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ARTICLE INFO ABSTRACT

Traffic noise affects greatly health and well-being of people, consequently the knowledge and control of the
factors affecting it is very important. In this study models to predict tyre-pavement noise acoustic and psy-
choacoustic indicators based on type of pavement, texture, pavement distresses and speed were developed and
used to assess the importance of each factor. By applying data mining techniques, in particular artificial neural
networks and support vector machines, models with good predictive capacity of both acoustic and psychoa-
coustic noise indicators were obtained, constituting a precious tool to reduce the tyre-pavement noise. Moreover,
the proposed models allowed for the assessment of the influence of the input parameters controlling noise such
as: type of pavement, texture, speed and pavement distresses for the first time. It was found that pavement
distresses and, as expected, speed influence strongly tyre-pavement noise. In this way it is clearly shown that
preventive maintenance of road pavements by authorities, which eliminates distresses, can have an important
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effect on tyre-road noise, promoting the well-being of the populations.

1. Introduction

The high population growth rate in urban and metropolitan areas
has led to an exponential increase in car traffic in these areas leading to
a substantial increase in noise. This noise is a major concern for po-
pulations given its negative impact on their health. Traffic noise may
affect the mental health and sleep quality [1-3]. In addition, it is a risk
factor for hearing, cardiovascular diseases and diabetes [4-7]. Taking
into account these concerns of the populations the car manufacturers
have been reducing the noise of the motors to very low levels, becoming
more significant the noise caused by the tyre. Therefore, it is very im-
portant to study the tyre-pavement noise.

The tyre-pavement noise is influenced by a number of factors,
namely driver behaviour, tyre characteristics, pavement surface char-
acteristics and climate [8]. The speed of the vehicle has a strong in-
fluence on annoyance regardless the type of pavement, as well as the
traffic composition, where higher densities correspond to higher an-
noyance rates [9]. However, with successive vehicle pass-bys and cli-
matic variations, after a certain period of time, road pavements start to
develop different types of distresses or pathologies, such as cracks and
alligator cracking, rutting, potholes, ravelling, among others [10].

In the period of use up to the development of the first distresses, the
tyre/road noise increases with different rates depending on the
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pavement type. Some studies report very important increases of noise
levels in the first years of use [11,12] caused by the wearing of the tyres
that removes the asphalt film from the aggregates, changes in texture,
clogging and stiffness.

Although the surface characteristics are considered one of the in-
fluent factors in tyre-pavement noise, there are no studies relating the
existing pathologies on the surface with tyre-pavement noise.

The existing pathological conditions on the surface of the pavement,
besides causing discomfort to the drivers and increasing accident risk,
appear to influence road traffic noise due to the perceptible in-
tensification of tyre vibrations, which is expected to increase the au-
ditive discomfort of road users. In order to demonstrate what is cur-
rently perceived by road users, a detailed acoustic study of distressed
pavements is essential, therefore psychoacoustic indicators should be
considered. There are three key factors associated with this type of
studies: type of pavement, traffic speed and level of pavement distress.
In this context, the aim of this study was to develop a tyre-pavement
noise prediction model, with the traffic speed, the type of pavement and
the existing pathological conditions on the pavement surface as inputs
and as outputs the equivalent sound pressure level in decibels (dB)
(Leg), A-weighted equivalent mean sound pressure level (Laeq) and the
A-weighted maximum sound pressure level (Laq,) and also the psy-
choacoustic indicators such as Loudness, Roughness and Sharpness. In
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addition, it was intended to evaluate the influence of pavement dis-
tresses in the traffic noise.

For this purpose, data mining (DM) techniques were used. DM is a
step of Knowledge Discovery in Databases (KDD) aiming at the ex-
traction of useful patterns from observed data. The KDD process can be
resumed in five main steps: data selection, pre-processing, transfor-
mation, DM and interpretation [13]. There are several DM algorithms.
Artificial Neural Network (ANN), Support Vector Machines (SVM) and
Multiple Regressions (MR) were used in this study.

2. Literature review

Early models of traffic noise prediction appeared in the 1950s [14].
Since then many models have been developed. Also, in the last few
years there has been interest in developing predictive tyre-road contact
noise models. As this article is focused on the application of data mining
techniques to assess the influence of distresses on tyre-road noise, only
the models related with these techniques will be treated here. Readers
are encouraged to consult Refs. [14-17] that constitute a relevant
contribution to the literature review. Most of the models presented in
the literature are based on linear relationships between the considered
parameters. Therefore, these models fail to capture the complex re-
lationships between the involved parameters. Hence, the development
of models based on data mining techniques.

Cammarata et al. [18] proposed an instrument for modelling and
filtering urban noise by using neural networks. They used a learning
vector quantization (LVQ) network as a filter of wrong measurements
before the use of a backpropagation network (BPN) for the prediction of
the sound pressure level, L.,. They adopted as input parameters the
number of cars, the number of motorcycles, the number of trucks, the
average height of the buildings facing the road, and the width of the
road. The results were compared with classical solutions to noise pre-
diction and validated using data belonging to several medium and
small-size towns. They point out the versatility of the BPN and its good
capacity to predict the sound pressure level.

Nedic et al. [19] applied artificial neural networks for the prediction
of traffic noise descriptor, L. The number of light motor vehicles, the
number of medium trucks, the number of heavy trucks, the number of
buses and the average traffic flow speed were the input variables. It was
shown that the artificial neural networks can be a useful tool for the
prediction of noise with sufficient accuracy and that ANN model has
much better capabilities to predict traffic noise level than any other
statistical methods.

Kumar et al. [20] developed an ANN model to predict the highway
noise descriptors, 10 Percentile exceeded sound level (L;o) and
equivalent sound level (L.q). The model input parameters are total ve-
hicle volume/hour, percentage of heavy vehicles and average vehicle
speed. Results obtained with ANN approach were compared with re-
gression analysis and with the field measurement. They concluded that
ANN approach is better than regression analysis and constitutes a
powerful technique for traffic noise modelling.

Garg et al. [21] developed two ANN models to predict equivalent
continuous sound level (Laeq) and 10 Percentile exceeded sound level
(L10) generated due to traffic noise. Eight input parameters, denomi-
nated number of two-wheelers, three-wheelers, cars, medium com-
mercial vehicles, buses, trucks, average speed of heavy vehicles, and
average speed of light vehicles were considered. The conclusions in-
dicated that proposed models are able to produce accurate predictions
of hourly sound levels in the urban environment.

Singh et al. [22] developed models to predict the equivalent sound
level, L., based on soft computing methods, namely, Generalized
Linear Model, Decision Trees, Random Forests and Neural Networks.
The input variables include the traffic volume per hour, percentage of
heavy vehicles and average speed of vehicles. The Random Forest
model gave the best results and the potential of using this method for
traffic noise with accuracy and stability is highlighted by the authors.

148

Applied Acoustics 138 (2018) 147-155

Hamad et al. [23] employed artificial neural network technique to
model L4 in a city with known hot climate, namely Sharjah City in
United Arab Emirates. They used the following inputs: Distance from
the edge of the road in meters, hourly light-vehicle volume, hourly
heavy-vehicle volume, average speed in km/h and roadway tempera-
ture. They ran several ANN models and compared the best-performing
ANN models with two conventional models. In general, results showed
that ANN models outperformed the conventional models.

Bravo et al. [24] presented a methodology, which allows to train an
ANN model properly, in order to predict the willingness to pay (WPT)
range to reduce road traffic noise annoyance within a given population.
They performed a socio acoustic survey that collects the WTP of the
respondents and adopted as input variables characteristics such as en-
vironmental noise perception of the respondents, modelled day-night
noise exposure level (LDN) at the facade of their dwellings, and the
respondents’ demographic and socioeconomic status. The developed
model predicts, with precision and accuracy, a range for willingness to
pay from subjective assessments of noise, a modelled noise exposure
level, and both demographic and socio-economic conditions.

From real-time acoustic analysis of tyre/road noise, Alonso et al.
[25] proposed an asphalt status (dry/wet) classification system using
support vector machines. They reported very high success rates. Freitas
et al. [17] modelled tyre-road noise measured by the close proximity
method (CPX) with Speed, Temperature, Aggregate size, Mean Profile
Depth and Damping at 800 Hz and 2000 Hz as inputs. The support
vector machine and artificial neural network algorithms showed high
quality predictive performances.

Masino et al. [26] applied support vector machines to predict dif-
ferent types of road surfaces from tyre noise. Their approach took
multiple features based on the power spectral density (PSD) of time
series data of the tyre cavity sound under vehicle operation as input.
Tests of the classifier revealed an accuracy above 90%.

3. Materials and methods
3.1. Road stretches

A total of 21 road stretches with different distresses, inserted in 6
national roads, were selected: 6 stretches in thin Gap Graded Asphalt
(GGA), 8 stretches in Asphalt Concrete (AC) and 7 stretches in Gap
Graded Asphalt Rubber (CGAR). The distresses chosen were the alli-
gator cracking (high severity), cracking (medium severity) and ravel-
ling, shown in Figs. 1-3, which are typical of urban areas. Also, a
stretch of each pavement without distresses was considered for re-
ference. In Table 1 are presented all the combinations used. At least two
pass-bys were done in each stretch over each distress. The sounds re-
gistered by both microphones were included in the analysis.

“

Fig. 1. Example of pavement with alligator cracking.
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Fig. 3. Example of pavement with ravelling.

Table 1
Selected pavements and respective distresses.
Pavement type Road Distress
Alligator Cracking Ravelling Without
cracking distress
EN207-4 X X
AC EN105 X X X
EN206 (1) X X
EN206 (2) x
EN14 (1) X X
GGAR EN14 (2) X
EN103 (1) X X
EN103 (2) x X
EN310 (1) x X
GGA EN310 (2) x
EN310 (3) X X X

3.2. Data acquisition

The method used to acquire tyre-pavement noise was the Close
Proximity Method (CPX) described in ISO 11819-2: 2000: “Acoustics —
Measurement of the influence of road surfaces on traffic noise — Part 2:
Close Proximity Method”. For the acquisition of the noise generated by
the tyre-pavement interaction, two Free-field 2 Type 4190 micro-
phones were connected to the Pulse Type 3560-C portable platform
using cables AO-0419, all from Briiel & Kjeer. The Pulse platform was
powered by a portable battery, and connected through a network cable
to a laptop computer. The tests were done with a Continental
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Fig. 4. Microphones mounted in the test tyre.

ContiEcoContact3 195/65-R15 tyre applied to a light vehicle to re-
present normal road traffic noise. The arrangement of the microphones
is shown in Fig. 4. As only two microphones were used, they were
placed on the side of the tyre in a 45° orientation, 0.20 m away from the
tyre and its centre, and 0.10m from the pavement surface. The mi-
crophones were connected to the Pulse platform, which in turn was
connected to the portable computer with which sound acquisition was
controlled through Briiel & Kjer's Labshop 14.1.1 software.

The macrotexture is defined by the deviation of a pavement surface
from a true planar surface with the characteristic dimensions along the
surface of 0.5mm to 50 mm. The macrotexture was also measured on
the wheel path in each stretch with a High Speed Profilometer.

3.3. Sound files manipulation

The measured noise by the CPX method was recorded and partially
processed in the Labshop software, where the sound pressure level in dB
(A) and dB was obtained in addition to waveform sound files. These
files were listened to and analysed. The extraction of the 5-s excerpts
was followed through the Audacity program. With sound files of equal
size, it was possible to extract the acoustic indicators, such as equiva-
lent and maximum sound pressure levels, and psychoacoustic indicators
such as Loudness, Sharpness and Roughness, thus allowing a more de-
tailed analysis of the sound. The indicators were extracted using the
Psysound3 application executed in the Matlab software 7.13.0.564.

3.4. Data base

For the application of the DM techniques a database with 204 re-
cords was built, in which the variables were the type of pavement (AC,
GGA and GGRA), existing pathologies (without distress, cracking, alli-
gator cracking and ravelling), the texture, speed and acoustic and
psychoacoustic indicators, taken from the PsySound3 application.

The input parameters were type of pavement, pathologies, texture
and speed. The type of pavement and pathologies were labelled as ca-
tegorical variables. The first with 3 categories, each one designating the
type of pavement, - AC, GGA and GGRA -; and the second with 4
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categories - without distress, cracking, alligator cracking and ravelling.
The sound generated by the contact of the tyre with the distressed
surface was measured over the distress and the duration of the mea-
surement was fixed. In this way each degradation was isolated and the
time of contact with road users was exactly the same, which is essential
for the consistency of the dependent variables. Therefore, it was not
possible to treat pathologies as numerical variable. Other approaches
could be done, for example the length or area of each distress could be
considered. In such a case, long segments of the road which would
include distressed and not distressed parts should be used. In these
conditions, the inference of the effect of each distress on noise would be
much more complex, perhaps impossible, even with a big data base.

The texture of the surface of the pavement can be described by
several texture descriptors. The Mean Profile Depth (MPD), described in
EN ISO 13473-1, used to describe macrotexture, recognized as an im-
portant factor on noise generation and, therefore, included in several
tyre-road noise models was selected to characterize the texture. This
variable as well as speed are numerical variables. Since these variables
have close orders of magnitude they were not normalized.

The output parameters were the acoustic indicators equivalent
sound pressure level in decibels (dB) (L), A-weighted equivalent mean
sound pressure level (Ls.,) and the A-weighted maximum sound pres-
sure level (Lamax). Psychoacoustic indicators such as Loudness,
Roughness and Sharpness were also used. These indicators were all
extracted from the CPX sound files that were acquired close to the car
wheel. It must be emphasised that only one output parameter per
analysis was used. Since psychoacoustic indicators are not generally
used in predicting models, a brief definition of these parameters is given
below.

Loudness is the attribute of auditory sensation in terms of which
sounds may be ordered on a scale extending from soft to loud. The
‘loudness level’ of a sound is defined as the sound pressure level of a
1 kHz tone in a plane wave and frontal incident that is as loud as the
sound; its unit is “phon”. The sone scale is based on the observation that
a 10 phon increase in a sound level is most often perceived as a dou-
bling of loudness. Sharpness is a measure of the high frequency content
of a sound (over 1100 Hz), the greater the proportion of high fre-
quencies the ‘sharper’ the sound [27]. A sound of sharpness 1 acum is
defined as a narrow band noise one critical band wide at a centre fre-
quency of 1 kHz having a level of 60 dB [27]. Roughness is a complex
effect which quantifies the subjective perception of rapid fluctuations
(15-300 Hz) in the sound received by auditory filters [27]. The unit of
measure is the asper. One asper is defined as the roughness produced by
a 1000 Hz tone of 60 dB which is 100% amplitude modulated at 70 Hz
[27].

Table 2 presents some statistical data of the numerical parameters
used in the analyses. The coefficient of variation of texture (MPD),
speed and Loudness are quite similar which means that they have
analogous variability. Roughness presents the highest variability and L,
the lowest. Leg, Laeq and Lamq, have similar variability.

Table 2
Basic descriptive statistics of the parameters used in database.

Parameters Min Mean Max Standard Coefficient of
Deviation variation (%)

MPD (mm) 0.9 1.41 2.3 0.339 23.993

Speed (km/h) 30 48.30 66 12.787 26.472

Leq (dB) 89.14 100.01 108.29 4.500 4.499

LAeq (dB(A)) 79.31 9155 99.52 4725 5.161

LAmax (dB(A)) 79.7 92.30 100.76  4.785 5.184

Loudness (sone) 35.69 70.92 104.03 16.563 23.356

Roughness 0.09 0.227 0.56 0.087 38.469
(asper)

Sharpness 3.1 4.494 5.96 0.601 13.377
(acum)
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3.5. Data mining

In this study the data mining process was applied to predict tyre-
pavement noise descriptors. Artificial neural networks, support vector
machines and multiple regressions were applied. All the experiments
were conducted using the R statistical environment and the RMiner
library [28] which presents a set of functions that facilitates the use of
DM algorithms both in classification and regression tasks. This study is
related with regression tasks.

The ANN is a computational technique based on the architecture of
the human brain. The ANN architecture is defined according the way
the artificial neurons are linked to each other. The neurons commu-
nicate with each other via signals sent through the links. Each liaison
has an associated weight, w;; (i and j are neurons or nodes), and each
neuron has an activation function that introduces a non-linear com-
ponent. This study used a logistic activation function f given by 1/
(1 + e™™) and the following general equation:

o—1 1
V =wy+ Z f(z Xiwj; + Wj,O)Wo,i

j=I+1 i=1

@

where x; are the input parameters or nodes, i is the number of input
parameters and o is the output parameter. In this study it was adopted
the most common ANN architecture, the multilayer perceptron (feed
forward network) [29] with one hidden layer of HN hidden nodes. The
grid search of the number of hidden nodes HN was
{0,2,4,6,8,10,12,14,16,18,20}.

The SVM technique was initially developed to classification tasks by
Cortes and Vapnik [30]. The application of SVM to regression problems
was possible after the introduction of the e-insensitive loss function
[31]. This method uses a nonlinear mapping to transform the input data
into a multidimensional feature space by using a nonlinear mapping ¢,
which is normally unknown. SVM presents theoretical advantages over
ANN, such as the absence of local minima in the learning phase which
means that the model always converges to the optimal solutions [32].
After this transformation the SVM finds the best hyperplane of linear
separation inside the feature space. The nonlinear mapping depends on
a kernel function k(x,x’). This work uses the following kernel function:

k(xx") = e(_”'”x_x"'z), y>0 2)

The performance of the regression is affected by the kernel para-
meter, y, a penalty parameter, C, and the width of the e-insensitive
zone. To limit the searching space, C was considered equal 3 and it was
used a heuristic for e [33]: € = §/+/N, where, & = 1.5 x Zf\il o=, 7
is the value predicted by a 3-nearest neighbour algorithm and N the
number of examples. Therefore, the search space was limited to the
input  values of vy which in this study were
(27159718 911 9-9 9=7 9=6 =5 9—4 9 =3 9 =2 91 90 91 92 93}

To test the predictive capacity of the data mining techniques the
dataset was divided in two subsets. One, composed by 80% registers,
was used to train the model, and other, composed by the remaining
20% registers, to test the model. With the training set a 10-fold cross
validation was used where the data was divided in ten subsets of equal
size. Nine subsets were used to adjust the model whereas the remaining
subset was used to test the model. This process was repeated until all
the subsets had been tested. Ten runs of this process were carried out on
this study. After fitting the model with the training dataset its future
performance was assessed with the unseen dataset (i.e. 20% register).

There are several metrics to assess the performance of the regression
models. This study uses the mean absolute deviation (MAD), the root
mean squared error (RMSE) and the coefficient of determination R>.
These metrics are defined as follow:

N
1
MAD = — x Y ly— Tl
N 3
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Table 3
Mean values of the metrics obtained in the cross validation process.
Leg Laeq Lamax
MR ANN SVM MR ANN SVM MR ANN  SVM
R? 0.558 0.655 0.728 0.694 0.679 0.805 0.687 0.684 0.812
MAD 2233 1.943 1.748 1.827 1.922 1537 1.918 1.918 1.609
RMSE 2971 2.754 2331 2570 2.816 2053 2672 2.858 2.070
N
(Vi_j’\i)z
RMSE = \| =L —
N @
2
N p—
> G- xG-5)
R2= i=1
N N —
3 02 x |3 G-
i=1 i=1 5)

where N denotes the number of examples, y; the real value, 3, the value
estimated by the model, ¥ the mean of the real values and y the mean
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of the estimated values.

The lower the MAD and RMSE values the better the predictive ca-
pacity of the model. On the contrary, a higher value of R? corresponds
to its better performance.

To obtain the relative importance of the input parameters in the
model it is necessary to perform a sensitivity analysis where each input
parameter is ranged from its lowest value to its highest value while the
remaining input parameters keep their mean values [34]. The im-
portance of an input parameter is proportional to the variance induced
by it in the model output. Therefore, higher variance corresponds to
higher importance.

4. Results and discussion
4.1. Acoustic indicators

After training the three DM techniques for acoustic indicators, the
errors and the coefficient of determination were obtained in the cross
validation process (Table 3). The best results were obtained with the
SVM model. MR models to predict Laeq and Lame have a better per-
formance than ANN models. However, as it can be seen in Figs. 5-7, the
fitting of the models with the complete training dataset increased

110 110
2,

105 A A LA " A 105 ° ¥ z/A
_ s %gA@‘Aék' _ Yl
o) ° P 4 MR m ° Vo SR
) A _A‘A% $8 A A &) Y/ & A
~ A A AK y A%ﬁ ~ o 55N A
§ 100 Al W 5 s ol ANN § 100 8 2" Ag

oY 2 2 &
= ° °' 4 {J S an ° SVM = A‘.A“’.grA o
8 LSRR o K A LA A fl_.) Y Lo 2 A
S 95 ﬁ A'Aﬁ.lﬁ mad T eeeeeeeen Linear (MR) S 95 R A.A-'Alﬁ 7 B
o LR = R/ ~ I'N
E a7 Linear (ANN) ;-s'l 37
90 x| eeee Linear (SVM) 90
85 85
85 90 95 100 105 110 85 90 95 100 105 110
Measured Leq (dB) Measured Leq (dB)
(a) (b)
Fig. 5. Performance of the MR, ANN and SVM models in the L., prediction using: (a) training dataset; (b) testing dataset.
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Fig. 6. Performance of the MR, ANN and SVM models in the L., prediction using: (a) training dataset; (b) testing dataset.
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Fig. 7. Performance of the MR, ANN and SVM models in the Layq prediction using: (a) training dataset; (b) testing dataset.

considerably the performance of all models, mainly the ANN models.
The metric values and slope and y intercept of the trend lines extracted
from Figs. 5-7, presented in Tables 4 and 5, confirm these performance
improvements. In fact, ANN models have the best performance in
predicting La.q and L., and SVM model remains the best to predict
LAmax~

The importances of the input parameters attributed by the different
models are presented in Table 6. The high importance assigned to speed

is according to the expected. An exception to this trend is the ANN model

that assigns an importance less than 20% to speed. However, the SVM
predictive model of L4, with lower performance, attributes the greatest
importance to the distresses. For the Lj.; and Lamay indicators, in op-
position to the ANN models, the SVM models assign a consistent and
great importance to distresses, nonetheless consider speed more im-
portant. These models assign little relevance to the type of pavement and
texture. In summary, using the acoustic indicators the parameters that
most influence the tyre-pavement noise are speed and distresses, the
latter reaching about 20% for Laeq and Lamay indicators and 37% for Leg.

Table 4
Metrics and slope and y intercept obtained from Figs. 5-7 using training dataset.
Leg Laeq Lamax
MR ANN SVM MR ANN SVM MR ANN SVM
R? 0.602 0.928 0.916 0.728 0.964 0.929 0.723 0.837 0.940
MAD 2.114 0.863 0.960 1.717 0.631 0.970 1.799 1.533 0.920
RMSE 2.814 1.196 1.338 2.419 0.878 1.250 2.513 1.930 1.189
Slope 0.602 0.930 0.841 0.728 0.965 0.893 0.723 0.837 0.904
y Intercept 39.80 7.062 15.95 24.90 3.263 9.850 25.55 15.06 8.921
Table 5
Metrics and slope and y intercept obtained from Figs. 5-7 using testing dataset.
Ly Laeq Lamax
MR ANN SVM MR ANN SVM MR ANN SVM
R? 0.691 0.809 0.780 0.776 0.924 0.860 0.750 0.793 0.837
MAD 2.027 1.437 1.554 1.778 1.118 1.419 1.838 1.756 1.514
RMSE 2.570 2.058 2.147 2.372 1.455 1.859 2.404 2.170 1.945
Slope 0.626 0.901 0.791 0.715 1.022 0.845 0.722 0.763 0.779
y Intercept 37.20 9.887 20.83 25.98 —-2.03 14.25 26.02 22.03 20.35
Table 6
Importance of the input variables in the evaluation of the acoustic indicators (%).
Leg Laeq Lamax
MR ANN SVM MR ANN SVM MR ANN SVM
Type of pavement 0.81 12.47 17.19 1.59 15.11 0.02 4.02 211 4.25
Distresses 4.17 27.72 37.56 0.35 38.90 20.18 0.78 2.49 19.81
Texture 9.20 8.33 18.33 7.71 28.56 1.79 11.68 3.68 5.04
Speed 85.82 51.48 26.92 90.35 17.43 78.01 83.52 91.72 70.90
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Table 7
Mean values of the metrics obtained in the cross validation process for the
psychoacoustic indicators Loudness, Roughness and Sharpness.

Loudness Roughness Sharpness

MR ANN SVM MR ANN SVM MR ANN  SVM

R? 0.669 0.677 0.814 0.089 0.051 0.093 0.655 0.588 0.770
MAD  6.652 7.732 5.690 0.062 0.065 0.060 0.254 0.280 0.216
RMSE 9.465 9.867 7.098 0.085 0.095 0.085 0.353 0.404 0.288

4.2. Psychoacoustic indicators

Likewise, after training the three DM techniques for the psychoa-
coustic indicators, the errors and the coefficient of determination were
obtained in the cross validation process (Table 7). The best results for
all psychoacoustic indicators were obtained with SVM models. How-
ever, the poor capacity of all models to predict Roughness and the fair
capacity of ANN models to predict the psychoacoustic indicators is
denoted by their low coefficients of determination and higher MAD and
RMSE.

As with acoustic indicators, the performance of the adjusted models
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with all training records has improved considerably. As it can be seen in
Figs. 8-10 and confirmed in Tables 8 and 9, SVM models continue to
have de best performance to predict the psychoacoustic indicators. The
ANN model performs similarly to the SVM model in predicting Loud-
ness but denotes difficulty in capturing the non-linear relationships
between the variables to predict roughness and sharpness. This is evi-
denced by the fact that they provide the same results as linear MR
models.

The importances of the input parameters attributed by the different
models are presented in Table 10. As the models cannot predict
Roughness accurately this psychoacoustic indicator was disregarded.
Previous works based on common prevision techniques also failed to
model roughness. The independent variables selected might not explain
this sound measure and other variables should be used in future works.
Accordingly, only the importance given by SVM model to the input
parameters to predict Loudness and Sharpness was considered in the
analysis. In this framework, speed is the most important parameter
followed by distresses. These parameters summed up approximately
98% of importance. The importance of distresses reached 36% for
Loudness. For sharpness, the results were very close to the ones ob-
tained for the acoustic indicators with 23% of importance for de dis-
tresses. In this context, Loudness is the most sensitive indicator to the

35 45 55 65 75 85 95 105
Measured Loudness (sone)

(b)

Fig. 8. Performance of the MR, ANN and SVM models in the Loudness prediction using: (a) training dataset; (b) testing dataset.
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Fig. 9. Performance of the MR, ANN and SVM models in the Roughness prediction using: (a) training dataset; (b) testing dataset.
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Fig. 10. Performance of the MR, ANN and SVM models in the Sharpness prediction using: (a) training dataset; (b) testing dataset.
Table 8
Metrics and slope and y intercept obtained from Figs. 8-10 using training dataset.
Loudness Roughness Sharpness
MR ANN SVM MR ANN SVM MR ANN SVM
R? 0.704 0.919 0.945 0.179 0.179 0.365 0.693 0.693 0.921
MAD 6.268 3.642 3.113 0.058 0.058 0.049 0.239 0.239 0.125
RMSE 8.938 4.691 4.022 0.079 0.079 0.071 0.333 0.333 0.172
Slope 0.704 0.917 0.880 0.179 0.179 0.304 0.693 0.693 0.867
y Intercept 20.91 5.842 8.180 0.186 0.186 0.146 1.383 1.383 0.605
Table 9
Metrics and slope and y intercept obtained from Figs. 8-10 using testing dataset.
Loudness Roughness Sharpness
MR ANN SVM MR ANN SVM MR ANN SVM
R? 0.716 0.801 0.811 0.171 0.171 0.389 0.758 0.758 0.833
MAD 7.233 5.954 5.933 0.061 0.061 0.047 0.234 0.234 0.204
RMSE 9.084 7.571 7.607 0.079 0.079 0.070 0.297 0.297 0.246
Slope 0.677 0.751 0.708 0.190 0.190 0.343 0.724 0.724 0.852
y Intercept 24.32 17.48 20.20 0.177 0.177 0.134 1.194 1.194 0.641
Table 10
Importance of the input variables in the evaluation of the psychoacoustic indicators (%).
Loudness Roughness Sharpness
MR ANN SVM MR ANN SVM MR ANN SVM
Type of pavement 3.23 2.80 0.37 1.16 1.16 22.57 3.80 3.80 0.05
Distresses 1.24 15.78 36.76 26.29 26.29 19.50 1.44 1.44 23.13
Texture 6.67 11.81 1.88 68.94 68.94 33.80 0.00 0.00 2.15
Speed 88.86 69.61 60.99 3.61 3.61 24.13 94.76 94.76 74.67

presence of distresses on the surface of pavements among the reliable
SVM acoustic and psychoacoustic models (Laeq, Lamax, Loudness and
Sharpness indicators).

5. Conclusions

The exponential rise of the number of vehicles on roads have been
increasing the traffic noise levels. Exposure to traffic noise is a risk

factor for the health of people and has a strong impact on life quality.
For these reasons it is necessary to develop models to predict accurately
traffic noise and to extract information about the relative influence of
factors affecting its main component, tyre-road noise. These models are
fundamental to support for the implementation of noise abatement

measures.

Previous works address mainly environmental noise and the vari-
ables used to predict this type of noise such as traffic. In this work the
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noise generated by the contact between one reference tyre and the
pavement surface was modelled. In this case the factors used to explain
the noise are not the same. They respect to the road surface char-
acteristics and condition and to vehicle operation (speed). Therefore,
this approach is new. The models are used to predict tyre-road noise
acoustic and psychoacoustic indicators, based on pavement texture,
vehicles speed, and pavement distresses (no distress, cracking, alligator
cracking and revelling). In the case of distresses, the objective was to
confirm its influence in the tyre-road noise and this was achieved.

Despite the general good results, the applicability of the developed
models is constrained by the fact of being used only 3 types of pave-
ments. The pavements selected are widely used in Europe, nevertheless
they do not cover the existing variety of pavement surfaces. Another
limitation arises from the classification of pavement distresses that
might be different from country to country. A general model could be
developed by using data from different countries covering most of the
pavement surfaces used in a certain region, for example in Europe, and
a harmonized distress classification method. The real impact of dis-
tressed roads on environmental noise can be easily assessed by in-
troducing the estimated tyre/road noise values on environmental noise
models, such as CNOSSOS, which is complementary to the road ageing
effect already generally known.

The main results that can be drawn from this study are described in
the following items:

e ANN models gave slightly better results than SVM models to predict
Leq and LAeq whereas SVM model was better in predicting LAmax.

e ANN and SVM models have a similar behaviour to predict loudness
but SVM is quite better to predict sharpness.

e None of the developed models were able to predict the roughness
indicator properly, other factors need to be investigated;

e Speed and distresses are the most influential factors in tyre-road
noise. The high importance of the speed was already expected.
However, in relation to distresses for the first time their relative
importance to noise could be measured.

® Loudness was the most sensitive indicator to the presence of dis-
tresses on pavement surface.

This work succeeded in assessing the important contribution of 3
very common types of roads degradation on tyre-road noise. This
should be enough to compel road maintenance managers acting earlier.
In this way they can reduce noise, and contribute to the population
wellbeing, and at the same time it is possible to reduce costs by prac-
ticing a preventive maintenance policy.
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