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A new semi-implicit stress integration algorithm for finite strain plasticity (compatible with hyperelas-
ticity) is introduced. Its most distinctive feature is the use of different parameterizations of equilibrium
and reference configurations. Rotation terms (nonlinear trigonometric functions) are integrated explicitly
and correspond to a change in the reference configuration. In contrast, relative Green–Lagrange strains
(which are quadratic in terms of displacements) represent the equilibrium configuration implicitly. In
addition, the adequacy of several objective stress rates in the semi-implicit context is studied. We para-
metrize both reference and equilibrium configurations, in contrast with the so-called objective stress
integration algorithms which use coinciding configurations. A single constitutive framework provides
quantities needed by common discretization schemes. This is computationally convenient and robust,
as all elements only need to provide pre-established quantities irrespectively of the constitutive model.
In this work, mixed strain/stress control is used, as well as our smoothing algorithm for the complemen-
tarity condition. Exceptional time-step robustness is achieved in elasto-plastic problems: often fewer
than one-tenth of the typical number of time increments can be used with a quantifiable effect in
accuracy. The proposed algorithm is general: all hyperelastic models and all classical elasto-plastic
models can be employed. Plane-stress, Shell and 3D examples are used to illustrate the new algorithm.
Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In retrospective, the implementation of multiple constitutive
laws and multiple element formulations limits the choice in terms
of finite strain constitutive integration. Distinct constitutive laws
should not require distinct finite element implementations and
mixed finite element formulations should be able to use any
constitutive law implementation. In structural elements, this
decoupling was the leitmotiv of, among others, the degenerate shell
formulation (cf. [2]) and multiparameter shell formulations
(cf. [21]). This also established the strain-driven algorithms as
standard (e.g. [39,41,24]) since isoparametric finite elements are
displacement-based, strain is directly available. Some important
contributions, described in the books by Belytschko, Liu and Moran
[15] and Bathe [13] mention the decoupling. In this sense, a
component perspective on discretization methods was introduced
by Areias et al. [11] and a formalization of a general framework
based on FeFp decomposition was introduced by Areias et al. [7]
after a first work focusing on smoothing the complementarity con-
dition of elasto-plasticity [10]. However, that approach requires
the inversion of fourth-order tensors, in contrast with the present
contribution.

In this work, we propose a simplification of the finite-strain
constitutive algorithms with different parameterizations of equi-
librium and reference configurations.

Some considerations are required to contextualize the present
work:

1. In many element formulations, stress or strain conditions
require the use of a local frame, such as beam and shell ele-
ments. Dimensional reduction (either strain, such as in the
plane-strain case, or stress, such as plane-stress and shell cases)
requires specific treatment in the finite strain case. An in-depth
study concerning the incompressibility constraint was
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performed by Antman and Schuricht [3]. For the discrete shell
case with the correct thickness extensibility, Hughes and Liu
[27] were the first to recognize the need for a specific treatment.
We here show a general methodology to treat known stress or
strain components in finite strain problems.

2. Large amplitude motions with elements containing rotational
degrees-of-freedomcan take computational advantage of a equi-
librium formulation based on relative strains, circumventing the
use of total rotation degrees-of-freedom. Alternatives are more
unmanageable, specially in the constrained case (e.g. [18]). It is
known that some commercial codes store quaternion parame-
ters to avoid the singularities in large amplitude rotations.
Our consistent updated-Lagrangian method (cf. [6,12,9]) is
extended to avoid the storage of rotation matrices.

3. Due to their complementarity form (see, e.g. [31]), plasticity
problems often exhibit convergence difficulties for large strain
values and severe sensitivity to step size [7].
We here present two measures to attenuate these difficulties:
the use of a smoothed complementarity condition and the
removal of iterative rotation matrices from the constitutive
laws in finite strains.

4. Anisotropic constitutive laws make use of a constitutive frame
which must be related to the aforementioned local frame.
Even in the absence of dimensional reduction, a local frame is
often required for the representation of anisotropic behavior.
Among other relevant properties, the proposed algorithm
remains valid for anisotropic hyperelasticity,

5. It is computationally convenient that both hyperelastic and
finite-strain elasto-plastic laws are implemented in a unique
algorithm and applicable to any discretization scheme.
This technique is introduced here by specializing the frame-of-
reference.

6. Classical assumed-strain elements typically do not directly pro-
vide the deformation gradient (e.g. [16]), necessary for many
constitutive formulations.
An estimated deformation gradient can be calculated from the
polar decomposition if an approximate rotation matrix is avail-
able. Since a constitutive frame is adopted, the rotation matrix
is obtained from this frame in two distinct configurations.

7. Since the seminal contributions of Weber and Anand [45] and
Simo [39], Kirchhoff stress tensors (i.e. s ¼ Jr) are frequently
employed in the yield functions. Two fundamental textbooks
on this approach are de Souza Neto et al. [24] and Simo and
Hughes [41]. The use of Kirchhoff stress tensor is a computa-
tional convenience, as commonly adopted elasto-plastic and
hyperelastic models are often quasi-incompressible. This is
not the case of porous plasticity or metal elasticity (cf. [9]).

8. Although theoretically identified, see Shutov and Kreißig [38]
by means of a thermodynamically-consistent function (wkin in
[38]), back-stresses are often introduced in a ad-hoc form. Typ-
ically, this requires a frame-invariant integration very similar to
the hypoelastic formulations. Some experiments were per-
formed by Areias and Rabczuk (cf. [10]).

9. Semi-implicit formulations, where certain quantities are fixed
in the flow vector (but not the flow vector itself), cf. [32,15]
can lead to substantial savings in constitutive integration. We
further extend the semi-implicit algorithm presented in [7] to
achieve very large time steps. Consistent linearization of inte-
grated form of objective rates is intricate and computationally
expensive, making it a possible candidate for the explicit inte-
gration part of the semi-implicit scheme.
In this work, rigid body motions are exactly represented.

A more inclusive approach to constitutive modeling in finite
strains, compatible with a variety of finite element discretizations,
is henceforth delineated and tested. In summary, Section 2 dis-
cusses the constitutive integration algorithm in detail including a
test of the adequacy of objective rates in the semi-implicit context,
Section 3 presents shell, 2D and 3D examples with both isotropic
and anisotropic materials and finally some conclusions are drawn
in Section 4.

2. Constitutive integration in finite strains

2.1. Objective rates

In the context of hypoelastic-based elasto-plasticity, objective
time-derivatives of spatial stress measures (either Cauchy, r, or
Kirchhoff, s ¼ Jr with J ¼ det F where F is the deformation gradi-
ent) are adopted. A comprehensive description of this approach is
performed in Chapters 7 and 8 of Simo and Hughes [41]. The goal
is to employ a rate version of Hooke’s law for metal plasticity.
Objections to such model are known (e.g. [39]) but have lost some
strength with the seminal work of Lehmann, cf. [30] who proved
the equivalence between a specific corotational time-derivative of
the Hencky strain (with the logarithmic spin) and the strain rate
D. That work has been extended to establish the equivalence
between hypoelasticity with the logarithmic rate and hyperelastic-
ity, cf. [47]. The long standing problem of integrability in hypoelas-
ticity is now solved with the logarithmic rate [49]. However, if the
rate version of Hooke’s law is maintained, the strong ellipticity con-
dition limits the maximum elastic stretch to the range
½0:21162;1:39561� [20], which is only slightly better than with
the Jaumann spin. Of course any elastic law could be adopted, but
Hooke’s law in rate form is computationally attractive. A review
paper discussing the use of logarithmic spin in finite strain elasto-
plasticity discusses many of these points, cf. [48], see also [4].

Two classical forms of reasoning about frame-invariance and
classical stress tensors (i.e. Cauchy and Kirchhoff) are based on
(i) transport equation (equivalent to the use of Lie derivative)
and (ii) rotation by exponential integration of a pre-established
spin. Using classical notation (e.g. [26,41]), and focusing on the
Kirchhoff stress tensor, these correspond to either:

� Pull-back the Kirchhoff stress, calculate the time-derivative of
the result, and push-forward this derivative (this corresponds
to the Lie derivative of the Kirchhoff stress or Truesdell rate).
� Rotationally neutralize the Kirchhoff stress (i.e. rotate-back to a
fixed reference configuration) so that rigid-body terms are
explicatively absent from the time-derivative. Of course, this
is a particular case of the pull-back, replacing the deformation
gradient with the rotation.

For the pull-back, we use the Kirchhoff stress s, the second Piola–
Kirchhoff stress S and the deformation gradient F:

s ¼ FSFT ()
_s ¼ Lsþ sLT þ F _SFT|ffl{zffl}

�s

ð1Þ

where _s is the time-derivative of the Kirchhoff stress and �s ¼ F _SFT is
identified as the constitutive or objective time-derivative (cf. [43]). In
(1), L ¼ _FF�1 is the velocity gradient, with its symmetric part being

identified as strain rate, D ¼ 1=2 Lþ LT
� �

and its skew-symmetric

part being given by the vorticity tensor W ¼ 1=2 L� LT
� �

. For the

rotationally neutralized case, rotations (here identified by the tensor
R) replace the deformation gradient in (1):

s ffi RSRT ()
_s ffi Xsþ sXT þ R _SRT|fflffl{zfflffl}

s�

ð2Þ
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Choice of a specific R with _RRT ¼ X in (2) is a matter of require-
ment for a given application. In (2), X, a skew-symmetric tensor
compatible with the specific R, is called a spin. In addition, in (2),

s�¼ R _SRT is a corotational rate. Several discussions are available
in the literature, for example Abbasi and Parsa [1] have compared
several spins including Lehmann’s [30] logarithmic spin. An impor-
tant work on spins is the one of Reinhard and Dubey [35] where a
rationale for the aforementioned equivalence is described. We note
that the use of Kirchhoff stress can be justified in standard metal
plasticity applications but not in other cases (for example porosity
models of plasticity are compressible). This discussion, despite
being standard, motivates the following developments.

2.2. Parametrization of configurations

We now consider two configurations1 Xa and Xb identified by
time instances ta and tb such that ta P tb. Let the positions of a given
point X in configurations Xa and Xb be xa ¼ xðn; taÞ 2 Xa and
xb ¼ x n; tbð Þ 2 Xb respectively, with n being curvilinear coordinates.
Derivatives of x with respect to coordinates n are denominated Jaco-
bians (J) of the corresponding coordinate transformations:

Ja ¼
@x n; tað Þ

@n
ð3Þ

Jb ¼
@x n; tbð Þ

@n
ð4Þ

Using definitions (3) and (4), the relative deformation gradient
is given by:

Fab ¼ JaJ
�1
b ð5Þ

Simo (cf. [41] p. 281, Eq. (8.1.13)) derived a one-step scheme for
integrating the strain rate in frame 0 (which is not standard). If the
explicit version is used (a ¼ 0 in [41]), it produces the following
relative strain from integration of the strain rate:

eab ¼ 1
2

FT
abFab � I

� �
ð6Þ

such that

eab ffi ta � tbð ÞDb ð7Þ
where Db is the strain rate at t ¼ tb. Eq. (6) is specially convenient: it
is a quadratic function of the position at configuration Xa, greatly
simplifying the linearization and the extension to the full total
Lagrangian formulation. It is however an explicit integration
method, with predictable shortcomings in terms of drifting. We
can therefore use (6) to determine the classical Green–Lagrange
strain ea0:

ea0 ¼ 1
2

FT
a0Fa0 � I

� �
() ð8Þ

ea0 ¼ eb0 þ FT
b0eabFb0 ð9Þ

We still need to determine the conjugate stresses to the relative
strain. We recall that, using a classical result of continuum
mechanics, the second Piola–Kirchhoff stress is power-conjugate
to the time-derivative of the Green–Lagrange strain. The tradi-
tional power argument is employed with the determination of Sab:

_W int ¼
Z
Xb

tr½ST
ab
_eab�dXb

¼
Z
X0

tr½ST
a0
_ea0�dX0

ð10Þ
1 We use standard notation in continuum mechanics [43].
where the trace operator (tr½�� ¼ � : I) as well as the second Piola–
Kirchhoff stress Sa0 � S were used. It is simple, but intricate, to
prove the following relation between the second Piola–Kirchhoff
stress Sa0 and the relative stress Sab:

Sab ¼ 1
Jb0

Fb0Sa0F
T
b0 ð11Þ

where Jb0 is the determinant of Fb0 corresponding to the Jacobian of
transformation 0# b:

Jb0 ¼ det Fb0 ¼ dXb

dX0
ð12Þ

To avoid misinterpretation, in a tensor such as Sab we designate
the first index a as identifying the equilibrium configuration Xa and
the second index b as identifying the reference configuration Xb. Eq.
(11) is generalized as follows:

Sac ¼ 1
Jcb

FcbSabF
T
cb ð13Þ

with Jcb ¼ det Fcb. With the exception of hyperelastic laws, most
constitutive laws use the Cauchy stress. Yield functions should be
based on the Cauchy stress, which typically makes use of the nota-
tion r. It is straightforward to identify the Cauchy stress as Saa:

r ¼ Saa ¼ 1
Ja0

Fa0Sa0F
T
a0 ()

Saa ¼ 1
Jab

FabSabF
T
ab

ð14Þ

Using a hypoelastic relation, stress updating is performed
additively:

Sab ¼ Sbb þ D�SaðeabÞ ð15Þ
where D�Sa, the constitutive part of the stress, is a function of the rel-
ative strain eab. This will be specified later in Section 2.6 in implicit
form. Therefore, in [9], to account for compressible metal plasticity,
we showed that, using two configurations Xa and Xb, equilibrium
equations can be written using the relative deformation gradient
Fab and the corresponding stress Sab where indices a and b identify
configurations Xa and Xb, respectively:

$b � FabSabð ÞT þ Jabb ¼ 0 ð16Þ
where $b is the gradient operator with respect to the position
xb 2 Xb (see Fig. 1):

$b � @

@xb
ð17Þ

and b is the body load vector compatible with the Cauchy equations
of equilibrium. The relative deformation gradient and Jacobian are
respectively defined as:

Fab ¼ $b � xa ð18Þ
Jab ¼ det Fab ð19Þ

In addition, the notation F�1ab ¼ Fba holds. Since the matrix forms of
Sab and eab are symmetric, Voigt form can be used with advantages.
Using the Voigt form (here identified by the upright bold notation),
we write (13) as:

Sac ¼ 1
Jcb
VSðFcbÞSab ð20Þ

where Sac ¼ Voigt½Sac�; Sab ¼ Voigt½Sab�, etc. We note that, omitting
indices c and b;VSðFcbÞ can be written, if all 6 stress components
are relevant, as:



Fig. 1. Moving reference configurations.

VSðFÞ ¼

F2
11 F2

21 F2
31 2F21F11 2F31F11 2F31F21

F2
12 F2

22 F2
32 2F22F12 2F32F12 2F32F22

F2
13 F2

23 F2
33 2F23F13 2F33F13 2F33F23

F11F12 F21F22 F31F32 F21F12 þ F11F22 F31F12 þ F11F32 F31F22 þ F21F32

F11F13 F21F23 F31F33 F21F13 þ F11F23 F31F13 þ F11F33 F31F23 þ F21F33

F12F13 F22F23 F32F33 F22F13 þ F12F23 F32F13 þ F12F33 F32F23 þ F22F33

2
6666666664

3
7777777775
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noting that the Voigt form of stresses follows the convention
Sac ¼ S11; S22; S33; S12; S13; S23f gTac .

We note that Eq. (20) is a non-corotational change of reference
configuration for the relative stress. If a relative rotation tensor
Rcb is used instead of Fcb, we obtain the following update equation:

Sac corotationalð Þ ¼ 1
Jcb
VS Rcbð ÞSab ð21Þ

The total Green–Lagrange strain is obtained similarly:

eac ¼ ebc þ VEðFT
bcÞeab ð22Þ

where VEðFT
bcÞ ¼ VT

S ðFT
bcÞ. Chain rule can be applied to the deforma-

tion gradient, with the following result:
Fac ¼ FabFbc ð23Þ

Note that Eqs. (22) and (23) are exact, whereas stress updates
such as (21) are approximations. For the particular case Xc � X0,
we have Fa0 ¼ FabFb0. Fig. 1 depicts this decomposition. From Fa0,
we introduce the left Cauchy-Green tensor ba0 as:

ba0 ¼ Fa0F
T
a0 ð24Þ

Spectral decomposition of the positive-definite tensor ba0 reads
(Nsd is the number of space dimensions):

ba0 ¼
XNsd
i¼1

vini � ni|fflfflffl{zfflfflffl}
Ni

ð25Þ
where vi are the eigenvalues of ba0;ni are the eigenvectors and N i

are the eigenprojections. Although not always required, this decom-
position (25) is here useful to define the Green-Naghdi rate, based
on the polar spin, as well as the logarithmic spin.
2.3. Frames for local quantities

Two salient aspects in geometric modeling are described: struc-
tural elements, such as beams and shell elements, naturally pos-
sess a local frame corresponding to their spatial orientation.
Constitutive quantities take advantage of these local frames. In
addition, anisotropic materials are defined in terms of principal
anisotropic directions (cf. [34]), which can be defined from the
local frame. We therefore introduce a local transformation matrix,
Tðh;/Þ which converts the local frame corresponding to to an ani-
sotropic frame (see Fig. 2):

Tðh;/Þ ¼
cosð/Þ cosðhÞ � sinðhÞ sinð/Þ cosðhÞ
cosð/Þ sinðhÞ cosðhÞ sinð/Þ sinðhÞ
� sinð/Þ 0 cosð/Þ

2
64

3
75 ð26Þ

where h is the angle between eIIb and eHIIb and / is the angle between

eIIIb and eHIIIb (see Fig. 2). We define the anisotropy frame RH
0b from R0b

and Tðh;/Þ as:

RH
0b ¼ R0bTðh;/Þ ð27Þ



Fig. 2. Relations between frames: R0b is determined by the specific element and
columns of RH

0b are the principal anisotropic directions. Directions eI ; eII and eIII are
provided by each element technology. Typically in shells eIII corresponds to the
surface normal.

Table 1
Common spins.

Spin name Symbol Formula

Vorticity (Jaumann) XW
a

Wa

Polar (Green-Naghdi) XR
a Wa þ

PNsd
i¼1

PNsd
j–i

ffiffiffiffi
vj
p � ffiffiffiffivi

pffiffiffiffivi
p þ ffiffiffiffi

vj
p

� �
N iDaN j

Logarithmic Xlog
a Wa þ

PNsd
i¼1

PNsd
j–i

viþvj

vj�vi
þ 2

lnvi�lnvj

h i
N iDaN j

With vi – vj
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in which the reduced constitutive model is written. Multiplication
(27) will result in principal anisotropic directions which are local
to each element, which may not be the intended objective. We
therefore also introduce the global version, which is:

RHH
0b ¼ R0bR

T
00Tðh;/Þ ð28Þ

where R00 is obtained by evaluating R0b at t ¼ 0: R00 ¼ R0bjtb¼0. For-
mula (28) defines RHH

0b as a global moving frame.
2.4. Spin integration

Time integration of spin is now further explored. With that goal,
we make use of the velocity gradient. The velocity gradient in equi-
librium configuration Xa; La, is defined as

La ¼ @ _xa
@xa
¼ _FabFba ð29Þ

from which the strain rate Da ¼ Symm½La� and the vorticity tensor
Wa ¼ Skew½La� are determined, respectively, as:

Da ¼ 1
2

La þ LT
a

� �
ð30Þ
2 Since only relative Xa ! Xb quantities are adopted, we do not require a rotation
pdate.
Wa ¼ 1
2

La � LTa
� �

ð31Þ

Spins are a function of the vorticity and the decomposition (25).
Table 1 shows three common spins, typically used in hypoelastic
formulations. It is now established that, for fully implicit algo-
rithms, Xlog is the correct spin to ensure compatibility with elastic-
ity [19]. However, for semi-implicit algorithms, no conclusion exists
yet. We note that it was recently proved by Shutov and Ihlemann
that, in contrast with the Jaummann rate, the Logarithmic rate is
not invariant with respect to changes in the reference configuration
[37].
Time-integration of a spin Xa is performed using the two men-
tioned configurations and provides the following integrated rota-
tion matrix2:

RX
ab ¼ exp Xa½ � ð32Þ

where

exp½Xa� ¼ I þ sin Xað Þ
Xa

Xa þ 1� cos Xað Þ
X2

a

" #
X2

a ð33Þ

with Xa ¼ kf Xa½ �32; Xa½ �13; Xa½ �21gk. To obtain Xa using Table 1, we
define Wa and Da from Fab as:

Wa ¼ Skew½I � F�1ab �
ta � tb

ð34Þ

Da ¼ Symm½I � F�1ab �
ta � tb

ð35Þ

To account for all options of stress integration, we introduce the
second-order tensor Gab, which is defined as

Gab ¼

Fab Non-corotational
RW

ab Vorticity

RR
ab Polar

Rlog
ab Logarithmic

8>>>><
>>>>:

ð36Þ
2.5. Integration algorithm

In terms of algorithm organization, elements with known stress
components with conjugate unknown strain components (and vice
versa) use an array of size Nvoigt for the Voigt form of strain and
stress. When, for a given component, both stress and strain are
irrelevant for the discretization method, we omit that component.
Beams, plates and shells, besides continuum plane-stress elements
have one or more conditions of known stress. Each known stress
component corresponds to an unknown strain component and vice
versa. Known stresses are identified by the superscript K and for
unknown stresses no superscript is required. For simplicity, we
also use K for the number of known stress components. Unknown
strain components, for example thickness-direction normal strain
in a shell, we use the superscript U. We provide a tabular represen-
tation of these quantities (cf. Table 2) for common discrete models.
We note that only the cases Nvoigt ¼ 4 and Nvoigt ¼ 6 need to be
considered for all common discretization cases. A similar introduc-
tion to use of full constitutive laws in structural elements was per-
formed by Klinkel and Govindjee [28]. The full algorithm is given in
Algorithm 1 with D�Sab being the constitutive correction in the
updated-Lagrangian method.

Certain assumed-strain elements (such as Bathe MITC family
u



Algorithm 1. Relative Lagrangian formulation (Voigt notation adopted).

Given (calculated) Fab; eab (both in frame defined by RH
0b or RHH

0b )

Given (recovered from storage) Fb0, S
H6
bb ;Bbb; eb0

Transformation and dimension reduction Sbb ¼ RNvoigt	6VS RT
0A

� �
SH6
bb

Relevant Jacobian determinants Jb0 ¼ det Fb0

Jab ¼ det Fab

Total deformation gradient update Fa0 ¼ FabFb0

Assignment to equilibrium Sab  Sbb
stress and backstress Bab  Bbb

Total strain update ea0 ¼ eb0 þ VE FT
b0

� �
eab

(UL) Update Sab  Sab þ D�Sab, Bab along with sensitivity Cab ¼ @Sab
@eab

Unknown strain update ea0  ea0f g [ eUa0
� 	

(TL) Determine Sa0 and Bab, along with sensitivity Ca0 ¼ @Sa0
@ea0

Unknown strain update ea0  ea0f g [ eUa0
� 	

(TL) Determine relative stresses Sab ¼ 1
Jb0
VS Fb0ð ÞSa0

(TL) Determine relative sensitivities Cab ¼ 1
Jb0
VS Fb0ð ÞCa0VEðFT

b0Þ
Determination of Gab Gab � Gab Jab; Fab; Fa0ð Þ

(cf. Algorithm 2)
Change reference configuration for stresses Saa ¼ 1

Jab
VS Gabð ÞSab

Change reference configuration for back-stresses Baa ¼ 1
Jab
VS Gabð ÞBab

Determine global stresses SH6
aa ¼ VS R0Að ÞRT

Nvoigt	6Saa

Store Fa0; S
H6
aa , Baa; ea0

Return Sab and Cab

Algorithm 2. Determination of Gab.

Given Jab; Fab and Fa0

Non-corotational
Relative deformation

gradient
IGab ¼ Fab

Corotational
Absolute left Cauchy-

Green tensor
ba0 ¼ Fa0F

T
a0

Eigenvectors and
eigenvalues of ba0

ba0 ¼
PNsd

i¼1vini � ni|fflfflffl{zfflfflffl}
Ni

Vorticity Wa ¼ 1
2 F�Tab � F�1ab

� �
Strain rate Da ¼ I � 1

2 F�Tab þ F�1ab

� �
Vorticity rate IGab ¼ exp Wa½ �
Polar

XR
a ¼Waþ

PNsd
i¼1

PNsd
j–i

ffiffiffiffi
vj
p � ffiffiffiffivi

pffiffiffiffivi
p þ ffiffiffiffi

vj
p

� �
N iDaNj

IGab ¼ exp XR
a


 �
Logarithmic Xlog

a ¼Waþ
PNsd

i¼1
PNsd

j–i
viþvj

vj�vi
þ 2

lnvi�lnvj

h i
N iDaN j

IGab ¼ exp Xlog
a

h i

Table 2
Nvoigt and K for common discrete models.

Discrete model Nvoigt K Sab; eab; S
reduced
ab ; ereducedab

R0b

Shear-deformable
beam

6 3 SK11 ¼ 0
SK22 ¼ 0
S33
SK12 ¼ 0
S13
S23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

eU11
eU22
e33
eU12
e13
e23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

S33
S13
S23

8<
:

9=
;;

e33
e13
e23

8<
:

9=
;
: � I

Shear-deformable
shell

6 1 S11
S22
SK33 ¼ 0
S12
S13
S23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

e11
e22
eU33
e12
e13
e23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

S11
S22
S12
S13
S23

8>>>><
>>>>:

9>>>>=
>>>>;
;

e11
e22
e12
e13
e23

8>>>><
>>>>:

9>>>>=
>>>>;

: � I

Plane stress 4 1 S11
S22
SK33 ¼ 0
S12

8>><
>>:

9>>=
>>;;

e11
e22
eU33
e12

8>><
>>:

9>>=
>>;;

S11
S22
S12

8<
:

9=
;;

e11
e22
e12

8<
:

9=
;
� I

Plane strain 4 0 S11
S22
S33
S12

8>><
>>:

9>>=
>>;;

e11
e22
eK33 ¼ 0
e12

8>><
>>:

9>>=
>>;;

S11
S22
S12

8<
:

9=
;;

e11
e22
e12

8<
:

9=
;
� I

Three-dimensional 6 0 S11
S22
S33
S12
S13
S23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

e11
e22
e33
e12
e13
e23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

S11
S22
S33
S12
S13
S23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

e11
e22
e33
e12
e13
e23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� I

Axisymmetric 4 0 S11
S22
S33
S12

8>><
>>:

9>>=
>>;;

e11
e22
e33
e12

8>><
>>:

9>>=
>>;;

S11
S22
S33
S12

8>><
>>:

9>>=
>>;;

e11
e22
e33
e12

8>><
>>:

9>>=
>>;

� I
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[25,14]) do not provide directly a compatible form of Fab. A form to
approximate Fab in the global frame (here identified as 0) consists
in using the square root of the right Cauchy-Green tensor, as
follows:

Fabj0 ffi RT
0aR0b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eab þ I

p
ð37Þ
At this point, we are concerned with the adequacy of classical
spins in a semi-implicit algorithm. Simple tests with Algorithms
1 and 2 are performed. An imposed deformation gradient is



Fig. 3. Effect of choice of Gab in the stress–strain response (case I with unloading). Fig. 4. Effect of choice of Gab in the stress–strain response (case II without
unloading).
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Table 3
Prototype yield functions employed.

Yield function

von-Mises

Hill

Barlat 91

(BCC: m ¼ 6)

T ¼
1
3 P3 S11 � S22ð Þ � P2 S33 � S11ð Þ½ � P6S12 P5

P6S12 1
3 P1 S22 � S33ð Þ � P3 S11 � S22ð Þ½ � P4

P5S13 P4S23 1
3 P2 S33 � S11ð Þ½

2
64

Fig. 5. Effect of step size on the response with the Jaumann rate (case II).

Fig. 6. Replacement of lHDc� lHDcþ /h iby lHDc� SðlHDcþ /Þ as a function of a
Error parameter (lH ¼ 1 is depicted).
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introduced; for the first test the following imposed deformation
gradient is employed:
F I ¼
1þ z �z 0
0 1 0
0 0 1

2
4

3
5; z 2 ½0;2� and unloading ð38Þ

The second test makes use of the following imposed deforma-
tion gradient:
F II ¼
1 b 0
0 1 0
0 0 1

2
4

3
5; b 2 ½0;5� without unloading ð39Þ

For case I, Fig. 3 shows that classical Jaumann, Green-Naghdi
(polar) and Logarithmic rate provide similar responses in the fully
implicit algorithm with the mid-point rule (cf. [41]) and show very
different results in the semi-implicit case. It can be observed that, as
the number of steps increases from 20 to 100, results for all corota-
tional rates become coincident. For case II, Fig. 4 shows that the
Green-Naghdi rate, logarithmic rate, the non-corotational rate pre-
sent significant drifts for small number of steps. Although oscilla-
tory, the Jaumann rate presents only a small difference between
20 and 100 steps and no observable drift. To inspect this in detail,
we test the Jaumann rate in bothmid-point and semi-implicit cases
in Fig. 5. We therefore employ RW

ab in the remaining of this work.
/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 S11�S22ð Þ2þ1

2 S11�S22ð Þ2þ1
2 S11�S22ð Þ2þ3S212þ3S213þ3S213

p
ry

� 1

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F S22�S33ð Þ2þG S33�S11ð Þ2þH S11�S22ð Þ2þ2s12S212þ2s13S213þ2s23S223
p

ry
� 1

F ¼ 1
2

1
R2
22
þ 1

R2
33
� 1

R2
11

h i
G ¼ 1

2
1
R2
11
þ 1

R2
33
� 1

R2
22

h i
H ¼ 1

2
1
R2
11
þ 1

R2
22
� 1

R2
33

h i
s12 ¼ 3

2R2
12

s13 ¼ 3
2R2

13

s23 ¼ 3
2R2

23

/ ¼
1
2 T1�T2ð Þmþ1

2 T2�T3ð Þmþ1
2 T3�T1ð Þm½ �1=m

ry
� 1

where Ti are the eigenvalues of T

S13
S23
� P1 S22 � S33ð Þ�

3
75
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2.6. Mixed strain/stress control in constitutive solution

Relevant constitutive equations are grouped in a residual vec-
tor, here identified by u. Constitutive quantities are determined
by Newton iteration over this constitutive vector. We therefore
reduce the state determination to the root finding with the follow-
ing nonlinear system:

u Sab
z}|{

Governing; eU
ab|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Unknown

; SK
ab; e

K
ab; eab|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Known

; Bab|{z}
Back-stresses

; va|{z}
Internal var:

0
B@

1
CA ¼ 0 ð40Þ

where SKab is a set of known stresses and eU
ab is the set of unknown

strains. Newton iteration for (40) provides the solution for the con-
stitutive unknowns Sab, eU

ab;Bab and va. A smoothed version of (40) is
introduced by using the Chen–Mangasarian replacement functions,
which depend on a parameter Error such that (cf. [7]):

lim
Error!0

uError ¼ u ð41Þ

Newton iteration on (40) provides the following scheme:

@uError
@Sab

@uError

@eU
ab

@uError
@Bab

@uError
@va

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J

DSab
DeU

ab

DBab

Dva

8>>><
>>>:

9>>>=
>>>; ¼ �uError ð42Þ
Fig. 7. Pinched cylinder with von-Mises yield criterion (full constitutive system with stre
coefficient. The hardening law provides the yield stress ry .
After achieving solution using the Newton scheme (42), we calcu-
late the sensitivities from the following equation:

dSab
deU

ab

dBab

dva

8>>><
>>>:

9>>>=
>>>; ¼ �J

�1 @uError

@eK
ab

@uError

@eab

� 

deK

ab

deab

� �
ð43Þ

We provide two examples: hyperelasticity in plane-stress and
elasto-plasticity with shells. For hyperelasticity in plane-stress,
the system is independent of Error:

uðSab; eU33; S33; eabÞ ¼

S11
S22
S33 ¼ 0
S12

8>>><
>>>:

9>>>=
>>>;�

@wðeab; eU33Þ

@

e11
e22
eU33
e12

8>>><
>>>:

9>>>=
>>>;

ð44Þ

For elasto-plasticity in shells we provide a general approach using
D�Sab ¼ Sab � Sbb, with details being given in [7]:

uðSab; eU33; S33; eabÞ ¼

eab � C�1linearD
�Sab � nDc

S33
lHDc� lHDcþ /h i
Dva � DcxðvaÞ

8>>><
>>>:

9>>>=
>>>; ð45Þ
ss condition). H is the initial thickness, E is the Young’s modulus and m is the Poisson
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where the Macaulay brackets are used with the usual meaning:
�h i ¼ j�jþ�2 . In (45), Dc is the plastic multiplier increment, lH is a
dimensional parameter described in [7]. Function / in (45) is the
yield function and x is the vector of internal variable evolution
functions. In addition, the flow vector n is also required for the flow
rule, and it is defined as:

n ¼ @/
@Sab

ð46Þ

In (45), equation lHDc� lHDcþ /h i is a compact form of Kuhn-
Tucker (compatibility) conditions. Since (45) is a non-smooth
equation system due to the presence of the absolute value func-
tion, we use the smooth ramp function Sð�Þ of Chen and Mangasar-
ian [22] for the third equation, which depends on Error:

uErrorðSab; eU33; S33; eabÞ ¼

eab � C�1linearD
�Sab � nDc

S33
lHDc� SError lHDcþ /ð Þ
Dva � DcxðvaÞ

8>>><
>>>:

9>>>=
>>>; ð47Þ
Fig. 8. Pinched cylinder: effect of time-step and comparison with Wagner, Klinkel and Gr
iteration parameters), cf. [23].
Fig. 6 shows the effect of Error in the satisfaction of the com-
plementarity condition. Sensitivities of these constitutive systems
are determined by the AceGen [29] add-on to Mathematica [36].

The three prototype yield functions employed are von-Mises,
Hill and Barlat 91. All are treated in the same format, without
requirement of particular implementations (which are only possi-
ble with von-Mises and Hill criteria). The reason for a unique treat-
ment for all yield functions is that any particular yield function is
inserted by means of /;n and derivatives of n. We summarize
the yield functions in Table 3.
3. Numerical examples

Examples were performed in a in-house code. Element formula-
tions adopted are:

� Mixed quadrilateral shell elements [8].
� B-bar hexahedra [42] with the correct isochoric right Cauchy-
Green tensor derived by Wriggers [46].
� Traditional displacement-based plane stress triangles.
uttmann [44]. Comparison with Abaqus Standard with S4R element (default Newton



Fig. 9. Pinched cylinder with Hill yield criterion (full constitutive system with stress condition). The anisotropic direction I is shown, as well as a top perspective of the
thickness contour plots.

Fig. 10. Pinched cylinder with Hill yield criterion. Step size sensitivity.
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In addition, with the exception of the tension test problem,
where the effect of Error is assessed, we use Error ¼ 1	 10�3

in all other tests. With the objective of comparing the results with
commercially available software, we also use Abaqus Standard [23]
version 6.8 with the S4R element for comparison with our algo-
rithm in the isotropic pinched cylinder.

In terms of solution and expected results we have the
following:

1. The structural scheme consists of low-order elements (thin
shells and 3D) using Gaussian quadrature.

2. Loading scheme is a simple proportional load factor, including
deformation-dependent pressure.

3. We measure the drifting, accuracy of results and Newton itera-
tion robustness.

4. Effective plastic strain, ep is determined by time-integration (t)
up to total time T and power-equivalence (see also [7]):

ep ¼
Z T

0

_epdt ð48Þ

where

_ep ¼ Sab � Db

ry
ð49Þ



Fig. 11. Square plate under pressure: relevant data.
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3.1. Finite strain plasticity shell problems

Two classical finite-strain shell problems with thickness exten-
sibility are solved: the pinched cylinder (see Figs. 7 and 9) and the
plate under pressure (see Ref. [8] for relevant data as well as
Figs. 11 and 12). Besides the classical von-Mises plasticity here
implemented with our algorithm (radial return cannot be used,
since the plane stress condition invalidates its use), we also test
the Hill criterion with local frame angles p=4 (pinched cylinder)
and p=6 (plate under pressure). For the pinched cylinder, excellent
results were obtained with a very small number of steps (5), and
these agree with Wagner, Klinkel and Gruttmann [44]. A compar-
ison with Abaqus Standard with the S4R element shows that only
with variable step size Abaqus achieves convergence for 300 mm
pinching displacement, see Fig. 8. In terms of Newton iteration
convergence, robustness of the present algorithm is clear (see
also Figs. 9 and 10 for the results with the anisotropic Hill
criterion).

For the plate under pressure, Figs. 13 and 14 show some drift-
ing when 5 or 10 steps are used, but overall the results are very
robust. Note that it is usual to use 50 or more steps in these
problems.

3.2. Square composite plate

We now consider a two-layer composite plate, as shown in
Fig. 15. For the properties, we use Glass/Epoxy GE-2 material from
Table 2.2.1 of Reddy [34]. Fig. 15 shows the relevant data and
orthotropic properties for the depicted frame, as well as mesh
deformations with the corresponding principal anisotropic direc-
tions that follow the deformation. We assess the step-size influ-
ence in the results in Fig. 16 to conclude that, for finite strains, a
distinct but reasonable (50 or 100) quantity of steps produces very
similar results. Note that we purposively employed an incremental
orthotropic law to force the use of relative strains. However, this
has no visible effect in the results.

3.3. Tension test of a truncated cone: comparison of von-Mises, Hill
and Barlat 91 criteria

As a prototype model, we perform a test of a nearly-cylindrical
specimen originally made of ASTM A-533 steel. It is subject to an
imposed displacement in its base. This specific geometry is used
to force necking and was adopted by Simo [39] (see also Ref. [40]
where the test is explored in further detail) in the context of plas-
ticity in principal components, where radial return is still applica-
ble. Test data was obtained by Norris et al. [33] who performed an
experimental test and used a 2D finite-difference simulation with
grid rezoning in the specimen core. We use the properties of their
specimen 2499R and a piece-wise linear law adapted from the one
by Simo [39]. Finite element simulations based on a finite-strain
version of the radial-return algorithm result in convergence prob-
lems after the limit point is reached (cf. [50], pp. 358–359). The
geometry, boundary conditions and material properties are sum-
marized in Fig. 17 and Table 4.

Step-size dependence for the von-Mises (Fig. 18), Hill (Fig. 19)
and Barlat 91 (Fig. 20) yield functions show that significant drift
occurs with a small number of time-steps and gradually disappears
when more than 80 steps are employed. Deformed meshes and
effective plastic strain for 160 steps are shown in Fig. 21. Of course,
if a finer mesh is adopted, some differences occur in the necking
region, which are reported in Fig. 22. Constitutive parameter
Error is assessed for this problem, and we found that
Error ¼ 1	 10�3 is sufficiently accurate for most purposes, see
Fig. 23.

3.4. Plane-stress hyperelastic test with relativeGreen–Lagrange strains

A basic rectangular specimen with a circular hole is used to
assess the discussed approach in terms of step-size and constraint
enforcement (plane stress). The problem data is shown in Fig. 24
along with deformed configurations for the following two classical
hyperelastic models employed:

� Kirchhoff/Saint–Venant (cf. [17]):
Sa0 ¼ 2lea0 þ k trea0ð ÞI ð50Þ
with l ¼ E

2 1þmð Þ and k ¼ Em
ð1þmÞð1�2mÞ
� Transversely isotropic Kirchhoff/Saint–Venant (cf. [17]):
Sa0 ¼ 2lea0 þ k trea0ð ÞI þ 2b I4 � 1ð ÞI
þ 2 aþ b I1 � 3ð Þ þ 2c I4ð Þ½ �a0 � a0

� 2a Ca0a0 � a0 þ a0 � Ca0a0ð Þ
ð51Þ
with a0 being the fiber direction, I1 ¼ tr Ca0½ �, I4 ¼ aT
0Ca0a0 and

I5 ¼ aT
0C

2
a0a0. a; b and c are constitutive properties, cf. Bonet and

Burton [17]. These are determined from matrix properties EM and
mM and fiber properties EF and lF . Using consistent units, we have
E ¼ EM ¼ 2000; m ¼ mM ¼ 0:22, EF ¼ 4000 and lF ¼ 500. Therefore,



Fig. 12. Square plate under pressure: thickness contour plots for von-Mises and Hill criteria.

Fig. 13. Square plate under pressure with von-Mises criterion: effect of the time
steps. 3D EAS element HIS (cf. [5]) is used for comparison. Fig. 14. Square plate under pressure with Hill criterion: effect of the time steps.
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Fig. 15. Two-layer composite plate, relevant data (100 steps were employed for the results shown).

Fig. 16. Two-layer composite plate, effect of step size.

Fig. 17. Relevant dimensions and mesh for the tension test.
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using Eqs. (55a-g) in Bonet and Burton a ¼ �820;b ¼ �33:83 and
c ¼ 4:95.

Fig. 24 also shows the deformed geometry with the thickness
contour plot for a displacement u1 ¼ 0:08 in both cases. Although
the thickness is updated at the constitutive level, step-size robust-
ness is very high, since the explicit part of the constitutive updat-
ing algorithm is not active in the total Lagrangian case, see Fig. 25.



Table 4
Tension test: constitutive properties (consistent units).

E 206:9
m 0:29
ry 0:45þ ð0:715� 0:45Þð1� e�16:93ep Þ þ 0:12929ep
von-Mises �
Hill R11 ¼ 1:5;R22 ¼ 0:8;R33 ¼ 1:0;R12 ¼ 1:0;R13 ¼ 1:0, R23 ¼ 1:0
Barlat 91 a ¼ 0:95; b ¼ 0:65; c ¼ 1:05; f ¼ 1:0; g ¼ 1:0;h ¼ 1:05;m ¼ 6

Fig. 18. Results for the tension test: von-Mises criterion.

Fig. 19. Results for the tension test: Hill criterion.

Fig. 20. Results for the tension test: Barlat 91 criterion.

Fig. 21. von-Mises, Hill and Barlat 91 effective plastic strain contour plots.
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4. Conclusions

An alternative constitutive updating algorithm was proposed,
unifying the objective rates and classical total Lagrangian formula-
tions. The algorithm is semi-implicit in the sense that rotations are
performed in the end of the time step and therefore do not require
linearization. Frame-invariance during time step iterations is
ensured by relative Green–Lagrange strains. A comparison of spins
was performed to assess the adequacy of the explicit spin integra-
tion in terms of time-step sensitivity and it was found that the Jau-
mann rate provided reasonable results. Very large steps are
possible with our algorithm, at the cost of drifting, which is
expected from the explicit nature of spin integration. However,
the time step sensitivity, for a reasonable number of steps, is sim-
ilar to the mesh sensitivity in the same problem. In terms of exam-
ples, we showed both isotropic and anisotropic problems using, in
elasto-plasticity, von-Mises, Hill and Barlat 91 yield functions and,
in hyperelasticity, the approaches by Bonet and Burton [17] to use
a transversely anisotropic Kirchhoff/Saint–Venant model. An inter-
esting aspect in the total Lagrangian case (which is adopted for



Fig. 22. Effect of mesh size on the load/displacement results of the tension test
specimen (Barlat 91 criterion). The two meshes are superimposed to show the
difference in shape.

Fig. 23. Effect of Error in the load/displacement results of the tension test
specimen (Barlat 91 criterion).

Fig. 24. Plane stress verification test: relevant data and thickness contour plot
(5554 nodes and 10742 displacement-based triangles).

Fig. 25. Step-size sensitivity for isotropic and transversely isotropic Kirchhoff/
Saint–Venant models.
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hyperelasticity) is that the relative Green–Lagrange strain is
adopted (here denoted by eab) and updated to obtain the absolute
Green–Lagrange strain (ea0). This allows the use of elements for-
mulated always in terms of relative Green–Lagrange strains, which
avoids the use of total rotational degrees-of-freedom in shells.
Local frames are employed for structural elements, which further
allows the determination of the deformation gradient from the
strain by a matrix square-root. Therefore, assumed-strain elements
such as the MITC family [14] do not require the calculation of the
deformation gradient directly. We also tested the logarithmic spin
by Lehmann [30] and verified the elasticity preservation in the
implicit integration case. However, for the proposed explicit spin
integration, significant drifting occurs, which limits the applicabil-
ity of Lehmann’s spin. The clear advantage of our integration algo-
rithm is its wide applicability to both isotropic and anisotropic
materials, hyperelastic and elasto-plastic constitutive laws.
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