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Abstract 

Neuronanorobotics, a key future medical technology that can enable the preservation of 

human brain information, requires appropriate nanosensors. Action potentials encode the 

most resource-intensive functional brain data. This paper presents a theoretical design for 

electrical nanosensors intended for use in neuronanorobots to provide non-destructive, in 

vivo, continuous, real-time, single-spike monitoring of action potentials initiated and 

processed within the ~86 x 10
9
 neurons of the human brain as intermediated through the ~2.4 

x 10
14

 human brain synapses. The proposed ~3375 nm
3 

FET-based neuroelectric nanosensors 

could detect action potentials with a temporal resolution of at least 0.1 ms, enough for 

waveform characterization even at the highest human neuron firing rates of 800 Hz.  
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INTRODUCTION  

Information pertaining to brain neural 

connectivity (e.g., the connectome) and the 

associated electrical action potential 

activity at the cellular and subcellular 

level, together with other sources of brain 

structural and functional information, 

underlies higher mental states and 

individuality.  This information can be lost 

as a result of physical trauma, pathogenic 

diseases, and a variety of degenerative 

disorders.  Current medical technology for 

brain information scanning, either 

destructive or non-destructive in nature, 

cannot monitor the structural and 

functional information of a whole human 

brain in real-time, in vivo, with adequate 

temporal and spatial resolution.  

 

Technology capable of providing whole 

human brain, non-destructive, in vivo, real-

time, functional information with adequate 

temporal and spatial resolution will have 

several specific requirements. Such 

technology would have to monitor, among  

 

other brain data, all action potential based 

functional data traffic passing through 

(86.06 ± 8.2) x 10
9
 human brain neurons

[1]
 

and (2.42 ± 0.29) x 10
14

 human brain 

synapses
[2]

, accurately recording 

synaptically-processed (4.31 ± 0.86) x 10
15

 

spikes/sec
[2]

. Accomplishing this objective 
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will require appropriate sensing, 

communication and hardware 

infrastructure to handle an estimated 

neuroelectric data rate of (5.52 ± 1.13) x 

10
16

 bits/sec for the entire living human 

brain
[2]

.  This data rate appears necessary 

to capture even the fastest firing rates in 

the 400–800 Hz range from fast spiking 

neurons
[4, 5]

 and eventually to characterise 

even the fastest voltage velocities at 20 

mV/ms
[6]

. Another requirement is the 

ability to transmit this huge data flow into 

an external supercomputer, possibly using 

an in vivo fiber network
[7]

 capable of 

handling 10
18

 bits/sec of data traffic
[7, 2]

. 

Such a fiber network may occupy 30 cm
3
 

and generate 4–6 W of waste 

heat
[7]

. Ideally the transit time from signal 

origination inside the human brain to the 

external computer system through such a 

network would have negligible signal 

latency in comparison to the action 

potential waveform temporal resolution
[7]

.  

 

Medical nanorobotics offers an ideal 

technology for monitoring, recording, and 

even manipulating many of the different 

types of brain-related information, in 

particular functional action potential based 

electrical information
[8, 7, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18]
. Medical nanorobotics has received 

preliminary technical exploration
[7, 9, 19, 20]

 

and there are several detailed theoretical 

designs for a variety of medical 

nanorobots
[8, 21, 22, 23, 24, 25, 20, 27]

. 

 

Neuronanorobots, a specific class of 

medical nanorobots, are expected to permit 

in vivo, whole-brain, real-time monitoring 

of single-neuron neuroelectric activity and 

local neuropeptide traffic, permitting also 

the acquisition of all relevant structural 

information including neuron surface 

features and connectome mapping 
[28, 29, 30, 

31, 32]
.  Non-destructive whole-brain 

monitoring would be enabled by the 

coordinated activities of large numbers of 

cooperating neuronanorobots.  Medical 

neuronanorobotics might be the ultimate 

technology needed to treat Parkinson’s and 

Alzheimer’s diseases, other brain-related 

neurodegenerative disorders, epilepsy, 

dementia, memory and sensory disorders, 

spinal cord and neuromuscular disorders, 

pain and toxic disorders, and a wide 

variety of traumatic injuries to the brain. 

Non-medical applications of this 

promising technology include the 

possibility of becoming the virtually 

perfect brain-machine interface technology 

necessary to finally bridge human brain 

and machine
[33]

. 

 

The advent of medical neuronanorobotics 

requires the ability to build nanorobotic 

devices and to produce these devices in 

sufficient therapeutic quantities to treat 

individual patients.  The most advanced 

neuronanorobots will likely be fabricated 

using diamondoid materials, because these 

materials provide the greatest strength, 

durability, and reliability in the in vivo 

environment and have good 

biocompatibility
[9, 20]

.  Possible methods to 

achieve massively parallel molecular 

manufacturing technologies, such as a 

nanofactory, have been reviewed in the 

literature
[38, 20, 39]

, and methods for 

controlling individual and large numbers 

of medical nanorobots are also the subject 

of current research
[34, 35, 36]

. An ongoing 

international collaboration is pursuing the 

objective of constructing a nanofactory 

capable of mass-manufacture medical 

diamondoid nanorobotics devices for 

medical treatments
[37, 20, 39]

. 

 

Neuronanorobotic sensors are a key 

technology for all subclasses of 

neuronanorobots, especially for 

endoneurobots (neuron-resident robots) 

and synaptobots (synapse-monitoring 

robots). Appropriate monitoring of the 

different types of functional human brain 

information requires nanosensors with 

crucial performance characteristics, 

including: appropriate dynamic range to 

capture the entire signal amplitude, high-

accuracy as an appropriate percentage of 

full scale output, high-sensitivity, small 
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hysteresis permitting good discrimination 

between similar inputs, low output noise 

compared with the fluctuation in the 

physical signal, good resolution for 

measuring the minimum detectable signal 

fluctuation with good margins of safety, 

and appropriate bandwidth with fast 

response time to a rapid change in physical 

signal. 

 

After a brief survey of contemporary brain 

scanning techniques (Section 2) and 

specific action potential measurement 

requirements (Section 3), we review 

appropriate sensor choices (Section 4) and 

then provide a preliminary design for a 

specific nanorobot sensor (Section 5) that 

is intended for use in endoneurobots and 

synaptobots performing real-time 

monitoring of in vivo action potentials.  

Nanosensor biocompatibility is briefly 

addressed in Section 6. 

 

CONTEMPORARY BRAIN SCANNING  

Non-Destructive Techniques  

Non-destructive structural whole brain 

monitoring techniques in the form of 

computerized scanning-based imaging 

modalities, such as positron emission 

tomography and magnetic resonance 

imaging, provide non-destructive three-

dimensional views of the brain down to ~1 

mm resolution, with typical clinical MRI 

scan voxel resolutions of 1 mm x 1 mm x 

3 mm
[40, 41]

. Such resolution permits 

regional analyses of brain structure but is 

clearly insufficient for investigation of 

structures underlying intercellular 

communication at the level of individual 

neurons or synapses
[42]

. High-definition 

fiber tractography provides accurate 

reconstruction of white matter fiber 

tracts
[43, 44]

 but also with a resolution of 

only ~1 mm 
[43, 44]

. 

 

Micro-CT scanners, with a typical scan 

time between 10 min and 2 hr, allow high-

resolution tomography of specimens up to 

a few centimeters in diameter, with the 

highest spatial resolution being 2 µm, still 

not enough to detect most synapses.  The 

state-of-the-art tomographic Nano-CT 

scanners (the Micro-CT successor) achieve 

structural resolutions between 50–500 nm. 

Three Nano-CT scanners are commercially 

available today:  the Nanotom, the 

SkyScan-2011, and the Xradia nanoXCT. 

The Nanotom provides a resolution of 

~500 nm pixels, and handles maximum 

object size of 150 mm height and 120 mm 

diameter
[45]

 (roughly the size of a whole 

human brain). The SkyScan-2011 has a 

slightly better resolution of ~400 nm 

pixels with similar object size constraints. 

The Xradia nanoXCT claims to be capable 

of providing a spatial resolution between 

50–300 nm
[46]

. Nano-CT scanner 

resolutions might permit extraction of 

some cellular detail and eventually 

identification of some synapses, but much 

structural information remains uncaptured 

and, most problematically, the technology 

does not permit in vivo brain scanning. 

 

Current techniques for non-destructive 

functional whole brain monitoring do 

enable the creation of detailed system level 

maps of the brain functional connectome, 

achieved using resting-state functional 

magnetic resonance imaging
[47]

 with voxel 

size resolution of 2 mm x 2 mm x 

2.5 mm
[48]

, but these are still incapable of 

cellular-level resolution.  

 

Destructive Techniques  

Contemporary destructive structural whole 

brain monitoring can provide resolutions 

down to the nanometric level. 

Ultramicrotome scanning, for example, 

provides near nanometric resolution after 

chemical preservation of the tissue.  It is 

being used to scan larger and larger brain 

volumes with nanometric detail permitting 

visualization of individual synapses and its 

components. Ultramicrotome sections 30–

100 nm thick are scanned by either a 

transmission electron microscope, a serial 

block-face scanning electron microscopy, 
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or a light-optical microscope, with 

automation of the collection of ultrathin 

serial sections for large volume 

transmission electron microscope 

reconstructions
[49, 50, 51]

. Current scanned 

volumes are far from a whole human brain 

volume, but a process to achieve a whole 

human brain is envisioned
[51]

. Several 

methods were developed to improve the 

analysis of the ultra-thin microtome 

images. After scanning, posterior software 

reconstruction uses specialized software 

such as RESCOP or KNOSSOS to trace 

the connections between neurons
[52]

. 

Tagging individual neurons with 

fluorescent proteins
[53,54]

 facilitates the 

analysis of neuronal circuitry and glial 

territory mapping on a large scale. A high-

throughput technique called BOINC 

(“barcoding of individual neuronal 

connections”) for establishing circuit 

connectivity at single-neuron and synaptic 

resolution was proposed using high-

throughput DNA sequencing
[55]

. 

 

Other strategies are also being pursued to 

avoid the laborious ultrastructural electron 

microscopy based techniques. For 

example, The X-ray nanotomography 

microscope delivers a high-resolution 3-D 

image of the entire cell in one step, an 

advantage over electron microscopy in 

which a 3-D image is assembled out of 

many thin sections which can take up to 

weeks for just one cell
[56, 57]

. Cell 

ultrastructure has been imaged with X-rays 

down to 30 nm resolution. 

 

Partially destructive techniques have been 

used to study, physiologically and 

anatomically, a group of neurons in the 

mouse primary visual cortex
[58]

. Two-

photon calcium imaging was used to 

characterize functional properties, and 

large-scale electron microscopy of serial 

thin sections were employed to trace a 

portion of these neurons’ local network). 

Other techniques can obtain whole brain 

structural gene expression information at 

the cellular level, as computationally 

reconstructed with histological (pixel size 

0.95 μm
2
) and MRI data (voxel size 

12.3μm
3
) 

[1, 60, 2]
.  At the structural cellular 

level, other methods such as CLARITY 

enable estimations of the joint 

morphological statistics of many neurons 

in a tissue sample at the same time
[62, 63]

. 

For in vitro cellular approaches, scanning 

light microscopy (e.g. confocal 

microscopy) provides three-dimensional 

views of individual neurons but only down 

to ~1 μm resolution.  

 

To date, several smaller-than-human-brain 

connectomes have been scanned, including 

the C. elegans connectome
[64, 65, 66]

, the 

predatory nematode Pristionchus pacificus 

connectome
[67]

, the connectomes of six 

interscutularis muscles
[29]

, the partial 

structural and functional connectome of 

the mouse primary visual cortex (via 

electron microscope and two-photon 

microscopy, 800 TB data set, 5nm ×5 nm 

×50 nm spatial resolution, and the entire 

data set captures a tissue volume of 30 × 

30 × 30 μm
3
)
[68]

, and the inner plexiform 

layer of the mammalian retina connectome 

(via automated transmission electron 

microscope imaging, 16.5 TB data set, 

~2 nm resolution of a 0.25 mm diameter 

tissue column spanning the inner nuclear, 

inner plexiform, and ganglion cell layers 

of the rabbit)
[30]

.  

 

Structural 3-D destructive reconstruction 

of a whole human brain with 20 μm 

resolution has been completed, preserving 

the first human whole-brain 

cytoarchitectural anatomy
[3]

.  A planned 

future project is the creation of a ~1 μm 

spatial resolution brain model, intended to 

capture details of single cell morphology 

and to integrate gene expression data from 

the Allen Institute Brain Activity Map 

Project. There are also efforts underway to 

map the whole human brain at the synaptic 

level of resolution
[70]

.  The remaining 

challenges necessary to scale these 

destructive processes into a whole human 
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brain appear surmountable in the decades 

ahead.  

 

Contemporary destructive approaches 

provide near-nanometric structural 

resolution, but many inherent problems 

remain. First, it is not clear if the different 

biomolecular machinery can be 

distinguished by the next generation of 

these techniques.  Second, functional 

information is not captured by these 

techniques (although functional 

information might not always be 

necessary, in case atomic structural 

resolution is achieved).  Third, destructive 

techniques are expected to face resistance 

for implementation in clinical practice, in 

part because the destruction is irreversible 

and in part because of the difficulty in 

proving the continuity of consciousness. 

 

ACTION POTENTIAL MEASUREMENT 

REQUIREMENTS  

The human connectome sets the 

underlying structure for the synaptic-

processed (4.31 ± 0.86) × 10
15

 spikes/sec 

signal traffic processed in the whole 

human brain, constituting the most crucial 

and data-intensive information channel 

corresponding to (5.52 ± 1.13) x 10
16

 

bits/sec 
[2]

.  Synapses, the structural sub-

cellular components responsible for 

processing this data, play a crucial role in 

brain information processing
[3]

, are 

involved in learning and memory (either 

long-term and short-term memory storage 

and deletion)
[71, 72, 73, 74]

, participate in 

temporal processing of information
[75]

, and 

are key elements for signal transduction 

and plasticity in the human brain
[76, 77]

. 

 

The key functional-information 

measurement task at synapses is 

monitoring action potentials, capturing 

even the fastest 400–800 Hz firing rates 

occurring at fast spiking neurons
[4, 5]

 and 

the fastest voltage velocities at 

20 mV/ms
[6]

. Inferable from the electrical 

data might be the action-potential-induced 

opening of ~20 Ca
2+

 channels per active 

zone, and consequent monitoring of ion 

fast release with a delay of 50–500 μs 
[78, 

79]
. Also potentially inferable might be the 

resultant Ca
2+

 transient (lasting 400–

500 μsec)
[79]

.  By measuring synaptic 

electrical activity, neuronanorobots can 

also monitor synaptic plasticity including 

synaptic based long-term potentiation, 

long-term depression, short-term plasticity, 

metaplasticity, homeostatic plasticity, and 

cross-talk. 

 

Action potentials may encode information 

in spike timing pattern and in the spike 

waveform. While there is evidence that the 

action potential waveform encodes some 

type of information, its relevance is not 

clear. The rate of information transfer 

including action potentials waveforms may 

be significantly higher than the rate 

assuming only stereotyped spike train 

impulses
[80]

. In the interim, a conservative 

design criterion for action potential 

nanosensors would include the capacity to 

measure individual action potential 

waveforms. 

 

For acquiring optimal spatial and temporal 

resolution the action potential nanosensors 

need to be positioned as close as possible 

to the action potential initiation site.  In 

most cases, action potentials are initiated 

at the axon initial segments (AIS)
[81]

, but 

in some cases action potentials are 

initiated at the axon hillock, and 

sometimes they are even initiated at the 

first node of Ranvier
[82, 83]

. For example, 

the site of action potential initiation in 

cortical layer 5 pyramidal neurons is ~35 

µm from the axon hillock (in the AIS)
[83]

.  

In some other neuronal types, the action 

potential may be initiated at the first nodes 

of Ranvier
[84, 85, 83]

 which, in layer 5 

pyramidal neurons, is ~90 µm from the 

axon Hillock – the first myelin process is 

~40 µm from soma and the length of the 

first myelin process is ~50 µm
[83]

.  Since 

action potentials might be initiated in 
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different cellular subcompartments, 

endoneurobots will be parked at the AIS 

(the most likely spot for action potential 

initiation) where they will monitor the 

large majority of action potentials. In 

neurons where some action potentials are 

initiated at the first nodes of Ranvier or the 

axon hillock, two synaptobots placed at the 

first node of Ranvier and at the axon 

hillock can ensure proper action potential 

waveform detection of all initiated action 

potentials. 

 

Once in the right position, nanosensors 

will detect individual action potentials 

with proper waveform temporal resolution. 

Estimating the necessary waveform 

temporal resolution requires an overview 

of a neuron’s firing frequency variability 

and theoretical maximum firing frequency. 

It is well-known that the “typical” ~20 μm 

human neuron discharges 5-100 sec
-1

, 

moving from ˗60 mV potential to +30 mV 

potential in ~1 ms.  However, the 

variability of action potential frequencies 

is large and depends largely on the 

electrophysiological class of the neuron
[2]

. 

There are three main electrophysiological 

classes of neurons in the human brain
[86, 

87]
. 

 

Regular Spiking neurons (which fire at 

low rates and adapt to continuous stimuli) 

respond to a “typical” depolarizing 

stimulus of 0.3 nA with initial frequencies 

of 100 Hz in the first 2 ms, then 

accommodate during the following 50 ms 

to steady frequencies of about 30 Hz 

(usually range 20–50 Hz)
[4, 5]

.  Regular 

Spiking firing frequencies can rise to 200–

300 Hz 
[5]

 with each spike lasting for 

~1 ms 
[5]

. 

 

Fast Spiking neurons (which sustain very 

high firing frequencies with little or no 

adaptation) respond to a depolarizing 

stimulus of 0.3 nA with a sustained high 

frequency of 250–350 Hz, though 

discharges can sometimes reach the 400–

800 Hz range
[4, 5]

;  duration is usually 0.4–

0.6 ms. 

 

Bursting neurons (which generate clusters 

of spikes either singly or repetitively) 

respond to a depolarizing stimulus of 0.3 

nA with a repetitive burst discharge, with 

an intraburst frequency of 300 Hz (the first 

burst might reach 600 Hz) and an 

interburst frequency of 40 Hz
[88]

.  Bursting 

neuron high-frequency (300–600 Hz) 

spike bursts recur at fast rates (30–50 Hz) 

within a certain range of membrane 

potentials
[89, 90, 4, 88]

.  Bursting neurons 

have two main subtypes: intrinsically 

bursting (IB) and fast-repetitive bursting 

(FRB)). During sustained depolarization, 

IB neurons fire a short burst of 3–5 action 

potentials at ~200 Hz which becomes 

repetitive usually at frequencies around 5–

15 Hz
[5]

.  During sustained depolarization, 

FRB neurons fire bursts containing 25 

spikes at frequencies from 200–600 Hz, 

with short spikes of ~0.6 ms bursts 

repeating regularly at 20–80 Hz
[5]

. 

 

The maximum firing frequency reported in 

all human electrophysiological neuron 

types is 800 Hz, although other vertebrates 

employ somewhat higher maximum firing 

frequencies, e.g., 2000 Hz for chicken
[91, 92, 

93, 94]
. For non-vertebrates, the maximum 

firing frequency for mechanosensory 

neurons in copepod antennules with single 

neurons firing was a maximum frequency 

of 5000 Hz and sustaining frequencies of 

3000–4000 Hz for up to 4 ms
[95]

. 

Comprehensive electrophysiological 

studies may be necessary to guaranty that 

such high frequencies do not occur 

anywhere in human brains. 

 

A detailed recording of human action 

potential waveforms might conceivably 

require a 0.05 ms temporal resolution (the 

fastest voltage velocities at 20 mV/ms 

would require 0.05 ms resolution for 

having mV resolution). However, a 

somewhat lower temporal resolution is 

expected to be necessary because each 
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spike is estimated to carry 7–10 bits of 

information
[2]

, motivating the choice 

0.1 ms (i.e., 10,000 Hz) temporal 

resolution in the present work.  This 

resolution should permit detailed 

monitoring of a very large majority of 

neuroelectrical waveforms and will ensure 

the detection of even the fastest action 

potentials.  

 

CHOICE OF NANOSENSOR FOR 

ACTION POTENTIAL MONITORING  

At least two basic nanosensor types could 

potentially be used on an intracellular 

basis to detect individual action potentials: 

concentration-based nanosensors (Section 

4.1) and electrical field-based nanosensors 

(Section 4.2). The choice is largely driven 

by the need for a nanosensor that provides 

the required signal resolution necessary to 

characterize the action potential waveform. 

Thermal sensors, a third type, appear 

marginal because the thermal time 

constant across a distance Ln ~ 20 μm (the 

maximum diameter of human nerve axons) 

for neurons having thermal conductivity Kt 

= 0.6 W/mK (~water at K) and heat 

capacity CV = 4 x 10
6
 J/m

3
K (brain tissue) 

is τeq = Ln
2
 CV / Kt ~ 3 ms, much longer 

than the minimum ~0.1 ms temporal 

resolution that is probably required to 

sufficiently characterize fast spike 

waveforms.  

 

Concentration-Based Nanosensors   

One approach to monitor action potential 

waveforms is to use nanosensors that can 

directly measure the Na
+
 and K

+
 ion 

concentration changes intracellularly, near 

the axon membrane in the interior of the 

axon hillock during an electrical event. 

Typically, the resting ion concentrations in 

the cytosolic axoplasm are [Na
+
]in = 

18.0 mM (1.1 x 10
7
 ions/μm

3
) and [K

+
]in = 

140.0 mM (8.4 x 10
7
 ions/μm

3
), while 

extracellular concentrations are [Na
+
]out = 

144 mM and [K
+
]out = 4 mM 

[96]
.  While an 

action potential event causes a Vm ≈ 100 

mV change in the neuron membrane 

potential as a result of entering Na
+
 ions 

and exiting K
+
 ions, the respective 

concentrations inside and outside of the 

axoplasm change relatively little when 

compared to the total number of Na
+
 and 

K
+
 ions present. This change in membrane 

potential is associated with a certain total 

number of charges that move across the 

plasma membrane per unit area, creating a 

charge differential across the membrane of 

Qaction = Cm Vm / qe ≈ 6250 ions/μm
2
, 

taking membrane capacitance Cm ~ 

1 μF/cm
2
 for biological lipid bilayers

[97]
 

and Vm ~ 100 mV across the biological 

membrane, with each monovalent ion 

carrying one elementary charge qe = 1.6 x 

10
˗19

 coul. 

 

Considering the neuron soma (cell body) 

as a whole, and assuming a “typical” 10 

μm diameter neuron with a total soma 

surface area of Asoma ~ 314 μm
2
 and 

volume Vsoma ~ 524 μm
3
, the neuron 

cytoplasm contains NNa+ = [Na
+
]inVsoma ~ 

5.8 × 10
9
 Na

+
 ions and NK+ = [K

+
]inVsoma ~ 

4.4 × 10
10

 K
+
 ions. During an action 

potential, nNa+ (=nK+) ~ AsomaQaction~ 2 x 

10
6
 Na

+
 ions enter the cell and an equal 

number of K
+
 ions exit the cell. Such a 

small ion current represents an increase of 

only ΔCNa+ = nNa+ / NNa+≈ 0.03% in the 

sodium ion concentration of the entire 

neuron soma, and an increase of only 

ΔCK+ = nK+ / NK+≈ 0.005% for potassium 

ions during the rise time of the action 

potential.  (Of course, overall Na
+
 and K

+
 

concentrations can depart significantly 

from these values in axons having small 

cytoplasmic volumes when firing 

sustainedly at high frequencies.) 

 

A more complete analysis would include 

the diffusion rates of ions and the number 

density of Na
+
 and K

+
 channels and pumps 

in order to account for the much slower 

pump rate per square micron by which the 

ions are returned to their original side of 

the membrane.  Since the turnover rate of 

Na
+
/K

+
 pumps (~500 ions/sec) is so much 
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slower than the Na
+
/K

+
 channels (~10

6
–

10
7
 ions/sec), some increase in ion 

concentrations in the near-membrane 

volume might also be expected during fast 

spiking rates, consequently reducing the 

available concentration change for later 

action potentials. Ionic species can become 

highly hydrated when dissolved in water.  

For instance, a naked proton (H
+
) is 

usually present as H5O2
+
 or H7O3

+
, or even 

as H9O4
+
 in strong acid solutions

[98]
, and 

some ions such as Li
+
 and I are found in 

large solvent cages coordinated to as many 

as 46 water molecules
[99, 100]

. Another 

complicating factor is that little is known 

about the compartmentalization and 

dynamics of sodium and potassium fluxes 

in neuron cells with complex 

cytoarchitectures
[101]

. 

 

An ideal concentration sensor, limited only 

by diffusion constraints and drawing 

through a spherical boundary surface of 

radius Rs, provides a minimum detectable 

concentration differential of Δc/c = (1.61 

Δt D0 cion Rs)
˗1/2

, where Δt = measurement 

time, D0 = aqueous diffusion coefficient of 

the hydrated ion at infinite dilution, and 

cion = ion concentration
[102]

.  Requiring Δt 

≤ 0.1 ms to ensure minimally adequate 

action potential waveform resolution, then 

Rs/Na+ ≥ 3.9 μm to detect a Δc/c = ΔCNa+ = 

0.03% change in Na
+
 ion concentration 

from the cytosolic baseline of cion = 1.1 x 

10
7
 ions/μm

3
 for Na

+
, and Rs/K+ ≥ 12.3 μm 

to detect a Δc/c = ΔCK+ = 0.005% change 

in K
+
 ion concentration from the cytosolic 

baseline of cion = 8.4 x 10
7
 ions/μm

3
 for 

K
+
, taking D0 ~ 1.6 x 10

˗9
 m

2
/sec for Na

+
 

and D0 ~ 2.4 x 10
˗9

 m
2
/sec for K

+
, in water 

at 310 K 
[103]

.  These values for Rs are 

already unfeasibly large but are only lower 

limits because the indicated Δc/c occurs 

over a ~1 ms rise time, not over the 

shortest measurement interval Δt ~ 0.1 ms, 

hence the required Δc/c detection 

threshold may be as much as tenfold 

lower.  These considerations appear to rule 

out the use of chemical concentration 

sensors for real-time action potential 

monitoring inside living human neurons. 

 

Electrical Field-Based Nanosensors 

Another approach to monitoring action 

potential waveforms is to use nanosensors 

that can measure the change in local 

electric field strength during the action 

potential event. The electric field E 

(volts/m) surrounding a single monovalent 

ion is given by Coulomb’s law as: E = qe / 

4 π ε0 κe r
2
, where qe = 1.60 x 10

˗19
 coul 

(one charge), ε0 = 8.85 x 10
˗12

 F/m 

(permittivity constant), κe = dielectric 

constant (relative permittivity) of the 

matter traversed by the electric field (e.g., 

taking κe = 74.31 for pure water at 310 K; 

κe decreases slightly with salinity
[104]

), and 

r = distance from the charge, in meters. In 

an aqueous medium such as the interior of 

an axon, the field at a distance of 10–

100 nm from the singly-charged ion is 

200000–2000 V/m. 

 

Patch clamp is an existing laboratory 

technique that allows the study of single or 

multiple ion channels in neurons. The 

method combines scanning ion 

conductance microscopy, which is used to 

scan the exterior surface and identify the 

positions of ion channels on the neuron 

membrane, with patch-clamp recording 

through a single glass nanopipette 

probe
[26]

. The blunt-ended nanopipette, 

which has an inside diameter of 100–

200 nm and can be positioned with 

nanometer precision, is first scanned over 

the neuron membrane area of ∼0.03 μm
2
, 

using current feedback to obtain a high-

resolution topographic image.  The tip is 

then sealed onto the membrane by 

applying suction to develop a tight high-

resistance seal, guaranteeing that all ions 

fluxing the membrane patch flow into the 

pipette to be recorded by a chlorided silver 

electrode connected to a highly sensitive 

electronic amplifier. This method, also 

called nanopatch-clamp
[105, 106, 107, 108]

, in 

principle allows the counting of each ion 

passing through a selected individual 
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sodium or potassium ion channel. A single 

ion channel conducts between 1–10 

million ions/sec, a current of 1–10 pA 
[109]

. 

 

For nanorobots operating inside a neuron, 

permanently sealing a sensor around the 

cytosolic aperture of a large number of ion 

channels would be logistically challenging 

and would likely interfere with normal 

neuron function, e.g., ion transport and 

protein recycling. If we seek instead to 

measure ion current without sealed 

clamping of the sensor to the cell 

membrane, it is useful to examine the 

changes caused by the different types of 

noise in neurons that might affect sensor 

accuracy
[110]

. Sources of response 

variability in neurons and neural networks 

may include thermal noise, ionic 

conductance noise, ion pump noise, ion 

channel shot noise, synaptic release noise, 

synaptic bombardment, chaos, 

connectivity noise, and environmental 

stimuli
[111, 112, 113, 114, 115, 116, 117]

. 

 

After considering these potential sources 

of noise, the main conclusion is that 

thermal noise is the only source of noise 

relevant to evaluate if the cytoplasmic-

resident nanosensors must be capable of 

distinguishing the entrance of each single 

ion on the nearest ion channel without 

having a nanopatch-clamp sealed around 

the ion channel aperture. 

 

The theoretical thermal noise limit for 

electric field detection using a “passive” 

cylindrical sensor of radius R = 25 nm, 

length L = 250 nm, and wall electrical 

thickness dwall = 10 nm has been estimated 
[118]

 as: Elimit = 2√2 (kBT dwall / 4 π ε0 κe)
1/2

 

[1 / (R
1/2

 L
3/2

 (ν tmeas)
1/2

)] ~ 2000 V/m, 

taking Boltzmann’s constant kB = 1.38 x 

10
˗23 

J/K, T = 310 K, electric field 

frequency ν = 10 KHz, measurement time 

tmeas = 0.1 ms, and relative permittivity κe 

~ 2000 for the wall material (cf., values 

approaching κe ~ 100,000 at 310 K and 

~KHz frequencies are reported for the 

perovskite-related oxide CaCu3Ti4O12
[119]

).   

 

A well-designed “passive” electric 

nanosensor of this size and configuration, 

when pressed near the axonal internal 

membrane surface, should readily detect 

the passage of one or a small number of 

ions and thus the variation in electric field 

caused by each action potential discharge, 

without resort to patch-clamping. 

 

The density of Na
+
 ion channels in the AIS 

of the axon is estimated as 100–

200 µm
˗2[81]

, so channels are spaced 

~100 nm apart across the membrane 

surface.  An R = 25 nm nanosensor placed 

10 nm directly beneath an ion channel in 

the membrane would reliably detect the 

initial 200000 V/m field from the entry of 

single Na
+
 ions through the local channel, 

whereas Na
+
 ions entering through the 

nearest adjacent channel 100 nm away and 

flowing around a second R = 25 nm 

nanosensor will be at closest 50 nm from 

the first nanosensor, generating a 

8000 V/m field, just 4% of the local signal. 

 

Exiting K
+
 ions can also be detected if the 

potassium ion channel locations are 

known. Kv1 potassium channels 
[120]

 

control axonal action potential waveform 

and synaptic efficacy, shaping the 

waveform in the AIS of layer 5 pyramidal 

neurons independent of the soma
[121]

.  

 

The first 50 μm of the AIS has a 10-fold 

increase in Kv1 channel density
[121]

. 

Considering the lifetime of a “typical” 

sodium or potassium ion channel, the 

Kv1.3 potassium channel has an estimated 

turnover rate (half-life) of 3.8 ± 1.4 hr, 

rising to ~6.3 hr in the presence of 

TrkB
[122]

.   

 

This is consistent with reported half-lives 

on the order of hours for ion channels on 

the cell membranes of cardiomyocytes
[123]

, 

and suggests that our cytosolic-resident 
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nanosensors may need to be repositioned 

and retargeted several times a day to 

maintain proper signal.   

 

A small array of sensors will also be 

required because target ion channel 

proteins will be rapidly drifting in and out 

of range of individual cytosolic 

nanosensors during long monitoring times 

– lateral diffusion time in cell membrane 

for transmembrane ion channel proteins is 

of order tD ~ X
2 

/ 2 DL ~ 0.1–1 sec between 

submembrane nanosensors located X = 

40 nm apart, taking lateral diffusion 

coefficient DL ~ 0.001–0.01 µm
2
/sec for 

Na+ ion channels at the axon hillock and 

neuritic terminal
[124]

. 

 

However, “passive” electrodes have a 

theoretical minimal size due to impedance 

because the sensing process in such 

detectors requires electrochemical ionic 

exchange. In “active” electrodes, such as 

the two-terminal transistors found in Field 

Effect Transistor (FET) based 

nanosensors, there is no similar exchange 

and the device/electrolyte interface has 

effectively “infinite” impedance. 

 

In such sensors, impedance is not relevant 

to recording bandwidth or noise, allowing 

FETs to detect action potentials 

independently on the device/electrolyte 

interface and permitting nanosensor probe 

miniaturization to smaller sizes
[125]

. 

Decreasing sensor size is beneficial 

because capacitance decreases and 

resistance terms are relatively improved or 

not limiting, so the RC time constant 

remains very small. The smallest "active" 

FET-based nanosensor that has been built 

and tested has a probe of 40 nm diameter 

and 50 nm length, and has demonstrated 

good SNR
[126]

.  

 

PROPOSED FET-BASED 

NEUROELECTRIC NANOSENSOR 
FET-based nanosensors can record electric 

potentials intracellularly in living 

neurons
[127, 128]

 using kinked nanowire 

structures (Fig. 1), providing high signal-

to-noise ratio (SNR) and high temporal 

resolution
[125]

.  

 

The voltage rise/fall time-frame ranged 

from 0.1–50 ms, with the FET nanosensors 

demonstrating capacity to detect 0.1 ms 

action potentials pulse rise/fall without 

detectable delay
[129]

.  

 

Thus, SWCNT or DWCNT FET-based 

nanosensors seem to be a promising 

technology for nanorobotic monitoring of 

action-potential based electrical 

information. 

 

 
                                                  A                                      B                                           C 
Fig. 1: (A) Experimental 3-D Free-Standing, Kinked Nanowire FET Bent Probe; the Yellow 

Arrow and Pink Star Mark the Nanoscale FET. Scale Bar, 5 μm (Reprinted with 

Permission)
[100,102]

.  (B) Differential Interference Contrast Microscopy Images of an HL-1 

Cell and 60° Kinked Nanowire Probe Whose V-Shaped Apex is Visible Inside the Cell 

(Reprinted with Permission)
[100]

.  (C) Experimentally-Recorded Intracellular Action 

Potential Peak Using FET Sensors with Kinked Nano-Wire Gate, from Cells Cultured on 

Polydimethylsiloxane Substrate, with Intracellular Cytosolic Resting Potential Indicated by 

the Dashed Line (Reprinted with Permission)
[102]

. 
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However, common FET-based sensor 

components such as metal electrodes, if 

operated inside the neuron cell, would 

disrupt the normal functioning of the 

cell
[125]

.   

 

Existing design proposals reflect the 

present state of fabrication technologies 

and assume that nanosensor components 

must function extracellularly.  

 

In vivo intracellular action potential 

monitoring using FET-based nanosensors 

would also require miniaturization of all 

the nanosensor components. 

 

For our intracellular FET-based 

neuroelectric nanosensor (Figure 2), a 

carbon nanotube (“Gate”) connects the 

source (“S”) and drain (“D”) electrodes.   

 

The sensor also includes a voltmeter and 

ammeter, and receives power from a 

battery connected by nanowires.  

 When immersed in the electrolytic 

environment of the neuron cytosol, only 

the nanotube gate is physically exposed to 

cytosolic fluid and the dependence of the 

conductance on gate voltage makes our 

nanosensor an electrically-based voltage 

nanosensor (Figure 3). 

 

\  

Fig. 2: Basic Schematic of a FET-based 

Neuroelectricnanosensor. 

 

  
Fig. 3: Vertical Cross-Section (Side View, at Left) and Horizontal Cross-Section (Top View, 

at Right) of the Fet-Based Neuroelectricnanosensor. 
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Glass-coated hemispherical nanoelectrodes 

with dimensions as small as ~1 nm have 

been fabricated and exhibit reproducible 

and stable voltammograms without 

hysteresis, withstanding 6 hours of 

continuous use and 15 hours of iterative 

processes of heat and voltammetry
[134, 135]

. 

These types of nanoelectrodes offer 

several advantages: (1) Mass-transport rate 

increase, allowing steady-state 

voltammetric responses to be readily 

achieved,(2) Smaller RC constants and (3) 

The ability to make measurements in 

solutions of high resistance because of the 

lower influence of solution resistance. The 

size and shape of the nanoelectrode is 

crucial because its electrochemical 

properties are often exceedingly sensitive 

to even small variations in its geometry. 

 

Electrical measurement devices with tens 

of nanometer size are necessary to serve as 

ammeters and voltage detectors
[125]

. The 

smallest ammeters are expected to be 

electron ammeters that show the real-time 

dynamics of single electron tunneling
[136]

 

and provide high-sensitivity high-

bandwidth single electron detection, 

measuring currents in the attoampere range 

(10
-18

 A)
[137]

. The charge detector 

employed might be a single-electron 

transistor or a double quantum dot to allow 

monitoring the direction of the flow of 

electrons
[136, 137]

. The double quantum dot 

can act as its own electrometer
[136]

. The 

ammeter might also be designed with the 

use of a small resistor and a sensitive 

current detector, such as a galvanometer, 

that converts electricity into a mechanical 

movement, possibly constructed within a 

1000 nm
3
 volume using the techniques of 

molecular manufacturing. 

 

In the FET-based neuroelectric 

nanosensor, a voltmeter is placed in 

parallel with a circuit element to measure 

the voltage and must not appreciably 

change the circuit it is measuring. The 

nanosensor nano-voltmeter could employ 

traditional voltmeter concepts, using a 

current-limiting resistor followed by a 

small resistor, plus a galvanometer. 

Another option is to use voltage sensing 

inorganic nanoparticles (vsNPs) which are 

currently employed to self-insert into the 

cell membrane and optically record, non-

invasively, action potentials at multiple 

sites and in a large field-of-view
[138]

. 

Alternatively, we might use an analog of 

the 30 nm “photonic voltmeter” which is 

one thousand times smaller than existing 

voltmeters and is claimed to enable 

complete 3-D electric field profiling 

throughout the entire volume of living 

cells
[139]

. 

 

The high conductivity of metallic 

nanotubes makes CNTs interesting 

building blocks for future advanced 

molecular electronic circuits
[140]

. SWCNTs 

are the most conductive carbon fibers 

known, with resistivity on the order of 10
–4

 

ohm/cm at 27°C and current density of 

~10
˗7

 A/cm
2
, though in theory SWCNTs 

may be able to sustain stable current 

densities up to ~10
˗13

 A/cm
2
. In DWCNTs 

the difference between the radius of the 

inner tube and the outer tube is ~3.6 Å, 

independently of the DWCNT 

circumference, with the lattice structures 

of inner and outer tubes having no 

translational symmetry. Thus, the intertube 

transfer is negligibly small and has no 

effect on transport properties of 

DWCNT
[141]

. By managing the electronic 

properties of CNTs (dependant on the 

orientation of the honeycomb lattice with 

respect to the tube axis, known as helicity), 

the neuroelectric nanosensor wires can be 

produced using DWCNTs
[142]

. Combining 

an internal CNT having metallic or 

semiconductor properties with an external 

nanotube having insulation properties 

gives a nanosensor wire that is a molecular 

analog of coaxial cable
[142]

. 

 

Some of the most important performance 

metrics on nanosensors are sensitivity, 

SNR, limit-of-detection, cross-

sensitivity/selectivity, signal rise/fall time 
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(speed), repeatability, offset/sensitivity, 

drift, hysteresis, and 

lifetime/robustness
[143]

.  These sensor 

characteristics must be futher evaluated 

experimentally in the context of the 

proposed neuroelectric nanosensor. For 

example, in extracellular recordings of 

cardiac myocytes an SNR of 2030 was 

measured for CNT based nanosensors 

(tenfold higher than competition)
[145, 144]

. 

An SNR of ~257 was determined for 

another CNT electrode during in vitro 

recording of neural signals in crayfish 

nerve cord
[146]

. A better SNR allows 

smaller signals to be detected, improving 

the sensor’s limit of detection
[147]

. 

 

In the medical nanorobot implementation 

envisioned here, each endoneurobot will 

incorporate ~100 FET-based neuroelectric 

nanosensors in its outer hull (Figure 4).  

Each nanosensor has ~3375 nm
3 

volume 

(including power, housing and mechanical 

control, but not including control, 

communication and computational 

processing machinery). The endoneurobot 

nanosensors are organised in groups of ten 

nanosensors, distributed along the 

endoneurobot perimeter. While monitoring 

action potentials, at least one group of ten 

nanosensors should be near the axon 

membrane with nanosensor gates 

separated by ~40 nm. 

 

 
Fig. 4: A Multitude of Neuroelectric 

Nanosensors, Incorporated into the 

Surface of a Single Endoneurobot, are 

Positioned Near the AIS Membrane. 

 

SENSOR BIOCOMPATIBILITY 
Our CNT-based FET nanosensor design 

must be carefully analysed to anticipate 

potential biocompatibility problems during 

intracellular neuron action potential 

monitoring. Neurons in general seem to 

accept carbon nanotubes e.g., CNT-based 

substrates have proven to be biocompatible 

with neural cells and even stimulate neural 

cell growth, improving the cell’s ability to 

extend processes and improving neuronal 

networks electrical performance
[148, 149]

. 

 

As the sensor gate is the only sensor 

component exposed to the neuron cytosol, 

one primary biocompatibility concern is 

the effect of carbon nanotubes on neural 

cells
[150]

. If a CNT gate is not physically 

disrupted, biocompatibility problems seem 

very unlikely because CNTs have 

demonstrated electrochemical and 

biological stability
[151]

, resistance to bio-

fouling and mechanical compatibility with 

brain tissue
[133]

.  The unlikely disruption, 

detachment and release into the neuron 

cytosol of a small number of CNT gates 

seems unlikely to cause problems on the 

cell. Only if CNTs are released in large 

quantities inside the neuron might cellular 

cytotoxic effects be induced.   

 

Depending upon shape and concentration, 

these effects could potentially include: (1) 

stronger than normal metabolic activity, 

(2) elevated lactate dehydrogenase, (3) 

generation of reactive oxygen species in a 

concentration- and time-dependent 

manner, indicating an oxidative stress 

mechanism, (4) activation of time-

dependent caspase 3 showing evidence of 

apoptosis, (5) decrease of mitochondrial 

membrane potential, (6) increased level of 

lipid peroxide, and (7) decrease the 

activities of superoxide dismutase, 

glutathione peroxidase, catalase and the 

content of glutathione
[148]

. The effects on 

cell viability will vary in a concentration 

dependent manner (Figure 5). 
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Fig. 5: Effect of Short SWCNTs 

(SSWCNTs) on PC12 Cell Viability, When 

Cells are Treated with 500–2000 nm Long 

SWCNTs for 24 and 48 hr at 37°C  

(Reprinted with Permission)
[80]

 

 

Short SWCNTs are defined as nanotubes 

with 1–2 nm diameter and 0.5–2 μm 

length, or more than 100 times longer than 

the proposed FET-based nanosensor gate. 

Consequently higher concentrations are 

expectably necessary to produce an 

equivalent effect on cell viability. A 10% 

reduction on cell viability corresponds to a 

5 μg/ml concentration of short SWCNT. 

The release of all hundred 15 nm long 

FET-based nanosensor gates on one 

endoneurobot into the cytosol of a 

(20 μm)
3
 volume neuron would amount to 

a ~0.001 μg/ml dose, causing a likely 

undetectable 0.002% reduction in cell 

viability. Another biocompatibility 

problem might be hysteresis. The FET 

nanotube gate, lying on a SiO2 surface, is 

very likely to exhibit hysteresis in its 

electrical characteristics due to charge 

trapping by water molecules around the 

nanotube, regardless of CNT 

hydrophobicity
[152]

. A protocol for closing 

the sensors and removing the water, 

perhaps using a shutter-like system or a set 

of molecular pumps, should reduce 

transistor hysteresis. Another solution is to 

create a virtually hysteresis-free transistor 

by passivating the nanotube with polymers 

that hydrogen bond with silanol groups on 

SiO2 (e.g., with polymethyl 

methacrylate)
[152]

. The shutter-system is 

also useful for periodically cleaning the 

nanosensor surface to remove attached 

proteins. 

 

The Young’s modulus of SWCNTs 

depends on their size and chirality, but 

averages 1.09 TPa for a generic nanotube, 

hence CNTs are stiffer than steel and very 

resistant to damage from physical forces, 

implying a long nanosensor lifetime and 

robustness. CNTs have strong in-plane 

graphitic carbon-carbon bonds which 

make them exceptionally strong and stiff 

against axial strains. Tenfold redundancy 

per group of sensors should preserve 

mission-long functionality. Protocols for 

removal and replacement of the 

endoneurobot should also be in place to 

handle unanticipated problems. 

 

CONCLUSION  

Comprehensive preservation of human 

brain information requires proper scanning 

of functional connectome data using 

appropriate nanosensors. Neuronanorobots 

(both endoneurobots and synaptobots) 

equipped with the proposed ~3375 nm
3 

FET-based neuroelectric nanosensors 

might provide adequate temporal 

resolution for preserving action potential 

waveform information and could detect 

even the fastest human action potential 

firing rates of 800 Hz while presenting 

minimal biocompatibility problems. A set 

of such neuroelectric nanosensors installed 

on a sufficient number of well-placed 

endoneurobots and synaptobots will enable 

these robots to non-destructively and 

continuously monitor virtually all action 

potentials arising throughout a living 

human whole brain. 
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