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Abstract

In the present thesis, data originated from proton-proton collisions at the
Large Hadron Collider and collected by the ATLAS experiment in 2015 was
used for the search of pair-produced vector-like quarks 7 and B decaying to
a Z boson and a third generation quark, focusing on the dilepton channel.

A strategy built upon the 8 TeV analysis was further developed. Control
regions were defined in order to model the Monte Carlo simulation of the
background. The data in the considered signal region is not yet unblinded
by the ATLAS collaboration and, therefore, the expected sensitivity of the
search was evaluated using pseudo-data built under the background only
hypothesis. The vector-like B has 95% confidence level expected mass limits
of 766 GeV for the singlet hypothesis and 873 GeV for the doublet hypothe-
sis. The vector-like T singlet and doublet hypotheses have expected limits of
687 GeV and 797 GeV, respectively, representing an encouraging improve-
ment with respect to the currently published mass limits.

This text is complementary to the dilepton boosted topology analysis be-
ing developed by a group at the TU Dortmund, Germany, and the trilepton
channel being developed by a group at the University of Arizona, USA. Or-
thogonality between the analysis presented in the present thesis and the
trilepton analysis is ensured by definition, but with the boosted topology
analysis it has to be constructed. The first steps in that direction are de-

scribed at the end of this text, based on the multiplicity of large-R jets.



Resumo

Nesta tese, dados originados em colisées de protao-protao no Large Hadron
Collider e coletados pela experiéncia ATLAS em 2015 foram usados para a
pesquisa de quarks vetoriais T e B, produzidos em pares, decaindo para um
bosao Z e um quark de terceira geracéo, com foco no canal dileptoénico.

Um estratégia construida a partir da analise a 8 TeV foi desenvolvida.
Regides de controlo foram definidas, por forma a modular a simulagao de
Monte Carlo do fundo. Os dados na regido de sinal considerada ainda estéo
ocultados pela colaboracdo de ATLAS, e, portanto, a sensibilidade esperada
para esta pesquisa foi avaliada usando pseudo-dados gerados a partir da
hipétese da existéncia de apenas fundo. O quark vectorial B , num limite de
confianca de 95%, tem limites esperados de 766 GeV para o caso em que €
singleto, e 873 GeV para dobleto. O quark vectorial 7, singleto e dobleto, tém
limites esperados de 687 GeV e 797 GeV, respectivamente, o que representa
uma melhoria encorajadora em relacdo aos limites de massa atualmente
publicados.

Esta tese é complementar com a topologia dileptéonica boosted que esta a
ser desenvolvida por um grupo na TU Dortumund, Alemanha, e com o canal
trileptonico, que esta a ser desenvolvido por um grupo na Universidade do
Arizona, EUA. A ortogonalidade entre a analise aqui apresentada e a analise
trileptonica esta assegurada por definigdo, mas no caso da topologia boosted
esta tem de ser construida. Os primeiros passos nessa direccéo sédo descritos

no final deste texto, com base na multiplicidade de jatos com largo raio.
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Chapter 1
Introduction

Particles Physics studies the fundamental particles and its interactions. The

understanding of Particle Physics is summed up in the [Standard Model of|
Particle Physics (SM), that is shortly outlined in Section [2.1] of this text.
This model is able to describe fundamental particles and its interactions

in good agreement with experimental data, but it leaves many unanswered

questions. To tackle these issues, many models were theorized, and in some

of these models, [Vector-Like Quarks (VLQ)| are predicted. This new heavy
quarks are described in this text in Section

In order to test the and to probe the new physics needed to answer

these open questions, experiments are built. This experiments generally

consist of particle accelerators, in which these particles collide so that high
energies are reached and data from these collisions can be studied. The
[Large Hadron Collider (LHC)|is the biggest particle accelerator ever built, in
which particles collide at record breaking energies. This data is collected by
four detectors: [Large Hadron Collider beauty (LHCb) and [A Large Ton Col
lider Experiment (ALICE), with specific purposes; [Compact Muon Solenoid|

(CMS)| and |A Toroidal LHC ApparatuS (ATLAS), two general purpose detec-
tors. Data collected from the experiment is used in this text. The

[LHC| and [ATLAS]| are described in Chapter 3.
With the data collected, a search for was made. This search is de-

1



scribed in Chapter 4 of this text. The samples used in the present thesis are
described in Section[4.1], and with them a strategy was defined. All the steps
taken to arrive at the search strategy are detailed in Section These in-
clude the definition of the objects used in this analysis, the selection that
makes the signal region and its optimization, and the analogous for control
regions, in order to better study the backgrounds of this analysis. After that,
the results obtained are presented in Section 4.3 In it, the expected mass
limits obtained are presented, as well as how they were calculated. This
chapter ends with a description of how this analysis fits with other comple-
mentary analysis in this search. This is done in Section 4.4

It is important to state that at the time this text was written, this anal-
ysis was still blinded, i.e. all data in the signal region is not presented, in
order to avoid any bias that may arise (a more lengthy description of the
blinding policy is done in Subsection [4.2.2). Most of the steps needed
to unblind the analysis and obtain results with the data collected, in order
to know if an excess from the [SM] expectation is found, are included in this
text. The definition of the analysis strategy, built upon what was done at the
first phase of operation of the the optimization of signal and control
regions, in order to make sure the [Monte Carlo (MC)| correctly models the

background; the assembly of the limit setting machinery; the complementa-

tion with the other topologies are the basis of this text.



Chapter 2

Theoretical Overview

2.1 The Standard Model

The [SM] is our best attempt of describing Nature at the most fundamen-
tal level. It tells us that there is three known generations of matter par-
ticles, which interact with each other via thre{] interactions mediated by
gauge bosons. These matter particles are called fermions, particles with
spin 1/2, and are divided by quarks and leptons. Leptons only interact via
electroweak forces, but quarks are affected by strong interactions as well.
Quarks are further subdivided by their electric charge, as the up type quarks
(up, charm and top) have 2/3 of the positron charge (e), and the down type
(down, strange and bottom) quarks have charge -1/3e. Leptons are also di-
vided by those with electric charge (electron, muon and tau) and their neu-
tral counterparts, the neutrinos. All these particles, with their respective
masses and electric charges, are described in Table

LGravity is the known fourth interaction, but, as it is several orders of magnitude weaker
that the other interactions, it doesn’t influence the structure of matter. It is not regarded
in the @ as there is not yet a satisfactory quantum field theory description of gravity.

3



2.1. THE STANDARD MODEL 4

1st Generation 2nd Generation 3rd Generation Charge I, Y

(u) 2.3 MeV <c> 1.3 GeV (r) 173.1GeV  +2/3e  1/2 1/3

d 4.8 MeV 95 MeV b 4.7 GeV -1/3e 172 1/3

Ve <2eV Vi <2eV Ve <2eV 0 172 -1
e 0.5 MeV u 105.7 MeV T 1.8 GeV -e -1/2 -1
Table 2.1: SM particle generations, with their masses and electric charges,

weak isospin and hypercharge (defined in Section [2.1.3). Values collected
from Particle Data Group. [1]]

N

The interactions between these matter particles are mediated by gauge
bosons. They consist on (Quantum Chromodynamics (QCD)| [2-H4] and on
the electromagnetic and weak forces unified in the electroweak interactions

[6-7]. The gauge bosons, their masses and electric charges, are detailed in
Table

Mediator Interaction Mass [GeV] Charge
Gluon (x 8) (g) Strong 0 0
Photon (7) Electromagnetic 0 0
Z Weak 91.19 0
w* Weak 80.39 +e

Table 2.2: SM gauge bosons with their masses and electric charges. Values
collected from Particle Data Group. [1]

Besides these gauge bosons, the also includes a scalar boson, the
Higgs boson, whose field is responsible for the mechanism [8-10] that gives
every [SM] particle its mass.

In the sections below, a brief description of these interactions in their

Lagrangian formalism will be given.
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2.1.1 Quantum Electrodynamics

Electromagnetism is described by the Maxwell equations

JuFHY = ¥ (2.2)

where 0 is a partial derivative and F,, denotes the electromagnetic field
tensor, defined by Fy,v = dy Ay — dy Ay, with A being the electromagnetic
four-potential. One can see that these equations are invariant to gauge
transformations of A, — A, - d, o, with « being a scalar. A free fermion

is described by the Dirac Lagrangian density
&L =Y(iY"oy —m)¥ (2.3)

with y, being the Dirac matrices defined by the Clifford algebra {y*,y"} =
2n*Y, where n*V is the Minkowski metric. One can also see that this La-
grangian is invariant under global unitary transformations of the form ¥ —
e~ and ¥ — P, These transformations form a group called U(1). How-
ever, if we require that these gauge invariance holds locally as well, i.e.
Y ¢ et)P and ¥ — Welc?() | we see that the Dirac Lagrangian density no
longer is invariant, as the derivative produces an additional term Py, d, o'V.

To maintain local gauge invariance, we should recall the symmetries of
Maxwell equations, and change the Lagrangian density of Equation to
compensate this additional term, by introducing a coupling between the A,

field and the fermion, thus keeping U(1) invariance:
L =iy (dy — ieAy) — m]\¥Y (2.4)

If we now add the free field terms to Equation [2.4] we arrive at the La-

grangian density for |(Quantum Electrodynamics (QED):

1 -
Logp = =7 F" Fuy + B[iy* (9 — ieAy) — m]¥ (2.5)

This sets a standard way of deriving gauge theories: find the gauge group,

make the Lagrangian density invariant and write the free field terms from
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the fields that may arise from the imposition of local gauge invariance. The
covariant derivative is defined as D, = d,, —ieA,.

It is important to note that a term of the form %mZAuA“, that would be
written in a free vector field Lagrangian density is not gauge invariant. This
implies that the field mediating interactions must be massless. We

know this to be the case, as this gauge boson is known to be the photon.

2.1.2 Quantum Chromodynamics

The compositeness of the proton was an indication given by deep inelas-
tic scattering experiments. Also, with the discovery of baryons (¢qq, §33)
and mesons (¢g), came the idea that protons might be bound states of these
quarks. But with the lack of evidence for gq or gg states, as well as free
quarks, came the necessity of introducing a new quantum number, color.
The proposition is the following: there are three colors, red (R), blue (B) and
green (3); a quark state has a color quantum number associated with it,
and an anti-quark state has anti-color; a free particle can only exist as a
color singlet state. This proposition can explain why only states with three
quarks (making it a singlet, as it possesses the three colors) or quark anti-
quark (and, therefore color anti-color, thus a singlet) were found. These

states can be represented as vectors:

1 0 0
Yr=10|,yB=|1]|,¥%c=]0 (2.6)
0 0 1

These states can be rotated into each other by a group of matrices given by
the SU(3) group. Local SU(3) transformations have the form ¥ — ¢/%Ta\yp,
with T, being the SU(3) generators. Imposing this local gauge invariance to
our theory, in analogy to what was done for[QED], we introduce the covariant

derivative
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where G}, being the gluon fields, the gauge bosons that carry color. The
coupling strength between gluons and quarks is g;. The SU(3) generators

obey the following commutation relations:
[Tm Tb] = ifabcTc- (2.8)

In the fundamental representation of SU(3), T can be ’%‘”, with A, being the
Gell-Mann matrices.

One feature of is the fact that the structure constants f,,. are non-
zero, making it a non-abelian theory. With this comes the fact that gluon
fields interact with each other. Therefore, the field strength tensor now has

three terms (as opposed to its electromagnetic counterpart):
G4y = duGy— oGl — g, f°GL Gy, (2.9)

The final Lagrangian density then reads:

Locp = (Y 0y —m)® — g (PP T, ¥)GE %vacaw 2.10)
This self-interaction feature of[QCD]leads to the coupling constant being de-
pendent of the scale of the interaction, being higher for lower energy values,
and smaller for higher energies. This makes computable with pertur-
bation theory in high energy physics experiments, and in the limit of very
high energies, it leads to asymptotic freedom, where quarks propagate as if
they were free. However, for lower energies, the coupling increases, reaching
a divergence. This property is called confinement, and it is what prohibits
quarks and gluons from being free, i.e. when a quark is separated from an-
other, this coupling increases, and the potential energy reaches a point at
which creating a quark-antiquark pair from vacuum is energetically favor-
able. With this, in high energy physics experiments, colored particles will

manifest themselves as jets.

2.1.3 Electroweak Interactions

Since the discovery by Wu et al. [11] that weak processes violate parity, there

was a need for a theory that would account for this coupling structure, and
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move on from the Fermi theory of four-fermion interaction. This was later
achieved by Weinberg [5], Glashow [6] and Salam [7], in a gauge theory
with the group SU(2),®U(1l)y. The L subscript is a reference to the fact
that only left-handed particles are affected by weak interactions, and the Y
subscript denotes hypercharge, which is given by the Gell-Mann-Nishijima
relation Y = 2Q — 273, the conserved charged in this symmetry. This chiral

structure leads us to writing down the [SM|fermions grouped as weak isopin

fi= (iL) (ZL> 2.11)
L L

i gl 0 i
fR - leuRvdR

multiplets:

with i=1,2,3 being the family or generation.
To assemble a gauge theory we write down the covariant derivative,

needed to keep gauge invariance:
e Y

with g and g’ being the SU(2); and U(1)y coupling constants, respectively,
and T being the SU(2) generators. W# are the SU(2), gauge fields, By, is the
U(1)y gauge field. The Lagrangian density also needs the kinetic terms for
the free fields:

1 . )
Lyauge = —Z(WLVW““V + ByuvB"Y) (2.13)

These field tensors are given by:

Wi, = Wi — 9, Wi — ge *wiwk (2.14)
BHV — a“Bv - avB“

€/ is the SU(2) structure constant, given by the fully anti-symmetric Levi-
Civita tensor, and is responsible for the non-abelian nature of the group.
With this, we can write down the final Lagrangian density for electroweak
interactions:
Lew = Fir*Duf + Loange (2.15)
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In order to keep gauge invariance, these gauge boson fields need to be mass-
less. However, this is not in agreement with experimental evidence that
there are massive vector fields [12,/13]]. This problem is solved with the in-
troduction of a spontaneous symmetry breaking mechanism that generates
masses to these bosons, while keeping the Lagrangian density gauge invari-

ant. This mechanism is described in the following section.

2.1.4 The Brout-Englert-Higgs Mechanism

In order to achieve the spontaneous symmetry breaking, we first need to
introduce a doublet scalar field, the Higgs field:
+
®= (4;0) (2.16)
that contains an electrically charged ¢ and an electrically neutral ¢°.
The Lagrangian density describing these fields, given by kinetic an po-
tential terms is written in Equation [2.17}

Lp = (Dy®)" (DHD) — V(D). (2.17)

D, is the covariant derivative described by Equation The potential
V(®) is given by Equation [2.18}

V(®) = u’d'd— A(®Td)? (2.18)

with A assumed to be positive, in order to give a stable minimum. If u? is
positive, the minimum is when |®| = 0, and gives as expectation value for
the vacuum equal to zero. On the other hand, if u? is negative, the vacuum
expectation value is no longer zero, but it is equal to % =v. The plot for
this potential is given in Figure It can be seen that there are multiple
values for the minimum, connected through SU(2); ®U(1)y transformations.
We can parametrize the fields around the vacuum expectation value, leaving
them as in Equation [2.19;

¢ \%<v+21<x>> 219
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Figure 2.1: The Brout-Englert-Higgs potential.

This expansion around the minimum breaks the gauge symmetry, and
with this we can now see how the gauge bosons obtain mass. From Equation
2.17], we write the relevant term:

- Y
|(—igTW, — ig'EBu)CIDF (2.20)

Knowing that the SU(2) generators can be written with the Pauli matrices,

this term can be expanded to:

tf(e @
gWi+iW2)  —gWi+gBy) \v
= %[Vzgz[(wﬁ)z + (Wﬁ)z] +v*(¢'By — gWﬁ)(g’B“ WK
From here it can be seen that:
= s (2.22)

2
Also, defining the mixing between W and By, and the physical Z, and Ay,
using the Weinberg angle 0y :

(Zu>_ cosOy  —sinBy (Wﬁ) (2.23)
Ay)  \sin6y cos By Ay '

My = %V\/ g2 +g%*My=0 (2.24)

This leads to:
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As expected, we obtain three massive gauge bosons, that intermediate weak
interactions, and a massless boson for the electromagnetic interactions. The
Weinberg angle can be obtain by cos 8y = My /M.
As for fermions, their fields can couple with the Higgs field via a Yukawa
term of the form:
Ly = yr iV Sfr+ fRYSL) (2.25)

It can be seen that this term is gauge invariant. y; are matrices with the
couplings between the Higgs fields and the fermions. Expanding this term
as was done with the gauge bosons leads to the following term for the mass

of the fermions, at tree level:

%
From Equation we can obtain the expression for the Higgs mass:
my = V2Av (2.27)

The value of g and g’ can be obtained using 6y, as gsinfy = g’ cosOy = e.
From Equation we get that v~ 246 GeV [1]. So, from Equation [2.27, we
need to obtain the value of A to determine the Higgs boson mass. This can

only be done experimentally.

This model is able to explain all fundamental interactions (other than
gravity), and fits experimental data very well, but has free parameters not
predicted by the model, suggesting that there is a more fundamental theory
that can explain these parameters to which the is a special case. The

free parameters of the are:
e Six quark masses, or six Yukawa couplings to the Higgs field;
e Three charged lepton masses, or the corresponding Yukawa couplings;

e Four CKM matrix parameters: three mixing angles and a CP-violating

phase;
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e Two Higgs potential parameters, A and u, or my, my and my;

e Three couplings, given by the electromagnetic and strong coupling con-

stants, and the Weinberg angle.

Given the discovery of neutrino oscillations [14-18], the inclusion of param-

eters to accommodate for their masses and couplings is necessary as well.

2.1.5 Experimental Tests and Limitations

The predictions are, so far, in excellent agreement with the experimen-
tal results, as can be seen in Figure Among some of its most notable
experimental corroborations are the discovery of the charm quark [19,20] to
confirm the GIM mechanism [21], as well as the prediction [22] and discov-
ery [23] of the bottom quark, the tau [24] and its neutrino [25] to establish
the existence a third fermion family; the discovery of the Electroweak gauge
bosons [12,|13],the discovery of the top quark [26,27], and most notably the
discovery of the Higgs boson [28,29], making the final coronation to the the-
ory.

However, this cannot be a final theory, as it has many open problems, be-
ing often regarded as a low-energy approximation of a more complete model.

Besides the mass of neutrinos, some of its problems are listed below:
e It can’t make a prediction for the number of fermion families;

Doesn’t include a dark matter candidate [30];

Doesn’t explain the matter/anti-matter asymmetry [31];

It doesn’t provide a description of gravity;

It has no mechanism that generates the Yukawa couplings of fermions,
leaving the big diversity in fermion masses across generations unex-

plained;
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e The extrapolation to higher energies, which has to be done if the [SM|
is to be regarded as a complete theory, leads to a problem in the Higgs
quadratic mass. It becomes divergent when loop corrections are ac-
counted for, as it doesn’t have any chiral or gauge symmetries to pro-
tect it. This problem can be solved if the corrections to the Higgs mass
are fine-tuned up to several orders of magnitude. However possible,

this doesn’t seem to be very natural [32].

[VLQ]arise from various models that try to tackle this last problem, and they
will be described in the following sections.

Standard Model Production Cross Section Measurements staus: Juneeme{éj;

Reference
T T T T T T T T T
32 arXiv:1606.02699 hep-ex]
H oo 203 EPJC74:3109 (2014)
46 EPJC74:3109 (2014)

o = | 3.2 ATLAS-CONF-2016-003
tHtW o Y S— 203  JHEP 11,172 (2015)

_ 32  ATLAS-CONF-2016-003
tZ i 203 JHEP 11,172 (2015)
tty i 46 PRD91,072007 (2015)

32 ATLAS-CONF-2015079
te—chan tot ATLAS  Preliminary 203 ATLAS-CONF-2014-007
46  PRD 90, 112006 (2014)
ts_chan (ot 203 PLB 756, 228-246 (2016)
Run1.2 +s5=7,8,13Tev 203 JHEP 01,064 (2016)
Wt 20 PLB716, 142159 (2012)
w 0081  arXiv:1608.09222 [hep-ex]
o 0035  PRD 85, 072004 (2012)
z Theory 0.081 arXiv:1603.09222 [hep-ex]
mt 0035  PRD 85,072004 (2012)
WW o LHCpp Vs =7 TeV 203 arXiv:1603.01702 hep-ex]
Data 46 PRDS7, 112001 (2013)
[ o | [t 32 arXiv:1606.04017 hep-ex]
WZ stat @ syst 203 PRD93, 092004 (2016)
LHC pp V5 =8 TeV 46 EPJC72,2173 (2012)
32  PRL116,101801 (2016)
ZZ B ng 203 ATLAS-CONF-2013-020
tat & syst 46 JHEP 03,128 (2013)
i ; JHEP 01,086 (2013
Wy oo = 1ST | L5 g,
7y Em O s HisL e gl
r stat 16 PADET 112003%&5
stat @ syst arxiv:1407. 1613 [hep-ph]
Zjjewk g 203  JHEP 04,031 (2014)
Zyy fid. niet=0 203 PRD 93, 112002 (2016)
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Figure 2.2: The data/theory ratio for several Standard Model total and fidu-
cial production cross section measurements, corrected for leptonic branching

fractions. All theoretical expectations were calculated at Next to Leading-
Order or higher. [33]]
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2.2 Vector Like Quarks

2.2.1 Motivation

As the doesn’t predict the number of fermion families, it is natural to
consider a fourth generation. We know that the measurement of the num-
ber of neutrino families with a mass smaller than mz/2 is consistent with 3,

as pointed out by the plot in Figure [2.3l However, a new lepton generation

3 2
: j ."/ \
b-cé 30 | ALEPH I,"' :}V "\
| DELPHI  //_\|
L3 1™\
[ OPAL I-'II Ji \\ II'\.\
20 | i\
| If'l+.." \ \\
| ¢ average measurements, If,.-'“l \
error bars increased \
by factor 10 I N\
10 /
o ..
86 88 90 92 94
E_ [GeV]

Figure 2.3: Cross section measurements for hadron production predicting
two, three and four families of neutrinos with SM couplings and negligible

mass. [34]

can have heavier neutrinos. Also, a new quark generation must have higher
masses, out of reach from the center of mass energies that were dealt with
in past experiments. But these quarks are most likely not chiral, as direct
searches exclude them for masses up to 600 GeV [35], and, with the pre-
cise measurement of H — vy cross section [36], the existence of a sequential

fourth generation of quarks is disfavored. [37-39]
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On the other hand, if these new quarks were not chiral, but were to have
the same left and right-hand charge under the SU(2), xU(1)y group, then
they wouldn’t need to acquire mass through the [Brout-Englert-Higgs Mech-
lanism (BEH Mechanism), as a term of the form m¥;¥; would be gauge in-
variant. They would have left-handed (V-A) and right-handed (V+A) charged

currents, which is why they are called vector-like.

These quarks appear naturally in non-supersymmetric models that at-
tempt a solution for the naturalness that arises from the hierarchy problem,
such as Composite Higgs models [40,41] and Little Higgs models. [42,43]

2.2.2 Phenomenology

VLQ)| are spin 1/2 fermions, triplets under the SU(3). gauge group, with
the same left and right-hand charge under the SU(2); xU(1)y gauge group.
They can have tree-level [Flavor-Changing Neutral Currents [44],
and mix with quarks [45,46]. It is usually assumed that this mixing

is predominantly made with the 3rd generation quarks. This mixing with

the quarks, through Yukawa couplings, introduces a restriction to their
possible quantum numbers [47]. Therefore, they can be isospin singlets,
doublets or triplets. They can also have electric charges (T has 2/3e and
B has -1/3e) or exotic charges (X with 5/3e and Y with -4/3e). These are
summarized in Table

Vector-Like Quarks can be pair-produced via[QCD)], or singly-produced via
electroweak interactions, in association with quarks. Figure [2.4] shows
Leading-Order examples of Feynman diagrams for the different processes.

Pair production is the dominant mechanism of production until
reaching high masses, where, due to phase-space restrictions, single pro-
duction becomes dominant. This is illustrated in Figure

These quark masses are expected to be almost degenerate, thus forbid-
ding T — WB decays, leaving decays to quarks as the only available
searches. The singlet T and B have the three expected electroweak decays.

As for the (T, B) doublet, as their masses are almost equal, the decays depend



2.2. VECTOR LIKE QUARKS 16

Singlets Doublets Triplets

X Y
T X B

Multiplets T B T B
B T Y

B Y

Isopin 0 0 1/2 1/2 1/2 1 1

Hypercharge | 2/3 -1/3 1/6 7/6  -5/6 2/3 -1/3

Table 2.3: VLQ multiplets allowed by SM symmetries.

Figure 2.4: Feynman diagrams for: Left: Single-produced vector-like 7'; Cen-
ter: Single-produced vector-like B; Right: Pair-produced VLQ. [48]

heavily on the mixing factors in a mixing matrix (an extended CKM matrix
that relates weak eigenstates to mass eigenstates). It is usually assumed
that the top quark has a bigger coupling to the than the bot-
tom quark, suppressing the T — Wb decay, as wellas B — Hband B — Zb.
This is due to the assumption that the mixing is proportional to m/M (m as
the mass of the[SM] quark and M the mass of the [ VLQ) [49]..
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Figure 2.5: Cross-section as a function of the mass of the VLQ for the differ-
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Figure 2.6: Branching Ratio as a function of the mass for vector-like 7 on
the left, and vector-like B on the right.

Current results with 13 TeV data show a 95% CL observed lower lim-

its on pair-produced T quark mass between 700 and 900 GeV, depending on
the possible [VLQ|[Branching Ratio (BR)| The first phase of opera-
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tion of the pair production results exclude masses raging from about
650 GeV to 900 GeV, depending on the BR]to which the corresponding analy-
sis is more sensible. [48,52-54]. These results assume: vector-like decays to
the third generation only; that singlet and doublet kinematics don’t change
significantly, as can be seen in Figure This is also supported by some
studies with center-of-mass energy of 8 TeV, that show the differences in
kinematics between singlets and doublets fade after the detector simula-
tion [55]; it is also assumed that [VLQ] pair-production is mediated via [SM]
only (studies where are produced via other processes, such as
heavy gluon fusion were made [56]).

8 B —— BB (700 GeV)
= L — BB, (700 GeV)
R TT, (700 GeV)
- L TT, (700 GeV)
107 = : #&
R =T -t |
o e
102 |
i Il Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il Il ‘ Il Il I Il
0 200 400 600 800 1000 1200 1400 1600
m(Zb)/GeV

Figure 2.7: Mass of the Zb system for the singlet (blue) and doublet (green)
hypothesis. The vector-like B is in full and vector-like 7 dashed lines. All
VLQ masses are set to 700 GeV. At least 2 jets, 1 pair of OS-SF leptons, at
least 2 b-tagged jets and pr higher than 200 GeV and Hy of jets higher than
700 GeV is required

Single production of features results where cross sections times
branching ratio limits are set, at 13 TeV [58,59] and at the 8 TeV. [48,,60]

After these results are obtained, an interpretation is made to infer values
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Figure 2.8: Summary of observed mass limits (95% CL) for pair production
of vector-like B on the left and vector-like T on the right, with results from
the first operation phase of the LHC. II

of the couplings as a function of the VLQ| masses. These results assume
[SM]| Electroweak production only, and are more model dependent than the
pair-production ones, because single-production relies on the coupling to the

different Electroweak bosons.
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Chapter 3

Experimental Setup

3.1 The LHC

The [LHC]| [61] is the world’s highest-energy particle accelerator, located at

the|[European Organization for Nuclear Research (CERN), in Geneva, Switzer-

land. It is a circular accelerator, which is beneficial, for having the possibil-
ity of circulating the beams in loops until they reach the desired energy
(something that can not be done in linear accelerators), but has the draw-
back of losing energy via synchrotron radiation, which is proportional to the
inverse of the radius of the loop, and to the fourth power of the mass of the
circulating particles [[62]. This justifies the choice of colliding hadrons in-
stead of electrons, as they are much heavier, as well as the desire to have
accelerators with higher radius.

This collider is located in an underground tunnel with a circumference
of 27 km, and depth ranging from 45 to 170 m. It has four detectors: |AL-
[ICE] [63], focusing on heavy-ion collision; [LHCD| [64], for the studies of B-
hadrons; [ATLAS] [65] and [CMS] [66], that are multipurpose experiments.
These are the four interaction points of the [LHC|, where the beams collide.
Despite both protons and heavy ions being collided at the this text
focuses on the collision of protons. These are accelerated at the LINAC2

linear accelerator, after being ionized from a hydrogen gas. After this first

21
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boost to energies up to 50 MeV, these protons form bunches with the usage
of magnetic quadrupoles. The Proton Synchrotron Booster (PSB) gets these
bunches to the energy of 25 GeV, at which point they are transfered to the
Super Proton Synchrotron (SPS), and accelerated to 450 GeV. At this stage
they enter the[LHC|beam pipes, being boosted to their final energy (at Run 1
it was up to 4 TeV per beam, making the center-of-mass energy 8 TeV, but at
Run 2 it goes up to 6.5 TeV per beam). These bunches are spaced by 25 ns,
and contain ~10'! protons. The beams are kept in orbit by superconduct-
ing magnetic dipoles, operating at 1.9 K, cooled by liquid helium, making a

magnetic field, with the value of 8.3 T, in opposite directions.

CMS

LHC North Area

ALICE 120

TI2

huE
ATLAS
HiRadMat
|
AD
T2 | 1999 (182 m) |
L % ¢ East Area.
N\ —
\ 3 PS :
\ /
\ LINAC 2 ‘
LINAC 3 » LEIR

) ion net ) P (antiproton) P electron P+~ /antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron  PS Proton Synchrotron
AD Antiproton Decelerator AWAKE Advanced WAKefield Experiment

LEIR Low Energy lon Ring LINAC LINear ACcelerator - t HiRadMat High-Radiation to Materials

Figure 3.1: Schematic representation of the different LHC accelerators. [67]
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3.2 The ATLAS Detector

The [ATLAS] detector is a general purpose experiment, designated to study
proton-proton collisions of the [LHC| It has height of 25 m, a length of 44 m
and weights 7 kT. It consists of concentric, cylindrical sub-detectors, built

around the beam pipe, as is shown in Figure

44m

25m

Tile calorimeters

LAr hadronic end-cap and

forward calorimeters
Pixel detector

LAr electromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker
Semiconductor fracker

Figure 3.2: Cut-away view of the ATLAS detector layout.

The coordinate system is a right-handed Cartesian one, with the origin at
the center of the detector, the z-axis pointing along the beam pipe, the x-axis
pointing towards the center of the [LHC| and the y-axis pointing upwards.
From this point forward, ¢ refers to the azimuthal angle and 6 to the polar
angle.

At this point it is relevant to define rapidity, given by:

1 E+p;
Y=ol (E_Pz) @1

with E being the particle energy and p, being the z-component of its mo-
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mentum. In a vanishing mass approximation it is also useful to define the

pseudorapidity, given by:
n=-—In (tang) (3.2)

These quantities are boost-invariant along the z-direction, but pseudorapid-
ity is used more often as it only requires the knowledge of the particle’s polar
angle, and because it increases slowly for the central values of the detector,
while changing more rapidly when approaching the beam pipe, providing a

better mapping of the detector’s operational angles. AR will also be often
used, and it is defined as \/A@2 +An?2.

3.2.1 Inner Detector

The first sub-detector, closest to the interaction point, is the [nner Detector|

[OD)] Its main purpose is to track charged particles that may arise from the
proton collisions, allowing to measure its momentum, as well as making a
vertex reconstruction in the range of |n| < 2.5 possible.

The [[D]is a cylinder with 6 m of length, with a transverse momentum
E( p1) resolution of 6,,/pr = 0.05% pp® 1%. The design must include good
resistance to radiation coming from the beam pipe; very fast electronics, to
be able to process the large amount of collisions and particles resulting from
these; and not degrade the energy resolution of the calorimeters.

The [[D]is composed of four independent sub-detectors that complement
each other: the Insertable B-Layer, the Pixel detector, the Semiconductor
tracker and the Transition Radiation Tracker. These four components will

be individually described below.

Insertable B-Layer

The Insertable B-Layer (IBL) was an upgrade to the|[D|made in 2014. Since

the original design of the pixel detector was made to a luminosity peak of

Lpp=/p2+ p3 is a useful variable, as it must always add up to zero, due to the collisions

being aligned in the z-direction
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Figure 3.3: Schematic representation of the ATLAS Inner Detector.

1x10% ecm~2 s~!, an upgrade was in order, to avoid degradation of tracking
and vertex reconstruction of the

The IBL consists of 14 staves, each 64 cm long, around the beam pipe
with an average distance of 32.35 mm, covering |n| < 2.9. It has about
26880 pixels, each with 50 x 250 um?, organized in 80 columns and 336

rows.

Pixel detector

The pixel detector is composed of three cylindrical layers located between 5
and 12 cm in radial distance from the beam pipe. The innermost layer is
a detector used for reconstructing the secondary vertex of »-hadron decays,
crucial to b-tagging.

This component of thehas ~ 80 million pixels, each with 50 x 400 um?.
It has a spatial resolution raging from 10 um to 115 um, depending on the

plane it is operating on.

Semiconductor Tracker

The third layer of the [D]is the Semiconductor Tracker. It provides a further

position measurement of the charged particles. Containing four layers of
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silicon micro-strip detectors and two endcaps with nine disks each, it covers
the range of || < 2.5. The spatial resolution of the Semiconductor Tracker
goes from 17 to 580 um, depending on the plane in which the measurement

is being made.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the outermost component of the
ID] A TRT cell has a coaxial capacitor with 4 mm of diameter serving as the
cathode and a gold plated wire in the middle serving as the anode, with the
space in the middle being filled with plastic fibers with different refractive
indices. These tubes are filled with a xenon-based gas mixture.

When a charged particle crosses a TRT cell, it ionizes the gas and pro-
duces radiation that is collected by the wire. The intensity of this radiation
is proportional to E/m of the incoming particle. The drift time of the charge
produce by the ionization of the gas can be used to measure the position
of the particle. Combining this with the measurement of the radiation en-
ergy, it allows to discriminate between electrons and hadrons. The spatial
resolution of the TRT is 130 um.

3.2.2 Calorimeter System

The|Calorimeter System (CS) provides an accurate measurement of the par-

ticles energy, by studying the deposition it leaves on the detector material
as it progresses through it. This also provides some insight to the identity
of the incoming particle, as electrons and photons interact differently than
hadrons. The former group of particles have electromagnetic interactions
with the atoms in the material, whereas hadrons mostly have strong inter-
actions with the material’s atoms.

Because of these two distinct forms of interactions, the [CS has two com-
ponents:

¢ Electromagnetic processes such as bremsstrahlung or electron-positron

pair production go on when particles interact with the sub-detector material
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as long as it is energetically viable. The Electromagnetic Calorimeter spe-
cializes in the measurement of electrons, positrons and photons energy via
processes.

e The Hadronic Calorimeter looks at the particle production and nuclei
excitations and ionizations resulting in particle showers.

For this, both calorimeters need to have good segmentation and cover
space well. Segmentation in the longitudinal and azimuthal directions pro-
vide three-dimensional reconstructions, very useful for clusters of particles.
The coverage of the [CSis |n| < 4.9. Also, they need to account for stable
and weakly interacting particles, such as neutrinos, by compensating for the
missing energy.

A brief description of these two calorimeters will be provided in the sec-

tion below.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel

Figure 3.4: Schematic view of the ATLAS Calorimeter System.

Electromagnetic Calorimeter

The Electromagnetic Calorimeter uses liquid Argon (LAr) as the active ma-
terial and lead plates as the absorber. It is built with an accordion shape,

oriented in the radial direction in order to have a symmetric coverage with-
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out any cracks in the azimuthal direction. Between plates, high voltage is
applied to collect the ionization of the liquid argon. The energy resolution of
the Electromagnetic Calorimeter is oz /E = 10%/+E ©0.7% (E in GeV).

Hadronic Calorimeter

The Hadronic Calorimeter is divided into three components: the Tile Calorime-
ter (TileCal), the Hadronic End-Cap calorimeter (HEC) and the Forward
Calorimeter (FCal).

The TileCal is composed of steel tiles as the absorber and plastic scin-
tillators as the active material. Light produced in the TileCal is collected
by photomultiplier tubes linked to readout channels, that are grouped into
cells.

The HEC has two disks built with copper and LAr, acting as the absorber
and the active material, respectively. Immersed in the LAr there are elec-
trodes collecting ionization charges from the hadronic showers.

The FCal has a layer using copper as the absorber, and two other layers
using tungsten. LAr is the active material for all the layers of the Fcal. This
calorimeter is a combined electromagnetic (the copper layer) and hadronic
(tungsten layers) calorimeter, and covers the forward region 3.1 < |n| < 4.9.

The energy resolution of the Hadronic Calorimeter is og /E = 50%E ®3%
(E in GeV).

3.2.3 Muon Spectrometer

The outermost part of the detector is the [Muon Spectrometer (MS)]

It contains various sub-detectors that are useful to both detect the muons

and also to measure their momentum, in a range of 3 GeV to 1 TeV, for
In| < 2.7. It has a toroid magnet system that bends the muon traces, and
trigger system active in the region of |n| < 2.4. It has a barrel, with three
cylindrical layers parallel to the beam pipe and two endcaps with four wheels

perpendicular to the beam pipe. The Monitored Drift Tubes (MDTs) provide
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a measurement of the coordinates of the muon track and help reducing the
fake tracks. The Cathode Strip Chambers (CSC) locates muon tracks for
higher values of (2 < |n| < 2.7). The Resistive Plate Chambers (RPC) are
used as fast trigger detectors in the barrel region of the [MS| and Thin Gap
Chambers (TGCs) in the endcaps.

3.2.4 Magnetic System

The and the are immersed in a magnetic field, allowing them to
measure the momentum of particles.

The[ID]is inside a superconducting solenoid aligned along the beam pipe,
providing a magnetic field of 2 T at the interaction point, dropping in value
as one moves further from the beam pipe. This solenoid has an inner radius
of 2.46 m and an outer radius of 2.6 m, with a length of 5.3 m.

The [MS| has a magnetic system composed of a barrel and two endcap
toroids. The barrel toroid is 25.3 m long, with an inner and outer radius of
~ 5 and 10 m, respectively. It has eight superconducting coils. Each endcap
toroid as an inner and outer radius of 0.8 and 5.4 m, respectively. The mag-
netic field in the [MS| varies from 0.15 and 2.5 T in the barrel magnet, and
from 0.2 to 3.5 T in the endcap magnets.

Thin-gap chambers (TGC)

Cathode strip chambers (C5C)

> Barrel toroid
* Resisfive-plate
chambers (RPC)

End-cap toroid
Monitored driff tubes (MDOT)

Figure 3.5: Schematic representation of the ATLAS Muon Spectrometer. [70]
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3.2.5 Trigger and Data Acquisition

With a collision rate of 40 MHz, it is not possible to collect every event.
Assuming an event size of about 1.5 MB, 60 TB/s of data would have to
be processed and stored. As this is not doable, the trigger system selects
interesting events that match predefined criteria, reducing the event rate to
about 200 Hz.

The trigger systems consists of three trigger levels: Level 1, the hard-
ware trigger (L1); [71] the software trigger (L2) and the event filter (EF)
being the final trigger level. [[72]

The L1 trigger searches for event signatures such as high-pt leptons, jets
and photons, as well as Missing Transverse Energy (E%‘iss), using the and
the [MS| As it detects interesting events to be recorded, it saves the regions
of interest (Rol) in 1 and ¢ coordinates. The raw event data is then sent to
the next trigger level. At this stage, the event rate is lowered to 75 kHz.

The L2 trigger is a software based trigger. It takes about 40 ms to use
complex reconstruction algorithms, making use of the Rol sent by the L1
trigger. This trigger trims down the event rate to 3.5 kHz.

Finally comes the EF, taking about 4s to use full precision information
over the entire detector, and storing the accepted events to the storage sys-
tem, with a now reduced rate of about 200 Hz. These stored events are
arranged into different datasets by categories based on the reconstructed
objects, and further processed by the first stage of the Worldwide LHC Com-
pputing Grid (WLCG)l The combination of the L2 trigger with the EF is often
called the [High Level Trigger (HLT)|

A period between the start and stop of data acquisition is denominated

a Run. In each Run, the smallest data units taken are called luminosity
blocks. The duration of each block depends on the luminosity, so that each
block takes a comparable amounts of data. Automated systems and ded-
icated shifters alike check the quality of each block, looking for defects in
the detector. After this process, usable luminosity blocks are stored in a

database called Good Run List that can be used for physics analysis.
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After data acquisition, the is used to store data, process it, and
make it available to scientists. It is a distributed computing infras-
tructure, composed of four layers, formally denominated as tiers. The first
tier, Tier-0, is the the Data Center, located in Geneva, Switzerland
and the Wigner Research Center for Physics, in Budapest, Hungary. These
are linked by a 100 Gb/s connection through its 1200 km of distance. In this
layer the raw data is kept, the first reconstructions are made and sent to
Tier-1, the next layer of the WLCG| At Tier-1 there are 13 computer centers
storing a share of the raw and reconstructed data, reprocessing it and dis-
tributing it to Tier-2, the second layer of the Tier-0 and Tier-1 are
connected through a 10 Gb/s connection to CERN called LHC Optical Private
Network. The 13 Tier-1 computer centers are located in 13 different places:
Canada, Germany, Spain, France, Italy, Nordic countries, Netherlands, Re-
public of Korea, Russia, Taiwan, United Kingdom and two in the United
States of America. Tier-2 are mostly universities and other scientific insti-
tutes that store data and provide computing power for analysis tasks and
generation. Around the globe there are about 160 Tier-2 sites. The indi-
vidual scientists that access these sites through local computing resources
constitute Tier-3, and have no formal engagement with WLCG]

In this text, 2015 data collected by the ATLAS detector was used, sum-

ming up to an integrated luminosity of 3.2 fb~!.
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Figure 3.6: Cumulative luminosity versus time delivered by the ATLAS de-
tector. 73]



Chapter 4

Search for Vector Like Quarks

This chapter describes the search for pair-produced decaying to a Z
boson and a third-generation quark. In it we look for pairs of |[Opposite Sign,|
[Same Flavor (OS-SF)| leptons with mass compatible with the Z boson mass
and high pr, at least 2 b-tagged jets and high scalar sum of the selected

jets pr. This is built up from the strategy developed in the first phase of
operation of the (48]

A description of the samples used in the present thesis will be provided,
followed by the definition of the physics objects used, the strategy and op-
timization for isolation of signal, the control regions definitions. Then, the
results obtained will be presented, and the complementarity of these with
the other branches of this analysis (boosted topologies being done by the TU
Dortmund group, and trilepton channel by the Arizona group) will be dis-
cussed, followed by a brief section with what the next steps for this analysis

will probably be.

33
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4.1 Samples

4.1.1 Signal Samples

The leading-order samples of 7T and BB used were produced using PROTOS
[74] and using PYTHIA 8 [[75] for hadronization and parton-shower simula-
tion. In order for these samples to be general enough for every search
in ATLAS, they were produced with a of 1/3 to each decay mode (Z,W
and H). Then, at the analysis level, they are reweighted to the appropriate
value. This is done knowing what the of each decay mode is to each
mass point of the also taking into account if it is a SU(2) singlet or
doublet (as only vector-like T and vector-like B are considered in this text,
SU(2) triplets will not be considered). Then, in each event, using particle
level information to know what the decay modes are, the right weight
is applied to correct for the

Samples were generated from 500 to 1400 GeV in the SU(2) singlet hy-
pothesis (with 50 GeV steps for lower mass points and 100 GeV for higher
mass points), and 700, 900 and 1200 GeV for the SU(2) doublets hypothe-
sis. They were produced using GEANT4 [[76]] to fully simulate all the detector

components.

4.1.2 Background Samples

The main irreducible backgrounds in this analysis are Z+bottom and ¢7.
Z+charm and Z+light are also important backgrounds, but can be reduced
with the b-tagged jet requirement. Other important backgrounds include
single top production, dibosons production, W+jets and 7+V, with V being
W and Z. When labeling backgrounds in the plots, Other Backgrounds will
refer to single top production, dibosons production, W+jets and r7+V.

It is important to point out that none of these samples were produced
by the author of this text. They were produced by the ATLAS Monte Carlo
team. Z+jets samples were produced with SHERPA [[77]. A filter was used to
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divide Z+jets into samples with a bottom hadron, a charm hadron and events
with non of the two, in this text denominated as light jets. These samples
were produced within slices of Z boson pp, in order to maximize statistics
(0-70, 70-140 ,140-280, 280-500, 500-700, 700-1000, 1000-2000, >2000, in
GeV). All these slices were made for Z decays to electrons, muons and taus.
There was a production inclusive in all jets, produced with POWHEG BOX [78]
and PYTHIA, but with a quick study it was determined that the SHERPA
samples provided a better data/MC agreement and higher statistics in a
cut by cut basis, and therefore are the only Z+jets samples considered in
this text. The ¢t7 samples were produced with POWHEG BOX and PYTHIA,
with 172.5 GeV as the top quark mass. The single top production sam-
ples were produced with POWHEG BOX, as were W+jets samples, both using
PYTHIA for hadronization and parton-shower. The single top production
samples include both the s and t channels, as well as Wt; dibosons produc-
tion samples were produced with SHERPA, and #7+V samples were produced
with MadGraph5_aMC@NLO [79] and PYTHIA.

4.2 Analysis Strategy

4.2.1 Objects Definition

All jets and leptons are required to have a transverse momentum higher
than 25 GeV and |n| lower than 2.5. Small-R jets are reconstructed using the
anti-k; algorithm [80] with AR = 0.4. A multivariate algorithm, designated
mv2c20 [81], using the impact parameters of these jets is used to determine
if a jet is originated from a B-hadron or not, with a 70% efficiency working
point. This working point was calculated using the discriminating efficiency
of the algorithm in ¢7 samples. The 70% point is one of a set of four points
that were studied and recommended by the algorithm team. A trade-off is
made when choosing this value, as a higher working point means higher b-

tagging efficiencies, but also means an increase in mistags by the algorithm.
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The efficiency of the mv2c20 as function of jets pr is shown in Figure 4.1

Figure 4.1: The efficiency to tag b (green), ¢ (blue) and light-flavor (red)
jets for the mv2c20 tagging algorithm with the 70% operating point, as a
function of the jet pr. [81]

A single lepton trigger was applied. The single electron trigger used is
HLT_e24_lhmedium_L1EM20VH, HLT e60_lhmediumand HLT _e120_lhloose
for Data, and for[MC|itis HLT_e24_lhmedium_L1EMI18VH, HLT _e60_lhmedium
and HLT_el120_lhloose. The single muon trigger that was used in this
analysis is HLT_mu20_iloose_L1MU15 and HLT_mu50. Electron triggers
have a pp threshold of 24 or 60 GeV (an OR logical operator is used in order
to maximize efficiency over a large range of pp values), while single muon
triggers have a pp threshold of 20 or 50 GeV. The lepton triggers use the
L1 trigger with signals from the EM and Hadronic Calorimeter and also the
[HLT!

To reconstruct an electron, first the EM Calorimeter is used, in which a
cluster is searched, using a clustering algorithm [82] to remove duplicates,

and is then reconstructed. Once that is done, there is a track reconstruc-
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tion, that looks for three hits in different silicon detector layers within the
EM Calorimeter region of interest. After that a fit is made within the hy-
pothesis of it being an electron or a pion, and matched to the EM cluster
parameters 11 and ¢. The next step is to use a multivariate algorithms us-
ing track and and cluster quantities in order to try to further verify that
this object is indeed an electron and not another object capable of leaving a
similar signature, such as a jet or a photon, and to do a likelihood fit with
three parameters: Loose, Medium and Tight, in order of background rejec-
tion. These are subsets of each other, i.e. a Medium electron passes the
Loose requirements, and a Tight electron passes the Medium requirements.
An isolation test may be also applied to try to determine if the electron was
originated from a heavy decay such as an electron produced in the decay of
a vector boson, or if it is an electron coming from other processes such as a
converted photon or an hadronization. This is done by looking at quantities
such as the energy isolation of the cluster in the calorimeter, or the isolation

of the track produced in the electron reconstruction. [83]]

When reconstructing muons, both the [ID|and the are used, and then
combined to form the track. At the MS| there is a search for hits in differ-
ent layers of the [MS] that then are fitted to reconstruct the track. When
more than one track candidate arises from this, an overlap removal using
a x° test with various selection criteria is applied. In the the recon-
struction is done following steps analogous to those described previously for
the electron reconstruction. Then four types of algorithms can be applied to
combine and [ID| information. Similarly to what happens for electrons,
muons also have Loose, Medium and Tight identification criteria. These in-
clude asking for at least 3 hits in at least two layers of the Monitored Drift
Tubes of the except in the || < 0.1 region. There is also a compatibility
check between quantities from the and the[ID] such as the ratio between
charge and momentum measured in the two sub-detectors. Then track and
calorimeter isolation quantities can be used to determine if the muon was

produced in a heavy decay or in another process in which it would be asso-
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ciated with a jet or another particle. [84]

An overlap removal of leptons and jets is also done. If a small-R jet is
within a cone of AR = 0.2 from the electron, then the jet is rejected. After
that, if the electron has any jet with a cone of AR = 0.4, the electron is re-
jected. For muons the process is slightly different: the cone is pr dependent,
with its radius being defined as AR = 0.04 + 10 GeV/pp(u). If the jet outside
this cone has at least 3 tracks with its origin in the primary vertex, it is
kept.

4.2.2 Signal Region Selection

This text describes a search for pair-produced [VLQ| decaying to a Z boson
and a third-generation quark. Because of the presence of a Z boson, every
event must contain a Z boson candidate, i.e. a pair of leptons (ex-
cluding taus), with invariant mass within 10 GeV of the Z boson mass, m; =
91.18 GeV [1] (in the case of more than one pair within the mass range, the
pair with mass closest to my is chosen). Also, only events with two leptons
will be considered, leaving those with three or more leptons to the trilepton
channel. This choice is motivated by the lepton multiplicity, displayed in
a unit normalized plot in Figure with all backgrounds added together,
and considering the signal model of SU(2) singlets vector-like 7" and vector-
like B with masses of 800 GeV. It is also important to refer the blinding
policy used in ATLAS analysis, where, in order to avoid any possible bias in
the analysis strategy, data is not shown until all the strategy is set up, and
background modeling is well understood. However, data can be shown in
control regions, where the selection applied to events is orthogonal to that
applied in the signal region, and therefore will not reveal any potentially
bias inducing information. From Figure it can be seen that the dilepton
channel contains most of the statistics, but a trilepton channel is interest-
ing for its high signal purity. Instead of doing a search inclusive in all lepton
multiplicity, a separation between the dilepton and trilepton search is done,

and each analysis is optimized on its own, taking advantage of the different
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Figure 4.2: On the top the multiplicity of leptons is shown on the left and
multiplicity of b-tagged jets on the right. On the bottom, the pt of Z candi-
date is shown on the left and Hy of jets on the right. At least 2 jets and a
pair of OS-SF were required, except on the multiplicity of lepton, where the

requirement on the number of leptons was relaxed.

features of each channel. In the end, the results from both analysis will be

combined.

Another interesting multiplicity to take into account in this analysis is
that of b-tagged jets, shown in Figure [4.2] The plot from Figure [4.2] shows
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that signal produces a higher multiplicity of b-tagged jets than background.
This can be easily understood when taking into account that a decay,
in the assumption of decays to third generation only, will always produce
at least one b-tagged jet, assuming that a top quark will always decay to
a b quark and a W boson (Section 2.2.2] in page [15] describes decays).
Therefore, in this search, every event in the signal region is required to have

at least 2 b-tagged jets.

Another difference in signal and background distributions in this search
is the Z boson pr, as it is expected that Z bosons produced via the decay of
will have a harder spectrum than those produced by the background
processes. This can be confirmed by Figure With this in mind a cut at
200 GeV in the py of the Z boson candidate is applied. This value was obtain

with an optimization that will be described in the next subsection.

Applying a similar thinking, the Hr of jets (scalar sum of all selected jets
transverse momentum) is included in the selection, based on the expecta-
tion that the jets produced by decays will have harder pr spectrum
than those produce via background processes. This distribution is shown in
Figure 4.2, In the same optimization that was done for pr of the Z candidate,
the value for the Hy cut was determined to be 700 GeV, to reduce background

contamination.

As for the discriminant variable used in this analysis, the choice fell to
the invariant mass of the Z boson candidate and the highest-pt b-tagged jet
system, as it is a good reconstruction of the vector-like B. Even though it
is not a perfect reconstruction of the vector-like 7, it was chosen as a good
compromise between having sensibility for the vector-like B and not dedicat-
ing an entire analysis to the vector-like T, to which the trilepton channel is
expected to be more sensitive. The difference in shape for signal and back-
ground is shown in Figure 4.3, where the expected peak at 800 GeV for the

vector-like B is visible.

Besides the unity normalized plots, that illustrate shape differences be-

tween signal and background, it is also important to see how our [MC]| is
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Figure 4.3: The mass of the Zb system with distributions normalized to unity

is shown. At least 2 jets and a pair of OS-SF leptons were required.

shaped when normalized to luminosity. From Figure we see that our
signal jets have a harder py spectrum, as expected, even though we can also
notice the big cross-section differences. A similar conclusion about signal
leptons can be obtained from Figure 4.5, In Figure [4.6| we see the 1 dis-
tributions for jets, and Figure for leptons, where the appears to be
describing our data with no major problems being visible. The polar angle
distributions can be seen in Figure for jets and Figure for leptons,
where a fair agreement between data and [MC]|in this angular distribution
can be seen. Figure has a bin with a big uncertainty, that is most likely
due to a big weight event. Figure [4.10] shows the good description of the
Z mass peak, a region of particular interest for this analysis. In the right
plot of Figure a lack of MC for low m(¢* +¢7) is evident. This is due
to the lack of Drell-Yan simulated events in this kinematic region. For the
current analysis this is not relevant since the focus will be on the ¢ + ¢~

masses close to the Z boson mass.

Figure shows the two last variables used in this analysis selection,
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Figure 4.4: The distribution of the leading jet pr is shown on top, and sub-
leading jet pr on the bottom. The electron channel is shown on the left, and
the muon channel on the right. At least 2 jets and a pair of OS-SF leptons

is required.

before their respective cut is applied. As was seen in the united normalized
plots, signal and [MC|have different shapes, making this variables the choice
for the signal region selection, even though in this luminosity normalized
plots the differences in cross-section are more apparent. The discriminant

variable in the signal region is shown in Figure [4.12] where the expected
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Figure 4.5: Distribution of the leading lepton pt is shown on top, and sub-

leading lepton pp on the bottom. The electron channel is shown on the left,
and the muon channel on the right. At least 2 jets and a pair of OS-SF

leptons is required.

BBg peak at around 800 GeV can be seen.

4.2.3 Selection Optimization

In the previous section, the benchmark selection for the signal region was

described, and the choice of variables to use was illustrated based on their
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Figure 4.6: The distribution of the leading jet 1 is shown on top, and sub-

leading jet 1 on the bottom. The electron channel is on the left, and muon
channel on the right. At least 2 jets and a pair of @l leptons is required.

shape, and how it differs between background and signal. However, to de-

termine at which value the cuts are optimal, a study was performed based

on how much each given pair of pt of the Z candidate and Hry of jets cut val-

ues would improve our expected mass limits for the case of a SU(2) singlet
vector-like 7" and B. These limits were performed using TRexFitter [85], and

do not include systematic uncertainties.
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Figure 4.7: The distribution of the leading lepton 1 is shown on top, and
sub-leading lepton 1 on the bottom. The electron channel is on the left, and
muon channel on the right. At least 2 jets and a pair of [OS-SF| leptons is

required.

The results for a SU(2) singlet VLQ| are displayed in Figure for
a vector-like T on top, and vector-like B on the bottom. We see that the
optimum values for vector-like 7 and vector-like B are not the same, so a
compromise had to be made. The choice made was to cut on values lower
than 200 GeV for the pr of the Z candidate, and values lower than 700 GeV
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Figure 4.8: The distribution of the leading jet ¢ is shown on top, and sub-

leading jet ¢ on the bottom. The electron channel is on the left, and muon
channel on the right. At least 2 jets and a pair of @l leptons is required.

for the Hr of jets. This is a conservative choice, due to the fact that the study

doesn’t incorporate systematic uncertainties. Also, when making the choice,

preserving statistics was kept in mind. So, in summary, the selection for the

signal region is presented in Table
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Figure 4.9: The distribution of the leading lepton ¢ is shown on top, and

sub-leading lepton ¢ on the bottom. The electron channel is on the left, and
muon channel on the right. At least 2 jets and a pair of [OS-SF| leptons is

required.

4.2.4 Control Regions Definition

In order to know if we have a good background modeling with our [MC] it

is important to have control regions, where it is possible to check it against

data and not be spoiling our signal region blinding. That is done by defining

regions, via a benchmark selection, targeting a specific background process,
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mass of the Z boson candidate inside the resonance is

shown on the left and outside the resonance on the right. At least 2 jets

and a pair of OS-SF leptons is required.

Selection Level

Level 1
Level 2
Level 3
Level 4
Level 5

Requirement

> 2 jets, 2

OS-SF|

leptons

> 2 b-tagged jets
lmge —mz| < 10 GeV
pr of the Z candidate > 200 GeV
Hr of jets > 700 GeV

Table 4.1: Signal region selection.

but always keeping it orthogonal to the signal region.

In the case of this analysis, two control regions were defined, to control

the two most important irreducible backgrounds: Z+bb and 7. The selections

were obtained targeting specific kinematic features of the background’s final

state, and how they differentiate from our signal region benchmark selec-

tion. For 7 this is achieved by looking outside the Z mass peak, as we expect

it to not be resonant (Z candidate reconstruction for ¢7 is expected to be just

combinatory of leptons, therefore no natural peak should arise around the
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Figure 4.11: On top, the pr of the Z candidate is shown, reconstructed with

electrons on the left, and muons on the right. At least 2 jets, 1 pair of OS-SF

leptons and at least 2 b-tagged jets were required.

On the bottom, the Ht of jets is shown, on the left in the electron channel,

on the right in the muon channel. At least 2 jets, 1 pair of OS-SF leptons, at

least 2 b-tagged jets and pp higher than 200 GeV were required.

Z mass. This can seen in Figure [4.22). For Z + bb, this is done looking at
values of pr of the Z candidate lower than 200 GeV.

So, for the 77 control region, the benchmark selection is presented in Ta-
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Figure 4.12: The mass of the Zb system is shown. The electron channel is
on the left, the muon channel on the right. At least 2 jets, 1 pair of OS-SF
leptons, at least 2 b-tagged jets and pp higher than 200 GeV and Hy of jets
higher than 700 GeV is required.

ble Notice that the third cut, requiring that the reconstructed Z boson
candidate mass is 10 GeV outside the Z mass peak makes this control region

orthogonal with the signal region. The yields after applying the benchmark

Selection Level Requirement
Level 1 > 2 jets, 2|0S-SF|leptons
Level 2 > 2 b-tagged jets
Level 3 |mye —mz| > 10 GeV

Table 4.2: t7 control region selection.

selection are presented in Table From Table it can be seen that t7
isolation is very high, with the yields ratio of /7 and total background being
96%.

Figure |4.14] shows the multiplicity of jets and b-tagged jets. Data and
[MC] do not agree perfectly, specially in the b-tagged multiplicity plot. The
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Figure 4.13: The expected mass limits for each cut pair, in a singlet model
for vector-like T are shown on top, and vector-like B on the bottom. The line

marks the chosen value for each cut.

b-tagged jet multiplicity is difficult to model, but we can see from the dis-
tribution that the 2 b-tags regions is fairly well defined, and globally it is
well described enough for it not to be a major problem. Plus, systematic
uncertainties are not yet implemented, so it is yet to be seen if the total un-
certainty can cover the disagreement. Figure shows the pr of jets and
Figure [4.16] show the pr of leptons. Figure [4.17 and Figure [4.18| show the
n of jets and leptons, respectively. The distributions of the angle ¢ of jets
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ee o
BBS (800) 1.9 £ 02 2.1 £ 02
TTS (800) 1.5 £ 0.1 1.7 £ 0.1
Z+light jets 0.0 £ 0.0 0.0 £ 0.0
Z+bb 194 £ 96 422 + 8.8
Z+cc 33 £ 1.9 6.4 £ 4.0
i 1532.0 £ 11.3 2206.1 + 13.8
Other Bek.  42.0 £ 09 588 + 1.0
Total bkg.  1596.7 £ 15.0 2313.5 + 16.9

Data 1693 2338

Table 4.3: Yields for ¢7 control region after all the selection is applied. Un-

certainties are statistics only.

and leptons are shown in Figure and Figure 4.20] respectively. Figure
shows the discriminant variable after this control region selection is
applied. Data and [MC|agreement in this control region seems to be fair, par-
ticularly in the angular distributions and in the mass of the Zb system, as
the high pr region lacks statistics and the [MC|does not seem to perfectly de-
scribe data. All plots show the decent 7 isolation obtained after this control

regions selection is applied, as was seen in Table

As for the Z + bb control region, the benchmark selection is shown in
Table In this selection, orthogonality with the signal region is ensured
by looking for low Z candidate pr values. It also requires two b-tagged jets,
as is expected when looking for Z + bb, and looks inside the Z peak. The
yields after this selection is applied are shown in Table

Looking at Table we can see that the ratio between Z + bb and total
background events is not as high as it is in the 7 control region. In this
control region it is 57%, as tf contamination is significant. In order to amend

this problem, various approaches were experimented. Cutting in values of
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Figure 4.14: The multiplicity of jets is shown on the left, and the multiplicity
of b-tagged jets is shown on the right. At least 2 jets, 1 pair of OS-SF leptons
10 GeV outside the Z mass, at least 2 h-tagged jets were required.

Selection Level Requirement
Level 1 > 2 jets, 2|0S-SF|leptons
Level 2 > 2 b-tagged jets
Level 3 |mgg —mz| < 10 GeV

Level 4 pr (Z candidate) < 200 GeV

Table 4.4: Z+ bb control region selection.

E%liss lower than 50 GeV would bring the Z + bb and total background ratio
to 78%. However, bringing a variable to the benchmark selection that is not
used in either the signal region nor the other control region is something
rather cumbersome, and this idea was dropped. The next idea was to in-
clude a cut in the Hr of jets. Cutting values lower than 200 GeV would bring
the ratio to 65%, and cutting values lower than 300 GeV would get the ratio
at 61%. Even though this slightly improves the ratio, it has a toll in total
event statistics, without significantly improving the control region. Other

unsuccessful tries were made, such as using the AR between the Z candi-
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Figure 4.15: The distribution of the leading jet pr is shown on top and sub-
leading jet pp on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV outside

the Z mass, at least 2 b-tagged jets were required.

date leptons, expecting that they would be closer together when coming from
Z + bb events than from 7 events. No significant differences between back-
grounds were found, even when boosting to the Z candidate center of mass
(These distributions can be seen in Figure [4.24). So the decision was to rely

on the good 17 isolation on its respective control region, and keep the Z + bb
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Figure 4.16: The distribution of the leading jet pr is shown on top and sub-

leading jet pp on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV outside

the Z mass, at least 2 b-tagged jets were required.

control region benchmark as it is.

It is important to point out that the differences seen in the low E%ﬁss

region from Figure [4.23, and the low AR between Z boson candidate lep-

tons in the laboratory frame of reference seen in Figure [4.24] are probably

due to non-prompt or fake leptons. Most fake electrons are originated from
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The distribution of the leading jet 1 is shown on top and sub-

leading jet 1 on the bottom. Electron channel is on the left and muon chan-
nel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV outside the

Z mass, at least 2 b-tagged jets were required.

semileptonic decays of b and ¢ quarks, from photon conversions and jets with

large electromagnetic energy. Fake muons are mostly originated also from ¢

and b quarks decaying semileptonically, but also from charged hadrons and

punch-through particles (particles that transverse detector parts) coming
from high-energy hadronic showers reaching the [MS|
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Figure 4.18: The distribution of the leading lepton 1 is shown on top and
sub-leading lepton 11 on the bottom. The electron channel is on the left and
muon channel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV

outside the Z mass, at least 2 b-tagged jets were required.

Multiplicity of jets and b-tagged jets is shown in Figure MC| doesn’t
seem to perfectly describe data, the b-tagged jet multiplicity distribution in
particular, as was seen in the 7 control region. The same statement made

when presenting this distribution in the ¢7 control region can be made for the
Z + bb control region. Figure and Figure show the pr distribution
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Figure 4.19: The distribution of the leading jet ¢ is shown on top and sub-

leading jet ¢ on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV outside

the Z mass, at least 2 b-tagged jets were required.

of jets and leptons respectively. High pr values have low statistics and the

agreement between data and [MC|is not as good as in the lower values. The

distributions of jets and leptons 1 are shown, respectively, in Figure |4.28
and 4.29] Figure [4.8 and [4.9 show the ¢ distributions of jets and leptons,

respectively. This angular distributions have fair data and [MC| agreement.
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Figure 4.20: The distribution of the leading lepton ¢ is shown on top and
sub-leading lepton ¢ on the bottom. The electron channel is on the left and
muon channel on the right. At least 2 jets, 1 pair of OS-SF leptons 10 GeV

outside the Z mass, at least 2 b-tagged jets were required.

The Z candidate mass distribution can be seen in Figure [4.32] where MC|
seems to do a fair description of data. Figure [4.33| shows the discriminant
variable after this control region selection is applied. The slight issue with
normalization seen in this distribution is probably going to be softened by

the fit, due to the nature of our discriminant variable. As we are looking
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Figure 4.21: The mass of the Zb system in the electron channel is shown on

the left, and the muon channel on the right. At least 2 jets, a pair of OS-

SF leptons, at least 2 b-tagged jets and |my — mz| higher than 10 GeV were

required.
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ee pu

BBS (800) 03 + 0.0 03 + 0.1
TTS (800) 03 + 0.0 03 + 0.0
Z+light jets 00 £ 00 —13 £ 1.9
Z+bb 6204 + 549 9243 + 383
Z+cc 218 £ 94 417 £ 112
i 3974 £ 57 6014 £ 7.2
Other Bck. 379 £ 19 544 + 25
Total bkg.  1077.5 + 56.0 1620.6 + 40.7
Data 1254 1930

Table 4.5: Yields for Z + bb control region after all the selection is applied.

Uncertainties are statistics only.
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Figure 4.23: The Missing Transverse Energy in Z + bb control region is

shown. At least 2 jets, 1 pair of OS-SF leptons

within 10 GeV of Z mass,

at least 2 b-tagged jets and pr of Z candidate lower than 200 GeV required.
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Figure 4.24: The distribution of AR between the Z candidate leptons, before
the boost to the Z center of mass is shown on the left, and after the boost is

shown on the right. At least 2 jets and a pair of OS-SF leptons required.

for a resonance, the fit will rely on shape differences, making normalization
differences as those seen in Figure less problematic after the fit is done.
All plots show the not so good Z + bb isolation, as seen in Table

In order to see if we have a good heavy flavor description given by our
[MC], we look at the mv2¢20, the variable used to determine if a jet is b-tagged
or not. This variable should behave differently for the different jet flavors,
and therefore is a good variable to check. The plot for the leading and sub-
leading jet is shown in Figure [4.34] A fair data/MC|agreement is seen, and
no obvious problem with our heavy flavor description is seen. Even though
this is not a definitive test, it is a good check to determine if there is an
obvious problem with the [MC| description of the heavy flavor component of
the background in the analysis. However, this test would be more powerful

if a continuous calibration was used.
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Figure 4.25: The multiplicity of jets is shown on the left, and the multiplic-
ity of b-tagged jets is shown on the right. At least 2 jets, a pair of OS-SF
leptons, at least 2 b-tagged jets, |my — myz| lower than 10 GeV and pr of the

Z candidate lower than 200 GeV were required.

4.3 Results

Having defined the signal and control regions, expected 95% C.L. upper lim-
its on [VLQ|  mass where set using the CLg method [[87,88]]. Defining two sta-
tistical hypothesis: background-only (the null-hypothesis) and signal plus
background (the test-hypothesis), we can define a parameter u, the signal
strength modifier, that varies between 0 and 1, with 0 recovering the null-
hypothesis and 1 recovering the test-hypothesis. In the context of this analy-
sis, the null-hypothesis is[SM]only, and the test-hypothesis includes [VLQ] as
signal. With that, we can use p, as the p-valueﬂ of a given signal strength .
This p-value can be converted to Gaussian significance. The particle physics

convention is to exclude p, < 0.05, which is referred as 95% C.L.

Ip-value is the probability of finding a given test statistics equally likely or more extreme
than the test-statistics(q,) being used. It is given by p, = |, ;; b fqu|m)dgy, with gy .ps being
the observed value with data of the test-statistics.
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Figure 4.26: The distribution of the leading jet pr is shown on top and sub-
leading jet pp on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, a pair of OS-SF leptons, at least 2 b-
tagged jets, |my —myz| lower than 10 GeV and pr of the Z candidate lower
than 200 GeV were required.

Given the p,, the CLg value is defined as:
CLs= P (4.1)
1—po
with py being the background-only hypothesis p-value. This prevents the

exclusion of signal in a downward fluctuation, given that 1-py will also be
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Figure 4.27: The distribution of the leading lepton pr is shown on top and
sub-leading lepton pt on the bottom. The electron channel is on the left and
muon channel on the right. At least 2 jets, a pair of OS-SF leptons, at least
2 b-tagged jets, |my — myz| lower than 10 GeV and pr of the Z candidate lower
than 200 GeV were required.

small, thus creating a conservative method. The test-statistics used is a log-
likelihood ration, given by -2InA(u), with A(u) being the significance, given
by:

Ap) = 2w (4.2)
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Figure 4.28: The distribution of the leading jet n is shown on top and sub-

leading jet 1 on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, a pair of OS-SF leptons, at least 2 b-
tagged jets, |my —myz| lower than 10 GeV and pr of the Z candidate lower

than 200 GeV were required.

In this case, 6 are the nuisance parameters of the test-statistics, and . is

the likelihood, that in this case is a function of Poissonean distributions, and

a Probability Density Function for the nuisance parameters. The ratio of the

conditional likelihood, for a given u and the globally maximized likelihood,



(2]
]

4.3. RESULTS

IS T IS T
Qo 10° —e— Data Qo —e— Data
2 Np=1252 _[Ldt:s.32 b m—Ziight @ Np=1928 JLdt:S.SZ b m—Ziight
Q Ng=1077.4 —Zcherm @ Ng=1620.4 Zenarm
= =
b 10° Nggs=0.3 VS = 13TeV o € Npgs=0.4 1s = 13 TeV ft
o Nire=0.4 ee channel Other Bek. o Nirs=0.5 up channel Other Bck.
" Zbb Control Region EZLZZJ ggbse(r:;%ly Zbb Control Region EZZ_ZZJ ggcsegaol;)ly
0= T TS (800) 10 TTS (800)
............
o o Yy T/ T/
= =
K E
© T
o o
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
n(Leading lepton)
< T <
Q 10° —e— Data Qo —e— Data
@ Np=1252 _[Ldt:s.az fo! - Ziight @ Np=1928 _[Ldt=3.32 fo! - Ziight
Q@ Np=1077.4 [} iﬁh:‘m’ Q@ Np=1620.4 [} ;vbl;;"n
ottom fom
E 10° Nggs=0.3 Vs =13 TeV —i *E Npgs=0.4 Vs =13 TeV —
o Nirs=0.4 ee channel Other Bek. @ Nirs=0.5 pp channel Other Bck.
26b Control Region 222 55 Ts0r)” Zbb Control Region ZZ2 preerian
....... TTS (800) TTS (800)
//////
.......
(&) o
= =
s E
© ©
o o
3 2 B 0 i 2 3
1(Sub-leading lepton) 1(Sub-leading lepton)

Figure 4.29: The distribution of the leading lepton 1 is shown on top and
sub-leading lepton 1 on the bottom. The electron channel is on the left and
muon channel on the right. At least 2 jets, a pair of OS-SF leptons, at least
2 b-tagged jets, |my — myz| lower than 10 GeV and pr of the Z candidate lower
than 200 GeV were required.

defines the significance that serves as the test-statistics for the limit setting

machinery.

Figure shows the cross-section upper limits as a function of the

mass. The green and yellow bands represent 1 and 20 uncertainties, respec-
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Figure 4.30: The distribution of the leading jet ¢ is shown on top and sub-

leading jet ¢ on the bottom. The electron channel is on the left and muon
channel on the right. At least 2 jets, a pair of OS-SF leptons, at least 2 b-
tagged jets, |my —myz| lower than 10 GeV and pr of the Z candidate lower

than 200 GeV were required.

tively. The theoretical cross-section is represented by the red band. Limits

are derived for vector-like B and T, for singlet and doublet hypothesis. For
the vector-like T, the doublet considered is (7, B) and for the vector-like B the

doublet considered is (B,Y), because the neutral decay of the vector-like B in
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Figure 4.31: The distribution of the leading lepton ¢ is shown on top and
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2 b-tagged jets, |my — myz| lower than 10 GeV and pr of the Z candidate lower
than 200 GeV were required.

the (7,B) doublet is highly suppressed (this was discussed in Sub-section
2.2.2). The expected mass limits are summarized in Table |4.6

From Table [4.6) we see the improvement from the first phase of [LHC|

operation, as was expected by the increase in center of mass energy in the
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Quark Expected mass limits (GeV)
Singlet Doublet
8TeV 13TeV 8TeV 13 TeV

BB 670 766 755 873
TT 625 687 720 797

Table 4.6: Expected mass limits at 95% C.L. for vector-like T and B, for the
singlet and doublet hypothesis, comparing current results with results from
the first phase of operation of the LHC.

proton-proton collisions, and consequent increase in the signal cross-section.
It should be noted that the current values only include statistical errors. The
higher limits by the doublet hypothesis are expected, given that the doublet
hypothesis has a bigger branching ratio of the Z decay that the singlet hy-
pothesis, as can be seen in Figure [2.6] The difference between the B and

T quarks are also expected, given that the difference in sensibility by this
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Figure 4.35: The expected upper cross-section limits at 95% CL for vector-
like B are shown on top and vector-like T on the bottom. Singlet hypothesis
on the left, doublet on the right.

analysis is already known. However, there is the expectation that the trilep-
ton channel can have a better sensibility for the vector-like 7', and therefore
improve the final limits obtained after the combination of the three different

analysis.

Besides upper mass limits, a scan was performed, shown in Figure |4.36),
where all the decay modes are considered, and the expected mass limit for
each BR] is plotted. The plot is shaped as a triangle, with the BR] of the
decay to the W boson increasing in the x-axis and to the Higgs boson in the
y-axis. That leaves the bottom left corner as the most sensible corner in this

analysis, as it is the area in the triangle with the biggest [BR]to the Z boson.
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higher than 200 GeV and Hy of jets higher than 700 GeV is required.

4.4 Complementarity with boosted topologies

and trilepton channel

have experimental features such as high jet multiplicity and boosted
objects. In this search for pair-produced [VLQ| decaying through a Z boson, it
was necessary to branch out to diverse analysis, with the goal of combining
results in the end. The analysis for the pair-produced are the dilepton
resolved analysis, which this text describes; the trilepton channel, that asks
for at least three leptons in its final state and the boosted dilepton analysis,

with which this analysis still needs to figure out the best way to orthogonal-
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pr =200 GeV pt =250 GeV pr =300GeV pr=350GeV pr=400GeV

BBg | 574.7 713.2 | 596.6 722.0 | 624.0 732.2 | 659.8 737.8 |678.2 746.9
TTs | <500 614.8 | 521.1 630.3 | 570.0 643.2 | 601.9 654.9 | 613.3 664.8
BBp | 708.8 828.2 | 726.7 832.8 | 751.0 839.0 | 764.1 848.5 | 780.4 855.4
TTp | <500 674.6 | 5454 7129 |611.8 736.8 |654.6 754.3 | 7054 768.6

Table 4.7: Expected mass limits for the different large-R jet multiplicities
and pr thresholds. For each pr threshold, limits with exactly 0 large-R jets
is on the left and less than 2 on the right.

ize (note that the orthogonality with the trilepton analysis is immediately
assured once exactly two leptons are required by this analysis). Multiplicity
of large-R jets is probably the best way to start implementing the cuts neces-
sary to orthogonalize the resolved and boosted dilepton analysis. In this text
we define a large-R jet as a jet reconstructed with an anti-k; algorithm with
R = 1.0, mass higher than 50 GeV, |n| < 2.0 and pt above a certain threshold
that is yet to be defined. An overlap removal with electrons is also made.
For this, it is required that if the Z boson candidate is reconstructed with
electrons, the AR between the large-R jet and each electron must be higher
than 1.0. So, to start defining the best way to split the multiplicity of large-
R jets, the expected mass limits for different scenarios were calculated, and
are displayed in Table

Looking at Table we see that a pp threshold of 200 GeV brings the
expected mass limits to low values, specially if we require only events with-
out large-R jets. However, it is possible that, in compromising this analysis
values, a final combination with higher mass limits overall is achieved. To
obtain an agreement that is favorable to the final combination a combined
study with the boosted topology analysis is required, and will be done in the
next steps of the analysis.

The presence of an analysis dedicated to the trilepton final state also
covers the slight lack of sensitivity to the vector-like 7 that the discriminant

variable of the dilepton analysis has. In that regard, a trilepton channel is
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more suited to define a discriminant variable sensitive to the vector-like T'.
The choice for the first phase of operation of the was the Hy of jets and
leptons, and so far it is the choice for the second phase of operation of the



Chapter 5
Conclusions

As was previously stated, the Standard Model of Particle Physics is able
to describe fundamental particles and their interactions in agreement with
experimental data. However, it does not provide answers to some questions.
In order to tackle those problems various models were built, with vector-like
quarks being a prediction made in some of these. The existence of these
quarks can only be verified or excluded (at least up to some energy scale)
with experimental results, and the goal of this analysis is to lay the basis
for the data to be used and to obtain results. For that, data collected by
the [ATLAS]| experiment, from proton-proton collisions made in the [LHC|was

used.

In the present thesis a strategy built upon the one defined at the first
phase of operation of the was implemented and optimized using ex-
pected mass limits and making the best to remove irreducible background
while preserving statistics after all the cuts are applied and making a com-
promise between the vector-like B and 7', due to the different sensitivity this
analysis has to both quarks. Control regions of the main backgrounds were
defined and studied, and a strategy to the fit was laid out. Expected mass
limits were obtained, improving the ones previously established at a center
of mass energy of 8 TeV. These limits, for vector-like T are 687 and 797 GeV,
for the singlet and doublet hypothesis, respectively. As for the vector-like
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B, the singlet hypothesis expected mass limit is 766 GeV, and the doublet
hypothesis mass limit is 873 GeV. However, these limits are expected to
change, once the systematic uncertainties are included, and the luminosity
and Monte Carlo statistics are improved.

Studies to orthogonalize this analysis with the boosted topology analysis
are being developed at the moment by the respective research groups, al-
lowing for a combination between the two analyses, and, afterwards, with
the trilepton channel as well. The combination of the different analyses
and their different sensitivities should allow for better overall results than
a more inclusive analysis would.

At the time this text is being written, the implementation of systematic
uncertainties is underway. With such implementation, a fit with system-
atic uncertainties is in order, allowing to analyze their behavior and further
study them individually, if needed, and derive mass limits with systematic
uncertainties added to the statistical uncertainty. An upgrade to the 2016
data is also an important step, as luminosity is being recorded at a record
rate by the[ATLAS|experiment, as illustrated by Figure The increase in
luminosity and the upgrade to the latest Monte Carlo samples, with higher
statistics and improved scale factors, could improve the discriminant vari-
able distributions, that present fluctuations due to the limited number of
Monte Carlo events after each selection is applied. This fluctuations propa-
gate to fluctuations in the mass limits, causing the risk of the analysis being
optimized on them.

After the systematic uncertainties are implemented and all analysis are
orthogonal, unblinding should be the next step, allowing to determine if an
excess from the Standard Model expectation was found or, if that is not the
case, derive observed mass limits, combining both dilepton and the trilepton

analysis.
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