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ABSTRACT

The maintenance of microbial species in different environmental conditions is associated with adaptive microevolutionary
changes that are shown here to occur within the descendants of the same strain in comparison with the commercial
reference strain. However, scarce information is available regarding changes that occur among strain descendants during
their persistence in nature. Herein we evaluate genome variations among four isolates of the commercial winemaking
strain Saccharomyces cerevisiae Zymaflore VL1 that were re-isolated from vineyards surrounding wineries where this strain
was applied during several years, in comparison with the commercial reference strain. Comparative genome hybridization
showed amplification of 14 genes among the recovered isolates being related with mitosis, meiosis, lysine biosynthesis,
galactose and asparagine catabolism, besides 9 Ty elements. The occurrence of microevolutionary changes was supported
by DNA sequencing that revealed 339-427 SNPs and 12-62 indels. Phenotypic screening and metabolic profiles also
distinguished the recovered isolates from the reference strain. We herein show that the transition from nutrient-rich musts
to nutritionally scarce natural environments induces adaptive responses and microevolutionary changes promoted by Ty
elements and by nucleotide polymorphisms that were not detected in the reference strain.
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INTRODUCTION

Saccharomyces cerevisiae strains from diverse natural habitats
harbor a vast amount of phenotypic (Gasch et al. 2000; Kvitek,
Will and Gasch 2008; Liti et al. 2009; Umek et al. 2009; Cama-
rasa et al. 2011; Warringer et al. 2011; Mendes et al. 2013) and
genetic diversity (Schuller et al. 2005; Umek et al. 2009; Dequin
and Casaregola 2011; Franco-Duarte et al. 2011; Roberts and
Oliver 2011; Borneman, Pretorius and Chambers 2013) driven
by interactions between yeast and the respective environment.
During the long history of association between S. cerevisiae
strains and human activity, the genomic makeup of this yeast
has been shaped through the action of multiple independent
rounds of wild yeast domestication. Recently published results
showed that the species as a whole consists of both ‘domesti-
cated’ and ‘wild’ populations, whereby the genetic divergence
is associated with both ecology and geography (Liti et al. 2009;
Schacherer et al. 2009; Liti and Schacherer 2011). Sequence com-
parisons by low-coverage whole-genome sequencing and high-
density arrays revealed few well-defined geographically isolated
lineages, and many mosaic lineages, suggesting the occurrence
of two domestication events during the history of association
with human activities, one for sake strains and one for wine
yeasts. ‘Wild’ populations are mostly associated with oak trees,
nectars or insects (Greig and Leu 2009; Liti et al. 2009; Schacherer
et al. 2009), while winemaking S. cerevisiae isolates form a ge-
netically differentiated group, distinct from ‘wild’ strains and
also from strains associated with other fermentations (sake and
palm wine) or clinical strains. This is sustained by the fact that
the oldest lineages and the majority of variation were found in
strains from sources unrelated to wine production (Fay and Be-
navides 2005).

The diversifying selection imposed after yeast expansion
into new environments, due to unique pressures, lead to in-
terstrain variability (Diezmann and Dietrich 2009; Dunn et al.
2012; Borneman, Pretorius and Chambers 2013), resulting many
times in adaptive genomic changes, such as gene amplifi-
cations, chromosomal-length variations, chromosomal rear-
rangements (especially amplifications and deletions) and copy-
number increases (Adams et al. 1992; Goto-Yamamoto et al. 1998;
Dunham et al. 2002; Pérez-Ortin et al. 2002; Carro et al. 2003;
Schacherer et al. 2007; Borneman et al. 2008; Diezmann and Diet-
rich 2009; Liti et al. 2009; Dunn et al. 2012; Bleykasten-Grosshans,
Friedrich and Schacherer 2013). Retrotransposons are known by
their key role in the generation of genomic variability in S. cere-
visiae, mediating chromosomal rearrangements that are bound
by transposon-related sequences at the breakpoints (Dunham
et al. 2002). S. cerevisiae strains contain several copies (between
2 and 30) of retrotransposons, being associated with karyotype
alterations in natural and industrial strains, as reviewed in
Bleykasten-Grosshans and Neuvéglise (2011).

Genomic variation among S. cerevisiae strains has been in-
ferred by several methods in the past years, such as microsatel-
lite amplification (Howell et al. 2004; Schuller et al. 2005; Legras
et al. 2007; Schuller and Casal 2007; Muller and McCusker 2009;
Richards, Goddard and Gardner 2009; Umek et al. 2009), com-
parative genome hybridization on array (aCGH) (Dunham et al.
2002; Winzeler et al. 2003; Dunn, Levine and Sherlock 2005, 2012;
Carreto et al. 2008; Kvitek, Will and Gasch 2008) and single-
nucleotide polymorphisms (SNPs) detection after sequencing
(Liti et al. 2009; Schacherer et al. 2009), among others. Recent
findings obtained by aCGH (Dunn, Levine and Sherlock 2005)
showed copy-number amplifications, mainly in subtelomeric re-
gions and in transposable elements among S. cerevisiaze wine

strains from different geographical origins (both commercial
and from natural environments). In a similar work, the char-
acterization of genome variability was also expanded to strains
from other technological origins (Carreto et al. 2008). aCGH was
used to detect copy-number variations in 16 yeast strains, ac-
cording to their origin—laboratorial, commercial, environmen-
tal or clinical. Results showed that the absence of about one
third of the Ty elements determined genomic differences in
wine strains, in comparison to laboratorial and clinical strains,
whereas subtelomeric instability related with depletions was
associated with the clinical phenotype. Some of the variable
genes between the analyzed groups were related with metabolic
functions connected to cellular homeostasis or transport of
different solutes such as ions, sugars and metals. Intrastrain dif-
ferences were also revealed by Dunn et al. (2012) by the findings
of deletions and amplifications of single genes in different iso-
lates of the same strain that were obtained from different lab-
oratories. In this work, the differences detected by aCGH were
also extended to the phenotypic level.

With the development of ‘next-generation’ sequencing
methods, an exponential increase was observed in the number
of strains with their whole genome sequenced. In 2012, about
100 whole genome sequences of S. cerevisiae strains were avail-
able from different geographical and technological origins, with
a large predominance of industrial strains (Borneman, Preto-
rius and Chambers 2013). These sequencing projects were a ma-
jor breakthrough in the understanding of genomic differences
among strains, mainly through the finding of numerous strain-
specific open reading frames (ORFs), especially for wine strains
(Argueso et al. 2009; Novo et al. 2009; Dowell et al. 2010; Wenger,
Schwartz and Sherlock 2010; Borneman et al. 2011; Damon et al.
2011; Engel and Cherry 2013).

Within our previous work, we showed that commercial wine-
making S. cerevisiae strains are disseminated from the wineries
where they are used and can be recovered from locations in close
proximity (10-200 m) (Valero et al. 2005). In the referred study,
100 isolates of the commercial strain Zymaflore VL1 were recov-
ered from vineyards next to wineries where this strain was used
during several years. The permanence of these isolates in natu-
ral environments induced genetic changes that were not found
among a control group of isolates that derived from clonal ex-
pansion of the commercial reference strain (Schuller et al. 2007).
These changes were mostly related with chromosomal-size vari-
ations, mainly for smaller chromosomes, loss of heterozygosity,
microsatellite expansion and differences in the interdelta se-
quence amplification patterns. Besides, the fermentative capac-
ity of some isolates was affected, pointing to a possible adap-
tive mechanism induced by genetic changes. The objective of
the present work was to undertake a deeper genomic character-
ization of recovered isolates of the commercial strain Zymaflore
VL1, using aCGH and SNP analysis, in order to investigate the ex-
tent of variation to which natural isolates differ from the refer-
ence strain. In addition, we performed an extensive phenotypic
analysis using both enological and taxonomic tests, including
also metabolic profiling (HPLC and GC-MS) of a must fermented
by these isolates.

MATERIALS AND METHODS
Strain isolates
Strain Zymaflore VL1 is a non-indigenous diploid yeast that

was originally isolated from the region of Gironde, France. Four
natural isolates (VL1-018, VL1-020, VL1-099 and VL1-108) were



obtained in our previous work (Schuller et al. 2007) from sponta-
neous fermentations of grape samples collected from two dif-
ferent vineyards, located close to wineries where this strain
had been used for winemaking in consecutive years. These iso-
genic isolates showed identical mitochondrial DNA restriction
fragment length polymorphisms, although with small differ-
ences regarding their karyotype, microsatellite allele sizes and
interdelta sequence amplification patterns. The DNA content of
these isolates was identical to the reference strain, as deter-
mined by flow cytometric analysis (data not shown). The orig-
inal commercial VL1 reference strain, kindly provided by Laffort
Oenologie, was used as a reference.

DNA isolation

After cultivation of a frozen (—80°C, 30% v/v glycerol) aliquot
of yeast cells in 1 mL YPD medium (yeast extract 1% w/v, pep-
tone 1% w/v, glucose 2% w/v) during 36 h at 28°C (160 rpm), DNA
isolation was performed as previously described (Schuller et al.
2004). DNA was then quantified (Nanodrop ND-1000) and used
for aCGH and for DNA sequencing.

Comparative genome hybridization on array

For aCGH experiments, DNA microarrays were produced as re-
ferred in Carreto et al. (2008), being the array design and spot-
ting protocol deposited in the ArrayExpress database under the
accession code A-MEXP-1185. The labeling protocol was also
performed as referred (Carreto et al. 2008), whereby ULS-Cy3
labeled DNA of each of the four isolates (VL1-018, VL1-020,
VL1-099 and VL1-108) was combined with ULS-CyS5 labeled DNA
from the commercial reference strain. Dye-swap hybridizations
were performed for each isolate, ruling out potential bias intro-
duced by inherent differences in dye incorporation. To ensure
microarray data baseline robustness, differentially labeled DNA
from the S288c strain were cohybridized, in a total of six self-self
experiments, and used as controls. Images were obtained us-
ing Agilent G2565AA microarray scanner, and the fluorescence
was quantified by image analysis using QuantArray software
(PerkinElmer). Data were analyzed with BRB-ArrayTools v3.4, us-
ing median normalization. The relative hybridization signal of
each ORF was derived from the average of the two dye-swap
hybridizations, and deviations from the 1:1 normalized log, ra-
tio were taken as indicative of changes in DNA copy number.
The significance of these changes was evaluated using multi-
class significance analysis (SAM) and hierarchical clustering, as
implemented in the TM4 software (MeV). SAM analysis (Tusher,
Tibshirani and Chu 2001) indicated the ORFs with significant
copy-number alteration in at least one of the strains, with an
FDR of 0.336.

DNA sequencing and SNP detection

Genomic DNA of the five isolates was processed to be se-
quenced according to the manufacturer’s protocols (Only et al.
2009), in paired-end 104 bp mode, and sequenced using an Il-
lumina HiSeq2000 analyzer. Samples were tagged and multi-
plexed using a custom barcode of 6 bp length. All de-multiplexed
reads were aligned to the sacCer3 assembly of the yeast ref-
erence genome using BWA (bwa-aln and bwa-sampe; version
0.7.5a) with default parameters. Sequences were aligned us-
ing SAMtools (version 1.1) using the commands view, sort, in-
dex and mpileup (Li and Durbin 2009). All possible variants in-
cluding frameshift insertions/deletions (indels) and SNPs were
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then called from the aligned sequences, using Annovar (Wang,
Li and Hakonarson 2010), with the following filters: QUAL > 30
(‘phred-scaled quality score for the assertion made in the al-
ternate allele’), DP > 15 (‘raw read depth’ or ‘coverage’), MQ >
40 (‘root-mean-squared mapping quality of coverage reads’) and
GQ > 50 (‘genotype quality or phred-scaled confidence that the
true genotype is the one provided’).

Phenotypic characterization

Phenotypic screening was performed considering a wide range
of physiological traits that are also important from an oeno-
logical point of view, considering a previously established ex-
perimental design that included evaluation of growth by (i)
measurement of optical density (Ass) after 22 h of growth in
96-well microplates containing white grape must plus the com-
pound under analysis, or (ii) visual evaluation of growth in solid
YPD with the compound to be tested (Mendes et al. 2013). Thirty
phenotypic tests were considered, as shown in Table 3, and all
results were assigned to a class between 0 and 3 [0: no growth
(Asa0 = 0.1) or no visible growth on solid media or no color change
of the BiGGY medium; 3: at least 1.5-fold increase of Agyg, exten-
sive growth on solid media or a dark brown colony formed in
the BiGGY medium; scores 1 and 2 corresponded to the respec-
tive intermediate values].

Fermentation media and conditions

Triplicate fermentations (18°C, 150 rpm) of each of the five iso-
lates were carried out with grape must of the variety Loureiro,
using Erlenmeyer flasks (100 mL) with rubber stoppers that were
perforated with a syringe needle for CO, release. The fermen-
tative progress of each isolate was recorded by weight loss de-
termination due to CO, liberation. Samples were collected and
frozen (—20°C) for metabolic analysis when fermentation ended
(constant weight, when no more CO, was released).

Bioanalytical methods

High-performance liquid chromatography with refractive index
(HPLC-RI) was used to quantify fructose, glucose, ethanol, glyc-
erol and organic acids (malic, acetic and succinic). Prior to anal-
ysis, supernatant samples were filtered through a 0.22-um pore
filter, and then analyzed in an EX Chrome Elite HPLC, using a
Rezex® Ion Exclusion column. Column and refractive index de-
tector temperatures were 60 and 40°C, respectively, and the flow
rate was 0.50 mL min~! from 0 to 9 min and from 15 to 35 min
of run length and 0.25 mL min~? from 10 to 14 min.

Higher alcohols, esters and fatty acids were deter-
mined by GC-MS. Analyses were performed by solid
phase microextraction (SPME), wusing a divinylben-
zene/carboxen/polydimethylsiloxane fiber, and 4-methyl-2-
pentanol as internal standard. Samples were analyzed using a
Thermo-Finnigan Trace-GC with a single Quadrupole Trace-DSQ
Mass Selective Detector (Thermo Electron Corporation, USA),
equipped with a Zebron ZB-FFP capillary column. The injector
temperature was set to 260°C and the flow rate to 0.8 mL min~?,
with helium used as the carrier gas. GC-MS concentrations of
volatile compounds were normalized using maximum normal-
ization, and differences between the isolates were represented
using principal component analysis (PCA) of the Unscrambler X
software (Camo Inc.).
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Figure 1. Hierarchical clustering of the aCGH profiles. All of the four natural iso-
lates and the isolate derived from the commercial reference strain were used
in the hierarchical clustering analysis, using Pearson correlation with average
linkage of the normalized aCGH data.

Statistical analysis

Statistical analyses were performed with the data set obtained
from HPLC quantification, using two-sample paired t-test, com-
paring always each set of data with the reference strain data set,
and considering results in which P < 0.05 as significant.

RESULTS

Genomic changes revealed by aCGH profiles

Comparative genome analysis of the isolates was conducted us-
ing microarrays containing 70 mer probes designed from the
genome sequence of strain 5288c, targeting 6388 ORFs. Genomic
DNA of the recovered isolates of the commercial winemaking
strain S. cerevisiaze Zymaflore VL1 (VL1-018, VL1-020, VL1-099
and VL1-108) was fluorescently labeled and competitively hy-
bridized with the DNA of the VL1 reference strain. Hybridiza-
tions were performed in duplicate, in reverse Cy-dye labeling
(dye-swap) design (see the section ‘Methods’). Figure 1 shows the
global genome variability of the hierarchical cluster analysis of
the aCGH data. Isolate VL1-018 was most differentiated from the
remaining isolates that grouped into two clusters (VL1-108 and
VL1-020/VL1-099).

Multiclass significance analysis (SAM, MeV software) was
used to evaluate genomic changes between reisolated yeasts
and the reference strain using S288c chromosomal coordi-
nates. ORF copy-number alterations occurred in all four re-
covered isolates, in comparison with the VL1 reference strain
(Table 1; Fig. 2). All genomic alterations corresponded to copy-
number amplifications, whereas deletions were not detected.
The 22 amplified ORFs showed a stochastic distribution among
10 chromosomes, so that each of the recovered isolates had a
unique amplification pattern. As summarized in Table 1, copy-
number increases (between 1.5- and 2.0-fold) were associated
with 14 annotated ORFs in isolates VL1-020 and VL1-099, mainly
related with mitosis (SHE1), meiosis (HFM1), lysine biosynthe-
sis (LYS14), galactose (GAL1) and asparagine catabolism (ASP3-
2). ASP3-2 amplification might be a response to nitrogen star-
vation (Bon et al. 1997), whereas GAL1 amplification, which is
expressed in the beginning of the galactose catabolism, might
be important for the improved use of galactose as alternative
carbon source. Nine ORFs with increased copy numbers (be-
tween 1.5- and 1.8-fold) corresponded to amplified Ty elements,
in isolates VL1-018 (1), VL1-099 (2) and VL1-108 (6).

Sequence analysis of isolates recovered from vineyards

To investigate the extent of variation to which natural isolates
differ from the reference strain, we sequenced DNA from the

recovered isolates and from the reference strain by Illumina se-
quencing. Short sequence reads (104 bp) were processed and
aligned to the reference genome of strain S288c using BWA
and SAMtools. Functional annotation of genetic variants be-
tween each of the tested genomes and the reference VL1 strain
were called using ANNOVAR. Quantification of SNPs and indels
was performed by comparison of each recovered isolate with
the reference strain using some filters to control false positives
(Table S1, Supporting Information). From the initial 2610 vari-
ants called between the natural isolates and the reference strain,
1144 did not pass the quality filters. MQ and GQ were the ones
eliminating more false variants. This filtration was found to be
imperative to eliminate artifacts that were initially considered
as true variants by the method.

Our results (Table 2) show that intrastrain differences be-
tween natural isolates and the VL1 reference strain were in the
range of 339-427 SNPs called for strains VL1-018 and VL1-108,
respectively. VL1 intrastrain variation of recovered isolates re-
vealed between 12-62 insertions and deletions (indels). From
the 1466 total variants called (after filtration), 958 corresponded
to changes in coding regions (~65%). Regarding SNPs, the large
majority led to changes in the genotype from homozygous to
heterozygous, as expected in diploid strains. Also, 32% of SNPs
called (433 out of 1351) corresponded to non-synonymous mu-
tations.

The distribution of SNPs and indels per chromosome in the
natural isolates is shown in Fig. 3. The majority of SNPs that
lead to a change of genotype from homozygous to heterozygous
was detected in chromosome II (panel A), being almost resid-
ual in the remaining chromosomes. Regarding heterozygous-
homozygous changes of genotypes, they were located mainly
in chromosome IX (20 to 47 SNPs identified) being similarly dis-
tributed in the remaining chromosomes. Indels showed also to
be a predominance in chromosome II, with a maximum of 11 in-
sertions and deletions identified for three of the isolates in this
chromosome (panel C).

Phenotypic characterization

To evaluate the extent of phenotypic variation, a screening ap-
proach was devised, taking into consideration 30 phenotypic
tests, including also tests that are important for winemaking
strain selection. High-throughput testing in microplates was
performed using supplemented grape must, and optical density
(Ass0) was measured after 22 h of incubation. Growth in solid
culture media (BiGGY medium, Malt Extract Agar supplemented
with ethanol and sodium metabisulphite) was evaluated by vi-
sual scoring. The patterns of phenotypic variation are summa-
rized in Table 3. Fourteen phenotypic traits distinguished the
group of the four recovered isolates from the reference strain,
which was unable to grow at 18°C, but evidenced some growth
in the presence of CuSO4 (5 mM) and SDS 0.01% (v/v). Variable
growth patterns were found between some of the natural iso-
lates in relation to the reference strain, regarding KCl (0.75 M),
NacCl (1.5 M), KHSO3 (300 mg L), wine supplemented with glu-
cose (0.5% and 1% w/v), ethanol (14, 16 and 18% w/v) + Na,S,0s,
cycloheximide (0.05 and 1 xg mL-?) and galactosidase activity.
The main differences were observed between the natural iso-
lates and the reference strain, whereas small changes were ob-
served among the four natural isolates, for example in terms
of ethanol resistance. For the analyzed tests, phenotypic dif-
ferences were limited to the transition from one phenotypic
class to another, and also presented a stochastic distribution of



Table 1. Genes with amplified copy-number changes, as detected by SAM analysis of aCGH data.
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Strain Systematic name Classical name SGD Chromosome Fold change
VL1-018 YMR046C - Ty element 13 1.7
VL1 - 020 YBLO31W SHE1 Mitotic spindle protein 2 1.7
YORO19W NA Unknown function; may interact with ribosomes 15 1.9
YGL251C HFM1/MER3 Meiosis-specific DNA helicase involved in the 7 1.5
conversion of double-stranded breaks
YOR155C ISN1 Catalyzes the breakdown of inosine 5 15 1.6
monophosphate to inosine
YDRO034C LYS14 Transcriptional activator involved in regulation 4 1.7
of genes of the lysine biosynthesis pathway
YBRO20W GAL1 Phosphorylates alpha-D-galactose to 2 1.9
alpha-D-galactose-1-phosphate in the first step
of galactose catabolism
VL1 - 099 YDR120C TRM1 tRNA methyltransferase 4 1.6
YLR407W NA Unknown function 12 1.7
YOR260W GCD1/TRA3 Gamma subunit of the translation initiation 15 1.7
factor elF2B
YKL102C NA Dubious ORF unlikely to encode a functional 11 1.6
protein; deletion confers sensitivity to citric acid
YOR257W CDC31/DSK1 Calcium-binding component of the spindle pole 15 1.7
body half-bridge; binds multiubiquitinated
proteins and is involved in proteasomal protein
degradation
YHR212C NA Dubious ORF; unlikely to encode a functional 8 1.7
protein
YLR157C ASP3-2 Cell-wall L-asparaginase II involved in 12 1.7
asparagine catabolism; expression induced
during nitrogen starvation
YPL218W SAR1 GTPase, GTP-binding protein of the ARF family; 16 2.0
required for transport vesicle formation during
ER to Golgi protein transport
YHLOOSW-A - Ty element 8 1,6
YHLOOSW-B - Ty element 1.6
VL1 - 108 YBLOOSW-A - Ty element 2 1.5
YDR170W-A - Ty element 4 1.7
YDR210C-C - Ty element 4 15
YGR161C-C - Ty element 7 1.5
YMRO046C - Ty element 13 1.7
YNL284C-A - Ty element 14 1.8

variation among the isolates, as previously observed for aCGH
results and sequence analysis.

Fermentative profiles and metabolic characterization

Triplicate fermentations were carried out with each of the five
isolates, using white grape must. HPLC and GC-MS analysis were
performed with samples obtained from the end of fermenta-
tion (at constant weight, when no more CO, was released) to
evaluate the chemical compounds associated with the differ-
ences described in the previous sections. A very good repro-
ducibility regarding fermentation profile and time was obtained
among the three fermentation replicates with the exception of
a small delay in the maximum CO, release for isolate VL1-099
(Fig. 4).

Strain-dependent differences could be observed regarding fi-
nal concentrations of organic acids (malic, succinic and acetic),
fructose, glycerol and ethanol (Fig. 5). Malic acid concentration
ranged, for all the isolates, between 6.3 and 7.1 g L%, whereas

acetic and succinic acids ranged between 0.57-0.65 g L~! and
0.39-0.44 g L1, respectively. Final concentrations of ethanol,
glycerol and fructose ranged between 159-175, 6.64-8.07 and
5.4-35.2 g L7, respectively. Statistical significance (P < 0.01 for
two-paired sample t-test) was obtained only for the isolates
VL1-099 and VL1-108, regarding the concentrations of malic
acid, ethanol and/or glycerol. Another compound that explained
variability between isolates was fructose, although not in a
statistically significant way. This sugar was still present in
values around 30 g L7, indicating that these isolates do not
assimilate fructose in large amounts. Isolate VL1-108 produced
higher amounts of ethanol and showed a more reduced fructose
concentration.

Aromatic compounds from the final fermentation stage were
quantified by GC-MS after SPME. PCA of the GC-MS data (Fig. 6)
shows the segregation of the six isolates (scores; panel A) and
the loadings for aromatic compounds (panel B) in the first two
PCA components, which explain 91% of the observed variabil-
ity between isolates. The consideration of further components
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Figure 2. Graphical representation of gene copy-number alterations for the 17 chromosomes (from I to XVI; plus mitochondrial DNA- M) of natural isolates, in compar-
ison to the original reference strain, obtained by SAM analysis of aCGH data. Using annotated ORF coordinates of strain S288C, global chromosome plots are shown,
indicating also ORFs with copy-number changes, as detected by SAM analysis of aCGH data. For each chromosome, the telomere and the centromere are marked,
together with the locations of the Ty elements (relative to the S288C genome). Fold-change alterations in terms of copy number are represented by the distance of the
gray symbols to the basal line, for each of the natural isolates, in comparison to the reference strain.

did not improved the explanation of variability. Panel A shows
that the global aromatic profile of isolates VL1-108 and VL1-018
was very similar and most different from the reference strain.
Isolate VL1-099 was the one with more similarities to the refer-
ence strain, due to its position in the PCA plot. These differences
can be explained by some of the loadings of panel B, which have
the most discrimination power due to their position far from the
center of coordinates, namely benzene ethanol (Al), 2-methyl-1-

butanol (J) and isobutanol (G), followed by ethyl lactate (P) in a
smaller extent.

DISCUSSION

Saccharomyces cerevisiae has been used for a long time as a model
to study responses to environmental stress. Changed environ-
mental conditions require an efficient adaptation, mediated
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Table 2. Number of nucleotide variants (SNPs and Indels) in comparison with the reference VL1 strain (Hom—homozygous; Het—heterozygous;
SNPs—single nucleotide polymorphisms; Indels—insertions and deletions in the genome).

Number of SNPs

Functional impact Hom to Het Het to Hom
(variants in coding change of change of
Strain Total number of variants called regions) Total genotype genotype Non-synonymous Indels
VL1 - 018 339 228 277 5 272 123 62
VL1 -020 341 226 324 298 26 102 17
VL1 -099 359 245 347 205 142 106 12
VL1 - 108 427 259 403 242 161 102 24
Total 1466 958 1351 750 601 433 115
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Figure 3. Number of frameshift SNPs and Indels per chromosome in the natural isolates, in comparison to the reference strain. A—SNPs (homozygous to heterozygous
change of genotype); B—SNPs (heterozygous to homozygous change of genotype); C—Indels.

by changed gene expression to maintain cellular homeostasis.
Yeast strains cultivated for longer periods under specific con-
ditions present chromosomal rearrangements, chromosomal-
length variations or other genomic changes such as gene ampli-
fications or copy-number changes (Rachidi, Barre and Blondin
1999; Dunham et al. 2002; Brion et al. 2013). These alterations,
being either neutral, beneficial or detrimental, are known to
lead to phenotypic diversity, as reviewed by Bisson (2012). The
loss of one or two copies of a gene can be compensated by the
level of expression of the remaining copy, or by the amplifi-
cation of a homolog from another chromosome. Another con-
tributing factor is the mobile Ty elements in S. cerevisiae that
can be excised and inserted along the genome, which leads to
phenotypic diversity when inserted into a gene or a regulatory
region.

In the present study, four isolates of the commercial strain
S. cerevisiae Zymaflore VL1 were used, that were recovered from
the environment of two vineyards that are located in close prox-
imity to the wine cellars where this commercial yeast was used
in large quantities for at least five years. The commercial strain
Zymaflore VL1 was initially isolated from a French wine region.
These strains were characterized for genomic changes such as
gene amplifications/deletions, and sequence analysis. aCGH re-
sults showed amplification of 14 ORFs, corresponding 10 of them
to annotated ORFs (Fig. 2 and Table 1). The main functions of
the amplified genes were related with mitosis (SHE1), meio-
sis (HFM1), lysine biosynthesis (LYS14), galactose (GAL1) and as-
paragine catabolism (ASP3-2). The existence of additional copies
of GAL1 in natural isolates indicates adaptation to an environ-
ment with less amounts of glucose. In nature, galactose occurs
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Table 3. Phenotypic classes regarding values of optical density (Class 0: Agso = 0.1; Class 1: 0.2 < Agso > 0.4; Class 2: 0.5 < Agso > 1.0; Class 3:
Agso > 1.0), growth patterns in solid media or colour change in BiGGY medium, for 30 phenotypic tests.

Phenotypic test Type of medium VL1-018 VL1 - 020 VL1 - 099 VL1 - 108 VL1 - reference
30°C Liquid (must) 3 3 3 3 3
18°C Liquid (must) 1 1 1 1 0
40°C Liquid (must) 3 3 3 3 3
pH?2 Liquid (must) 0 0 0 0 0
pH8 Liquid (must) 2 2 2 2 2
KCl (0.75 M) Liquid (must) 2 3 2 2 2
NaCl (1.5 M) Liquid (must) 1 1 1 0 1
CuS0Oy4 (5 mM) Liquid (must) 0 0 0 0 1
SDS (0.01% w/v) Liquid (must) 0 0 0 0 1
Ethanol 6% (v/v) Liquid (must) 3 3 3 3 3
Ethanol 10% (v/v) Liquid (must) 2 2 2 2 2
Ethanol 14% (v/v) Liquid (must) 1 1 1 1 1
Ethanol 12% (v/v) Solid (MEA) 2 2 2 2 2
Ethanol 12% (v/v) + Na,S,0s (75 mg/L) Solid (MEA) 3 3 3 3 3
Ethanol 12% (v/v) + Na;S,0s (100 mg/L) Solid (MEA) 0 0 0 0 0
Ethanol 14% (v/v) + Na,S,0s (50 mg/L) Solid (MEA) 3 3 2 3 3
Ethanol 16% (v/v) + NayS,0s (50 mg/L) Solid (MEA) 3 3 2 3 3
Ethanol 18% (v/v) + Na;S,0s (50 mg L1 Solid (MEA) 1 1 1 2 1
KHSO; (150 mg L-1) Liquid (must) 3 3 3 3 3
KHSO; (300 mg L) Liquid (must) 1 1 2 2 2
Wine supplemented with glucose (0.5% w/v) Liquid 1 1 0 0 0
Wine supplemented with glucose (1% w/v) Liquid 1 1 0 0 1
Iprodion (0.05 mg mL~!) Liquid (must) 3 3 3 3 3
Iprodion (0.1 mg mL~1) Liquid (must) 3 3 3 3 3
Procymidon (0.05 mg mL~?) Liquid (must) 3 3 3 3 3
Procymidon (0.1 mg mL™1) Liquid (must) 3 3 3 3 3
Cycloheximide (0.05 g mL~1) Liquid (must) 1 2 2 1 2
Cycloheximide (0.1 ng mL™?) Liquid (must) 1 1 1 1 2
H,S production Solid (BiGGY) 2 2 2 2 2
Galactosidase activity Liquid (YNB) 1 2 3 3 3

Highlighted cells indicate the differences observed between the isolates for the mentioned test.
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Figure 4. Fermentation profiles of four natural isolates, in comparison with the original reference strain. Values were averaged from three biological replicates +
standard deviation. Fermentations were carried out at 18°C (150 rpm) using white grape must.
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by hydrolysis of Galactan, a polymer found in hemicellulose.
In S. cerevisiae, galactose metabolism genes are induced in the
presence of galactose (Gasch et al. 2000), and absence of glu-
cose (Adams 1972) underlying also glucose repression (Johnston
1999). The derepression of galactose metabolism genes in en-
vironments without glucose available has been previously de-
scribed in detail (Matsumoto and Oshima 1981; St John and Davis
1981; Yocum et al. 1984). In the reference VL1 strain, no am-
plification of GAL1 was identified, due to high glucose concen-
trations in the media used for the production of commercial
yeasts. Copy-number amplification of gene ASP3-2 is in agree-
ment with the previously shown increased expression during
nitrogen starvation (Jones and Mortimer 1973). These changes
suggest that the recovered isolates could use asparagine as al-
ternative nitrogen source during their presence in nature. Vari-
able copy number of this gene was shown previously to be
specific of S. cerevisiae, mainly from laboratory and industrial

origins, being absent in other 128 fungal species (League, Slot
and Rokas 2012). ASP3-2 and four of the amplified Ty elements
(YBLOOSW-A, YDR210C-C, YGR161C-C, YHLOO9W-A) showed also
copy-number amplifications in other wine strains (Carreto et al.
2008). Results obtained in the mentioned study showed that
the amplification of several Ty elements was characteristic for
wine strains, contrarily to the clinical strains. The amplifica-
tion of these transposable elements strengthened the impor-
tance of retrotransposition in yeast adaptation, since Ty se-
quences play a role in fragments mobilization throughout the
genome.

To obtain a thorough understanding of the genomic differ-
ences between natural isolates and the reference strain, we se-
quenced the respective genomes and quantified SNPs and In-
dels (Table 2 and Fig. 3). Several studies point to the existence
of several thousands of SNPs among S. cerevisiae strains, mainly
between isolates from different technological origins. VL1
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Figure 6. PCA of GC-MS data for the five isolates. Values were averaged from two biological replicates, and refer to extracellular metabolite present in the must at the
end of fermentations that were carried out at 18°C (150 rpm) using white grape must. A—five S. cerevisiae isolates analyzed by GC-MS (scores); the image was zoomed-in
in order to better clarify scores positioning. B—concentration of 41 volatile compounds determined by GC-MS (loadings). Letters indicate the following compounds:
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methyl hexanoate; (J) 2-methyl-1-butanol; (K) 3-methyl-1-butanol; (L) ethyl hexanoate; (M) hexyl acetate; (N) ethyl heptanoate; (O) ethyl trans-2-hexenoate; (P) ethyl
lactate; (Q) hexanol; (R) methyl octanoate; (S) ethyl octanoate; (T) isoamyl hexanoate; (U) octyl acetate; (V) ethyl nonanoate; (W) methyl decanoate; (X) butyric acid;
(Y) ethyl decanoate; (Z) isovaleric acid; (AA) diethyl succinate; (AB) ethyl phenylacetate; (AC) 2,4,6-trichloro anisole; (AD) phenylethyl acetate; (AE) ethyl dodecanoate;
(AF) hexanoic acid; (AG) guaiacol; (AH) ethyl dihydrocinnamate; (Al) benzene ethanol; (A]) ethyl guaiacol; (AK) octanoic acid; (AL) ethyl cinnamate; (AM) 4-ethyl phenol;

(AN) decanoic acid; (AO) dodecanoic acid.

reference strain showed to be different from the laboratorial
strain S288c in 44 515 SNPs and 641 Indels (data not shown) be-
ing in accordance with the differences found for other strains,
such as CEN.PK113-7D (21 899 SNPs and 420 Indels) (Nijkamp
etal. 2012), YJM789 (60 000 SNPs and 6000 Indels) (Wei et al. 2007),
M22 (5621 SNPs and 499 Indels) and YPS163 (10 773 SNPs and
423 Indels) (Doniger et al. 2008). However, intrastrain differences
between the group of isolates obtained from nature and the ref-
erence strain consisted in just a few hundreds of SNPs, and a
maximum of 33 Indels per isolate. Wine strains form a phylo-
genetic distinct group, some strain-specific differences, mainly
in the form of insertions, were reported to be predominant in
many wine strains—EC1118 (Novo et al. 2009), QA23, AWRI796,
VL13, VIN13, FostersB, FostersO, RM11 (Borneman et al. 2011)
and Kyokai 7 (Akao et al. 2011), being absent in the laborato-
rial strain S288c, and were related with winemaking traits (Gale-
ote et al. 2010). In our reference strain—Zymaflore VL1—we de-
tected a total of 111 unique SNPs and 8 Indels that were not de-
tected in strain S288c, confirming the divergence of this strain,
by the introduction of several changes in the laboratorial iso-
lates in comparison with the original S288c strain. The identi-
fied isolate-specific Indels corresponded to two frameshift in-
sertions (in chromosome II and IV), and to six frameshift dele-
tions (chromosomes II, VIII, XII and XV). Regarding the compari-
son between natural isolates and the reference strain, the high-
est number of SNPs and frameshift insertions were detected in
chromosome II, with a stochastic distribution among all natural
isolates. Amplifications in this chromosome are not frequently
reported in S. cerevisiae strains, with the exception of strain Fos-
ters O, where most of gene copy-number increases occurred on
chromosome II (Borneman et al. 2011).

The genomic differences found in the natural isolates, iden-
tified both by SNP analysis and aCGH, may provide the basis for
novel phenotypic characteristics. In order to further investigate
this link, a phenotypic screen was devised to evaluate specific
patterns for a set of physiological tests, including also tests that

are important for winemaking strain selection. This experimen-
tal plan was previously applied with success for the character-
ization of several strains from different origins (Mendes et al.
2013), and was based on approaches that are generally applied
for the selection of winemaking strains (Mannazzu, Clementi
and Ciani 2002). Our results showed phenotypic differences in
14 tests from the 30 considered, being able to distinguished nat-
ural isolates from the reference strain (Table 3). In three tests,
all the four natural isolates presented discriminatory results,
which distinguished them from the reference strain: capacity to
ferment must at 18°C, and inability to grow in the presence of
CuSO4 (5 mM) and SDS (0.01% w/v). Copper has been used for
a long time as an antimicrobial agent in vineyards. Although
copper resistance has been previously suggested as a conse-
quence of environmental adaptation, arisen through positive se-
lection, our results show that original VL1 strain had a slightly
higher copper resistance compared to the reisolated strains.
This seems somehow contradictory, since copper was used in
the vineyards from where these strains were obtained. The re-
sistance to the detergent SDS has been previously reported in
wine strains (Kvitek, Will and Gasch 2008), which is in agree-
ment with the use of detergents in the washing of fermenta-
tion vessels. This resistance was not shared by the natural iso-
lates. Our findings are in agreement with previously reported
generation of intrastrain phenotypic variability (Kvitek, Will and
Gasch 2008; Camarasa et al. 2011; Mendes et al. 2013), that oc-
cur in altered environmental conditions, and that was associ-
ated with differences in the genomic expression patterns. In
these studies, some phenotypes were able to distinguish groups
of strains according to the ecological niches, providing evidence
for phenotypic evolution driven by environmental adaptation to
different conditions. For example, Kvitek, Will and Gasch (2008)
compared gene copy-number variations and phenotypic profiles
during stress resistance in S. cerevisiae strains, and described
positive relations between genomic alterations and the degree
of phenotypic alterations.



The observed phenotypic differences were also evident when
the metabolomic profiles obtained at the end of must fermenta-
tions of VL1 isolates were compared, HPLC analysis revealed sta-
tistical significant differences regarding the production of malic
acid, ethanol and/or glycerol among some natural isolates in
comparison to the reference strain (Fig. 5). Isolate-dependent
differences regarding aromatic profiles were obtained by GC-MS
analysis (Fig. 6). The corresponding PCA showed that three alco-
hols differentiated the natural isolates from the reference strain:
benzene ethanol (= 2-phenylethanol), 2-methyl-1-butanol and
isobutanol (= 2-methyl-1-propanol), due to their presence in
different concentrations at the end of the fermentation. These
compounds are three of the major fusel alcohols produced dur-
ing must fermentation, resulting from transamination of the
corresponding amino acid in the Ehrlich pathway. In the present
work, these alcohols were increased in the end of the fermen-
tation performed by the commercial reference strain, being a
differentiating factor among the natural isolates in which just
one or two of these three compounds appeared to be increased.
The VL1 reference strain, as a commercialized strain used in
winemaking, should have the capacity to produce compounds
with favorable aromatic contributions. Benzene ethanol and
2-methy-1-butanol are desired in finished wines due to their
odor descriptors as roses, sweet, fragrant, flowery and honey-
like for the first (Meilgaard 1975; Ferreira et al. 2000; Silva-
Ferreira, Guedes de Pinho and De 2003; Cullere et al. 2004; Es-
cudero et al. 2004; Siebert et al. 2005) and banana, sweet, aromatic
and cheese in the case of the second one (Meilgaard 1975; Escud-
ero et al. 2004; Moreno et al. 2005). On the contrary, 2-methyl-1-
propanol is a non-desired alcohol in the end of the fermentation
and has odor descriptors related to alcohol aroma, estery and
fusel odors (Meilgaard 1975; Etiévant and Etievant 1991; Died-
ericks 1996). This compound revealed to be discriminating be-
tween the reference strain and the natural isolates mainly VL1-
099 and VL1-020.

In conclusion, our results showed that isogenic isolates of
the commercial wine yeast strain Zymaflore VL1 recovered from
nature present genetic differences in comparison with the ref-
erence strain. We identified ORFs amplification, with an ap-
parent stochastic distribution, corresponding to Ty elements
and also to gene amplifications with various functions that
could reflect adaptive mechanisms to environmental condi-
tions. One of these amplified genes was ASP3-2, which is re-
lated with previous reports of increased expression during ni-
trogen starvation. Some SNPs were also identified in natural iso-
lates and these differences could be related to mechanisms in-
volved in the generation of intrastrain phenotypic variability,
evidenced by dissimilarities identified in 14 phenotypic tests,
and in the metabolomic profiles of must fermentations accom-
plished by VL1isolates. These isolates beside some adaptation to
the environmental conditions present already some diminished
capacities related with winemaking, in comparison with the ref-
erence strain.
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