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1. Abstract
In this work we consider the problem of finding all the global maximizers of a given nonlinear optimiza-
tion problem. We propose a new algorithm that combines the simulated annealing (SA) method with a
function stretching technique, to generate a sequence of global maximization problems that are defined
whenever a new maximizer is identified. To find the global maximizers, we apply the SA algorithm to
the sequence of maximization problems. Results of numerical experiments with a set of well-known test
problems show that the proposed method is effective. We also compare the performance of our algorithm
with other multi-global optimizers.

2. Keywords: Global optimization. Simulated annealing. Function stretching technique. Multi-global
optimization.

3. Introduction
The multi-global optimization problem consists of finding all the global solutions of the following maxi-
mization problem

max
t∈T

g(t) (1)

where g : IRn → IR is a given multimodal objective function and T is a compact set defined by
T = {t ∈ IRn : ai ≤ ti ≤ bi, i = 1, ..., n}.

So, our purpose is to find all points t∗ ∈ T such that

∀t ∈ T, g(t∗) ≥ g(t).

This type of problem appears in many practical situations, for example, in ride comfort optimization
[7] and in some areas of the chemical engineering (such as process synthesis, design and control) [8].
Reduction methods for solving semi-infinite programming problems also require multi-global optimizers
[18, 23].

The multi-global optimization problem is a particular problem of global optimization. Thus a multi-
global optimization method is an extension of a global optimizer.

The most used methods for solving a multi-global optimization problem rely on, for example, evo-
lutionary algorithms (such as the genetic algorithm [2] and the particle swarm optimization algorithm
[17]), and variants of the multi-start algorithm (clustering, domain elimination, zooming, repulsion) [26].
Another contribution can be found in [25].

The simulated annealing (SA), proposed in 1983 by Kirkpatrick, Gelatt and Vecchi, and in 1985 by
Cërny, appeared as a method to solve combinatorial optimization problems. Since then, the SA algorithm
has been applied in many areas such as the graph partitioning, graph coloring, number partitioning,
circuit design, composite structural design, data analysis, image reconstruction, neural networks, biology,
geophysics and finance [11, 13, 20]. Usually the SA method converges to just one global solution in each
run.

Recently, a new technique based on function stretching has been used in a particle swarm optimization
context [17], in order to avoid the premature convergence of the method to local (non-global) solutions.

In this paper, we propose to use the function stretching technique with a simulated annealing algo-
rithm to be able to compute all the global solutions of problem (1). Each time a global maximizer is
detected by the SA algorithm, the objective function of the problem is locally transformed by a function
stretching that eliminates the detected maximizer leaving the other maximizers unchanged. This process
is repeated until no more global solution is encountered.
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This paper is organized as follows. Section 2 describes the simulated annealing method. Section 3
contains the basic ideas behind the function stretching technique. Our proposed algorithm is presented
in Section 4 and the numerical results and some conclusions are shown in Sections 5 and 6, respectively.

2. Simulated annealing method
The simulated annealing method is a well-known stochastic method for global optimization. It is also
one of the most used algorithms in global optimization, mainly due to the fact that it does not require
any derivative information and specific conditions on the objective function. Furthermore, it has been
proved that the SA algorithm asymptotically converges to a global solution.

The SA method can be easily described using four phases: the generation of a new candidate point,
the acceptance criterion, the reduction of the control parameters and the stopping criterion.

The generation of a new candidate point is one of its crucial phases and it should provide a good
exploration of the search region as well as a feasible point. A generating probability density function,
ftky(.), is used to find a new point y based on the current approximation, tk. We refer to Bohachevsky
et al. [1], Corana et al. [3], Szu and Hartley [22], Dekkers and Aarts [4], Romeijn and Smith [19], Ingber
[11] and Tsallis and Stariolo [24] for details.

The acceptance criterion allows the SA algorithm to avoid getting stuck in local solutions when
searching for a global one. For that matter, the process accepts points whenever an increase of the
objective function is verified.

The acceptance criterion has the following mathematical form

tk+1 =
{

y if τ ≤ Atky(ck
A)

tk otherwise

where tk is the current approximation to the global maximum, y is the new candidate point, τ is a
random number drawn from U(0, 1) and Atky(ck

A) is the acceptance function. This function represents
the probability of accepting the point y when tk is the current point, and it depends on a positive control
parameter ck

A and on the difference of the function values at the points y and tk.
The acceptance criterion based on the following acceptance function

Atky(ck
A) = min

{
1, e

− g(tk)−g(y)
ck
A

}

is known as Metropolis criterion. This criterion accepts all points where the objective function value
increases, i.e., g(tk) ≤ g(y). However, if g(tk) > g(y), the point y might be accepted with some
probability. During the iterative process, the probability of descent movements decreases slowly to zero.
Different acceptance criteria are proposed in Ingber [11] and Tsallis and Stariolo [24], for example.

The control parameter ck
A, also known as temperature or cooling schedule, must be updated in order

to define a positive decreasing sequence, verifying

lim
k→∞

ck
A = 0.

When ck
A is high, the maximization process searches in the whole feasible region, looking up for

promising regions to find the global maximum. As the algorithm develops, ck
A is slowly reduced and the

algorithm computes better precision approximations to the optimum. For a good performance of the
algorithm, the initial control parameter must be sufficiently high (to search for promising regions) but not
extremely high because the algorithm becomes too slow. To solve this dilemma, some authors suggested
that a preliminary analysis of the objective function should be done in order to get an appropriate value.
For more details see Dekkers and Aarts [4], Ingber [11] and Laarhoven and Aarts [14].

All stopping criteria for the SA are based on the idea that the algorithm should terminate when no
further changes occur. The usual stopping criterion limits the number of function evaluations, or defines
a lower limit for the value of the control parameter. See Corana et al. [3], Dekkers and Aarts [4] and
Ingber [11] for different alternatives.
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2.1. Variant of the SA method: ASA algorithm
Adaptive Simulated Annealing (ASA) proposed by Ingber, in 1996, is today the most used variant of
the SA method and it is characterized by two functions: the generating probability density function,
ftky(ck

G), and the acceptance function, Atky(ck
A). Both functions depend on the current approximation,

on the new candidate point and on the control parameters, ck
G ∈ IRn and ck

A ∈ IR, respectively.
Without getting into much details, the new candidate point, yT = (y1, ..., yn), is determined as

follows:
yi = tki + λi(bi − ai) for 1 ≤ i ≤ n (2)

where ai and bi are the lower and upper bounds for the ti variable, respectively. The value λi ∈ [−1, 1]
is given by

λi = sign
(

u− 1
2

)((
1 +

1
ck
Gi

)|2u−1|
− 1

)
ck
Gi

(3)

where u is a uniformly distributed random variable in [0, 1] and sign(x) represents the three-valued sign
function

sign(x) =




−1 if x < 0
0 if x = 0
1 if x > 0.

When y is not a feasible point, the equations (2) and (3) can be repeatedly used until a feasible point
is encountered. Alternatively, the point y might be projected onto the feasible region [20].

In order to update the control parameters ck
Gi

, the ASA algorithm proceeds as follows:
{

kGi = kGi + 1

ck
Gi

= c0
Gi

e−κ(kGi
)

1
n

for 1 ≤ i ≤ n (4)

where c0
Gi

is the initial value of the control parameter cGi and κ is defined by κ = − ln(ε)e−
ln(Nε)

n . The
values ε and Nε should be chosen in a way that

{
cf
Gi

= c0
Gi

ε
kf = Nε,

being cf
Gi

an estimate of the final value of the control parameter cGi , and kf represents a threshold value
for the maximum number of iterations. To see how the values of ε and Nε influence the algorithm we
refer the work of Niu [16].

Similarly, the control parameter ck
A is updated by

{
kA = kA + 1

ck
A = c0

Ae−κ(kA)
1
n

(5)

where c0
A is its initial value.

To speed up the search process, this variant of the SA algorithm considers the reannealing of the
process, meaning that the control parameters are redefined during the iterative process. For that, at
the end of every cycle of NA max accepted points, the algorithm evaluates certain quantities, denoted by
sensitivities, which are given by

si =
∣∣∣∣
g(t∗ + δt∗i ei)− g∗

δt∗i

∣∣∣∣
where t∗ is the best point found so far, g∗ represents its corresponding function value, δ is a small real
parameter and ei ∈ IRn is the ith euclidian vector.

Depending on the following values

ρi =
smax

si

ck
Gi

c0
Gi
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for all i, where
smax = max

1≤i≤n
{si},

the quantities kGi , reported in the updating scheme (4), are redefined as follows:

kGi =
{ [− 1

κ ln (ρi)
]n if ρi < 1

1 otherwise.

As concerns the redefinition of the parameters c0
A and kA in the updating scheme (5), the procedure

evaluates
c0
A = min

{
c0
A, max

{|g(tk)|, |g∗|, |g(tk)− g∗|}}

and

kA =
[
− 1

κ
ln

(
c̄A

c0
A

)]n

where c̄A = min
{
c0
A,max

{|g(tk)− g∗|, ck
A

}}
, whenever NA max accepted points are reported.

The iterative process terminates if the found approximation to the global solution does not change
for a fixed number of iterations, Mmax

f∗ , or a maximum number of function evaluations is reached, herein
represented by Mmax

fe = n M̄max
fe , for a threshold value M̄max

fe . This condition is motivated by the fact
that the efficiency of ASA algorithm substantially depends on the problem dimension.

A description of the ASA algorithm follows.

ASA Algorithm

Given an initial feasible approximation t0 and the number of iterations for reannealing NA max,
compute κ = − ln(ε)e−

ln(Nε)
n , let kA = kGi = 0, calculate c0

A, c0
Gi

= 1.0, nA = 0 and k = 0

while stopping criterion is not reached do

Generate a new feasible candidate point y

Analyze the acceptance criterion

if y is accepted then set nA = nA + 1

Set k = k + 1

if nA ≥ NA max then redefine kGi , kA and c0
A, set nA = 0

Update the control parameters ck
Gi

, kGi , ck
A, kA

end while

end algorithm

For details on the algorithm convergence analysis, see [11, 12].

3. Function stretching technique
For multimodal functions, some global optimization algorithms converge prematurely to local solutions.
This is the case with the simplest versions of the particle swarm optimization algorithm. To overcome
this problem, Parsopoulos and Vrahatis [17] proposed a function stretching technique that provides a
way to escape from local optima when the particle swarm optimization convergence stagnates, driving
the search to a global solution. This technique works in the following way. When a local maximizer t̄ is
detected, a two-stage transformation of the original objective function is carried out as follows:

ḡ(t) = g(t)− δ1

2
‖t− t̄‖ (

sign
(
g(t̄)− g(t)

)
+ 1

)
, (6)
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g̃(t) = ḡ(t)− δ2

2
sign (g(t̄)− g(t)) + 1
tanh (µ (ḡ(t̄)− ḡ(t)))

, (7)

where δ1, δ2 and µ are positive constants.
At points t that verify g(t) < g(t̄), the transformation defined in (6) reduces the original objective

function values by δ1‖t − t̄‖. The second transformation (7) emphasizes the decrease of the original
objective function by making a substantial reduction on the objective function values.

For all points t such that g(t) ≥ g(t̄), the objective function values remain unchanged, so allowing the
location of the global maximizer. When applying the global algorithm to the function g̃, the method is
capable of finding other local solutions, t̃, that satisfy g(t̃) ≥ g(t̄). If another local (non-global) solution
is found, the process is repeated until the global maximum is encountered.

Parsopoulos and Vrahatis also proposed in [17] a different version of the particle swarm optimiza-
tion algorithm for locating multiple global solutions. Based on the function stretching technique (or
a deflation technique), the algorithm isolates sequentially points that have objective function values
larger than a threshold value, and performs a local search (with a small swarm) in order to converge to a
global solution, while the big swarm continues searching the rest of the region for other global solutions.

4. Stretched simulated annealing algorithm
The Stretched Simulated Annealing (SSA) algorithm herein proposed is capable of finding all global
solutions of problem (1) combining the ASA algorithm, described in Section 2, with local applications
of the function stretching technique. In our case, this technique is applied not to avoid local solutions
but to find all global maxima, since ASA algorithm convergence to a global solution is guaranteed with
probability one. Assume now that the following assumption is verified.

Assumption 1: All global solutions of problem (1) are isolated points.

At each iteration, the SSA algorithm solves, using the ASA algorithm, the following global optimiza-
tion problem:

max
t∈T

Φk(t) ≡
{

g(t) if k = 1
w(t) if k > 1,

where the function w(t) is defined as

w(t) =
{

g̃(t) if t ∈ Vε(t̄i)
g(t) otherwise ,

and t̄i (i = 1, 2, ..., m̄) denotes a previously found global maximizer. Vε(t̄i) represents a neighborhood of
t̄i, with ray ε, m̄ is the number of previously found global solutions of (1) and g̃ is the function defined
in (7).

The SSA algorithm resorts in a sequence of global optimization problems whose objective functions
are the original g, in the first iteration, and the transformed w in the subsequent iterations. As the
function stretching technique is only applied in a neighborhood of an already detected global maximizer,
the ASA global algorithm is able to identify the other global maximizers that were not yet found.

To illustrate this idea, we consider the test function (herein named Parsopoulos) reported in [17],

CS(t) = − (
cos2(t1) + sin2(t2)

)

with feasible region [−5, 5]2. In this hypercube, the function CS has 12 global maximizers. The plot of
CS(t) is given in the left figure of Figure 1.
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Figure 1: Original function CS and stretched CS

Applying the function stretching in a neighborhood of one global maximizer, for example t∗ = (π
2 , 0)T ,

we obtain the ”stretched function CS” that can be seen on the right of Figure 1. Figure 2 illustrates with
more detail the application of function stretching, in the neighborhood of the optimum. The plot on the
left shows the function ḡ (obtained after the first transformation) and the one on the right represents
the function g̃ (after the second transformation).

Figure 2: Stretched function CS: first and second transformations

As we can see, when the function stretching is applied in a neighborhood of a global maximizer, this
maximum disappears and the other global solutions are left unchanged (see Figure 1). Thus, our SSA
algorithm is able to detect all global solutions of problem (1).

This iterative process terminates if no new global maximizer is detected, in a fixed number of suc-
cessive iterations, Nmax

f∗ , or a maximum number of function evaluations, Nmax
fe = nN̄max

fe is reached, for
a threshold N̄max

fe .

5. Numerical results
The proposed algorithm was implemented in the C programming language and connected with AMPL
[9] to provide the coded problems. AMPL is a mathematical programming language that allows the
codification of optimization problems in a powerful and easy to learn language. AMPL also provides an
interface that can be used to communicate with a solver.

For the stopping criterion of the ASA algorithm we chose the following parameters: Mmax
f∗ = 5 and

M̄max
fe = 10000. The constants in equations (6) and (7) were set to δ1 = 100, δ2 = 1 and µ = 10−3.

Finally, in the SSA algorithm we considered the following parameters: Nmax
f∗ = 3, N̄max

fe = 50000 and
ε = 0.25. To obtain the initial control parameter c0

A, a preliminary analysis for each test function was
carried out, with a sample of 10n feasible points [4].

The efficiency of our SSA algorithm was tested using a set of 22 multimodal test problems. Some of
the chosen problems have more than one global maximum and the others have just one global maximum
but more than ten local maxima. Table 1 reports on the main characteristics of the test problems,
namely the name of the problem, the reference from where we took the problem (Ref.), the number
of variables (n), the feasible region (T ), the number of known global maximizers (Nt∗g ), the number of
known local (non-global) maximizers (Nt∗l ) and the known global maximum value (f∗).
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Table 1: Test problems.

Name Ref. n T Nt∗g Nt∗l f∗

Bohachevsky [10] 2 [−100, 100]2 1 More than 10 0
Branin [6] 2 [−5, 10]× [0, 15] 3 No local 0.397887
Cos, C1 [15] 1 [0, 10] 3 No local 0
Cos, C2 [15] 2 [0, 10]2 9 No local 0

Griewank, G2 [25] 2 [−100, 100]2 1 About 530 0
Hump, H3 [10] 2 [−5, 5]2 2 No local 0
Hump, H6 [25] 2 [−5, 5]2 2 4 −1.031628
Levy, L3 [17] 2 [−5, 5]2 4 About 300 −176.541793
Levy, L5 [17] 2 [−10, 10]2 1 About 760 −176.137578

Parsopoulos [17] 2 [−5, 5]2 12 No local 0
Rastrigin [25] 2 [−1, 1]2 1 About 50 −2.0

Sines [5] 2 [−10, 10]2 1 About 50 0.9
Shubert [2] 2 [−10, 10]2 18 About 760 −186.730908
Storn, S1 [21] 2 [−2, 2]2 2 1 −0.407461
Storn, S2 [21] 2 [−4, 4]2 2 1 −18.058697
Storn, S3 [21] 2 [−8, 8]2 2 1 −227.765750
Storn, S4 [21] 2 [−14, 14]2 2 1 −2429.41477
Storn, S5 [21] 2 [−16, 16]2 2 1 −24776.5183
Storn, S6 [21] 2 [−28, 28]2 2 1 −249293.018

P8 [4] 3 [−10, 10]3 1 About 53 0
P16 [4] 5 [−5, 5]5 1 About 155 0
f1 (Proposed) 2 [−10, 10]2 2 No local −100.0

Each problem was run 5 times with randomly generated initial approximations. The numerical results
are shown in two separate tables. Table 2 contains the problems with more than one global maximum
and Table 3 contains the problems with one global maximum and more than ten local maxima. These
tables report the averaged numbers of: percentage of frequency of occurrence (Freq. Occur.), number of
ASA calls (NASA), number of function evaluations (NFE) and best function value (f∗m). The last column
reports the best function value obtained in all 5 runs (f∗). The percentage of frequency of occurrence is
the ratio between the number of detected global maximizers and the number of known maximizers. So,
100% means that all known global maximizers were detected in all 5 runs.

Table 2: Numerical results obtained with test problems with more than one global solution.

Name Freq. Occur. NASA NFE f∗m f∗

Branin 100% 6 10529 0.397887 0.397887
Cos, C1 100% 6 3206 2× 10−9 4× 10−13

Cos, C2 100% 13 19245 9× 10−10 3× 10−10

Hump, H3 100% 5 20200 1× 10−7 5× 10−8

Hump, H6 100% 5 17531 −1.031628 −1.031628
Levy, L3 65% 6 13438 −176.541793 −176.541793

Parsopoulos 100% 15 16542 3× 10−9 3× 10−10

Shubert 99% 32 51684 −186.730908 −186.730908
Storn, S1 100% 5 5850 −0.407461 −0.407461
Storn, S2 100% 5 39877 −18.058697 −18.058697
Storn, S3 100% 5 63510 −227.765749 −227.765750
Storn, S4 100% 5 59841 −2429.41476 −2429.41477
Storn, S5 100% 5 101864 −24776.5183 −24776.5183
Storn, S6 100% 5 103191 −249293.018 −249293.018

f1 100% 5 32572 −100.0 −100.0
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The numerical results of Table 2 indicate that the SSA algorithm finds good precision approximations
to the global solution, with absolute errors (difference between the average best function value and the
best function value obtained in all runs) smaller than 10−7 (except in problems S4 and S6).

The runs with the test problems S5 and S6 stopped because the maximum number of function
evaluations was reached. Nevertheless, all known global maximizers were detected in all runs. However,
relaxing that limit, the SSA algorithm stops with higher precision approximations in 194325 and 180429
function evaluations respectively.

In some well-known multimodal problems, the existence of many local maximizers makes it quite
difficult for most global algorithms to determine the global solution. Usually, the algorithms stop pre-
maturely in a local solution. We decided to analyze the behavior of our SSA algorithm in this class of
problems. So, Table 3 reports the numerical results obtained with problems that have only one global
solution but many local solutions.

Table 3: Numerical results obtained with problems that have only one global solution.

Name Freq. Occur. NASA NFE f∗m f∗

Bohachevsky 100% 5 24066 2× 10−6 4× 10−11

Griewank, G2 100% 9 39834 9× 10−8 1× 10−11

Levy, L5 100% 4 5557 −176.137577 −176.137578
Rastrigin 100% 4 16144 −2.0 −2.0

Sines 100% 40 101445 0.900001 0.9
P8 100% 4 4613 1× 10−6 6× 10−8

P16 100% 4 15115 1× 10−6 8× 10−8

We may observe that for all tested problems the absolute error of the approximations is smaller than
10−6, thus indicating that the SSA algorithm when solving these problems has a similar behavior to the
one reached with the previous class of problems.

With the problems Bohachevsky, G2, L5 and Sines, the SSA algorithm was also able to detect some
local solutions. In particular, with the function Sines the iterative process finds 28 local solutions. This
happens because the function has a large number of local maxima whose values are quite similar to the
value of the global maximum.

The function stretching efficiency is more evident in the problems G2 and L5. We run separately
the ASA algorithm and obtained percentages of frequency of occurrence of 20% and 60%, respectively.
When we use the SSA algorithm these percentages climb to 100% (see Table 3).

It does not seem an easy task to compare the performance of our algorithm with other multi-global
solvers as some authors failed to report on important data, namely the number of function evaluations
required to reach the solutions. For example, for the problem Parsopoulos that was also solved by the
Stretched PSO algorithm in [17], the authors claim to find all global solutions after 12 cycles of the
method with accuracy 10−5, probably in a single run. No other information is reported concerning this
problem. In all 5 runs, our SSA algorithm found all solutions with accuracy 10−9 requiring on average
15 ASA calls and 16542 function evaluations.

Meng et al. [15] proposed the adaptive swarm algorithm for multi-global optimization problems and
presented numerical results for the three problems: C1, C2 and L3. Table 4 contains a brief comparison.

Table 4: A comparison of results with those obtained by Meng et al..

Adaptive swarm algorithm Stretched simulated annealing
Freq. occur. Best solution Worst solution Freq. occur. Best solution Worst solution

C1 93% 6.34× 10−7 1.05× 10−3 100% 4.43× 10−13 4.42× 10−7

C2 78% 5.12× 10−5 3.58× 10−2 100% 3.09× 10−10 1.03× 10−5

For the test function L3, Meng et al. only indicate that the four global solutions were obtained after
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17127 function evaluations. The SSA algorithm required 14596 to reach the same solutions. For these
cases, our SSA framework seems to perform favorably against the adaptive swarm algorithm.

The Differential Evolution method in [21] reaches the solution of the function Griewank with accu-
racy 10−6 with 12752 function evaluations. Our SSA algorithm requires more function evaluations but
we manage to reach a better approximation. As concerns the functions S1, ..., S6, the averaged numbers
of function evaluations reported in [21], for a relative accuracy of 10−6, are surprisingly smaller than
ours but the method finds just one global solution.

6. Conclusions
In this work, we propose a new stochastic algorithm to find all global solutions of multimodal objective
function problems. Our computational experiments show that the SSA algorithm is capable of locating
all the global optima with acceptable number of function evaluations. The numerical results also indicate
that the SSA algorithm is a useful tool for detecting a global optimum when the problem has a large
number of local solutions.

In our view, we may adapt the SSA algorithm to find all the global solutions as well as some local
(non-global) ones, probably the ”best”, in the sense that these local solutions have function values that
satisfy

|g(t∗)− g(t∗i )| < η

where t∗ represents the global maximizer and t
∗
i are the desired non-global maximizers, for a fixed posi-

tive η. This issue is now under investigation.
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