
Support for Automatic Refactoring of Business
Logic

Tiago B. Fernandes1, António Nestor Ribeiro2, David V. Nunes3, Hugo R.

Lourenço3, and Luiz C. Santos3

1 Dep. Informática Universidade do Minho
2 Dep. Informática Universidade do Minho/Haslab - InescTec

3 OutSystems, Inc.

Abstract. Software’s structure profoundly affects its development and
maintenance costs. Poor software’s structure may lead to well-known
design flaws, such as large modules or long methods. A possible ap-
proach to reduce a module’s complexity is the Extract Method refactor-
ing technique. This technique allows the decomposition of a large and
complex method into smaller and simpler ones, while reducing the orig-
inal method’s size and improving its readability and comprehension.
The OutSystems platform is a low-code platform that allows the de-
velopment of web and mobile applications that rely on a set of visual
Domain-Specific Languages (DSLs). Even low-code languages when im-
properly used can lead to software that has maintenance issues like long
methods.
Thus, the purpose of this paper is to present the research and devel-
opment done to provide the OutSystems platform with a tool that au-
tomatically suggests Extract Method refactoring opportunities. The re-
search combines program slicing techniques with code complexity metrics
to calculate the best refactoring opportunities that preserve programs’
functionality.
The proposed approach was tested on typical OutSystems apps and was
shown to be able to reduce the overall applications’ complexity.

Keywords: Refactoring · Program Slicing · Code Complexity Metrics ·
OutSystems

1 Introduction

The complexity, size and inconsistency of software demand increased mainte-
nance costs and excessive investment of time for developing and managing it.
Several studies point out causes that limit any system’s functionality and devel-
opment: Gill and Kemerer [1991] referred constraints caused by the high com-
plexity degree; Banker et al. [1993] alerted the difficulties caused by large sys-
tems; Meyers and Binkley [2007] analyzed the problems caused by the lack of
system’s cohesion.

Software is constantly changed throughout its lifecycle. These changes are
caused by bugs correction, new features implementation and adoption of new
architectures, practices or development teams. Over time, all of these changes
can lead to complex, graceless and incomprehensible modules.

Thus, the purpose of this paper is to provide the OutSystems platform with
a tool that combines code complexity metrics and program slicing techniques to
reduce modules’ overall complexity.



2 Tiago B. Fernandes et al.

1.1 Context and Objectives

OutSystems offers an alternative to traditional software development models.
Its proprietary low-code platform allows rapid application delivery with mini-
mal hand-coding. The platform along with its visual DSL help programmers to
focus on the functional part of applications, and abstract themselves from im-
plementation details, that result in an increased productivity and software qual-
ity. Despite the proven improvements provided by the OutSystems Platform,
refactoring techniques may still help to maintain the balance and consistency of
software projects.

The application of refactoring techniques is fundamental to moderate soft-
ware complexity. Refactoring is the process of changing a software system to
improve the design of the code without affecting its external behavior [Fowler
et al., 2000]. However, manual refactoring is risky and thus it may imply pro-
grammers to be reluctant to its practice. Such behaviour may be due to various
factors: lack of knowledge of refactoring techniques; the fact its benefits is only
seen in the long term; being a complementary activity to the development of
features and bug fixing; being a risky operation that may introduce bugs. Fur-
thermore, refactoring is riskier if it is practiced in a disorganized way or without
a methodical approach.

Projects developed in the OutSystems Platform may benefit from the ap-
plication of some refactoring techniques, given the existence of large and com-
plex modules. These large modules are often referred to as ”Long Methods” in
Object-Oriented Programming. In the OutSystems’ context, an action has sim-
ilar behavior to a method, and thus we refer to it as ”Long Action”. One of
the most widely used techniques for reducing the complexity of modules is the
Extract Method primitive [Fowler et al., 2000], which is characterized by extract-
ing code from a routine to a subroutine so that the original routine’s complexity
reduces.

The OutSystems Integrated Development Environment (IDE), as well as
other industry-established IDEs, has refactoring primitives such as the Extract
Action. However, the identification of refactoring opportunities remains a pro-
cess dependent on human intervention. Thus, automatic identification of refac-
toring opportunities is imperative, in a context where IDEs supervise and suggest
changes in the code.

Refactoring applied externally and exclusively by the programmer must be
assisted by the IDE itself, through the presentation of suggestions and respec-
tive benefits. The aid of IDEs in the automatic identification and application
of refactoring techniques guarantees a methodical intervention which is not al-
ways guaranteed by an expert. Moreover, being the IDE the one responsible for
changing the software makes the entire refactoring process faster and more effi-
cient. The methodical application of refactoring techniques is essential, so that
the system maintains its expected quality and integrity.

Thus, the purpose of this paper is to present the research and development
done to provide the OutSystems platform with a tool that automatically sug-
gests Extract Action refactoring opportunities. The research combines program
slicing techniques with code complexity metrics to calculate the best refactoring
opportunities that preserve programs’ functionality.

2 Related Work

Given the wide complexity range of modules, it is imperative to analyze which
modules are the most complex. This way, it is possible to select the most useful
actions to refactor.



Support for Automatic Refactoring of Business Logic 3

Complexity analysis can be addressed in two ways: quantitative analysis and
structural analysis. Quantitative metrics consider program quantitative aspects
such as its dimension. For example, the Lines of Code (LOC) metric measures
the program’s length, i.e., it counts the number of rows. This metric is often
used in software development, given its simplicity to understand and apply.

On the other hand, structural metrics consider program structure, e.g., they
study the number of paths of an action and the data flow carried. For instance,
McCabe [1976] introduced the Cyclomatic Complexity (CC = e−n+2p) metric
that measures a program’s structure based on the paths of the Control Flow
Graph (CFG) [Allen, 1970]. Madi et al. [2013] present the metrics Total Cyclo-
matic Complexity (TCC) and Coupled Cyclomatic Complexity (CCC). While
TCC aims at measuring the global Cyclomatic Complexity (CC) of a module,
CCC intends at measuring the coupling level between modules’ components.

Next, it became necessary to decompose modules into simpler ones to re-
duce their complexity. For that, there were studied multiple program slicing
techniques that are able to extract behaviour from complex modules.

Program slicing is a technique that allows code extraction from a routine
to a subroutine while reducing the complexity of the first. Slicing was originally
designed to ease debugging processes [Weiser, 1981], but quickly became relevant
in metrics calculation, code analysis and maintenance [Harman and Hierons,
2001, Tsantalis and Chatzigeorgiou, 2011].

Concerning runtime information, static slicing [Weiser, 1981] consists of all
statements that can affect the value of a variable v and is directly associated
with the total computation of a variable (complete computation slice). On the
other hand, dynamic slicing [Korel and Laski, 1988] considers a specific value
of the variables for a specific execution of a program to present better slices
(regarding the input values). Conditioned slicing [Canfora et al., 1998] does not
consider the variables’ values but rather the conditions’ values, i.e., whether or
not a control predicate is true.

Regarding flow direction, backward slicing produces slices that contain all
statements and control predicates that may affect a variable at a specific state-
ment (slicing criterion). On the other hand, forward slicing [Bergeretti and Carry,
1985] produces slices that contain all statements and control predicates that may
be affected by a variable at a specific statement.

Concerning syntax preservation, syntax-preserving slicing aims at extracting
code from a routine to a subroutine by extracting statements and control predi-
cates without changing them. On the other hand, amorphous slicing Harman and
Danicic [1997] computes slices using syntactic transformations that may change
the code, e.g., by changing control predicates.

Regarding slicing scope, intraprocedural slicing uses a single procedure as a
boundary to compute slices, while interprocedural slicing [Horwitz et al., 1988]
generates slices with respect to multiple functions calls. Intraprocedural slicing
uses the Program Dependence Graph (PDG) [Ferrante et al., 1987] that repre-
sents control and data dependencies between nodes and interprocedural slicing
uses the System Dependence Graph (SDG) [Horwitz et al., 1988] to represent
interactions between multiple PDGs of a module.

Maruyama [2001] introduced the concept of block-based slicing to produce
slices that do not use the whole procedure as region, but rather a smaller portion
of the code. By limiting the slice expansion it is possible to extract a single
variable in multiple ways, which result in more suggested slices.



4 Tiago B. Fernandes et al.

3 The OutSystems Platform

The OutSystems Platform is a high-productivity platform intended for develop-
ing enterprise web and mobile applications. Its low-code IDE allows programmers
to quickly develop applications with little effort and reduced costs resulting in
a shorter Time to Market. It comprises a set of symbols, the most relevant of
which are:

The Start node indicates the beginning of the flow.

The End node indicates the ending of the flow.

The Server Action call node execute server side functions.

The Aggregate node easily allows to retrieve data from a database.

The If node executes a specific branch based on its condition.

The For Each node iterates over a list of items.

The Assign node which assigns a value to a variable. This node may
have multiple Assignments, avoiding the creation of multiple Assigns.

Figure 1 represents, in the OutSystems platform, an adaptation done by
Tsantalis and Chatzigeorgiou [2011] of a well-known refactoring example pre-
sented by Fowler et al. [2000]. An action in OutSystems is a flowchart with a
single entry point and may have multiple exit points.

Fig. 1: Statement action in OutSystems



Support for Automatic Refactoring of Business Logic 5

4 Proposed Solution

The proposed solution intends, in the first place, to evaluate the complexity of
modules in order to ascertain the need of their refactoring. This step identifies
the actions that are most likely to reduce their complexity after refactoring. The
complexity of modules is calculated based on the number of nodes (equivalent
to LOC in the OutSystems context) and the value of CC. According to Software
Improvement Group (SIG), these are two relevant metrics for analyzing the
quality and degree of software maintenance [Visser et al., 2016]. Both metrics
are used to evaluate whether an action should be refactored by selecting the
ones that would produce the best refactoring opportunities. The used threshold
values were the ones defined in SIG [Visser et al., 2016]: 15 nodes for LOC and
4 units of CC.

Secondly, the proposed solution aims at reducing the complexity of modules
by applying the Extract Action refactoring technique. Program slicing was the
technique used to identify parts of the code that compute a common variable
and then extract them to a different action.

The proposed solution is based on the Tsantalis and Chatzigeorgiou [2011]
proposal and presents the following properties: (i) backward slicing, (ii) static
slicing, (iii) intraprocedural slicing, (iv) syntax preserving slicing and (v) block-
based slicing (see Section 2). A backward slice is computed by ignoring parts
of the code that do not affect the slicing criterion, while a forward slice is com-
puted by ignoring the statements that cannot be affected by the slicing criterion
[Harman and Hierons, 2001]. Since there was no evidence of any performance
increase between the two, we kept with the original definition of program slicing
[Weiser, 1981] (in fact, the flow direction of the traversal should not affect slice
computation). Static slicing was chosen over dynamic slicing because it is a more
generic proposal as it computes all possible slices independent of user input. The
use of a single PDG at a time (intraprocedural slicing) was to reduce implemen-
tation efforts. Choosing syntax preservation was an in-house decision to avoid
possibly changing the original program’s structure. Block-based slicing was the
implemented solution as it allows a greater number of refactoring opportunities,
since it promotes the extraction of variable within the multiple regions of the
code. In this context, the technique is used to extract parts of the business logic
from an action to another to reduce the first’s complexity.

Maruyama [2001] proposed block-based slicing as a means to produce slices
scoped in a block-based region. A block-based region R(Bn) is a set of nodes
in the PDG along with control and data dependencies between them. A block-
based region starts at a specific basic block and ends at the last reachable one. A
basic block Bn is a sequence of consecutive nodes in the CFG without branching
and are delimited by leader nodes. A leader node is (i) the first node, (ii) a join
node or (iii) a node that directly follows a branch node. The Start and the End
nodes do not belong to any basic block. Figure 2 represents the basic blocks of
the action presented in Figure 1.



6 Tiago B. Fernandes et al.

Fig. 2: Basic blocks of the CFG

Maruyama defines a block-based slice SB(n, v,Bn) as a backwards static
slice that contains all statements that may affect the value of slicing criterion
C = (n, v) (given node n and variable v) within region R(Bn) (Equation 1).

SB(n, v,Bn) = {m ∈ N(G) | m→∗ n ∈ EB(R(Bn))}, v ∈ Def(n)

SB(n, v,Bn) =
⋃

m∈M(n,v,Bn)

SB(m, v,Bn)

M(n, v,Bn) = {m ∈ N(G) | m→v n ∈ EB(R(Bn))}, v ∈ Use(n)

(1)

Algorithm 1 represents the computation of the nodes of the block-based slice,
which are nodes that may affect the value of a variable v within the region R,
given the nodes and edges that belong to it.

Algorithm 1 Block-based Slice

1: procedure SliceNodes(node, variable, nodes, edges)
2: result← {}
3: if variable is null ‖ variable ∈ Def(node) then
4: result← result ∪BackwardsTraversal(node, edges)
5: else if variable ∈ Use(node) then
6: result← result ∪BackwardsTraversal(node, edges)
7: for each defNode ∈ IncomingDataDependencies(node) do
8: result← result ∪BackwardsTraversal(defNode, edges)

return result

Algorithm 2 represents the implemented backwards traversal algorithm used
by Algorithm 1, given the edges that belong to block-based region R. For aesthetics



Support for Automatic Refactoring of Business Logic 7

reasons, Algorithm 2 shortcuts incoming control dependencies and incoming data
dependencies to ”IncControlDeps” and ”IncDataDeps”, respectively.

Algorithm 2 Bottom-up Traversal of the PDG

1: procedure BackwardsTraversal(initial, edges)
2: result← {initial}
3: Add initial to queue
4: while queue is not empty do
5: node← Dequeue(queue)
6: for each dep ∈ IncControlDeps(node) ∪ IncDataDeps(node) do
7: if dep ∈ edges then
8: Add Source(dep) to result
9: if Source(dep) is not visited then

10: Add Source(dep) to queue

return result

As a means to extract the slice to a different action, it is needed to evalu-
ate whether or not the nodes can be removed from the original one. For that,
Maruyama defines as indispensable IB the nodes that belong to the slice SB
but should not be removed from the action to preserve its original behaviour.
Thus, indispensable nodes should exist both in the original and the created ac-
tion [Tsantalis and Chatzigeorgiou, 2011]. This nodes are indispensable due to
existing control or data dependencies from slice nodes SB to non-slice nodes UB

(Equation 2).

IB(SB , UB , v, B) = ICD ∪ IDD,

ICD = {q ∈ N(m) | (q ∈ SB(p, u,B) ∨ q = p) ∧ p ∈ NCD(SB , UB) ∧ u ∈ Use(p)},
IDD = {q ∈ N(m) | q ∈ SB(p, u,B) ∧ p ∈ NDD(SB , UB , v) ∧ u ∈ Def(p)}

(2)
The computation of the slice nodes with at least one control dependency to

non-slice nodes NCD is given by Equation 3.

NCD(SB , UB) = {p ∈ N(m) | p→c q ∈ E(m) ∧ p ∈ SB ∧ q ∈ UB} (3)

The computation of the slice nodes with at least one data dependency to
non-slice nodes NDD is is given by Equation 4.

NDD(SB , UB , v) = {p ∈ N(m) | p→u
d q ∈ E(m) ∧ u 6= v ∧ p ∈ SB ∧ q ∈ UB}

(4)
The aforementioned equations use the following definitions:

N(m) represents the nodes of the PDG.
E(m) represents the dependencies of the PDG.
SB represents the slice nodes.
UB represents the remaining nodes UB = N(m)\SB .
Use(p) is the set of variables used by node p.
Def(p) is the set of variables defined by node p.
NCD is the set of nodes p ∈ SB with a control dependency to a node q ∈ UB .



8 Tiago B. Fernandes et al.

NDD is the set of nodes p ∈ SB with a read after write (RAW) data depen-
dency (due to variable v) to a node q ∈ UB .
IncomingDataDependencies(p) is the set of RAW data dependencies
from node q ∈ N(m) to node p.
IncomingControlDependencies(p) is the set of control dependencies from
node q ∈ N(m) to node p.

The action in Figure 1 was subject to the implemented algorithm, produc-
ing multiple slicing opportunities for each variable within each region. Figure 3
represents one of the slicing opportunities generated by the algorithm. It illus-
trates the block-based slice for variable ”RenterPoints” at the block-based region
R(B2) delimited by the dashed box. Circled in green are the removable nodes
and in red are the indispensable nodes that will be duplicated after slicing.

Fig. 3: Block-based slice of ”RenterPoints” in R(B2)

However, Maruyama’s algorithm does not guarantee behaviour preservation
related with the duplication of statements. Tsantalis and Chatzigeorgiou [2011]
presented a set of rules regarding behaviour preservation, the most relevant of
which for this paper are the preservation of existing anti-dependencies (write
after read) and preservation of existing output-dependencies (write after write).
These dependencies should be preserved if they start in a node that will exist in
the original action after slicing and end in a node that will be removed from the
original action after slicing. If not, the order or execution will be changed after
extracting the slice [Tsantalis and Chatzigeorgiou, 2011], affecting the action’s
original behaviour.

5 Case Study

The selected case study is composed by 9 modules developed in the OutSystems
platform for some company’s purposes. These modules provide employees with
means of regression tests analysis, support for new incomers’ integration pro-
cesses, employee information listing, wage premium management and holiday
scheduling.



Support for Automatic Refactoring of Business Logic 9

The modules were chosen for their characteristics that are adverse of software
quality as they were maintained in rotating team environments. Currently, the
modules consist in 1643 actions that contribute, generally, to the system’s com-
plexity. The conditions under which the modules were developed and maintained
throughout their life cycles are prone to design flaws such as Long Actions.

As previously mentioned in Section 4, the selected threshold values are: 15
nodes for LOC and 4 units of CC, i.e., the selected actions for refactoring are
the ones whose LOC or CC is higher than the corresponding threshold value.

From the total 1643 identified actions, 331 of them (≈20%) have more than 15
nodes. Around 88% of the actions that are above the LOC threshold (290 actions
out of the 331 evaluated actions) produced at least one refactoring opportunity.
After refactoring, 49 actions (≈17% of the 290 actions that were above the
LOC threshold) reduced their complexity to a point where refactoring is no
longer needed, i.e., dropped below the LOC threshold. The remaining 241 actions
(≈83% of the 290 actions that were above the LOC threshold) reduced their
complexity but are still above the LOC threshold. Table 1 sums up this analysis,
given the LOC threshold value at 15 nodes.

Table 1: LOC threshold analysis

Number of actions Percentage (%)
Total number of actions 659 100%
Number of actions above the LOC
threshold

331 20%

Number of actions above the LOC
threshold with at least one refactoring
opportunity

290 88%

Number of actions below LOC thresh-
old after refactoring

49 17%

Number of actions above LOC thresh-
old after refactoring

241 83%

The 49 actions that once were considered complex but no longer are have
a number of nodes mostly ranged between 16 and 20 nodes, as Figure 4a sug-
gests. This may infer that the actions that dropped below the LOC threshold
are relatively close to it. The remaining 241 actions that are still complex after
refactoring have a number of nodes ranged between 17 and 256 nodes, as Fig-
ure 4b suggests. Thus, one can infer that 1 single application of this technique
may not be enough. As a matter of fact, 234 actions (≈97% of the actions that
are still complex after refactoring) produced at least one more valid slice.

(a) Nodes that dropped below LOC
threshold after slicing

(b) Nodes that remained above LOC
threshold after slicing

Fig. 4: LOC distribution after slicing



10 Tiago B. Fernandes et al.

From the total 1643 identified actions, 199 of them (≈12%) have a cyclomatic
complexity higher than 15 nodes. Around 89% of the actions that are above
the CC threshold (178 actions out of the 199 evaluated actions) produced at
least one refactoring opportunity. After refactoring, 32 actions (≈18% of the 178
actions that were above the CC threshold) reduced their complexity to a point
where refactoring is no longer needed, i.e., dropped below the CC threshold.
The remaining 146 actions (≈82% of the 178 actions that were above the CC
threshold) reduced their complexity but are still above the CC threshold. Table 2
sums up this analysis, given the CC threshold value at 4 units.

Table 2: CC threshold analysis
Number of actions Percentage (%)

Total number of actions 659 100%
Number of actions above the CC
threshold

199 12%

Number of actions above the CC
threshold with at least one refactoring
opportunity

178 89%

Number of actions below CC threshold
after refactoring

32 18%

Number of actions above CC threshold
after refactoring

146 82%

The 32 actions that once were considered complex but no longer are have
a CC value mostly ranged between 5 and 9 units, as Figure 5a suggests. This
may infer that the actions that dropped below the CC threshold after slicing
are relatively close to it. The remaining 146 actions that are still complex after
refactoring have a CC value ranged between 5 and 41 units, as Figure 5b suggests.
Thus, one can infer that 1 single application of this technique may not be enough.
As a matter of fact, 115 actions (≈79% of the actions that are still complex after
refactoring) demonstrated the ability to produce at least one more valid slice.

(a) Nodes that dropped below CC thresh-
old after slicing

(b) Nodes that remained above CC thresh-
old after slicing

Fig. 5: CC distribution after slicing

6 Conclusions and Future Work

The implemented solution aims at identifying Extract Action refactoring oppor-
tunities that best reduce the complexity of modules. As such, the block-based
slicing technique presented by Maruyama [2001] was used to extract fragments
of code that compute a common variable.



Support for Automatic Refactoring of Business Logic 11

In order to accelerate the study of this approach, some limitations are pre-
sented as follows: preparation actions are not refactored because some nodes
may declare shared variables; Assign nodes with multiple Assignments are split
up in multiple Assign nodes with one single Assignment, i.e., the algorithm can
generate slices that remove nodes that were initially not visible to the program-
mer (although one Assign node with multiple Assignments has computational
complexity similar to multiple Assign nodes with a single Assignment).

This work supports that low-code platforms still need refactoring primitives.
Furthermore, Section 5 (Case Study) proves that the implemented algorithm
reduces the complexity of OutSystems modules. Also, the evaluation was based
on the analysis of applications whose complexity is similar to ones developed in
an Information Technology department and can be considered as good case study
examples. Thus, it is emphasized that this study employed on real modules, i.e.,
endowed with actions with a good diversity of code structure.

Section 5 (Case Study) confirms the need of a tool that automatically iden-
tifies improvements in the OutSystems code to maintain the balance and con-
sistency of its projects, by assisting the programmer with valuable refactoring
opportunities. Despite that, it is intended that the programmer can qualitatively
evaluate the suggestions presented, adding a subjective factor to the analysis.

As shown in Section 5 (Case Study), a single Extract Action application
had limited impact on the overall complexity of the modules, as 17% ∼ 18% of
actions dropped below the complexity threshold. However, after the application
of one Extract Action, the vast majority of the refactored actions can still be
refactored, which may induce the possibility to incrementally extract different
variables. Thus, it is intended that the algorithm suggests multiple and successive
refactorings opportunities to take greater advantage of this technique.

The OutSystems platform allows its actions to have multiple output values for
a single routine. Thus, it is intended that the algorithm supports multiple vari-
able extraction. This is relevant in situations where there is a high intersection
level in slices of different variables. That is, nodes that were once indispensable
could be removed from the original action. Besides that, in some situations, it
would no longer be necessary to create two subroutines to remove the computa-
tion of two variables. Furthermore, this approach leads to having more or even
better refactoring opportunities available.

Bibliography

Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970.
ISSN 0362-1340.

Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software
complexity and maintenance costs. Commun. ACM, 36(11):81–94, November
1993. ISSN 0001-0782.

Jean-franc Bergeretti and Bernard A. Carry. Information-flow and data-flow
analysis of while-programs. ACM Transactions on Programming Languages
and Systems, 7:37–61, 1985.

Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned program
slicing. Information and Software Technology, 40(1112):595 – 607, 1998. ISSN
0950-5849.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, July 1987. ISSN 0164-0925.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. 2000.



12 Tiago B. Fernandes et al.

Geoffrey K. Gill and Chris F. Kemerer. Cyclomatic complexity density and
software maintenance productivity. IEEE Trans. Softw. Eng., 17(12):1284–
1288, December 1991. ISSN 0098-5589.

Mark Harman and Sebastian Danicic. Amorphous program slicing. In Proceed-
ings of the 5th International Workshop on Program Comprehension (WPC
’97), WPC ’97, pages 70–, Washington, DC, USA, 1997. IEEE Computer So-
ciety.

Mark Harman and Robert Hierons. An overview of program slicing. Software
Focus, 2(3):85–92, 2001. ISSN 1529-7950.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. SIGPLAN Not., 23(7):35–46, June 1988. ISSN 0362-1340.

Raghavan Komondoor and Susan Horwitz. Semantics-preserving procedure ex-
traction. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’00, pages 155–169, New York,
NY, USA, 2000. ACM.

B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):
155–163, October 1988. ISSN 0020-0190.

Ayman Madi, Oussama Kassem Zein, and Seifedine Kadry. On the improvement
of cyclomatic complexity metric. International Journal of Software Engineer-
ing and its Applications, 7(2):67–82, 2013. ISSN 17389984.

Katsuhisa Maruyama. Automated method-extraction refactoring by using block-
based slicing. SIGSOFT Softw. Eng. Notes, 26(3):31–40, May 2001. ISSN
0163-5948.

T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–320,
July 1976. ISSN 0098-5589.

Timothy M. Meyers and David Binkley. An empirical study of slice-based cohe-
sion and coupling metrics. ACM Trans. Softw. Eng. Methodol., 17(1):2:1–2:27,
December 2007. ISSN 1049-331X.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of methods. J. Syst.
Softw., 84(10):1757–1782, October 2011. ISSN 0164-1212.

Joost Visser, Sylvan Rigal, Rob van der Leek, Pascal van Eck, and Gijs Wi-
jnholds. Building Maintainable Software, Java Edition: Ten Guidelines for
Future-Proof Code. O’Reilly Media, Inc., 1st edition, 2016.

Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA,
1981. IEEE Press.


	Support for Automatic Refactoring of Business Logic

