
Universidade do Minho

Escola de Engenharia

Departamento de Inform

´

atica

Catarina Isabel Pires da Silva

Using Software Defined Networking

for Flexible Network Measurements

March 2017

Universidade do Minho

Escola de Engenharia

Departamento de Inform

´

atica

Catarina Isabel Pires da Silva

Using Software Defined Networking

for Flexible Network Measurements

Master dissertation

Master Degree in Informatics Engineering

Dissertation supervised by

Maria Solange Pires Ferreira Rito Lima

Jo

˜

ao Marco Cardoso da Silva

March 2017

A C K N O W L E D G E M E N T S

Para a minha mãe, Isabel, que me apoiou incondicionalmente e acreditou sempre em mim.
Obrigada mãe.

Quero também agradecer à minha tia Ana e à minha avó Belmira, pelo encorajamento
que sempre me deram ao longo da minha vida e por estarem sempre presentes, inclusive
nos momentos difı́ceis. Deixo também uma palavra de carinho ao meu irmão João, pela
ajuda e amizade.

Quero deixar um agradecimento especial aos meus orientadores, Professora Solange e
Professor João Marco, pela supervisão, disponibilidade, confiança e transmissão de conhec-
imentos, essenciais para a elaboração e conclusão deste trabalho.

Ao meu pai, Mário, que ao longo da vida me foi transmitindo as suas paixões, que são
agora também minhas, e quero agradecer o apoio quem me tem dado para seguir os meus
sonhos.

Gostaria também de mencionar os meus amigos de Braga e de Vila-Real: Rafaela, Sérgio
Ricardo, Ana, Lucas e Nuno. Obrigada pelo vosso apoio, carinho e amizade ao longo de
todos estes anos. À Raquel, pelo apoio em todos os momentos, força e carinho, principal-
mente na reta final.

Não posso também deixar de agradecer à minha amiga canina Tita, pelo carinho e atenção
diários.

Finalmente, gostaria de agradecer os meus avôs João e Arlindo e a minha avó Irene, pelo
amor e carinho que me deram, e valores que me incutiram. Apesar de já não estarem
fisicamente presentes, estão presentes em tudo o que faço.

ii

A B S T R A C T

Network management evolved in a way where implementing complex, high level network
policies, implies dealing with some attributes that depend on low-level specific configura-
tion. This reflects on a difficulty of changing the underlying infrastructure. SDN (Software-
Defined Networking) concept opens a road for new developments due to the centralized
non vendor-specific control of the network, most of it related with the separation of data
and control planes. Since collecting actual data to create information is important at the
time of taking decisions, network operators need to understand the dynamic of their net-
work through monitoring and sampling. An SDN approach offers different possibilities
to solve network managing problems, raising new points of view on how networks can
operate and, consequently, how they can be managed and monitored. This study is mainly
focused on exploring the SDN architecture, and its elements, for applying sampling tech-
niques through flexible network measurements. To pursue this, SDN elements will be pre-
sented and explained, alongside with existing monitoring solutions. These solutions, after
explored and analysed, will lead to a new approach on applying and configuring flexible
sampling techniques on SDN.

iii

R E S U M O

A gestão de redes evoluiu de forma a que, para implementar polı́ticas de rede de alto nı́vel
complexas, é comum lidar com alguns atributos que dependem de configuração especı́fica
de baixo nı́vel. Isto reflete-se numa dificuldade: mudar a infra-estrutura subjacente. O
conceito SDN (Software-Defined Networking) abre caminho para novos desenvolvimentos
devido ao controlo de rede centralizado que não depende do fornecedor de equipamentos
de rede, em grande parte devido à separação das camadas de dados e controlo. Para
que os operadores de rede possam compreender a dinâmica da rede, recorrem às tarefas de
monitorização e amostragem, uma vez que a captura de dados reais da rede, com finalidade
de criar informação, torna-se importante no momento de tomar decisões. Uma abordagem
SDN oferece diversas possibilidades para resolver problemas de rede, apresentando novos
pontos de vista sobre como as redes podem operar e, consequentemente, como podem
ser geridas e monitorizadas. Este estudo está principalmente focado na exploração da
arquitetura SDN, e os seus elementos, para a aplicação de técnicas de amostragem através
de medições de rede flexı́veis. Para alcançar o objetivo final, os elementos de uma SDN
serão apresentados e explicados, juntamente com as soluções de monitorização existentes.
Essas soluções, depois de exploradas e analisadas, irão guiar o trabalho para uma nova
abordagem na aplicação de técnicas de amostragem flexı́vel em SDN.

iv

C O N T E N T S

Abstract iii
Resumo iv
List of Figures vii
List of Tables viii
List of Abbreviations ix
1 introduction 1

1.1 Motivation and Objectives 2

1.2 Research Methodology 2

1.3 Document Layout 3

2 state of the art 4

2.1 General Concepts 4

2.2 SDN Architecture 5

2.3 FORwarding & Control Element Separation 8

2.4 OpenFlow 9

2.4.1 OpenFlow Specification 11

2.4.2 OpenFlow Versions Overview 12

2.5 OpenFlow Switch Implementation 15

2.5.1 Open vSwitch 16

2.5.2 ofsoftswitch13 17

2.6 Network Operating System 18

2.6.1 Network Operating Systems Overview 19

2.7 Network Virtualization and Mininet 21

2.8 Scalability and Security Issues 22

2.9 Summary 23

3 monitoring using software defined networking 24

3.1 Monitoring and Sampling 24

3.2 OpenFlow-based Monitoring Solutions 27

3.2.1 sFlow 27

3.2.2 FleXam 28

3.3 Summary 30

4 proposed solution 31

4.1 Design Goals 31

4.2 First Approach 31

v

Contents vi

4.3 Interaction Between Elements 33

4.3.1 Controller to Switch 34

4.3.2 Switch to Controller 35

4.4 Proposed Method 36

4.4.1 Using Mininet 37

4.4.2 OpenFlow 38

4.4.3 Using Open vSwitch 38

4.5 Summary 43

5 conclusions and future work 44

5.1 Summary 44

5.2 Prospect for Future Work 45

5.3 Final Considerations 45

Bibliography 49

Appendix 50

a introductory guide to mininet, ryu and open vswitch 50

b python code to create custom topology in mininet 57

L I S T O F F I G U R E S

Figure 1 Traditional Architecture vs SDN Architecture 5

Figure 2 SDN Architecture - A General Overview 6

Figure 3 Detailed SDN Architecture 7

Figure 4 ForCES Architecture 9

Figure 5 OpenFlow-based SDN 10

Figure 6 Representation of the Main Components of an OpenFlow 1.0 Switch 11

Figure 7 Open vSwitch Architecture 17

Figure 8 ofsoftswitch13 Architecture 18

Figure 9 Sampling Concepts [1] 25

Figure 10 Systematic Count Based [1] 26

Figure 11 Systematic Time Based [1] 26

Figure 12 Random n-out-of-N [1] 27

Figure 13 sFlow OpenFlow-based SDN Architecture 28

Figure 14 Implemented Action and its Parameters - FleXam 29

Figure 15 Implemented Parametrized Topology 33

Figure 16 Controller to Switch - Minimal Approach 34

Figure 17 Switch to Controller - Minimal Approach 36

Figure 18 Switch to Controller - Minimal Approach 37

Figure 19 Open vSwitch Forwarding Components and Operation 39

Figure 20 Open vSwitch Tools and Components Relationship 41

Figure 21 Open vSwitch Kernel Module Main Data Structures 42

vii

L I S T O F TA B L E S

Table 1 Network Operating System list 20

viii

L I S T O F A B B R E V I AT I O N S

API Application Programming Interface.
ARP Address Resolution Protocol.

CE Control Element.
CPqD Centro de Pesquisa e Desenvolvimento em

Telecomunicações.
CRUD Create, Read, Update and Delete.

DPCTL Datapath Control.
DSCP Differentiated Services Code Point.

FE Forwarding Element.
ForCES FORwarding & Control Element Separation.

IETF Internet Engineering Task Force.
IP Internet Protocol.

MAC Media Access Control.
MPLS Multiprotocol Label Switching.

NaaS Network-as-a-Service.
NE Network Element.
NFV Network Function Virtualization.
NOS Network Operating System.
NS-3 Network Simulator - 3.

ONF Open Networking Foundation.
OXM OpenFlow Extensible Match.

QoS Quality of Service.

ix

List of Abbreviations x

REST Representational State Transfer.

SDN Software-Defined Networking.
SLA Service Level Agreement.

TE Traffic Engineering.
TLS Transport Layer Security.
TLV Type-length-value.
ToS Type of service.

VLAN Virtual Local Area Network.

1

I N T R O D U C T I O N

Despite the widespread use of traditional networks, designed to meet the requirements
of enterprises, carriers and end users, the underneath structure of networks became less
flexible. This occurs mainly because of the integration and interconnection of many propri-
etary, vertically integrated devices, where vendors dictate specific configurations methods,
commands and software [2]. It can be seen from the transition from IP (Internet Protocol)
version 4 to IP version 6, that is taking decades to be accomplished, or the introduction
of new routing protocols, that can take a decade to become fully operational, that today’s
networks are rigid and somehow resilient to progress or new solutions. The use of the
traditional networking architecture, means that any change will affect the entire network,
so we reach a point where networks are relatively static as their operators seek to minimize
the risk of disruptions.

Over the years we witnessed the arrival of new trends, such as server virtualization
and cloud services, an increasing number of mobile devices and online content, leading
the networking industry to deliberate about how traditional network architectures can be
adapted or even deciding if a new perspective for it should be taken [3].

The SDN (Software-Defined Networking) architecture proposes to structure the network
in three different layers: the infrastructure layer, the control layer and application layer.
This organization has the purpose of decoupling the data and control planes allowing some
networking tasks such as forwarding and monitoring to be held by a centralized node called
Controller [4]. The arise of a centralized controller assists decision making for each device
since it enables a full view of the network. It is also where the high-level application plane
policies are translated to the low-level instructions, providing an explicit control point.

To connect the controller to the infrastructure layer an API (Application Programming
Interface) must be selected, being the OpenFlow standard the most popular in the SDN
domain. Then, the controller software, called NOS (Network Operating System), runs the
data plane protocol so the infrastructure layer and control layer can communicate with each
other, enabling networking tasks to be performed [3].

1

1.1. Motivation and Objectives 2

1.1 motivation and objectives

SDN researching is largely focused on how to apply this novel architecture to fulfil today’s
needs, how innovation can be lead, its challenges and benefits, and other topics such as
scalability, security and forwarding solutions. The topic discussed in this work is related to
the use of sampling in the network monitoring context.

Sampling provides an overview of the network dynamics by collecting some specified
data (packets) in specific nodes, at specific time or count interval, allowing to retrieve
information about what happens in the network [5]. However, it is also important to define
how this data will be retrieved. This is known as sampling technique. Different sampling
techniques are used to estimate different types of patterns or measurements in the network,
making it important to choose what sampling technique should be used, considering what
information is sought [6].

In the context of sampling-based network monitoring, this research work explores the
use of SDN concepts, elements and architecture to sustain the selection and configuration
of sampling techniques in the network environment being monitored. The aim is to take
advantage of SDN to provide an insight on selecting the most suitable sampling solutions
for monitoring an SDN network. Furthermore, this work introduces the elements that
coexist in the network, what are the options when building a simple topology and what are
the most feasible monitoring approaches, taking into account that today more and various
resources are used in a network, meaning more load.

Considering the aspects above and the importance of monitoring and managing networks
in a flexible and efficient way, studying a solution on how packet sampling techniques
must be approached in an SDN architecture to sustain monitoring operations is the main
objective to fulfill in this work. For this purpose, the following list of partial objectives to
be met has been defined:

• Identify and present SDN-related elements, such as data and control planes standards;

• Study existing solutions using traffic sampling in the SDN context, their advantages
and drawbacks;

• Select a virtual workspace to test SDNs concepts and devised solutions;

• Study and propose an approach that allows the flexible support of sampling tech-
niques in the SDN architecture, without disregarding network efficiency.

1.2 research methodology

To achieve the main objective of this work, a research methodology is introduced, allowing
to go further on the objectives itemized above. The study of the state of the art covering

1.3. Document Layout 3

the main aspects of an SDN architecture, an explaining SDN elements and their use, make
the first step of the methodology. Secondly, it is provided a description of solutions for
network sampling, together with an overview of data plane standards, and what is available
to perform monitoring and sampling on the SDN context. To conclude, an analysis of the
best solution for the defined problem is presented and justified.

1.3 document layout

From this point, the document is organized as follows: the introduction of the motivation
to use SDN, its concepts and architecture are presented in Chapter 2. This chapter also
presents the OpenFlow standard as communication protocol in the lower layers of SDN
together with an overview of this standard’s versions. Network operating system as the
software that operates in the controller together with scalability and security issues that
exist in SDN are discussed in Chapter 2. Monitoring and sampling concepts along with
OpenFlow-based tools are introduced in Chapter 3. In Chapter 4 the main elements, strat-
egy and proposed solution for sampling-based network monitoring in SDNs are explained.
Conclusions and prospect for future work are presented in Chapter 5.

2

S TAT E O F T H E A RT

In this chapter, general concepts of what can be called as the traditional network architec-
ture are faced with what the SDN concept brings to the networking field. Its architecture is
confronted with the networking system that is mostly used. The separation of the data and
control planes is prominent, since they are usually working together in a single unit, such
as a router or switch. To have both planes separated working together, results in the need
for specific software. Openflow is a data plane protocol that provides this communication
between planes being widely adopted by the SDN community for such purpose.

On the other hand, the diversity of NOSs available requires a selection based on the
analysis of functionality and what is expected for it to do. Hence, an emulating tool to
provide an environment for implementation and tests is required, justifying the explanatory
section on available emulation tools included in this chapter. Furthermore, some scalability
and security issues are addressed.

2.1 general concepts

Today’s networks are mostly build by layers of switches and routers arranged in an or-
ganized graph structure. This leads to a point where it is difficult to take further advan-
tage of this architecture. This is mostly because of today’s networks dynamic, resulting
on the changing traffic patterns, where applications no longer rely on an exclusive client-
server communication, but also on having permanent access from any device to different
databases and servers. The continuing growth of cloud services usage, being them pri-
vate or public, leads to growing requirements for security, compliance and auditing that,
together with other key factors, motivate the need for a new network architecture [3].

The SDN architecture proposes a change to increase flexibility and fulfil the demands of
its users. In Figure 1, the decoupling of data and control planes is faced with the tradi-
tional architecture scheme. As illustrated, SDN provides a centralized point of control that
can directly influence multiple processes of a network element using freely programmable
control software. This means that we are no longer relying on proprietary management
systems.

4

2.2. SDN Architecture 5

Figure 1.: Traditional Architecture vs SDN Architecture

Due to the separation of planes, the neutral software and the emerging of open and free
software to control and operate networks, SDN permits the introduction of new features to
be more easily implemented than in most of today’s environments.

Since most of the current networks are dependent on vendor-specific software and hard-
ware, usually taking a lot of time to make different vendor components work together, it
did not take long until companies and researchers realized that the SDN architecture could
benefit them.

Using SDN only for reaching forwarding goals, being the first direction on SDN usage,
was not enough and other abilities were seen, such as implementing policies for network
security, monitoring and management. The capability of having a central point of control,
accessing and viewing the whole system, while having the possibility of making differ-
ent kinds of traffic engineering decisions in different regions of the network, provides an
increase of flexibility on network management and monitoring [2].

2.2 sdn architecture

The SDN architecture is divided in three different layers, as illustrated in Figure 2.

2.2. SDN Architecture 6

Figure 2.: SDN Architecture - A General Overview

The infrastructure layer is where networks devices such as switches and routers are,
forming what is known as data plane. The middle layer, called control layer, is made by
one or more controllers, which provide several ways of centrally operating the network.
The connection between these layers is done via an API, known as southbound API. If it is
decided to have several controllers, their connection is done via west and eastbound APIs.
On the top we have the application layer that provides, via a northbound API, the possibility
of communicating with the control layer, sending specific instructions through functional
applications, which may have several purposes such as monitoring and controlling access
for operation and management of the network [4].

This separation of data and control planes is important as it becomes easier to address
these two different functions and make each of them more flexible and manageable. It also
allows data and control planes functions to be physically separated by hardware. Contex-
tually, this means that an SDN switch only has a data plane module and does not have any
conventional control plane functionality, fully relying on the external controller entity to
make decisions. As SDN provides a more centralized control, network operators only need
to manage the controllers, enabling a possible NaaS (network-as-a-service) reality.

The vision of SDN is a key enabler for simplifying management processes leading to
keen interest from both the industry and the research community. Exploring the SDN

2.2. SDN Architecture 7

architecture in network management can solve many problems because, in this way, flexi-
bility, programmability, simplification of tasks and application deployment can be achieved
through a centralized network view [7]. Managing a network with SDN means that in a
single node of the network, the controller, has the power to configure, collect and store data
from numerous points of the network and then analyse them.

The heterogeneous choice of SDN architecture can be observed in Figure 3. As North-
bound API, the choice varies from REST(Representational State Transfer) to Procera[8] and
Frenetic[9]. A variety of NOSs are available to function as SDN controllers, such as RYU
[10], POX [11] and Beacon[12].

Figure 3.: Detailed SDN Architecture

From a bottom up point of view, we first come across the Southbound API. There are
several available interfaces, OpenFlow [13] and ForCES (FORwarding & Control Element
Separation) [14] being the ones with greater expression.

SDN philosophy is considered as the key to provide a faster pace of innovation in com-
munication networks as well as more competition on the market, reducing the costs for
network operators and providing better solutions on network management [2].

The insertion or replacement of SDN networks in existing network structures is a delicate
issue mostly due to the currently large number of installed networks. Moreover, it becomes

2.3. FORwarding & Control Element Separation 8

difficult to discard these working networks and replace them with a new SDN infrastruc-
ture, where all network elements would be enabled or already have support to work with
SDN. This results on a need to simultaneous support of SDN and legacy equipment, if an
integration or transition from an existing network to an SDN is going to be made [4].

2.3 forwarding & control element separation

ForCES [14] is an IETF (Internet Engineering Task Force) working group established in 2001

which proposes a more flexible approach to traditional network management, providing a
clear separation between control and data plane without changing the current architecture
of the network. This means that there would not be the need for a logically-centralized
external controller since the control and data planes are separated but can be kept in the
same network element [14] [15] [16].

The ForCES protocol is composed by FEs (Forwarding Element) and CEs (Control El-
ement), which respectively is where the forwarding plane is instantiated and where the
control place can be found. The protocol is also composed by a physical or virtual form
that is referred as NE (Network Element), that can be seen as a packet processing entity.
Finally, ForCES also includes CE and FE managers that, beyond being accountable for boot-
strap and subsidiary mechanisms, are also responsible for discovering CEs and FEs and
determine which ones will communicate [17].

The interfaces used in the ForCES architecture (see Figure 4) are defined by the protocol
and consist of:

• Fp, Fi and Fr representing the CE-FE, FE-FE and CE-CE, respectively;

• Fc represents the interface between the CE manager and a CE;

• Ff defines the interface between the FE manager and an FE

• The interface between the CE manager and the FE manager is characterized has Fl.

2.4. OpenFlow 9

Figure 4.: ForCES Architecture

The literature often relates ForCES has a perfectly usable southbound API for SDN [4]
[18] [19]. Other studies refer that, although ForCES was not designed for SDN, it describes
a good role model of how an SDN southbound API should be designed [20].

There is also a study to the applicability of using ForCES along SDN-enhanced NFV
(Network Function Virtualization) [21]. Other studies present the possibility of combining
ForCES and OpenFlow to improve forwarding capabilities of the SDN architecture [22].
In practice, OpenFlow is more widely used when compared to other protocols, in an SDN
context, mostly because of its implementation of the SDN philosophy and the help of switch
manufacturers that implemented devices ready to support this standard.

2.4 openflow

OpenFlow is a non-proprietary communication standard, which provides a way to establish
connection between the control and infrastructure layers of an SDN architecture. Despite
OpenFlow (and SDN) being used by the industry, it was initially deployed in academic
campus networks [13]. It is supported by the ONF (Open Networking Foundation), which
is responsible for the promotion of SDN and publication of OpenFlow switch specifications.
The OpenFlow goal is to provide an interface between the separated control plane and data
plane, providing an accurate implementation of the SDN idea [13] [15] [16].

OpenFlow allows connection and operation of data plane, enabling a direct control of the
network through setting up packet forwarding rules on network devices, such as switches.

2.4. OpenFlow 10

An overview of OpenFlow’s scope of activity in the SDN architecture is presented in Figure
5.

Figure 5.: OpenFlow-based SDN

Instructions or primitives provided by OpenFlow specifications can be used by software
applications to apply rules on the SDN infrastructure layer devices. Its implementation is
done on both the interfaces: at the infrastructure layer and at the control layer [13] [23].

OpenFlow specifies network traffic based on what are called flows (packets that match
the same entry in a flow table). These flows together with a set of headers, are combined
with a set of admissible fields on the flow table. Flows can be programmed by the control
layer in a static or dynamic way.

SDN architecture working together with OpenFlow, in physical or virtual networks, gives
the ability to instantly respond to changes due to the granular control provided mainly by
OpenFlow ability of per-flow programmability [13] [24].

The deployment of OpenFlow-based SDN on existing networks can be easy since several
network devices support the OpenFlow standard simultaneously with traditional forward-
ing (called OpenFlow-hybrid switch). This allows to progressively introduce OpenFlow-
based SDN technologies, even in multi-vendor network environments. Network devices
that only support OpenFlow forwarding rules are called OpenFlow-only switches [23].

2.4. OpenFlow 11

The goal of separated control and data plane can be seen in both ForCES and OpenFlow
but, regarding the form and architecture perspective, OpenFlow differs from ForCES. The
latter resides in the same network architecture with a new architecture of network devices,
while OpenFlow implies changing the architecture to the three-layer SDN [13] [14] [16].
This means ForCES does not have the same issues as when using Openflow to provide the
decoupling of data and control planes since it does not require a change to the current
network architecture from the traditional network.

In this project OpenFlow will be used as southbound API [13].

2.4.1 OpenFlow Specification

The OpenFlow Switch specification is a document that describes the OpenFlow protocol.
The classical OpenFlow architecture consists of an OpenFlow- compliant switch, a secure
channel and a controller as represented in Figure 6 [16] [18].

Figure 6.: Representation of the Main Components of an OpenFlow 1.0 Switch

Switches can apply rules from the OpenFlow protocol using flow tables, which are ma-
nipulated by a controller, via the OpenFlow protocol. The communication between con-
troller and switch is done through a secure channel interface, allowing several kinds of
interactions such as sending instructions from the controller to the switch or replying to a
statistics request to the controller.

A flow table includes a list of flow entries used to forward packets. Each of these entries
has header fields to match against incoming packets. Counters are updated for a matching
packet (used for flow statistics), and actions are applied to matching packets. Actions are
instructions for packet matching that allow discard, modify, queue, or forward operations
to the packet.

2.4. OpenFlow 12

After incoming packets are compared with the match fields of each entry, and if there
is a match, the packet is processed according to the action contained in that entry. If not
the packet can be encapsulated and sent to the controller. OpenFlow version 1.0 was the
first version with official vendor support. The last released OpenFlow specification is 1.5.1,
dating March 2015, however, despite being the most recent, older versions such as 1.0 and
1.3 are widely used. The following section describes the main OpenFlow specifications and
their major changes [18].

2.4.2 OpenFlow Versions Overview

In this subsection, we present an overview of the most important changes from the previ-
ous OpenFlow version to the next. The main reason to do such overview is to provide a
perspective of how this protocol evolved to fulfil networking needs.

OpenFlow 1.0 [23]

Release Date: December 2009

Protocol version: 0x01

Notes:

• An OpenFlow switch contains a flow table with 12 header fields included in the
header and payload of the incoming packets;

• A field in the flow table can have the value represented by the key ”ANY” and it will
match all packets;

• Flow entries in the table are organized in descending order of priority;

• The first flow entry on the flow table is where the lookup of the packet header starts;

• When a match is found, the actions in the matched flow entry are performed on
the packet, otherwise, the packet is sent to the controller via a secure channel for
processing;

• Supports multiple queues per output port;

• An opaque identifier, called cookie, was included in flows and it is returned to the
controller as part of each flow stats and expired messages;

2.4. OpenFlow 13

• Added the possibility to match IP fields inside ARP (Address Resolution Protocol)
packets;

• Support for IP ToS(Type of service)/DSCP(Differentiated Services Code Point) bits
matching;

• New field for querying port stats for individual ports;

• Improved flow duration resolution in stats/expiry messages by expressing it in nanosec-
onds resolution.

OpenFlow 1.1 [25]

Release date: February 2011

Protocol version: 0x02

Notes:

• Openflow 1.1 introduces multiple flow tables and a group table composed by group
buckets;

• Changes in match fields;

• MPLS (Multiprotocol Label Switching) fields are used to support MPLS tagging and
better VLAN (Virtual Local Area Network) support.

• Support for virtual ports on OpenFlow switch;

• Controller connection has new features to deal with failures;

• New protocol object instructions where actions are encapsulated.

OpenFlow 1.2 [26]

Release date: December 2011

Protocol version: 0x03

Notes:

• IPv6 addressing support is added, such as match and header rewrite;

2.4. OpenFlow 14

• A more distributed solution is provided since the switch can now connect to multiple
controllers concurrently due to controller role change mechanism;

• Introduction of OXM (OpenFlow Extensible Match) to support a variety of header
fields.

OpenFlow 1.3 [27]

Release date: April 2012

Protocol version: 0x04

Notes:

• It is possible to control the rate of packets through per flow meters.

• Included a more flexible framework to express capabilities mainly by improving de-
scription of tables.

• More flexible table miss support through the use of instructions and actions;

• The existence of IPv6 extension headers can now be matched;

• Packet-rate can be controlled and measured due to the addition of per-flow meters
that can be attached to flow entries;

• A controller can configure an event filter on its connection to the switch through a
new set of messages;

• Auxiliary connections can be created between the switch and the controller;

• Packet-in messages have now a cookie field representing the value from the flow that
sends the packet to the controller;

• Most statistics include a duration field to add accuracy on statistics.

OpenFlow 1.4 [28]

Release date: August 2013

Protocol version: 0x05

Notes:

2.5. OpenFlow Switch Implementation 15

• More extensible wire protocol by adding TLV (Type-length-value) structures;

• Now the controller can have a better view why packet-in messages were sent because
of the introduction of more descriptive reasons;

• New set of optical ports properties that can be used either on Ethernet optical ports
or optical ports on circuit switches;

• A flow monitoring framework was introduced to provide the definition of a number
of monitors by a controller;

• Improvement of role status events when defining the master controller in a architec-
ture with a master-slave controller environment;

• The controller has access to real time changes done by other controllers to the group
table and meter table because of a change in the group and meter notifications.

OpenFlow 1.5 [29]

Release date: December 2014

Protocol version: 0x06

Notes:

• Introduction of Egress Tables who provide processing in the output port;

• Now statistics can be automatically sent to the controller based on thresholds;

• Connection status from the switch to a controller can be collected.

2.5 openflow switch implementation

To use the OpenFlow protocol in a virtual environment, an OpenFlow software switch
implementation is mandatory. All the OpenFlow switch implementations discussed here
support the DPCTL (Datapath Control) utility. The DPCTL provides datapath control over
the switch and allows several operations, such as querying status and adding or changing
flows to the flow table. This is of major interest since it avoids changes to the controller
software code when changes in the switch software code are made.

The OpenFlow reference switch [30] contain files with initial code from the Stanford Univer-
sity OpenFlow development team, who created it. It includes:

2.5. OpenFlow Switch Implementation 16

• OFdatapath - implements the flow table in user space;

• OFprotocol - implements the secure channel component of the reference switch.

Another OpenFlow switch implementation is LINC [31], an OpenFlow version 1.2/1.3.1
software switch created by the Infoblox and FlowForwarding group. It is written in Erlang
and implemented on the operating system’s userspace as a node. It provides flexibility and
fast development for testing new OpenFlow features efficiently when considering compu-
tational costs.

2.5.1 Open vSwitch

Open vSwitch [32] is a virtual switch consisting on a software layer that resides in a virtual
machine host [33]. It was designed to bring flexibility and platform-free usage, meeting
the needs of the open source community. Similarly to the OpenFlow reference switch, Open
vSwitch also contain files with initial code from the Stanford University OpenFlow devel-
opment team.

In the beginning, Open vSwitch had the goal to provide features for applications such
as network virtualization. This vision was easily discarded by the team in charge, when
they discovered that the key to success relies, not only in high programmability, but also in
speed [34].

For the past several years, the focus in its development was to achieve a high level of
performance in different platforms while sharing resources and workloads. To prevent
problems such as consumption of hypervisor resources, Open vSwitch implements what is
called flow caching [34]. Flow caching means that traffic handling is cached on the kernel
module the first time a packet from a flow not handled previously, arrives at the switch.
This occurs so subsequent packets that match the same flow entry do not have to be handled
by the userspace module again.

Today, Open vSwitch is very popular mainly due to its integration with OpenStack Net-
working service and it is also accepted as the genuine standard OpenFlow implementation.

Figure 7 offers an overview of the Open vSwitch architecture and its main components.

2.5. OpenFlow Switch Implementation 17

Figure 7.: Open vSwitch Architecture

The Open vSwitch kernel module uses Netlink message framing format through its
AF NETLINK sockets to access the ovs-switchd daemon which implements and manages
all the Open vSwitch devices. The OpenFlow protocol is used to exchange messages be-
tween the Controller and ovs-switchd.

The datapath (ovs kernel module) uses Netlink socket to interact with ovs-switchd dae-
mon that implements and manages any number of ovs switches on local system, and the
SDN controller interacts with ovs-switchd using OpenFlow protocol. The ovsdb-server
maintains the switch table database (persistent) and external clients can talk to ovdb-sver
using JSON notation.

2.5.2 ofsoftswitch13

The ofsoftswitch13 [35] is a userspace software switch implementation of an OpenFlow ver-
sion 1.3 switch, targeted primarily for research and switch customization. This project is
available at GitHub and its code is a changed Ericsson TrafficLab 1.1 softswitch implementa-
tion to support OpenFlow 1.3 on the data plane. Formerly maintained by CPqD (Centro de
Pesquisa e Desenvolvimento em Telecomunicações) in technical collaboration with Ericsson
Research, it is currently supported by Ericsson Innovation Center in Brazil [35]. Its support
is limited, so any code bug or error is solved on a best-effort base. Most of the compli-
cations and problems while using this switch implementation seem to be related with the

2.6. Network Operating System 18

Linux version and distribution used [36]. When compared to Open vSwitch, ofsoftswitch13

offers a user-level software switch which only supports version 1.3 of OpenFlow while
Open vSwitch offers a production quality software switch that implements the OpenFlow
protocol up to version 1.5 (experimental).

An overview of ofsoftswitch13 components and their interaction is represented in Figure
8.

Figure 8.: ofsoftswitch13 Architecture

The ofsoftswitch13 switch provides the OFLib library that converts internal messages to
and from OpenFlow 1.3. It also uses the NetBee library [37] for packet decoding [36].

2.6 network operating system

The SDN architecture proposes a data plane formed by network devices and a control
plane constituted by a centralized controller. Having his centralized controller implies that
for devices to be able to apply rules, transmitted to them by the southbound interface, an
operational controller must be present. The controller can control, monitor and manage the
network and is connected to user applications in the application layer through a northbound
interface, thus establishing a connection point between the low and high levels of the SDN
network [16].

2.6. Network Operating System 19

Using the OpenFlow standard, a manipulation of elements is required such as flow ta-
bles or group tables, depending on the version. To manipulate these elements, a NOS,
running on the controller is required. This operating system, besides communicating with
infrastructure layer devices, should notify the application layer about network events. This
means that in a top-down approach in the SDN architecture, the NOS provides abstractions
and common APIs to developers [38].

The capabilities of a NOS in providing services such as node discovery, together with
other elements, create an environment to speed up the introduction of network applications
and protocols [16].

There are several NOS available with different properties. These properties are: support
for virtualization, open source, multiplatform support, southbound and northbound API
support, programming language, among others [38]. For instance, the RYU [10] and POX
[11] use Python as programming language. Floodlight [39] and Beacon [12] use Java. All of
them support OpenFlow as the southbound API.

As demonstrated above, the SDN architecture relies partially in the controller and its
network operating system as it is the main component of the control plane to generate
rules or configurations on the network by the user.

2.6.1 Network Operating Systems Overview

After understanding the importance of this element on an OpenFlow architecture, a study
of what network operating system could better suit on a simple SDN solution was needed.
Some premises were established for this study, so needless complexity is discarded. Only
centralized controllers were targeted and support for OpenFlow version 1.3 was preferable
but not mandatory [38].

Other properties that NOSs should match:

• They must have virtualization compatibilities (Mininet & Open vSwitch);

• Southbound OpenFlow interface support;

• The controllers must have platform support on Linux;

• Only ”open source” controllers are eligible.

Table 1 lists the NOS that are compatible with the properties defined above.

2.6. Network Operating System 20

Table 1.: Network Operating System list
Name Architecture Northdbound API Prog. Language OpenFlow Support

RYU
centralized
multi-threaded REST API Python v1.0|1.2|1.3|1.4|1.5

POX centralized ad-hoc API Python v1.0

FloodLight
centralized
multi-threaded REST API Java v1.0|1.3

Beacon
centralized
multi-threaded ad-hoc API Java v1.0

Relevant details of each NOS to guide the decision of the NOS to adopt on this research
work are provided below:

RYU[10]:

• Was selected as the best NOS using adapted Analytic Hierarchy Process (a Multi-
Criteria Decision Making method) from topmost five controllers (including POX, RYU
and FloodLight) [38];

• Any programming language can be used to develop a new component [38];

• REST can be used for both Northbound and Southbound API allowing communica-
tion with other systems and browsers.

POX[11]:

• Python 2.7;

• “Pythonic” OpenFlow interface;

• Reusable sample components for path selection, topology discovery, etc.;

• “Runs anywhere” – Can bundle with install-free PyPy runtime for easy deployment
or ”standard” CPython;

• Supports the same GUI and visualization tools as NOX NOS;

• Last Update around March 2013.

FloodLight[39]:

• FloodLight v1.0 dated Jan2, 2015;

• Full support for OpenFlow v1.0 and 1.3;

2.7. Network Virtualization and Mininet 21

• Experimental support for OpenFlow v1.1, 1.2 and 1.4.

Beacon[12]:

• Supports OpenFlow v1.0.

’Ryu’ network operating system was considered the most universal controller. It fully
supports most of OpenFlow standard’s versions and it is very used in the research field.

2.7 network virtualization and mininet

Network Virtualization allowed the networking community to perform a variety of tests
without the need of having physical elements at disposal, which is often very difficult to
have. This process of turning a real network into a virtual one is the result of network’s
hardware, software and functionality combination in a single entity called virtual network.

Sometimes the lack of resources is not the only reason to use network virtualization.
There are circumstances where software under development is tested in a virtual environ-
ment that simulates the one where the software will be working when fully operational.
Tests performed on a virtual platform will allow a validation according to the accuracy of
the network virtualization, how close it is in emulating real hardware and functionality
[40].

Mininet is a network virtualization platform that enables the use and experiment of
SDN, Openflow and several NOS. It can run a network application on both small and
large networks using lightweight virtualization. Experimenting on this emulator is also a
plus since it enables the implementation from a single feature to a brand-new architecture,
allowing users to test it in their own topologies and, then, deploy its code on a production
network.

Mininet performance increases when it is working on a laptop using Linux, allowing the
network to be bundled in a virtual machine where several operations can be done, such
as modifying and running the virtual network. Using virtual machines have advantages of
being easily modified but in the other hand, scalability issues are, most of the time, present.
Mininet’s limitations on performance and multi-machine support are directly related to
its implementation, but its support on prototyping SDN networks with speed is a notable
feature [41].

If, for instance, there is a need for experimenting on wireless networks with the Open-
Flow protocol (using Mininet-WiFi, which is a fork of the Mininet SDN network emulator),
some of the Mininet’s limitations have a harsh effect on the emulation when computational
demand is high [42].

2.8. Scalability and Security Issues 22

Another network simulator for SDN is NS-3 (Network Simulator 3) [43]. Focused on re-
search and educational use, distributed as free software. Simulations modelling OpenFlow
switches using ns-3, use an OpenFlow module [44], which, in turn, relies on an external
OpenFlow switch library linked to the simulator. This became a main disadvantage since
this module implements an OpenFlow version 0.8.9 switch, nowadays considered obsolete.
To use a more recent OpenFlow switch, in this case version 1.3, the installation of the OF-
Switch13, which uses the ofsoftswitch13 library along with several modifications to work
in ns-3, is required [36].

2.8 scalability and security issues

When considering an architecture, such as SDN, that introduces a centralized point where
several instructions and decisions are made and transmitted, there are two main issues that
cause concern: security and scalability.

Until version 1.2, OpenFlow specifications were directed to a single controller, where
the possibility of communication between a switch and several controllers were addressed.
Some of the NOS are designed to work as centralized controllers, where multi-threaded
environment is explored to achieve highly concurrent systems.

To satisfy the demand of large-scale systems and be able to work on less demanding
networks, distributed NOSs are used. There are several ways these controllers can be dis-
tributed and it results on different solutions for a set of different scenarios. Some properties
that these NOSs offer are consistency and fault tolerance [2] [16].

Security is another important matter to consider. Centralized or distributed, controllers
are a point of the network where management, measurement and monitoring are available,
meaning that a lot of damage to the network can be done. Therefore, it is considered to
be a tempting target of security attacks, where the attacker can directly exploit it. Between
controllers the use of security communications protocols, such as TLS (Transport Layer
Security) (used in OpenFlow standard), with authentication between nodes can provide an
extra protection layer to reduce vulnerability at that point.

The increase of SDN network nodes opens a gap to vulnerability. Security applications
for controllers can be used, depending on the software running on the controller. On the
other side, we should not forget the capabilities that SDN architecture supports (such as full
system view and control from a single node) that provide a powerful feature for reactive
security monitoring, analysis and response system, allowing the implementation of security
policy techniques such as Active Security [4] [16] [45].

It is reckless to think that the security concern is static. New techniques of detection and
protection emerge, such as security threats. The solution is to adapt the network security
level to the network requirements, where protection is intended [4] [16].

2.9. Summary 23

2.9 summary

This chapter presented an introduction of the SDN concept, the description of this architec-
ture’s elements and how they are applied. The decoupling of data and control planes is
the basic principle of SDN, which contrast with the traditional network architecture where
these are strictly connected.

A protocol called Openflow was devised to work in the data plane following the SDN
methodology and applying per-flow rules. An observation of what can be called the meta-
morphosis of OpenFlow can be analysed through a general description of its versions, help-
ing on having an fundamental understanding about this SDN data plane protocol. Next,
the control plane was addressed through the introduction of NOS. A NOS is basically an
operating system that works in the control module of an SDN network, and has the main
goal of installing rules on the data plane and making the connection between the data and
application plane.

An introductory section about the SDN Network Virtualization tool Mininet comes as an
essential part since virtualization is today’s number one choice for software testing, and
Mininet is the number one choice when it is necessary to emulate an SDN network.

This chapter concludes with a brief approach to scalability and security in SDN. Having
a centralized point of control is a major concern when scalability is demanded and, at the
same moment, given its power to enable direct access to the majority, if not all the network,
is a natural target for malicious exploitation.

3

M O N I T O R I N G U S I N G S O F T WA R E D E F I N E D N E T W O R K I N G

Monitoring tasks along with sampling will always be an important part of maintaining a
network. This chapter will start by introducing a general view of monitoring and sam-
pling concepts, and then which tools can sustain these tasks in an SDN network that uses
OpenFlow as data plane protocol.

3.1 monitoring and sampling

Monitoring and sampling are demanding services on a network. Capacity and other proper-
ties need to be monitored in order to provide a better view of what happens on the network,
so appropriate decisions related to network provision and functionality can be made.

Sampling allows retrieving information about the whole network behaviour without the
need of analysing all the data, reducing the impact of monitoring operations in the network.

Sampling techniques are widely used and represent an important step of monitoring
since collecting traffic samples allows to get the data by which we retrieve relevant infor-
mation of the network behaviour.

With the SDN architecture approach of a centralized point of control that simplifies man-
agement and manipulation tasks in the network together with OpenFlow providing ways
of implementing TE (Traffic Engineering). OpenFlow-based SDN are by excellence, a good
way to enhance monitoring and sampling while, at the same time, providing a simplifica-
tion for the introduction of new network applications. [16].

Network applications targeting monitoring and sampling can either provide new func-
tionalities for distinct networking services or improve features previously provided by
OpenFlow-based SDN. These network applications may, not only perform tasks involv-
ing network management and traffic engineering, but also tasks related to performance
evaluation, network security, SLA (Service Level Agreement) and QoS (Quality of Service)
control, being the last two widely done by ISPs [46].

In this work, it is expected to identify techniques of how to implement relevant sam-
pling techniques, in an SDN environment, then increasing and mixing details until a newly

24

3.1. Monitoring and Sampling 25

general-purpose sampling-based measurement architecture can be demonstrated and im-
plemented.

For better understanding traffic sampling several concepts should be considered, such as
the interval between samples and sample size, described bellow.

Packet sampling is widely used to support network measurements, mostly due to the
development of networking infrastructures, high-speed technology and services diversifica-
tion. Tasks related with sampling-based network measurements include [47]:

• Planning and management of network operation;

• Performance optimization, traffic modelling, characterization and control through
traffic engineering;

• Network security;

• Measure and report SLA compliance;

• Control of QoS parameters.

For the understanding of concepts related with packet sampling, the following terminol-
ogy, illustrated in Figure 9, is used [47]:

• Sample – selected network packets used for network parameters estimation. Can also
be referred as an individual action of selecting and capturing packets from the stream;

• Sample size – number of packets selected and captured to constitute a sample. It can
also be a time interval. Sample size is controlled by triggers that delimit size by packet
position into the stream or timestamp;

• Interval between samples – Number or time interval of ignored packets of a stream.
Analogous to the sample size, it is also controlled by triggers.

Figure 9.: Sampling Concepts [1]

Sampling techniques can be divided into three components in accordance with granular-
ity, selection scheme and selection trigger in use. Each of these components is divided into
a set of approaches. These techniques and their components are described as [47]:

3.1. Monitoring and Sampling 26

• Granularity - determines the element’s atomicity that is under the sampling process
analysis: in packet-level, packets are qualified as single independent entities; in flow-
level, sampling is applied to packets that belong to a flow or set of flows;

• Selection scheme - represents the function that defines traffic collection and selection.
This function can be deterministic, random or adaptive;

• Selection trigger – identifies temporal and spatial sample limits by count, event or
time-based approach.

Below, content-independent sampling techniques will be presented. These techniques
do not access the packet content for selection and capture decisions. Instead, the sam-
pling triggering process is controlled considering the position or timestamp of the packet
on the stream. Systematic Count-based and Systematic Time-based are governed by de-
terministic functions, while Random n-out-of-N and Random Uniform Probabilistic use
non-deterministic functions [1].

Systematic Count-based
The starting point of a sample and sampling size are operated by the spatial packet posi-

tion (resorting to packet counters) using a deterministic function that results in a periodic
behaviour. Figure 10 illustrates the periodic selection of every 5th packet, with sampling
size of 1 and the interval between samples equal to 4.

Figure 10.: Systematic Count Based [1]

Systematic Time-based
The systematic time-based sampling technique, similarly to the systematic time-based,

also used a deterministic function to rule the sample size and interval between samples.
The difference resides in the type of triggers: in this technique, they are oriented by the
packet arrival time [1]. Figure 11 illustrates a sample size of 100 milliseconds and an
interval between samples of 200 milliseconds.

Figure 11.: Systematic Time Based [1]

3.2. OpenFlow-based Monitoring Solutions 27

Random n-out-of-N
The packet selection is ruled by a random process, being the simplest and widely de-

ployed mechanism the capture of n packets from a sequential stream of N packets (n-out-
of-N). A pseudorandom function generates n numbers (between [1,N]). Then the packets
that have a position equal to one of the random numbers are selected and captured [1]. The
probability p (with p = n/N) is applied for all the N packets to be selected and compose
the sample. In Figure 12, packet is collected from every five incoming packets.

Figure 12.: Random n-out-of-N [1]

Uniform probabilistic
A predefined uniform probabilistic function decides the packet selection to compose a

sample, having all packets the same probability of being selected. An example of a random
uniform probabilistic technique is a count-driven technique with an independent random
variable with distribution of mean 1/p and successive intervals between samples (with
sample size equal to 1 packet) [1].

3.2 openflow-based monitoring solutions

3.2.1 sFlow

ONF is focused not only on the dissemination and development of the OpenFlow standard
on the network industry, as many members of the ONF are major network operators and
manufacturers. Some of these members are shared with the sFlow.org industry consortium
that has similar objectives for the sFlow standard, making its support available in OpenFlow
and non-Openflow switches [48].

sFlow proposes that operations such as monitoring no longer be implemented on the
switch, instead sampled packet headers are sent to a separate component of the control
plane, called monitor, that gets this packet headers, decodes them and aggregates the data
through a traffic analysis application [49].

3.2. OpenFlow-based Monitoring Solutions 28

Figure 13.: sFlow OpenFlow-based SDN Architecture

As it can be noticed on Figure 13, sFlow and OpenFlow work in what can be called a
partnership. It is intended that the controller, using OpenFlow, configures the forwarding
tables in switches and sFlow increases the visibility by providing real-time access into traffic
that flows in the network. Having this type of visibility means that the network can adapt
to changing demands [50] [48]. This represents the use of sFlow when packet forwarding
is controlled by OpenFlow.

One major problem regarding sFlow is that its reports do not include the entire packet,
which can be a problem when more packet information is required. In addition, it only
provides uniform sampling methods [46].

3.2.2 FleXam

FleXam is a per-flow sampling extension for the OpenFlow standard, allowing the controller
to access packet-level information. Its priority is to overcome some problems, which may
arise in the use of the OpenFlow alone. One of these problems is the increase of flow-entries.
From OpenFlow version 1.0 to, for instance, OpenFlow version 1.2, a flow entry went from

3.2. OpenFlow-based Monitoring Solutions 29

a 12-tuple match to OXM based on TLV structures, that allows switches to support a wider
range of header fields (for instance, OpenFlow 1.4 supports 41 different types, where TLV
was also added to ports, tables and queues) [46] [51] [52].

Packets in FleXam can be sampled stochastically, meaning that a predetermined proba-
bility is set, or deterministically, which implies a pattern. This flexibility in sampling is
enhanced by the possibility of the controller to define several rules on the packets, such as
which should be sampled, what part of it should be selected and where they should be sent
[51].

The way FleXam was implemented and how it operates is something to consider. It was
implemented as a patch to Open vSwitch and enables the access to packet-level informa-
tion at the controller where an application should run, allowing the installation of rules,
processing sampled packets and collect information.

This sampling extension, in addition to presenting itself with two sampling techniques, is
considered flexible for some reasons such as providing a stochastic sampling and a general-
ized version of the deterministic sampling. The stochastic sampling consists in the selection
of packets that are included in a flow, with a probability of p. On the other hand, the gen-
eralized version of the deterministic sampling is formulated as selecting m consecutive
packets from each k consecutive packets, ignoring the first d packets.

It was taken in consideration that manipulating full packets was not always necessary and
sometimes it could result in excessive load for the network. Therefore, FleXam allows the
controller to choose what packet sections should be sent [11]. In Figure 14, an explanation
of the action implemented in the Open vSwitch patch, FleXam [10] is provided:

Figure 14.: Implemented Action and its Parameters - FleXam

Analysing FleXam and getting an insight on how it is implemented (Figure 14) allows
a simple and effective perspective on how to include a custom sampling mechanism. A
switch can be parametrized by the controller unit without compromising substantially the
performance or changing the OpenFlow and SDN purpose. The downside of FleXam when
compared to sFlow is that it offers a per-flow sampling, having the advantages linked to it,
but does not have the possibility of per-packet sampling.

3.3. Summary 30

3.3 summary

Monitoring and sampling allows a knowledge of what is happening in a network without
fully analysing it. The advantages of having monitoring enables network operators to detect
which and how resources are being used and thenceforth find the most suitable solution to
enhance their network properties.

There are some existing solutions for this proposed by SDN, being the most known
sFlow, that works through agents collecting data from the elements to be later analysed in a
separate unit. Other solution that drew attention was FleXam, since it provides in a single
function more than one way of sampling data.

4

P R O P O S E D S O L U T I O N

In this chapter all the previously presented elements are taken in consideration and the
most suitable solution for implementing sampling-based monitoring in SDN is chosen. As a
first approach, using what already exists and make it work such as it is intended is, most of
the times, considered and it offers a viable solution. Moreover, a deeper evaluation of how
the network elements interact is presented and conclusions are drawn. The elements that
will take part of the solution are analysed and an implementation proposal is presented.

4.1 design goals

To propose a solution that better explores and fits the SDN architecture some items were
defined as design goals:

• Compatibility with popular software for SDN;

• Efficient and lightweight implementation without compromising the SDN proposal;

• Explore existing solutions of data and control planes and attach monitoring to them
without the need of brand new software;

• Open and standard protocols/software sustention.

4.2 first approach

To implement sampling techniques an operational environment is a must. Mininet is
the network virtualization tool that will be used since it supports the implementation of
OpenFlow-based SDN with the advantage that what will be programed in the controller
can be directly deployed in real world. Since the topology that it’s going to be used does
not consist in many nodes, performance is not an issue to be concerned about [53].

A working topology is a requirement since, with it, it is possible to implement and test
solutions.

31

4.2. First Approach 32

By default, Mininet provides what they call as “minimal” topology, which is composed by
two hosts, connected to an OpenFlow kernel switch, that itself is connected to an OpenFlow
reference controller which is set to behave as an Ethernet learning switch. Furthermore, is
not ready to be easily modified in some aspects such as the used OpenFlow switch or the
controller network operating system.

The OpenFlow version that works in the OpenFlow reference distribution (both the
switch and controller) is 1.0. To work with a different OpenFlow version (newer than 1.0),
the Open vSwitch virtual switch platform must be used. Regarding the controller NOS, the
default topology provides a reference controller that has severally limited functionality.

Under these circumstances, a customized topology, also called parametrized topology,
is needed and Mininet provides the right tools through its Python API. This API allows
flexibility through the configuration of parameters, such as number of hosts or switches and
even performance settings, that after being passed, will lead to the intended configuration.
If the intention is to have a topology configuration not so far from the “minimal” topology,
some options can be used to change configurations such as number of hosts or switches,
so a novel configuration is not required. In this case, with the decided specifications, the
Python API was used to configure a topology accordingly.

The topology developed consists of three hosts, each one connected to a switch. Switches
are interconnected between themselves and to the controller. The hosts have an unique IP
and MAC (Media Access Control) address. All the switches are running Open vSwitch
with version 1.3 and have an uniquely assigned MAC address. This topology is ready to
connect to a remote controller that is running RYU network operating system.

With the elaboration of this parametrized topology, represented in Figure 15, there is
a substantial benefit, which resides in the fact that this code (see Appendix B) can be
reutilized, through changing variable’s values or deleting code lines, in a few minutes a
novel topology with different parameters is build and ready to work. This parametrized
topology can be seen as a skeleton to be used as starting point. To install and deploy this
environment in a computer, an installation guide is provided in Appendix A.

4.3. Interaction Between Elements 33

Figure 15.: Implemented Parametrized Topology

4.3 interaction between elements

The goal is to collect network packets through count or time intervals using the Open-Flow
specification provides. When OpenFlow was created, the main goal was to accelerate the
innovation on production networks, however, without a mechanism to control bandwidth
and delay proved to be a quite difficult task.

The concern of knowing or having control of what happens in the network begun with the
first QoS implementation in OpenFlow 0.8.0, but it was not until version 1.3 that OpenFlow
substantially increased its QoS framework functionality.

After implementing this kind of mechanism there is still work to do in order to sampling
and analysing/characterizing traffic, particularly at packet-level. In this scope, tools such
as FleXam are used, as OpenFlow itself has nothing to provide. In this work, it is intended
to perform packet-level sampling applying an appropriate solution. Here we divide in
two possible approaches the way packet-selection rules can be applied: one from the con-
troller to switch and the other from the switch to the controller. Each strategy/approach is
characterized by where and who controls the rules applied for packet selection.

4.3. Interaction Between Elements 34

4.3.1 Controller to Switch

Here, we assume that it is the controller who is responsible for making sure the sampling
intervals are accomplished and the packet information is stored where it should be. This
means that the controller is responsible for managing the rules of sampling, with the switch
not being aware that a specific selection is being made, because it is the controller who, in
some way, forces that. Succinctly, this means that what we have here is the controller
selecting, for instance, packet x, y and z, and requesting them, instead of having the switch
selecting and sending them. A generic representation is shown in Figure 16.

Figure 16.: Controller to Switch - Minimal Approach

In this context, there were two solutions that appeared to be the best path to be taken:

1. Sending all packets, being them original packets, or copies of the packets, matching
a flow entry, to the controller [13]. In this solution, every packet is forwarded to the
controller, where they are counted. When the counter reaches the intended value, the
packet is collected. If the packet is not supposed to be collected, there are two options,
depending if the packet sent by the switch is the original or a copy. If it is the original
packet, the controller must send a Packet-Out message containing the packet, injecting
the packet in the data plane. In the other hand, if it is a copy of the packet that is
being handled, discarding the packet is the normal procedure.

Problems identified in this solution:

• Accumulated traffic in the controller;

• Possible bottleneck in the controller;

• Possible delays in the packet forwarding to the switch (this is not a problem if
only a copy of the packet is delivered);

• Possible packet-loss between the controller and switch communications;

4.3. Interaction Between Elements 35

• This can be understood as a universal solution since in traditional networks the
same result can be obtained adding a monitor to store packets.

2. Request flow statistics from the switch within a pre-set time interval. In case the statis-
tic’s packet counter is next to the intended value, change the rule to send the packet
to the controller. This solution can fit both time-based and count-based sampling.

In the OpenFlow specifications, statistics can be demanded from a controller. There
are several types of statistics that can be requested such as flow and table statistics.
This exchange of information starts by a request message from the controller, mention-
ing what statistics are wanted, and is followed by a reply from the switch containing
the requested information, implying two interactions to get the statistics.

The idea is having a thread which is launched from the controller, from time to time,
making a flow statistics request to the switch. The flow statistics reply from the
switch includes information such as the number of packets in flow. This value is
the one which the controller should pay attention to as it comes closer to the value
pretended. The procedure behaves as follows: a Flow Modify message would be sent
to the switch, followed by a Packet-In message sent to the controller, so that packets,
matching that flow, are forwarded to the controller. When the packet arrives, it is
collected. After that, another Flow Modify message is sent to the switch and, as the
packets are forwarded normally, counters are reset.

Problems identified in this solution:

• Statistics requests may not match with counter values intended since the com-
munication between requesting statistics and responding to them implies delay.

• To obtain higher accuracy with this solution, a previous knowledge of the net-
work dynamic is essential and, even though it can be obtainable, it does not
guarantee good levels of synchronism.

There could be similar solutions to the ones presented here but all of them rely in the
fact that, to have packet selection/collection, several messages between the controller and
switch communication are involved, which ultimately leads to lack of performance.

4.3.2 Switch to Controller

On the other hand, switch to controller interaction is considered, consisting in applying
rules directly on the switch. In this situation, the role of the controller is only to set the
parameters of sampling required by the application, sending it to the switch, which in turn,
after receive it, will apply it accordingly.

4.4. Proposed Method 36

Since it is the switch the one to apply the parameters, this means that switch will be
responsible by the selection and collection of packets, and responsible to send them auto-
matically to where the controller ordered. It can be to a monitor or to the controller itself.

To summarize, the controller will only fill a rule with parameters to the switch and the
switch will do the whole work and then redirect the outcome. In Figure 17, a graphic
scheme of the interaction is represented.

Figure 17.: Switch to Controller - Minimal Approach

After considering the OpenFlow standard, it comes clear that the option that could pro-
duce a better solution is to implement a sampling mechanism within the OpenFlow itself
by biding the operations on the switch, as presented in this subsection.

4.4 proposed method

The wiser approach for a new solution to control sampling processes in SDN environments
is to create custom actions in the OpenFlow switch to implement the sampling rules. Those
customized actions would be added in the form of patches to the OpenFlow specification,
resembling FleXam’s implementation. Opposing to FleXam’s approach, which unifies some
sampling techniques in a single action, the ideal solution for this work would be that a
single action corresponds to a single sampling technique.

For this patch, the OpenFlow version to be used must be at least version 1.0. The reason
behind this choice is that OpenFlow version 1.0 was considered as the unified version
from which all vendors should start adopting the OpenFlow standard, resulting in a large
software support for version 1.0. If the patch is not implemented in the OpenFlow version
1.0, but instead on a newer version, the concern is what software should be used to provide
support to work with that version.

4.4. Proposed Method 37

The first sampling technique to be implemented (represented in Figure 18) will be a
count-based sampling, where packets will be counted and then sent to the controller for
storage, following selected parameters.

Figure 18.: Switch to Controller - Minimal Approach

OFPAT INTERVALC represents the action name, that includes two parameters: interface
and interval. The interface parameter indicates on which switch interface will the incoming
packets be sampled and interval represents the counting interval in which the packets will
be selected as sample.

Open vSwitch will be the OpenFlow implementation software where the path will be
developed. Since it is largely used by the OpenFlow community, is widely supported from
SDN software, has a solid OpenFlow implementation and there is documentation available
about how it works. Open vSwitch offers the possibility to have a usable and practical
developed patch.

For this implementation, it is intended to add a counter field in the packet code structure,
first in the userspace datapath of Open vSwitch, and then transport it to the kernel module.
With the counting implemented, it is time to implement a rule for all packets not selected
for sampling to be forwarded to the right path. Selected packets should be duplicated
with one copy being sent to the controller for sampling and another copy to be normally
processed and forwarded.

The environment in which this work will be done is virtual. The choice of using Mininet
remains the same has the ones presented in the First Approach section.

An OpenFlow’s switch implementation will be used. A brief approach to what is avail-
able is required as, to make possible the production of results, the most suitable for this
work is too the most used OpenFlow’s switch.

4.4.1 Using Mininet

The Mininet network emulator allows a user to run several networking elements, such as
virtual hosts and switches, using the same Linux kernel. Mininet’s particularity of having
switches supporting Openflow and SDN systems, alongside its popularity, was what raised
interest in using it for this work.

4.4. Proposed Method 38

Regarding OpenFlow-compliant switches, Mininet easily allows any user to work with
three kinds of Openflow switches: the Openflow reference switch, the Open vSwitch and
the ofsoftswitch13.

Open vSwitch is very popular among virtual switches since it can be managed by any
controller, unlike other solutions that include a native controller. Also, it includes a kernel
space module, absent in other switch implementations.

4.4.2 OpenFlow

Due to the numerous iterations in the development of OpenFlow’s standard version the
past years like, for example, seven releases between the years of 2011 and 2013, it’s hard
for network operators and manufacturers to stay in conformity with all those developments.
This resulted in a poor adherence to some versions and a lack of backing by network devices
for supporting those versions. The most used versions of OpenFlow are the 1.0 and the 1.3.
The 1.3 version of OpenFlow raises the scope of functionalities from the previous versions
(notice that version 1.2 was the first released by the ONF) and was targeted to be a base to
the coming versions.

OpenFlow-based solutions were not fully considered to use in this context since sFlow
uses a uniform per-packet sampling and in FleXam, besides supporting both a stochasti-
cally and deterministic sampling, only per-flow sampling is available. In addition, FleXam
implementation is not available for use [46].

To implement the patch in the OpenFlow specification a switch implementation of it must
be chosen to start working on it.

4.4.3 Using Open vSwitch

When choosing the OpenFlow implementation, the possibility of using the LINC switch
was not considered since it uses Erlang, with which there is no coding language familiarity
and does not have the popularity of C, used by most of the switch implementations. All
Openflow reference switch, Open vSwitch and ofsoftswitch13 switch are implemented in
platform-independent C language. However, these three types of switches have a detail that
can make a huge difference, specially in the performance scope. While in the ofsoftswitch13

and OpenFlow reference switch the kernel space datapath is neglected and only validation
of user space is required, the Open vSwitch architecture is more natively kernel space.
Taking this into account, the later seems to be the way to go.

The Open vSwitch source code is available at Git, and can be easily cloned and modified
[32]. It natively supports Netflow and sFlow.

4.4. Proposed Method 39

Besides having integration in Mininet, Open vSwitch has a support team that can be con-
tacted through a mailing list such as Mininet, and being that the same team that manages
both Mininet and Open vSwitch, more knowledge is available. Open vSwitch is also very
open to modifications since it relies on collaborations in order to correct bugs and add new
functionalities. It includes several configurations to build and run code which are described
in the documentation files.

The forwarding Components in Open vSwitch [34] are:

• ovs-switchd (Slow-Path, also known as userspace deamon)

– Responsible for the forwarding logic.

• openvswitch mod.ko (Fast-Path, also known as kernel module)

– Packet manipulation and forwarding.

There are two possibilities, represented in Figure 19, of how the first packet can be han-
dled by Open vSwitch. In one of them the ovs-vswitchd has previously instructed the
datapath how to handle packets of the given type and, in the other case, it has not.

Figure 19.: Open vSwitch Forwarding Components and Operation

4.4. Proposed Method 40

The first case is where the datapath simply follows the OpenFlow actions that were
given by the ovs-vswitchd. These actions, beside giving instructions of where and how the
packet should be transmitted, can also specify packet modifications, sampling (sFlow) or
drop of the packet whenever the datapath receives a packet. If it does not have a previous
instruction on how to operate the packet, the datapath delivers it to the ovs-vswitchd. There,
the handling of the packet is determined, sending it back to the datapath to execute the
instructions of how the packet should be handled [34].

Subsequent handling can be cached in the datapath by ovs-vswitchd command, so the
datapath does not have to always ask the ovs-vswitchd how to handle packets that follow
different actions.

Open vSwitch also includes some tools to manage and retrieve information about the
operation of its components.

Listing of Open vSwitch tools and their functionality:

• ovs-vsctl - is a program primarily used to manage the ovs-vswitchd through its con-
nection to the ovs-server, managing it to perform operations into a database;

• ovs-appctl - is used to change commands at runtime, printing the ovs-vswitchd re-
sponse to it. Alongside ovs-vsctl, it is a tool to manage the ovs-switchd itself;

• ovs-ofctl - with ovs-ofctl one can monitor and administer OpenFlow switches, not just
Open vSwitch;

• ovs-dpctl - this program acts on the Open vSwitch datapath, enabling CRUD (Create,
Read, Update and Delete) operations on it.

An overview of Open vSwitch tools and their relation with userspace and datapath mod-
ules is presented in Figure 20.

4.4. Proposed Method 41

Figure 20.: Open vSwitch Tools and Components Relationship

Some implementation details of Open vSwitch kernel module are presented in this sub-
section.

As mentioned in Chapter 2, Section 2.5.1, when the Open vSwitch architecture is pre-
sented, it stated that the ovs-switchd (userspace datapath) communicates with the kernel
module via the Netlink protocol. The communication between the kernel and userspace is
done by the exchange of commands defined in the kernel in order to execute actions on
packets. When a packet is received, it is viewed by the kernel as a struct vport that im-
mediately searches the flow table using the function ovs flow tbl lookup() for information
(an unique key that identifies the flow) on how to operate the packet, on what is called as
flow-cache. This flow key consists on packet information extracted by the ovs flow extract()
function. This behaviour is executed when the datapath has information about how to han-
dle the packet. When a packet that is not familiar arrives, the procedure changes, such as
mentioned above when describing the Open vSwitch operation. In this situation, there is
no flow cache, so the kernel module will communicate with the userspace using the com-
mands defined in the kernel. The ovs-vswitchd will consult its ovsdb-database, collecting
information on how to handle that packet (which OpenFlow action must be used). It also
sends an execution command so the kernel executes the operation. The kernel module uses

4.4. Proposed Method 42

the do execute actions() function to execute the commands ordered by the datapath, and
forwards packets using the do output() function.

There are some structures that are relevant to the Open vSwitch kernel module. They
are:

• struct sw flow - representation of a flow;

• struct sw flow actions - representation of actions on a flow;

• struct datapath - datapath representation;

• struct vport - representation of ingress and egress ports;

• struct sk buff - representation of all the control information required for the packet
hadling.

Figure 21 illustrates the relevant structures to the Open vSwitch kernel module and
shows how they are linked.

Figure 21.: Open vSwitch Kernel Module Main Data Structures

4.5. Summary 43

4.5 summary

This chapter has discussed ways to support sampling in SDNs. The first approach proposed
to use what is available and wrap a solution that fits it. Since the OpenFlow protocol was
not developed thinking on sampling, most of the solutions on top of it would be working
with either low performance or accuracy, or both.

To face this challenge, the perspective of adding something to this protocol to make it
work under these rules was shown up and followed. To do so, the use of Mininet testbed
and Open vSwitch will be indispensable, being here discussed.

5

C O N C L U S I O N S A N D F U T U R E W O R K

This chapter contains a reflexion of the developed work and a prospect for what can be done
to fully test the proposal for applying packet sampling techniques in an SDN architecture.

5.1 summary

One of the most important aspects of the SDN architecture is to favour the introduction
of new concepts and its high programmability. This ability to facilitate the changes in
operations is mainly due to the separation between the control and data layer, allowing a
single control on several data elements in the network.

Monitoring and sampling are essential tasks to perform in any system, and a system that
works under an SDN concept is no different. While taking advantage of SDN features, the
goal is to introduce sampling techniques that will allow to monitor the network. The data
layer SDN protocol OpenFlow focus solely on the task of forwarding packets meaning that
no concerns about monitoring the state of the network were taken into account when this
protocol was designed. However, there are some tools based on this protocol to perform
this kind of tasks, being the most known sFlow.

To have SDN working on a network, a control module is mandatory, so the rules can be
sent to the data plane to be applied. In Chapter 2 a brief analysis of NOS was carried out.

A new proposal of development emerged after realizing that none of the existing tools
executes monitoring tasks as intended. To begin, an approach based on not changing
any of the network elements standard operations was made. However, this solution was
considered invalid given that the performance decrease would not allow the solution to
work on a real network environment.

Finding a solution on what to do to avoid this problem required a deconstruction of how
the elements operate, and, by doing it on Chapter 4, the conclusion was that, for benefit of
the solution, sampling operations had to use the data layer.

As previously said, the solution to be developed must consider that OpenFlow has lim-
ited resources when it comes to monitoring tasks, including sampling.

44

5.2. Prospect for Future Work 45

Throughout the use of SDN network emulator Mininet and, the OpenFlow implementa-
tion, Open vSwitch, both ensuring high programmability of features, this work proposes
the implementation of a patch to the OpenFlow protocol that enables the sampling of pack-
ets, beginning by doing it so in a per-packet count-based sampling method.

5.2 prospect for future work

The future work required for the proposed solution consists on the development, imple-
mentation and testing of sampling methods. A model of how the first sampling method
can be built is presented on Chapter 4. To make a first functional patch the following steps
are recommended:

1. Implement the sampling action on the Open vSwitch userspace datapath;

2. Test its functionality through the DPCTL tool that monitors and administrates Open-
Flow datapaths;

3. To have it working on a real network environment, add a patch to a NOS.

5.3 final considerations

The goal of implementing flexible network measurements resorting to packet sampling
and monitoring can be obtained by manipulating the OpenFlow configuration, since it is
not prepared to provide flexible solutions for monitoring operations. To implement these
changes, a lookup to all the elements in an SDN architecture is essential.

After analysing those elements, the conclusion of focusing on the data plane, more specif-
ically on the switch capacity to handle packets immediately, provides an opportunity to
process operations at working time. At the same time, it does not require more processing
capacity or delegate too many functionalities to the switch.

Using other solutions, such as sFlow, can be considered since it provides a good solution
to monitor SDN networks with an agent-based solution. If different methods for packet
sampling are required, a change in the OpenFlow switch implementation is the key to
achieve a solution that has the capability to be viable.

The conceptual background presented on this work provides the basis for the develop-
ment and practical experiment required to test this solution.

B I B L I O G R A P H Y

[1] J. M. C. Silva, “A modular traffic sampling architecture for flexible network measure-
ments,” Doctoral thesis, Universidade do Minho, Braga, Portugal, 2015.

[2] H. Kim and N. Feamster, “Improving network management with software defined
networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[3] Open Networking Foundation, “Software-Defined Networking: The New Norm for
Networks,” ONF White Paper, pp. 1–12, 2012.

[4] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,
M. Miller, and N. Rao, “Are we ready for SDN? Implementation challenges for
software-defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43,
2013.

[5] N. Duffield, “Sampling for passive internet measurement: A review,” Statistical Science,
vol. 19, no. 3, pp. 472–498, 2004.

[6] T. H. T. Zseby and B. Claise, “Packet sampling for flow accounting: Challenges and
limitations,” Lecture Notes in Computer Science, vol. vol. 4979, p. 61–71, 2008.

[7] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive Resource Man-
agement and Control in Software Defined Networks,” IEEE Transactions on Network and
Service Management, vol. 12, no. 1, pp. 18–33, 2015.

[8] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level reactive
network control,” ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 43–48.
[Online]. Available: http://doi.acm.org/10.1145/2342441.2342451

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker, “Frenetic: A network programming language,” ser. ICFP
’11. New York, NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034812

[10] N. Telegraph and T. Corporation, “Ryu network operating system,”
https://osrg.github.io/ryu/, 2016.

[11] M. McCauley, “Pox,” https://github.com/noxrepo/pox, 2016.

46

http://doi.acm.org/10.1145/2342441.2342451
http://doi.acm.org/10.1145/2034773.2034812

Bibliography 47

[12] D. Erickson, “The beacon openflow controller,” Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined Networking, pp. 13–18, 2013.

[13] N. McKeown, “OpenFlow: Enabling Innovation in Campus Networks,” 2008. [Online].
Available: http://archive.openflow.org/documents/openflow-wp-latest.pdf

[14] A. Doria, J. H. Salim, R. Haas, W. Wang, L. Dong, and R. Gopal, “Forwarding and
control element separation (forces) protocol specification,” Tech. Rep., 2010.

[15] J. Halpern and J. H. Salim, “Software-Defined Networking : Experimenting with the
control to forwarding plane interface Extending the OpenFlow protocol with ForCES
concepts .” 2012 European Workshop on Software Defined Networking, pp. 91–96, 2012.

[16] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, S. Uhlig,
D. Kreutz, and F. Ramos, “Software-Defined Networking: A Comprehensive Survey,”
pp. 1–61.

[17] I. Kovačević, “FoRCES protocol as a solution for interaction of control and forwarding
planes in distributed routers ,” 2009.

[18] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using openflow: A
survey,” Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 493–512, 2014.

[19] B. N. Astuto, M. Mendonça, X. N. Nguyen, K. Obraczka, and T. Turletti, “A Survey of
Software-Defined Networking: Past, Present, and Future of Programmable Networks,”
Communications Surveys and Tutorials, IEEE Communications Society, vol. 16, no. 3, pp.
1617 – 1634, 2014, accepted in IEEE Communications Surveys & Tutorials.

[20] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin, “Analysis of Comparisons between
OpenFlow and ForCES,” Internet Engineering Task Force, December 2011.

[21] E. Haleplidis, S. Denazis, O. Koufopavlou, D. Lopez, D. Joachimpillai, J. Martin, J. H.
Salim, and K. Pentikousis, “ForCES applicability to SDN-enhanced NFV,” in Third
European Workshop on Software Defined Networks, 2014, p. 6.

[22] E. Haleplidis, S. G. Denazis, O. G. Koufopavlou, J. H. Salim, and J. M. Halpern,
“Software-defined networking: Experimenting with the control to forwarding plane
interface.” in EWSDN. IEEE Computer Society, 2012, pp. 91–96.

[23] B. Heller, “OpenFlow Switch Specification v1.0.0,” Current, vol. 0, pp. 1–36, 2009.

[24] K. Blaiech, S. Hamadi, P. Valtchev, O. Cherkaoui, and A. Beliveau, “Toward a semantic-
based packet forwarding model for openflow,” in Network Softwarization (NetSoft), 2015
1st IEEE Conference on. IEEE, 2015, pp. 1–6.

http://archive.openflow.org/documents/openflow-wp-latest.pdf

Bibliography 48

[25] B. Heller, “OpenFlow Switch Specification v1.1.0,” Current, vol. 0, pp. 1–36, 2011.

[26] ——, “OpenFlow Switch Specification v1.2,” Current, vol. 0, pp. 1–36, 2011.

[27] B. Pfaff, B. Lantz, B. Heller, C. Barker, D. Cohn, D. Talayco, D. Erickson, E. Crabbe,
G. Gibb, G. Appenzeller, J. Tourrilhes, J. Pettit, K. Yap, L. Poutievski, M. Casado,
M. Takahashi, M. Kobayashi, N. McKeown, P. Balland, R. Ramanathan, R. Price,
R. Sherwood, S. Das, T. Yabe, Y. Yiakoumis, and Z. L. Kis, “OpenFlow Switch Spec-
ification v1.3.0,” vol. 0, pp. 0–105, 2012.

[28] Open Networking Foundation, “OpenFlow Switch Specification v1.4.0,” vol. 0, pp. 1–
206, 2013.

[29] O. N. Foundation, “OpenFlow Switch Specification v1.5.0,” Current, vol. 0, pp. 1–36,
2014.

[30] O. W. G. S. University, “Openflow switching reference.” git clone
git://gitosis.stanford.edu/openflow.git.

[31] I. . FlowForwarding, “Linc,” https://github.com/FlowForwarding/LINC-Switch, 2016.

[32] Openvswitch, “Open vswitch,” https://github.com/openvswitch/ovs.

[33] “Open vswitch.” http://openvswitch.org/.

[34] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design and implementation of
open vswitch,” Proceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation, pp. 117–130, 2015.

[35] CPqD, “Openflow 1.3 software switch,” http://cpqd.github.io/ofsoftswitch13/, 2016.

[36] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “Ofswitch13: Enhancing ns-3 with
openflow 1.3 support,” Proceedings of the Workshop on Ns-3, pp. 33–40, 2016.

[37] N. at Politecnico di Torino (Italy), “The netbee library.” http://www.nbee.org/doku.php,
2016.

[38] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based comparison and
selection of software defined networking (sdn) controllers,” in Computer Applications
and Information Systems (WCCAIS), 2014 World Congress on. IEEE, 2014, pp. 1–7.

[39] P. Floodlight, “Floodlight. a java-based openflow controller,”
http://www.projectfloodlight.org/, 2016.

Bibliography 49

[40] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks,” pp. 19:1–19:6, 2010.

[41] K. Kaur, J. Singh, and S. Ghumman, “Mininet as software defined networking test-
ing platform,” International Conference on Communication, Computing and Systems (IC-
CCS–2014), 2014.

[42] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothenberg, “Mininet-
wifi: Emulating software-defined wireless networks,” 2015 11th International Conference
on Network and Service Management (CNSM), pp. 384–389, 2015.

[43] N. S. 3, “ns-3 network simulator,” http://www.nsnam.org, 2016.

[44] ——, “Gsoc 2010 openflow,” https://www.nsnam.org/wiki/GSOC2010OpenFlow, 2016.

[45] R. Hand, M. Ton, and E. Keller, “Active security,” Proceedings of the Twelfth ACM Work-
shop on Hot Topics in Networks, no. Section 2, p. 17, 2013.

[46] S. Shirali-Shahreza and Y. Ganjali, “Efficient Implementation of Security Applications
in OpenFlow Controller with FleXam,” in 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects. IEEE, aug 2013, pp. 49–54.

[47] S. R. L. João Marco C. Silva, Paulo Carvalho, “Inside packet sampling techniques:
exploring modularity to enhance network measurements,” 29 March 2016.

[48] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, “Com-
bining OpenFlow and sFlow for an effective and scalable anomaly detection and mit-
igation mechanism on SDN environments,” Computer Networks, vol. 62, pp. 122–136,
2014.

[49] P. Phaal, “Software defined networking,” http://blog.sflow.com/2012/05/software-defined-
networking.html, 2012.

[50] ——, “Openflow and sflow,” http://blog.sflow.com/2011/05/openflow-and-sflow.html, 2011.

[51] S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible Sampling Extension for Monitor-
ing and Security Applications in OpenFlow,” Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking - HotSDN ’13, p. 167, 2013.

[52] ——, “Traffic statistics collection with FleXam,” Proceedings of the 2014 ACM conference
on SIGCOMM - SIGCOMM ’14, pp. 117–118, 2014.

[53] A. L. Valdivieso Caraguay, L. I. Barona Lopez, and L. J. Garcia Villalba, “Evolution and
Challenges of Software Defined Networking,” in 2013 IEEE SDN for Future Networks
and Services (SDN4FNS). IEEE, nov 2013, pp. 1–7.

A
I N T R O D U C T O RY G U I D E T O M I N I N E T, RY U A N D O P E N V S W I T C H

An introductory guide on how to install and manage Mininet, RUY and Open vSwitch
is presented, aiming at providing an easy and fast way to start working in this network
environment.

50

Introductory guide to Mininet, Ryu and Open vSwitch

This guide was created to everyone interested to work with Software Defined
Networking, using the network virtualization software Mininet and Open vSwitch
virtual switches, with RYU Network Operating System running on the controller.
Even for other Network Operating System, some topics may be suitable.
It is assumed that users are familiarized with computer programming and Linux
Operating Systems. However, some unfamiliar aspects for a regular user may be
highlighted.

Used Setup

Host:

Operating System: OS X

Mininet:

Network Virtualization: Mininet VM
Virtualization Software: Oracle VM VirtualBox

Installation Options

To start using Mininet on your machine you have three options:

➔ Mininet Virtual Machine Installation

It is recommended to choose this option mainly if you are starting from zero,

since it gives you an already set machine, with a functional installation which
probably just needs an upgrade to fulfill specific needs. For virtualization software,
Oracle VM VirtualBox or VMware Workstation Player should equally serve the
purpose. In this guide VirtualBox setup is used.

➔ Native Installation

If you decide to natively install Mininet, we recommend to do it on one of the

more recent Ubuntu releases, specially because of support of the Open vSwitch
newer versions.

● Native Installation from Source
● Installation from packages

Be aware that this installation may give you an older version of Mininet. You will
have to install additional software like the Wireshark dissector.

Setting VirtualBox:

If your computer does not support Virtualization like VT-x (for Intel processors) or
AMD-V (for AMD), you will not be able to install a 64-bits VM, even if your processor
supports VT-d. To enable Virtualization you must boot to the BIOS and go to
Advanced/Security tab.

CONNECT TO Virtual Machine (VM):

To connect via SSH you should choose the VM, go to Settings, Network Tab and
attach to Host-only Adapter.

If you don’t have any, you should go to VirtualBox ​Preferences​, ​Network ​ tab,
Host-only Networks ​ and add an adapter in “​+​”.

You should now turn on the VM, insert the user credentials and retrieve the
machine’s IP address of the eth0 interface. The IP is identified as “inet addr”.

Open your computer’s terminal and connect to the VM by SSH.

ssh -X [-Y] <username>@<IPaddress>

By connecting through SSH we also want to enable X11 forwarding so one can use
a graphical client through the session (specially when using Wireshark).
The ​-X​ option means that the remote machine is not trustable, so if your command
violates some security settings, an error is received. On the other hand, using ​-Y​ will
mean you trust the remote machine, resulting on security settings not being checked.
In this case the VM is running locally, and we can assume that the additional

precautions of ​-X​ are unnecessary. Using ​-Y​ implies no authentication timeout by
default.

CHECK VERSIONS:

Before working with Mininet or installing any new software, I advise checking the
current version of, Open vSwitch and Python. The reason why checking the Open
vSwitch version can be important is that if you specifically want to use an OpenFlow
version after 1.0.0, there is a possibility that the current Open vSwitch installation
does not support it fully, so probably you need to update this package. Python
should be checked because there were some changes to the code semantics
between versions and to develop recent software, a recent Python version, such as
Python3, should be used.

ovs-vswitchd --version

python --version

INSTALLING ADDITIONAL SOFTWARE:

Additional software may be required and before doing anything, one must update the
system with:

sudo apt-get update

After that, and specially if you are using Python-related applications, it is advisable to
install pip, which is the Python packet management system useful to install and
manage software packages.

sudo apt-get install python-pip

The Mininet Virtual Machine does not provide any graphical environment for
deployment. To avoid using terminal text editors like Nano or Vim, install gedit that is
a versatile text editor.

sudo apt-get install gedit

GRAPHICAL INTERFACE:

Some software that require a graphic interface can be installed but for that to work,
support of the X Window System is mandatory. If you are using OS X, XQuartz must
be installed so your ssh session support X11. Note that some versions of XQuartz do
not provide support for high-resolution Retina displays. Those will run in pixel-double
mode.

UPDATE OPEN vSWITCH:

To update the existing installation of Open vSwitch you must do this 4 steps:

● Remove old packages;

● Download and unpack OpenVSwitch;

● Build Debian packages and install;

● Runs the unit tests.

INSTALL RYU:

To install Ryu Network Operating System, you can either use pip (if you have it
installed, if not, see the instructions above), or clone it from git.

From pip:
pip install ryu

From git:

% git clone git://github.com/osrg/ryu.git

% cd ryu; python ./setup.py install
cd ryu

git pull

Customization of the network topology in Mininet:

Mininet provides what is called “minimal” topology (used has ​mn​ CLI) that consists of
one OpenFlow reference controller and OpenFlow kernel switch connected to two
hosts. There are some details that can be changed through the addition of some
parameters like ​--topo​ or ​--controller​ that extend the ​mn​ command. If a major
change is to be done, the ​--custom​ option can be used to invoke Python scripts that
use the Mininet Python API to use a full customized topology. This, besides letting
the user set the number of hosts and switches, makes it easier to implement starting
configurations on them specially in the case of using a specific OpenFlow version,
where all elements have to be configured.

B
P Y T H O N C O D E T O C R E AT E C U S T O M T O P O L O G Y I N M I N I N E T

Python script that builds the parametrized topology in Mininet.

Python script to create a network topology

Three directly connected switches plus a host for each switch:

#

switch1 --- switch2 --- switch3

| | |

| | |

host1 host2 host3

#

from mininet.topo import Topo

from mininet.net import Mininet

from mininet.log import setLogLevel

from mininet.cli import CLI

from mininet.node import RemoteController , OVSSwitch

from functools import partial

from mininet.util import dumpNodeConnections

class MyTopo(Topo):

def __init__(self , ** params):

Initialize topology

Topo.__init__(self , ** params)

Add hosts and switches

leftHost = self.addHost(’h1’)

middleHost = self.addHost(’h2’)

rightHost = self.addHost(’h3’)

leftSwitch = self.addSwitch(’s1’)

middleSwitch = self.addSwitch(’s2’)

rightSwitch = self.addSwitch(’s3’)

Add links

self.addLink(leftHost , leftSwitch)

self.addLink(middleHost , middleSwitch)

57

58

self.addLink(rightHost , rightSwitch)

self.addLink(leftSwitch , middleSwitch)

self.addLink(middleSwitch , rightSwitch)

def setup():

Topo = MyTopo ()

Using Open vSwitch and OpenFlow 1.3

Switch = partial(OVSSwitch , protocols=’OpenFlow13 ’)

#controller

net = Mininet(topo=Topo , switch=Switch , controller=RemoteController)

Setting up hosts

net[’h1’]. setIP(’10.0.1.1/24 ’)

net[’h1’]. setMAC(’00:00:00:00:01:01 ’)

net[’h1’].cmd(’route add default gw 10.0.1.100 ’)

net[’h2’]. setIP(’10.0.1.2/24 ’)

net[’h2’]. setMAC(’00:00:00:00:01:02 ’)

net[’h2’].cmd(’route add default gw 10.0.1.100 ’)

net[’h3’]. setIP(’10.0.1.3/24 ’)

net[’h3’]. setMAC(’00:00:00:00:01:03 ’)

net[’h3’].cmd(’route add default gw 10.0.2.100 ’)

Setting up switches

net[’s1’].cmd(’ifconfig s1 -eth1 hw ether 00:00:00:11:11:01 ’)

net[’s1’].cmd(’ifconfig s1 -eth2 hw ether 00:00:00:11:11:02 ’)

net[’s2’].cmd(’ifconfig s2 -eth1 hw ether 00:00:00:22:22:01 ’)

net[’s2’].cmd(’ifconfig s2 -eth2 hw ether 00:00:00:22:22:02 ’)

net[’s2’].cmd(’ifconfig s2 -eth3 hw ether 00:00:00:22:22:03 ’)

net[’s3’].cmd(’ifconfig s3 -eth1 hw ether 00:00:00:33:33:01 ’)

net[’s3’].cmd(’ifconfig s3 -eth2 hw ether 00:00:00:33:33:02 ’)

net.start()

print "Dumping host connections"

dumpNodeConnections(net.hosts)

print "Testing network connectivity"

net.pingAll ()

CLI(net)

net.stop()

if __name__ == ’__main__ ’:

Printing useful information

setLogLevel(’info’)

setup()

mytopo.py

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Research Methodology
	1.3 Document Layout

	2 State of the Art
	2.1 General Concepts
	2.2 SDN Architecture
	2.3 FORwarding & Control Element Separation
	2.4 OpenFlow
	2.4.1 OpenFlow Specification
	2.4.2 OpenFlow Versions Overview

	2.5 OpenFlow Switch Implementation
	2.5.1 Open vSwitch
	2.5.2 ofsoftswitch13

	2.6 Network Operating System
	2.6.1 Network Operating Systems Overview

	2.7 Network Virtualization and Mininet
	2.8 Scalability and Security Issues
	2.9 Summary

	3 Monitoring using Software Defined Networking
	3.1 Monitoring and Sampling
	3.2 OpenFlow-based Monitoring Solutions
	3.2.1 sFlow
	3.2.2 FleXam

	3.3 Summary

	4 Proposed Solution
	4.1 Design Goals
	4.2 First Approach
	4.3 Interaction Between Elements
	4.3.1 Controller to Switch
	4.3.2 Switch to Controller

	4.4 Proposed Method
	4.4.1 Using Mininet
	4.4.2 OpenFlow
	4.4.3 Using Open vSwitch

	4.5 Summary

	5 Conclusions and Future Work
	5.1 Summary
	5.2 Prospect for Future Work
	5.3 Final Considerations

	Bibliography
	Appendix
	A Introductory Guide to Mininet, RYU and Open vSwitch
	B Python Code to Create Custom Topology in Mininet

