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Abstract: The Electromagnetism-like (EM) algorithm, developed by Birbil and Fang [3] is a population-based
stochastic global optimization algorithm that uses an attraction-repulsion mechanism to move sample points toward
optimality. In order to improve the accuracy of the solutions the EM algorithm incorporates a random local search.
In this paper we propose a new local search procedure based on a pattern search method, and a population shrinking
strategy to improve efficiency. The proposed method is applied to some test problems and compared with the
original EM algorithm.
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1 Introduction
We consider the problem of finding a global solution
of the problem:

min f(x)
s.t. x ∈ Ω,

(1)

where f : Rn → R is a nonlinear function and
Ω = {x ∈ Rn : −∞ < lk ≤ xk ≤ uk < ∞, k =
1, . . . , n} is a bounded feasible region. Further, we as-
sume that the derivatives are not available. Recently,
Birbil and Fang proposed the electromagnetism-like
(EM) algorithm that is a population-based stochas-
tic search method for global optimization [3]. The
algorithm simulates the electromagnetism theory of
physics by considering each sampled point as an
electrical charge. The method utilizes an attraction-
repulsion mechanism to move a population of points
toward optimality. In order to improve the accuracy
of the solutions a typical EM algorithm incorporates
a random local search. Here, we propose a modifi-
cation to the EM algorithm using the original pattern
search method of Hooke and Jeeves [5], that is sim-
ple to implement and does not require any derivative
information. Another modification consists of incor-
porating a population shrinking strategy into the EM
algorithm.

Thus, in order to solve problem (1), we modify
the EM algorithm proposed in [3] twofold: (i) a pat-
tern search method is used to provide at each iteration
a local search about the best point of the population;

(ii) a population shrinking strategy is implemented to
reduce the number of points in the population when-
ever the concentration of all points around the best
point is considered acceptable.

Four sets of experiments are carried out to illus-
trate the efficiency of the local pattern search method
and the population shrinking strategy separately.

The remainder of the paper is organized as fol-
lows. Section 2 briefly describes the original EM al-
gorithm and Section 3 introduces the pattern search
method to be used as a local search. Section 4 is de-
voted to explain the main ideas of the new shrinking
population strategy and Section 5 reports the numeri-
cal results. Some conclusions are drawn in Section 6.

2 Electromagnetism-like algorithm
The EM algorithm starts with a population of ran-
domly generated points from the feasible region. Each
point is considered as a charged particle that is re-
leased to the space. The charge of each point is re-
lated to the objective function value and determines
the magnitude of attraction or repulsion of the point
over the population. Points with lower objective func-
tion values attract others while those with higher func-
tion values repel. The charges are used to find a direc-
tion for each point to move in subsequent iterations.

Throughout the paper, the following notation is
adopted: xi ∈ Rn denotes the i th point of a po-
pulation; xbest is the point that has the least objective
function value; xi

k ∈ R is the k th (k = 1, . . . , n) co-



ordinate of the point xi of the population; m is the
number of points in the population; MaxIt is the
maximum number of EM iterations; LSIt denotes the
maximum number of local search iterations; and δ is
a local search parameter, δ ∈ [0, 1].

The EM mechanism is schematically shown in
Algorithm 1 and relies on four main procedures (Ini-
tialize, CalcF, Move and Local).

Algorithm 1 (m, MaxIt, LSIt, δ)
Initialize()
iteration ← 1
while termination criteria are not satisfied do

F ← CalcF()
Move(F)
Local(LSIt, δ)
iteration ← iteration + 1

end while
The procedure Initialize aims to randomly gene-

rate m points from the feasible region. Each coordi-
nate of a point (xi

k) (k = 1, . . . , n) is assumed to be
uniformly distributed between the corresponding up-
per and lower bounds, i.e., xi

k = lk+λ(uk−lk) where
λ ∼ U(0, 1). The objective function values are com-
puted for all the points in the population, and the best
point, xbest, which is the point with the least function
value is identified.

The CalcF procedure computes the force exerted
on a point via other points. First a charge-like value,
qi, that determines the power of attraction or repulsion
for the point xi is determined. The charge of the point
is calculated according to the relative efficiency of the
objective function value of the corresponding point in
the population, i.e.,

qi = exp(−n
f(xi)− f(xbest)∑m

k=1(f(xk)− f(xbest))
),

for i = 1, . . . , m. The total force vector F i exerted
on each point is calculated by adding the individual
component forces, F i

j , between any pair of points xi

and xj ,

F i =
m∑

j 6=i

F i
j , i = 1, 2, . . . , m

where

F i
j =

{
(xj − xi) qiqj

‖xj−xi‖2 if f(xj) < f(xi)

(xi − xj) qiqj

‖xj−xi‖2 if f(xi) ≤ f(xj)
.

The Move procedure uses the normalized total
force vector exerted on the point xi, so that feasibility

can be maintained, to move it in the direction of the
force by a random step length λ, i.e.,

xi = xi + λ
F i

‖F i‖(RNG),

for i = 1, . . . ,m and i 6= best, where RNG is a
vector with components that define the allowed range
of movement toward the lower bound lk, or the up-
per bound uk, for each coordinate k. The random
parameter λ is assumed to be uniformly distributed
between 0 and 1. Note that the best point, xbest, is not
moved and is carried to the subsequent iterations.

Finally, the Local procedure presented in [3] is
a random line search algorithm and is applied coordi-
nate by coordinate to the best point only to explore the
neighborhood of that point in the population. First,
based on the parameter δ, the procedure computes
the maximum feasible step length, δ(maxk(uk− lk)).
This quantity is used to guarantee that the local search
generates only feasible points. Second, for each co-
ordinate k, the best point is assigned to a temporary
point y to store the initial information. Next, a ran-
dom number is selected as a step length and the point
y is moved along that direction. If an improvement
is observed, within LSIt iterations, the best point is
replaced by y and the search along that coordinate k
ends. The reader is referred to [2, 3, 4] for details.

3 Pattern search Local procedure

Birbil and Fang [3] show that the Local procedure is
crucial in improving the accuracy of the average func-
tion values although at the cost of the number of func-
tion evaluations required. Another local search that is
simple and does not use derivative information is the
pattern search (PS) method, see for example [1, 7, 10].
The research about pattern search methods is flou-
rishing. This method has been first applied to uncons-
trained optimization and then successfully extended
to bound constrained [8], as well as to equality cons-
trained problems [9]. Here, in the EM context, the
original Hook and Jeeves pattern search algorithm is
applied, at each iteration, to the current best point in
the population [5, 10]. This algorithm is based on two
moves: the exploratory move and the pattern move.

The exploratory move carries out a coordinate
search about the best point, with a step length δ. If at
the new point, y, f(y) < f(xbest), the iteration is suc-
cessful. Otherwise, the iteration is unsuccessful and δ
should be reduced. If the previous iteration was suc-
cessful, the vector y−xbest defines a promising direc-
tion and a pattern move is then implemented, meaning
that the exploratory move is carried out about the point



y + (y − xbest) instead of y. Then, if the coordinate
search is successful, the returned point is accepted as
the new point; otherwise, the pattern move is rejected
and the coordinate search is carried out about y. Here,
a factor of 0.1 is used to reduce δ when the iteration is
unsuccessful and the minimum step length allowed is
1E-08.

Our implementation of the pattern search method
uses an exact penalty-like technique to maintain fea-
sibility, i.e., problem (1) is replaced by the following

minF (x) ≡
{

f(x) if x ∈ Ω,
∞ otherwise,

meaning that any generated point that is infeasible is
rejected, since the corresponding function value is∞.

4 A population shrinking strategy
The population shrinking strategy is the main contri-
bution of this paper. The purpose of implementing
a devise that is able to strategically reduce the num-
ber of points in the population, here denoted by shrin-
king the population, is to reduce the overall number
of objective function evaluations without affecting the
accuracy of the results. So, a strategy is designed
to shrink the population as the iterative process pro-
gresses. The crucial point here is to decide when to
shrink the population. When the concentration of all
points in the population around the best point is con-
sidered acceptable, it seems that some points could be
discarded without affecting the convergence rate to the
solution. The points that will remain in the population
should be the best ones.

One way to measure the concentration of the
points in the population around the best point is to
compute the standard deviation (SD) of the function
values with respect to the best value,

SD =

√∑m
i=1(f(xi)− f(xbest))2

m
.

This quantity is used to decide when to shrink the
population. Although one may think that the SD de-
creases monotonically as the iterative process con-
verges to the solution, this is not always true. The
idea is to shrink the population at a particular iteration
l, when the SD(l) is below 10% of the SD of a refe-
rence iteration (SDref ). Here, a reference iteration is
the first iteration that was carried out with the same
population of the iteration l. Thus, the population is
shrunk if

deviation ratio =
SD(l)

SDref
< 0.1 .

Table 1: Numerical results
Tf code mf fbest ItEM fe

GP orig - 3.000004 8 256
orig-shri 5 3.000073 11 179
ps - 3.000004 5 306
ps-shri 5 3.000013 6 350

H orig - 0.000038 8 265
orig-shri 10 0.000042 9 231
ps - 0.000068 3 209
ps-shri 10 0.000068 3 209

R orig - 0.008941 500 10533
orig-shri 5 0.000053 380 2690
ps - 0.000685 500 31520
ps-shri 10 0.000079 72 3678

M orig-shri 20 -1.913215 9 284
ps-shri 20 -1.913220 5 317

S orig-shri 20 0.000002 12 308
ps-shri 20 0.000001 4 269

Whenever the population is shrunk, the reference
iteration changes. Although different shrinking fac-
tors have been tested, the constant 0.5 proved to be
efficient. The shrinking process as described above is
not activated if the number of points in the popula-
tion is less or equal to 2n. In the Algorithm 1 context,
this shrinking procedure appears after the Local pro-
cedure.

5 Numerical results
Computational tests were performed on a PC with a
3GHz Pentium IV microprocessor and 1Gb of memo-
ry. We compare the performance of the two versions
of the EM algorithm, as described in Sections 2 and
3, with the corresponding versions with the proposed
shrinking strategy, using 5 well-known test functions
selected from the literature. The algorithms terminate
when the number of EM iterations exceeds MaxIt or
the relative error in the best objective function value,
with respect to fglobal is less than 0.01%.

Two multi-modal functions are selected: Gold-
stein and Price (GP) with fglobal = 3, and Hump (H)
with fglobal = 0. The first has one global solution
only and three local solutions. The second one has
two global optima. The other 3 tested functions are
uni-modal: Rosenbrock2 (R) with fglobal = 0, Mc-
Cormick (M) with fglobal = −1.9133, and Spherical
(S) with fglobal = 0.

In the experiments, we used m = 20 (initial
population), LSIt = 10, MaxIt = 50 (except
for Rosenbrock2, where we chose 500 due to con-
vergence problems) and δ=1E-03 (except for Rosen-
brock2, where we used 1E-02). The results that are re-
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Figure 1: Original EM algorithm: points in the initial
and final populations (GP)

ported in Table 1 include the name of the test function,
Tf , the number of points in the final (last iteration)
population (when the shrinking strategy is used), mf ,
the number of iterations of the EM algorithm, ItEM ,
and the total number of function evaluations, fe.

The tested codes are denoted by: orig (original
EM algorithm); orig-shri (original EM algorithm
with shrinking strategy); ps (EM pattern search algo-
rithm); ps-shri (EM pattern search algorithm with
shrinking strategy). All random quantities were ob-
tained with the seed number set to 0.

We noticed that the population shrinking process
was never activated when solving problems Mc-
Cormick and Spherical. The deviation ratios were
never under 30%.

From Table 1 one can see that the implementa-
tions based on the pattern search algorithm require
smaller number of EM iterations, although in some
cases with larger number of function evaluations. The
accuracy of the solutions is also good. The results pro-
duced by the shrinking process show a reduction on
the iterations or on the function evaluations. In par-
ticular, with the function Rosenbrock2, the two codes
based on shrinking significantly outperform the oth-
ers in terms of convergence rate and accuracy of the
solution. Codes orig and ps reach the maximum
number of iterations (500) without meeting the default
relative error criterion.

We use the functions Goldstein and Price and
Hump to illustrate the population in the first and final
iterations of the 4 tested codes. Figures 1 - 8 show the
location of the randomly generated points in the ini-
tial population, represented by O, and the best point
represented by H; the location of the points in the fi-
nal population, represented by ¤, and the best point
represented by ¥. The location of the known global

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Goldstein Price

Figure 2: Original EM with shrinking strategy: points
in the initial and final populations (GP)
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Figure 3: EM pattern search algorithm: points in the
initial and final populations (GP)
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Figure 4: EM pattern search algorithm with shrink-
ing strategy: points in the initial and final populations
(GP)



solution is represented by ×.
First the function Goldstein and Price. Figures 1

and 2 correspond to the original EM algorithm with-
out and with the shrinking strategy, respectively. In
the second case, the population of 20 points is reduced
to 10 points after the first iteration and reduced to 5
points in iteration 6. The algorithm takes 11 iterations
to reach the solution (see Table 1). Figures 3 and 4
correspond to the EM pattern search algorithm with-
out and with the shrinking strategy, respectively. Here,
the population is reduced to 10 points after the first
iteration and reduced again to 5 points in iteration 5.

The remaining Figures 5 - 8 contain similar illus-
trations for the function Hump. With the original EM
algorithm, the shrinking strategy reduced the popula-
tion in iteration 3 to 10 points which are maintained
until the final iteration. In the EM pattern search al-
gorithm, the population is reduced to 10 points in the
third iteration and the iterative process terminates just
after the reduction. Overall the reduction of the popu-
lation did not affect the rate of convergence and accu-
racy of the results.

6 Conclusions

We have presented a modification to the
Electromagnetism-like algorithm given in [3] for
solving the global optimization problem (1). The
original Hook and Jeeves pattern search method is
proposed as the Local procedure and a population
shrinking process is incorporated in the algorithm
so that the population can be reduced over the
iterative process, and fewer evaluations of the ob-
jective functions are required, without affecting the
convergence rate. The numerical experiments and
comparisons that were carried out show that the
modified EM algorithm is efficient, although a more
significant reduction on the function evaluations was
expected. More numerical experiments have to be
done. Another important challenge is to extend this
modified EM algorithm, incorporating the shrinking
strategy, to problems with large numbers of global
and non-global optima in the region.

To reduce the need for large sets of points in
the initial population we intend to apply the number-
theoretic method, a deterministic process that pro-
duces a set of uniformly scattered points in the fea-
sible region [6]. It seems that this new process has the
ability to explore the search space uniformly and re-
quires in practice smaller number of function evalua-
tions.
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Figure 5: Original EM algorithm: points in the initial
and final populations (H)
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Figure 6: Original EM with shrinking strategy: points
in the initial and final populations (H)
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Figure 7: EM pattern search algorithm: points in the
initial and final populations (H)
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Figure 8: EM pattern search algorithm with shrinking
strategy: points in the initial and final populations (H)
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