Workflow for the characterization of transport systems. Each characteristic such as direc-
tion, metabolites involved, the reversibility and its equation are annotated through the
TCDB or the UniProt.

and reactions in it, associated with their constraints, and it formulates biomass as a set of

reactions associated by GPR rules.

3.2 CURATION OF THE GENOMIC-SCALE METABOLIC MODEL

The model curation, is an iterative process, that constantly updates the GSM model. Each

iteration comprises several steps that improve the model qualitatively and quantitatively.

3.2.1 Remove dead ends

Metabolic pathways may be incomplete when some compounds that should be pro-
duced cannot be synthesized, i.e., dead-end metabolites. This might happen due to the
absence of one or more reactions in the network. The problem is exemplified in Figure 3, at
the previous chapter.

If the dead end metabolite is only synthesized, all reactions that can potentially con-
sume it have to be assessed and vice-versa. This assessment involves verifying missing EC

numbers and incorrect annotations.



3.2. Curation of the genomic-scale metabolic model

There are several cases in which the integration of reactions had to be performed

without gene associations:

1. Some metabolic functions are described by Metacyc to exist in the organism, though

without gene associations;
2. Some reactions were imported from Escherichia coli GSM model iAF1260;

3. Evidences were found in literature regarding the production of specific metabolites,

though no EC numbers were available in the annotation or databases;

3.2.2 Reactions balance

The stoichiometric balance of every reaction in the GSM model must be ensured as, in
a steady-state, every metabolite has to be synthesized and consumed at the same rate. merlin
has a tool that allows to detect unbalanced reactions in the model. KEGG and MetaNetX
were used to assess the reason for the unbalancing of the reactions and to fix these issues
(Martin and Pagni, 2016). Often, the problem was associated with generic compounds
that have a repetitive monomers. In these cases, the problem was solved by adjusting the
stoichiometry of such monomers in the reactants or in the products of the reaction. Other
common problem lied in reactions that have unspecific acceptors and donors. This was
usually solved by searching in databases and literature for which specific compound the
organism uses. Still, most reactions were unbalanced by a single proton and for many of
these reactions MetaNetX was used to correct the reactions.

3.2.3 Verify biomass precursors

Seven different entities were considered biomass precursors in this GSM model: pro-
teins, DNA, Ribonucleic Acid (RNA), lipid, carbohydrate, inorganic ions and cofactors.
Each of these entities are formed by a set of metabolites identified as their basic elements,
for instance, e-Protein (average protein) is composed by aminoacids. Each of these entities
that are presented here, and all of their compounds, were carefully analyzed and described
in detail to develop a precise GSM model.

Another important components incorporated in the biomass is ATP, though in this
case it represents the amount of energy required to biosynthesize one gram of biomass.

When compiling the biomass composition, the first data source to be considered was
the experimental data acquired with this work, as the biomass used in the experiments is
a result of a growth in chemostat and which will be used in the validation of this GSM
model. The second was the data retrieved from literature, though not being as accurate
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3.2. Curation of the genomic-scale metabolic model

as the experimental data from this work as such experiments use other strains or different
environmental conditions. Finally, E. coli iAF1260 GSM model was used as third data source

for being a extremely detailed and studied Gram-negative bacteria.
Average protein composition

The amount of Protein per gram of biomass was determined experimentally, as well
as the amount of each aminoacid in it.

Average DNA composition

The amount of DNA per gram of biomass was determined experimentally. The con-
tribution of each deoxyribonucleotide was estimated from the genome sequence, using a

tool developed for that purpose available in merlin.

Average RNA composition

The amount of RNA per gram of biomass was determined experimentally. Likewise,
the contribution of each ribonucleotide was estimated from the genome sequence, using a

tool developed for that purpose available in merlin.
Average lipid composition

The amount of lipids per gram of biomass was also determined experimentally. And
it composition was solely based on literature.

Average Carbohydrate composition

The carbohydrates composition was based in E. coli’s iAF1260 GSM model, as no
information concerning this macromolecule was found for N. europaea. The amount of

carbohydrates was experimentally determined and is presented in that section.

Average Cofactors composition

The composition of the cofactors were based on literature. The universal cofactors
were integrated into the model, as well as conditional ones, if those were the case for this

organism. The amount of these were based in E. coli’'s iAF1260 GSM model.

Average Inorganic ions composition

Regarding inorganic ions, their composition is based on the medium used for N. eu-
ropaea growth experiments. The amount of these ions in the biomass equation was based
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3.3. Experimental material and methods

on E. coli GSM model iAF1260. The quantities of iron and copper were determined experi-
mentally. The quantities of ammonium and orthophosphate were based on literature, and

sulfate was based on the relative quantity in E. coli GSM model iAF1260.

Lipopolysaccharide composition

Although this macromolecule is present in almost every Gram-negative bacteria, it is
not available in this GSM model. However, this molecule is a complex structure constructed
from other two types of molecules (carbohydrates and lipids), which were quantified as
separated macromolecules in this work. Thus, even though this entity was not integrated

into the model, lipopolysaccharide contents were taken into account in the model.

Finalizing the model

After manually curating the GSM model until it provides reliable predictions, there
can be still dead end metabolites and unconnected reactions. Usually, this dead end metabo-
lites are not intermediate compounds to the synthesis of the biomass, thus not impairing
model predictions. Hence, at this stage, these compounds can be removed to simplify
the GSM model. Nevertheless, dead-end metabolites which are considered compounds of
interest should be kept in the model, making them available for further studies.

3.2.4 Environmental conditions

The medium used for the growth of the organism is presented at the experimental
section of this work. Metabolites available in the medium used in the laboratory are defined
in the model as drains and their fluxes, i.e., the rates at which the compounds enter the cell

to be metabolized, were calculated from experimental data.

At this point, the model can be simulated, through FBA, by using OptFlux (with the
IBM ®CPLEX solver), simulating the maximization of the biomass reaction, to assess the
GSM model behavior. This operation is repeated several times until the GSM model is able

to mimic the the organism’s in vivo behavior.

3.3 EXPERIMENTAL MATERIAL AND METHODS

In this section, each of macromolecules such as DNA, RNA, Proteins, Carbohydrates,
Lipids are quantified, as well as other individual compounds. An average of each of these
metabolite groups are synthesized relatively to the biomass produced by the organism.
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3.3. Experimental material and methods

Therefore, a culture of N. europaea was continuously maintained in a chemostat to obtain
the biomass required to those quantifications.

3.3.1 Organism

The experiments were performed with N. europaea strain NCIMB 11850, since its cul-
ture was already established at the laboratory where the experiments took place. This strain
is genomically identical to the strain ATCC 19718, so the validation in the GSM model is
considered viable.

3.3.2  Medium and growth conditions

The mineral medium used in the wet lab experiments comprised the preparation
and sterilization of three distinct solutions that were mixed previously to their use. The
medium uses the following constituents dissolved in deionized water: Solution A - 25 mM
ammonium sulphate, 43 mM monopotassium phosphate, 3.9 mM monosodium phosphate,
1 M iron (II) sulphate (dissolved in 8.4 M ethylenediaminetetraacetic acid, pH 7.0) and 8.4
M copper (II) sulphate, with the pH adjusted dropwise to 8.0 with sodium hydroxide 10
M; Solution B - 2.4 mM calcium chloride; and Solution C - 3.8 mM sodium carbonate. All
solutions were autoclaved at 121 °C for 20 minutes, and were aseptically mixed once chilled.
These solutions were prepared separately to prevent spontaneous inorganic precipitation,
namely due to the reaction between phosphate, ammonia and calcium ions, making them

inaccessible to the organisms metabolization(Fattah, 2012).

3.3.3 Chemostat setup

The growth of the organism was performed in a chemostat attached to two consec-
utive bioreactors to collect biomass. The chemostat had the capacity of 395 mL, the first
bioreactor, the capacity of 430 mL and the second one with the capacity of 600 mL, and
all were protected from light by a capsule. The chemostat and the first bioreactor were
continuously stirred at 120 rpm. The lids of the chemostat and of the bioreactors allowed
air transfer (including CO, and O; transfers) from the inside out and vice-versa, without
compromising the aseptic conditions inside the reactor. Room temperature (25 °C) was the
experimental temperature. The medium feeding rate was controlled to promote a healthy
growth of the culture, thus the pH, concentration of nitrite and ammonium in the solution
were regularly monitored. At the beginning of the experiment, the growth was slow due
to the lag phase of the organism. However, once the growth was exponential, it was added
more medium until all the referenced conditions were stabilized, to make a constant flow
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3.3. Experimental material and methods

in the chemostat with productive and healthy conditions, where the bacteria could grew in

a continuous exponential phase.

The chemostat structure, along with other components in the system are presented
in Figure 8. Fresh medium was introduced, by pump E, from the flask A to the chemostat
(B). The culture medium volume in it rose until the maximum volume of 395 mL. Beyond
that threshold, the medium was transferred from the chemostat to the bioreactor C through
gravitational potential. The same happened between bioreactor C and D, when the volume
of the former rose to the volume of 430 mL. In reactor D, the maximum culture volume
was 600 mL. When the operation volume of the bioreactor D was near its maximum, the
culture medium was aseptically collected through filtration using a Whatman membrane
filter with a pore size of 0.2 ym, in an aseptic environment. The collected biomass was
resuspended in sterile deionized water, and then the resultant solution was lyophilized to
proceed in the quantification of the components of the organism. The lyophilization system
(Alpha 1-4 LD, by Christ) was set with the cooling system subjected to —57 °C.

To analyse the concentration of nitrogen from nitrite and ammonia, and the values
of pH, a sample was regularly extracted from the chemostat in aseptic conditions. The
sampling time points were usually between 48 to 72 hours and the feeding rate was regu-
lated whenever seemed necessary to provide an appropriate environment for N. europaea,
to promote the maximum growth rate of the microorganism.

3.3.4 N-compounds analysis

The concentration of nitrogen from nitrite was measured through the use of com-
mercial test cuvettes (LCK 342 HACH). The concentration of nitrogen from ammonia was
measured by the Nessler procedure (Arthur, 1979).

3.3.5 Quantification of macromolecules

This section comprises the protocols used to quantify the macromolecules of N. eu-
ropaea.

Protein quantification

Protein content was determined by using the Biuret method according to Verduyn
and Dijken (1990). One milliliter of resuspended biomass in Phosphate-Buffered Saline
(PBS) (2 g/L) was mixed with 0.5 mL 1 M NaOH, incubated at 100 °C for 10 min and
subsequently cooled on ice. Then, 0.9 mL of the solution were mixed with 0.3 mL of 0.1
M copper sulfate solution and incubated for 5 min at room temperature. Ended that time
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—) ‘~—G

Figure 8.: Schematics of the chemostat used for N. europaea culture. A - Fresh medium; B - Chemo-
stat; C and D - Bioreactors; E - Pump; F - Orbital shaker; G - Capsule. The chemostat
and bioreactor C were submitted to agitation by the orbital shakers, and B, C and D were
protected from light by the use of an opaque capsule. The chemostat design envisaged
the creation of a gravity potential between the chemostat and the bioreactor C and D, in
order to achieve a spontaneous medium transfer.

the solution was centrifuged for 5 min at 7378 g. The absorbance was measured at 540 nm
in a 96-well microtiter plate in a Microplate reader for ELISA Bio-Tek Synergy HT. Protein
concentration was calculated by interpolation in a calibration curve using Bovine Serum
Albumin (BSA) as standard.

DNA quantification

Biomass macromolecular content determination DNA content of biomass was deter-
mined according to Mey and Vandamme (2006) with some modifications. 4,6-Diamidino-
2-Phenylindole Dihydrochloride (DAPI) was used instead of Hoechst as fluorescent dye
solution. Freeze dried biomass samples were dissolved in TNE buffer (1 M NaCl, 10
mM Ethylenediaminetetraacetic Acid (EDTA), 10 mM Tris, pH 7.4) at a concentration of
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5 mg/mL. Then 33 uL of the sample solution was mixed with 1 mL of DAPI dye solution
(DAPI 0.25 pg/mL in TNE buffer) and incubated for 30 min. Fluorescence was measured
using the excitation/emission wavelengths of 350/460 in a black 96-well microtiter in a
Spectrofluorimeter Jasco FP-6200. DNA content was calculated by interpolation in a cali-
bration curve performed using as standard calf thymus DNA.

RNA quantification

RNA content of biomass was determined according to Benthin and Villadsen (1991)
with some modifications. Freeze dried biomass samples, with 10 mg, were washed twice in
1 mL of cold 0.7 M HCIO4 and resuspended in 1 mL 0.3 M KOH. The resuspended biomass
was then incubated at 37 °C for 1 h. To the pellets was added 100 L of 3 M HCIO4 and
the samples were centrifuged at 14462 ¢ for 2 minutes. The supernatant was collected and
the pellet was washed twice with 450 yL 0.5 M HClO,4. The three supernatants collected
were mixed and absorbance was measured at 260 nm using a Micro-Spectrophotometer

Nanodrop. RNA content was calculated taking into account the sample dilution.

Carbohydrate quantification

Total carbohydrates were determined by the phenol-sulphuric method as described
according to Herbert and Strange (1971). Briefly, 200 yL sample containing freeze dried
biomass (0.1 mg dry weight/mL ofPBS) was mixed with 200 L phenol 5 % (v/v) and 1 ml
96 % (v/v) sulphuric acid in glass tubes. After 25 min, absorbance at 490 nm was measured
using glucose solutions as standard.

Lipid quantification

Total lipids were determined by the sulpho-phospho-vanillin method as described
by Izard and Limberger (2003) with some modifications. Briefly, 10 mg of freeze dried
biomass was mixed with 2 mL of a mixture of chlorophorm and methanol (1:1) in glass
tubes. After 15 min, 250 pL of the resultant mixture is placed in other glass tube and the
mixture is evaporated. When all the liquid is evaporated, 100 uL of H,SO4 are added and
the tubes are incubated at 100 °C for 10 min. The tubes are then cooled at room temperature
and 2.4 mL of phosphoric acidvanillin reagent were added to the tubes and incubated at
room temperature for 15 min. To prepare the phosphoric acidvanillin reagent, 0.120 g of
vanillin was added to 20 mL of water, and the volume adjusted to 100 mL with 85 % (v/v)

phosphoric acid. Absorbance at 490 nm was measured using olive oil as standard.
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3.3.6 Quantification of aminoacids

In this section, the protocols used to quantify each aminoacid of the macromolecule
protein are shown.

The glycogen content was analyzed according to Smolders (Smolders et al., 1994).
Glycogen was hydrolyzed adding 5 ml of 0.6 M HCI to 10 mg of freeze dried biomass
and incubating over-night at 105 °C. The glucose produced was quantified using a glucose
quantification Kit (D-Glucose - BOEHRINGER MANNHEIM/R-BIOPHARM from Roche
Yellow Line).

Biomass hydrolysis for amino acid content determination was performed according
to Tuan and Dove (1999). To biomass samples of 40 mg were added 150 uL of 2 % (v/v)
of 3.3 Dithiodipropionic Acid (DTDPA) in 0.2 M NaOH, 245 uL of HCl 12 M, 75 uL of
H>O, 25 uL of internal standard mixture (sarcosine and norvaline 100 mM) and 5 uL of
thiaglycolic acid (1 %) (v/v). A N, stream was used to remove all O; in order to prevent
the oxidation during hydrolysis. The samples were then incubated at 105 °C for 24 hours.
To neutralize the samples 300 uL of NaOH (10 M) was added to the samples. Amino
acid analysis was performed using High-Performance Liquid Chromatography (HPLC) a
Nexera X2 HPLC system from Shimadzu with a diode-array detector and a SIL-30AC
autosampler. The column is a Zorbax Eclipse-Amino acid analysis with dimensions 4.6
x 150 mm. All the procedures of the HPLC method were made according to the column

manufacture instructions.

3.3.7 Quantification of iron and copper

The quantification was performed using a digestion (performed with a microwave
digestion system speedwave 4, by BERGHOF) of a biomass sample followed by the deter-
mination of metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) per-
formed with Optima 8000, by PerkinElmer. The digestion was performed in two different
conditions to ensure the validity of the values. The first digestion was done by submitting
the biomass sample to a 5 % (v/v) of nitric acid, for 10 minutes at 200 °C. And the second
digestion was made by submitting the sample to the same solution, for 10 minutes at 100
°C. The measures were done in axial view, with a wavelength of 238.204 nm to measure

iron, and 324.752 nm and 327.393 nm to measure to isotopes of copper.

3.3.8 Scanning electron microscope

The samples were characterized using a desktop Scanning Electron Microscope (SEM) cou-
pled with Energy-Dispersive X-ray Spectroscopy (EDS) analysis (Phenom ProX with EDS
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detector (Phenom-World BV, Netherlands)). All results were acquired using the ProSuite
software integrated with Phenom Element Identification software, allowed for the quan-
tification of the concentration of the elements present in the samples, expressed in either
weight or atomic concentration. The N. europaea samples were added to an aluminium pin
stubs with electrically conductive carbon adhesive tape (PELCO Tabs™).Samples were im-
aged without coating. The aluminum pin stub was then placed inside a Phenom Charge
Reduction Sample Holder (CHR),and different points were analyzed for elemental compo-
sition. EDS analysis was conducted at 15 kV with intensity map.
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RESULTS AND DISCUSSION

In this chapter, the results from the laboratorial experiments are presented, to be
implemented in the GSM model. And, thus, the model is presented in a simplified manner,
along with the simulations. As mentioned before, the cross-validation from both of these

sources serves to raise the accuracy of the model (Dias et al., 2014).

4.1 LABORATORIAL RESULTS

Here, the data retrieved from all the laboratorial experiments, in this work, is pre-
sented. As explained before, N. europaea was grown in a chemostat under controlled con-
ditions, and from this, it was obtained biomass used to quantify compounds (or groups of
them) in the cell. The quantity of each of this compounds were introduced into the GSM
model, to consider the growth of the biomass in the simulations with the same conditions

used in the laboratory.

4.1.1  Analytical analysis preformed in the chemostat

This organism oxidizes ammonia into nitrite to synthesize ATP, the energy used by
the cell. The nitrite was measures regularly, over a period of 2941 hours, to particularly
study the growth in the exponential phase (correspondent to the maximum growth rate).
About 1313 hours into this experiment, the chemostat growth began to stabilize, i.e., the
rate of production and sinking of nitrite in the chemostat were the same, meaning that
the organism was constantly in exponential phase. Also the pH started to stabilize, in
approximately the same period. Considering that the feeding rate volume was stabilized, it
was possible to make the calculations for the biomass within the chemostat, as well, as the
biomass produced by each hour, since the correlation between the conversion of ammonia
to nitrite and biomass production available in the literature is 0.146 mg biomass/mg NH; -
N (Grady and Daigger, 1999). Note that the ammonia consumed is the same amount as the
nitrite produced (Perez-garcia and Singhal, 2014). The concentrations of pH, the volume
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of medium added per day, and the concentrations of ammonia and nitrite are presented in
Graphs 9A, 9B, 9C and 9D, respectively.
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Figure 9.: Graphs of N. europaea chemostat parameters. A - pH value variation; B - Feed volume; C -
Nitrite nitrogen concentration; D - Ammonia nitrogen concentration.

4.1.2  Quantities of metabolized compounds

The quantities of compounds of this GSM model were directly measured in laboratory,
retrieved from literature, deduced with basis in the E. coli GSM model iAF1260 as the
reference model, or calculated through merlin.

Determined in laboratory in this work are the quantities of macromolecules, includ-
ing the Protein, DNA, RNA, Carbohydrate and Lipid ones. Also the quantity of each
aminoacid, iron and copper were measured in laboratory. The iron quantity was in the
range of expected values, for the medium used (Vajrala and Arp, 2011). However, the cop-
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per was undetectable experimentally because ICP-MS could not read concentrations under
a certain value. It is known that copper activates Ammonia Monooxygenase (AMO), so it
is necessary, however, because the quantity of it was not determined, it was not included in
the biomass of the model (Ensign and Arp, 1993).

4.1.3  Quantities of transported compounds

As mentioned before, the transport of compounds inward or outward of the cell, is
constrained by the drains. After the chemostat stabilized, it was possible to calculate the
absorption of nitrite, through only experimental data. Unfortunately, because ammonia is
volatile and the chemostat has transfers of gases, the measures made experimentally were
compromised. The same is applicable to carbon dioxide and oxygen. And so, for these
three compounds, the values of absorption were extrapolated by the literature and through
the nitrite absorption in the chemostat.

4.1.4 Scanning electron microscope

With the images obtained from SEM, it is possible to make a qualitative analysis at
the viability of the cells, after their collective process. In Figure 10 it is possible to observe
that an extensive majority of cells present an intact appearance. In other words, no evident
extensive cell lyses was observed. Moreover, the cells present a similar size and form as
presented in literature (Grady and Daigger, 1999; Yu et al., 2015). Thus, this indicates
that all of the experimental quantifications performed in this work are viable, since all the
compounds were maintained within the cells, avoiding their degradation.

4.2 COMPUTATIONAL RESULTS

In this section, all the results regarding the reconstruction of the GSM model, as well
as the simulations performed with it, are presented.

4.2.1  Finding organisms for comparison

The closest organism, with a GSM model described, to N. europaea was found to be Neisseria
meningitidis. However these organisms only have their class in common, thus they are still
relatively distant. Therefore, the genome of N. europaea was compared to N. meningitis

using BLAST to assess this comparison, which confirmed that these organisms had very
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Figure 10.: N. europaea freeze dried biomass SEM images. A - Agreggation of cells; B - Measure of
one cell of N. europaea, marked its size in green

few matches between the two genomes. The phylogenetic tree is represented in Figure 13,
in Annex A.

Because a GSM model to accelerate this model reconstruction was not obtained, anno-
tated organisms taxonomically close to N. europaea were sought to ease the gene annotation

process.

The data comparing N. europaea genes with the species sharing it genus is presented
in Table 7 and the organism selected for comparison was N. eutropha because it is the one
with the most curated genes (except N. europaea).

4.2.2 Determining the o and thresholds with new metric

The new metric was measured with the & in each instance, presented in Table 16, com-
bined with the NPV, presented in Table 18, and with the Precision, presented in Table 17, in
Annex A. These tables were constructed through their respective confusion matrices, pre-
sented in Tables 13, 14 and 15 in Annex A, of the 50 genes sample. The manual annotation
of this set of genes, is presented in Table 11, in Annex A.

This information is demonstrated in Figure 11. One aspect to note is that the accuracy
decreases as the a increases, meaning that the homology of the genome values the taxonomy
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Table 7.: Number of genes annotated on TrEMBL (non-curated database) and Swiss-Prot (curated
database) of all the species of the genus Nitrosomonas.

Species TrEMBL | Swiss-Prot

Nitrosomonas aestuarii 4 0
Nitrosomonas communis 3066 0
Nitrosomonas cryotolerans 9 0
Nitrosomonas halophila 4 0
Nitrosomonas marina 25 0
Nitrosomonas nitrosa 4 0
Nitrosomonas oligotropha 16 0
Nitrosomonas stercoris 1 0
Nitrosomonas ureae 2819 0

Nitrosomonas eutropha 2147 335

Nitrosomonas europaea 4597 436

score over the frequency one. This suggests that the classification is overall more accurate

by giving more importance to closer organisms than to more homology hits.

The highest Accuracy per number of entries to be curated (1.39) was associated with
an « of 0,9 and the lower and upper thresholds of 0,1 and 0,5, respectively. This a had an
Accuracy of about 0,433 and every gene with the score between 0,1 (inclusively) and 0,5

(exclusively) were manually curated, about 348 genes.

4.2.3 Genome annotation

Four organisms were selected to develop this approach: The closest organism N. europaea
was selected because, in the NCBI database N. europaea and N. europaea ATCC 19718 (the
strain that the GSM model is based on) have two different entries. The second one was N.
eutropha, as previously described. The third one was E. coli, as it is the most studied bacteria

and it has several curated GSM models.

The manual annotation of the sample of 50 genes, is presented in Table 11, in Annex
A. And the results of the the manual curation of 385 genes (including the previously men-
tioned set of 50 genes, and other genes considered important) are shown in Table 12, in
Annex A. About 70 % of the genes EC number were altered, suggesting that this step was
significant to a better reconstruction of the model. In most of the cases the confidence level
of the genes were D or F, meaning that most of the homologies from a curated source came
from E. coli, and from a non-curated source came from the same strain for the reconstruction
of this model.
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Figure 11.: Representation of the number of genes automatically accepted by the upper threshold,
the number of genes automatically rejected by the lower threshold, and the number of
genes to be manually curated (left vertical axis). Representation of theAccuracy and the
Accuracy per number of entries to be curated (right vertical axis). All of these parameters
are presented for every a.

4.2.4 Correction of the reversibility of reactions and of EC numbers in the model

The reversibility, along with the direction correction of reactions (in irreversible cases)
were done to stop many problems within model. It was corrected manually the reversibility
of 71 reactions, and the direction of 33. Both represent about 15 % of the total number of
reactions. With a functional model, the merlin import from KEGG reactions, along with
its automatic tool to correct the reversibility prove to be very useful, because it were only
reviewed low percentage of those. The EC number were only changed in about 3 % of the
annotated genes, meaning that the annotation method was efficient.

4.2.5 Transporters prediction

The number of genes responsible to transport metabolites is 72. Each of those trans-
porters can involve one or more metabolites and even though the model reconstructed in
this work does not use all of those, they can be useful when it is wanted to have other
metabolites enter of leave the metabolic network, in a simulation. This further demon-
strates the plasticity of this metabolic model, when predicting its growth under different

environmental conditions.
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4.2.6  Removal of dead-ends

All of the dead-ends were successfully removed from the model, making it feasible.
This was possible by adding reactions to filling the gaps between the dead-end metabo-
lites or by removing problematic ones. The number of reactions imported with no gene
association, corresponded to 14 % of the total reactions. The change in EC number, previ-
ously mentioned, was responsible for removing dead-ends. Most of the removed reactions
were because they were generic, because KEGG represents its pathway maps with generic
compounds, unbalancing the model. And most of the added reactions have basis in other
databases and in literature, meaning that it is important to consider multiple sources of

information to make the model more complete.

4.2.7  Balance of reactions

About 10 % of the total reactions had to be reviewed to maintain a stoichiometric
model. Along with the generic compounds in KEGG, the balance of required reactions
is also affected from this problem. However, most of the reactions were unbalanced by a
proton, suggesting that KEGG involved compounds in the oxidized or reduced form in
different reactions.

4.2.8 Biomass precursors
All the macromolecules average amounts are represented in Table 8, and these are the
resultant of the biomass composition, in the metabolic model. This quantitative study was

done through multiple sources, described in the previous chapter.

Table 8.: Relative quantity of each macromolecule in the biomass of the model.

Macromolecule | Quantity (g / g Biomass)
Protein 0,463
DNA 0,007
RNA 0,040
Carbohydrate 0,352
Lipid 0,099
Inorganic ions 0,010
Cofactor 0,029

Total 1

Qualitatively, there were 66 metabolites inserted into the 7 entities responsible to form

the biomass. Most of them were directly retrieved from literature and from E. coli iAF1260
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GSM model. However the lipid entity was and exception because the compounds in it were
deducted, from multiple sources:

This organism lipids can be classified as acetogenic and isoprenoid lipids and have
different chemical properties as well as different roles in the cell. The only acetogenic lipids
described in literature are hexadecanoate [16:0] and hexadecenoate [16:1] and the only iso-
prenoid lipids are diploptene e bishomohopanol (Hagen and Goldfine, 1966; Sakata and
Seemann, 2008). Acetogenic lipids are known to be incorporated into phospholipids as
well as lipopolysaccharides. E. coli iAF1260 GSM model considers phospholipids with one
type of acetogenic acid at a time, with the same length. Phospholipids with one satu-
rated and one unsaturated acetogenic acid are not considered, though this types of aceto-
genic acids always come in pairs (for. Hence, eight different phospholipids, four types of
phospholipids (Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidyl-
glycerol (PG) and Phosphatidyl-N,N-dimethylethanolamine (PDME)), each of which with
two variants (assembled with two saturated or two unsaturated acetogenic lipids), were
considered. The amount of each of these phospholipids was inferred from literature. Con-
cerning isoprenoid lipids, bishomopanol is known to be the product of the degradation
of Amonibacteriohopanetriol (ABHT), though this reaction was not found in the database
or literature. Hence, regarding the synthesis of bishomohopanol, no secondary metabo-
lites were considered in this reaction. The amount of diploptene and bishomohopanol was
directly obtained by literature.

Another interesting entity is the lipopolysaccharide one, because although it was not
considered, its partitions are still in calculated in the model. This is because there was
not found enough evidence to insert these molecules into the model. Beside not finding
any information regarding these molecules structure in literature and databases, from the 9
genes that synthesize the most common lipopolysaccharide in bacteria (Lipid A), only one
was available in N. europaea (Opiyo and Moriyama, 2010).

Finally, one particular and very important network, that is closely related to the
biomass, and that was added to the model is the Electron Transport Chain (ETC), for the
fact that it is responsible for synthesizing ATP. This pathway was reconstructed based on
entries from UniProt and literature. The ETC was found to be responsible for recycling
Reduced Nicotinamide Adenine Dinucleotide (NADH) from Nicotinamide Adenine Dinu-
cleotide (NAD) by a process called “reverse electron transfer”. The lump of all the reactions
responsible of producing energy is described in the following Equation 9:

3
NHs + 50, = NOj + H" + H,0 )
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The enzyme Hydroxylamine Oxidoreductase (HAO) transfers 2 electrons to the next
steps of the ETC, of which 1.65 are used to produce nitrite and 0.35 for recycling NADH
(Whittaker et al., 2000).

Because the model does not include electrons, the ratio for ATP synthesis and for

NADH recycle was associated in the precursor reaction, performed by AMO.

4.2.9 Genome-scale metabolic model of N. europaea

The GSM model reconstructed in this work is available at iPR572, as an SBML file,
as well as all the Supplementary material. This model contains 617 reactions, being about
80 % of them inferred from homology. This, and other basic information of the model is
presented in Table 9.

Table 9.: General information of the model.

Data Number in the model

Genes 2462

ORF 572

Metabolites 4832

Total Reactions 617
KEGG reactions 7
HOMOLOGY reactions 495
TRANSPORTERS reactions 21
MANUAL reactions 61

When compared to models of organisms of reference for this work, there are is are not
many differences in the number of ORFs or of reactions. The comparison data is presented
in Table 10. Because E. coli is well studied organism, it has more reactions associated with
it. Moreover, N. europaea has the shortest genome among the Betaproteobacteria, possibly
because they have a limited lifestyle for the fact that all the energy is derived from oxidiz-
ing ammonia, leading to a reduction of genes, and reactions (Opiyo and Moriyama, 2010).
However the difference of the N. europaea and N. meningitidis are unnoticeable.

Table 10.: Comparison of models of organisms of reference. iGB555 is the metabolic model of N.
meningitidis, and iAF120 is of E. coli.

Data iPR572 | iGBs55 | iAF1260
ORF 572 555 1260
Intracellular metabolites 550 471 1039
Total Reactions 617 496 2077
TRANSPORTERS reactions 21 74 690
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4.2.10 Simulation and validation of the genome-scale metabolic model

It was used a pFBA simulation in a wild-type version of the model, with the drains
fluxes described before. The results of the fluxes of consumption and production com-
pounds are presented in Figure 12.

Simulation Information
Method Name: pFBA

Solution Type: OPTIMAL

Environmental Conditions: Env. Conditions

Objective Function min Z|V| =50.314248
Biomass value: 0.0079255085
LR Consumption Production
Metabolite Id Metabolite Name Value Metabolite |d Metabolite Name Value
M_00081 C14818_Fe2+_Fe 0.00001 W_00007 C00080_H+_H 378274
M_00008 C00059_Sulfate_H2504 0.00131 W_00360 CO0088_Nitrite_MO2 377768
M_00375 C00009_Orthophosph... 0.00243 WM_00246 C00170_5-Methylthio.. 1.55004E-6
M_00362 CO00014_Ammonia_NH3 3.83697 W_00486 C04425_5-Adenosyl- 5.12543E-8
M_00364 CO0007_Oxygen_02 5.34624 M_00335 C051958_5-Deoxyade.. 1.53763E-7
M_00355 Co0011_co2_co2 0.30218 WM_00346 CO0001_H20_H20 3.69809
M_00421 CO0086_Urea_CH4NM... 0.00001
M_00099 e-Biomass_e-Biomass 0.00793

Figure 12.: Wild-type simulation of the model, using OptFlux with pFBA. The consumed com-
pounds are only inorganic ones, as expected from a chemolitoautotrophic organism, and
the compounds produce include nitrite, protons and biomass.

Note that all the principal consumed and produced compounds are involved in
the simulation. Also note that the production of protons justifies the acidification of the
medium, in aerobic conditions (Kozlowski et al., 2014). All other compounds produced
could not be metabolized so they were secreted by the model.

The in silico biomass growth rate was 0.00793 1!, whereas growth in vivo was 0.0078
h~1. This leads to a model accuracy of about 98.36 %.

Another aspect to notice is that the efficiency to produce biomass, with little waste is
high. About 99,9903 % of the carbon consumed is directed to the production of biomass,
and only 0,00997 % is drained through the metabolites secreted by it. The fact that this
organism is an chemoautolitotrophic means it spends much of the energy produced in
carbon fixation (about 80 %), and for that, it must spend as little resources as possible to
thrive in its environment (Baribeau, 2006).
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In this chapter, a brief summary of the applications of the GSM model is presented,
in the context of this work, as well as future work to continue to improve this model.

5.1 CONCLUSIONS

A viable GSM model of N. europaea was reconstructed in this work, iPR. A robust
genome-wide annotation was performed in this work, which allowed providing a reliable
representation of the metabolism of this organism in this model. Simulations with iPR
allowed predicting in silico the behavior of the cell in vivo. Moreover, optimizations to
improve production of compounds of interest with less effort and resources, for instance,
by predicting genes knockouts. Although this model was validated with experiments in
aerobic conditions, enzymes to maintain a metabolism in anoxic conditions are also present
in the model. However, the model was not validated in this condition because there was no

experimental data done in this work to support it.

This model could be used to predict optimizations that would allow using this organ-

ism in processes, other than wastewater treatment, to remove N.

Nevertheless, this model was reconstructed with a focus of helping to stop eutroph-
ication in wastewater treatments. This serious environmental problem, although firstly
described in the beginnings of the 20th century, still persists to this very day. By weakening
ecological niches worldwide, it sets in motion a varied range of consequences, from eco-
nomical to health ones. Luckily, with the advances in systems biology and bioinformatics,
this issue can be slowed down or even stopped. Therefore it is hoped that this work can
contribute to the development of scientific technologies to take a step further to eradicate
eutrophication.
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5.2 FUTURE WORK

Despite the the good results obtained with this GSM model, there is still room for improve-

ments.

One of them is the compartmentalization of the model, by adding new compartments
in which reactions can take place, other than the cytoplasm. A compartment usuallyavail-
able in Gram negative bacteria is The periplasm, in which of some compounds are syn-
thesized,. Regarding this organisms specifically, The carboxysome is where the fixation of
carbon dioxide occurs.

Another improvement would be the validation of the model in anaerobic and anoxic
conditions, to fully understand the impressively adaptable metabolism that this organism
has.

However, where the true potential of GSM model lies is in the possible simulations
in silico in different conditions. Hence, gene knock-out, allow increasing the production of
compounds of interest, and therefore to increase fluxes in the pathways of the N fixation or
in others.

Finally, this organism can be associated in a community of bacteria able to consume
nitrite (produced by N. europaea), and produce diatomic N - non-reactive N - to stop eu-
trophication. Therefore, this GSM model could be coupled with metabolic model of those
partial denitrifier bacteria, to better understand the community requirements.
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ANNEX

Methanococcus_maripaludis_16S_ribosomal_RNA__complete_sequence 0.11955
Sulfolobus_solfataricus_strain_DSM_1616_165_ribosomal_RNA_gene__complete_sequence 0.13155
E.coli_16S_rRNA 0.20003
Porphyromenas_gingivalis_strain_ATCC_33277_165_ribosomal_RNA_gene__complete_sequence 0.07983
Bacteroides_thetaiotaomicron__ATCC_29148_ 165_ribosomal_RNA 0.08266
Mycoplasma_genitalium_strain_G-37_16S_ribosomal_RNA_gene__complete_sequence 0.00873
Mycoplasma_pneumeniae_strain_ATCC_15521_165_ribosomal_RNA_gene__complete_sequence 0.00881
Methylobacterium_extorquens_16S_ribosomal_RNA 0.09394
Zymomonas_mobilis_strain_ATCC_10988_165_ribesomal_RNA_gene__partial_sequence 0.07711
Rhizobium_etli_strain_CFN_42_165_ribosomal_RNA_gene__complete_sequence 0.02096
Sinorhizobium_meliloti_strain_IAM_12611_16S_ribosomal_RNA_gens__complete_sequence 0.02649
Ketogulonicigenium_vulgare_strain_DSM_4025_165_ribosomal_RNA_gene__partial_sequence 0.04872
Rhodobacter_sphaercides_strain_2.4.1_165_ribosomal_RNA_gene__complete_sequence 0.04106
Gluconobacter_oxydans_strain_NBRC_14810_16S_ribosomal_RNA_gene__partial_sequence 0.08716
Neisseria_r itidis_strain_M1027_165_ribosomal_RNA_gene__complete_sequence 0.0789

[[Fitr europaea_strain_ATCC 25578 165 _ribosomal RNA_gene partial_sequence 0.06859]
Rhodoferax_ferrireducens_T118_165S_ribosomal_RNA_gene__partial_sequence 0.05683
Bordetella_pertussis_ATCC_0797_16S_rRNA__partial_sequence 0.04868
Burkholderia_cenccepacia_strain_LMG_16656_16S_ribosomal_RNA_gene__partial_sequence 0.03876
Cupriavidus_necater_strain_N-1_165_ribosomal_RNA_gene__complete_sequence 0.0403
Acinetobacter_baumannii_strain_ATCC_19606_16S_riboscmal_RNA_gene__complete_sequence 0.01257
Acinetobacter_baylyi_strain_B2_16S_ribosomal_RNA__complete_sequence 0.03085
Pseudomonas_aeruginosa_strain_DSM_50071_165_ribosomal_RNA_gene__complete_sequence 0.03624
Pseudomonas_stutzeri_165_ribosomal_RNA__complete_sequence 0.02337
Pseudomonas_fluorescens_strain_CCM_2115_165_ribosomal_RNA_gene__complete_sequence 0.01307
Pseudomonas_putida_strain_IAM_1236_165_ribosomal_RNA_gene__complete_sequence 0.01592
Chr cter_: igens_strain_DSM_3043_165_ribosomal_RNA_gene__complete_sequence 0.06397
Xanthomonas_campestris_strain_ATCC_33913_16S_ribosomal_RNA_gene__complete_sequence 0.07803
Buchnera_aphidicola__primary_endosymbient_of_Melaphis_rhois__165_ribosomal_RNA 0.10028
Haemophilus_influenzae_strain_680_165_ribosomal_RNA_gene__complete_sequence 0.04037
Mannheimia_succiniciproducens_strain_MBELS55E_165_ribosomal_RNA_gene__complete_sequence 0.03401

eromonas_haleplanktis_strain_ATCC_14393_16S_ribosomal_RNA_gene__complete_sequence 0.06152

- _onei _strain_MR-1_165_ribosomal_RNA_gene__complete_sequence 0.05064
Wibrio_vulnificus_strain_324_165_ribosomal_RNA_gene__complete_sequence 0.04709
Yersinia_pestis_strain_NCTC_5023_165_ribosomal_RNA_gene__partial_sequence 0.02982
Salmonella_enterica_subsp._enterica_serovar_Typhimurium_strain_LT2_16S_ribosomal_RNA_gene__complete_sequence 0.0161

m Pectobacterium_carotoverum_strain_CFBP2046_165_ribosomal_RNA_gene__complete_sequence 0.01819
Klebsiella_oxytoca_strain_ATCC_13182_165_ribosomal_RNA_gene__partial_sequence 0.01495
Klebsiella_pneumeniae_strain_DSM_30104_165_riboscmal_RNA_gene__complete_sequence 0.01105
-

Francisella_tularensis_strain_B-38_165_ribosomal_RNA_gene__complete_sequence 0.09799
Geobacter_metallireducens_165_ribosomal_RNA_gene 0.02483

Geobacter_sulfurreducens_strain_PCA_165_ribosomal_RNA_gene__complete_sequence 0.02498
Campylebacter_jejuni__complete_16S_ribesomal_RNA 0.07923
Helicobacter_pylori_strain_ATCC_43504_165_ribosomal_RNA_gene__complete_sequence 0.0684

Thermotega_maritima_strain_MSB-8_165_ribosomal_RNA_gene__complete_sequence 0.10284
Thermus_thermophilus_strain_HB8_16S_ribosomal_RNA_gene__complete_sequence 0.10779
Caldanasrobacter_subterransus_subsp._tengcongensis_strain_MB4_16S_ribosomal_RNA_gene_ complete_sequence 0.09314
Bifidobacterium_adolescentis_16S_ribasomal_RNA 0.08911
Corynebacterium_glutamicum_strain_ATCC_13032_165_ribosomal_RNA_gene__complete_sequence 0.05106
‘Amycolatopsis_tolypemycina_strain_DSM_44544_165S_ribosomal_RNA_gene__complete_sequence 0.02931
Saccharopolyspora_erythraea_strain_NRRL_2338_16S_ribosomal_RNA_gene__complete_sequence 0.0144
Saccharopolyspora_spincsa_strain_DSM_44228_165_ribosomal_RNA_gene_partial_sequence 0.02044
Mycobacterium_tuberculosis_strain_H37Rv_165_ribosemal_RNA_gene__complete_sequence 0.04137
Rhodococcus_erythropolis_strain_ATCC_4277_16S_ribosomal_RNA_gens_complete_sequence 0.0242
Streptomyces_coelicolor_strain_DSM_40233_165_ribosomal_RNA_gene__complete_sequence 0.04955
Salinispora_tropica_strain_CNB-440_165_ribosomal_RNA_gene__complete_sequence 0.05285
—

Dehal ides_mccartyi_strain_195_16S_ribosomal_RNA_gene__complete_sequence 0.12544

Arthrospira_platensis_strain_PCC_7345_165_ribasomal_RNA_gene__ partial_sequence 0.113
Lactococcus_lactis_subsp._cremoris_strain_NCDO_607_165_ribosomal_RNA_gene__partial_sequence 0.05196
Streptecoccus_pyogenes_strain_JCM_5674_165_ribosemal_RNA_gene__complete_sequence 0.02726
Streptecoccus_thermophilus_strain_ATCC_19258_165_ribosomal_RNA_gene__complete_sequence 0.02474
Lactobacillus_plantarum_16S_ribosomal_RNA 0.06481
Enterococcus_faecalis_strain_LMG_7937_165_ribosomal_RNA_gene__complete_sequence 0.05212
Bacillus_licheniformis_strain_ATCC_14580_16S_ribosomal_RNA_gene__complete_sequence 0.00889
Bacillus_subtilis_strain_168_16S_ribosomal_RNA_gene__complete_sequence 0.00795
Bacillus_megaterium_strain_ATCC_14581_165_ribosomal_RNA_gene__partial_sequence 0.03608
Staphylococcus_aureus_strain_ATCC_12600_165_ribosomal_RNA_gene__complete_sequence 0.04427
Peptoclostridium_difficile_strain_ATCC_0689_16S_ribosomal_RNA_gene__partial_sequence 0.10327

Clostridium_ljungdahlii__strain_ERI-2__16S_ribosomal_RNA__165_rRNA_ 0.05943
LL_E Clostridium_acetobutylicum_strain_ATCC_824_165_ribosomal_RNA_gene__complete_sequence 0.04835
Clostridium_beijerinckii_strain_McCoyA_67_165_ribosomal_RNA_gene__complete_sequence 0.04396
Faecalibacterium_prausnitzii_strain_ATCC_27768_165_ribosomal_RNA_gene__partial_sequence 0.09996
Ruminiclostridium_thermocellum_strain_ATCC_27405_16S_ribosomal_RNA_gene__complete_sequence 0.07482

Figure 13.: Phylogenetic tree of the organisms with a GSMM, found in three databases. The distance
of each organism is presented in front of its name. Tree constructed by MUSCLE, using
165 rRNA as base of reference.
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Table 11.: Manual annotation of 50 random genes of N. europaea. Each gene is identified by its Gene
ID, and has it own score calculated by merlin. The genes are grouped by a score, and each
group ranges by 0.1 score. The EC number and Function reflects the annotation itself and
is evaluated by a Classification Level (CL), which tells how reliable the annotation is.

Group Score | Gene ID | Score | EC number Function CL

NEo330 | 0.0 - Glycosyl transferase, .
” ’ family 2

NEo396 | 0.02 ) UnCharact.erized ]
protein

oo NEo458 001 i Uncharact.erized i
protein

Uncharacterized

Periplasmic component
NEogoz | o.05 - of the Tol biopolymer G
transport system

Anaerobic nitric
oxide reductase
NEoo17 | o.15 1.1.1.144 o D
transcription
regulator NorR
Glutathione

NEos22 | 0.16 1.8.-.- S-transferase, C-terminal E

domain

Bifunctional
0.1 NEoo20 | o.19 5.1.99.6 NAD(P)H-hydrate repair D

enzyme Nnr

NEoo25 | o0.13 3.1.-.- Ribonuclease TTHAo0252

NEoo2g 018 - Uncharacterized D

oxidoreductase YciK

NEo0035 0.2 3.4.21.- Putative Lon protease D
homolog

NEoo48 | o0.27 4.1.2.13 Aldolase F

Spermidine/putrescine
0.2 NEoo63 | 0.28 3.6.3.31 import ATP-binding C

protein PotA

Continued on next page




Table 11 — continued from previous page

Group Score | Gene ID | Score | EC number Function CL
Diguanylate
NEoo8o | 0.24 3.1.4.52 cyclase/phosphodiesterase | D
domain 2 (EAL)
Ribosomal RNA small
NEoo85 | 0.26 2.1.1.176 subunit methyl- D
-transferase B
235 rRNA
NEooos | 0.39 5.4.99.21 pseudouridine(2604) D
synthase
NE1738 | 0.33 2.7.13.3 Histidine kinase F
0.3 NEoo34 | 0.37 2.6.1.- Seflne—pyruvate E
aminotransferase
NEoogo | 0.38 2.8.1.1 Rhodanese/cdc25 F
fold
Methionine import
NEo1o07 0.3 3.6.3.- ATP-binding E
protein MetN
Sensor histidine
NEoo15 0.4 2.7.13.3 Kinase GLiK D
Dolichyl-phosphate
NE1652 | o0.45 2.4.1.83 beta-D-mannosyl- E
-transferase
0.4 NEooy1 | o0.44 1.13.12.- Ammonia mon‘ooxygenase F
subunit C
NEo142 0.4 2.6.1.11 Ac‘etylornithine A
aminotransferase
NEo190 0.4 2.7.7.- Nucleotidyl G
transferase
Single-stranded-DNA
NEoo1io | 0.56 3.1.-.- -specific exonuclease D
Rec]
NEoo56 0.5 3.2.2.- Adenine DNA D
glycosylase
0.5 NEoo76 | 0.53 3.4.24.84 CAAX prenyl protease E
1 homolog

Continued on next page
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Table 11 — continued from previous page

Group Score | Gene ID | Score | EC number Function CL
NEo208 | o.51 2.3.1.157 Bifunctional protein A
2.7.7.23 GImU
NEo362 05 3.5.4.9 Bifunctional protein A
1.5.1.5 FolD
Exodeoxyribonuclease
NEoo23 | 0.65 3.1.11.2 III:Exodeoxyribonuclease | D
III xth
Adenosylmethionine-8-
NEoo26 | 0.63 2.6.1.11 -amino-7-oxononanoate D
aminotransferase
Protein-L-i tat
0.6 NEoo37 | 0.62 2.1.1.77 roteiirlsoaspartate E
O-methyltransferase
D-alanyl-D-alani
NEoos53 | 0.61 3.4.16.4 aany a‘anme E
carboxypeptidase
Lipid A export
NEoos4 | 0.68 3.6.3.- ATP-binding /permease D
protein MsbA
Anthranilat th
NEoo14 0.7 4.1.3.27 niirantiate synthase E
component 2
S transducti
NEoo49 | o0.72 2.7.13.3 en'501"y‘ rans‘. veton D
histidine kinases
ATP-dependent DNA
0. NEoo 0. 6.4.12 D
7 %3 74 354 helicase RecQ
DNA pol I
NEo141 | o.77 2.7.7.7 po'ymer'ase D
subunit epsilon
CRISPR- iated
NEoi1i0 | o.77 3.1.-.- assoctate A
endoribonuclease Cas2 1
RISPR- i
NEo111 | 0.81 3.1.-.- CRISPR-assoclated E
endonuclease Cas1 1
CRISPR- iated
NEoi12 | 0.83 3.1.-.- ) assoclare A
endoribonuclease Cas2 2
ATP synth bunit
0.8 NEo204 | 0.87 3.6.3.14 Syntiase subtin A
alpha
ATP synth bunit
NEo206 | 0.86 3.6.3.14 Syrhase stbunt A

beta

Continued on next page
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Table 11 — continued from previous page

Group Score | Gene ID | Score | EC number Function CL
Holliday junction

NEo213 | 0.88 3.6.4.12 ATP-dependent DNA A

helicase RuvB
NEoooz2 | 0.94 2.7.7.7 DNA poly.merase i E

subunit beta
NEooo3 | 0.94 5.99.1.3 DNA gyrase subunit B E
0.9 NEoo12 | 0.95 4.1.1.48 Indole-3-glycerol E

phosphate synthase
NEoo13 | 0.94 2.4.2.18 An'thramlate A
phosphoribosyltransferase
Phosphoribosylformyl-
NEoo19 | 0.95 6.3.5.3 -glycinamidine D
synthase

Table 12.: Manual annotation of the 385 genes of N. europaea, being 348 of them the pruposed ones
by the New metric. Each gene is identified by its Gene ID, and has it own score calculated
by merlin. The genes are grouped by a score, and each group ranges by o.1 score. The
EC number and Function reflects the annotation itself and is evaluated by a Classification
Level (CL), which tells how reliable the annotation is.

Gene ID | EC number Function CL
NEooos 5.4.99.21 23S rRNA pseudouridine(2604) synthase D
NEoo1o 31me Single-stranded-DNA-specific exonuclease D
Rec]
NEoo15 2.7.13.3 Sensory transduction histidine kinases D
NEoo016 - Uncharacterized protein -
NEoo26 2.6.1.82 Putrescine aminotransferase D
NEoo34 2.6.1.- Aminotransferase class-V E
NEoo3zy 2.1.1.77 Protein-L-isoaspartate O-methyltransferase E
NEoogo0 2.8.1.1 Rhodanese F
NEoos8 i Class I Aldolase and Afdducin N-terminal g
domain
NEoo53 3.4.16.4 D-alanyl-D-alanine carboxypeptidase E
NEoos6 3.2.2.- Adenine DNA glycosylase D
NEoo6o 2.7.1.69 PTS sugar transporter subunit IIA F
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NE0o63 36331 Spermid.ine'/ putresci%ne import C
ATP-binding protein PotA
NEoo71 2.7.1.113 Deoxynucleoside kinase F
NEoo76 3.4.24.84 CAAX prenyl protease 1 homolog E
NEoo8o 31452 Diguanylate cyclase/ Phosphodiesterase D
domain 2
NEoo8s 211176 Ribosomal RNA small subunit D
methyltransferase B
NEoog1 2.7.-.- Probable protein kinase UbiB D
NEoo0g7 i HAD-superfamily subfamily IB k
hydrolase, TIGRo1490
NEo103 - Uncharacterized protein YyaL E
NEo107 363+ Methionine imPort ATP-binding D
protein MetN
NEo142 2.6.1.11 Acetylornithine aminotransferase A
NEo159 363 Lipid A export AT?P-binding/ permease E
protein MsbA
NEo174 2.8.1.7 Cysteine desulfurase IscS D
NEo184 3.6.1.- NUDIX hydrolase D
NEo190 2.7.7.- Nucleotidyl transferase F
NEo202 - ATP synthase subunit b A
NEo205 - ATP synthase subunit gamma chain A
NEo208 >7723 Bifunctional protein GImU A
2.3.1.157
NEoz14 312 4-hydroxyberTzoyl-(.ZoA jchioesterase E
family active site
NEo217 - Proline-rich region I
NEo224 2.3.1.n3 Glycerol-3-phosphate acyltransferase A
NEo233 - Toprim domain I
Oxygen-independent
NEo278 1.3.99.- coproporphyrinogen-III D
oxidase-like protein YggW
NEoz292 3.1.-.- Toxin YhaV D
NEo310 3.2.1.- Peptidoglycan hydrolase Flg] D
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NEo320 - GCNp5-related N-acetyltransferase G

NEo334 1.1.1.95 D-3-phosphoglycerate dehydrogenase E

NEo335 42151 PrePhenate dehydratase . D

(PDT):Chorismate mutase:ACT domain

NEo337 1.3.1.12 Prephenate dehydrogenase E

NEo343 2.7.13.3 Sensor protein QseC D

NEo347 2.5.1.16 Polyamine aminopropyltransferase A

NEo355 3.1.26.12 Ribonuclease E D

NEo362 1313 Bifunctional protein FolD A

3-5-4-9

NEo0368 2.7.6.5 GTP pyrophosphokinase E

NEo370 1153 Aerobic glycerol-3-phosphate D
dehydrogenase

NEos71 31446 Glycerophospl‘loryl diester R

phosphodiesterase

NEo376 365 Lipid A export ATP—binding /permease D
protein MsbA

NEo37 i Sensor‘ si.gr.lal trtansduction P

histidine kinases
NEo378 27831 UDP-glucose:undecaprenyl-phosphate D
glucose-1-phosphate transferase

NEo379 3.4.21.- Serine proteases, trypsin family G

NEo380 3.1.17 L-serine dehydratase 2 4 D

NEo382 31213 Putative type I restriction enzyme E

HindVIIP R protein
NEo384 31213 Restriction modification system, |
type I
NEo385 21172 Putative .type I restriction. enzyme E
Hind VIIP M protein

NEo3g7 11144 6-phosphogluconate de.hydrogenase, D
decarboxylating

NEoy38 11.1.38 NAD—depe.ndent ma?ic enzyme, D
mitochondrial

NEo439 3.1.3.3 Phosphoserine phosphatase E
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NEo441 341110 Probable cytosol aminopeptidase A
3.4.11.1
NEog42 2.7.7.7 DNA polymerase III subunit chi F
NEo456 - Alpha/beta hydrolase fold protein G
NEo466 2.4.1.1 Glycogen phosphorylase E
NEo483 36340 Teichoic acids e>'<port ATP-binding E
protein TagH
NEo499 - Glycosyl transferase, family 2 F
NEos00 5.1.3.2 putative UDP-glucose 4-epimerase E
NEoso2 421115 Polysacchari‘de biosynthesis E
protein CapD
NEos15 27133 Signal transdtilction histidine-protein
kinase BaeS
NEos25 1.1.1.205 CBS domain H
2.1.1.107
NEo532 1.3.1.76 Siroheme synthase A
4.99-1.4
NEos53 3.1.-.- Ribonuclease VapC I
NEos69 3.4.11.10 Probable cytosol aminopeptidase A
NEo585 Uncharacterized protein -
NEos591 4.2.1.75 Uroporphyrinogen-III synthase
NEosg2 211107 Possible uroporphyrin-III
C-methyltransferase
NEoso4 11813 putative reductase 'oxidoreductase E
protein
NEo6oy 2.1.1.163 Possib.Ie ubiE u‘?iquinone /menaquinone 0
2.1.1.201 biosynthesis methyltransferase
NEo611 2.7.1.- Uncharacterized sugar kinase MJo406 E
NEo612 23151 1-acyl-sn-glycerol-3-phosphate E
acyltransferase
NEo0618 3.6.3.8 Calcium-transporting ATPase E
NEo620 41.1.1.1 Alcohol dehydrogenase E
NE0626 3.4.11.2 Aminopeptidase N D
NEo640 3ummem HIT (Histidine triad) family E
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8.1.
NEo650 6110 Bifunctional protein ThiO/ThiG E
1.5.3.-
NEo6s2 i Biotin carboxyl carrier protein of E
acetyl-CoA carboxylase
NEo653 63.4.14 Acetyl-/ propionyl—coenzy‘me A E
carboxylase alpha chain
NEo674 1.1.3.15 Glycolate oxidase subunit GIcE D
NEo675 - Glycolate oxidase subunit GlcD D
dTDP-4-dehydrorh
NEo678 5.1.3.13 4de y rorhamnose D
3,5-epimerase
NEo679 5.1.3.2 UDP-glucose 4-epimerase E
NEo0683 1.9.3.1 Cytochrome c oxidase, subunit I F
NEo684 1.9.3.1 Cytochrome c oxidase, subunit I F
6.3.2.
NEo0696 3-217 Bifunctional protein FolC D
6.3.2.12
NEo713 3.1.-.- Toxin YoeB D
NEo723 3.4.21.- Extracellular serine protease E
NEo728 2.7.13.3 Histidine kinase G
NEo741 117.99.1 4—cres‘ol dehydrogerTase . E
[hydroxylating] flavoprotein subunit
NEo742 1.1.1.1 Alcohol dehydrogenase 4 E
NEo7s7 6.6.1.1 Magnesium-chelatase s‘ubunit ChlH, E
chloroplastic
NEo772 1.11.1.15 Putative peroxiredoxin bcp E
NEo774 1.8.1.4 Dihydrolipoyl dehydrogenase E
Uncharacterized Transfer Ribonucleic Acid (tRNA)/rRNA
NEoy75 2.1.1.- E
methyltransferase slr1673
NEoy77 3113 Esterase/ l.ipase / thio.esterase G
family active site
NEo781 3.1.3.25 Inositol-1-monophosphatase E
NEo782 Lmumom Multicopper oxidase com E
NEo793 1.1.1.193 Riboflavin biosynthesis protein RibD D
NEo794 - Glycosyl transferase, group 1 F
NEo7y95 - Glycosyl transferase, group 1 F
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NEo796 - Putative CapK protein F
NEo8oo - Uncharacterized protein -
NEo811 - Cytochrome c1 E
NEoS20 o Zinc-containing alcohol E
dehydrogenase superfamily
NEo82s 363+ ‘Me‘lcrolide export ‘ A
ATP-binding/permease protein
NEo826 363 'Ma'lc:rolide export ' A
ATP-binding/permease protein
NEoS27 363 'szlcrolide export ' A
ATP-binding/permease protein
-dihydroxy-2-naphthoyl-CoA
NEo0832 3.1.2.28 L4-dihydroxy-2-naphthoyl-Co D
hydrolase
NEo0833 3.6.4.13 HrpA-like helicases D
NEo0848 - Phosphoglycerate mutase family G
NEo850 23.1.2.- Acyl-protein thioesterase E
Phosphoad ine phosphosulfat
NEo855 1848 osphoadenosine phosphosulfate E
reductase
NEo8s0 612 NAD(P) tran.shydrogenase D
subunit alpha
AD(P) transhyd
NEo860 1.6.1.2 NAD(F) ‘rans yAropenase E
subunit alpha part 2
NEo863 1.16.3.1 Bacterioferritin E
NEo8;3 11413 2-octaprenyl-6-methoxyphenol D
hydroxylase
NEo876 2.1.2.3 Bifunctional pl%rine biosynthesis D
3.5.4.10 protein PurH
bable ATP-d dent DNA
NEo88o 3.6.4.12 proda .e cpenden . D
helicase-related protein
PpiC-t tidyl-prolyl
NEo882 |  5.2.1.8 P-"tybe pepHAyproly A
cis-trans isomerase
NEo899 1.1.1.28 D-lactate dehydrogenase D
NEogo3 1.1.99.3 probable cytochrome c E
NEogog 4.1.1.17 Ornithine decarboxylase E
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NEog1y 2.7.7.6 RNA polymerase factor sigma-70 F
NEog1g 363+ Lipid A export ATP—binding /permease E
protein MsbA
NEog22 6.3.2.30 Cyanophycin synthetase E
NEog23 6323 Glutathione bios?lnthesis bifunctional E
protein GshAB
NEo9g24 1.7.2.1 Copper-containing nitrite reductase E
NEog32 - Putative isomerase G
NEo9g38 - Uncharacterized protein -
NE0940 i Putative DNA t‘ransport competence F
protein, ComEA
NEo943 1.13.12.- Ammonia monooxygenase A
NEog44 11312 Ammonia mono.oxygenase, A
acetylene-binding
NEog45 1.13.12.- Ammonia monooxygenase subunit C F
NEog47 3.1.3.- hydrolase family E
NEog6o 211171 Ribosomal RNA small subunit E
methyltransferase D
NEogy0 i Uncharacterized‘ zinc protease-like E
protein y4wB
NEog74 - PemK-like protein G
NEo9g81 - HhH-GPD G
NEo985 2.4.1.129 Peptidoglycan synthase Ftsl E
NE1003 51315 Putative gluc9se—6—phosphate D
1-epimerase
NE1004 - Uncharacterized protein -
NE1009 1124 D-lactate dehy'drogenase? [cytochrome], E
mitochondrial
NE1013 1.9.3.1 Cytochrome ¢ oxidase subunit 3 E
NE1019 3.6.3.54 Copper-exporting P-type ATPase A D
NE1024 3.4.21.- Putative signal peptide peptidase SppA D
NE1031 36331 Spermidine/putrescine import A

ATP-binding protein PotA
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NE1033 p22n Membrane-bound lytic murein D
transglycosylase B
NE1046 1351 Succinate dehydrogenase, .
cytochrome b subunit
NE1047 1.3.5.1 Succinate dehydrogenase subunit D F
NE1067 3.1.-.- Putative plasmid stability-like protein I
NE1123 3.5.1.97 Acyl-homoserine lactone acylase QuiP E
NE1125 6ol Probable crotonobetaine/carnitine-CoA E
ligase
NE1126 4.1.1.20 Diaminopimelate decarboxylase E
NE1127 6.3.5.4 Asparfagine synthe’Fase E
[glutamine-hydrolyzing] 1
NE1137 2.7.7.7 DNA polymerase III subunit delta D
NE1160 2.5.1.10 Farnesyl diphosphate synthase D
NE1165 o Short-chain dehydrogenas.e /reductase E
(SDR) superfamily
NE1168 5.4.99.17 Probable squalene-hopene cyclase E
NE1170 1.1.1.219 Putative dihydroflavonol 4-reductase E
NE1174 211264 Ribosomal RNA large subunit E
methyltransferase K/L
NE1184 2.3.1.51 Phospholipid/glycerol acyltransferase F
NE1212 2.7.1.4 PtkB family of carbohydrate kinase F
NE1213 2 2.4.1.14 Probable sucrose-phosphate synthase E
NE1216 3.6.3.54 Copper-exporting P-type ATPase A D
NE1227 - Uncharacterized protein RCooy6 E
NE1232 - Uncharacterized protein y4iL E
NE1237 - Glucose-methanol-choline (GMC) B
oxidoreductase
NE1239 1.13.11.34 Arachidonate 5-lipoxygenase E
NE1241 1.14.18.1 Tyrosinase E
NE1247 5.4.3.- DUF160 E
NE1250 2.7.13.3 Chemotaxis protein CheA D
NE1273 Uncharacterized protein YhiN D
NE1288 2.7.13.3 Phosphate regulon sensor protein PhoR D
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NE1294 6.3.2.2 Putative glutamate—cysteine ligase F
NE1299 4.6.1.2 Guanylate cyclase G
NE1306 - Uncharacterized protein -
NE1314 2.7.13.3 Sensor histidine kinase RegB E
NE1321 2788 CDP-diacylglycerol-serine E
O-phosphatidyltransferase
NE1324 2216 Acetolactate synthase isozyme 3 D
small subunit
NE1327 3.5.-.- Hydrolase sllo6o1 E
NE1331 3.4.19.13 Gamma-glutamyltranspeptidase D
NE1332 i Possible capsular polysaccharide
biosynthesis/export transmembrane
NE1333 i Short-chain dehydrogenase/reductase 7
(SDR) superfamily
NE1334 2.4.1.- Glycosyl transferase, family 2 E
NE1336 - Glycosyl transferase, group 1 F
NE1343 1.1.1.22 UDP-glucose 6-dehydrogenase D
NE1370 - Glycosyl transferase, family 2 E
NE1373 - Uncharacterized protein -
NE1388 2.3.1.47 8-amino-7-oxononanoate synthase A
NE1380 231- putative type I polyketide
synthase WcbR
NE1398 2707 Putative ‘DNA pol‘ymerase-related E
protein, bacteriophage-type
NE1399 2.3.1.128 GCNs5-related N-acetyltransferase F
NE1403 - Uncharacterized protein YeaO D
NE1404 363 Macrolide export ATP-binding/permease D
protein MacB
NE1407 - Uncharacterized protein -
NE1408 3.1.3.- Sensor protein PhoQ E
NE1411 1.13.12.- Ammonia monooxygenase subunit C F
NE1414 363 Methionine import ATP-binding D
protein MetN
NE1416 3.4.24.- Insulinase family (Peptidase family M16) E
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Nitric oxi R
NE1420 181~ itric oxide reductase FIRAd-NAD(+) D
reductase
NE1425 . Hydroxymethylp'yri‘m‘idine‘ /phospho- D
methylpyrimidine kinase
NE1430 3.4.24.- Peptidase family M23/M37y E
NE1454 365 Lipopréteir}—releasinfg system A
ATP-binding protein LolD
NE1455 3.1.-.- GDSL lipolytic enzyme E
NE1463 6325 Coenzyme A bios‘ynthesis bifunctional E
protein CoaBC
NE1467 i Fatty ac?d desaturase, type 2:Fatty v
acid desaturase, type 1
D-alanyl-D-alani
NE1485 3.4.16.4 aany . alanihe E
carboxypeptidase DacC
NE1486 2.6.1.21 D-alanine aminotransferase E
NE1496 3.6.1.25 Inorganic triphosphatase A
NE1498 2.5.1.44 Homospermidine synthase E
NE1503 i Rieske iron-sulfur Protein P
2Fe-2S subunit
Periplasmic pH-d dent
NE1508 | 3.4.21.107 er'1p astic pti-dependen D
serine endoprotease DegQ
NE1510 4220 Mer‘nbrane-bound lytic E
murein transglycosylase A
NE1512 1.14.13.- 2-octaprenylphenol hydroxylase D
NE1514 - tRNA-modifying protein YgfZ D
NE1516 3.1.-.- Uncharacterized protein family D
NE1517 4.2.3.12 6-pyruvoyl tetrahydropterin synthase G
Probable 3-hyd 1-CoA
NE1528 1.1.1.35 robable 3ycroxyacy:=-o E
dehydrogenase
NE1543 1.-.-.- Hephaestin E
NE1548 1.3.99.- Acyl-coenzyme A dehydrogenase D
NE1549 6213 Putative long-chain-fatty-acid-CoA E

ligase
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NE1567 i Short-chain dehydrogenas‘e /reductase r
(SDR) superfamily
NE1569 27782 CMP-N,N’-.diacetyllegionaminic E
acid synthase

NE1570 2.5.1.97 Pseudaminic acid synthase E

NE1589 - Uncharacterized protein -

NE1613 365 Lipid A export AT'P-binding /permease D

protein MsbA
3.1.3.-
NE1614 2.7.7.72 Multifunctional CCA protein A
3.1.4.-

NE1615 4.2.2n Soluble lytic murein transglycosylase E

NE1625 3.1.13.1 Ribonuclease II domain F

NE1635 - Uncharacterized protein -

NE1651 4.2.2.- Endolytic murein transglycosylase D

Dolichol-phosphat
NE1652 2.4.1.83 oHehorphosphate
mannosyltransferase

NE1655 2.3.1.47 8-amino-7-oxononanoate synthase E

NE1658 6.2.1.- AMP-dependent synthetase and ligase E

NE1666 2.4.2.9 Bifunctional protein PyrR E

NE1678 1.20.4.1 Arsenate reductase F

NE1687 41252 4-hydroxy-2-oxo-heptane-1,7-dioate E

aldolase

NE1688 1.1.1.95 D-3-phosphoglycerate dehydrogenase E

NE1689 - Possible epimerase F

NE1691 3.1.1.31 6-phosphogluconolactonase E

NE1697 2.5.1.48 Cystathionine gamma-synthase D
NE1700 31452 Diguanylate cycla‘se /phosphodiesterase b

domain 2 (EAL)
NE1701 18.4.11 Peptide methionine sulfoxide ;
reductase MsrA
NE1726 3424 Putative integral membljane E
transmembrane protein
NE1733 3.6.1.3 Chaperone protein ClpB E

Continued on next page

90



Table 12 — continued from previous page

Gene ID | EC number Function CL
NE1738 2.7.13.3 Sensory transduction histidine kinases F
ine-5’-triphosphate,3’-diphosphat
NE1745 36.1.40 Guanosine-5’-triphosphate,3’-diphosphate D
pyrophosphatase
NE1763 1. Putative membrane-bound E
dehydrogenase oxidoreductase protein
AD(P)H-qui
NE1765 1.6.5.- .N (P) qulno.ne E
oxidoreductase chain 4 1
NE1766 1.6.5- NAD(P)H—q.uinone oxidorec'iuctase E
subunit 5, chloroplastic
ADH-qui
NE1768 | 1.6.5.11 NADH-quinone E
oxidoreductase subunit J
ADH-qui
NE1772 1.6.5.11 N quinone D
oxidoreductase subunit F
NADH-qui
NE1773 1.6.5.11 . quinone E
oxidoreductase subunit E
NE1782 3.4.21.- Probable CtpA-like serine protease E
NAD bindi ite:UBA /THIF-
NE1783 28111 binding site:UBA/ type E
NAD/FAD binding fold
NE1784 363- Lipid A export ATP—binding /permease D
protein MsbA
NE1785 31348 Pu‘tative 1(')w molecular weight E
protein-tyrosine-phosphatase slro328
Asparagine synthetase
NE1795 6.3.5.4 paragme syn e E
[glutamine-hydrolyzing] 1
NE1796 - Glycosyl transferase group 1 F
NE1803 i Pl.ltative capsular }')ol}fsaccharifie g
biosynthetic protein-like protein
NE1804 - Lipopolysaccharide biosynthesis G
NE1806 363+ ATPas.e comp?nents of ABC transPorters
with duplicated ATPase domains
ive ATP- RNA
NE1807 36413 putative ' dependent RN D
helicase protein
NE1809 3.1.2.30 probable beta subunit of citrate lyase E
NE1851 3.5.99.10 YERo57¢/YjgF/UK114 family E
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NE1857 o Uncharacterized RNA A
methyltransferase
NE1866 2.7.13.3 Chemotaxis protein CheA D
NE1895 5.4.2.10 Probable phosphoglucosamine mutase E
NE1897 3.4.m.- Beta-barrel assembly-enhancing protease E
NE1899 363+ . ‘Macrolide export . A
ATP-binding/permease protein MacB
NE1900 363 ' 'Macrolide export ' A
ATP-binding /permease protein MacB
NADH-ubiqui
NE1901 1.6.5.3 . " 1qu1nonf3 E
oxidoreductase chain
Possible glutathi
NE1908 2.5.1.18 ossible g a‘ tone ) F
S-transferase family protein
NE1909 31452 Diguanylate cycla.se /phosphodiesterase D
domain 2 (EAL)
NE1915 2.5.1.- Prenyl transferase E
NE1919 - Protein CbbQ E
NE1g52 i Putative glutathior}e E
S-transferase protein
NE1954 3.1.3.25 Inositol-1-monophosphatase E
NE1958 2.5.1.21 Squalene and phytoene synthases F
NE1974 2.7.13.3 Nitrogen regulation protein NtrY E
NE1979 3.4.-.- Uncharacterized protease YegQ D
NE1982 3151 Peoxyguanosinetripl'nosphate. A
triphosphohydrolase-like protein
NE1983 - Uncharacterized protein -
NE1999 3.1.-.- Toxin YhaV E
AD/NADP- i
NE2000 1218 NAD/N dependent betaine E
aldehyde dehydrogenase
NE2003 - Nitric oxide reductase subunit C E
NE2004 1.7.2.5 Nitric oxide reductase subunit B E
NE2005 - Protein NorQ E
NE2014 - Uncharacterized protein -
NE2015 - Possible capK protein, putative F
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NE2031 - Glycosyl hydrolase family 57 F
NE2032 3.2.1.1 Alpha-amylase E
NE2044 1.7.2.6 Hydroxylamine oxidoreductase A
NE2053 3.6.5.3 Elongation factor G A
NE2064 1.13.12.- Ammonia monooxygenase subunit C F
NE2067 2.4.1.129 Penicillin-binding protein PbpB E
NEz2075 31452 Diguanylate cycla‘se /phosphodiesterase D
domain 2 (EAL)
NE2082 27133 Signal transdlilction histidine-protein D
kinase AtoS
NE2086 3.6.3.14 Flagellum-specific ATP synthase D
NEs110 i Bacterial regulatory proteins, G
AsnC family
NE2112 - PIN (PilT N terminus) domain G
NE2113 - Uncharacterized protein -
NE2119 - conserved hypothetical protein E
NE2123 14113 Ferredoxin-dependent E
glutamate synthase
NE2126 1.1.-.- L-lactate dehydrogenase D
NEa1gq | 1131124 Pu.tative quercetin E
2,3-dioxygenase PA2418
NE2147 3.4.11.9 Xaa-Pro aminopeptidase D
NE2166 3.6.4.12 DNA helicase I
NE2167 26187 UDP—4—amino-4-de(.)xy—L-arabinose— D
-oxoglutarate aminotransferase
NE2171 2.--m Formyl transferase N-terminus I
Undecaprenyl-phosphate
NE2173 2.4.2.53 4-deoxy-4-formamido-L- D
-arabinose transferase
NE2178 - Uncharacterized protein -
NE2185 35.1.28 1,6-anhydro—N—e‘icetylmuramyl—L—alanine D
amidase AmpD
NE2183 - Uncharacterized protein -
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AM (And th leotid
NE2187 i S (And some other nucleotide) I
binding motif
NE2188 - Uncharacterized protein -
NE2192 4.2.99.18 DNA-(apurinic or apyrimidinic site) E
lyase
Flavin-containi
NE2199 1.14.13.8 avin-contaming E
monooxygenase (FMO)
NE2212 - Putative transmembrane protein G
NE2213 2.3.1.1 Arginine biosyn’.chesis bifunctional A
2.3.1.35 protein Arg]
NE2215 - NUDIX hydrolase I
FAD-d dent pyridi
NE2216 1.6.99.3 . ‘epen ‘en P y.rl e F
nucleotide-disulphide oxidoreductase
NE2226 fommm SLT domain E
NE2235 6.2.1.3 AMP-dependent synthetase and ligase E
NE2237 1.17.99.1 4-cres‘01 dehydrogerTase ' E
[hydroxylating] flavoprotein subunit
NE2244 365 Lipopréteir}—releasinfg system A
ATP-binding protein LolD
NE2249 5.1.3.14 UDP-N-acetylglucosamine 2-epimerase D
M -1-phosphat
NE2250 2.7.7.13 annose-i-phosphate D
guanylyltransferase
NE2252 6.1.1.23 Aspartate-tRNA(Asp/Asn) ligase A
NE2253 3.6.1.- NUDIX hydrolase D
NEz2250 421130 Glutathione-independent E
glyoxalase HSP31
NE2262 2.3.1.9 Acetyl-CoA acetyltransferase D
NE2267 - Glycosyl transferases group 1 F
NE2276 111336 UDP-N-acetyl-D-mannosamine E
dehydrogenase
NAD d dent
NE2277 5.1.3.6 . ependen . E
epimerase/dehydratase family
NE2278 31348 Probable low molecular weight D

protein-tyrosine-phosphatase EpsP
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NE2280 2.7.10.- Tyrosine-protein kinase etk D
NE2311 - Possible helicase (Snf2/Rads4 family) I
NE2317 3.4.-.- Penicillin-binding protein 1A D
NE2329 | 3.4.21.107 Probable periplasmic s?rine D
endoprotease DegP-like
NE2344 3.2.1.- Possible unsaturated glucuronyl hydrolase G
NE2348 1.3.99.- Acyl-CoA dehydrogenase E
NE2349 6.2.1.- AMP-dependent synthetase and ligase D
NE2368 2.6.1.1 Probable aspartate aminotransferase E
NE2379 3.6.3.- Nod factor export ATP-binding protein I E
NE2384 36325 Sulfate/thiosulfate import A
ATP-binding protein CysA
NE2398 - CBS domain H
NE2400 4.4.1.8 Protein MalY D
NE2416 3.5.1.54 Urea amidolyase E
NE2417 - Uncharacterized protein -
NE2418 - Uncharacterized protein -
NE2420 6.4.1.2 Biotin carboxylase D
NE2421 p22n Membrane-bound lytic E
murein transglycosylase D
NE2431 - PIN (PilT N terminus) domain G
NE2456 1.1.1.81 Putative hydroxypyruvate reductase E
NE2460 6.3.4.15 Bifunctional ligase/repressor BirA D
NE2463 2.6.1.83 LL-diaminopimelate aminotransferase E
NE2465 1.11.1.15 Alkyl hydroperoxide reductase subunit C D
NE2480 365 Methionine import ATP-binding D
protein MetN
NE2496 3.1.21.3 Restriction modification system, type I G
NE2497 2.1.1.72 Type I restriction enzyme EcoEI M protein E
NE2499 3.1.21.3 Type I restriction enzyme EcoKI R protein D
NE2501 1.1.1.- L-sorbosone dehydrogenase E
NE2505 - Uncharacterized protein -
NE2510 1.6.99.1 NADH:flavin E
oxidoreductase/NADH oxidase
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NE2520 3.6.4.12 ATP-dependent DNA helicase RecQ D
Putative t I restricti

NEz2522 112 utative y‘pe restric 10‘n E
enzyme MjaXP M protein

NE2524 21172 Uncharacterized adenine-specific E

methylase MJ1220

NE2526 3.1.21.3 Restriction modification system, type I H
Putati N -

NE2527 3.1.21.3 utative tyPe 1 restrlctl?n E
enzyme MjaXP R protein

NE2528 3.1.21.- AAA ATPase superfamily D

NE2546 3.1.3.18 Phosphoglycolate phosphatase 2 E

NE2547 2.1.1.64 Ubiquinone biosynthesis A

2.1.1.222 O-methyltransferase

NE2555 2.5.1.9 Riboflavin synthase E

NE2561 3.5.1.42 CinA-like protein D

NE2564 3.6.4.12 ATP-dependent DNA helicase RecQ D

NE2567 1.8.5- Sulfide:quirhlone oxid.oreductase, E

mitochondrial
NE2571 3 Beta-lactamase hydrolase-like protein E
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Table 16.: Accuracy matrix, resultant of the calculation of Accuracy of its confusion matrix, with the

average value in each instance.

Alpha Value

0.0 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0,7 0,78 0,78 0,78 0,78 0,76 0,76 0,74 0,72 0,72 0,64

0.2 0,76 0,78 0,78 0,76 0,76 0,72 0,72 0,68 0,64 0,56 0,52

g 0.3 0,74 0,76 0,74 0,74 0,7 0,68 0,66 0,62 0,54 0,5 0,48
2 0.4 0,72 0,7 0,7 0,7 0,68 0,64 0,58 0,52 0,48 0,44 0,44
% 0.5 0,68 0,7 0,68 0,68 0,62 0,58 0,43 0,46 0,44 0,42 0,4
Ei 0.6 0,66 0,66 0,62 0,6 0,5 0,48 0,44 0,42 0,4 0,38 0,38
E 0.7 0,62 0,6 0,54 0,46 0,42 0,4 0,38 0,38 0,36 0,36 0,36
0.8 0,52 0,42 0,34 0,3 0,3 0,3 0,3 0,3 0,32 0,34 0,34

0.9 0,42 0,26 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2
Average value 0,647 0,629 0,598 0,580 0,551 0,529 0,502 0,480 0,456 0,436 0,418

Table 17.: Negative Predictive Value matrix, resultant of the calculation based of the Lower Thresh-

old matrix. The green cells represent the best value in each instance.

Alpha Value
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 1 1 1 1 1 1 1 |0832333] 05 |0416667]0,277778
0.2 1 1 1 |0833333| 0,625 0,5 |0,454545 | 0,357143 | 0,263158 | 0,192308 | 0,178571
3 0.3 [0,714285| 0,625 0,5 | 0,454545 | 0,357143 | 0,333333 | 0,294118 | 0,217391 | 0,185185 | 0,172414 | 0,166667
= 0.4 | 0,454545 | 0,384615 | 0,357143 | 0,333333 | 0,294118 | 0,25 0,2 |0,178571 | 0,166667 | 0,15625 | 0,151515
2 0.5 |0,357143 | 0,333333 | 0,294118 | 0,294118 | 0,217391 | 0,2 | 0,166667 | 0,16129 | 0,151515 | 0,147059 | 0,142857
5 0.6 | 03125 |0,277778 | 0,227273 | 0,208333 | 0,172414 | 0,166667 | 0,151515 | 0,147059 | 0,142857 | 0,138889 | 0,138889
£ 0.7 | 0,238095 | 0,208333 | 0,185185 | 0,16129 | 0,147059 | 0,142857 | 0,138889 | 0,138889 | 0,135135 | 0,135135 | 0,135135
0.8 |0,178571|0,151515 | 0,121579| 0325 | 0125 | 0,125 | 0125 | 0,125 |0,1282050,131579 ] 0,121579
0.9 [0,151515|0,119048 | 0,111111 | 0,111111 | 0,111111 | 0,111311 | 0,111111 | 0,111111 | 0,111111 | 0,111111 | 0,111111
Table 18.: Precision matrix, resultant of the calculation based of the Upper Threshold matrix. The
green cells represent the best value in each instance.
Alpha Value
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 L0
0.1 | 0,6875 |0,755556 | 0,755556 | 0,755556 | 0,755556 | 0,733333 | 0,733333 [ 0,727273 | 0,775 |0,815789 | 0,84375
0.2 |0,733333 |0,755556 | 0,755556 | 0,75 |0,785714| 0,775 |0,794872 |0,805556 | 0,870968 | 0,958333 | 0,954545
k] 0.2 [0744186 |0,785714| 0,8 |0,820513 | 0,823333 | 0,828571 | 0,848485 | 0,952963 | 0,956522 | 0,952381 | 0,95
3 0.4 |0,794872 | 0,810811 | 0,833333 | 0,857143 | 0,873788 | 0,9 096 [0954545| 0,95 [094444| 1
o 0.5 [0,805556 | 0,857143 | 0,878788 | 0,878788 | 0,962963 | 0,96 0,95 [0,947368| 1 1 1
G 0.6 |0,823529| 0,875 |0,928571|0,961538 | 0,952381| 0,95 1 1 1 1 1
£ 0.7 |0,896552 | 0,961538 | 0,956522 [ 0,947368 | 1 1 1 1 1 1 1
0.8 |0,954545|0,941176| 1 1 1 1 1 1 1 1 1
0.9 [osau176| 1 1 1 1 1 1 1 1 1 1
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