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A finite-element (FE) homogenised limit analysis model suitable for analysing masonry structures near collapse is

applied to a real large-scale three-dimensional (3D) masonry building subjected to horizontal actions. In the model,

masonry is substituted for a fictitious macroscopic homogeneous material. Masonry macroscopic mechanical proper-

ties are obtained by means of a recently presented equilibrated limit analysis approach performed on a suitable unit

cell, which generates the entire structure by repetition. Masonry homogenised failure surfaces are then implemented

in the 3D code outlined. With respect to previously presented models, the software allows analysis of real-scale

buildings without the classic uncoupling of in-plane and out-of-plane actions. The possible presence of steel,

reinforced concrete and ring beams is also considered by introducing two-node beam elements in the numerical

model. A relevant 3D structural example (a masonry structure subjected to horizontal actions) is treated. Full

sensitivity analyses and comparison with results obtained from commercial elasto-plastic software are also presented

to validate the results of the proposed model.

1. Introduction
The evaluation of the ultimate load-bearing capacity of masonry

buildings subjected to horizontal loads is a fundamental task in

their design or safety assessment. Practitioners usually adopted

simplified limit analysis methods for safety analyses and design

of strengthening (Giuffrè, 1993), but many codes of practice (e.g.

Italian OPCM 3274 (OPCM, 2003) and 3431 (OPCM, 2005))

require static non-linear analyses for existing masonry buildings.

In such analyses, limited ductile behaviour of the elements is

taken into account, featuring failure mechanisms such as rocking,

shear and diagonal cracking of walls.

Many researchers have proposed a number of different numerical

approaches (see Lourenço (2002) for a comprehensive review)

based on micro-modelling, macro-modelling or homogenisation,

with the aim of obtaining reliable tools to predict masonry

behaviour at failure. However, heterogeneous approaches (e.g.

Lourenço and Rots, 1997) based on a distinct representation of

bricks and joints seem limited to the study of panels of small

dimensions due to the large number of variables involved in non-

linear finite-element (FE) analysis. On the other hand, strategies

based on macro-modelling (e.g. Lourenço et al., 1997) have the

drawback of requiring preliminary mechanical characterisation of

a model usually obtained from experimental data fitting.

The work reported here focuses exclusively on the collapse

analysis of masonry structures, making use of homogenisation

techniques. Such an approach is based on the substitution of the

heterogeneous material by a fictitious homogeneous one, with

mechanical properties calibrated on a representative element of

volume that generates the entire structure by repetition. For this

reason, this seems to be the only approach suitable for a large-

scale FE analysis. Furthermore, the application of homogenisation

theory to the rigid-plastic case (Suquet, 1983) is particularly

suited to a simple but reliable structural analysis, requiring only a

reduced number of material parameters and providing significant

information at failure such as limit multipliers, collapse mechan-

isms and – at least on critical sections – the stress distribution

(Milani et al., 2006b).

This paper presents the final result of research work followed by

the authors for the implementation and validation of a homoge-

nised limit analysis code to be used by practitioners for the FE

limit analysis of entire masonry buildings subjected to seismic

static loads. The research started with an analysis of in-plane

loaded structures (Milani et al., 2006a, 2006b) and proceeded

with extension of the model to out-of-plane actions (Milani et al.,

2006c) and successive generalisation to small three-dimensional

(3D) masonry houses.
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While in previous work (Milani et al., 2007) only the analysis of

small-scale structures with few elements was possible, this work

considers a large 3D masonry building in which both plate and

shell (masonry) and beam (or truss) elements interact. A user-

friendly CAD interface for data pre- and post-processing has been

implemented. At present, in the code:

(a) a quick graphical insertion of single elements is possible

(b) an auto-meshing tool for triangular elements is implemented

(c) masonry walls with different mechanical properties (e.g.

different thickness, different materials) can be handled

(d ) one-dimensional (1D) and two-dimensional (2D) reinforced

concrete (RC) elements can be inserted

(e) a robust interior point linear programming (LP) algorithm is

implemented in order to solve large-scale sparse problems

with many FEs.

The final aim at the base of such improvements is the distribution

of the software to practitioners interested in the safety assessment

of complex real masonry buildings.

A pre-processing phase is present in the software that allows one

to recover, with an admissible and equilibrated approach,

masonry homogenised in- and out-of-plane failure surfaces. In

particular, in the model, the elementary cell is sub-divided along

its thickness in several layers. For each layer, fully equilibrated

stress fields are assumed, adopting polynomial expressions for the

stress tensor components in a finite number of sub-domains. The

continuity of the stress vector on the interfaces between adjacent

sub-domains and suitable anti-periodicity conditions on the

boundary surface are further imposed. In this way, linearised

homogenised surfaces in six dimensions for masonry in- and out-

of-plane loads are obtained.

In order to show the capabilities of the package developed at

this stage, a relevant 3D structural example (a masonry school

subjected to horizontal actions) is treated. Full sensitivity

analyses and a comparison with results obtained with com-

mercial elasto-plastic software are also presented as validation.

Due to the very limited computational effort required by the FE

limit analysis with respect to traditional non-linear approaches

(only a few minutes are needed to solve the optimisation problem

instead of hours of processing time), the model allows full

sensitivity and parametric analyses, thus giving the designer the

possibility of checking the hypotheses adopted for the mechanical

properties of the constituent materials and the role played by the

structural elements.

2. In- and out-of-plane masonry
homogenised failure surfaces

In order to estimate masonry macroscopic failure surfaces,

homogenisation concepts are hereafter applied. For the constitu-

ent materials (bricks and mortar), rigid perfectly plastic behaviour

with associated flow rule is assumed.

Let Sm, Sb and Shom denote respectively the strength domains of

mortar, units and homogenised macroscopic material. It has been

shown by Suquet (1983) in a general framework that Shom can be

obtained by means of a so-called static approach in which the

variables to handle are the stresses on the unit cell (hereafter

called micro-stresses). The authors recently proposed (Milani et

al., 2006a, 2006c) a simplified procedure to obtain homogenised

in- and out-of-plane failure surfaces Shom for masonry. In

particular, Shom was derived by means of the following (non-

linear) optimisation problem:

where N and M are the macroscopic in-plane (membrane forces)

and out-of-plane (bending moments and torsion) tensors; �
denotes the microscopic stress tensor; n is the outward versor of

@Yl surface (see Figure 1(a)); [[�]] is the jump of micro-stresses

across any discontinuity surface of normal nint (Figure 1(c)); Sm

and Sb denote respectively the strength domains of mortar and

bricks; Y is the cross-section of the 3D elementary cell with

y3 ¼ 0 (see Figure 1), Yj j is its area, V is the elementary cell

volume, h is wall thickness and y ¼ (y1 y2 y3) are the

assumed material axes; and Ym and Y b represent mortar joints

and bricks, respectively, see Figure 1.

It is worth noting that anti-periodicity conditions (Equation 1(e))

require that stress vectors �n are opposite on opposite sides of

@Yl (Figure 1(c)), that is � (m)n1 ¼ �� (n)n2

In previous work by the authors (Milani et al., 2006b), the unit

cell was sub-divided into a fixed number of layers along its

thickness, as shown in Figure 1(b). For each layer, out-of-plane

components � i3 (i ¼ 1, 2, 3) of the micro-stress tensor � were

set to zero, so that only in-plane components � ij (i, j ¼ 1, 2)

were considered active. Furthermore, � ij (i, j ¼ 1, 2) were kept

Shom ¼ max M , Nð Þj

N ¼ 1

Yj j

ð
Y3h

� dV (a)

M ¼ 1

Yj j

ð
Y3h

y3� dV (b)

div� ¼ 0 (c)

�½ �½ �nint ¼ 0 (d)

�n anti-periodic on @Yl (e)

� yð Þ 2 Sm 8y 2 Ym ; � yð Þ 2 Sb 8y 2 Y b (f )

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

1:
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constant along the ˜L thickness of each layer L (i.e. in each layer

� ij ¼ � ij(y1, y2)). For each layer in the wall thickness direction,

one-quarter of the representative volume element was sub-divided

into nine geometrical elementary entities (sub-domains), so that

the entire elementary cell was sub-divided into 36 sub-domains

(see Figure 1(b) and Milani et al. (2006a)).

For each sub-domain k and layer L, polynomial distributions of

degree m in the variables (y1, y2) were a priori assumed for the

stress components. Since stresses were polynomial expressions,

the generic ijth component was written as

� (k,L)
ij ¼ X yð ÞS(k,L)Tij y 2 Y (k,L)

2:

where X(y) ¼ [ 1 y1 y2 y21 y1 y2 y22 . . . ],

S
(k,L)
ij ¼ S

(k,L)(1)
ij S

(k,L)(2)
ij

h
S
(k,L)(3)
ij

S
(k,L)(4)
ij S

(k,L)(5)
ij S

(k,L)(6)
ij . . .

i

is a vector representing the unknown stress parameters of sub-

domain k of layer L and Y (k,L) represents the kth sub-domain of

layer L.

The imposition of equilibrium inside each sub-domain, the

continuity of the stress vector on interfaces and the anti-

periodicity of �n permitted a reduction in the number of

independent stress parameters (Milani et al., 2006a).

Assemblage operations on the local variables allows writing the

stress vector ~�� (k,L) of layer L inside each sub-domain as

~�� (k,L) ¼ ~XX(k,L) yð Þ~SS Lð Þ

(k ¼ 1, . . ., no:of sub-domains;

L ¼ 1, . . ., no of layers)3:

where ~SS(L) is a Nuk 3 1 (Nuk ¼ number of unknowns per layer)

vector of linearly independent unknown stress parameters of layer

L and ~XX(k,L)(y) is a 33 Nuk matrix depending only on the

(b) (c)
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Figure 1. Proposed micro-mechanical model: (a) elementary cell;

(b) sub-division in layers along thickness and sub-division of each

layer in sub-domains; (c) imposition of internal equilibrium,

equilibrium on interfaces and anti-periodicity
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geometry of the elementary cell and on the position y of the point

in which the micro-stress is evaluated.

3. Basics of the 3D kinematic FE limit
analysis approach proposed

The homogenised masonry strength domain obtained with the

simple model summarised in Section 2 is implemented in a novel

and optimised 3D kinematic FE limit analysis code for failure

analysis of entire buildings. The upper bound approach proposed

here is based both on the formulation presented by Sloan and

Kleeman (1995) for the in-plane case and on the formulation of

Munro and Da Fonseca (1978) for out-of-plane actions. The

formulation uses three-node triangular elements with linear

interpolation of the velocity field inside each element, so that

three velocity unknowns per node i, say wi
xx, w

i
yy and wi

zz (two in-

plane velocities and one out-of-plane velocity, respectively; see

Figure 2(a)) are introduced for each element E, meaning that the

velocity field is linear inside an element, whereas the strain rate

field is constant for in-plane actions.

For the sake of simplicity, it is assumed that jump of velocities

on interfaces occurs only in the plane containing two contiguous

and coplanar elements, with linear interpolation of the jump

along the interface. Hence, for each interface between coplanar

adjacent elements, four additional unknowns are introduced

(˜u I ¼ [˜v1 ˜u1 ˜v2 ˜u2]
T), representing the normal (˜vi)

and tangential (˜ui ) jumps of velocities (with respect to the

discontinuity direction) evaluated on nodes i ¼ 1 and i ¼ 2 of

the interface (see Figure 2(b)). Hence, for any pair of nodes on

the interface between two adjacent and coplanar triangles R and

K (Figure 2(c)), the tangential and normal velocity jumps can be

written in terms of the Cartesian nodal velocities of elements

R–K, so that four linear equations of the form

A
eq
11w

R þ A
eq
12w

K þ A
eq
13˜u

I ¼ 0 can be written, where wR and

wK are the 93 1 vectors that collect velocities of elements R and

K respectively and A
eq
1 j j ¼ 1, 2, 3 are matrices that depend only

on the interface orientation � I .

Under in-plane loads, three equality constraints representing

plastic flow in the continuum (obeying an associated flow rule)

are introduced for each element in the form _�Epl ¼ _º
E
@Shom=@�,

where _�Epl is the plastic strain rate vector of element E, _º
E
> 0 is

the plastic multiplier, Shom is the homogenised (non) linear failure

surface of masonry and � is the vector of macroscopic variables

� ¼ (N11, N12, N22, M11, M12, M22).

From the previous section, a linear approximation (with m hyper-

planes) of the failure surface in the form Shom � Ain� < bin is

considered, where Ain is a m3 6 matrix of coefficients of each

hyper-plane and bin is a m3 1 vector of the right-hand sides of

the linear approximation. Note that three linear equality con-

straints per element can be written (A
eq
11w

E þ A
eq
12
_º
E ¼ 0, where

wE is the vector of element velocities and _º
E
is a m3 1 vector

of plastic multiplier rates, one for each plane of the linearised

failure surface).

Due to the linear interpolation of the velocity field, out-of-plane

plastic dissipation occurs only along each interface I between

two adjacent triangles R and K or on a boundary side B

of an element Q (see Figure 3). Denoting by wzz,E ¼
[wi(E)

zz w j(E)
zz wk(E)

zz ]T the element E out-of-plane nodal veloci-

ties and by _ŁE ¼ [ _W
E

i
_W
E

j
_W
E

k ]
T the side normal rotation rates,

it is possible to show that _ŁE and wzz,E are linked by the

Masonry elements
plate and shell triangle

( ) elementE

2 ( ;w 2
xx w 2

yy;w
2
zz)

1 ( ;w 1
xx w 1

yy;w
1
zz)( ;w 3

xx w 3
yy;w

3
zz) 3

Masonry/masonry internal
interfaces I

y wyy
( )
element
R

∆v

∆u

2

1

tn
ΩI

( ) elementK
x wxx

( ;w 2( )K
xx w 2( )K

yy )

( ;w 2(  )R
xx w 2(  )R

yy )

( ;w 1(  )R
xx w 1(  )R

yy )

( ;w 1( )K
xx w 1( )K

yy )

RC/steel and ring beams
beam elements B

(c)

(a)

n: normal to the interface

(b)

1

2

z

y

x

M

N
�

∆�

Plastic dissipation
between contiguous
elements

w 1
zz

w 1
yy

w 1
xx

w 2
zz

w 2
yy

w 2
xx

Figure 2. (a) Triangular plate and shell element used for the upper

bound FE limit analysis. (b) Discontinuity of the in-plane velocity

field. (c) Finite elements used to model ring beams and steel/RC

beams
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compatibility equation (Figure 3) _ŁE ¼ BEwzz,E, where BE is a

3 3 3 matrix that depends only on the geometry of element E.

The total internal power dissipated Pin is constituted by the power

dissipated in continuum, Pin
E , and the power dissipated on

interfaces, Pin
I . P

in
E can be evaluated for each triangle E of area

AE taking into account that curvature rates _�xx, _�xy, _� yy are zero

in continuum, so that the flexural part of the model does not

dissipate power in the continuum.

For interface I of length ˆ and orientation� I , a rotation operator is

applied to the linearised homogenised failure surface in order to

obtain, with a few row operations, m equations (one for each hyper-

plane representing the homogenised failure surface ~SShom in the

n� t interface frame of reference (Figure 2(b)). Therefore, the

power dissipated Pin
I along interface I of length ˆ and with

orientation � I can be estimated as Pin
I ¼

Ð
ˆ

Pm
q¼1C

q
I
_º
(q)

I (�) d�,
where _º

(q)

I (�) represents the qth plastic multiplier rate of a point � of
the interface I and C

q
I is the right-hand side of the qth linearisation

plane of the homogenised failure surface of the interface.

In the model, the possible presence of ring and RC/steel beams is

also considered through the utilisation of suitable two-node beam

elements (Figure 2(c)). A linear interpolation of the velocity field

inside the elements is adopted. Thus, plastic dissipation inside

each beam is due only to normal action (compression or tension),

whereas flexural dissipation occurs only at the interfaces between

adjoining elements. No dissipation occurs for torsion. For the

sake of simplicity, we suppose that ultimate axial load Nþ=�
u

(+, tension; �, compression) and bending moments along perpen-

dicular principal directions of the beam section (Mu� and Mu�)

are uncoupled. Therefore internal plastic dissipation on beam

elements is given by a contribution of the element (Pin
B ) due to

Nu and a contribution of the plastic hinge between two elements

(Pin
N ) due to Mu.

Concerning external power dissipation, no differences occur with

respect to classic FE limit analysis codes. External power dis-

sipated can be written as Pex ¼ (PT
0 þ ºPT

1 )w, where P0 is the

vector of (equivalent lumped) permanent loads, º is the load

multiplier for the structure examined, PT
1 is the vector of (lumped)

variable loads and w is the vector of assembled nodal velocities.

As the amplitude of the failure mechanism is arbitrary, a further

normalisation condition PT
1w ¼ 1 is usually introduced. Hence, the

external power becomes linear in w and º (i.e. Pex ¼ PT
0wþ º).

After some assemblage operations (not reported here for the sake

of brevity), the following LP problem is obtained (analogous to that

reported by Krabbenhoft et al. (2005)) where the objective function

consists of minimisation of the total internal power dissipated

min
XnI

I¼1

Pin
I þ

XnE

E¼1

Pin
E � PT

0w

8<
:

9=
;

such that

AeqU ¼ beq

_º
I ,ass

> 0 _º
E,ass

> 0

_Ł
ass ¼ _Ł

þ � _Ł
�

_Ł
þ
> 0 _Ł

�
> 0

8>>>>>><
>>>>>>:

4:

y

( ) elementR

( ) elementK

Boundary side

( ) elementQ

w j Q
zz
( )

w j K
zz
( )

x

I

n
t

w j R
zz
(  )� w i K

zz
( )

w i R
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(  )

� I
nn�I

�
. .

w k R
zz

(  ) �w k K
zz

( )

Figure 3. Rotation rate along an interface between adjacent

triangles or in correspondence of a boundary side
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where U is the vector of global unknowns, and collects the

vector of assembled nodal velocities (w), the vector of

assembled element plastic multiplier rates ( _º
E,ass

), the vector

of assembled jump of velocities on interfaces (˜u I ,ass), the

vector of assembled interface plastic multiplier rates ( _º
I ,ass

)

and the vector of interface and boundary out-of-plane rotation

angles _Ł
ass
. Aeq is the overall constraints matrix and collects

normalisation conditions, velocity boundary conditions, rela-

tions between velocity jumps on interfaces and elements

velocities, constraints for plastic flow in velocity discontinu-

ities and constraints for plastic flow in continuum. nE and

nI are the total number of elements and interfaces, respec-

tively.

It is worth underlining some important limitations of the limit

analysis model proposed for the study of masonry structures. In

particular, a typical drawback of this approach is its inability to

predict displacements at collapse. Moreover, an infinite plastic

deformation capacity of the material at hand is assumed: this

hypothesis should be checked, depending on the geometry of

the masonry wall and the distribution of loads applied. In

particular, masonry walls exhibiting rocking failure modes or

shear failure modes usually present a significantly ductile

response. Finally, when collapses are mostly related to sliding,

masonry could fail with a typical frictional behaviour; this

should be rigorously represented through the assumption of non-

associated flow rules for the constituent materials. However,

when non-associativity is considered, mixed complementarity

problems should be tackled, requiring relatively sophisticated

algorithms to be solved and allowing handling of problems with

fewer variables. On the other hand, many works (e.g. Cecchi

and Milani, 2008; Heyman, 1969; Sinha 1978) have demon-

strated that very reasonable results can be obtained even with

associated flow rules for the constituent materials, in almost all

cases. For this reason and with the aim of tackling large-scale

engineering problems through simple LP routines, classic theo-

rems of limit analysis are adopted here.

4. Failure load prediction of a 3D masonry
structure

The example given here is the prediction of the horizontal failure

load of a real three-storey masonry building located in Italy

(Figure 4). The building is a school in the north-east of Italy built

at the end of nineteenth century in an isolated position and

consisting of two structurally independent rectangular main

bodies, as can be seen in the plan view shown in Figure 5.

The main building, called here for the sake of simplicity body A,

is a rectangular shape of dimensions L1 3 L2 ¼ 49.03 12.2 m2

and comprising three storeys; the secondary building (body B) is

z
y
x(a) (b)

Figure 4. Entire masonry building subjected to horizontal actions.

(a) Mesh used for the limit analysis (6304 triangular elements, 618

beams, 3627 nodes). (b) Mesh used in strand 7 for an elasto-

plastic analysis with Mohr–Coulomb failure criterion (3152 plate

elements)

Wall 1y �

Body A

Wall 3y �

Wall 2y � Wall 2y �

Wall 1y �
Wall 3y �

Wall 3x �

Wall 2x �

Wall 1x �

x-direction

y-direction
Body B

Separation joint

Figure 5. First floor plan view, masonry building subjected to

horizontal action
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also rectangular (L1 3 L2 ¼ 83 13 m2), again with three storeys.

All the walls are made of clay bricks, assumed to be of

dimensions 2503 120 3 55 mm3 (length 3 width 3 height) in

the absence of precise information. The first storey height is

4.85 m, and the second and third storeys are 4.65 m high.

A rehabilitation programme was carried out during the 1980s.

On that occasion, several bearing walls at ground floor level

were removed and replaced by steel beams at first floor level,

with the aim of sustaining gravity loads (until recent years, the

school was not in a seismic area according to Italian codes).

Furthermore, a 20 mm separation joint was introduced between

body A and B. Therefore, it is reasonable to consider two sub-

structures that behave separately under horizontal actions. Here,

only body A is taken into consideration for the sake of

conciseness.

Body A is geometrically regular with equally distributed mass,

except for the large openings at the centre of the first floor of the

three walls parallel to the x-direction, which are part of a corridor

giving access to the building. A main corridor of access to

classrooms is located between walls x�1 and x�2 (Figure 5).

Wall thicknesses are reported in Table 1.

A FE model consisting of 6304 triangular elements, 618 beams

and 3627 nodes is used to perform the proposed homogenised

Storey Walls thickness: cm

x�1 x�2 x�3 y�1 y�2 y�3

1 60 45 60 60 45 —

2 50 45 50 50 45 45

3 45 30 45 45 30 30

Table 1. Entire masonry building subjected to horizontal actions

Nvv
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�

Nvv

Nhh�

�

�
�

�

�

�

0·4

0·3

0·2

0·1

0

�0·1

N
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/1
00

: N
/m

m

� 0°
� 22·5°
� 45°

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7
Nhh/100: N/mm

(a)

0°�

� 22·5°
� 45°

N
vv

/1
00

: N
/m

m

Nhh/100: N/mm

(b)

�12 �10 �8 �6 �4 �2 0

0

�1

�2

�3

�4

�5

�6

�7

�8

Figure 6. In-plane failure surface sections used for structural

homogenised simulations. In-plane failure surfaces at different

orientations of the bed joint with respect to external membrane

load: (a) tension regime and (b) compression regime

Joint Brick

Cohesion c : N/mm2 Tensile strength

ft: N/mm2

Compressive strength

fc: N/mm2

Friction angle

�1: deg

Shape of linearised

compressive cap �2:

deg

Compressive strength

fc: N/mm2

0.2 0.2 5 35 60 30

Table 2. Entire masonry building subjected to horizontal actions.

Mechanical characteristics assumed for joints and bricks. For

joints, a linearisation of the Lourenço–Rots failure criterion

(Lourenço and Rots 1997) was adopted (details can be found

also in Milani et al., 2006a)
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limit analysis (Figure 4(a)) under a static equivalent seismic

load directed along the x-direction. Rigid-plastic beam ele-

ments were used to simulate steel beams (IPE 200) corre-

sponding to the first floors under walls y�3; truss elements

were used to model RC ring beams corresponding to floor

levels (section 30 3 30, concrete compressive strength

fc ¼ 25 MPa with typical reinforcement 4˘16 steel FeB 44 K

(DM, 1996; OPCM, 2005). The results obtained with the

homogenised FE limit analysis model (i.e. failure shear at the

base and failure mechanism) are compared with a standard FE

elastic–perfectly plastic analysis conducted by means of com-

mercial FE software (Strand 7). The analysis was performed

using a mesh of 3152 four-node shell elements supposing

masonry isotropic with a Mohr–Coulomb failure criterion. The

level of refinement of this second mesh is comparable with

that of the limit analysis, considering that here quadrilateral

elements are used.

In the standard elasto-plastic approach, for masonry, a cohesion c

equal to 0.12 N/mm2 and friction angle � ¼ tan�1 (0:4) are
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Figure 7. Out-of-plane failure surface sections used for the

structural homogenised simulations. Out-of-plane failure surfaces

at increasing membrane vertical pre-compression: (a) horizontal/

vertical bending moments and (b) horizontal bending moment

and torsion
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adopted for the simulations, in agreement with the Italian code

(OPCM, 2005). In order to compare the proposed homogenised

limit analysis procedure with a standard FE model, a linearised

Lourenço–Rots (see Lourenço and Rots (1997) and also Milani

et al. (2006a) for a detailed description of the model) failure

criterion for joints is adopted for the homogenisation approach,

whereas a cut-off failure criterion in compression is assumed for

units (see Table 2). While the two models are obviously

incomparable since masonry performs somewhat differently with

respect to a simple isotropic material, a tensile strength equal to

0.2 N/mm2 is assumed in the simulations with ft ¼ c (i.e. a typical

value of tensile strength corresponding to mortar with mechanical

properties from average to good is adopted in the limit analysis

approach). In any case, a sensitivity analysis will be presented

hereafter, with the aim of comparing the differences in total shear

at the base obtained by changing friction/tensile properties of

joints.

Figure 6 shows in-plane masonry homogenised failure surfaces in

the tension–tension range (Figure 6(a)) and in the compression–

compression region (6(b)) at different orientations of the bed joint

with respect to horizontal homogenised membrane action Nhh.

Homogenised failure surfaces are obtained through the admissible

and equilibrated model given in Section 3.

Out-of-plane masonry failure sections M11 –M22 and M11 –M12 at

increasing (imposed) membrane in-plane vertical compression

N22 are represented in Figures 7(a) and (b), respectively. The

figures show that vertical membrane load influences not only the

horizontal bending moment but also the vertical one, as a

consequence of the fact that bed joints also contribute to masonry

vertical ultimate out-of-plane resistance. This result is in agree-

ment with experimental evidence. Furthermore, as experimental

evidence shows, there is an optimal compressive load at which

failure moments reach a maximum. If this optimum point is

exceeded, out-of-plane strength begins to decrease until mem-

brane compressive failure occurs. This phenomenon is again

reproduced by the model, as is shown by analysis of the results

reported in Figure 7.

At a structural level, in both models, a seismic load is applied to

floor i by means of a horizontal distributed load of intensity kiº̂º
(ki is a non-dimensional constant), where º̂º is the collapse load

and ki simulates a first mode distribution (it is, indeed, equal to

ziWi=(
P

ziWi), where Wi is the i th floor vertical load, zi is the i

th floor distance to the ground and the summation is extended to

the total number of floors (e.g. DM, 1996).

Floors, constituting small vaults made of clay bricks and

supported by a framework of steel girders, are disposed parallel

to the y-direction, corresponding to the first and second floors,

and distribute vertical loads uniformly on x-directed walls. As a

first attempt, floor stiffness is not taken into account in the

numerical model, and vertical loads (which are independent of

the load multiplier) are applied directly on the masonry walls

corresponding to the floors. In correspondence of the third floor,

a timber truss structure supports an inclined roof covering. For

the sake of simplicity, the self-weight of the masonry is assumed

concentrated in correspondence to the floors and added to the

remaining dead loads, which are defined according to the Italian

code (DM, 1996).

The kinematic FE homogenised limit analysis gives a total shear

at the base of the building of 4218 kN, in good agreement with

the results obtained by the standard FE procedure. In this case,

the capacity curve of the building (Figure 8(a)) reaches its

maximum at approximately 3800 kN.

Figure 9 shows two different views of the deformed shape

obtained with the proposed limit analysis model and two details

representing the out-of-plane failure of one of the walls and the

behaviour of the steel beams placed at first floor level, in order to

give an idea of the potential of the software developed. From a

comparison of the deformed shapes at collapse provided by the

standard software and the present model (compare Figure 8(b)

and Figure 9), it can be argued that mixed in- and out-of-plane
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Figure 8. Masonry building subjected to horizontal actions.

Standard FE elastic plastic approach. (a) Shear at the base, node N

displacement curve. (b) Deformed shape at collapse

73

Engineering and Computational Mechanics
Volume 164 Issue EM2

FE homogenised limit analysis model
Milani and Lourenço

Downloaded by [] on [13/03/18]. Copyright © ICE Publishing, all rights reserved.



failure takes place and that failure is mainly concentrated along

walls x�2 and x�3.

Figure 10 shows a colour patch representing the normalised

plastic dissipation (values from 0 (representing no dissipation) to

1 (representing zones with the highest plasticisation)) obtained

with the proposed model. Two perspective views of the entire

building are presented for the sake of clarity. From an overall

analysis of the output data provided by the code (Figure 9 and

Figure 10), it is interesting to notice that the out-of-plane failure

occurs along inclined yield lines; actual evaluation of masonry

strength along directions different from the horizontal and

vertical is therefore crucial. Again, it is worth emphasising that

pushover analyses conducted with commercial software assuming

isotropic materials are of limited interest for the analysis of 3D

masonry structures.

Finally, a sensitivity analysis was conducted on the example

at hand, assuming, for joints, a classic Mohr–Coulomb failure

criterion with tension cut-off fc equal to minf0:05 N=mm2

x

y
z

x y

z

x y

z

Figure 9. Masonry building subjected to horizontal actions. Two

views of failure mechanism A and zoomed views of the out-of-

plane failure mechanism provided by the code
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c= tan�g, compressive cut-off fc ¼ 5 N/mm2 and varying cohe-

sion c and friction angle � in the range 0.01–0.5 N/mm2 and

5–358. For bricks, a limited compressive strength equal to

30 N/mm2 is also assumed.

Figure 11(a) shows the failure load of the structure with varying

mortar cohesion and friction angle. From a detailed analysis of

such sensitivity results, two different failure mechanisms can

roughly be distinguished, labelled as failure mechanism A and B.

The intervals in which they take place are indicated schematically

in Figure 11(a) with different colours. In particular, mechanism

A, reported in Figure 9, corresponds to an in-plane failure of

walls x�2 and x�3 combined with an out-of-plane failure of

walls y�1. On the other hand, mechanism B, reported in Figure

12, combines a shear failure of wall x�2 concentrated on the

second storey and overturning of walls y�1. For the sake of
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Figure 10. Masonry building subjected to horizontal actions. Two

views of plastic dissipation patch on masonry elements (failure

mechanism A)
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Figure 11. Masonry building subjected to horizontal actions. (a)

Sensitivity analysis varying mortar cohesion and mortar friction

angle and failure mechanisms patch. (b) Sensitivity analysis

varying mortar compressive strength (at fixed values of other

mortar mechanical properties)
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completeness, Figure 13 shows the plastic dissipation patch on

masonry elements corresponding to mechanism B simulations.

From a comparison of deformed shapes at collapse and plastic

dissipation corresponding to the numerically evaluated failure

mechanism provided in case A and B by the FE model, it can be

clearly stated that the choice of mechanical properties of the

constituent materials is crucial for correct and realistic evaluation

of the overall behaviour of a building.

Figure 11(b) shows some results of a sensitivity analysis con-

ducted with varying mortar compressive strength over a wide

range. In particular, total shear at the base is represented with

varying mortar fc from 10 to 0.5 N/mm2 while keeping all the

other values constantly equal to those reported in Table 2. It is

worth mentioning that, while there is little influence of the

compressive strength of the bricks on the failure loads (since in

the model, which is a 2D approach, masonry compressive

strength depends solely on the geometry of the cell and mortar

compressive strength until the compressive strength of the bricks

is greater than that of the mortar (see Milani et al. (2006a) for a

detailed discussion of this limitation)) some meaningful variations

may be noticed when reducing the mortar compressive strength.

In fact, a great amount of resistance to horizontal actions is due

to the contribution of the three walls parallel to x-axis (which are

mainly subjected to in-plane actions) and, since masonry com-

pressive strength influences pier resistance, a reduction of fc

z
y

x

z

yx

z

y

z

y
x

Figure 12. Masonry building subjected to horizontal actions. Two

views of failure mechanism B and zoomed views on the out-of-

plane failure mechanism provided by the code.
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results indirectly in a reduction of the total shear at the base

withstood by the building. Obviously, for high values of fc, the

increase in failure load is minimal, meaning that piers collapse

mainly for shear actions. On the contrary and as expected, for

very low values of fc, a meaningful decrease of the failure load is

observed.

5. Conclusions
A 3D FE upper bound limit analysis code based on homogenisa-

tion has been presented. The software is based on a plate and

shell discretisation of masonry piers and spandrels. The possible

presence of 1D beams is modelled by means of two-node rigid

beam (or truss) elements. Homogenised masonry failure surfaces

are utilised in the software. They are obtained by sub-dividing the

elementary cell along its thickness into several layers. For each

layer, fully equilibrated stress fields are assumed, adopting poly-

nomial expressions for the stress tensor components in a finite

number of sub-domains. The structural model allows plastic

dissipation for in-plane actions on triangular elements and

interfaces, whereas out-of-plane yield lines are concentrated only

at the interfaces between contiguous elements.

To validate the FE model proposed, a relevant 3D structural

example (a masonry school subjected to horizontal actions) was

treated. Full sensitivity analyses and a comparison with results

obtained with commercial elasto-plastic software have been

presented, and indicate good performance by the model.

For all the simulations, the proposed model (also considering the

homogenised failure surface evaluation) took less than 3 min on a

standard PC Intel Celeron 770 1.40 GHz equipped with

2 GB RAM. This processing time is negligible compared with

standard FE incremental procedures.
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