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We consider a graphene sheet encapsulated in a two-dimensional (2D) metallic grating and a
substrate (Al2O3) and subjected to an external magnetic field (in Faraday configuration). The
grating consists of a thin perfectly conducting metal film perforated with a 2D periodic array of
square holes. According to our calculations, significant changes in the spectra of the Faraday
rotation angle of the transmitted wave and of the magnetic circular dichroism should be expected
in this situation compared to bare graphene. We explain this enhancement by the excitation of
graphene magnetoplasmons that accompanies the transmission of the electromagnetic wave through
the structure. The results can be interesting for applications in THz photonics, such as switchable
rotating polarizer and optical isolator.

I. INTRODUCTION

One of the prominent features of the magnetoactive
structures is a strong dependence of the electromagnetic
wave characteristics upon the direction of propagation.
An illustrative example is the Faraday effect1, where the
direction of the rotation of the plane of polarization is
different for the forward- and backward-proparating wa-
ves in magnetoactive media along the direction of sta-
tic external magnetic field (Faraday geometry). Simi-
lar phenomenon– nonreciprocal phase shift2,3–takes place
in asymmetric structures4 (e.g., waveguides) when the
direction of propagation is perpendicular to the mag-
netic field (Voigt geometry). These phenomena consti-
tute the basis for the operation principles of a variety of
microwave photonic devices, such as optical isolators5,6,
circulators7,8, and switches9,10 (for a review on practical
application of magneto-optical materials, see Refs.11,12).

The general tendency to the minituarization of the
photonic components resulted in the creation of magne-
toptical devices, which key building blocks are photonic
crystals13–20 or electromagnetic metasurfaces21,22. Yet,
the diffraction limit of electromagnetic waves imposes one
of the fundamental obstacles for further minituarization
and growth of integration of photonic devices in optoelec-
tronics circuitry. One of the possible ways to circumvent
this limit is to build the photonic components, whose
operation principles are based on the surface electromag-
netic waves instead of on their free space counterparts.
To be specific, incorporating metallic structures into a
photonic platform allows one to create circuitry, opera-
ting on surface plasmon polaritons–a special kind of the
electromagnetic waves, whose energy is localized near the
metal-dielectric interface and whose wavelength is consi-
derably smaller than that of the free space wave with the
same frequency23,24.

Combining plasmonics with magneto-optics25,26 gives
a variety of advantages27. First, magnetic field allows to
achieve the dynamical tunability (control of parameters
in real time) of plasmonic structure28–31. Second, the
aforementioned phenomenon of the nonreciprocal propa-

gation allows to create plasmonic analogues of different
magneto-optical devices32–34. Third, the resonant exci-
tation of the magnetoplasmons and their coupling to the
transmitted and reflected bulk waves results in a signifi-
cant enhancement of the Faraday and magneto-optical
Kerr effects35–38. However, introducing the magneto-
optical materials into the plasmonic circuitry enhances
significantly the losses in the system, thus reducing the
free path of magnetoplasmons (compared to the conven-
tional plasmonic structures). As a result, nowadays there
is a huge demand for novel magnetoplasmonic materials.

In the context discussed above, graphene emerges as a
promising candidate, operating in the THz and mid-IR
spectral range. This material possesses several proper-
ties, which can be advantageous for the magneto-optics
and magnetoplasmonics. To begin with, surface plasmon
polaritons in graphene39–43 are characterized by both
large lifetime and high degree of field confinement44,45.
Simultaneously, graphene is a magnetoactive material:
being subjected to an external static magnetic field (per-
pendicular to its surface), graphene exhibits some unu-
sual magnetic properties, such as the Hall effect at room
temperture46,47 or confinement of the Dirac-Weyl qua-
siparticles by a magnetic barrier48. Furthermore, its
conductivity (and, consequently, its transmittance and
the reflectance49–53 as well as the dispersion properties
of magnetoplasmons54–57) can be effectively tuned by
changing the applied magnetic field. The possibility to
achieve the magnetoplasmon-mediated enhancement of
the magneto-optical phenomena was demonstrated in va-
rious graphene-based structures, such as a periodic ar-
ray of graphene ribbons58, a graphene monolayer pat-
terned with the periodical antidot array59, an array of
graphene-covered nanowires60, or a monolayer graphene
metasurface61.

In this paper we study the interaction of a THz elec-
tromagnetic wave with a graphene monolayer cladded
by a semi-infinite substrate and a periodically perfora-
ted metallic film of finite thickness. This metallic film is
assumed made of a perfect metal and containing a two-
dimensional (2D) periodic array of square holes. The
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structure is subjected to an external magnetic field di-
rected perpendicularly to the surface (Faraday geome-
try). We demonstrate that if the two-dimensional metal-
lic grating is sparse enough, it screens the incident long-
wavelength electromagnetic wave. As a result, in the
low-frequency range the Faraday rotation in the grap-
hene covered with the perforated metal film is less than
that in the graphene layer alone. At high frequencies, the
sparse metallic grating almost does not influence the pro-
pagation of the electromagnetic wave. At the same time,
in the intermediate frequency range the diffraction of the
incident electromagnetic wave on the grating results in
the excitation of graphene magnetoplasmons. This pro-
cess increases considerably the Faraday rotation angle of
the polarization vector for a linearly polarized wave. For
a circularly polarized propagating wave, the presence of
the perforated metallic film leads to inversion of the sign
of the magnetic circular dichroism (MCD) in the low-
frequency range.

The paper is organized as follows. In Sec. II we obtain
the principal equations governing the process of incident
wave diffraction on graphene combined with the perio-
dical array of holes in the metal film. Section III is de-
voted to a detailed discussion of how the parameters of
this structure influence the Faraday rotation angle of the
transmitted electromagnetic wave. In Sec. IV we inves-
tigate the magnetic circular dichroism in this structure.
The conclusions are presented in Sec. V.

II. DIFFRACTION OF PLANE
ELECTROMAGNETIC WAVE ON METAL FILM

WITH PERIODIC ARRAY OF HOLES

We consider a perfectly conducting metal film of
thickness d (whose film surfaces are situated at planes
z = ±d/2, see Fig. 1), containing a periodic array of
square holes, each of width W , arranged at lD < x <
lD + W , l′D < y < l′D + W and forming a square lat-
tice. Here D is the period of the square lattice and l, l′

are the hole indices. We also assume that this metallic
grating is deposited on top of a graphene monolayer, ar-
ranged at the plane z = d/2. The graphene monolayer
is deposited on top of a semi-infinite dielectric substrate
(Al2O3) occupying the half-space z > d/2 and characteri-
zed by the dielectric function ε. The plane wave impinges
on the metal grating from air (the half-space z < −d/2)
at normal incidence.

The periodicity of the structure in the directions x and
y, as well as the normal incidence of the external wave
impose the requirement for the solution of Maxwell equa-
tions to be also periodic. In half-spaces z < −d/2 and
z > d/2 (vacuum and substrate) electromagnetic fields
can be represented in the form of Fourier series with re-

FIG. 1. Two-dimensional periodic array of holes in metallic
film deposited on top of a graphene layer covering a dielectric
substrate.
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where s, j stand for the indices of spatial harmonics, and
ks,j = (sg, jg) is the 2D wave vector in the transverse
plane r = (x, y). The spatial dependence of the field
components in Eqs. (1) and (2) is represented by the
common exponential factors, multiplied by 2×1 matri-
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ces, represented by the following 2×2 elements:
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are z-components of the wavevector, corresponding to
(s, j) harmonics in the vacuum and substrate, respecti-
vely. Also in Eqs. (1) and (2) the electromagnetic
field time-dependence is implicitly assumed as E,H ∼
exp (−iωt).

Equations (1) and (2) can be interpreted in the fol-
lowing manner. In the half-space z < −d/2, occu-
pied by air, the total electromagnetic field is compo-
sed of the electromagnetic fields, which correspond to
incident [first term in Eq. (1)] and reflected [second

term in Eq. (1)] waves. At the same time, in the sub-
strate (half-space z > d/2) electromagnetic field [see
Eq. (2)] contains the transmitted wave only. If the sign
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each of the transmitted wave harmonics s, j [with am-

plitude H
(t)
s,j =

(
H

(t)
x||s,j , H

(t)
y||s,j , H

(t)
z||s,j

)
and 3D wave

vector
(
ks,j , p

(3)
s,j

)
] is of mixed type: along z axis it

propagates in its positive direction with exponential fac-

tor ∼ exp
[
iRe(p

(3)
s,j )z

]
, but having a decaying amplitude

∼ exp
[
−Im(p

(3)
s,j )z

]
.

Inside the holes in the metallic film, for lD < x <
lD + W , l′D < y < l′D + W ,−d/2 ≤ z ≤ d/2, trans-
verse components of the magnetic and electric fields can
be represented in matrix form as (see Appendix A 1 for
details)
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where the coefficients are 2× 2 matrices
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where m and n are the mode indices, A
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m,n, A

(s)
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the amplitudes of E-modes, while B
(c)
m,n, B

(s)
m,n are the H-

modes amplitudes. In general, E-modes inside the square
hole exist for nonzero mode indices m,n ≥ 1—this is ta-
ken into account in Eqs. (3) and (4) introducing the
factor δ′m,0δ

′
0,n in front of the E-mode coefficients (where
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δ′m,n = 1−δm,n and δm,n is the Kronecker delta). On the
other hand, the H-mode index (m or n) can be zero—
excepting the case when both indices m = n = 0, and
this term is implicitly excluded from the summation in
Eqs. (3) and (4). Notice, that Eqs. (3) and (4) satisfy
the boundary conditions, namely, zero tangential compo-
nents of the electric field and zero normal components of

the magnetic field on the metal surfaces, E
(2)
x (x, l′D, z) =

H
(2)
y (x, l′D, z) = 0, E

(2)
x (x, l′D + W, z) = H

(2)
y (x, l′D +

W, z) = 0, E
(2)
y (lD, y, z) = H

(2)
x (lD, y, z) = 0, E

(2)
y (lD +

W, y, z) = H
(2)
x (lD + W, y, z) = 0. Along with this, the

periodicity of the solutions of Eqs. (3) and (4) is achieved
through the independence of the mode amplitudes upon
the hole indices l, l′.

The electromagnetic fields in the regions z < −d/2,
−d/2 < z < d/2 and z > d/2 are mutually coupled
through the boundary conditions. Thus, at the surface
of the perforated metal film where graphene is absent
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tangential components can be represented as(
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The physical meaning of Eq. (5) is as follows: at the area
of the holes the tangential components of the electric field
are continuous across the vertical interface z = −d/2.
Beyond the area of the holes (at the surface of the metal)
the electric field tangential components vanish. Similarly,
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have (
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Notice that Eq. (6) is defined on the hole area only.
At the opposite metal surface, z = d/2 (where grap-

hene is present) the boundary conditions for the electric
field are the same as those described by Eq. (5). At the
same time, magnetic field tangential components are dis-
continuous across the graphene sheet due to the presence
of induced currents (see Appendix A 2 for details):(
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field (see Appendix A 2).

Substituting explicit expressions for the electromag-
netic fields Eqs. (1)–(4) into boundary conditions Eqs.
(5)–(7) and using the orthogonality of the respective ei-
genmodes (details can be found in Appendix A 2), one
can obtain the following system of equations for the ei-
genmode amplitudes:
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for the complex conjugation. Thus, solving the linear
system of Eqs. (9)–(12), it is possible to obtain the
amplitudes of the excited modes inside the holes as
well as amplitudes of the reflected and transmitted
harmonics. From these it is possible to calculate the
total reflectance R and transmittace T of the structure
as [see Appendix A 3 for details]
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It is common to characterize the transmission of
graphene-based structures in terms of the so called ex-
tinction relative to bare graphene with zero Fermi energy
(designated by the abbreviation CNP that stands for
”charge neutrality point”)59, 1 − T/TCNP, where both
transmittances can be calculated using the above equa-
tion. We shall present this quantity calculated in the
subsequent sections.

III. FARADAY ROTATION

One of the principal goals of the present work is to in-
vestigate the influence of the magnetoplasmon resonance
on the Faraday rotation of an electromagnetic wave tra-
versing the graphene layer. To clarify the role of magne-
toplasmons in the Faraday rotation, we start this section
by briefly considering the dispersion properties of mag-
netoplasmons.

A. Magnetoplasmons in graphene

The dispersion relation of magnetoplasmons k (ω) can
be obtained from the following equation (see Appendix
B 1 for details):[

p(3)(k) +
4πω

c2
σxx + p(1)(k)

]
×
[
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+

1

p(1)(k)
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+
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where p(1) (k) =
√

(ω/c)2 − k2, p(3) (k) =√
(ω/c)2ε− k2 and, similar to the previous section

we require Re
{
p(n) (k)

}
≥ 0, Im

{
p(n) (k)

}
≥ 0

(n = 1, 3). If we suppose that both the substrate and
the graphene layer are lossless [Im (ε) ≡ 0, γ ≡ 0], then
the dispersion relation Eq. (15) possesses a solution in
terms of purely real frequency ω and wave vector k. The
magnetoplasmon dispersion is depicted in Figs. 2(a)
and 2(b) for low and high magnetic fields, respectively.
When the external perpendicular magnetic field is
applied to graphene, the magnetoplasmon spectrum
contains a low-frequency gap and the magnetoplasmons
exist at frequencies higher than a threshold frequency
ωth (which is approximately equal to the cyclotron
frequency, ω > ωth ≈ ωc = e2vFB/µ) and for the
wave vectors larger than the corresponding threshold
wave vector kth. At the threshold frequency, which is
equal to 4.85 meV in Fig. 2(a) and 25.6 meV in Fig.
2(b), the magnetoplasmon spectrum splits off from the
substrate light line, k = ω

√
ε/c, depicted by green

dashed lines. Consequently, the value of the wave vector
threshold is kth = ωth

√
ε/c). For higher frequencies, the

magnetoplasmon spectrum lies above the light line in
the substrate and it results in purely imaginary p(3) (k)
and p(1) (k), which determine the localization of the
electromagnetic field of the magnetoplasmon close to
the graphene layer. Notice that the real part of the
substrate dielectric constant is positive [Re (ε) > 0], in
this low-frequency range ω & ωth. The physical reason
for the existence of magnetoplasmons is the coupling
of the electromagnetic wave with excitations of free
charge-carriers in graphene.

It is important to notice that in the frequency ranges
55 meV . ω . 60 meV and ω & 70.6 meV [inside the
limits of the horizontal axis of Fig.2(b)] the real part of
the substrate dielectric constant is negative [Re (ε) < 0]
owing to the excitations of optical phonons.63 Conse-
quently, in these frequency ranges the physical reason
for the existence of surface waves is somewhat different
since the substrate-air interface is able to sustain surface
modes due to coupling of the electromagnetic wave to
the substrate phonons rather than because of the inte-
raction with the free electron oscillations in graphene (in
the following these modes will be referred to as surface
phonon-polaritons). In this case, the polariton dispersion
curve lies above the light line in vacuum k = ω/c [blue
dashed lines in Fig. 2(b)].

B. Magnetoplasmon-enhanced Faraday rotation

The mismatch between the wave vectors of magneto-
plasmons and the light line (either in the substrate or
in air) determines the impossibility to excite magneto-
plasmons by a propagating electromagnetic wave, falling
directly onto the graphene layer. One way to overcome
this wave-vector mismatch is to use the electromagnetic
wave diffraction on some kind of periodic structure added
to the graphene layer. In this case the electromagnetic
wave diffraction on the periodic structure gives rise to a
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FIG. 2. (a, b) Dispersion relation of magnetoplasmons (solid
red lines) in graphene with the Fermi energy µ = 0.175 eV
placed into magnetic field with magnitude B = 1.5 T [(a)] or
B = 7 T [(b)]. Light lines in vacuum k = ω/c and in the
substrate k = ω

√
ε/c are depicted by blue and green dashed

lines, respectively; (c)–(f) Frequency dependence of the re-
flectance [panels (c) and (d)] and transmittance [panels (e)
and (f)] of doped (µ = 0.175 eV, solid red lines) or undoped
(µ = 0 eV, green solid lines) graphene placed into the mag-
netic field and cladded between metal film with square gra-
ting of thickness d = 50 nm and semi-infinite Al2O3 substrate
as well as doped (µ = 0.175 eV) graphene without grating
(d = 0 nm, dashed blue lines). Vertical dash-and-dotted lines
depict the frequencies of the magnetoplasmon resonance ωmp

for wave vector k = 2π/D. Other parameters of the structure
are: B = 1.5 T, D = 50µm [panels (c) and (e)], B = 7 T,
D = 10µm [panels (d) and (f)], W = 0.9D, γ = 7.54 meV.
The subscript 0 refers to doped graphene without grating and
CNP stands for ”charge neutrality point” and means undoped
graphene with grating.

variety of harmonics [in Eqs. (1) and (2) their 2D wave
vectors are ks,j = (sg, jg)]. If at a certain frequency ωmp

the wave vector of one of them coincides with that of the
magnetoplasmon spectrum Eq. (15), then the energy
of the external electromagnetic wave can be effectively
transferred into the energy of the excited magnetoplas-
mon.

It can be understood from Figs. 2(c)–2(f), that the
presence of the perforated metal film on top of the
graphene layer modifies significantly the reflectance and
transmittance of the structure both in the case of doped
(solid red lines) and undoped (solid green lines) graphene.
The incident wave is considered to be linearly polarized

with the magnetic field along the x axis (i.e., H
(i)
x 6= 0,

H
(i)
y ≡ 0). For the parameters of Figs. 2(c) and 2(e) the

lattice vector is equal to g = 2π/D ≈ 0.126µm−1, for
which the predicted frequency of the magnetoplasmon
resonance [for k = g see Fig. 2(a)] is ωmp ≈ 5.85 meV.

FIG. 3. Frequency dependence of the extinction (a), the ab-
sorbance (b), Faraday rotation angle (c) and transmitted wave
ellipticity (d) of the doped graphene monolayer placed into the
magnetic field with B = 1.5T and cladded between the semi-
infinite Al2O3 substrate and metal film with hole grating of
period D = 100µm (solid orange lines), D = 50µm (solid red
lines), D = 20µm (solid black lines), or D = 10µm (solid
green lines). Other parameters are the same as in Fig. 2. In
panels (a), (b), and (c), vertical dash-and-dotted lines depict
the frequencies of the magnetoplasmon resonance for wave
vector k = 2π/D with D = 50µm (red lines), D = 20µm
(black lines), and D = 10µm (green lines). In all panels the
black dashed lines correspond to the extinction 1−T0/T0,CNP,
absorbance 1−R0−T0, Faraday rotation angle φ0 and ellipti-
city ρ0 of the transmitted wave in the case of bare graphene.

Similarly, for the parameters of Figs. 2(d) and 2(f) the
lattice vector is g ≈ 0.628µm−1 and the magnetoplas-
mon resonance frequency is ωmp ≈ 26.75 meV [which can
be obtained from Fig. 2(b)]. In the low-frequency range,
ω � ωmp, the wavelength of the incident electromagne-
tic wave exceeds significantly the period of the grating,
λ = 2πc/ω � D. As a result, the perforated metal film
screens the incident wave almost like a continuous metal
as evidenced by the enhanced reflectance of the struc-
ture, R . 1 [see Figs. 2(c) and 2(d)] and its suppressed
transmittance, T & 0 [see Figs. 2(e) and 2(f)], as compa-
red to the reflectance, R0 and transmittance, T0 of bare
graphene [dashed blue lines in Figs. 2(c)–2(f)].64 In the
high-frequency range, ω � ωmp, the situation is oppo-
site, namely, the wavelength of the incident electromag-
netic wave is considerably shorter than the period of the
structure, λ � D, and, of course, also smaller than the
hole width, λ � W . In this case the metal film almost
does not influence the propagation of the electromagnetic
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FIG. 4. The same as described in the caption of Fig. 3, but
for the magnetic field B = 7T .

wave, hence the reflectance, R, and the transmittace, T ,
of graphene with perforated metal film almost coincide
with those of bare graphene (R0 and T0).

The most interesting situation takes place in the in-
termediate frequency range, when the frequency of the
incident wave is close to the magnetoplasmon resonance
frequency ω ∼ ωmp. As it can be seen from Figs. 2(e)
and 2(f), it is in this frequency range that the maxi-
mal deviation between the transmittance of the perfo-
rated metal film with doped graphene (T ) and that of
the same structure with undoped graphene (TCNP) takes
place owing to the the excitation of magnetoplasmons.
In more details this phenomenon is shown in Figs. 3(a)
and 4(a). Near the frequency of magnetoplasmon reso-
nance, ωmp (depicted by vertical dash-and-dotted lines),
the extinction attains its local maximum, as does the
absorbance, 1 − R − T [see Figs. 3(b) and 4(b)]. Inte-
restingly, both the extinction and the absorbance attain
their maxima also in the structures that do not allow
for the excitation of magnetoplasmons. Such a situation
can take place in two kinds of structures: (i) graphene
layer without perforated metallic film [dashed black li-
nes in Figs. 3 and 4]; (ii) graphene layer with grating
but when the lattice vector of the latter, g = 2π/D, is
below the threshold kth (that is, when the period D is
too large, so that the magnetoplasmon resonance eigen-
frequency does not exist)—see the corresponding spectra
in Figs. 2(a) and 2(b)]. Examples of such situation can
be found for structures with D = 100µm (orange lines)
in Figs. 3(a) and 3(b), as well as for D = 100µm (orange
lines), D = 50µm (red lines), and D = 20µm (black li-

FIG. 5. Faraday rotation angle difference ∆φ (in degrees, de-
picted by color map) versus frequency ω and period of the
hole array D for the graphene layer placed into perpendicular
magnetic field with B = 1.5T (a) or B = 7T (b) and cladded
by the semi-infinite Al2O3 substrate and the metal film with
the periodc array of holes, which widths are W = 0.9D. Ot-
her parameters are the same as those described in the caption
of Fig.2.

nes) in Figs. 4(a) and 4(b). Nevertheless, in these cases
the extinction and absorbance attain their maxima in the
vicinity of the cyclotron frequency ωc owing to the reso-
nant interaction between the electromagnetic wave and
graphene’s charge carriers, rotating in the perpendicu-
lar magnetic field (in more details this phenomenon will
be described in Sec. IV). It should be noticed, that at
low magnetic field [Figs. 3(a) and 3(b)] there is a certain
discrepancy between the predicted magnetoplasmon reso-
nance and the maxima of absorbance and extinction. The
reason for this seems to be the following: the relaxation
rate of free carriers in graphene used in the calculation
was γ = 7.54 meV; i.e., its value is comparable with the
predicted frequencies of magnetoplasmon resonance ωmp.
As a result, the magnetoplasmon oscillations are over-
damped in this case. A possible solution of this problem
is to shift the magnetoplasmon resonance to the higher-
frequency range, e.g., by increasing the external magnetic
field strength B. In this case the agreement between the
predicted magnetoplasmon resonance frequency and the
maxima of the absorbance and the extinction is conside-
rably better [see Figs. 4(a) and 4(b)]. At the same time,
the maxima in the extinction and absorbance spectra at
ωmp ≈ 59.5 meV appear owing to the excitation of the
aforementioned surface phonon polaritons.

How does the excitation of the graphene magneto-
plasmons, which manifests itself by the increase of ex-
tinction and absorbance, influence the Faraday rotation
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angle of the transmitted wave? To answer this question
we compare the Faraday rotation angle φ of the electro-
magnetic wave transmitted through the perforated me-
tal film on top of the doped graphene layer [solid lines
in Figs. 3(c) and 4(c)] with that (φ0) of the electromag-
netic wave passing through bare graphene with the same
parameters but without the grating [dashed lines in Figs.
3(c) and 4(c)]. The formulas permitting to calculate the
Faraday rotation angle from zero-harmonics amplitudes

H
(t)
x||0,0H

(t)
y||0,0 can be found, e.g., in Ref.65. It is evident

that in the low-frequency region, ω � ωmp, the rotation
angle φ is considerably below φ0, i.e., the presence of the
perforated metal film hampers the Faraday rotation ef-
fect. This fact is a consequence of the above-mentioned
attenuated transmittance of the perforated metal film,
shown in Figs. 2(c) and 2(d). Notice that the decrease
of the Faraday rotation angle, φ (compared to φ0), in the
low-frequency range is accompanied by the enhancement
of the ellipticity, ρ, of the transmitted wave polariza-
tion (again, compared to the ellipticity ρ0 of the polari-
zation of the electromagnetic wave transmitted through
the bare graphene)—see Figs. 3(d) and 4(d). In the
high-frequency range, where ω � ωmp, the aforementi-
oned negligible interaction between the electromagnetic
wave and perforated metal film [see Figs. 2(c) and 2(d)]
reveals into the fact that φ ≈ φ0 and ρ ≈ ρ0. Neverthe-
less, in the intermediate frequency range, ω ∼ ωmp, when
the magnetoplasmon resonance eigenfrequency does exist
[red, black, and green solid lines in Figs. 3(c) and 3(d),
as well as green solid lines in Figs. 4(c) and 4(d)], the
ellipticity ρ < ρ0 (so, the transmitted wave polarization
becomes closer to the linearly polarized wave), but the
Faraday rotation angle satisfies the condition φ > φ0.
In other words, excitation of graphene magnetoplasmons
owing to the presence of the perforated metal film on top
of graphene increases the Faraday rotation angle. In the
situation, where the magnetoplasmon resonance eigenfre-
quency does not exist [2π/D < kth, examples are orange
solid lines in Figs. 3(c) and 3(d), as well as orange, red,
and black solid lines in Figs. 4(c) and 4(d)] the Faraday
rotation angle φ is almost the same as φ0 (or even less),
even though the ellipticity ρ can be smaller than ρ0.

More detailed information of how the presence of the
perforated metal film on top of graphene changes the Fa-
raday rotation angle can be extracted from Fig. 5, which
demonstrates the dependence of the Faraday angle dif-
ference, ∆φ = |φ| − |φ0|, upon the frequency ω and the
period of the hole grating D. It is clearly seen that in
the intermediate frequency range [4 meV . ω . 12 meV
in Fig. 5(a) and 15 meV . ω . 30 meV in Fig. 5(b)] the
Faraday angle difference is positive, ∆φ > 0, that is, the
presence of the perforated metal film increases the ab-
solute value of the Faraday rotation angle as compared
to the case without the grating. Beyond this frequency
range the Faraday angle difference is mainly negative,
∆φ < 0.66 In other words, both in the low- and in the
high-frequency ranges presence of the perforated metal
film on top of graphene suppresses the Faraday rotation

FIG. 6. (a, b) Frequency dependence of the extinction of
the clockwise (a) and counterclockwise (b) circularly po-
larized electromagnetic wave transmitted through graphene
with Fermi energy µ = −0.358 eV and relaxation rate γ =
3.68 meV on semi-infinite Al2O3 substrate, subjected to per-
pendicular magnetic field of strength B = 0 T (black lines),
B = 2 T (red lines), B = 4 T (green lines) and B = 7 T (blue
lines); (c, d) The extinction (as a function of frequency) of
the clockwise (c) and counterclockwise (d) circularly polari-
zed electromagnetic wave impinging on the graphene cladded
by semi-infinite Al2O3 substrate and perforated metal film
with parameters D = 20µm, W = 18µm, d = 50 nm. The
parameters of graphene, the magnetic field values, and the
meaning of the different curves are the same as those in pa-
nels (a) and (b).

of transmitted wave. At the same time, inside the inter-
mediate frequency range there exist some optimal values
of the hole grating period D ≈ 17µm [in Fig. 5(a)] and
D ≈ 8µm [in Fig. 5(b)], for which the Faraday angle
difference is maximal and exceeds 1◦.

IV. MAGNETIC CIRCULAR DICHROISM

The term dichroism means the property shown by cer-
tain materials of having different absorption coefficients
for light polarized in different directions65. If the am-
plitudes of the transmitted clockwise and countercloc-
kwise polarized waves will not be equal in the presence
of a magnetic field applied along their direction of pro-
pagation, the material possesses the magnetic circular
dichroism (MCD). This is different from the Faraday ro-
tation effect that exists in nonabsorbing media. Applying
a magnetic field to the dielectric causes the material to
exhibit circular birefringence, i.e., the propagation velo-
cities of the clockwise and counterclockwise polarized wa-
ves become unequal. The Faraday rotation angle is then
proportional to the difference in the refractive indices for
two circular polarizations67. Of course, the two effects
are interconnected, especially in an intrinsically absor-
bing plasmonic structure such as the one considered here,
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but still we can attempt to make a distinction between
them. Let us point it out that the system under study
has no dichroism in the absence of magnetic field.

To clarify the influence of magnetoplasmons on the
MCD of the structure, we consider first the extinction
of the clockwise and counterclockwise circularly polari-
zed electromagnetic waves [depicted in Figs. 6(a) and
6(b), respectively], transmitted through the graphene
layer without 2D grating on top of it. A clockwise po-
larized incident wave is characterized by the π/2 phase
shift between the x and y components of its magnetic

field (H
(i)
y = iH

(i)
x ), while their amplitudes are equal.

The phase shift between the magnetic field components
in the counterclockwise circularly polarized incident wave

is −π/2; i.e., H
(i)
y = −iH(i)

x .
As follows from the comparison of Figs. 6(a) and 6(b),

at zero magnetic field (black lines) the extinction va-
lues of clockwise and counterclockwise circularly pola-
rized electromagnetic waves are equal. When graphene
is doped with holes (negative chemical potential µ < 0),
application of external magnetic field results in the MCD:
for the same frequency the extinction of the counter-
clockwise polarized wave [Fig. 6(b)] exceeds that of the
clockwise circularly polarized wave [Fig. 6(a)]. The fre-
quency dependence of the extinction, being a monotoni-
cally decreasing function in the case of clockwise polari-
zed wave, in the case of counterclockwise polarized wave
exhibits its maximum at the cyclotron frequency ωc. As
a consequence, the growth of the magnetic field leads to
the blue-shift of the maximum of the counterclockwise
polarized wave extinction spectrum [Fig. 6(b)] and to a
monotonic decrease of the clockwise-polarized wave ex-
tinction [see Fig. 6(a)].

Adding the perforated metal film on top of graphene
changes considerably the extinction spectrum. Thus, in
the low-frequency region both clockwise and counter-
clockwise circularly polarized waves [depicted in Figs.
6(c) and 6(d), correspondingly] are characterized by di-
minished extinction owing to the aforementioned long-
wavelength screening. This result is completely different
from the extinction spectra of the perforated graphene,
considered in Ref.59: in the low-frequency region perfora-
ted graphene exhibits enhanced extinction. Along with
this, the extinction values for electromagnetic waves of
both polarizations reach their maxima in the vicinity of
the magnetoplasmon resonance frequency ωmp [which fre-
quencies are calculated from Eq. (15) and depicted in
Figs. 6(c) and 6(d) by vertical dash-and-dotted lines].
For the clockwise polarization [Fig. 6(c)] such a beha-
vior is quite different from that of bare graphene [where
the extinction is a monotonically decreasing function of
frequency, see Fig. 6(a)]. It is worth noting that in the
case of clockwise polarization the graphene with perfora-
ted metal film is characterized by the magnetoplasmon-
enhanced extinction. Indeed, in the vicinity of magneto-
plasmon resonance frequency the extinction of such struc-
ture exceeds that of the graphene without metal film. For
the counterclockwise polarization [Fig. 6(d)] the resonant

excitation of magnetoplasmons results in the blue-shift of
the extinction maximum, compared to the case of bare
graphene [Fig. 6(b)]. Noteworthy, in the low-frequency
range the counterclockwise polarized wave is characteri-
zed by a negative extinction, which becomes more pro-
nounced at high magnetic field [compare red and blue
lines in Fig. 6(d), which correspond to B = 2 T and
B = 7 T, respectively].

At the same time, high magnetic field provides a bet-
ter correspondence between the frequency of maximal
extinction and the frequency of the magnetoplasmon re-
sonance for both polarizations. It can be seen from the
comparison of black, red, green, and blue solid lines max-
ima in Figs. 6(c) and 6(d) with the positions of the ver-
tical dash-and-dotted lines of respective colors. Indeed,
for B = 7 T (blue solid and dash-and-dotted line) the
difference is neglible. The respective spatial distributi-
ons of the electric field on graphene in the vicinity of the
magnetoplasmon resonance frequency are shown in Fig.
7 for clockwise and counterclockwise circularly polarized
incident waves [Figs. 7(a) and 7(b), respectively]. For
both polarizations, z component of the electric field (de-
picted by color map) has a maximum and a minimum
near the opposite edges of the square hole at the mag-
netoplasmon resonance. In other words, the distribution
of charge carriers in graphene is dipolar. During one pe-
riod of the electromagnetic wave, T = 2π/ω, the dipolar
distribution rotates along the hole perimeter in the same
direction as the incident wave’s polarization vector, cloc-
kwise [Fig. 7(a)] or counterclockwise [Fig. 7(b)].

When the graphene is doped with electrons (positive
chemical potential, µ > 0, Fig. 8), the extinction of the
clockwise polarized wave [Fig. 8(a)] at high-frequency
range is larger than that of the counterclockwise polari-
zed wave [Fig. 8(c)]. The situation is totally opposite
to the case of graphene doped with holes [compare Figs.
8(a) and 6(c) as well as Figs. 8(c) and 6(d)]. Moreover,
if compared to the case of the linearly polarized incident
wave with the same parameters [shown in Fig. 3], the one
with clockwise circular polarization both exhibit a stron-
ger extinction [compare Figs. 8(a) and 3(a)] and stronger
absorbance [compare Figs. 8(b) and 3(b)]. At the same
time, the case of counterclockwise circular polarization is
quite different: here the extinction and the absorbance
are considerably lower than those of linearly polarized in-
cident wave [compare Figs. 8(c) and 3(a) as well as Figs.
8(d) and 3(b)]. The dependence of the magnetic circular
dichroism upon the parameters of the perforated metal
film is described in Appendix C.

V. CONCLUSIONS

To conclude, we calculated the spectral dependence of
the Faraday rotation and MCD of an electromagnetic
wave transmitted through a graphene layer subjected to
an external perpendicular magnetic field. The calcula-
tions show that these effects are strongly influenced by
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FIG. 7. Spatial distribution (over a unit cell of the periodically perforated metal film) of the electric field components E
(3)
z (r, d/2)

(depicted by color map) and E
(3)
x (r, d/2), E

(3)
y (r, d/2) (depicted by vectors) on graphene, subjected to the magnetic field B = 7 T

for the clockwise [box (a)] and counterclockwise [box (b)] circularly polarized incident waves with frequency ω = 14 meV at
time moments t = 0 (upper left panels in each box), after quarter-period t = π/2ω (upper right panels), after half-period
t = π/2ω (lower right panels), and after three-quarters of the period t = 3π/2ω (lower left panels). Other parameters of the
structure are the same as those in Fig. 6.

adding a periodically perforated metallic film (a 2D gra-
ting) on top of graphene. We have demonstrated that,
if the width of the perforation holes is close to the array
period (i.e., the grating looks like a thin metallic net), the
incident electromagnetic wave is strongly screened by this
structure in the low-frequency range. It results in a de-
crease of the Faraday rotation angle of the transmitted
wave, in comparison with bare graphene. In contrast,
if the wave frequency is close to that of the magneto-
plasmon resonance supported by the structure with 2D
grating, one can expect an increase of the Faraday ro-
tation angle, which is a result of the magnetoplasmon-
mediated transmission. The maximum of the Faraday
rotation angle is shifted to higher frequency when the
period of the grating decreases. An important advantage
of the graphene-based structure with 2D grating is that it
introduces lower ellipticity to the transmitted linear pola-
rized wave and for some frequencies it can vanish, which
means maintaining the linear polarization (see Fig. 3).
It can be potentially interesting for making a switchable
rotating polariser in the THz range by combining a stack
of graphene layers with a thin metal net on top of each
of them to get high rotation angles.

The effect introduced by the grating is even more sub-
stantial for the MCD, which is quantified by the diffe-
rence in the extinction between left-hand and right-hand
circular polarized waves68 (Fig. 8). We notice that the
dichroism changes its sign depending on the wave fre-

quency and the crossover point in the spectrum can be
tuned by adjusting magnetic field and also the graphene
Fermi energy that determine the magnetoplasmon disper-
sion curve. This opens the way to design an electrically
switchable optical isolator based on the MCD effect by
utilizing nonreciprocal losses59.

One possible extension of this work can be the study
of other (nonsquare) types of hole arrays (e.g., triangu-
lar, rectangular, random, etc.), which are nonsymmetric
with respect to the polarization plane of the incident
wave. Since the condition for the momentum conserva-
tion, which is necessary for the excitation of magnetoplas-
mons, can also be achieved by using nonsquare hole gra-
tings, general phenomena (related to the magnetoplas-
mon excitation) will be qualitatively the same. Neverthe-
less, for the nonsymmetric hole arrays the transmittance
and the Faraday rotation angle will depend upon the di-
rection of polarization of the incident wave with respect
to the translation vectors of the 2D grating. Another
possible further development of the present work may
consist in taking into account the dependence of the sub-
strate dielectric constant upon the magnetic field, which
can result in the additional anisotropy and, as a conse-
quence, in a dependence of the transmittance upon the
direction of the external magnetic field. It can also be in-
teresting to consider a thin spacer between the graphene
and the metal grating that could work as a resonator
and can eventually enhance the magnetoplasmon’s am-
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FIG. 8. Frequency dependence of the extinction [upper row,
panels (a) and (c)], and absorbance [lower row, panels (b)
and (d)] of the clockwise [left column, panels (a) and (b)] and
counterclockwise [right column, panels (a) and (b)] circularly
polarized electromagnetic wave impinging on graphene clad-
ded by a semi-infinite Al2O3 substrate and a perforated metal
film (2D grating), subjected to a perpendicular magnetic field.
The parameters of the structure and the meaning of the dif-
ferent curves are the same as described in the caption of Fig.
3.

plitude and the effect induced by them in the structure.
Also this type of structure allows one to use graphene
magnetoplasmons for the controlling of spoof plasmons
in the metal grating69 as well as the enhanced optical
transmission70.

ACKNOWLEDGMENTS

The authors thank Alexey Kuzmenko and Jean-Marie
Poumirol from the University of Geneva, Switzerland
and Luis Mart́ın-Moreno from the University of Zara-
goza, Spain, for the careful reading, valuable discussions
and comments. Funding from the European Commission
within the project ”Graphene-Driven Revolutions in ICT
and Beyond” (ref. no. 696656) and the Portuguese Foun-
dation for Science and Technology (FCT) in the frame-
work of the Strategic Funding UID/FIS/04650/ 2013 is
gratefully acknowledged.

Appendix A: Explicit form of the electromagnetic
fields

1. Solutions of Maxwell equations in different
media

Assuming electromagnetic field time-dependence as
E,H ∼ exp (−iωt), we represent the Maxwell equations

as

rotE(m) =
iω

c
H(m), (A1)

rotH(m) = − iω
c
εmE(m), (A2)

divE(m) = 0, (A3)

divH(m) = 0, (A4)

where ω is the frequency, and c is the velocity of light in
vacuum. The superscripts m = 1, 2, 3 correspond to the
spatial domains z < −d/2, −d/2 < z < d/2, and z >
d/2, respectively. Consequently, the dielectric constants
are: ε1 = ε2 = 1, ε3 = ε. After substituting Eq. (A1)
into (A2), and using Eq. (A3), one obtains:[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+
ω2

c2
εm

]
E(m) = 0. (A5)

In a similar manner, substitution of Eq. (A2) into (A1)
gives [taking into account Eq. (A4)]:[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+
ω2

c2
εm

]
H(m) = 0. (A6)

Inside the holes in the metal film (spatial domain −d/2 <
z < d/2, m = 2), we can consider z components of the

electromagnetic field, E
(2)
z and H

(2)
z , as independent va-

riables, thus

∂2E
(2)
z

∂x2
+
∂2E

(2)
z

∂y2
+
∂2E

(2)
z

∂z2
+
ω2

c2
E(2)
z = 0, (A7)

∂2H
(2)
z

∂x2
+
∂2H

(2)
z

∂y2
+
∂2H

(2)
z

∂z2
+
ω2

c2
H(2)
z = 0. (A8)

As a result, we can divide eigenfunctions into two ty-
pes: (i) E-waves with Ez 6= 0, Hz ≡ 0 and (ii) H-
waves with Hz 6= 0, Ez ≡ 0. For E-waves after
matching boundary conditions at the hole edges inside

the film E
(2,E)
z (lD, y, z) = E

(2,E)
z (lD + W, y, z) = 0,

E
(2,E)
z (x, l′D, z) = E

(2,E)
z (x, l′D + W, z) = 0, we obtain

the solution of Eq. (A7) for the electric field’s z compo-
nent inside the film in the form

E(2,E)
z (r, z) =

∞∑
m,n=1

sin
(mπ
W

(x− lD)
)

× sin
(nπ
W

(y − l′D)
)

(A9)

×
{
A(s)
m,n sin

(
µm,n

(
z +

d

2

))
+A(c)

m,n cos

(
µm,n

(
z − d

2

))}
,

where m,n ≥ 1 are the mode indices; A
(s)
m,n and

A
(c)
m,n are the amplitudes of the respective mode

(sin- and cos-like wave, correspondingly), µm,n =
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ω
c

)2 − (mπW )2 − (nπW )2. Other components of the E-

wave electromagnetic field can be represented as

H(2,E)
x (r, z) = − iω

c

∞∑
m,n=1

1(
mπ
W

)2
+
(
nπ
W

)2 nπW
× sin

(mπ
W

(x− lD)
)

× cos
(nπ
W

(y − l′D)
)

(A10)

×
{
A(s)
m,n sin

(
µm,n

(
z +

d

2

))
+A(c)

m,n cos

(
µm,n

(
z − d

2

))}
,

H(2,E)
y (r, z) =

iω

c

∞∑
m,n=1

1(
mπ
W

)2
+
(
nπ
W

)2 mπW
× cos

(mπ
W

(x− lD)
)

× sin
(nπ
W

(y − l′D)
)

(A11)

×
{
A(s)
m,n sin

(
µm,n

(
z +

d

2

))
+A(c)

m,n cos

(
µm,n

(
z − d

2

))}
,

E(2,E)
x (r, z) =

∞∑
m,n=1

µm,n(
mπ
W

)2
+
(
nπ
W

)2 mπW
× cos

(mπ
W

(x− lD)
)

× sin
(nπ
W

(y − l′D)
)

(A12)

×
{
A(s)
m,n cos

(
µm,n

(
z +

d

2

))
−A(c)

m,n sin

(
µm,n

(
z − d

2

))}
,

E(2,E)
y (r, z) =

∞∑
m,n=1

µm,n(
mπ
W

)2
+
(
nπ
W

)2 nπW
× sin

(mπ
W

(x− lD)
)

× cos
(nπ
W

(y − l′D)
)

(A13)

×
{
A(s)
m,n cos

(
µm,n

(
z +

d

2

))
−A(c)

m,n sin

(
µm,n

(
z − d

2

))}
.

Notice that Eqs. (A12)–(A10) also satisfy other na-
tural boundary conditions: zero tangential component
of the electric field and zero normal component of

the magnetic field at hole surfaces, E
(2,E)
x (x, l′D, z) =

E
(2,E)
x (x, l′D+W, z) = 0, E

(2,E)
y (lD, y, z) = E

(2,E)
y (lD+

W, y, z) = 0, H
(2,E)
x (lD, y, z) = H

(2,E)
x (lD+W, y, z) = 0,

H
(2,E)
y (x, l′D, z) = H

(2,E)
y (x, l′D +W, z) = 0.

For H-wave the solution of Eq. (A8) for the z compo-
nent of the magnetic field can be represented as

H(2,H)
z (r, z) =

∞∑
m,n=0

cos
(mπ
W

(x− lD)
)

× cos
(nπ
W

(y − l′D)
)

×
{
B(s)
m,n cos

(
µm,n

(
z +

d

2

))
(A14)

−B(c)
m,n sin

(
µm,n

(
z − d

2

))}
,

while other components of electromagnetic field are

H(2,H)
x (r, z) =

∞∑
m=1

∞∑
n=0

µm,n(
mπ
W

)2
+
(
nπ
W

)2 mπW
× sin

(mπ
W

(x− lD)
)

× cos
(nπ
W

(y − l′D)
)

(A15)

×
{
B(s)
m,n sin

(
µm,n

(
z +

d

2

))
+B(c)

m,n cos

(
µm,n

(
z − d

2

))}
,

H(2,H)
y (r, z) =

∞∑
m=0

∞∑
n=1

µm,n(
mπ
W

)2
+
(
nπ
W

)2 nπW
× cos

(mπ
W

(x− lD)
)

× sin
(nπ
W

(y − l′D)
)

(A16)

×
{
B(s)
m,n sin

(
µm,n

(
z +

d

2

))
+B(c)

m,n cos

(
µm,n

(
z − d

2

))}
,
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E(2,H)
x (r, z) = − iω

c

∞∑
m=0

∞∑
n=1

1(
mπ
W

)2
+
(
nπ
W

)2 nπW
× cos

(mπ
W

(x− lD)
)

× sin
(nπ
W

(y − l′D)
)

(A17)

×
{
B(s)
m,n cos

(
µm,n

(
z +

d

2

))
−B(c)

m,n sin

(
µm,n

(
z − d

2

))}
,

E(2,H)
y (r, z) =

iω

c

∞∑
m=1

∞∑
n=0

1(
mπ
W

)2
+
(
nπ
W

)2 mπW
× sin

(mπ
W

(x− lD)
)

× cos
(nπ
W

(y − l′D)
)

(A18)

×
{
B(s)
m,n cos

(
µm,n

(
z +

d

2

))
−B(c)

m,n sin

(
µm,n

(
z − d

2

))}
.

Here B
(s)
m,n and B

(c)
m,n are the amplitudes of sin- and

cos-like waves. It should be emphasized that in the
case of H-wave along with modes with nonzero in-
dexes m,n ≥ 1, the existence of modes with one
zero and another nonzero index (like m 6= 0, n =
0 or m = 0, n 6= 0) is possible. Notice that
Eqs. (A15)–(A18) also satisfy the above-mentioned

boundary conditions at hole walls E
(2,H)
x (x, l′D, z) =

E
(2,H)
x (x, l′D+W, z) = 0, E

(2,H)
y (lD, y, z) = E

(2,H)
y (lD+

W, y, z) = 0, H
(2,H)
x (lD, y, z) = H

(2,H)
x (lD+W, y, z) = 0,

H
(2,H)
y (x, l′D, z) = H

(2,H)
y (x, l′D + W, z) = 0. At the

same time, there is no mode with m = n = 0 [in the
summation in Eq. (A14) this term is implicitly exclu-
ded], because in this case it is impossible to satisfy above-
mentioned boundary conditions on hole walls. Using
Eqs. (A10), (A11), (A15), and (A16), it is possible to
obtain Eq. (3), which represent the x and y components

of the total magnetic field H
(2)
x (r, z) = H

(2,E)
x (r, z) +

H
(2,H)
x (r, z), H

(2)
y (r, z) = H

(2,E)
y (r, z) + H

(2,H)
y (r, z) in

the matrix form. Similarly, Eq. (4) for the x and

y components of the total electric field E
(2)
x (r, z) =

E
(2,H)
x (r, z) + E

(2,E)
x (r, z), E

(2)
y (r, z) = E

(2,H)
y (r, z) +

E
(2,E)
y (r, z), written in the matrix form, can be obtai-

ned from Eqs.(A12), (A13), (A17), and (A18).

Both inside the semi-infinite air (z < −d/2, m = 1)
and the semi-infinite substrate (z > d/2, m = 3), we
choose transverse (x and y) components of the magnetic

field H
(1,3)
x , H

(1,3)
y as independent variables, thus

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+
ω2

c2
εm

]
H(m)
x = 0, (A19)[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+
ω2

c2
εm

]
H(m)
y = 0. (A20)

Also, we represent solutions of Helmholtz equations
(A19) and (A20) as two-dimensional Fourier series with
respect to the harmonics with wave vector in (xy) plane
ks,j . As a matter of fact, electromagnetic field in vacuum
can be represented as

H(1)
x (r, z) = H(i)

x exp
[
ip

(1)
0,0(z + d/2)

]
+

∞∑
s,j=−∞

H
(r)
x||s,j (A21)

× exp
[
iks,jr− ip(1)s,j (z + d/2)

]
,

H(1)
y (r, z) = H(i)

y exp
[
ip

(1)
0,0(z + T/2)

]
+

∞∑
s,j=−∞

H
(r)
y||s,j (A22)

× exp
[
iks,jr− ip(1)s,j (z + d/2)

]
,

H(1)
z (r, z) =

∞∑
s,j=−∞

sgH
(r)
x||s,j + jgH

(r)
y||s,j

p
(1)
s,j

(A23)

× exp
[
iks,jr− ip(1)s,j (z + d/2)

]
,

E(1)
x (r, z) = H(i)

y exp
[
ip

(1)
0,0(z + d/2)

]
− c
ω

∞∑
s,j=−∞

{
p
(1)
s,jH

(r)
y||s,j (A24)

+jg
sgH

(r)
x||s,j + jgH

(r)
y||s,j

p
(1)
s,j


× exp

[
iks,jr− ip(1)s,j (z + d/2)

]
,

E(1)
y (r, z) = −H(i)

x exp
[
ip

(1)
0,0(z + d/2)

]
+
c

ω

∞∑
s,j=−∞

{
p
(1)
s,jH

(r)
x||s,j (A25)

+sg
sgH

(r)
x||s,j + jgH

(r)
y||s,j

p
(1)
s,j


× exp

[
iks,jr + ip

(1)
s,j (z − d/2)

]
,

E(1)
z (r, z) = − c

ω

∞∑
s,j=−∞

{
sgH

(r)
y||s,j − jgH

(r)
x||s,j

}
× exp

[
iks,jr− ip(1)s,j (z + d/2)

]
. (A26)

At the same time, the electromagnetic field components
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in the substrate are:

H(3)
x (r, z) =

∞∑
s,j=−∞

H
(t)
x||s,j (A27)

× exp
[
iks,jr + ip

(3)
s,j (z − d/2)

]
,

H(3)
y (r, z) =

∞∑
s,j=−∞

H
(t)
y||s,j (A28)

× exp
[
iks,jr + ip

(3)
s,j (z − d/2)

]
,

H(3)
z (r, z) = −

∞∑
s,j=−∞

sgH
(t)
x||s,j + jgH

(t)
y||s,j

p
(3)
s,j

(A29)

× exp
[
iks,jr + ip

(3)
s,j (z − d/2)

]
,

E(3)
x (r, z) =

c

ωε

∞∑
s,j=−∞

{
p
(3)
s,jH

(t)
y||s,j

+jg
sgH

(t)
x||s,j + jgH

(t)
y||s,j

p
(3)
s,j

 (A30)

× exp
[
iks,jr + ip

(3)
s,j (z − d/2)

]
,

E(3)
y (r, z) = − c

ωε

∞∑
s,j=−∞

{
p
(3)
s,jH

(t)
x||s,j

+sg
sgH

(t)
x||s,j + jgH

(t)
y||s,j

p
(3)
s,j

 (A31)

× exp
[
iks,jr + ip

(3)
s,j (z − d/2)

]
.

E(3)
z (r, z) = − c

ωε

∞∑
s,j=−∞

{
sgH

(t)
y||s,j − jgH

(t)
x||s,j

}
× exp

[
iks,jr + ip

(3)
s,j (z + d/2)

]
. (A32)

Equations (A21), (A22), (A24), and (A25) can be written
in the matrix form [see Eq. (1)], while Eqs. (A27), (A28),
(A30), and (A31) can be transformed into Eq. (2).

2. Boundary conditions and the equations for the
field amplitude

Substitution of expressions for the electromagnetic
field in the vacuum above the metal film Eq. (1) and
electromagnetic field inside the holes Eqs. (3), (4) into
boundary conditions Eqs. (5), (6) at z = −d/2 results in
the following system of equations:

(
H

(i)
x

H
(i)
y

)
+

∞∑
s,j=−∞

exp [iks,jr]

(
H

(r)
x||s,j

H
(r)
y||s,j

)
(A33)

=

∞∑
m,n=0

P̂m,n (x− lD, y − l′D) Ûm,n

(
A

(c)
m,nδ′m,0δ

′
0,n

B
(c)
m,n

)
cos (µm,nd) ,

lD ≤ x ≤ lD +W,
l′D ≤ y ≤ l′D +W,

iσ̂y

(
H

(i)
x

H
(i)
y

)
−

∞∑
s,j=−∞

exp [iks,jr] Q̂(1)
s,j

(
H

(r)
x||s,j

H
(r)
y||s,j

)
(A34)

=


∑∞
m,n=0 P̂ ′m,n (x− lD, y − l′D ) Ûm,n

(
B

(s)
m,n +B

(c)
m,n sin (µm,nd)[

A
(s)
m,n +A

(c)
m,n sin (µm,nd)

]
δ′m,0δ

′
0,n

)
,

lD ≤ x ≤ lD +W,
l′D ≤ y ≤ l′D +W,

0, otherwise

Boundary conditions across the graphene sheet (at z =
d/2) imply the continuity of the electric field tangential

components and discontinuity of the tangential compo-
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nents of the magnetic field (which is defined by the grap-
hene’s conductivity), namely:

H(3)
x (r, d/2)−H(2)

x (r, d/2)

= (4π/c)
[
ΣyxE

(3)
x (r, d/2) (A35)

+ΣyyE
(3)
y (r, d/2)

]
,

H(3)
y (r, d/2)−H(2)

y (r, d/2)

= − (4π/c)
[
ΣxxE

(3)
x (r, d/2) (A36)

+ΣxyE
(3)
y (r, d/2)

]
,

E(3)
x (r, d/2) = E(2)

x (r, d/2), (A37)

E(3)
y (r, d/2) = E(2)

y (r, d/2), (A38)

where

Σxx = Σyy = i
2Σ0~2v2F

l2B

∞∑
m=−∞

[
nF (E|m|+1)− nF (Em)

E|m|+1 − Em

×
{

1

E|m|+1 − Em − ~ω − iγ
+

1

Em − E|m|+1 − ~ω − iγ

}
+
nF (E−(|m|+1))− nF (Em)

E−(|m|+1) − Em

{
1

E−(|m|+1) − Em − ~ω − iγ

+
1

Em − E−(|m|+1) − ~ω − iγ

}]
(1 + δm,0) ,

Σxy = −Σyx =
2Σ0~2v2F
πl2B

∞∑
m=−∞

[
nF (E|m|+1)− nF (Em)

E|m|+1 − Em

×
{

1

E|m|+1 − Em − ~ω − iγ
− 1

Em − E|m|+1 − ~ω − iγ

}
+
nF (E−(|m|+1))− nF (Em)

E−(|m|+1) − Em

{
1

E−(|m|+1) − Em − ~ω − iγ

− 1

Em − E−(|m|+1) − ~ω − iγ

}]
(1 + δm,0)

are the components of the graphene conductivity tensor
in magnetic field,

Σ̂ =

(
Σxx Σxy
Σyx Σyy

)
.

In the above relations, Em = sign (m) ~vF
√

2|m|/lB are
energy levels of the graphene in external magnetic field,
vF ≈ 106 m/s is the Fermi velocity in graphene, lB =
(~/eB)1/2 is the magnetic length, Σ0 = e2/4~ is the so-
called ac universal conductivity of graphene,

nF (E) =

[
exp

(
E − µ
kT

)
+ 1

]−1
is the Fermi-Dirac distribution function, µ is the Fermi
energy, and γ is the electron relaxation rate in graphene.

Boundary conditions Eqs. (A35)–(A38) can also be
written in the matrix form as

H
(2)
x (r, d/2)

H
(2)
y (r, d/2)

E
(2)
x (r, d/2)

E
(2)
y (r, d/2)

 =

(
Î Ĝ
0 Î

)
H

(3)
x (r, d/2)

H
(3)
y (r, d/2)

E
(3)
x (r, d/2)

E
(3)
y (r, d/2)

(A39)

with the 2×2 matrix Ĝ = −i(4π/c)σ̂yΣ̂ is defined by Eq.
(8). Notice that matrix relation Eq. (A39) defines the
boundary condition only at the area of holes in the metal
film. If we were to add the requirement of zero tangential
components of electric field at surface of metal beyond
the hole area, then it is possible to represent boundary
conditions Eqs. (A39) in general form, as(

E
(3)
x (r, d/2)

E
(3)
y (r, d/2)

)
=

=


(
E

(2)
x (r, d/2)

E
(2)
y (r, d/2)

)
lD ≤ x ≤ lD +W,
l′D ≤ y ≤ l′D +W,

0, otherwise

(A40)

and Eq. (7).
Combining Eqs. (2)–(4) with Eqs. (A40) and (7),

it is possible to obtain the following expressions for the
electromagnetic field at the metal film surface (z = d/2):
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∞∑
s,j=−∞

exp [iks,jr]
(
Î + ĜQ̂(3)

s,j

)( H
(t)
x||s,j

H
(t)
y||s,j

)
(A41)

=

∞∑
m,n=0

P̂m,n (x− lD, y − l′D) Ûm,n

( [
A

(s)
m,n sin (µm,nd) +A

(c)
m,n

]
δ′m,0δ

′
0,n

B
(s)
m,n sin (µm,nd) +B

(c)
m,n

)
,

lD ≤ x ≤ lD +W,
l′D ≤ y ≤ l′D +W,

;

∞∑
s,j=−∞

exp [iks,jr] Q̂(3)
s,j

(
H

(t)
x||s,j

H
(t)
y||s,j

)

=


∑∞
m,n=0 P̂ ′m,n (x− lD, y − l′D ) Ûm,n

(
B

(s)
m,n

A
(s)
m,nδ′m,0δ

′
0,n

)
cos (µm,nd) ,

lD ≤ x ≤ lD +W,
l′D ≤ y ≤ l′D +W,

0, otherwise

. (A42)

Multiplying Eqs. (A33) and (A41) by

P̂m′,n′ (x− lD, y − l′D) integrating over the area
of the hole (lD ≤ x ≤ lD + W , l′D ≤ y ≤ l′D + W ),
and using the orthogonality of trigonometric functions
for m,m′, n, n′ ≥ 0,∫ W

0

sin
(mπ
W

ξ
)

sin

(
m′π

W
ξ

)
dξ =

W

2
δm,m′δ′m′,0,∫ W

0

cos
(nπ
W
ξ
)

cos

(
n′π

W
ξ

)
dξ =

W

2
(1 + δn′,0) δn,n′ .

it is possible to obtain equations for the amplitudes Eqs.
(9) and (10).

Similarly, multiplying Eqs. (A34) and (A42) by
exp [−iks′,j′r], integrating over the area of one period of
the structure lD ≤ x ≤ (l + 1)D, l′D ≤ y ≤ (l′ + 1)D,
and after taking into account orthogonality of the plane
waves in the unit cell,∫ D

0

dx

∫ D

0

dy exp [i (ks,j − ks′,j′) r] = D2δs,s′δj,j′ ,

one can obtain Eqs. (11) and (12).

3. Reflectance and transmittance

To calculate the reflectance and transmittance we no-
tice that the flux density of energy is described by the
Poynting vector S = (c/8π)Re

(
E×H

)
. Respectively,

using Eqs. (A30) and (A31), the z component of the
Poynting vector of the (s, j) harmonics in the substrate
can be represented as

S
(t)
z||s,j =

c2

8πω
Re

H
(t)
y||s,j

ε

[
p
(3)
s,jH

(t)
y||s,j (A43)

+jg
sgH

(t)
x||s,j + jgH

(t)
y||s,j

p
(3)
s,j

+
H

(t)
x||s,j

ε

×

p(3)s,jH(t)
x||s,j + sg

sgH
(t)
x||s,j + jgH

(t)
y||s,j

p
(3)
s,j

 .

In the matrix form this relation can be represented as

S
(t)
z||s,j =

c

8π
Re

{(
H

(t)
y||s,j , −H

(t)
x||s,j

)
Q̂(3)
s,j

(
H

(t)
x||s,j

H
(t)
y||s,j

)}
(A44)

= − c

8π
Re


(
H

(t)
x||s,j

H
(t)
y||s,j

)†
iσ̂yQ̂(3)

s,j

(
H

(t)
x||s,j

H
(t)
y||s,j

) .

In the air, the z component of the Poynting vector of the
reflected wave’s (s, j) harmonic [using Eqs. (A24) and
(A25)] is written as

S
(r)
z||s,j = − c2

8πω
Re
{
H

(r)
y||s,j

[
p
(1)
s,jH

(r)
y||s,j (A45)

+jg
sgH

(r)
x||s,j + jgH

(r)
y||s,j

p
(1)
s,j

+H
(r)
x||s,j

×

p(1)s,jH(r)
x||s,j + sg

sgH
(r)
x||s,j + jgH

(r)
y||s,j

p
(1)
s,j


=

c

8π
Re


(
H

(r)
x||s,j

H
(r)
y||s,j

)†
iσ̂yQ̂(1)

s,j

(
H

(r)
x||s,j

H
(r)
y||s,j

) .

The difference of sign in Eqs. (A43) and (A45) reflects
the fact that the energy flux of the transmitted wave
[see Eq. (A43)] flows in the positive direction of z axis,
while that of reflected wave [see Eq. (A45)] flows in the
negative direction of z axis. Using the same formalism
for the incident wave, we obtain the z component of its
Poynting vector in the form:

S(i)
z =

c

8π

[∣∣∣H(i)
x

∣∣∣2 +
∣∣∣H(i)

y

∣∣∣2] . (A46)

The reflectance, R, and the transmittance, T , are de-
fined in the usual way:

R = −
∑∞
s,j=−∞ S

(r)
z||s,j

S
(i)
z

; (A47)
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T =

∑∞
s,j=−∞ S

(t)
z||s,j

S
(i)
z

. (A48)

Substituting Eqs. (A44)–(A46) into Eqs. (A47) and
(A48), one obtains the expressions for the reflectance and
transmittance in the final form of Eqs. (13) and (14).

Appendix B: Transmittance of the graphene layer
without periodical structure and the dispersion

relation of magnetoplasmons

When the metal film is absent (d = 0), then the right-
hand sides of Eqs. (A33) and (A41) become equal [as well
as those of Eqs. (A34) and (A42)]. As a consequence, the
equality of the left-hand sides of Eqs. (A33) and (A41)
[jointly with the equality of left-hand sides of Eqs.(A34)
and (A42)] gives(

H
(i)
x

H
(i)
y

)
+

∞∑
s,j=−∞

exp [iks,jr]

(
H

(r)
x||s,j

H
(r)
y||s,j

)

=

∞∑
s,j=−∞

exp [iks,jr]
(
Î + ĜQ̂(3)

s,j

)( H
(t)
x||s,j

H
(t)
y||s,j

)
, (B1)

iσ̂y

(
H

(i)
x

H
(i)
y

)

−
∞∑

s,j=−∞
exp [iks,jr] Q̂(1)

s,j

(
H

(r)
x||s,j

H
(r)
y||s,j

)

=

∞∑
s,j=−∞

Q̂(3)
s,j

(
H

(t)
x||s,j

H
(t)
y||s,j

)
exp [iks,jr] .(B2)

As in Sec. II, we multiply Eqs. (B1) and (B2) by
exp [−iks′,j′r] and integrate over the area of one period of
the structure lD ≤ x ≤ (l + 1)D, l′D ≤ y ≤ (l′ + 1)D.
We obtain (

H
(i)
x

H
(i)
y

)
δs′,0δ0,j′ +

(
H

(r)
x||s′,j′

H
(r)
y||s′,j′

)

=
(
Î + ĜQ̂(3)

s′,j′

)( H
(t)
x||s′,j′

H
(t)
y||s′,j′

)
, (B3)

iσ̂y

(
H

(i)
x

H
(i)
y

)
δs′,0δ0,j′ − Q̂(1)

s′,j′

(
H

(r)
x||s′,j′

H
(r)
y||s′,j′

)

= Q̂(3)
s′,j′

(
H

(t)
x||s′,j′

H
(t)
y||s′,j′

)
. (B4)

1. Dispersion relation of magnetoplasmons

When s′ 6= 0 or j′ 6= 0, Eqs. (B3) and (B4) take the
form (

H
(r)
x||s′,j′

H
(r)
y||s′,j′

)
=
(
Î + ĜQ̂(3)

s′,j′

)( H
(t)
x||s′,j′

H
(t)
y||s′,j′

)
, (B5)

−Q̂(1)
s′,j′

(
H

(r)
x||s′,j′

H
(r)
y||s′,j′

)
= Q̂(3)

s′,j′

(
H

(t)
x||s′,j′

H
(t)
y||s′,j′

)
. (B6)

As a result, the amplitudes of the magnetic field compo-
nents corresponding to the transmitted wave are gover-
ned by the equation[

Î +

{
Ĝ +

(
Q̂(1)
s′,j′

)−1}
Q̂(3)
s′,j′

](
H

(t)
x||s′,j′

H
(t)
y||s′,j′

)
= 0

(B7)

with

(
Q̂(1)
s′,j′

)−1
=

 −
c
ω
s′j′g2

p
(1)

s′,j′
− c
ω

(
p
(1)

s′,0

)2

p
(1)

s′,j′

c
ω

(
p
(1)

0,j′

)2

p
(1)

s′,j′

c
ω
s′j′g2

p
(1)

s′,j′


being the inverse of the matrix Q̂(1)

s′,j′ . If we project

H
(t)
x||s′,j′ , H

(t)
y||s′,j′ on the direction of the wave vector

ks′,j′ = (s′g, j′g), we have(
H

(‖)
s′,j′

H
(⊥)
s′,j′

)
= V̂s′,j′

(
H

(t)
x||s′,j′

H
(t)
y||s′,j′

)
,

where

V̂s′,j′ =
1√

s′2 + j′2

(
s′ j′

−j′ s′
)

is the transformation matrix, H
(‖)
s′,j′ and H

(⊥)
s′,j′ are the

components of the magnetic field in the substrate, paral-
lel and perpendicular to the harmonic wavevector ks′,j′ .
In this case, Eq. (B7) can be rewritten as

Ẑs′,j′
(
H

(‖)
s′,j′

H
(⊥)
s′,j′

)
= 0, (B8)

and the matrix

Ẑs′,j′ = V̂s′,j′
[
Î +

{
Ĝ +

(
Q̂(1)
s′,j′

)−1}
Q̂(3)
s′,j′

](
V̂s′,j′

)−1
after some algebra will have the form

Ẑs′,j′ =

 1 + 4πω
c2 Σxx

1

p
(3)

s′,j′
+

p
(1)

s′,j′

p
(3)

s′,j′

4π
ωεΣxyp

(3)
s′,j′

− 4πω
c2 Σxy

1

p
(3)

s′,j′
1 +

p
(3)

s′,j′

εp
(1)

s′,j′
+ 4π

ωεΣxxp
(3)
s′,j′

.
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Here we took into account that Σyy = Σxx, Σyx = −Σxy.
Equation (B8) possesses a solution, only when the de-

terminant of matrix Ẑs′,j′ is equal to zero. Thus, the
magnetoplasmon dispersion relation is

det
∣∣∣Ẑs′,j′ ∣∣∣ =

[
p
(3)
s′,j′ +

4πω

c2
Σxx + p

(1)
s′,j′

]
×

[
ε

p
(3)
s′,j′

+
1

p
(1)
s′,j′

+
4π

ω
Σxx

]

+

(
4π

c
Σxy

)2

= 0,

which after the formal substitution ks′,j′ = k = (kx, ky)
can be transformed into Eq. (15).

2. The transmittance and the reflectance of the
graphene layer on substrate

When s′ = j′ = 0, Eqs. (B3) and (B4) have the form(
H

(i)
x

H
(i)
y

)
+

(
H

(r)
x||0,0

H
(r)
y||0,0

)
=
(
Î + ĜQ̂(3)

0,0

)( H
(t)
x||0,0

H
(t)
y||0,0

)
,

(B9)

iσ̂y

(
H

(i)
x

H
(i)
y

)
− Q̂(1)

0,0

(
H

(r)
x||0,0

H
(r)
y||0,0

)
= Q̂(3)

0,0

(
H

(t)
x||0,0

H
(t)
y||0,0

)
.

(B10)

Taking into account that p
(1)
0,0 = (ω/c), p

(3)
0,0 = (ω/c)

√
ε,

matrices Q̂(1)
0,0 Q̂

(3)
0,0 can be represented in the simple form,

Q̂(3)
0,0 =

√
1

ε
iσ̂y, Q̂(1)

0,0 = iσ̂y, (B11)

and Eqs. (B9) and (B10) can be rewritten as(
H

(i)
x

H
(i)
y

)
+

(
H

(r)
x||0,0

H
(r)
y||0,0

)
=

(
Î +

√
1

ε
Ĝiσ̂y

)(
H

(t)
x||0,0

H
(t)
y||0,0

)
,

(B12)

iσ̂y

(
H

(i)
x

H
(i)
y

)
− iσ̂y

(
H

(r)
x||0,0

H
(r)
y||0,0

)
=

√
1

ε
iσ̂y

(
H

(t)
x||0,0

H
(t)
y||0,0

)
.

(B13)

Multiplying Eq. (B13) by −iσ̂y and summing with Eq.
(B12), we obtain

2

(
H

(i)
x

H
(i)
y

)
= F̂

(
H

(t)
x||0,0

H
(t)
y||0,0

)
, (B14)

where the matrix

F̂ =

(
1 +

√
1

ε

)
Î +

√
1

ε
Ĝiσ̂y

=

 1 + 4π
c
√
ε
Σxx +

√
1
ε

4π
c
√
ε
Σxy

− 4π
c
√
ε
Σxy 1 + 4π

c
√
ε
Σxx +

√
1
ε

 ,

and we took into account that Σyy = Σxx, Σyx = −Σxy.
As a result, the solution of Eq. (B14) can be represented
as

H
(t)
x||0,0 = 2

√
ε

(√
ε+ 4π

c Σxx + 1
)
H

(i)
x − 4π

c ΣxyH
(i)
y(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2 ,

(B15)

H
(t)
y||0,0 = 2

√
ε

4π
c ΣxyH

(i)
x +

(√
ε+ 4π

c Σxx + 1
)
H

(i)
y(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2 .

(B16)

Similarly, combining Eqs. (B14) and (B13), one can
obtain the expression for the amplitude of the reflected
wave magnetic field:(

H
(r)
x||0,0

H
(r)
y||0,0

)
=

[
Î − 2

√
1

ε
F̂−1

](
H

(i)
x

H
(i)
y

)
,

or, equivalently,

H
(r)
x||0,0 =

(√
ε+ 4π

c Σxx
)2 − 1 +

(
4π
c Σxy

)2(√
ε+ 4π

c Σxx + 1
)2

+
(
4π
c Σxy

)2H(i)
x

+
8π
c Σxy(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2H(i)
y

(B17)

H
(r)
y||0,0 = −

8π
c Σxy(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2H(i)
x

+

(√
ε+ 4π

c Σxx
)2 − 1 +

(
4π
c Σxy

)2(√
ε+ 4π

c Σxx + 1
)2

+
(
4π
c Σxy

)2H(i)
y .

(B18)

Taking into account the particular form of the matrices

Q̂(3)
0,0 and Q̂(1)

0,0 [see Eq. (B11)], the expressions Eqs. (A44)

and (A45) for transmitted and reflected wave energy flux
density in z direction are written as

S
(t)
z||0,0 =

c

8π
Re

 1√
ε

(
H

(t)
x||0,0

H
(t)
y||0,0

)†(
H

(t)
x||0,0

H
(t)
y||0,0

) ,

S
(r)
z||0,0 = − c

8π
Re


(
H

(r)
x||0,0

H
(r)
y||0,0

)†(
H

(r)
x||0,0

H
(r)
y||0,0

) .

Accordingly, from Eqs. (A47) and (A48), the transmit-
tance and reflectance can be expressed as

T0 =

Re

{√
1
ε

(∣∣∣H(t)
x||0,0

∣∣∣2 +
∣∣∣H(t)

y||0,0

∣∣∣2)}∣∣∣H(i)
x

∣∣∣2 +
∣∣∣H(i)

y

∣∣∣2 , (B19)

R0 =

∣∣∣H(r)
x||0,0

∣∣∣2 +
∣∣∣H(r)

y||0,0

∣∣∣2∣∣∣H(i)
x

∣∣∣2 +
∣∣∣H(i)

y

∣∣∣2 . (B20)
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Finally, after substituting the expressions for the magne-
tic field components Eqs. (B15)–(B18) into Eqs. (B19)
and (B20), one can obtain the transmittance and the re-
flectance of bare graphene in the following form:

T0 =
4Re

(√
1
ε

)
∣∣∣H(i)

x

∣∣∣2 +
∣∣∣H(i)

y

∣∣∣2
×


∣∣∣∣∣√ε

(√
ε+ 4π

c Σxx + 1
)
H

(i)
x − 4π

c ΣxyH
(i)
y(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2
∣∣∣∣∣
2

+

∣∣∣∣∣√ε 4π
c ΣxyH

(i)
x +

(√
ε+ 4π

c Σxx + 1
)
H

(i)
y(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2
∣∣∣∣∣
2
 ,

(B21)

R0 =
1∣∣∣H(i)

x

∣∣∣2 +
∣∣∣H(i)

y

∣∣∣2
×

{∣∣∣∣∣
(√
ε+ 4π

c Σxx
)2 − 1 +

(
4π
c Σxy

)2(√
ε+ 4π

c Σxx + 1
)2

+
(
4π
c Σxy

)2H(i)
x +

+
8π
c Σxy(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2H(i)
y

∣∣∣∣∣
2

+

∣∣∣∣∣ 8π
c Σxy(√

ε+ 4π
c Σxx + 1

)2
+
(
4π
c Σxy

)2H(i)
x

−
(√
ε+ 4π

c Σxx
)2 − 1 +

(
4π
c Σxy

)2(√
ε+ 4π

c Σxx + 1
)2

+
(
4π
c Σxy

)2H(i)
y

∣∣∣∣∣
2
 .

(B22)

Appendix C: Coefficient of magnetic circular
dichroism

To characterize quantitatively the circular dichroism
in our magnetoactive graphene-based structure, we in-
troduce the coefficient of circular dichroism,

τ =
Ta − Tc
Ta + Tc

,

which is expressed in terms of the transmittance of the
clockwise and counterclockwise circularly polarized wa-
ves Tc and Ta. The dependence of the coefficient of the
circular dichroism upon the frequency ω and the period
of the hole array D is shown in Fig. 9. It can be seen that
the coefficient of the optical dichroism τ achieves its max-
imum in the vicinity of ω ≈ 8 meV [for weak magnetic
field, see Fig. 9(a)] or ω ≈ 25 meV [for strong magnetic
field, see Fig. 9(b)]. The maximal value of the optical di-
choism coefficient grows monotonically with the increase
of the hole array period D. Notice that the coefficient
of optical dichroism of the perforated metal film depo-
sited on top of graphene monolayer τ is always smaller

FIG. 9. Coefficient of circular dichroism τ (in percent, de-
picted by color map) versus frequency ω and hole array pe-
riod D for two values of the magnetic field, B = 1.5 T (a)
and B = 7 T (b). Other parameters of the structure are the
same as in Fig.2. In the upper plots of panels (a) and (b) we
trace dependencies τ (ω) from the lower plots at fixed values
of the hole grating period D = 20µm, D = 100µm [black and
orange solid lines in panel (a)], and D = 10µm, D = 50µm
[green and red solid lines in panel (b)]. Also in the upper plots
of panels (a) and (b) the coefficients of circular dichroism τ0
of bare graphene are depicted by the dashed black lines.

than that of bare graphene, τ0 [compare dashed and so-
lid lines in upper plots in Figs. 9(a) and 9(b)]. In other
words, the presence of the perforated metallic film on top
of the graphene sheet reduces the relative contrast bet-
ween the transmittances of clockwise and countercloc-
kwise polarized waves. The physical reason for this is
the diffraction of the incident electromagnetic wave on
the graphene with periodic structure, which gives rise to
the partial conversion of the incident wave energy into
the energy of the excited magnetoplasmons, thus redu-
cing the transmittance of this structure for both circular
polarizations (clockwise and counterclockwise). Howe-
ver, the stronger decrease of the counterclockwise circu-
larly polarized wave transmittance (compared to that of
clockwise polarized wave) leads to the reduction of the
circular dichroism coefficient τ .

Moreover, the presence of the perforated metal film on
top of graphene results into the possibility to obtain a ne-
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FIG. 10. Coefficient of circular dichroism τ (in percent, de-
picted by color map) versus frequency ω and magnetic field
B for two values of the period of the hole array, D = 20µm
[panel (a)] and D = 10µm [panel (b)]. Other parameters of
the structure are the same as in Fig. 2.

gative circular dichroism coefficient (hence, Ta < Tc) at
the low-frequency region. This situation is in strong con-
trast with the case of bare graphene without perforated
metal film on top of it, where the coefficient of circular
dichroism τ0 is always possitive [Ta > Tc, see upper plots
in Figs. 9(a) and 9(b)]. It should be stressed that a de-
crease of the grating period D [as shown in Fig. 9] and
an increase of the magnetic field B [see Fig. 10] lead to
a broadening of the frequency region with negative τ .

From the other hand, increase of the chemical potential
µ results in the narrowing of this region [see Fig. 11(a)].
Also, it leads to a red shift of the region with maximal
positive τ . As it can be understood from the comparison
of Fig. 11(a) with Figs. 11(b) and 11(c), this red-shift of
the maximal τ is accompanied by a red-shift of the max-
imal extinction for both clockwise and counterclockwise
polarization.
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R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos,
M. Vanwolleghem, C. R. Doerr, and H. Renner, Nat. Pho-
tonics 7, 579 (2013).

7 W. B. Ribbens, Appl. Opt. 4, 1037 (1965).
8 R. Takei and T. Mizumoto, Japanese Journal of Applied

Physics 49, 052203 (2010).
9 P. K. Tien, D. P. Schinke, and S. L. Blank, Journal of

Applied Physics 45, 3059 (1974).
10 E. Ishida, K. Miura, Y. Shoji, T. Mizumoto, N. Nishiyama,

and S. Arai, Japanese Journal of Applied Physics 55,
088002 (2016).

11 Y. Shoji and T. Mizumoto, Sci. Technol. Adv. Mater. 15,
014602 (2014).

12 Y. Shoji, K. Miura, and T. Mizumoto, J. Opt. 18, 013001
(2016).

13 W. Qiu, Z. Wang, and M. Soljačić, Opt. Express 19, 22248
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14 W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko,
B. Dagens, and M. Vanwolleghem, Opt. Lett. 35, 568
(2010).

15 V. Dmitriev and M. N. Kawakatsu, Appl. Opt. 51, 5917
(2012).

16 Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
17 L. Zhang, D. Yang, K. Chen, T. Li, and S. Xia, Optics

and Laser Technology 50, 195 (2013).
18 F. Fan, Z. Guo, J.-J. Bai, X.-H. Wang, and S.-J. Chang,

Journal of the Optical Society of America B 28, 697 (2011).
19 Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
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36 B. Caballero, A. Garćıa-Mart́ın, and J. C. Cuevas, Opt.
Express 23, 22238 (2015).

37 V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov,
S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Ya-
kovlev, A. K. Zvezdin, and M. Bayer, Nat. Nanotechnol.
6, 370 (2011).

38 L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner,
D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritz-
ker, and H. Giessen, Phys. Rev. X 3, 041019 (2013).

39 S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, Frontiers
of Physics 11, 117801 (2016).
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