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Abstract. Receiver operating characteristic (ROC) curves are a well-
accepted measure of accuracy of diagnostic tests using in continuous or
ordinal markers. Based on the notion of using a threshold to classify
subjects as positive (diseased) or negative (no diseased), a ROC curve is
a plot of the true positive fraction (TPF) versus the false positive frac-
tion (FPF)for all possible cut points. Thus, it describes the whole range
of possible operating characteristic for the test and hence its inherent
capacity for distinguish between two status. The clinical severity scale
CRIB - Clinical Risk Index for Babies, emerged in 1993 to predict the
mortality of newborn at less than 32 weeks of gestation and very low
birth weight (< 1500gr) [4]. In previous work of Braga [3] this index was
reported as showing a good performance in assessing risk of death for
babies with very low birth weight (less than 1500 g weight). However, in
some situations, the performance of the diagnostic test, the ROC curve
itself and the Area Under the Curve(AUC) can be strongly influenced
by the presence of covariates, whether continuous or categorical [5], [32],
[33]. The World Health Organization and the Ministry of Health, de-
fined as ”late pregnancy” that thus occurs in women over 35 years. In
this work, using the conditional ROC curve, we analyze the effect of one
covariate, maternal age, on the ROC curve that representing the diag-
nostic test performance. We chose two age status, less than 35 years old
and equal or greater than 35 years old, to verify the effects on the dis-
criminating power of CRIB scale, in the process classification using R
and STATA software.
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1 Introduction

The discriminatory capacity of a continuous marker or diagnostic test X , is usu-
ally measured by means of the receiver operating characteristic (ROC) curve
[1] [2]. Under the conventional assumption that high marker values are indica-
tive of disease, classification on the basis of X of an individual as healthy (D̄)
or diseased (D) can be made by the choice of a cut-off value c, such that, if
X ≥ c, the individual is classified as diseased, and if X < c, the individual is
classified as healthy. Hence, for each cut-off value, c we define the true positive
fraction,

TPF (c) = P [X ≥ c|D] (1)

and the false positive fraction,

FPF (c) = P [X ≥ c|D̄] (2)

In such a situation, the ROC curve is defined as the set of all pairs for these frac-
tions that can be obtained on the variation of cut-off value, c, (TPF (c), FPF (c)),
c ∈ (−∞,+∞), or, equivalently, as a function:

ROC(p) = SD(S−1
D̄

(p)), for p ∈ (0, 1) (3)

where SD and SD̄ denotes the survival functions of X in diseased and healthy
subjects, respectively [29]. The Area Under the ROC Curve (AUC) is considered
as an effective measure of inherent validity of a diagnostic test. This index is
useful in evaluating the discriminatory ability of a test to correctly pick up
diseased and non-diseased subjects and finding optimal cut-off point to least
misclassify diseased and non-diseased subjects.

In many practical situations, however, a marker’s discriminatory capacity may
be affected by a set of continuous and/or categorical covariates.

1.1 Maternal Age as Covariate

Nowadays, fortunately, few women have a risky pregnancy. However, in cases
where there is such a quiet evolution, because there is a chronic illness or be-
cause medical or pregnancy related problems arise during the nine months, it
is essential a proper and timely monitoring. By definition, there is a high-risk
pregnancy when the probability, of an adverse outcome for the mother and/or
infant during or following pregnancy and delivery, is increased above the mean
baseline risk in the general population by the presence of one or more risk fac-
tors. These factors can be divided into maternal and fetal. The maternal factors
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include maternal age (less than 15 years and upper 35 years). Women over 35
years old are at greater risk of having a baby with chromosomal abnormalities.
The existence of hypertension, diabetes and complications during labor is also
more frequent. Below 15 years old, low birth weight and preeclampsia, may occur.
There are many works in which the mother’s age is the subject of study, either in
association with low birth weight, either because it can be the cause of preterm
birth [8], [30], [31]. Most research indicates that very young mothers imply an
increased risk of low birth weight and premature births. Few studies have been
conducted to older mothers, although this is the current trend in most developed
societies. The few studies associate old maternal age to a potential decrease in
babys development during pregnancy. Aras [9] presents several studies in which
it is concluded that low birth weight depends not only on the age of the mother
but also of health care during pregnancy, biological characteristics, race, socio-
economic factors, weight gain during pregnancy, among others. Friede et al.
[7], in a study to examine the effect of maternal age on low birth weight and
infant mortality, used data from young mothers and found a strong association
between young maternal age and infant mortality and also with a high prevalence
of infants with low birth weight.

2 Empirical Estimators of the ROC Curve

There are many estimators proposed for the ROC curve when it is defined by
the expression (3). Assuming that two independent samples, one from diseased
population (D) and another from healthy (D̄) are avaiable, we may obtain the
empirical estimators of survival functions of X in diseased and healthy subjects,
ŜD and ŜD̄, respectively. Thus we can write the empirical ROC curve estimator
by the following expression:

R̂OC(p) = ŜD(Ŝ−1
D̄

(p)), for p ∈ (0, 1) (4)

For each possible cut-off value c, the fractions of true positives and false positives
are obtained by:

T̂ PF (c) =
1

nD

nD∑

i=1

I (XDi ≥ c) (5)

and

F̂PF (c) =
1

nD̄

nD̄∑

i=1

I (XD̄i ≥ c) (6)

Thus, the estimated ROC curve is obtained by representing pairs of values

(T̂ PF (c), F̂PF (c)), c ∈ (−∞,+∞) (7)
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Similarly, the empirical estimators of survival function of X in diseased and
healthy subjects presents in the expression for the ROC curve estimator (4) can
be obtained by

ŜD(c) =
1

nD

nD∑

i=1

I (XDi ≥ c) (8)

and

ŜD̄(c) =
1

nD̄

nD̄∑

i=1

I (XD̄i ≥ c) (9)

One of the biggest advantages of using ROC curves is the possibility of compar-
ing diagnostic tests, such in medical diagnosis, trough the AUCs obtained from
these curves. In this study, we use the statistical approach to the Wilcoxon-
Mann-Whitney test to calculate the estimate of AUC index, which summarize
each ROC curve in terms of area bellow it. One possibility to test weather the
difference between two ROC curves is statistically significant, involves the AUC
index. Consider AUC1 and AUC2 the areas obtained from two ROC curves. The
relevant hypothesis to test, H0 is that the two data sets come from ROC curves
with the same AUC:

H0: AUC2− AUC1 = 0 vs H1: AUC2−AUC1 ̸= 0

A method for testing the difference between the two areas for independent sam-
ples is based on critical ratio Z [25]:

Z =
AUC2 −AUC1√
SE2

AUC1
+ SE2

AUC2

∼ N(0, 1) (10)

3 ROC Curve with Covariates

It is well known that a diagnostic test performance may be strongly influenced
by covariates. In such situation, the ROC curve (and its summary indices, such
as the area under the curve) may be underestimated if important covariates are
neglected. In most studies, paralell to the diagnostic test used to classify indi-
viduals in D and D̄ class, one or more covariates may be associated with the
classification variable and can provide extra information about the individuals
classification and increase the discriminating power of the curve. In such situa-
tions, the interest must be focused on assessing the discriminatory capacity of
marker Xs regarding to the values assumed by the covariate that we represent
by Y . The ROC curve in this case can be considered for each value of the co-
variate, y. Changes that occurs in curve, due to these values, might mean that
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the covariate has effect on the discriminating power of the diagnostic test. If the
conditional survival functions of XD and XD̄, given Y , are denoted by SDY and
SD̄Y respectively, the conditional ROC curve is defined as

ROCy(p) = SDY (S
−1
D̄Y

(p)), for p ∈ (0, 1) (11)

The first works developed in the area of adjustment of covariates on the dis-
crimination or classification of individuals into classes, are assigned to Cochran
and Bliss [10], Cochran [11] and Rao [13]. These publications were focused on
the selection of discriminating variables. The rules to adjust covariates requires
the formulation of appropriate probability models and are developed later in
works of Lachenbrush [12] and McLachlan [14]. However, these works focus on
classification rules, providing only background of interest to the study. The first
works on adjustment of covariates were from Guttman et al. [15] and Tolsteson
and Begg [16]. The first authors, in the context of stress strength models, have
obtained the ROC curve as a function of covariates by fitting linear regression
models to X (diseased subjects) and Y (healthy subjects), assuming normality
with different variances. The adjustment of ROC curves from continuous scales
was studied by Smith and Thompson [17], Pepe [18], [19], [20], Faraggi [21], Janes
and Pepe [22], [23] among others. The summary measures from ROC curves with
adjustment of covariates was studied by Faraggi [21] and by Dodd and Pepe [24].

4 Covariate ROC Curve Adjustment

To assess the possible covariate effects on the ROC curve, two different ap-
proaches have been suggested in the statistical literature. The Induced method-
ology proposed by Tolsteson and Begg [16]; Zheng and Heagerty [26]; Faraggi
[21], in which the covariates effect on diagnostic test is modeled in the two popu-
lations (D and D̄) separately. The covariate effects on the associated ROC curve
can then be computed by deriving the induced form of the ROC curve.

Otherwise the Direct method proposed by Pepe [20]; Alonzo and Pepe [28];
Cai [27], assumes a ROC curve with direct effect of the covariates on it.

4.1 Induced Adjustment

Suppose there is a set of covariates YD associated with the diseased population
and a set of covariates YD̄, associated with the healthy population. In many
applications, some if not all covariates are common to both populations, but
there is no need for two sets are identical. If αD and αD̄ are scalars, βD and
βD̄ are vectors of unknown parameters with YD and YD̄ elements, then the
average values associated with the diagnostic test for the diseased and healthy
populations, for certain values of the covariates, can be modeled as [29]

µD(YD) = αD + βT
DYD (12)
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and

µD̄(YD̄) = αD̄ + βT
D̄YD̄ (13)

The model specification is complete assuming that these average values are
normally distributed with standard deviation σD and σD̄, respectively. This
model is essentially the binormal by specifying the population average. Then
it follows that the equation of the ROC curve is given by

ROCy(p) = φ

(
µD(YD)− µD̄(YD̄) + σD̄φ−1(p)

σD

)
, p ∈ (0, 1) (14)

The least squares regression can be used to obtain point estimates of αD, αD̄,
βD and βD̄. Substituting these estimates in the above expression for certain yD,
yD̄ values of YD and YD̄, we obtain the ROC curve for covariates.

4.2 Direct Adjustment

This approach, contrasts with the approach set before. Instead of separately
modeling the effect of covariate in the two distributions results of the diagnostic
test and then obtains the ROC curve from the modified conditional distributions,
direct adjustment model the covariate effects directly on the ROC curve. There
are several advantages to the direct modeling approach. Foremost amongst them
is that of any parameter associated with the covariate has a direct interpretation
in terms of the curve. The heart of this approach is the specification of a suitable
model that captures the effect of the covariate on the ROC curve, which allows
a flexible and easy interpretation. The flexibility of the model is in terms of
how this relationship works in the ROC curve, to preserve the condition that
either the domain and the curve lie in the interval (0, 1) and that the curve
continues to be monotone increasing in this range. The knowledge of least squares
method to fit measures of variables, such as diagnostic test, and to evaluate the
relationship between his results and the subject diseased status, suggested that
the relationship between the ROC curve and the covariate effect was measured.
This relationship is evaluated by using Generalized Linear Models (GLM). This
methodology, leads the general form of the conditional ROC curve given by:

ROCY (p) = g (Y ′β + h(p)) , p ∈ (0, 1) (15)

where Y is a p-dimensional vector of covariates, β is a p-dimensional vector
of unknown parameters, h is an unknown monotone increasing function of the
FPFs, and g is a known link function, describing the functional relationship
between the ROC curve and the covariates. Models such as (15) define the so-
called class of ROC-GLMs [29].

The most common link functions are probit, logistic and logarithmic. Together
with the advantage of directly evaluating the effect of the covariate on the ROC
curve, direct methodology has some other appealing features:
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– the ROC curve property of being invariant to monotonic transformation of
the test result is preserved,

– any possible interaction between covariates and FPFs is easy to incorporate
into the regression model,

– allows modeling the performance parameters and allows the comparison of
different classifiers.

5 Application and Results

5.1 Study Description

In this work, to check if the age of the mother affects the discriminating ability
of the CRIB index, we used a sample of 187 infants of very low birth weight
(< 1500gr and/or gestational age < 32 weeks) from a hospital in North of
Portugal. Thus, the variable X will correspond to the CRIB, and the covariate
of interest will be the age of the mother. We will consider the age of the mother
as a binary variable, with reference to the age of 35 years old. So, we will have
two categories: age greater or equal than 35 years and younger than 35 years. Of
the 187 infants, 152 are newborns from mothers with less than 35 years old and
the remaining 35 are newborns of mothers aged 35 years or older. The rating
assigned according to the CRIB scale regarding their clinical status was, for the
first newborn mothers, 8.55% of the babies classified as ”dead” and 14.29% of
the babies on the second group with the same classification. In the sample, 9.63%
of babies are classified as ”dead”.
To asses the objective of our study, we choose to apply the direct method, because
the advantages listed above.

5.2 Results

We begin by characterizing the distribution of babies, according to the classifi-
cation assigned by the CRIB scale, when we consider that the mother’s age has
no effect on this classification and then considering this possible effect (Fig. 1).

According to this characterization, we obtained the respective empirical ROC
curves (Global and separately by mother’s age) with R software, which are shown
in Fig. 2.

We compute the AUC, the standard deviation and the confidence intervals for
each of the ROC curves plotted above. These values are summarized in Table 1.

Obtained the intervals, with 95% of confidence, for the ROC curves, we pro-
ceed to its graphical representation to visualize possible dispersion of the pairs
of values (1− specificity, sensitivity). Figure 3 show the ROC curves with the
corresponding confidence interval, obtained by the application of R software.

To verify if maternal age has effect on the CRIB scale when used to classify
clinical babies status, we used the critical reason Z. The value computed by this
statistic was Z = 2.28 (p− value = 0.0226).
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(a) (b)

(c)

Fig. 1. Histograms - classification assigned by the CRIB scale
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(a) (b)

(c) (d)

Fig. 2. Empirical ROC curves (Global and separately by mother’s age)
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Table 1. ROC curves Results

AUC SE 95% IC Lower Bound 95% IC Upper Bound

Global 0.942 0.025 0.8929 0.991
Maternal age less than 35 years 0.9203 0.035 0.8515 0.9891
Maternal age equal
or greater than 35 years 1.000 6.8E-9 1.000 1.000

(a) (b)

Fig. 3. ROC curves and Confidence Intervals

5.3 Direct Adjustment of Covariate with Stata Software

The results above suggest that the impact of maternal age on CRIB scale should
be statistically adjusted in the ROC analysis. Stata software, using ROC re-
gression, models the ROC curve (CRIB ROC curve) as a function of covariates
(maternal age), via GLM. In statistic, the GLM is a flexible generalization of
ordinary linear regression that allows for response variables that have error dis-
tribution models other than normal distribution. The GLM generalizes linear
regression by allowing the linear model to be related to the response variable
using a link function and by allowing the magnitude of the variance of each
measurement to be function of its predicted value. We start by computing the
graph of the ROC curve conditioned to maternal age (Fig. 4) with correspon-
dent AUCs (Fig. 5) and test of equality of those areas (Fig. 6). The AUC for
the conditioned CRIB ROC curve and the correspondent confidence intervals
((N)- normal confidence interval; (P) - percentile confidence interval; (BC) -
bias-corrected confidence interval) is shown in (Fig. 7).
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Fig. 4. ROC curve conditioned by Maternal Age (from STATA)

Fig. 5. AUCs for ROC curve conditioned by Maternal Age (from STATA)

Regarding the ROC curve for the CRIB, conditioned on maternal age, we
found that the behavior is identical to that observed in the study described above
with R software. The CRIB for age less than 35 year old mother discriminates
92.03% while for maternal age equal or greater than 35 years, discriminates in
100% of cases. We also found that a greater variability in the results is observed
for the curve generated from the first data set. When performed the test of
equality of the two areas, we found the following results:
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Fig. 6. ROC curve conditioned by Maternal Age - comparison test (STATA output)

that leads to the rejection of the null hypothesis.

Fig. 7. AUC for the CRIB ROC curve conditioned by Maternal Age (STATA output)

By the results presented in (Fig. 7), we found a discrimination power for the
CRIB ROC curve in 93.13% of the babies (AUC = 0.9313) and with a standard
deviation equal to 0.0309. The confidence intervals to evaluate the dispersion of
the pairs of values (1 − specificity, sensitivity) was also computed.

6 Conclusions

From the estimated values of AUCs for the global ROC curve we may observe
that, without considering the effect of maternal age, the CRIB scale discrimi-
nates between babies ”alive” and ”dead” in 94.2% of cases. This power, when
considering maternal age as covariate, is 92.03% for age less than 35 years old
and equal to 100% when maternal age is equal or greater than 35 years. We
can see too, that the ROC curve for maternal age less than 35 year old shows
greater variability (Table 1) and (Fig. 3). Applied the statistical test previously
set out in Section 2 to determine whether maternal age has an effect on the
classification of baby’s, when CRIB scale is used, we conclude that there is a
significant difference in the performance of CRIB scale when conditioned on ma-
ternal age and maternal age equal or greater than 35 years old has effect on
the discrimination power of CRIB scale. From the results obtained above, it is
apparent that mother’s age appears to affect the discriminatory power of CRIB
scale when used to classify babies. For this reason, we consider useful to verify
the performance of this scale when conditioned on maternal age by using the
ROC-GLM regression models (CRIB ROC analysis with correspondent CRIB
ROC curve). The results presented in (Fig. 7) suggest that the performance of
CRIB scale decreases when one incorporates the age of the mother in her review
(AUC = 0.9313). The standard deviation, in turn, is greater than the standard
deviation of the ROC curves obtained without the covariate. Consequently, it
also increases the dispersion of the pairs of values (1− specificity, sensitivity).
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Fig. 6 shown the results for comparison test by the STATA software that in-
dicated also that maternal age has effect on the classification of babies by the
CRIB scale. CRIB scale perform better for maternal age equal or greater than
35 years old.

Motivated by these results we propose as future work, to check if the sex of
the babies along with the mother’s age, also have an effect on the classification
of infants when using the CRIB scale.
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