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ABSTRACT 

The uncertainties related with spatial variability and heterogeneities, naturally present in rock 

masses, play an important role in geotechnical engineering practice. A more accurate assessment 

and characterisation is increasingly in need due to their impact on the mechanical behaviour of 

heterogeneous rock masses. The aim of this work was to contribute with innovative methodologies 

to be used in the geomechanical characterisation of this type of rocks, as well as to reduce the 

uncertainty associated with the definition of prospection plans. 

The main methodology hereby proposed combines geostatistical techniques, which have proved to 

be efficient in identifying rock mass heterogeneities and in considering the spatial variability, with 

clustering techniques, so that a more realistic geomechanical model of the rock mass is obtained. 

Since the geotechnical information used to perform the numerical analysis of underground works 

has different stages, the proposed methodology was developed to take that feature into account. As 

a first step, the geotechnical parameters are simulated using geostatistical techniques, followed by 

their conversion into geomechanical parameters in a second step. A third step concerns the 

selection of representative realisations, with a minimum of three, to be used in the numerical 

analysis. Finally, the rock mass characterisation models are imported to a finite differences software 

to perform a mechanical behaviour analysis of the geotechnical structure. The numerical results are 

compared with the ones obtained from a deterministic approach that assumes the rock mass as a 

homogeneous medium. For the methodology validation, real data from two case studies were used: 

a Chilean gold deposit and the Salamonde II hydroelectric complex recently built in the North of 

Portugal. 

Concerning the methodology for optimizing prospection plans, the same geostatistical techniques 

were used to simulate the rock mass and to define the uncertainty metrics to use in the optimisation 

process, which relied on the Simulated Annealing algorithm. The randomness that exists in the 

definition of boreholes location was the stepping stone of this innovative methodology that intends to 

be a helping tool for professionals. As an output, one obtains the optimal spatial location for new 

boreholes, as well as their lengths, in order to decrease the uncertainty of the numerical model and 

to increase the geomechanical detail. It is worthy of notice that the two above mentioned case 

studies were also used in this methodology validation. 
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RESUMO 

A incerteza associada à variabilidade espacial e às heterogeneidades, naturalmente presentes 

aquando a caracterização geomecânica dos maciços rochosos, assumem um papel cada vez mais 

relevante na prática da engenharia geotécnica. Como tal, existe uma necessidade cada vez maior 

em obter caracterizações deste tipo de rochas heterogéneas de forma mais precisa e real. Assim, o 

principal objetivo deste trabalho foi contribuir com o desenvolvimento de metodologias inovadoras 

para serem usadas, tanto na caracterização geomecânica deste tipo de rochas, como na redução 

da incerteza associada à elaboração dos planos de prospeção geotécnica. 

Assumindo que as técnicas geoestatísticas são eficientes na identificação das heterogeneidades e 

na consideração da variabilidade espacial dos maciços rochosos, a principal metodologia deste 

trabalho combina estas técnicas com técnicas de clustering, utilizadas para a seleção de modelos 

geomecânicos mais realistas. Assim, numa primeira fase, é simulada a informação geotécnica 

utilizando ferramenta geoestatísticas que, numa segunda fase, é convertida em informação relativa 

aos parâmetros geomecânicos do maciço rochoso. Uma terceira fase da metodologia considera a 

seleção das realizações representativas para utilizar na análise numérica. Por fim, os modelos 

numéricos do maciço rochoso são importados para o software de diferenças finitas onde é efetuada 

uma análise do comportamento mecânico da estrutura geotécnica. Estes resultados são 

comparados com os obtidos quando considerada uma abordagem determinística que assume o 

maciço rochoso como um meio homogéneo. Na validação da metodologia foram utilizados dois 

casos de estudo, um depósito de outro chileno e o complexo hidroelétrico de Salamonde II, 

contruído recentemente no norte de Portugal. 

No que concerne à metodologia para otimizar os planos de prospeção, foram utilizadas a mesmas 

técnicas geoestatísticas para a simulação do maciço rochoso e assim definir métricas de avaliação 

da incerteza a utilizar no processo de otimização que utiliza o algoritmo Simulated Annealing. A 

aleatoriedade inerente à definição dos locais de sondagens foi o ponto de partida para o 

desenvolvimento de uma segunda metodologia que pretende ser uma ferramenta de apoio aos 

profissionais da área. Como output são obtidos os locais ótimos para a execução de novas 

sondagens, assim como os seus comprimentos com o objetivo de reduzir a incerteza associada ao 

modelo numérico do maciço rochosos e aumentar o detalhe geotécnico. É importante referir que os 

casos de estudo já mencionados também são utilizados na validação desta metodologia. 





 

 

CONTENTS 

Chapter 1 - Introduction .............................................................................................. 1	

1.1.	 Motivation ..................................................................................................................... 3	

1.2.	 Scope of the work/Objectives of the thesis ..................................................................... 5	

1.3.	 Methodologies and outline of the thesis .......................................................................... 6	

1.3.1.	 First segment ........................................................................................................ 6	

1.3.2.	 Second segment ................................................................................................... 8	

Chapter 2 - Overview on Rock Mass Characterisation Methodologies ........................ 11	

2.1.	 Introduction ................................................................................................................. 13	

2.2.	 Deterministic approaches ............................................................................................ 15	

2.2.1.	 Rock Quality Designation ..................................................................................... 16	

2.2.2.	 Rock Mass Rating system .................................................................................... 17	

2.2.3.	 Q system ............................................................................................................ 18	

2.2.4.	 Geological Strength Index .................................................................................... 19	

2.3.	 Probabilistic methods .................................................................................................. 20	

2.3.1.	 General ............................................................................................................... 20	

2.3.2.	 Monte Carlo ........................................................................................................ 21	

2.3.3.	 First Order Second Moment Method .................................................................... 23	

2.3.4.	 Point Estimation Method ..................................................................................... 24	

2.4.	 Random Field Theory ................................................................................................... 26	

2.5.	 Geostatistical techniques ............................................................................................. 30	

2.5.1.	 General ............................................................................................................... 30	

2.5.2.	 Exploratory and covariance analyses of regionalised variables .............................. 33	

2.5.3.	 Variogram ........................................................................................................... 34	

2.5.4.	 Estimation ........................................................................................................... 40	

2.5.5.	 Simulation ........................................................................................................... 43	

2.5.6.	 Model validation .................................................................................................. 50	



xiv Contents 

 

 

2.5.7.	 Geostatistics applied to Geotechnics .................................................................... 51	

2.6.	 Scenario reduction ....................................................................................................... 53	

2.6.1.	 Introduction ........................................................................................................ 53	

2.6.2.	 Kernel clustering technique ................................................................................. 56	

2.7.	 Conclusions ................................................................................................................. 58	

Chapter 3 - Geostatistical Simulation of Geomechanical Parameters ......................... 61	

3.1.	 Introduction ................................................................................................................. 63	

3.2.	 Geostatistical simulation models .................................................................................. 63	

3.2.1.	 General ............................................................................................................... 63	

3.2.2.	 First and second approaches: continuous variables .............................................. 64	

3.2.3.	 Third approach: discrete variable ......................................................................... 66	

3.3.	 Case study – Chilean deposit ....................................................................................... 67	

3.3.1.	 Introduction ........................................................................................................ 67	

3.3.2.	 Exploratory analysis ............................................................................................. 69	

3.3.3.	 Modelling univariate distributions ......................................................................... 72	

3.3.4.	 Modelling spatial continuity .................................................................................. 75	

3.3.5.	 Conditional simulation results .............................................................................. 79	

3.3.6.	 Post-processing simulations ................................................................................. 83	

3.3.7.	 Split-sample validation ......................................................................................... 88	

3.3.8.	 Discussion of the results ...................................................................................... 91	

3.4.	 Conclusions ................................................................................................................. 92	

Chapter 4 - Numerical Methodology to Characterise Heterogeneous Rock Masses .... 95	

4.1.	 Introduction ................................................................................................................. 97	

4.2.	 Methodology outline ..................................................................................................... 98	

4.2.1.	 General ............................................................................................................... 98	

4.2.2.	 Geostatistical simulation ................................................................................... 100	

4.2.3.	 Scenario reduction methodology ....................................................................... 101	

4.3.	 Case study - Chilean deposit ..................................................................................... 105	

4.3.1.	 Geotechnical data ............................................................................................ 105	



Numerical Methodology to Model Heterogeneous Rock Masses xv 

 

4.3.2.	 Three-dimensional numerical model ................................................................. 105	

4.3.3.	 Geostatistical simulation results ........................................................................ 106	

4.3.4.	 Reduction scenario methodology applied to RMR simulations ............................ 108	

4.3.5.	 From geotechnical data to geomechanical parameters ...................................... 116	

4.3.6.	 Models in analysis ............................................................................................ 117	

4.3.7.	 Numerical results ............................................................................................. 122	

4.3.8.	 Discussion ....................................................................................................... 128	

4.4.	 Conclusions .............................................................................................................. 132	

Chapter 5 - Salamonde II Powerhouse Complex: Geomechanical Characterisation and 

Modelling ............................................................................................................... 135	

5.1.	 Introduction .............................................................................................................. 137	

5.2.	 Geotechnical prospection and tests ........................................................................... 139	

5.3.	 The powerhouse cavern ............................................................................................ 144	

5.4.	 Numerical model ...................................................................................................... 149	

5.4.1.	 Numerical Model presentation .......................................................................... 149	

5.4.2.	 Numerical modelling results ............................................................................. 152	

5.5.	 Application of the new characterisation methodology ................................................. 153	

5.5.1.	 Introduction ..................................................................................................... 153	

5.5.2.	 Geostatistical simulation ................................................................................... 155	

5.5.3.	 From geotechnical data to geomechanical parameters ...................................... 162	

5.5.4.	 Scenario reduction methodology ....................................................................... 164	

5.6.	 Numerical modelling results ...................................................................................... 174	

5.6.1.	 Introduction ..................................................................................................... 174	

5.6.2.	 Data set 1 vs. deterministic model .................................................................... 176	

5.6.3.	 Data set 2 vs. deterministic model .................................................................... 185	

5.6.4.	 Data set 3 vs. deterministic model .................................................................... 195	

5.6.5.	 Discussion of the results ................................................................................... 202	

5.7.	 Conclusions .............................................................................................................. 205	

Chapter 6 - Methodology for Optimisation of Boreholes Plans ................................. 209	

6.1.	 Introduction .............................................................................................................. 211	



xvi Contents 

 

 

6.2.	 Optimisation concepts .............................................................................................. 214	

6.2.1.	 Simulated Annealing ......................................................................................... 214	

6.2.2.	 Multi-criteria optimisation ................................................................................. 216	

6.3.	 Proposed methodology ............................................................................................. 218	

6.3.1.	 Overview .......................................................................................................... 218	

6.3.2.	 Optimisation process ........................................................................................ 219	

6.3.3.	 Uni-objective approach ..................................................................................... 222	

6.3.4.	 Multi-criteria approach ...................................................................................... 223	

6.4.	 Theoretical application - Chilean deposit .................................................................... 225	

6.4.1.	 Data presentation ............................................................................................. 225	

6.4.2.	 Geostatistical simulation ................................................................................... 227	

6.4.3.	 Simulated Annealing internal parameters study ................................................. 229	

6.5.	 Optimisation results .................................................................................................. 231	

6.5.1.	 Uni-objective results ......................................................................................... 231	

6.5.2.	 Multi-criteria results .......................................................................................... 239	

6.5.3.	 Discussion of the results ................................................................................... 244	

6.6.	 Conclusions .............................................................................................................. 246	

Chapter 7 - Salamonde II Powerhouse Complex: Borehole Optimisation .................. 249	

7.1.	 Introduction .............................................................................................................. 251	

7.2.	 Data presentation ..................................................................................................... 252	

7.3.	 Optimisation process ................................................................................................ 255	

7.4.	 Geostatistical simulation ........................................................................................... 258	

7.4.1.	 Scenario 1 ....................................................................................................... 258	

7.4.2.	 Initial data ........................................................................................................ 261	

7.5.	 Simulated Annealing input parameters study ............................................................. 263	

7.5.1.	 Introduction ..................................................................................................... 263	

7.5.2.	 Step size value (Scenario 2) .............................................................................. 264	

7.5.3.	 Points generating function study (Scenarios 2 and 3) ........................................ 265	

7.6.	 Optimisation results .................................................................................................. 271	



Numerical Methodology to Model Heterogeneous Rock Masses xvii 

 

7.6.1.	 Scenario 1 ....................................................................................................... 271	

7.6.2.	 Analysis of the results ....................................................................................... 276	

7.7.	 Conclusions .............................................................................................................. 278	

Chapter 8 - Conclusions and Future Works .............................................................. 281	

8.1.	 Summary and Main contributions ............................................................................. 283	

8.2.	 Future works ............................................................................................................ 286	

Chapter 9 - References ........................................................................................... 289	

Appendix 1 ............................................................................................................. 303	

Appendix 2 ............................................................................................................. 313	

 





 

 

LIST OF FIGURES 

Figure 1.1 Outline and organisation of the thesis. ............................................................................ 9	

Figure 2.1 Scheme with the uncertainties related to geotechnical engineering (adapted from 

Christian and Baecher (2003)). ............................................................................................ 15	

Figure 2.2 Monte Carlo method principle for an example of three variables used as input. ............. 22	

Figure 2.3 Principle of Point Estimate method assuming two random variables (adapted from 

Rocscience (2016)). ............................................................................................................. 25	

Figure 2.4 Example of two random fields !" with distinctive correlation lengths (#) (Fenton, 1997).

 ........................................................................................................................................... 28	

Figure 2.5 Difference between classical statistics and geostatistics: a) independent realisations 

(classical); and b) dependent realisations (geostatistics). ....................................................... 30	

Figure 2.6 General scheme showing the estimation process in geostatistics (Zhang, 2011). ........... 32	

Figure 2.7 General scheme showing the simulation process in geostatistics (Zhang, 2011). ........... 32	

Figure 2.8 Flow predictions based on geostatistical simulations (Zhang, 2011). ............................. 33	

Figure 2.9 Regionalised variables example in 1D. .......................................................................... 34	

Figure 2.10 Variogram general representation of a stationary random variable (Imanzadeh, 2013).

 ........................................................................................................................................... 36	

Figure 2.11 Variogram map examples for a random field with: a) an isotropic behaviour; and b) an 

anisotropic behaviour. .......................................................................................................... 36	

Figure 2.12 Variogram and realisation examples for an anisotropic field (different ranges for N55E 

and N35O). ......................................................................................................................... 37	

Figure 2.13 Representation image of the variogram parameters (adapted from Deutsch (2015)). ... 37	

Figure 2.14 Variogram models’ examples set for a nugget effect equal to zero (adapted from Jaksa 

et al. (1997)). ...................................................................................................................... 38	

Figure 2.15 Nested structures theoretical example considering a small nugget effect. .................... 39	

Figure 2.16 Variograms and realisations examples for three fields with distinct spatial behaviour. .. 39	

Figure 2.17 Cokriging cases: a) Isotopic; b) Partially heterotopic; and c) Heterotopic (adapted from 

Wackernagel (2006)). .......................................................................................................... 43	



xx List of Figures 

 

 

Figure 2.18 Representative images to compare preliminary data configuration, the non-conditional 

simulation, kriging estimation and conditional simulation (Wackernagel, 2006). .................... 44	

Figure 2.19 General steps required in a geostatistical simulation process using the Gaussian random 

field model. .......................................................................................................................... 46	

Figure 2.20 Examples of: a) 1D truncation flag; and b) a 3D truncation flag. .................................. 47	

Figure 2.21 Turning Bands Method geometrical projection (adapted from Wackernagel (2006)). .... 48	

Figure 2.22 TBM simulation using 1, 10, 100 and 1000 lines. ...................................................... 49	

Figure 2.23 Accuracy plot example for true Hydraulic conductivity values fall within the probability 

interval. The black points represent the variable prediction using a Gaussian algorithm and the 

white points an indicator algorithm (Goovaerts, 2001). ......................................................... 51	

Figure 2.24 Proposed methodology for uncertainty quantification- (A) distance between two models, 

(B) distance matrix D, (C) models mapped in Euclidean space, (D) feature space, (E) pre-image 

construction, (F) P10, P50 and P90 quantile estimations (Scheidt and Caers, 2009b). .......... 55	

Figure 3.1 Flow charts for the variable simulation under: a) the Gaussian model (Approaches 1 and 

2); and b) the truncated Gaussian model (Approach 3). 65	

Figure 3.2 Scheme showing the three approaches considered in the RMR simulation. ................... 67	

Figure 3.3 2D maps of spatial distribution at elevation 3439 m for: a) RMR original values; b) 

Parameter P2; and c) Parameter P3. .................................................................................... 69	

Figure 3.4 Data histograms for the RMR individual parameters in a rating scale for: a) P1; b) P2; c) 

P3; and d) P5. ..................................................................................................................... 71	

Figure 3.5 Data histograms for the RMR individual parameters in their original scale for: a) P1 (in 

MPa); b) P2; c) P3 (in mm); and d) P5 (wet or damp). .......................................................... 72	

Figure 3.6 Anamorphosis function used for Approach 1. The ordinate indicates the RMR value and 

the abscissa the associated Gaussian value. ......................................................................... 73	

Figure 3.7 Experimental (crosses) and theoretical (solid lines) variograms for RMR (Approach 1) 

along the main anisotropy directions, horizontal plane (black) and vertical direction (blue). .... 77	

Figure 3.8 Experimental (crosses) and theoretical (solid lines) variograms for Approach 2 along the 

main anisotropy directions, horizontal plane (black) and vertical direction (blue) for parameters: 

a) P1; b) P2; c) P3; and d) P5. ............................................................................................. 77	



Numerical Methodology to Model Heterogeneous Rock Masses xxi 

 

Figure 3.9 Experimental (crosses) and theoretical (solid lines) variograms for Approach 3 along the 

main anisotropy directions, horizontal plane (black) and vertical direction (blue) for parameters: 

a) P1; b) P2; c) P3; and d) P5. ............................................................................................. 78	

Figure 3.10 Maps of RMR at elevation 3560 m of the average of 100 realisations obtained with: a) 

Approach 1; b) Approach 2; and c) Approach 3. ................................................................... 80	

Figure 3.11 Maps of RMR at elevation 3560 m for realisation #1 obtained with: a) Approach 1; b) 

Approach 2; and c) Approach 3. ........................................................................................... 81	

Figure 3.12 Maps of RMR at elevation 3560 m of the standard deviation of 100 realisations obtained 

with: a) Approach 1; b) Approach 2; and c) Approach 3. ....................................................... 82	

Figure 3.13 Maps of probability (between 0 and 1) that the RMR is less than a threshold of 65 at 

elevation 3560 m, obtained with: a) Approach 1; b) Approach 2; and c) Approach 3. ............ 84	

Figure 3.14 Maps of discontinuity parameters at elevation 3560 m for realisation #1 of a) P2; and b) 

P3. ...................................................................................................................................... 85	

Figure 3.15 Maps of discontinuity parameters at elevation 3560 m for the average of 100 

realisations of a) P2; and b) P3. ........................................................................................... 85	

Figure 3.16 Maps of discontinuity parameters at elevation 3560 m for the standard deviation of 100 

realisations of: a) P2; and b) P3. .......................................................................................... 86	

Figure 3.17 Maps of deformation modulus (in GPa) at elevation 3560 m obtained with Approach 1, 

for: a) realisation #1; and b) average of 100 realisations. ...................................................... 87	

Figure 3.18 Standard deviation of 100 realisations map of deformation modulus (in GPa) at 

elevation 3560 m obtained with Approach 1. ........................................................................ 87	

Figure 3.19 Scatter plots between true and expected RMR values for: a) Approach 1; b) Approach 2; 

and c) Approach 3. .............................................................................................................. 89	

Figure 3.20 Accuracy plots showing the uncertainty modelling of the simulations for: a) Approach 1; 

b) Approach 2; and c) Approach 3. ....................................................................................... 91	

Figure 4.1 General workflow containing the general steps of the proposed characterisation 

methodology. ....................................................................................................................... 99	

Figure 4.2 Scheme to follow in order to apply the scenario reduction methodology proposed in this 

section. ............................................................................................................................ 104	

Figure 4.3 Finite difference grid of tunnel model: a) xyz perspective; b) xz plan view of the tunnel 

zone. ................................................................................................................................ 106	



xxii List of Figures 

 

 

Figure 4.4 Experimental (crosses) and theoretical (solid lines) variograms along the main anisotropy 

directions: horizontal plane (black) and vertical (blue): a) RMR; and b) UCS. ....................... 107	

Figure 4.5 3D maps of RMR simulated on Flac3D mesh, for: a) realisation #1; and b) average of 100 

realisations. ...................................................................................................................... 108	

Figure 4.6 2D spatial representation of the RMR 100 realisations (black points) using the Euclidean 

distance. ........................................................................................................................... 110	

Figure 4.7 Average silhouette width values for the performed clusters evaluation. ....................... 111	

Figure 4.8 Clusters final configuration (points) with the matching medoids (squares) for: a) 2 

clusters; and b) single cluster. ........................................................................................... 112	

Figure 4.9 Validation of the two clusters configurations compared with the 100 realisations set using 

the percentiles 10, 50 and 90, for: a) average percentiles values for the 2 clusters 

configuration; b) point by point percentile sum for the 2 clusters configuration; and c) average 

percentiles values for the single cluster configuration. ........................................................ 114	

Figure 4.10 Workflow applied to build the different models to represent the rock mass 

characterisation of the Chilean rock mass using as an input the RMR system. .................... 119	

Figure 4.11 Flac3D xyz perspective with Em values (colour scale in Pa) used in: a) model 1; b) 

model 2 – cluster 1; c) model 2 – cluster 2; and d) model 3. ............................................. 121	

Figure 4.12 XZ plane at y=0 with Flac3D contour of displacement (colour scale in m) of the rock 

mass after the excavation for: a) model 1; b) model 2 – cluster 1; c) model 2 – cluster 2; d) 

model 3; and e) model 4. .................................................................................................. 125	

Figure 4.13 XZ plane at y=0 with Flac3D contour of the principal maximum stresses (compression- 

colour scale in Pa) after the excavation process for: a) model 1; b) model 2 – clusters 1; c) 

model 2 – cluster 2; d) model 3; and e) model 4. .............................................................. 126	

Figure 4.14 Representation of the displacements (in mm) obtained for all the analysed models 

(104), the single cluster of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the 

deterministic model 4 (Homogeneous) and the 100 realisations, in: a) centre of the tunnel 

arch; b) centre of the tunnel invert. .................................................................................... 127	

Figure 4.15 Representation of the displacements (in mm) obtained for all the analysed models 

(104), the single cluster of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the 

deterministic model 4 (Homogeneous) and the 100 realisations, in: a) centre of left sidewall; b) 

centre of the right sidewall. ............................................................................................... 128	



Numerical Methodology to Model Heterogeneous Rock Masses xxiii 

 

Figure 4.16 Representation of the principal stresses (in MPa) obtained for all the analysed models 

(104), the single cluster of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the 

deterministic model 4 (Homogeneous) and the 100 realisations: a) maximum principal stress; 

b) minimum principal stress. ............................................................................................. 128	

Figure 4.17 100 realisations histograms and distribution fitting curve and models 1 to 5 values 

(lines) of displacements in: a) centre of the tunnel arch; b) centre of the tunnel invert. ....... 130	

Figure 4.18 100 realisations histograms and distribution fitting curve and models 1 to 5 values 

(lines) of displacements in: a) centre of left sidewall; b) centre of the right sidewall. ............ 131	

Figure 4.19 100 realisations histograms and distribution fitting curve and models 1 to 5 values 

(lines) of the principal stresses (in MPa) for: a) maximum principal stress; b) minimum 

principal stress. ................................................................................................................ 131	

Figure 5.1 General overview of the Salamonde II hydroelectric circuit implementation (adapted from 

EDP (2009)). 137	

Figure 5.2 Salamonde II underground structures detailed scheme (adapted from EDP (2009)). .. 138	

Figure 5.3 Salamonde II powerhouse general plant with the in situ tests identification (LNEC, 2012).

 ........................................................................................................................................ 140	

Figure 5.4 Histograms obtained using the phase 1 information of Salamonde II, for: a) Ei; b) RQD; 

and c) W. .......................................................................................................................... 144	

Figure 5.5 Powerhouse complex geometry and elements (EDP, 2009). ...................................... 145	

Figure 5.6 Histograms obtained using data set 1 of Salamonde II phase 2 information, for: a) RMR; 

b) Log Q; and c) GSI. ........................................................................................................ 147	

Figure 5.7 Cross section of the powerhouse cavern showing the monitoring plan adopted (adapted 

from EDP (2009)). ............................................................................................................ 148	

Figure 5.8 Histograms obtained using data set 2 of Salamonde II phase 2 information, for: a) Ei (in 

GPa); b) RQD (%); and c) W. .............................................................................................. 149	

Figure 5.9 3D mesh developed for the Salamonde II powerhouse complex (adapted from Espada 

and Lamas (2014)). .......................................................................................................... 150	

Figure 5.10 Detail of Salamonde II numerical mesh with the identification of the considered damage 

zone near the cavern (adapted from LNEC (2013)) ............................................................ 152	

Figure 5.11 General workflow containing the general steps of the characterisation methodology 

using in Salamonde II. ...................................................................................................... 155	



xxiv List of Figures 

 

 

Figure 5.12 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal 

plane xy plane for Em using information from data set 1, for: a) Ei; b) W; and c) RQD. ..... 157	

Figure 5.13 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal 

plane xy plane for Em using information from data set 2, for: a) RMR; b) Log Q; and c) GSI.

 ........................................................................................................................................ 157	

Figure 5.14 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal 

plane xy plane for Em using information from data set 2, for: a) Ei; b) W; and c) RQD. ..... 158	

Figure 5.15 Accuracy plots of data set 1 showing the uncertainty modelling for: a) Ei (in GPa); b) 

RQD; and c) W. ................................................................................................................. 160	

Figure 5.16 Accuracy plots of data set 2 showing the uncertainty modelling for: a) Ei (in GPa); b) 

RQD; and c) W. ................................................................................................................. 161	

Figure 5.17 Accuracy plots of data set 2 showing the uncertainty modelling for: a) RMR; b) Log Q; 

and c) GSI. ....................................................................................................................... 162	

Figure 5.18 Summary of the geotechnical information that compose each considered data set. .. 163	

Figure 5.19 Histograms of the Em values (in GPa) of Salamonde II obtaining for all the 100 

realisation (each colour represents one realisation), for: a) data set 1; b) data set 2; and c) 

data set 3. ........................................................................................................................ 164	

Figure 5.20 2D spatial representation of the Em 100 realisations (black points) using the Euclidean 

distance computed with data from: a) data set 1; b) data set 2; and c) data set 3. ............. 165	

Figure 5.21 Average silhouette width values for the performed clusters evaluation using the data 

from: a) data set 1; b) data set 2; and c) data set 3. .......................................................... 166	

Figure 5.22 Clusters final configuration (points) with the matching medoids (squares) for: a) data set 

1 (3 clusters); b) data set 2 (9clusters); and c) data set 3 (4 clusters). ............................... 167	

Figure 5.23 Validation of clusters configurations in comparison with the 100 realisations set using 

the average values of Em for percentiles 10, 50 and 90, for: a) data set 1 (3 clusters); b) data 

set 2 (9clusters); and c) data set 3 (4 clusters). ................................................................. 168	

Figure 5.24 Validation of clusters configurations in comparison with the 100 realisations set after 

summing point by point the Em values of percentiles 10, 50 and 90, for: a) data set 1 (3 

clusters); b) data set 2 (9 clusters); and c) data set 3 (4 clusters). ..................................... 169	



Numerical Methodology to Model Heterogeneous Rock Masses xxv 

 

Figure 5.25 Validation of clusters configurations using a kernel smoothing function to represent the 

selected and full realisations sets along with the average of the 100 realisations, for: a) data 

set 1 (3 clusters); b) data set 2 (9 clusters); and c) data set 3 (4 clusters). ........................ 171	

Figure 5.26 Workflow applied to build the data sets to represent the rock mass characterisation of 

Salamonde II using as input the geotechnical information from two distinct phases. ........... 176	

Figure 5.27 2D contours of the displacements magnitude (in m) and vectors for section A in the last 

excavation stage, for: a) the Homogeneous model; and b) cluster 3 of data set 1. .............. 180	

Figure 5.28 2D contours of the displacements magnitude (in m) and vectors for section B in the last 

excavation stage, for: a) the Homogeneous model; and b) cluster 1 of data set 1. .............. 180	

Figure 5.29 3D contours of the displacements magnitude (in m) with a deformed factor equal to 

1000 in the last excavation stage, for: a) the Homogeneous model; and b) cluster 2 of data set 

1. ..................................................................................................................................... 180	

Figure 5.30 3D maximum principal stresses (in Pa) contours at the last excavation stage, for: a) the 

Homogeneous model; and b) cluster 3 of data set 1. ......................................................... 181	

Figure 5.31 Displacements evolution measured by all the extensometers installed in: a) section A; 

and b) section B. .............................................................................................................. 182	

Figure 5.32 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 1, for: a) E4A; and b) E4B. .......................................... 183	

Figure 5.33 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 1, for: a) E5A; and b) E5B. .......................................... 184	

Figure 5.34 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 1 in section A, for: a) E6; and b) E7. ............................ 184	

Figure 5.35 2D contours of the displacements magnitude (in m) and vectors for section A in the last 

excavation stage, for: a) the LNEC model (displacements with a scale of 400); b) cluster 5 of 

data set 2; and c) the Homogeneous model ...................................................................... 189	

Figure 5.36 2D contours of the displacements magnitude (in m) and vectors for section B in the last 

excavation stage, for: a) the LNEC model (displacements with a scale of 400); b) cluster 6 of 

data set 2; and c) the Homogeneous model. ..................................................................... 190	

Figure 5.37 3D contours of the displacements magnitude (in m) with a deformed factor equal to 500 

in the last excavation stage, for: a) the LNEC model; b) cluster 1 of data set 2; and c) the 

Homogeneous. ................................................................................................................. 191	



xxvi List of Figures 

 

 

Figure 5.38 2D maximum principal stresses (in Pa) contours in section A at the last excavation 

stage, for: a) the LNEC model; b) cluster 8 of data set 2; and c) the Homogeneous model. 192	

Figure 5.39 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 2, for: a) E4A; and b) E4B. .......................................... 193	

Figure 5.40 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 2, for: a) E5A; and b) E5B. .......................................... 194	

Figure 5.41 Total displacements (in mm) in the longer rod measured (dashed line) and computed 

(dotted and solid lines) for data set 2 in section A, for: a) E6; and b) E7. ............................ 194	

Figure 5.42 2D contours of the displacements magnitude (in m) and vectors for section A in the last 

excavation stage, for: a) the LNEC model (displacements with a scale of 400); b) cluster 2 of 

data set 3; and c) the Homogeneous model. ..................................................................... 199	

Figure 5.43 2D contours of the displacements magnitude (in m) and vectors for section B in the last 

excavation stage, for: a) the LNEC model (displacements with a scale of 400); b) cluster 3 of 

data set 3; and c) the Homogeneous model. ..................................................................... 200	

Figure 5.44 3D contours of the displacements magnitude (in m) with a deformed factor equal to 500 

in the last excavation stage, for: a) the LNEC model; b) cluster 2 of data set 3; and c) the 

Homogeneous. ................................................................................................................. 201	

Figure 5.45 2D maximum principal stresses (in Pa) contours in section A at the last excavation 

stage, for: a) the LNEC model; b) cluster 1 of data set 3; and c) the Homogeneous model. 202	

Figure 5.46 Graphical representation of the minimum, mean and maximum values of the maximum 

displacements registered in each analysed numerical model (data set 1, 2 and 3 and 

corresponding Homogeneous models). The red line represents the maximum displacement 

obtained by LNEC(2013) model for terms of compression. ................................................ 205	

Figure 6.1 Identification of all the optimisation methodologies and their limitations along the years.

 213	

Figure 6.2 Simulated Annealing functioning method - hill climbing (adapated from Zhigljavsky, 

1991). .............................................................................................................................. 215	

Figure 6.3 Diagram of the proposed methodology combining geostatistical simulation and simulated 

annealing. ......................................................................................................................... 219	

Figure 6.4 Simulated annealing workflow adapted to the proposed methodology. ........................ 221	



Numerical Methodology to Model Heterogeneous Rock Masses xxvii 

 

Figure 6.5 Mapping of the initial boreholes data used in the isolated points scenario in: a) XY plane; 

and b) XYZ perspective (X, Y and Z in meters). ................................................................ 226	

Figure 6.6 Mapping of the initial boreholes data used in the vertical alignments scenario in: a) XY 

plane; and b) XYZ perspective (X, Y and Z in meters). ...................................................... 226	

Figure 6.7 Experimental (crosses) and theoretical (solid line) variograms along the horizontal plane 

using: a) 22 isolated points; and b) 6 point alignments. ..................................................... 228	

Figure 6.8 RMR preliminary data geostatistical simulation results: a) first realisation; and b) variance 

of 100 realisations. ........................................................................................................... 229	

Figure 6.9 Convergence study for the number of additional points considering the average width of 

95% probability intervals (black line) and the average variance (red line). ............................ 233	

Figure 6.10 3D location of 12 additional points (colour points) with preliminary data represented by 

black points for: a) average width of 95% probability intervals; and b) average variance. ..... 234	

Figure 6.11 3D representation of the block used in the search when 12 points were added, for: a) 

average width of 95% probability intervals; and b) average variance. ................................... 235	

Figure 6.12 Convergence study for the number of additional alignments considering the average 

width of 95% probability intervals (black line) and the average variance (red line). ............... 237	

Figure 6.13 3D location of 3 additional point alignments (colour points) with preliminary data 

represent by black points for: a) average width of 95% probability intervals; and b) average 

variance. ........................................................................................................................... 237	

Figure 6.14 Convergence study relating the maximum number of iterations with the objective 

function value using: a) and b) variance as the objective function; c and d) 95% probability 

interval as the objective function obtained for 12 isolated points (a and c) and 3 point 

alignments (b and d). ........................................................................................................ 239	

Figure 6.15 Isolated points objective function values for each weight combination test. ............... 241	

Figure 6.16 Representation of the objective functions values (95% probability interval, variance and 

both functions) obtained in the multi-criteria approach. ...................................................... 241	

Figure 6.17 Point alignments objective function values for each weight combination test. ........... 243	

Figure 6.18 Representation of the objective functions values (95% probability interval, variance and 

both functions) obtained in the multi-criteria approach of the point alignments information. 243	

Figure 6.19 Spatial representation (XY	plane) of the optimal points alignments (colour points) 

obtained for the variance (black plus) and 95% probability interval (red circles) as the objective 

functions. ......................................................................................................................... 245	



xxviii List of Figures 

 

 

Figure 6.20 Spatial representation (XY	plane) of the optimal points alignments (colour points) 

obtained in all the tests performed in a multi criteria optimisation. ..................................... 245	

Figure 7.1 Section of the geological and prospection location plant with the identification of the 

selected boreholes (colour circles) (adapted from EDP (2009)). 253	

Figure 7.2 Spatial distribution of the boreholes with codes S1, S2, S5, S8, S9, S15 and S16 with a 

colour scale representing: a) RQD; b) F; and c) W. ............................................................. 255	

Figure 7.3 Spatial distribution of the remaining boreholes with a colour representing the RQD in: a) 

scenario 1; b) scenario 2; and c) scenario 3. ..................................................................... 258	

Figure 7.4 Experimental (crosses) and theoretical (solid line) variograms along the horizontal plane 

using the information of 6 boreholes, for: a) RQD; b) F; and c) W. ...................................... 260	

Figure 7.5 Experimental (crosses) and theoretical (solid line) variograms using the initial data set of 

7 boreholes, for: a) RQD; b) F; and c) W. ........................................................................... 262	

Figure 7.6 Convergence study for a total of seven tests using as information the scenario 2. ...... 265	

Figure 7.7 Convergence analysis comparing the number of iterations with the OF value for tests 

number 2a and 4a in each run for: a) scenario 2; and b) scenario 3. ................................. 268	

Figure 7.8 Spatial representation (XY	plane) of the optimal points obtained for test number 2a and 

4a in all the runs along with the original locations of the two removed boreholes (blue circles), 

for: a) scenario 2; and b) scenario 3. ................................................................................. 270	

Figure 7.9 Scenario 2 spatial representation (XY	plane) of the optimal points movements (coloured 

arrows) obtained from run to run, in: a) test 2a; and b) test 4a. ......................................... 270	

Figure 7.10 Scenario 3 spatial representation (XY	plane) of the optimal points movements (coloured 

arrows) obtained from run to run using data from scenario 2, in: a) test 2a; and b) test 4a. 270	

Figure 7.11 Spatial representation (XY	plane) of the optimal points (colour points) obtained in all the 

tests, for: a) trio 1; b) trio 2; c) trio 3; d) trio 4; and e) trio 5. ............................................. 274	

Figure 7.12 Convergence study for all the tests performed assuming the weights values from: a) trio 

1; b) trio 2; c) trio 3; d) trio 4; and e) trio 5. ....................................................................... 275	

Figure 7.13 Spatial representation (XY	plane) of the optimal points (colour points) obtained in all the 

tests for all the five trios. ................................................................................................... 277	

Figure A1.1 Histograms obtained using all the phase 1 information of Salamonde II, for: a) F; and b) 

σc. ................................................................................................................................... 306	



Numerical Methodology to Model Heterogeneous Rock Masses xxix 

 

Figure A1.2 Representative scheme identifying all the zones from where the geotechnical mappings 

were recovered (adapted from EDP (2009)). ...................................................................... 307	

Figure A1.3 The cell declustering mean versus 25 cell sizes (each value represents a 3D square in 

m) for: a) data set 1; and b) data set 2. ............................................................................. 309	

Figure A1.4 Anamorphosis function with the Em values in GPa (ordinate) and the associated 

Gaussian value (abscissa) for: a) data set 1; and b) data set 2. .......................................... 310	

Figure A2.1 Spatial plot for test number 1 using the ‘v4’ type of interpolation to obtain the colour 

surface for; a) PI95%; and b) Var. .................................................................................. 315	

Figure A2.2 Spatial plot for test number 2 using the ‘v4’ type of interpolation to obtain the colour 

surface for; a) PI95%; and b) Var. .................................................................................. 315	

Figure A2.3 Spatial plot for test number 3 using the ‘nearest’ and ’v4’ type of interpolation to obtain 

the colour surface, respectively for; a) PI95%; and b) Var. .............................................. 316	

 





 

 

LIST OF TABLES 

Table 2.1 Empirical formulas to obtain 89 using the RQD index value. ......................................... 16	

Table 2.2 RMR rock quality scale and description. ........................................................................ 17	

Table 2.3 Empirical formulas to obtain 89 using the RMR value. ................................................. 18	

Table 2.4 Empirical formulas to obtain 89 using the Q system value. .......................................... 19	

Table 2.5 Empirical formulas to obtain 89 using the GSI system value. ....................................... 20	

Table 2.6 Mathematical functions and respective models to use in variogram fitting (Jaksa et al., 

1997). ................................................................................................................................. 38	

Table 2.7 General procedure to adapt for k-medoid algorithm implementation. .............................. 58	

Table 3.1 Information about average UCS and average density by lithological unit. ........................ 68	

Table 3.2 Basic statistics on RMR ratings and original data (3969 samples). ................................. 69	

Table 3.3 Correlation matrix between parameters P1, P2, P3 and P5. ........................................... 70	

Table 3.4 Calculated proportions for P2 data with the corresponding Gaussian thresholds. ............ 74	

Table 3.5 Calculated proportions for P3 with the corresponding Gaussian thresholds. .................... 75	

Table 3.6 Statistics on the average of 100 conditional realisations of RMR obtained with Approaches 

1, 2 and 3. .......................................................................................................................... 79	

Table 4.1 Silhouette reference values used to evaluate the optimum number of clusters (Struyf et al., 

1997). .............................................................................................................................. 103	

Table 4.2 RMR and UCS (in MPa) statistics for the initial values and the average of 100 conditional 

realisations. ...................................................................................................................... 108	

Table 4.3 Extract of the RMR 100 realisations dissimilarity matrix (each column and line represent 

the realisation number). .................................................................................................... 109	

Table 4.4 Basic statistics of the RMR variable for the initial values, 100 realisations and selected 

realisation data sets. ......................................................................................................... 115	

Table 4.5 Basic statistics of the RMR for the individual realisations of the two clusters, single cluster 

configurations and 100 realisations average values. ........................................................... 115	

Table 4.6 Empirical expressions used to obtain Em and the corresponding authors. .................. 117	



xxxii List of Tables 

 

 

Table 4.7 Rock mass deformation modulus (Em in GPa) basic statistics of model 1 (single cluster), 

model 2 (two clusters) and model 3 (100 realisations average). ......................................... 120	

Table 4.8 Displacements and stresses values obtained for the 100 individual realisations. .......... 122	

Table 4.9 Summary of the displacements and stresses results obtained in each one of the first four 

models. ............................................................................................................................ 123	

Table 4.10 Percentage differences between the displacements values obtained for model 1 and 

models 2 in relation to model 4 (homogeneous model). ..................................................... 129	

Table 4.11 Distribution curve fitting details (first three moments) regarding the 100 realisations 

obtained value for displacements and principal stresses. ................................................... 132	

Table 5.1 STT tests results and rock characteristics (adapted from LNEC (2009)). ..................... 141	

Table 5.2 SFJ tests results (adapted from LNEC (2012)). ........................................................... 141	

Table 5.3 List of the geotechnical variables that compose the data set 1 and data set 2 of phase 1 

information. ...................................................................................................................... 143	

Table 5.4 Statistical analysis of the phase 1 geotechnical information of Salamonde II (Ei, W and 

RQD). ............................................................................................................................... 143	

Table 5.5 Geotechnical zoning characteristics (EDP, 2009). ....................................................... 146	

Table 5.6 Statistics analysis of data set 1 of the phase 2 geotechnical information of Salamonde II 

(RMR, Log Q and GSI). ...................................................................................................... 146	

Table 5.7 Statistical analysis of data set 2 of the phase 2 geotechnical information of Salamonde II 

(F, W, RQD and Ei). .......................................................................................................... 148	

Table 5.8 Adopted construction stages for Salamonde II 3D numerical model. ........................... 151	

Table 5.9 Summary of the displacements and stresses for the last excavation stage (adapted from 

LNEC (2013)). .................................................................................................................. 153	

Table 5.10 Correlation matrix between parameters P1, P2, P3 and P5. ...................................... 156	

Table 5.11 Statistical analysis of the variable from phase 1 and 2 after the geostatistical simulation.

 ........................................................................................................................................ 159	

Table 5.12 Statistical analysis of Em (in GPa) obtained values for data set 1, 2 and 3 of the 

geotechnical information. .................................................................................................. 164	

Table 5.13 Basic statistics of the Em values (in GPa) for the initial values, average of the 100 

realisations and selected realisations for data set 1. .......................................................... 171	



Numerical Methodology to Model Heterogeneous Rock Masses xxxiii 

 

Table 5.14 Basic statistics of the Em	values (in GPa) for the initial values, average of the 100 

realisations and selected realisations for data set 2. .......................................................... 172	

Table 5.15 Basic statistics of the Em	values (in GPa) for the initial values, average of the 100 

realisations and selected realisations for data set 3. .......................................................... 172	

Table 5.16 Basic statistics of the Em values (in GPa) for the individual realisation that compose the 

three-clusters configuration of data set 1. .......................................................................... 173	

Table 5.17 Basic statistics of the Em	values (in GPa) for the individual realisation that compose the 

nine-clusters configuration of data set 2. ........................................................................... 173	

Table 5.18 Basic statistics of the Em	values (in GPa) for the individual realisation that compose the 

four-clusters configuration of data set 3. ............................................................................ 174	

Table 5.19 Summary of the maximum displacements (in mm) obtained for data set 1 - 3 clusters, 

Mean and Homogeneous models and the differences (in percentage) in relation to the 

Homogeneous. ................................................................................................................. 178	

Table 5.20 Summary of the maximum principal stresses (in MPa) obtained for data set 1 – 3 

clusters, Mean and Homogeneous models (all the values should be negative corresponding to 

compressive stresses) and the differences (in percentage) in relation to the Homogeneous. 179	

Table 5.21 Summary statistics of the displacements (in mm) regarding the 3 clusters of data set 1 

in all the analysed zones. .................................................................................................. 179	

Table 5.22 MAD values (in mm) obtain between the computed and the measured displacements for 

all the extensometers for data set 1. .................................................................................. 185	

Table 5.23 Summary of the maximum displacements (in mm) obtained for data set 2 - 9 clusters, 

LNEC (2013), Mean and Homogeneous models and the differences (in percentage) in relation 

to the Homogeneous. ........................................................................................................ 187	

Table 5.24 Summary of the maximum principal stresses (in MPa) obtained for data set 2 – 9 

clusters, LNEC (2013), Mean and Homogeneous models (all the values should be negative 

corresponding to compressive stresses) and the differences (in percentage) in relation to the 

Homogeneous. ................................................................................................................. 188	

Table 5.25 Summary statistics of the displacements (in mm) regarding the 9 clusters of data set 2 

in all the analysed zones. .................................................................................................. 189	

Table 5.26 MAD values (in mm) obtain between the computed and the measured displacements for 

all the extensometers for data set 2. .................................................................................. 195	



xxxiv List of Tables 

 

 

Table 5.27 Summary of the maximum displacements (in mm) obtained for data set 3 - 4 clusters, 

LNEC (2013), Mean and Homogeneous models and the differences (in percentage) in relation 

to the Homogeneous. ........................................................................................................ 196	

Table 5.28 Summary of the maximum principal stresses (in MPa) obtained for data set 3 – 4 

clusters, LNEC (2013), Mean and Homogeneous models (all the values should be negative 

corresponding to compressive stresses) and the differences (in percentage) in relation to the 

Homogeneous. ................................................................................................................. 198	

Table 5.29 Summary statistics of the displacements (in mm) regarding the 4 clusters of data set 3 

in all the analysed zones. .................................................................................................. 198	

Table 5.30 Average values of the MAD mean values (in mm) obtain between the computed and the 

measured displacements for all the extensometers and the standard average values. ......... 204	

Table 6.1 First step to calculate the variance value. ................................................................... 223	

Table 6.2 Basic statistics on RMR preliminary data and their Gaussian transforms. .................... 228	

Table 6.3 SA internal parameters values assumed for the sensitivity test performed. .................. 230	

Table 6.4 SA internal parameters. ............................................................................................. 230	

Table 6.5 Isolated points optimisation results when the 95% probability interval (PI95%) was the 

objective function. ............................................................................................................. 232	

Table 6.6 Isolated points optimisation results when the variance (Var) average value was the 

objective function. ............................................................................................................. 232	

Table 6.7 Summary of the SA results for each additional point using two different objective functions 

(PI95% and Var). ........................................................................................................... 233	

Table 6.8 Point alignments optimisation results when the 95% probability interval (PI95%) was the 

objective function. ............................................................................................................. 236	

Table 6.9 Point alignments optimisation results when the variance (Var) average value was the 

objective function. ............................................................................................................. 236	

Table 6.10 Summary of the SA results for each additional alignment using two different objective 

functions (PI95% and Var). ............................................................................................ 236	

Table 6.11 Isolated points optimisation results for each combination of weights for both objective 

functions along with the combination of the two objective functions (Both). ........................ 240	

Table 6.12 Point alignments optimisation results for each combination of weights for both objective 

functions along with the combination of the two objective functions (Both). ........................ 242	



Numerical Methodology to Model Heterogeneous Rock Masses xxxv 

 

Table 7.1 Basic statistics of the initial data set composed by boreholes with codes S1, S2, S5, S8, 

S9, S15 and S16. 254	

Table 7.2 Basic statistics of boreholes with codes S1, S2, S8, S9, S15 and S16 (6 boreholes). .. 259	

Table 7.3 Correlation matrix between RQD, F and W. ................................................................. 259	

Table 7.4 Basic statistics using the 6 boreholes data set to perform the geostatistical simulation of 

variables RQD, F and W. ................................................................................................... 261	

Table 7.5 Basic statistics using the 7 boreholes data set to perform the geostatistical simulation of 

variables RQD, F and W. ................................................................................................... 263	

Table 7.6 Input parameters values for all the seven tests performed using information from scenario 

2 to study the step size value. ........................................................................................... 264	

Table 7.7 Input parameters values for tests number 2 and 4 using information from scenarios 2 and 

3 to study the points generating function. .......................................................................... 266	

Table 7.8 Scenario 2 optimisation results of test number 2a. ..................................................... 266	

Table 7.9 Scenario 3 optimisation results of test number 2a. ..................................................... 267	

Table 7.10 Scenario 2 optimisation results of test number 4a. ................................................... 267	

Table 7.11 Scenario 3 optimisation results of test number 4a. ................................................... 267	

Table 7.12 Input parameters values adopted to perform the optimisation using the data from 

scenario 1. ....................................................................................................................... 271	

Table 7.13 Optimisation results using the weight values from trio number 1. .............................. 272	

Table 7.14 Optimisation results using the weight values from trio number 2. .............................. 272	

Table 7.15 Optimisation results using the weight values from trio number 3. .............................. 273	

Table 7.16 Optimisation results using the weight values from trio number 4. .............................. 273	

Table 7.17 Optimisation results using the weight values from trio number 5. .............................. 273	

Table 7.18 Results comparison between the optimised objective function values and the initial ones 

considering the weight values from all the five trios. ........................................................... 277	

Table 7.19 Comparative analysis using the optimisation results of scenarios 2 and 3 with the OF 

value obtained from the initial set simulation. .................................................................... 278 

Table A1.1 Summary of the boreholes main characteristics (EDP, 2009). ................................... 304	

Table A1.2 Summary of the uniaxial compressive strength tests performed on the borehole ....... 305	

Table A1.3 Statistical analysis of the geotechnical information that composes data set 1 of phase 1 

(RQD, F and W). ................................................................................................................ 306	



xxxvi List of Tables 

 

 

Table A1.4 Statistical analysis of the geotechnical information that composes data set 2 of phase 1 

(Ei, W, σc and v). ............................................................................................................ 306	

Table A1.5 List of all the structures considered in this phase 2 information recovery. .................. 307	

Table A1.6 Information regarding the coordinates of the powerhouse cavern edge points for an 

elevation equal to 126 m. ................................................................................................. 308	

Table A1.7 Details about the mapping registered for the left side wall of the cavern. ................... 308	

Table A1.8 Final layout of the recovered information for the left side Wall of the cavern. ............. 308	

Table A1.9 Calculated proportions for W of data set 1 with the corresponding Gaussian thresholds.

 ........................................................................................................................................ 310	

Table A1.10 Calculated proportions for W of data set 2 with the corresponding Gaussian thresholds.

 ........................................................................................................................................ 310	

Table A1.11 Empirical expressions used to obtain Em and the corresponding authors for both 

phases of geotechnical information. .................................................................................. 311	

Table A1.12 Em (in GPa) basic statistics after applying the empirical formulas selected for data set 

3. ..................................................................................................................................... 311	

Table A1.13 Statistical analysis of Em (in GPa) obtained values for the deterministic approaches to 

use for comparison with data sets 1, 2 and 3. ................................................................... 312 

Table A2.1 Input parameters for all the tests. ............................................................................. 314	

 



 

 

SYMBOLS 

	

ABREVIATIONS 

1D One dimension 

2D Two dimensions 

3D Three dimensions 

SAW Silhouette Average Width  

D Disturbance factor 

8; Deformability modulus of the intact rock mass 

8< Deformability modulus of the rock mass 

H Depth 

=> Ratio between the horizontal and vertical effective stresses 

LFJ Large Flat Jack test 

LNEC National Laboratory of Civil Engineering 

EDP Electricity of Portugal 

ISRM International Society of Rock Mechanics 

MAD Mean Absolute Deviation 

Q Q- system index 

?@ Determination coefficient 

RQD (P2) Rock Quality Designation 

RMSE Root Mean Squared Error 

RMR Rock Mass Rating 

SFJ Small Flat Jack test 

UCS (P1) Uniaxial Compressive Strength 

STT Strain Tensor Tube 

PLT Point Load Test 

GSI Geological Strength Index 



xxxviii Symbols 

 

 

JS (P3) Joint Spacing parameter of the RMR system 

JC (P4) Joint Condition parameter of the RMR system 

GW (P5) Groundwater condition parameter of the RMR system 

W/WD Weathering degree of the rock mass 

F Fracturing degree of the rock mass 

AB Joint roughness 

AC Degree of water inflow on the joint 

AD Degree of alteration or filling of the joint 

AE Number of joint sets 

SRF Rock mass stress condition 

FOSM First Order Second Moment method 

PEM Point Estimate Method 

MCM Monte Carlo Method 

SF Safety Factor 

TBM Turning Bands Method 

DZ Damage Zone 

SGS Sequential Gaussian Simulation 

PCA Principal Component Analysis  

MDS Multi-Dimensional Scaling 

FISH Scripting language used in Flac3D 

R Euclidean space 

F Featured space 

AI Admissible Interval methodology 

PSO Particle Swarm Optimisation algorithm 

DIRECT Dividing Rectangles algorithm 

F Temperature parameter of the SA algorithm 

GE New sampling design for the boreholes 

SA Simulated Annealing algorithm 



Numerical Methodology to Model Heterogeneous Rock Masses xxxix 

 

OF Objective Function 

Var Variance as an objective function 

PI Probability interval 

HIJK% 95% probability interval as an objective function 

P10 10th percentile 

P50 50th percentile 

P90 90th percentile 

L(N) Random variable in location N 

P Covariance between two points 

8 Expectation of a random variable 

Q Gaussian field representation 

R Standard Gaussian cumulative distribution function 

Flac3D Fast Lagrangian Analysis of Continua in three dimensions 

LW Left sidewall of the cavern 

RW Right sidewall of the cavern 

A Arch of the cavern 

F Floor of the cavern 

NT North top of the cavern 

ST South top of the cavern 

SA Section A of the cavern 

SB Section B of the cavern 

 

GREEK LETTERS 

S Mean 

T@ Variance 

T Standard deviation 

U Poisson coefficient 

TV Unconfined compressive strength of the intact rock 

W Variogram 



xl Symbols 

 

 

X Correlation coefficient 

Y Skewness 

Z Anamorphosis function 

 



1 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1  

INTRODUCTION 





Numerical Methodology to Model Heterogeneous Rock Masses 3 

 

 

1.1. MOTIVATION 

The characterisation of rock masses in a more accurate and realistic way, mainly in what refers to 

geomechanical parameters, is an important task to accomplish in geotechnical engineering. The role 

that a good cost management plays in the engineering world is increasingly important; however, this 

management should be balanced with a more detailed and complete characterisation of the rock 

masses under analysis. Therefore, managing these inversely proportional factors is, nowadays, a 

difficult task for engineers, especially in underground works where the uncertainties must be 

reduced and the safety of the workers guaranteed at the smallest cost possible. So, the urgent need 

of new characterisation methodologies to use in geotechnical works, namely in rock masses that 

show some heterogeneities (like the granites that could be found in the north of Portugal), is 

undeniable. These heterogeneities imply the transitions from zones with higher resistance and 

rigidity to others with lower resistance and rigidity, and all that can happen at small distances 

making the mechanical behaviour of these type of rock masses more difficult to predict. For this 

reason, the rock mass characterisation has been beheld as a very complex task and subject of study 

for many years. According to Karim et al. (2007), most of the accidents that happens during the 

construction phase are due to the adverse circumstances not detected during the design phase, 

mainly because the rock mass characterisation model is incomplete and not able to consider in a 

joint way, the uncertainties associated with the characterisation, the spatial variability of the 

geomechanical parameters and the heterogeneities (this last point is more difficult to assess). 

In a 2006 report from the National Research Council the difficulty in dealing with the uncertainty 

was referred, mentioning that “it is poorly understood and practiced”, as well as the need for “new 

methods to assess the potential impacts of these uncertainties on engineering decisions”. Moreover, 

and according to the prognoses of the European Commission, the growth in traffic is expected to 

double in 2012. Consequently, the exploration of underground space can be an answer to solve the 

problems arising from this traffic growth; however, the complexity associated with the geotechnical 

area requires the use of new methodologies that are able to reduce, in a considerable way, the 

uncertainties and spatial variability in order to minimise the problems that could emerge from the 

underground excavation (Lei, 2016). 

In addition, another challenge existing in underground works lies in the difficulty in dealing with 

deterministic values, be they displacements in the rock mass, stresses or even geomechanical 
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parameters. The approval of using these deterministic values in one of the most uncertain areas of 

the engineering is difficult to accept. In this context, the use of probabilistic techniques has been 

increasing in the last decade (Christian and Baecher, 2003; Le et al., 2014; Popescu et al., 2005; 

Sejnoba et al., 2007 and Fenton, 1997), aiming to obtain a range of values and safety factors 

instead of the deterministic values. Yet, the proposed methodologies still show some practical and 

implementation limitations justifying their underuse. 

Although, the most used probabilistic techniques, namely the First Order and Second Moment 

method or even the Monte Carlo method, consider the variable as spatially independent, which does 

not correspond to the reality of ground formations, since they show some spatial dependency that 

should be taken into account. This creates one of the points to investigate throughout this thesis. 

Apart from that, and still in the geotechnical characterisation subject, the definition of the borehole 

plans is a critical point in what concerns cost optimisation. Currently, and in order to obtain a 

detailed characterisation of the rock masses, the executed plans are mainly composed by 

mechanical boreholes executed from the surface. The boreholes location is somewhat random, 

namely because they are based on the professional experience and therefore could be considered 

as user-dependent. In addition, the costs associated with these prospection plans are considerably 

high and most of the times a relevant slice of the underground work budget. Due to that, a more 

optimised and systematic methodology to define the boreholes location is of need. This methodology 

should allow obtaining the optimal position of new boreholes that lead to a more detailed 

characterisation model of the rock mass, but also their total length. Note that any type of 

optimisation methodology, mostly the ones dealing with random variables, should be assumed as 

helping tool for the professionals that always should be involved in the decision process. 

Due to these mentioned factors, the key question of how to achieve a more detailed characterisation 

of the rock masses without needing to perform an extensive prospection plan was raised. For that 

reason, this was identified as the second main question to which this thesis intends to answer. 

In this regard, the use of geostatistics as the main toolbox was the way found to solve the raised 

problems, once it considers the spatial behaviour of the parameters in contrast to the traditional 

probability techniques. Geostatistics is able to offer a more accurate prediction of the variables 

always with a certain associated level of uncertainty, suited to reduce the impact of a 

characterisation of the rock masses in underground works in a deterministic way. Concurrently, this 

uncertainty assessment is the perfect feature to use in boreholes optimisation since it can be 

adopted as the minimisation objective function. Therefore, it is intended that this thesis could be 
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seen as a step forward in implementing geostatistical techniques in geotechnical engineering, mainly 

at the rock mass characterisation level. 

1.2. SCOPE OF THE WORK / OBJECTIVES OF THE THESIS 

The lack of methodologies to use in heterogeneous rock masses characterisation is large. Therefore, 

and due to the complexity of underground works, this characterisation must be as accurate as 

possible. The existing probabilistic methodologies are only able to reduce the uncertainty associated 

with the rock mass characterisation and spatial variability of the geomechanical parameters; 

however, the most critical point, and to which these methodologies do not give answer, are the 

existence of heterogeneities. These are classified as zones where the rock mass shows lower 

resistance parameters and that can, most of times, lead to accidents. 

Therefore, this thesis aims to develop an integrated methodology that could be used in 

heterogeneous rock masses characterisation combining the uncertainty reduction, spatial variability 

and heterogeneities normally present in the rock masses. At the same time, it is important to 

develop an easy and practical methodology to allow its use by a geotechnical engineer, not only to 

increase the safety of the workers but also to bring some economic advantages resulting from these 

new detailed models. For the methodology validation, it is necessary to use geotechnical data from 

different case studies increasing the reliability of the methodology. The mentioned methodology is 

outlined as the leading objective of this thesis. 

Furthermore, in an early stage of this research work, the potential of the stochastic techniques, used 

throughout the thesis, is identified. As a consequence, a secondary objective is thought and 

formulated to fill the major gap of optimisation methodologies for geotechnical engineering. This 

methodology requires some preliminary information gathered from mechanical boreholes and whose 

objective is to find out the optimal locations on the rock mass to perform additional boreholes. With 

this, not only it is possible to reduce the cost of this type of prospection but, at the same time, one 

can guarantee that these new information is collected in strategic points in order to increase the 

geotechnical detail of upcoming characterisation models. The purpose of the methodology is to help 

the professional in an objective and scientific way, diminishing the arbitrariness existing in this 

geotechnical process. 
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1.3. METHODOLOGY AND OUTLINE OF THE THESIS 

The present thesis proposes two methodologies to be applied in geotechnical works. First, a 

numerical one aiming to characterise the rock mass heterogeneities in order to take into account an 

uncertainty reduction, a quantification of the geomechanical parameters variability and, if it is the 

case, to identify the existence of heterogeneities – first segment of the thesis workflow (Chapter 3 to 

Chapter 5). The second methodology addresses a boreholes optimisation problem, whose goal goes 

through identifying the optimal locations where to execute new boreholes in order to reduce the 

uncertainty of an upcoming numerical model of the rock mass - second segment of the thesis 

(Chapter 6 and Chapter 7). Each one of the six main Chapters follows the same organisational 

structure, starting with an introduction section followed by the body of text and, finally some drawn 

conclusions (see Figure 1.1). All the chapters are designed to answer some scientific and 

engineering questions developed at the start and during the thesis development. 

1.3.1. First segment 

§ How many methodologies are able to integrate the uncertainty, spatial variability of the 

characterisation and the heterogeneities existing in rock masses? and which techniques could be 

used to overcome the limitations of the mentioned methodologies? 

Following this Chapter 1, where an introduction to the thesis is presented, a comprehensive 

literature review on the existing characterisation methodologies to use in rock mechanics is 

presented in Chapter 2. 

The also called state-of-art intends to list all the deterministic techniques and the most recent ones, 

the probabilistic techniques to use in the rock mass characterisation. A special emphasis is given to 

geostatistics, found to be the most adequate and robust approach to enforce the identification of the 

heterogeneities in the rock masses, as well as the uncertainty reduction that always exists in 

geotechnical engineering. All the work developed after this Chapter shows novelty and interesting 

approaches to be applied in real underground works. 

§ Would the geostatistical techniques be able to consider the spatial variability and identify the 

heterogeneities of the rock masses? Can the geomechanical parameters and geotechnical systems 

be simulated conditionally using geostatistics? and which type of information can provide the 

simulation output? 



Numerical Methodology to Model Heterogeneous Rock Masses 7 

 

Chapter 3 assesses the potential of the mentioned geostatistical techniques to conditionally simulate 

the geotechnical data. Thereby, the simulation results of the Rock Mass Rating (RMR) empirical 

system obtained in a Chilean deposit are used in this validation. Three different approaches are 

carried out to understand the existing differences in the simulation algorithms. Provided with the 

geostatistical simulation of the geotechnical parameters, some probability and uncertainty maps are 

created as output, as well as the rock deformation modulus map. In this Chapter, the potential of 

the geostatistical techniques to pursue with the development of the new numerical methodology to 

use in the characterisation of heterogeneous rock masses is proven. 

§ Are the realisations average able to consider the spatial variability of the variables? How can 

the extreme values resulting from the simulations be maintained for further analysis? and how will it 

be made the migration of information obtained from the geostatistical simulation to the numerical 

modelling software? 

Once proven the value of the geostatistical simulation, in Chapter 4 a new numerical methodology to 

use in heterogeneous rock masses characterisation is proposed. This methodology works as a new 

combination of techniques that uses the outputs of the conditional simulation to build more realistic 

models of the rock mass for numerical analysis. Also, an additional technique like the scenario 

reduction methodology is adapted and applied as a middle step of the main methodology (all the 

details are presented in Chapter 2), since the realisations average tends to smooth the amplitude of 

the simulated values. The migration of the realisations chosen to represent the variable will then be 

imported to a numerical modelling software at a zone centroid level (each zone of the mesh shows a 

different parameter value). Thus, this Chapter 4 can be considered as the backbone of this thesis, 

concurrently with its validation using the geotechnical information of Salamonde II powerhouse 

complex described in Chapter 5. 

§ In comparison with deterministic methods, how can the new methodology bring more 

advantages to the geotechnical community in terms of rock masses characterization? How easy and 

practical it is to apply the methodology? and how reliable and valid is the proposed methodology? 

In this fifth Chapter, all details regarding the powerhouse complex and the 3D numerical model used 

are presented. The structural behaviour of the powerhouse cavern is analysed using this numerical 

characterisation methodology and then compared with observational data, as well as with the 

numerical results obtained at the time of its construction. The aim of the chapter is to identify the 

strength of the proposed methodology when compared with a deterministic one, highlighting all the 

differences between them in terms of displacements and principal stresses values. All the steps of 

the methodology are applied in a detailed way. 
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1.3.2. Second segment 

The second segment of this thesis, which corresponds to the second proposed methodology, is 

presented and validated in Chapters 6 and 7 (see Figure 1.1) and represents a considerable 

different work from the one presented until then. In common, both proposed techniques have the 

use of geostatistical techniques and the application in the same cases studies; however, they have 

very different goals and applications in geotechnical engineering. 

§ What are the existing optimisation methodologies? Is it possible to have a numerical 

methodology to help the professionals to define the positions of new boreholes? How will this 

methodology work? 

In this regard, Chapter 6 starts with a literature review of existing optimisation methodologies and 

the most used algorithms in engineering optimisation problems. Then, the main steps of the 

proposed methodology are presented with all the needed details. Since the number of existing 

methodologies is almost null, and both case studies consider different types of geotechnical 

information, more than one type of optimisation method are carried out, namely an uni-objective and 

a multicriteria, this last more adequate when exist information regarding the Rock Quality 

designation index (RQD), fracturing degree (F) and weathering degree (W) at the same exact points. 

§ Which geotechnical gain is it possible to obtain with the new optimisation methodology and 

how reliable it is? 

Chapter 7 concerns the application of the optimisation methodology in Salamonde II powerhouse 

complex. In there some tuning of the Simulated Annealing optimisation algorithm are presented, as 

well different weights assigned to each one of the three objectives to minimise (RQD, F and W). 

Some data from mechanical boreholes are intentionally removed and their location optimised by the 

proposed methodology and then compared in terms of location and geotechnical gain in a future 

characterisation model of the rock mass to build. 

Finally, some conclusions of the research conducted in the previous chapters are drawn in Chapter 

8. In addition, and since the work presented in here can be considered as innovative and relevant to 

use in the reality of the geotechnical engineering, some topics that need further developments are 

likewise outlined. 
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2.1. INTRODUCTION 

The risk associated with underground works, not only for people but also for assets, should be 

minimised, and more accurate and reliable methodologies that result in more complete and realistic 

analyses of the structures should be applied. The biggest part of underground works accidents 

happens during the construction phases and are commonly related to unfavourable conditions of the 

ground formations that can only be identified in situ. Therefore, the margin in what concerns design 

and construction errors associated with extra costs is small and difficult to deal by the engineers. For 

these reasons, in recent years, new techniques that are able to characterise the rock mass in a 

more accurate way than in the past emerged; although, they are not duly adapted to be used in the 

characterisation of the rock masses present in all underground works and a greater effort should be 

done towards that. 

According to Christian and Baecher (2003) there are three types of uncertainty that should be 

considered in underground works, the one related with the natural variations of rock mass properties 

also called as inherent variability, the one resulting from measurement errors and the third one 

related to the numerical model construction (see Figure 2.1). Regarding the natural variations 

uncertainty type, linked to the random effect of the natural processes, it can be divided into spatial 

variability and temporal variability. The first, and more difficult to assess, reflects the natural 

processes (i.e. structural changes) in different locations, while the second comprises the natural 

variations that happens with time in the same locations. 

The uncertainties that can result from measurement errors have three main causes, the ones 

resulting from bad equipment calibration that leads to incorrect information of the rock mass 

properties, the human errors, i.e. the poor knowledge in using the equipment or in the results 

analysis, and finally, the residual dispersion of the tests results that can be of difficult identification 

(Christian and Baecher, 2003). Finally, the third type of uncertainty, and easier to minimise, is 

related to the rock mass characterisation model, the so-called uncertainty model, that appears in the 

conceptual and in the numerical part of the model, which should be as close as possible to reality 

(see Figure 2.1). In fact, the model uncertainty can be, most of the times, associated to the limited 

knowledge about the rock masses that results from poor geotechnical and geological prospections 

and from its pointwise nature, i.e. only some zones of the rock mass are indeed characterised. 
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Regarding the first source of uncertainty, natural variability, it is important to distinguish variability 

from heterogeneity. From a rock mechanics point of view, variability comprises small variations from 

point to point of the rock mass characteristics (parameters), while heterogeneities can be classified 

as important and significant variations in the rock mass characteristics for small distances, i.e. 

abrupt transitions from zones with better mechanical characteristics to zones with worst 

characteristics and vice-versa (Popescu et al., 2005). 

To overcome these incomplete and poor characterisation of the rock mass, and to take into account 

the associated uncertainty (model and measurements errors), probabilistic techniques are being 

applied; however, the deterministic models that characterises the rock mass using overall values, 

are still in use. The complexity and novelty of the probabilistic techniques are some of the reasons 

associated to their lack of use in geotechnical engineer and, as consequence, an effort should be 

done towards their simplification and validation. 

To address this issue, in the very first sections of this chapter, traditional methods used to classify 

the rock masses, namely, the main in situ and laboratory tests along with the empirical classification 

systems, are briefly described. Also, some of the most used empirical formulas to derive the values 

of some geomechanical parameters, such as the rock mass deformation modulus (!") are outlined. 

In the following sections, an exhaustive list of the most commonly used probabilistic techniques is 

presented; however, more emphasis is given to the geostatistics. Note that this latter has been 

proving capable to integrate the uncertainty related with the geomechanical parameters, their spatial 

variability and the existence of the heterogeneities in a single rock mass model. In contrast to the 

traditional probabilistic techniques, geostatistics treats the variable under study as a realisation of a 

spatial random field, through the evaluation of the data spatial dependence and behaviour. This 

technique allows the prediction of the unknown values of a variable at the target points in a regular 

or irregular grid presented in two or three dimensions, always with an uncertainty measurement 

associated with the prediction. As output, numerous realisations can be obtained from the 

technique; however, it becomes inviable to analyse all of them or even perform the realisation 

average, which tends to smooth the extreme value and consequently reduce the spatial variability. 

Thereby, the use of scenario reduction techniques is an essential step to follow in the geostatistical 

simulation. For this reason, in the last sections, scenario reduction methodologies are mentioned 

and pointed out as a workable option to reduce the smoothness problem of using the geostatistical 

realisations average and as a statistical based solution to select a small number of realisations. 
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Figure 2.1 Scheme with the uncertainties related to geotechnical engineering (adapted from Christian and Baecher 

(2003)). 

2.2. DETERMINISTIC APPROACHES 

Regardless of the fact that geotechnical engineering had, in the last years, gone through some vital 

transformations, notably due to the emergence of more powerful techniques and methods used to 

obtain the geomechanical parameters, the deterministic are still in use. In every geomechanical 

characterisation it is essential to carry out in situ and/or laboratory tests, coupled with the use of 

some indirect methods like empirical systems and formulas, mainly in rock formations. Examples of 

these classification systems are the Rock Quality Designation (RQD) presented by Deere, 1964, the 

Rock Mass Rating (RMR) proposed by Bieniawski (1976), the Geological Strength Index (GSI) 

proposed by Hoek and Brown (1997) and Q-system presented in Barton et al. (1974). The use of 

these systems for rock mass classification facilitates not only the knowledge of the rock mass quality 

but also allows obtaining other relevant information such as the choice of the support systems to 

apply in underground works. The process of applying these systems involves the collection of rock 

mass information from different sources, as boreholes logs, scanline surveys, geological structures 

mapping and rock testing (Cai et al., 2007). The possibility to obtain the geomechanical parameters 

of the rock mass using these systems is one of the main advantages in applying them, being the 

most commonly used the RQD, the RMR, the GSI and the Q systems. A brief explanation of these 

systems will be given next, including a more detailed information about the RMR system, which will 

be used in thoroughly in this work. Besides, for each of them, empirical formulas for deriving values 

of the rock mass deformation modulus are presented, because they will be relevant for the 

remaining work. 

Uncertainty

Measurements errorsNatural variations Uncertainty model

§ Temporal variability

§ Spatial variability

§ Human error

§ Bad equipment calibration

§ Tests residual dispersions

§ Numerical

§ Conceptual
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2.2.1. Rock Quality Designation 

The Rock Quality Designation (RQD) provides a quantitative index of the rock mass based on the drill 

core logs and it is a leading indicator for low-quality rock zones (Deere, 1964). It is determined by 

measuring the core recovery percentage of intact core pieces that are greater than 100 mm in 

length. To employ this index, the core must have a minimum diameter of 54.7 mm and should be 

drilled with a double-tube core barrel. This index (equation (2.1)) is here presented in detail since it 

is a standard parameter used in the RMR and Q classification systems. 

#$% =
'()*	,-*.*/	0-1ℎ	3*451ℎ > 100	99

:(1;3	3*451ℎ	(<	.()*
×100	 (2.1) 

It is worth mentioning that the RQD is directional dependent, i.e. it can change considerably with the 

borehole orientation. Also, it is important to be aware that the drilling process can cause some 

additional fractures in the rock core. That is why the index is normally associated with other 

classification systems. However, some authors proposed empirical formulas relating the RQD index 

value and the rock mass deformation modulus as presented in Table 2.1. All the presented formulas 

relate the deformation modulus of the intact rock (!>) with other rock parameters, such as the 

uniaxial compressive strength (?@) and the weathering degree of the rock mass (W) defined 

according to the International Society of Rock Mechanics (ISRM). 

Table 2.1 Empirical formulas to obtain !9 using the RQD index value. 

Author Limitations Equation (AB in GPa) 

Zhang and Einstein 

(2004) 
- 

CD

CE
= 0.2×10H.HIJKLMNI.OI		Lower Bound 

CD

CE
= 1.8×10H.HIJKLMNI.OI		Upper Bound 

CD

CE
= 10H.HIJKLMNI.OI		Mean 

Kayabasi et al. 

(2003) 
- !" = 0.135

!>(1 +
#$%
100

)

V

I.IJII

 

Gokceoglu et al.  

(2003) 
- !" = 0.001

(!>/?@1)(1 + #$%/100)

V

I.XXYJ

 

  

                                                
1 	?. is measured in MPa. 
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2.2.2. Rock Mass Rating system 

The Rock Mass Rating (RMR) empirical system was initially proposed by Bieniawski (1976) and a 

new version was proposed by the same author in 1989. The system is composed by the individual 

evaluation of six rock related parameters and the final value varies between 0 and 100. For each 

underlying parameter, different ratings (with a maximum of 20) were defined according to 

parameters scale of variation. Subsequently, five parameter ratings are summed resulting in a so-

called basic RMR (equation (2.2)). 

#Z#[\]>@ = ^1 + ^2 + ^3 + ^4 + ^5	 (2.2) 

Those parameters are: 

§ P1: Uniaxial compressive strength of rock material (UCS); 

§ P2: Rock quality designation (RQD); 

§ P3: Spacing of discontinuities (JS); 

§ P4: Condition of discontinuities (JC); 

§ P5: Groundwater conditions (GW). 

In addition, a sixth parameter should be subtracted from the #Z#[\]>@. This parameter refers to the 

correction related with the orientation of the discontinuities. In underground structures if the 

orientation of the discontinuities is unfavourable to the excavation, a value of 10 should be 

subtracted from #Z#[\]>@. 

Based on the value of RMR the rock mass can be classified into five rock quality classes (see Table 

2.2). 

Table 2.2 RMR rock quality scale and description. 

RMR value Rock quality description 

< 21 Very poor  

[21; 40] Poor  

[41; 60] Fair  

[61; 80] Good  

[81; 100] Very good  

As mentioned, the deformability parameters of the rock mass can be assessed using the RMR 

system value. Therefore, in the past years, a wide range of formulas have been proposed by 
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numerous authors. However, it is important to be aware of the formulas origin since, in many cases, 

they were developed for specific types of rocks. Table 2.3 presents a list of empirical formulas to 

obtain the rock mass deformation modulus (!") using the RMR value and other rock parameters 

presented before. In Verman (1993) empirical formula an additional parameter is required, the 

overburden (H), which enters in meters. 

Table 2.3 Empirical formulas to obtain !" using the RMR value. 

Author Limitations Equation (AB in GPa) 

Bieniawski (1989) RMR > 50 !" = 2×#Z# − 100 

Serafim and 

Pereira (1983) 
#Z# ≤ 50 !" = 10(KdKNIH)/eH 

Mohammadi and 

Rahmannejad 

(2010) 

- 
!" = 0.0003×#Z#f − 0.0193×#Z#Y + 0.315×#Z#

+ 3.4064 

Read et al. (1999) - !" = 0.1×
#Z#

10

f

 

Hoek and Brown 

(1997) 
?@ ≤ 100	Z^; !" =

?@

10
10(KdKNIH)/eH 

Nicholson and 

Bieniawski (1990) 
- !"(MPa) =

!>

100
×(0.0028#Z#Y + 0.9*(KdK/YY.YJ)) 

Mitri et al. (1994) - 
!"

!>
(MPa) = 0.5×(1 − cos(n ×#Z#/100) 

Verman (1993) 
?@ > 100	Z^; and 

o > 50	9 
!" = 0.3×op×10(KdKNYH)/fJ 

Galera et al. (2007)  - !" = !>×*
(KdKNIHH)/fq 

Sonmez et al. 

(2004) 
- !" = !>10

( KdKNIHH IHHNKdK )/eHHHr
(s
tut
vww

)
	 

2.2.3. Q system 

The Q system was proposed by Barton et al. (1974) aiming to help the engineers in designing the 

underground works support systems. Indeed, the system provides a quality index for the rock mass 

classification combining six different parameters, such as the RQD system value, the number of joint 

sets (xy), the roughness of the most unfavourable joint or discontinuity (xz), the degree of alteration 

or filling of the most unfavourable joint or discontinuity (x\), the degree of water inflow (x{), and the 

stress condition (|#}) resulting in the following expression: 

$ =
#$%

xy
×

xz

xy
×

x{

|#}
	 (2.3) 
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In what concerns the Q system scale, it varies from 0.001 to 1000 corresponding to a rock mass 

with poor quality and exceptional good quality, respectively. A list of formulas that allows the use of 

Q system value to calculate the rock mass deformation modulus is presented in Table 2.4. 

Table 2.4 Empirical formulas to obtain !9 using the Q system value. 

Author Limitations Equation (AB in GPa) 

Barton et al. 

(1983) 
Q>1 !" = 25×log	($) 

Barton and 

Quadros (2002) 
Q≤1 !" = 10×$@

I/f
, $@ = $×

ÄÅ

IHH
 

Singh (1997) H>50 m !" = oH.Y×$H.fq 

Singh (1997) $ ≤ 500 !" = 1.5×$H.q×!>
H.Ie 

2.2.4. Geological Strength Index 

In order to apply the Mohr-Coulomb and Hoek-Brown failure criteria the rock mass strength 

parameters are required. Thus, Hoek and Brown (1997) proposed the Geological Strength Index 

(GSI) that can also be used to obtain the value of !". Later, in 2002, Hoek et al. proposed a new 

version of the system, which consists in a qualitative description considering the rock mass structure 

(from an intact to laminated or sheared) and its discontinuities conditions (from very good to very 

poor). Regarding the system scale, alike the RMR system, it varies from 0 to 100, corresponding to 

a very poor and very good quality rock mass, respectively. As a matter of fact, both systems show a 

high correlation using the updated version of the RMR system (Bieniwaski, 1989) that could be 

translated by the following relation: 

Ç|É = #Z#[\]>@ 	− 	5	 #Z# ≥ 23  (2.4) 

For RMR values under 23 the correlations between both systems cannot be built, since this was the 

minimum value obtained for the RMR by Bieniawski (1976, 1989). In the same way as presented for 

RMR and Q systems, Table 2.5 lists empirical formulas that require the GSI value in order to obtain 

the value of !". Some of the empirical formulas use the disturbance factor (D), introduced by Hoek 

et al. (2002) as an additional parameter.  
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Table 2.5 Empirical formulas to obtain !9 using the GSI system value. 

Author Limitations Equation (AB in GPa) 

Hoek and Brown 

(1997) 
?@≤100 MPa !"(Z^;) = 1 −

%

2
× ?@/100×10

(ÖÜáNIH)/eH 

Hoek and Brown 

(1997) 
?@>100 MPa !"(Z^;) = 1 −

%

2
×10(ÖÜáNIH)/eH 

Hoek and 

Diedecrichs (2006) 
- !" = 100000× (1 −

%

2
)/(1 + *

àXâYXMNÖÜá
II )  

Hoek and 

Diederichs (2006) 
- !" = !>(0.02 +

1 −
%
2

1 + *
qHâIXMNÖÜá

II

) 

Sonmez et al. 

(2004) 
- !" = !>×(/

\)H.e	0-1ℎ	 / = *
(
äãåsvww

ç
)
	; =

I

Y
+

I

q
(*NÖÜá/IX − *

N
éw

è ) 

Carvalho (2004) - !" = !>×/
I/e 

2.3. PROBABILISTIC METHODS 

2.3.1. General 

The emergence of new methodologies and computational tools to use in geotechnical engineering 

has emphasised the limitations associated with deterministic models. These models, most of the 

times, do not result in satisfactory results as the characterisation model of the ground, since their 

outcome is rather simplistic when compared with complex realities; however, the easiness 

associated with these models and lack of better alternatives led to the widespread use of this 

approach. According to El Ramly (2001), the estimated error, meaning the difference between the 

estimated values and the real values, are assumed as zero, which corresponds to a distant 

assumption for the rock masses reality, where variability and heterogeneity are present and 

significant. 

Therefore, probabilistic methods emerged recently as a good alternative to spatially model the 

geotechnical variables in the sense that the input parameters are no longer single values and jump 

to assume any value inside a given range. As insinuated by Christian and Baecher (2003), the 

uncertainty and risk associated with the geotechnical models can only be expressed according to a 

probabilistic approach and the risk assessed by stochastic deductions. Therefore, the use of 

probabilistic techniques is particularly useful to compare, analyse and combine all types of 

uncertainty providing a relationship between the safety and the failure probability. Among the 

significant number of techniques, the most commonly used are the methods that derived from the 

Taylor series, the First Order Second Moment (FOSM), the Point Estimate Method (PEM) and the 
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Monte Carlo simulation. The first two mentioned techniques only require as inputs the mean and 

standard deviation of the variable(s), while the Monte Carlo simulation allows manipulating a higher 

number of data resulting in a more detailed analysis. At this point it is important to define the term 

simulation, which in a general dictionary is stated as “...pretend to be like, imitate a phenomenon or 

generic process…” (Oxford Dictionary, 1976). From a mathematical point of view the term defines 

the design of a mathematical model of an actual or theoretical system to reproduce outcomes that 

are close to the real ones. Some concepts and details of probabilistic techniques, relevant in 

geotechnical engineering, are presented next. 

2.3.2. Monte Carlo 

The Monte Carlo method (MCM) most known version was proposed by Metropolis and Ulam (1949) 

and allows, in a general way, the random generation of values resulting in a probability distribution 

for a set of independent random variables and can be considered as a statistical method. The MCM 

appeared in 1940’s in the context of the development of the atomic bomb to use in the World War II 

(Ulam, 1947). The method has, currently, a vast number of algorithms that could be applied to 

several areas (physics, chemistry, engineering, finance, etc.). Examples of these applications that 

are worth noticing and distinguished are: 1) the simulation of processes from a stochastic point of 

view with the goal to mimic the stochasticity of the input system; 2) the optimisation of complex 

problems. In some cases, the objective functions are deterministic and some randomness should be 

introduced to efficiently search the domain of the objective function (Griffiths et al., 2002). 

In most cases, the method can be applied without the formulation of mathematical equations, 

normally used to describe their behaviour. Therefore, the only requirement is the use of probability 

functions of the independent variables. Also, these variables can have different types of probabilistic 

distribution: normal, exponential, etc. Regarding the MCM the obtained results can be controlled by 

the variance value that can result in more simulations in order to achieve a preferred error value. 

However, in order to understand the system results other metrics can be computed, such as mean, 

variance and coefficient of skewness, as well as probabilistic values like probability density functions 

and cumulative density functions (see Figure 2.2). 

One of the main steps required to apply the MCM is the number of realisations or simulations. In 

order to achieve a realistic distribution of the results the MCM needs to be repeated many times, 

which sometimes translates in a considerable computation time. The convergence of the model can 

be verified through the analysis of the simulations fluctuations that should be minor. 
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In what concerns geotechnical engineering, the MCM is applied, mainly, to generate simulations 

combining some geomechanical parameters that can be expressed in a deterministic or probabilistic 

way. Among the many types of post analysis outputs, the most relevant in geotechnics are rock 

mass displacements, stresses distributions and safety factors (Viana, 2014). 

 

Figure 2.2 Monte Carlo method principle for an example of three variables used as input. 

Moreover, the MCM can be applied, in a general geomechanical problem (i.e. a tunnel), through the 

following steps: 

1. Build the numerical model of the structure; 

2. Identify the variables that contribute to the model uncertainty; 

3. Calculate the probability distributions of each variable (cumulative distribution functions); 

4. Define the range of values for each variable; 

5. Generate random numbers inside each predefined range (sample simulation); 

6. Compute the model for several combinations of numbers obtained in the previous step until 

the convergence is reached; 

7. Perform a statistical analysis of the results (e.g. histograms, confidence intervals, etc.). 

Like all probabilistic methods, the MCM presents some disadvantages, like the fact of being directly 

related to the number of performed simulations. The accuracy of the model increases as the 

number simulations also increases resulting in significant processing time. However, the 

mathematical simplicity, the small number of required inputs, the versatility in considering different 

numerous variables are the most noteworthy advantages of the MCM that results in an increasing 

application of the method (El-Ramly, 2001). 
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2.3.3. First Order Second Moment Method  

The First Order Second Moment method (FOSM) derived from Taylor series (characterisation 

function) provides an analytic approximation for the mean and standard deviation of the interest 

variable ê. This method is normally used to estimate the variables uncertainty. 

Jointly with the characterisation function, the definition of the first and second moments 

(corresponding to the mean and variance, respectively) are required. Therefore, ê is assumed as a 

function of random variables ëI, ëY, … , ëy, given by: 

ê = < ëI, ëY, … , ëy 	 (2.5) 

As input, the series considers the probability density function of the random variables; however, and 

because the variable information can, many times, be limited to their mean and variance, the Taylor 

series is truncated after the linear term (first order) to obtain the second moment of the probability 

function, the variance value (Ang and Tang, 1984). Hence, the mean and variance are given by 

Equations (2.6) and (2.7), respectively. 

îï = < îñv , îñé , … , îñó 	 (2.6) 

?ï
Y = 	 òñEñô

y

öõI

?ñE?ñô
úê

úë>

úê

úëö

y

>õI

 (2.7) 

where		îñE represents the mean value of ë>, òñEñô symbolises the correlation coefficient between ë> 

and ëö, ?ñô is the standard deviation of ë> and ?ñô the standard deviation of ëö. In the case that the 

random variables do not show correlation, the variance is given by: 

?ï
Y = 	 ?ñE

Y
úê

úë>

Yy

>õI

	 (2.8) 

In what concerns the number of calculations, the minimum should be set to 24	 + 1, where 4 

represents the number of random variables that composes ê (equation (2.5)). 

As referred by Christian (1996) a standard procedure (list of steps) should be applied in order to use 

the FOSM method in an accurate and efficient way: 
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1. Identify the variables that contribute to the model uncertainty; 

2. Define the mean, standard deviation and correlation coefficient values of the variables; 

3. Estimate the uncertainty of the variables and compute its variance; 

4. Perform a sensitivity analysis in order to understand the variation in the dependent variable 

compared to the remaining ones; 

5. Calculate the variance (using equation (2.8)) and, consequently, the standard deviation 

value of the model. 

As well as the Monte Carlo method, the FOSM method shows as a drawback the fact that it is not 

able to identify the heterogeneities typically presented in rock masses since they use as input the 

variable global statistics and do not consider their spatial behaviour. On the other hand, the 

precision in the results and the use of linear functions are one the main advantages of the method. 

Moreover, regarding the geotechnical applications, the FOSM method is often used to calculate the 

Safety Factor (SF) of a slope, which normally depends on various parameters, dependent or 

independent of each other, related to the geomechanical properties of the ground. 

2.3.4. Point Estimation Method  

In 1975, Rosenblueth proposed the Point Estimation Method (PEM), which in contrast with the 

FOSM method, does not require the probability density function (mean and variance values are 

sufficient as input). In accordance with Christian and Baecher (2003), the method numerically 

approximates the moments value of the variables functions and by using these moments of an 

independent variable ë, the method is able to obtain an approximation for the same order moments 

for the dependent variable y. The referred moments, considered as output, are the mean, variance 

and skewness. 

PEM is a weighted average method that generates several solutions for multiple points after 

combining them in different ways until the desired distribution is reached (solution). As a reference, 

the PEM method uses two points to perform the estimation, at plus (ë +) and minus (ë −) one 

standard deviation from the variable mean value corresponding to P+ and P- probability masses, as 

exposed in Figure 2.3. Regarding the number of calculations to carry out, it is related to the number 

of random variables used in the process, i.e. if a total of 4	random variables is used the total 

number of combinations is 2y. 
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Figure 2.3 Principle of Point Estimate method assuming two random variables (adapted from Rocscience (2016)). 

Once executed the 2y combinations, the probabilistic distribution of the dependent variable, 

represented as ü = 	 (ëI, ëY, … , ëy), is given by: 

î† = 	 V> 	

Yó

>õI

< ë> 	 (2.9) 

?†
Y = 	 V><(ë>)

Y

Yó

>õI

− V>< ë>
Y

Yó

>õI

Y

 (2.10) 

where V> values represent the point estimation weights for each random variable ë> given by  
I

Yó
 

and <(ë>) represents the number of successive evaluations of a given function < in every possible 

combination for the random variables at point estimate locations, i.e. at ëy − ?ñóand  ëy + ?ñó 

(Rocscience, 2016). 

In the same way that was listed for the previously mentioned methods, the recommended steps are: 

1. Identify the variables that contribute to the model uncertainty; 

2. Compute the mean and standard deviation for each variable; 

3. Perform 2y iterations combining the maximum and minimum values of each random 

variable; 
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4. Calculate the dependent variable value (ü) for each 2y combinations (in this step a 

deterministic method is used); 

5. Compute the mean and variance of the dependent variable (using equations (2.9) and 

(2.10)). 

In terms of computational time, the PEM method results in very efficient times when compared with 

the two previous methods due to the fact that it is only required an approximation to two estimate 

points. However, as a rule, the method uses random variables with normal distributions making the 

use of other distributions result in less accurate results. 

2.4. RANDOM FIELD THEORY 

The probabilistic techniques previously mentioned have as a main limitation the fact that they are 

not able to identify the heterogeneities or spatial variability of the rock masses and soils, mainly due 

to the simplifications and global statistics (mean and variance) that twist and hide information about 

the variable spatial distribution. Even though, to assess the model uncertainty and quantify the 

parameters’ variability the use of these techniques has been proving enough. To overcome the 

increasing difficulty in characterising the randomness in physical and mechanical properties, in 

recent years, the geotechnical community has been developing applications based in stochastic 

methods. In essence, this method involves the generation of random numbers aiming to explore the 

possibilities field of a given variable that can be formulated mathematically but may not be predicted 

precisely. 

Furthermore, these methods can be divided into two vast domains, the stochastic processes and the 

stochastic fields or random fields. The first is applied when the variable to model can be expressed 

using a temporal function, while the second domain exists for variables with a spatial behaviour. This 

second domain is the most commonly used in geotechnics, since it requires the use of probabilistic 

distributions. This distribution can be divided into two types, the Gaussian distribution where the 

variable(s) present(s) well defined thresholds (nonnegative values) and where the first two moments 

(mean and variance) can be extracted, and the second group that combines all the remaining 

distributions (from lognormal to beta or gamma), here called non-Gaussian. This type of distributions 

is used for more spatial complex variables where it is required all the variable moments (mean, 

variance, skewness and kurtosis). The powerfulness of the random field theory lies in providing 

statistical results used to draw inference from in situ and laboratory observations and, the most 
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relevant in geotechnics, incorporating the natural variability in the geomechanical models (Christian 

and Baecher, 2003). The latter, in accordance with Fenton (1997) can be assessed assuming that 

points that are close to each other have a high probability of showing similar material properties and 

the reverse happens for distant points. As a consequence of the existing limitations in geotechnical 

engineering, in performing a large number of in situ or laboratory tests, the use of techniques 

powerful enough to minimise the unknown effect of the natural variability is crucial. An accurate 

knowledge of some rock mass or soil zones could be sufficient to model all the volume in study; 

however, some assumptions have to be made, such as: 1) to assume that the rock mass or soil 

properties can vary from point to point and the mathematical function used to characterise this 

variable requires the mean and the variance; 2) the soil and rock mass properties show spatial 

dependence. 

To elucidate this problem let us assume, as an example, Z	 as a rock variable, such as the 

deformation modulus (!") within a rock mass volume. Z	 can exhibit natural variability and the 

variable can take different values from point to point within the rock mass volume. In a random field 

theory approach, Z	will be generated in order to reproduce a random field over the rock mass 

volume. The natural variability concept, as already explained in section 2.1, is here contemplated by 

the definition of the autocorrelation function of Z, that allows understanding how a defined variable Z 

behaves in a selected volume (ò). The function can be obtained after calculating the coefficient of 

autocorrelation (ò) that relates the values of Z	in two points located at a distance ); this coefficient 

should be calculated from all possible combinations of )	considering all the volume points through 

Equation (2.11). 

ò ) =
'(£ § ë , § ë•

¶;) §
	

(2.11) 

where )	represents the distance between the two points obtained from |ë − ë•|, ë	and ë’	the two 

points coordinates, '(£[§ ë , § ë• ] the covariance value between the two points and ¶;)[§] 

the variance of variable §. 

From the analysis of the autocorrelation function behaviour, as the value of ) increases, the 

correlation between the points often decreases until they do not have correlation (ò = 0). Several 

mathematical models can be used to fit the autocorrelation function, although one important feature 

to point out is the possibility of the random field to be anisotropic, that means, it can have different 

correlation lengths along the vertical and horizontal directions. Note that a correlation length 
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corresponds to a maximum value beyond the random field is effectively uncorrelated. According to 

Fenton (1997), the soil properties are usually anisotropic, having usually, the vertical correlation 

length, a smaller value than the horizontal correlation length, as consequence of the soil formation 

process in the case of sedimentary soil deposits (layers deposition). The differences of two random 

fields (´(1)) for each point in the field (t) with distinctive correlation lengths (¨ = 0.04 and	¨ =

2.0) can be observed in Figure 2.4. From it is possible to detect that for higher correlation lengths, 

the random field varies in a continuous way. On the contrary, a low correlation length results in a 

rough random field where a large amount of points in the field become uncorrelated and the filed 

variability more accentuated (Phoon and Kulhawy, 1999). 

 

Figure 2.4 Example of two random fields ´ 1  with distinctive correlation lengths (¨) (Fenton, 1997). 

Furthermore, the random fields technique has been, in the late years, used alongside the 

probabilistic techniques mentioned before in very different areas. Hence, from a geotechnical point 

of view the numerous works that have been published use random fields, mainly to analyse the 

material physical properties, to reproduce the spatial variability of the geomechanical parameters, to 

study instability process (slopes in rock or soil), to model rock mass fractures networks, etc. Some 

details about the mentioned works and their scopes are presented next. 

In terms of random fields works applied to slopes, Gravanis et al. (2014) studied the failure 

probability in a slope combining the random fields technique with a finite elements analysis. In this 

analysis, the geomechanical parameters, such as the friction angle and cohesion were assumed as 

random variables characterised by their mean, standard deviation and correlation lengths. As a 

result, the author perceived the significant influence of considering different correlation lengths on 

the slope performance, namely in the slope probability of failure values. This study had allowed the 

author to conclude that the spatial variability should not be ignored. In the same domain, Le Goc et 

al. (2014), Popescu et al. (2005), Sejnoba et al. (2007) used the random fields combined with 

Monte Carlo method to obtain the failure probabilities and safety factors values related with the 
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spatial variability degree of the soil (more variability, more probability of failure), with the correlation 

lengths and the geomechanical parameters influence. 

Borghi et al. (2012) uses random filed techniques to construct the geological reservoirs model using 

different inputs, such as maps of fractures, hydrogeological information, geological mappings, etc., 

and from that identify reservoir zones with the presence of ore. 

In underground works, these random fields techniques had not been fully exploited justified by the 

reduced number of works in this area. However, in the early 2000s, Thacker and Painter (2000) 

studied the effect of different correlation lengths of the geologic medium on a tunnel response. 

Therefore, different correlations were considered in different layers of the rock mass and simulated 

using the Monte Carlo simulation method. As conclusions, the authors confirmed the influence on 

the tunnel performance when different correlations lengths are considered, particularly in large and 

heterogeneous rock masses. 

More recently, Hu and Huang (2007) applied the Monte Carlo Random field method in three types 

of soils in order to define the soil types transition zones along a tunnel alignment. The goal was 

identifying the relevant role that the uncertainty arising from soil transition can play in tunnelling. In 

the same line of work, Chong et al. (2013) used a lower and upper bound limit analysis in a 

pressurised tunnel in order to investigate the most critical tunnel pressure in the presence of spatial 

variability. 

Furthermore, Huber and Hicks (2010) presented a work studying the influence of soil spatial 

variability in surface settlements affected by tunnelling. A Sequential Gaussian Simulation (SGS) 

algorithm was used to generate the random field of the elasticity modulus, and then, combining 

FOSM and Monte Carlo, the probability of damage due to differential settlements on the surface was 

evaluated. 

On similar grounds, Luo et al. (2011) proposed a simplified approach to consider the effect of the 

spatial variability in a clay excavation using a two-dimensional random field. Combining the Monte 

Carlo simulation with the Random fields method, the authors could prove the over-estimated values 

of the based-heavy failure probability obtained using a deterministic method that does not take into 

account the spatial variability. 
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2.5. GEOSTATISTICAL TECHNIQUES 

2.5.1. General 

Considering all the mentioned methods it is worth noticing that they have in common the same 

limitation in identifying the rock masses natural heterogeneities. This happens due to the 

assumption that a variable is normally distributed and is spatially independent from sample to 

sample, which is not the case in earth sciences where the data do not often satisfy these 

assumptions. Therefore, geostatistical techniques that incorporate the evaluation of the random 

variable statistical distribution and model the “interaction” between all the variable samples, i.e. 

considers the spatial dependence between them (resulting in a prediction of unknown points) can be 

used to overcome this limitation of the classical statistics (see Figure 2.5). 

 

(a) 

 

(b) 

Figure 2.5 Difference between classical statistics and geostatistics: a) independent realisations (classical); and b) 

dependent realisations (geostatistics). 

Hence, since this thesis addresses the heterogeneity identification problem, geostatistical techniques 

appear as the most robust and adequate to reduce the uncertainty, assess the spatial variability and 

identify the heterogeneities of the rock masses in the characterisation model to build. However, the 

application of this technique in engineering, namely in geotechnics has been rare. 

The geostatistical technique arose firstly in 1951 in South Africa through a mining engineer named 

Krige (1951). The technique was initially applied in gold mines deposits after the engineer noted a 

trend to undervalue the estimation of gold for lower grade categories and the reverse for higher 

grade categories, i.e. a phenomenon now classified as conditional bias. This effect happens when 
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the expected value (average) of the true grade conditional on the estimated grade is not equal to the 

estimated grade, in this case, the true value is normally lower than the estimated value. After the 

problem identification, was recognised the necessity of analysing the ore grade not only by 

considering the mine block but a larger area (higher variances). As a consequence, the neighbouring 

data was set as part of the estimation process and the spatial concept was introduced. To minimise 

the effect of mentioned conditional bias, Krige implemented some corrections in ore block 

estimation (i.e. the estimation is performed not a point level but for a block) through the 

consideration of a weighted average of the neighbouring data and the global mean of the samples 

over all the mine. The weighting is defined according to the spatial correlation of the data. From this 

correction emerged the technique nowadays called kriging. 

In 1963, the French engineer named Matheron using Kriges' previous works, presented a new 

theory about regionalised variables that are characterised by a numerical function that varies in 

space and which variance can be defined through a variogram and not by a simple numerical 

function (Matheron 1963, 1971). The variogram analysis allows the classification of a random 

variable as spatially continuous or discontinuous and as stationary (invariance of the spatial 

distribution) or non-stationary (variance of the spatial distribution); more details about the variogram 

definition will followed in the next section. In what concerns the regionalised variables forms, 

according to Chilès and Delfiner (2012) there are three different types, such as continuous, 

categorical and an object. In the first group are placed the variables that show a continuous scale 

resulting in a continuous histogram (physical properties), while in the second group are presents the 

variables whose scale is a rating, indicator or disorganised rankings. In the last variables group, can 

be included the ones modelled using objects, as is the case of the fractures that are displayed as 

discs. 

Subsequently, when the goal is the analysis, characterisation and spatial prediction of one or more 

regionalised variables, the geostatistical modelling can be adopted in two different forms, the 

estimation (using kriging technique or its multivariate extension, cokriging) and the simulation 

(simulation or cosimulation). It is worth of noticing that more details about the mentioned prediction 

techniques will be given later in section. Figure 2.6 andFigure 2.7 present the general process to 

adopt in each process and it is possible to observe that the main differences between both 

techniques occur in the outputs, while in the estimation process the results are composed by two 

maps, one with the “best” estimation of the regionalised variable and other with the error variance, 

in the case of the simulation processes some randomness is added and the result is constituted by 

numerous equivalent maps, also called realisations. Each one of these realisations is a possible 
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representation of the reality were the regionalised variable structure is honoured. Moreover, if 

analysed together, these realisations can be used to measure the uncertainty associated with the 

prediction process (Chilès and Delfiner, 2012). In addition, and giving a closer look in Figure 2.7, it 

is possible to observe the addition of a data histogram when compared with the estimation process 

(see Figure 2.6). The use of the histogram in the simulation process exists to control and compare 

the final distribution of the data in each computed realisation since more randomness is introduced 

in the process. In Figure 2.8 one example of uncertainty modelling for a hydrogeological oil reservoir 

simulation is presented. 

 

Figure 2.6 General scheme showing the estimation process in geostatistics (Zhang, 2011). 

 

Figure 2.7 General scheme showing the simulation process in geostatistics (Zhang, 2011). 

Realisation 1 Realisation 2 Realisation n
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Figure 2.8 Flow predictions based on geostatistical simulations (Zhang, 2011). 

A RocScience report untitled “Geomechanics software solutions used worldwide by geotechnical 

engineers” dated from 2003, states the following “…Given the potential improvements to design and 

the successes of geostatistics in resource estimation, we believe that geotechnical engineering 

should seriously consider the discipline. Geostatistics will facilitate accurate interpretation of ground 

conditions based on the sparse input information characteristics of geotechnical engineering”. In the 

same line, Rouhani et al. (1996) exposed the pertinent role of geostatistical tools in moving forward 

to build more realistic models in geotechnics and to solve environmental problems. Petroleum, 

hydrogeology and mining are examples of areas where this technique has been widely used, in the 

last case mainly to analyse ore grades (Krige, 1951, 1966; Krige et al., 1989), while in the 

petroleum area, the technique allows modelling reservoir using geophysical data. 

2.5.2. Exploratory and covariance analyses of regionalised variables 

As mentioned, a regionalised variable can be defined through a deterministic function that can vary 

in space and that is normally associated with a natural phenomenon. Examples of regionalised 

variables are: ore grades, rock density, rock type, etc. Figure 2.9 displays a regionalised variable 

represented in 1D and shows the irregularity in its spatial variation.  

Flow predictions using realisations 

of a Geostatistical simulation

Realisation 1 Realisation 2 Realisation n
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Figure 2.9 Regionalised variables example in 1D. 

Let us assume ≠(ë) the regionalised variable value in a location ë and §(ë) the parent random 

field. Once again, assume stationarity in the case of invariance of the spatial distribution under 

translation, i.e. the average value of the regionalised variable. In such a case, the covariance 

function between two points, can be obtained through Equation (2.12). 

'(£ ℎ = .(£ § ë , § ë + ℎ = ! § ë § ë + ℎ − 9Y 	 (2.12) 

where 9 is the mean value (constant in space) of the random field §. 

This covariance function allows measuring the similarity degree between the values at different 

locations (distance equal to ℎ) in a defined direction. In the case of a change of direction, the 

covariance can have a different value and can represent an anisotropic phenomenon. If the 

covariance value is the same for all directions the phenomenon can be classified as isotropic. To 

verify all of this, a directional study should be performed calculating the covariance for different 

directions. 

2.5.3. Variogram 

In contrast to the covariance function, the variogram is a mathematical function used to evaluate the 

dissimilarity existing between values at different locations and, as such, to characterise the spatial 

behaviour of a random field §(ë). This function acts as an alternative to the covariance function, 
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and is one of the most used tools to classify the random field as stationary or non-stationary. In 

geostatistics the most common case is the second-order stationary model, where the random field is 

defined by a zero expectation or a constant value 9	and a stationary variance, covariance function 

or variogram (independent of location ë). On the contrary, in the case of non-stationary random 

fields the opposite happens, and it is impossible to define a unique deterministic value to 

characterise the random field moments. 

Therefore, the experimental variogram of a variable §(ë), also acknowledged as semi-variogram 

(Deutsch, 2002), can be translated by the squared difference of the values in two points separated 

by a distance vector ℎ, as presented in Equation (2.13). 

Æ ℎ =
1

2Ø ℎ
§ ë − § ë + ℎ

Y
	 (2.13) 

where Ø(ℎ)	represents the number of pairs of points at a distance ℎ, ℎ denotes the distance 

between the pairs of points and §(ë) represents the random variable value at location ë. 

According to Figure 2.10, a variogram model can be defined according to two main characteristics, 

the sill and the range. The first one represents the difference between the most correlated points 

(variogram origin) with the points with the highest variance (most distant point). It can also be 

translated into the value or level at which the variance between the points starts to be constant. The 

sill ('	 +	'H) is reached when the distance between the points tends to infinity, i.e. where 

§(ë)	and §(ë + ℎ) does not display any spatial correlation. The second characteristic considers 

the variogram range (;) that is representative of a distance value at which the sill value is reached. 

Presumably, beyond the range the autocorrelation between points is essentially zero. Furthermore, 

an additional feature that could exist in the variogram is the nugget effect ('H). This effect 

counteracts the theory of the variogram origin being equal to zero (which should be the expected 

configuration) due to measurement and positions errors or some natural spatial variability of the 

random variable. 
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Figure 2.10 Variogram general representation of a stationary random variable (Imanzadeh, 2013). 

The number of pairs of points adequate to build the experimental variogram can vary considerably, 

being 30 the minimum number used in the mining industry (Journel, 1977); however, in 

geotechnical engineering the available data do not always satisfy this condition. Note that in 

geostatistics, the samples configuration can vary from regular sampling to purely random 

(Imanzadeh, 2013). 

As mentioned, the variogram can also be used to test the anisotropy of the random field by 

computing an experimental variogram in several directions, resulting in the called variogram map. 

The output is a colour map like the ones presented in Figure 2.12, where it is possible to distinguish 

an isotropic (see Figure 2.11a) of an anisotropic variogram (see Figure 2.11b). 

 

(a) (b) 

Figure 2.11 Variogram map examples for a random field with: a) an isotropic behaviour; and b) an anisotropic behaviour. 
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A similar analysis can be performed by computing the variogram in different directions and 

performing a comparison between the sill and range values. In the case of similarity, the field 

presents an isotropic behaviour in the computed directions, otherwise some anisotropy should be 

considered for further prediction (as the example presented in Figure 2.12). 

 

Figure 2.12 Variogram and realisation examples for an anisotropic field (different ranges for N55E and N35O). 

At this stage, it is worth mentioning the parameters required in the experimental variogram 

computation, all represented in Figure 2.13. The azimuth and dip are needed to define the direction 

of interest and the respective tolerances, as well as the bandwidth and band height used to limit the 

number of associations of data pairs (A). Regarding distances, the lag parameter (elementary 

variogram distance), the spacing and tolerance should be defined (B). The first is obtained based on 

the data spacing in the direction of interest and, consequently, also allows defining the number of 

lags such that the variogram considers less than half the data domain size; the lag tolerance is 

usually half of the lag spacing (Deutsch, 2015). 

 

Figure 2.13 Representation image of the variogram parameters (adapted from Deutsch (2015)). 
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Moreover, after the experimental variogram computation and for the sake of prediction (estimation 

or simulation), it should be modelled using mathematical functions. The chosen mathematical 

model should be as fitted as possible, more importantly in the initial part of the variogram (high 

correlation values), in order to avoid errors or translate erroneous behaviours of the random field 

prediction. The most commonly used models represented in Figure 2.14 are also the mathematical 

functions displayed in Table 2.6. 

 

Figure 2.14 Variogram models’ examples set for a nugget effect equal to zero (adapted from Jaksa et al. (1997)). 

Table 2.6 Mathematical functions and respective models to use in variogram fitting (Jaksa et al., 1997). 

Model 
Mathematical functions 

Pure nugget Æ ℎ = 'H	 'H= nugget effect 

Spherical 
Æ ℎ = '

3ℎ

2;
−
ℎf

2;f
+	'H	 for ℎ ≤ ;, ; = range 

Æ ℎ = ' + 'H	 for ℎ ≥ ;, ' + 'H= sill 

Exponential Æ ℎ = ' 1 − *
Nf∞
\ +	'H	  

Gaussian Æ ℎ = ' 1 − *
N

f∞
\

é

+	'H	  

Linear Æ ℎ = ,ℎ + 'H	 , = slope 

Power Æ ℎ = ,ℎ\ + 'H	 0 < ; < 2 

Cubic 

Æ ℎ = ' 7
ℎ

;

Y

−	
35

4

ℎ

;

f

+
7

2

ℎ

;

X

−
3

4

ℎ

;

à

	

for ℎ ≤ ; 

Æ ℎ = ' + 'H	 for ℎ > ; 

!(h) !(h)
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In the case of more irregular variograms the use of a single mathematical function could not be 

enough for the model fitting; therefore, two or more basic variograms functions can be combined, 

resulting in the so-called nested structures, as presented in Figure 2.15. 

 

Figure 2.15 Nested structures theoretical example considering a small nugget effect. 

As a reference, Figure 2.16 shows the difference in behaviour for three random fields with distinct 

variograms near the origin. In a spatially regular or continuous field the transitions from value to 

value are made in a smoother way, while in an erratic field the variation is more random and with no 

mathematical order. 

 

Figure 2.16 Variograms and realisations examples for three fields with distinct spatial behaviour. 

!(h)
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2.5.4. Estimation 

The geostatistical estimation of one or more random fields can be performed through the Kriging 

interpolator (Krige, 1951, 1966; Krige et al., 1989). This technique allows the estimation of the 

variable and the associated errors at locations without any type of information, using only the spatial 

structure of preliminary data, through the covariance function or the variogram. In contrast to other 

linear interpolators, like moving average or inverse distance weighting, developed in a deterministic 

context, Kriging relies on a probabilistic model (covariance or variogram). 

Based on the random field model, the kriging weights must be calculated depending on the 

importance or influence that each sample point takes in the target point estimation value. The 

weight values are defined according to: 1) the distances between the data and the target locations, 

i.e. for close points the weights should be higher than for distant points; 2) the redundancies 

between the data, i.e. data points that are spatially close should receive smaller individual weights; 

and 3) the spatial continuity of the regionalised variable, so that more weight is given to closest data 

in the case of a regular variogram, more balanced weighting is given when a nugget effect exists, 

and in case of anisotropy more importance is given to the data located along the direction with 

larger correlation range with respect to the target location (Emery and Cornejo, 2010). 

In geostatistics the kriging technique, also designated as the best interpolator or estimator, is 

obtained by imposing three restrictions, a linearity restriction, an unbiasedness restriction and an 

optimality restriction. 

The linearity restriction imposes writing the random field estimation (§∗(ë)) at a target location ëH 

as a linear combination of the random field data at locations ëI, … ëy like, 

§∗ ëH = ; + ¥p§(ëp)

y

põI

	 (2.14) 

Concerning the second restriction, it is guaranteed by assuming the estimation error as a random 

variable with an expectation equal to zero, as presented in Equation (2.15). 

! §∗ ëH − § ëH = 0	 (2.15) 

being §
∗
ë0  the estimation value at the target location and § ëH  the true value at the target 

location. 
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For the last restriction, the variance of the error should be as small as possible in order to increase 

the estimation precision, so the dispersion between the estimated value and the true value in the 

target location should be given by: 

	?µ
Y ëH = £;) §∗ ëH − § ëH 	 (2.16) 

In order to perform the Kriging estimation, it is important to be certain about the amount of data to 

use in each estimation, therefore, two types of implementations can be applied. The one that 

considers a unique neighbourhood, where all the available data are used in each target point 

estimation, and the moving neighbourhood, which considers a limited number of data inside an 

ellipse to be defined by the practitioner. 

In addition, there are several types of kriging like Simple kriging, where the mean value of the 

random field is known under a stationary assumption, the Ordinary kriging with unknown mean, the 

Universal kriging more fitted for non-stationary random field and the Indicator kriging headed for 

categorical variables (Krige, 1966). Following the equations presented before, in Simple kriging the 

linearity restriction is given by: 

§∗ ëH = ; + ¥p§ ëp

y

põI

	 (2.17) 

while the unbiasedness restriction results in: 

0 = ! §∗ ëH − § ëH = ; + ¥p! § ëp − ! § ëH

y

põI

= ; + (¥p − 1)

y

põI

9	 (2.18) 

implying that the additive coefficient ; is equal to the random field mean value, 9 weighted by the 

complement of the weights given to the data. Moreover, the variance minimisation results in: 

£;) §∗ ëH − § ëH = ?Y + ¥p¥∂' ëp − ë∂ − 2 ¥p' ëp − ëH

y

põI

y

∂õI

y

põI

	 (2.19) 

being ' ëp − ë∂  the covariance between the point located at ë∑ and the point located at ë∏ and 

¥∑ and ¥∏ the corresponding weights. 
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Equations (2.17), (2.18) and (2.19) can be combined in an π´ = ∫ form that could be solved 

using a matrix inversion or Gauss pivot. 

Another estimation type is Ordinary Kriging, which is settled considering an unknown mean 9 but a 

known variogram that can or not present a sill. This fact makes Ordinary Kriging most robust, and 

therefore, the most applied estimator when compared with Simple Kriging. The linear combination of 

the neighbourhood data is made in the same way as was presented for Simple Kriging in Equation 

(2.17); however, since the mean is unknown the only way to solve the unbiasedness restriction is to 

assume that the weights ¥p add to 1. Regarding the optimality restriction, an additional unknown 

called Lagrange multiplier must be added to solve the Equation (2.20). 

£;) §∗ ëH − § ëH = − ¥p¥∂' ëp − ë∂ + 2 ¥p' ëp − ëH

y

põI

y

∂õI

y

põI

	 (2.20) 

and the final system of equation is obtained: 

¥p = 1

y

põI

∀	∑ = 1. . 4, ¥∂' ëp − ë∂ − 	î = ' ëp − ëH

y

∂õI

	 (2.21) 

A multivariate version of kriging can be constructed, the designated cokriging (Krige, 1966). In this 

type of kriging the aim is to estimate the random field at a target location by considering the data 

about itself and other correlated covariates. To do that, cokriging requires the variogram (covariance) 

and cross variogram (covariance) computation for each pair of variables in order to measure the 

cross- correlation between them. The data locations of each variable can be scattered differently, all 

the variables in the exact same locations forming the so-called isotopic case. Secondly, in the 

partially heterotopic case, the variables share some of the data locations and finally, in the totally 

heterotopic case, the variables are sampled in disjoint sets of locations (see Figure 2.17). A more 

striking case can emerge from the heterotopic case, the collocated cokriging that considers the 

variable of interest in a few points and the covariates exhaustively known in the considered domain. 

In this case, the moving neighbourhood choice is a vital step. 
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Figure 2.17 Cokriging cases: a) Isotopic; b) Partially heterotopic; and c) Heterotopic (adapted from Wackernagel (2006)). 

It is worth mentioning that one of the main advantages of applying cokriging is to obtain more 

precise estimations and reduced values for the associated errors (cokriging variance and standard 

deviation) although the calculation time increases (Wackernagel, 2006). 

To summarise, the kriging and cokriging estimators can be defined by the following properties: 

§ Exact interpolators: the estimation at the data location coincides with the data values, 

delivering a zero-error variance; 

§ Smoothing effect: the estimated values are less dispersed than the true values. Accordingly, 

the estimation tends to over-estimate the low values and under-estimate the high values; 

§ Additivity: the estimation of an average value over a region is the same as the average of the 

point-support estimation; 

§ Unbiasedness: the average of the estimation errors over a region tends to zero as the region 

becomes infinitively large. 

2.5.5. Simulation 

As mentioned before, the estimation presents a smoothing effect where the high values are under-

estimated and the low values are over-estimated, which affects the identification and assessment of 

the heterogeneities and spatial variability of the random field. In order to achieve that, it is important 

to consider these extreme values and the geostatistical simulation is a viable alternative to the 

estimation. The aim of simulation is to generate as output multiples realisations (i.e. different 

interpretations of the reality) of a random field for one or more regionalised variables (Chilès and 

Delfiner, 2012). In detail, the simulation can be divided into two types, the conditional simulation 
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where the preliminary data used for simulation are honoured in value and location in all the output 

realisations, and the non-conditional simulation where the preliminary data are only used to define 

the random variable structural behaviour (variogram) for the simulation process. Consequently, this 

last kind of simulation can lead to higher variability between the realisations (Chilès and Delfiner, 

2012; Imanzadeh, 2013). The main differences between the two types of simulation and a kriging 

estimation are presented in Figure 2.18. 

 

Figure 2.18 Representative images to compare preliminary data configuration, the non-conditional simulation, kriging 

estimation and conditional simulation (Wackernagel, 2006). 

Assuming that a simulation algorithm is applied 4 times, 4	independent realisations are generated 

and their average result in a smaller range between the extreme values (low and high values) until a 

close solution to the geostatistical estimation (Kriging) is reached (Dubost, 2009). Even though, and 

as already mentioned, geostatistical simulation emerges as the most adequate alternative to the 

estimation when the goal is to identify the extreme values of a random field for cases where the 

information is not abundant. 

The number of realisations to calculate can be variable; however, according to a wide range of the 

published works, the most used and adequate number is of the order of 100. As stated by Chilès 

and Delfiner (2012) this is the number that allows a trustful post-analysis process. However, if 

desired, a convergence study can be performed with the intention to reduce the number of 

realisations. The fact that a large number of realisations is obtained, in the post process analysis an 

additional map can be computed, the probability map. This map provides information about the 

probability of finding zones where the field of interest shows a higher or lower value when compared 

with a predefined threshold. 
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The variety of simulation algorithms is quite vast according to the type of random field to consider. 

As such, they can be grouped into two large types, the Gaussian random fields and the non-

Gaussian ones. 

The Gaussian random field model 

The Gaussian random field model is convenient, since there are many algorithms for constructing 

non-conditional realisations, e.g. sequential, autoregressive, spectral and turning bands (Chilès and 

Delfiner, 2012). 

Furthermore, in this model, a conditional simulation is reached by using the estimator kriging to 

condition the random field to the preliminary data samples, i.e. firstly a non-conditional simulation is 

performed, only using the variogram information and then a kriging estimation is performed in the 

conditional points (preliminary data locations). The conditional simulation of each point can be 

achieved after applying Equation (2.22). 

êºÜ ë = êÜΩ ë + ê] ë − ê]
ÜΩ ë 	 (2.22) 

where êÜΩ ë  represents the random field obtained from Simple kriging at location ë, ê] ë  is the 

result of the random field non-conditional simulation at location ë, and ê]
ÜΩ(ë) denotes the 

random field value obtained after performing a kriging using the information of the non-conditional 

simulation. 

In practice, as a prior step the Gaussian methods require the normal transformation of the filed to 

be simulated, so that it has a standard normal distribution with zero mean and unit variance, 

ê(ë)~Ø	(0,1). To this effect, an anamorphosis function ø	is used to transform the original data 

(random field §(ë)) into Gaussian data (random field ê(ë)) (equation (2.23)). 

§ ë = ø(	ê ë) 	 (2.23) 

wherein ø represents a bijective function mandated to draw a relation between the field ê(ë) with a 

normal distribution Ø	(0,1) and the field §(ë). In practice, this function can be modelled using a 

piecewise linear interpolation between empirical points and exponential functions for tail 

extrapolation, as explained in Emery and Lantuéjoul (2006). 
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In summary, in order to perform a geostatistical simulation using the Gaussian methods, the 

following general steps are required (see Figure 2.19). 

1. Exploratory analysis of the input data (basic statistics of the random variable(s)); 

2. Transform the data into a normal Gaussian distribution using the anamorphosis function; 

3. Perform an anisotropy study by computing the experimental variogram or covariance in 

several directions of interest; 

4. Chose a variogram (covariance) model to use in the remaining simulation process; 

5. Define a simulation grid with the target points coordinates (can be a 2D or a 3D grid); 

6. Chose the simulation algorithm adequate for the variable(s) of interest; condition to the 

preliminary data by kriging; 

7. Back-transform the normal Gaussian data into their normal scale; 

8. Validate the simulation results and post-process the results. 

 

Figure 2.19 General steps required in a geostatistical simulation process using the Gaussian random field model. 

Truncated Gaussian and Plurigaussian Models 

Unlike the Gaussian model, the truncated Gaussian and the Plurigaussian models are fitted for 

categorical variable like rock types (Armstrong et al., 2011; Emery and Cornejo, 2010). These 

models intend to reproduce domains partitioning the space by truncating one or more Gaussian 

random fields. To this end, one has to establish a truncation rule that defines the contacts between 

domains and the proportion of space covered by each domain. In a simple case, the number of 

Gaussian fields used is 1 (êI) but to reproduce complex rock type relationships it is often necessary 

to construct a truncation rule using two (êI e êY) or three (êI, êY and êf) Gaussian fields (see Figure 

2.20). 

Geostatistical simulation

Transfrom the data into normal 
Gaussian data

Experimental variogram

Variogram model
Gaussian simulation 
(algorithm choice)

Back-transform the data into 
original values

Model validation and 
post-analysis
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Therefore, the essential steps of truncated Gaussian or Plurigaussian simulation are as follows: 

1. Establish the domain proportions and their contact relationships by constructing a 

truncation rule. As an example, consider two Gaussian random fields êI and êY 

characterised by the following truncation rule: 

1	-<	ê1 ë < 11

2	-<	ê1 ë ≥ 11	;4¿	ê2 ë < 12	

3	-<	ê1 ë ≥ 11	;4¿	ê2 ë ≥ 12

 (2.24) 

where 1I and 1Y represent thresholds; 

2. Using the truncation rule, a variogram analysis should be performed by codifying the 

domains as indicators, meaning the use of categorical variables; 

3. Simulate each Gaussian random field êI ë , êY(ë)  at the data locations conditionally to 

the domains. This part is guaranteed by using the Gibbs sampler algorithm (Armstrong et 

al., 2011); 

4. Simulate each Gaussian random field at the target locations, the predefined simulation grid, 

conditioned to the output realisations from the previous step. These realisations are then 

truncated according to the truncation rule in order to be converted into indicators values. 

In closer detail, the Gibbs sampler algorithm is used to transform the indicators values into Gaussian 

data by using an iterative process of acceptance or rejection. So, the Gaussian values are randomly 

generated and then verified if they are inside the Gaussian thresholds and approximated to the 

variable distribution. 

 

(a) (b) 

Figure 2.20 Examples of: a) 1D truncation flag; and b) a 3D truncation flag. 
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Simulation algorithm 

Both previously presented models require a simulation algorithm, therefore the most common is the 

turning bands method (TBM). This algorithm, initially proposed by Chentov (1957) and later 

improved and used for stationary Gaussian fields by Matheron (1973), aims to simplify the 

simulation problem in multidimensional spaces by performing simulation in only one direction. To do 

that, the algorithm rely in lines that span the 2D or 3D space. After that, the 1D simulation is 

projected into a 2D or 3D space, in detail the 1D simulations in a location ë are summed after 

projecting ë	into several directions as given in Equation (2.25). 

ê ë =
1

Ø
êµ
(I)

¡

µõI

< ë ¨µ > 						<()							ë	 ∈ 	√	 (2.25) 

where êƒ
(1)

 is the 1D random function with covariance 'I for realisations ƒ = 1. . . Ø, ¨µ a vector 

in ℛ∆ and < ë|¨µ > represents the projection of ë onto the line spanned by ¨µ, as shown in 

Figure 2.21. 

 

Figure 2.21 Turning Bands Method geometrical projection (adapted from Wackernagel (2006)). 

The relation between the covariance function in 1 and d dimensions for an isotropic case can be 

defined in the 3D space as follows: 

'IM ℎ =
∆

∆∞
ℎ'M ℎ 	and	'fM ℎ = 'IM 1ℎ ¿1

I

H
	 (2.26) 

!1

!2

!8
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While for a 2D case it is given by a more complex relation like: 

'IM ℎ = 1 + ℎ
∆ºé…

∆∞

 /Y

H
ℎ /-4 ¨ ¿¨	and	'YM ℎ =

I

 
'IM ℎ /-4 ¨ ¿¨

 

H
	 (2.27) 

Moreover, the number of lines to use in this type of method can vary; however, Emery and 

Lantuéjoul (2006) refer an ideal value between 1000 and 1500 bands. Figure 2.22 shows four 

simulations of a random field with an exponential covariance function where it is possible to evaluate 

the differences when distinctive number of lines are used. In a case of using 1000 lines, the 2D 

random field simulation does not present any artificial features, contrary to the previous images 

where the number of lines is considerably smaller and some artificial features can be detected. 

 

Figure 2.22 TBM simulation using 1, 10, 100 and 1000 lines. 

In what concerns the TBM advantages, they are essentially the method speed that requires low 

computational time, the fact that it can simulate as many locations as desired and the exactly 

reproduction of the desired covariance function (or variogram). On the other hand, because a finite 

number of lines is used, some artificial features (the errors in the image construction) can be seen 

in the output maps if this number is insufficient (see Figure 2.22).  
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2.5.6. Model validation 

Despite that several realisations of the variable of interest result from the geostatistical simulation, 

this does not mean that the model is geologically realistic or good for further investigations. 

Therefore, and before going into complex model validations, some easy checks also designated as 

minimum criteria should be completed. They include confirming that the preliminary data values are 

in the correct locations, analysing the distribution (histograms and basic statistics) of each 

realisation, confirming if it is similar to the one obtained from the preliminary data and, finally, 

confirming that the variogram of the realisations is, in average, the same as the one used for the 

simulation. Also, a visual check should be made for each realisation to confirm if the higher and 

lower values are placed in accordance with low and high variance values, respectively (Deutsch and 

Srinivasan, 1996). Similar criteria can be considered for estimation, although the reproduction of the 

data distribution and variogram is expected to be poor due to the smoothing effect of Kriging 

estimators. 

In what concerns the validation of more complex models, in geostatistics two kinds of validations are 

usually tested, one designated as cross validation and another using the Jack-knife technique (Chilès 

and Delfiner, 2012). This model validation was the way found to answer to the following complex 

questions, “How good is the estimated or simulated model?” and “How can the uncertainty of the 

model be assessed?”. 

Regarding the cross validation this is a technique that temporarily removes the observations, i.e. in 

each iteration each one of the preliminary data is removed and an estimation or simulation at the 

data location is performed. All this process is repeated for all preliminary data points, culminating in 

a comparison between the true values and the estimated or simulated values. Moreover, the 

validation using the Jack-knife technique consist in dividing the preliminary data in two data sets. 

The first data set, called training group, is used to perform the geostatistical estimation or simulation 

on the second data set locations, while the second group designated test group, is used to compare 

the estimated or simulated group with the true values. The preliminary data set division can vary, 

although the most common ratios are 2/3 for the training group and 1/3 for the test group. 

In order to assess the model uncertainty using the previously mentioned techniques some 

performance criteria must be used. The most used ones are the linear regression between the true 

values and the simulated or estimated values, as well as the determination coefficient (#Y) 

calculation, and a probability interval (^É) accuracy plot. The latter relies on the calculation, at each 

test location ë, of a series of symmetric p-probabilistic intervals (Goovaerts, 2001). For example, in 

the case of a ^É equal to 0.9 it is bounded by quantile 0.05 and 0.95 of the set of simulated values; 



Numerical Methodology to Model Heterogeneous Rock Masses 51 

 

 

ideally, the proportion of times that the true value is inside the probability interval should be close or 

equal to 90%. 

Therefore, the final accuracy plot is constructed representing in the ´-axis and ê-axis the probability 

interval values and the proportion of true values in the interval, respectively. The desirable accuracy 

plot would be the one where the points are coincident with the 45º line. An example is shown in 

Figure 2.23 for a hydraulic conductivity simulation, where the points are located slightly below the 

45º line or identity line and, therefore slightly over estimated or simulated. 

 

Figure 2.23 Accuracy plot example for true Hydraulic conductivity values fall within the probability interval. The black 

points represent the variable prediction using a Gaussian algorithm and the white points an indicator algorithm 

(Goovaerts, 2001). 

2.5.7. Geostatistics applied to Geotechnics 

The use of geostatistical technique in geotechnical engineering is a recent subject and therefore, the 

volume of published works in this fields is not as large as anticipated bearing in mind the power of 

these techniques. However, in recent years, some authors used these techniques to estimate or 

simulate geotechnical properties or features, as is the case of lithology facies whose works had been 

developed by Rosenbaum et al. (1997), Mao and Journel (1999) and Emery et al. (2008). In what 

regards rock mass empirical systems, the number of published works increases and it is important 

to highlight the following: 
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§ Rock Quality Designation (RQD): the most relevant publication of the RQD estimation using a 

kriging technique was made by Ozturk and Nasuf (2002). In this work, a cokriging type was 

performed using correlated variables. Following, a more recent work of Ozturk and Simdi 

(2014), used kriging techniques to estimate not only the RQD values but also the rock mass 

and intact rock elasticity modulus. Similar work, of Madani and Asghari (2013), applied the 

sequential Gaussian simulation (SGS) to predict RQD values in order to detect rock mass 

faults in 3D blocks (RQD<20 were interpreted as fault zones); 

§ Rock Mass Rating (RMR): the number of works regarding this system is meaningful. Since 

2002, Choi et al. (2002), Ryu et al. (2003), You (2003), Oh et al. (2004), Stavropoulou et 

al. (2007) and Exadaktylos and Stavropoulou (2008) applied kriging techniques to map the 

RMR values. Some of the mentioned works (Stavropoulou et al., 2007 and Exadaktylos and 

Stavropoulou, 2008), used the obtained estimation in numerical analysis of underground 

works (twin tunnels in China and metro tunnel sections in Barcelona). Some progress on 

RMR prediction has been achieved by Jeon et al. (2009), Egaña and Ortiz (2013), Ferrari et 

al. (2014) and, more recently, Pinheiro et al. (2016a, 2016b), whose works applied 

geostatistical simulation algorithms like SGS or TBM assuming the RMR final value as a 

continuous field, or simulating the RMR parameters individually as categorical fields; 

§ Geological Strength Index (GSI): once the GSI is correlated through the RMR system all the 

previously mentioned works can also be mentioned here; however, works like Deisman et al. 

(2013) or Ozturk and Simdi (2014) are worth mentioning regarding the GSI simulation; 

§ Joint frequency: the work of Ellefmo and Eidsvik (2009) employed kriging techniques to 

estimate the spatial frequency of joints and the associated variability in an iron ore located 

in Norway. Furthermore, Etminan and Seifi (2008) combined sequential Gaussian 

simulation (SGS) and sequential indicator simulation (SIS) to build a fracture model of the 

rock mass considering their azimuth, depth and density integrated with the porosity and 

permeability of the rock mass. 

Though the mentioned works confirm the advantages in using geostatistical techniques to predict 

geotechnical parameters, most of them only apply estimation techniques like kriging; however, as 

previously mentioned in this chapter, simulation is the most effective and robust technique to 

identify, at the same time, the spatial variability of a random field and the existence of 

heterogeneities. Due to this fact, more work and practical applications in geostatistical simulation 

should be developed, starting by this PhD thesis. 
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2.6. SCENARIO REDUCTION 

2.6.1. Introduction 

One of the referred advantages regarding geostatistical simulation is the numerous realisations 

obtained as output, which can be, in a post process point of view, a serious problem due to the high 

computational time required to process all of them. As such, some works have been published 

proposing scenario reduction methodologies whose goal is the minimisation of the realisations set 

into a smaller set. These methodologies are considerably different from area to area, while in the 

petroleum side the highlighted works are Scheidt and Caers (2009a, 2009b), in the mining industry 

Armstrong et al. (2013) is worth mentioning. 

Starting with the petroleum area, it is important to refer that the geostatistically generated 

realisations are then submitted to flow simulation to assess the reservoir flow performance, so in 

this case the scenario reduction is an essential step. As a consequence, Deutsch (1998, 1999) and 

more recently, McLennan and Deutsch (2005) proposed a simpler methodology based on the 

realisations rankings. In this case, the realisations are sorted in ascending order according with 

(Deutsch and Srinivasan, 1996; McLennan and Deutsch, 2005): i) statistical static measures 

(statistical average of geological parameters, e.g. the average net permeability); ii) fractional static 

measure (define the active fraction of the reservoir); or iii) volumetric static measures (volume of a 

reservoir capacity of oil transport, e.g. net oil in place also known as net hydrocarbon volume) and a 

subset of 10 realisations are evenly selected, more precisely realisations 1, 12, 23, 34, 45, 56, 67, 

78, 89 and 100. In this subset, the realisations with worst and best performance are present (1 and 

100). A more recent work from Rahim (2015) proposes a derived methodology from Armstrong et 

al. (2013), introducing the calculation of a Kantorovich distance between each realisation to quantify 

the probability distance between the superset and the subset of realisations. The main goal is to 

minimise this distance (for each removed realisation) using a linear optimisation algorithm until an 

optimal subset of realisations is found showing a similar reservoir performance (statistical 

distribution) in comparison with the superset of realisations. This methodology follows the line of 

previously developed methodologies in a stochastic optimisation field proposed by Armstrong et al. 

(2013), Heitsh and Romish (2003, 2009) and Dupacova et al. (2003). 

Scheidt and Caers (2009a) proposed a methodology based on distance based kernel clustering, 

aiming to find a set of realisations able to statistically represent the whole set (distribution, quartiles, 

mean, variance, percentiles, etc.). In detail the methodology starts with multiple realisations (ØK) 
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generated previously using a geostatistical algorithm, and a dissimilarity matrix is computed between 

all the realisations. For the dissimilarity matrix, the Euclidean distance is used resulting in a ØK×ØK 

matrix. This matrix is then represented in a 2D space, called Euclidean space # using a 

multidimensional scaling. To consider a more linear behaviour for the points (realisations), a Kernel 

method is used resulting in a representation in the designated Featured Space }. The referred step 

is imperative to apply Principal Component Analysis (PCA) techniques to detect some patterns in the 

2D representation. As a result, some points are selected among all the set and the percentiles P10, 

P50 and P90 are compared with the whole set (see Figure 2.24). A subsequent work of Scheidt and 

Caers (2009b) introduced the realisations clustering using a kernel k-means clustering algorithm to 

select the subset of realisations. In the same work a comparison is made between the traditional 

ranking method, the kernel k-means method and the random selection method, concluding that the 

distance based kernel methods provides more robust, accurate and less time-consuming results. 

Likewise, Singh et al. (2014) also uses the kernel k-means clustering method to quantify the 

uncertainty associated with various history matched geological models and to forecast production 

information. 
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Figure 2.24 Proposed methodology for uncertainty quantification- (A) distance between two models, (B) distance matrix 

D, (C) models mapped in Euclidean space, (D) feature space, (E) pre-image construction, (F) P10, P50 and P90 

quantile estimations (Scheidt and Caers, 2009b).  
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2.6.2. Kernel clustering technique 

Since the clustering method shows the best results in reducing the super set of geostatistical 

realisations, more details will be given in this section. A cluster analysis divides the data into groups 

based on their relationships, so similar data should be placed in the same cluster while unrelated 

data are placed in different clusters. However, the definition of these clusters is imprecise and relies, 

mainly on the nature of the data and on the goal defined for the results. Due to that fact, the clusters 

are sometimes classified as unsupervised classification because the division is made with no a priori 

knowledge about the object classes. 

There are two types of clustering, the hierarchical and the partitional. In the first type the clusters 

are organised as a tree, where each cluster (node) is the union of its sub clusters (children), while in 

the second type, the data are divided into non-overlapping clusters (subsets). The most relevant type 

is partitioning cluster, more precisely the squared-error based that include k-means and k-medoid 

techniques. Even though, in all clusters types the aim is to define some properties such as: 1) the 

number of clusters (that can also be an automatic step); 2) the absolute and relative positions of the 

clusters; 3) the clusters size, shape and density. 

In what concerns the similarity measures used to compare clusters a wide range of formulas can be 

used; however, the most common is the Euclidean distance as given in Equation (2.28). 

¿(ë, ü) = (ë> − ü>)
Y

y

>õI

	 (2.28) 

where ¿	(ë, ü) represents the distance between realisation ë and realisation ü while ë> and ü> are 

the variable values in each - point of the realisation ë and ü, respectively. 

Unlike the cluster based distance, the use of Euclidean distance for nonlinear data set can lead to 

clustering mistakes, therefore, applying the kernel transformation, all the non-linearity of the data set 

can be identified. This is an essential step before starting the clustering division using the k-medoid 

algorithm. Different types of kernel functions can be used to that effect, such as polynomial, 

Gaussian, chi-square, etc., being the Gaussian the most usual type since it has proved to be more 

robust. As an example, Equation (2.29) shows the Gaussian kernel function that basically consists in 

dividing the previously computed distance between the realisations (ë and ü) by a scale factor ℎ 

carrying more linearity for the data. 
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	with	ℎ > 0	 (2.29) 

In its turn, the scale factor ℎ, also known as kernel bandwidth or smoothing parameter, controls the 

smoothness of the resulting points spatial representation that are less smooth for lower ℎ values 

(the kernel becomes close to the identity matrix) and smoother for the contrary (the kernel is 

reduced to a constant matrix). To help this parameter definition, several authors have proposed 

reference values, most of the times based on the estimation errors minimisation; however, no 

reference values were found. For the purpose of clustering, Shi and Malik (2000) recommended the 

execution of several attempts using as reference 10% to 20% of the range of distance between 

points, namely the Euclidean distance. 

In what concerns the generic formulation of k-medoid, it starts with a random partition of the data 

set in the Featured Space } using the kernel matrix values. Then, in an iterative way, the method 

improves the partition until the optimal arrangement for the clusters is found (equation (2.30)). 

! = ¿(ë,9*¿>)

ñ∈ºE

µ

>õI

	 (2.30) 

where ! represents the sum of squared errors between the objects in the clusters in relation to their 

centre, also known as medoid 9*¿> that should be minimised, '> the number of generated clusters 

ƒ and ë the data objects. 

In detail, the phases involved in the kernel k-medoid application are the following (see Table 2.7): 

1. The algorithm initiates generating a total of ƒ clusters randomly organised and the 

corresponding centres, called medoids, are defined (9*¿>); 

2. The generated ƒ clusters are evaluated through a distance calculation given by: 

¿	 ë,9*¿> = ƒ ë, ë − 2×ƒ ë, ƒ 9*¿> + ƒ ƒ 9*¿> , ƒ 9*¿>  (2.31) 

where ƒ ë, ë  corresponds to the kernel distance between the object ë and itself, 

ƒ ë, ƒ 9*¿>  the kernel distance between the object ë and their medoids; 
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3. A Hill Climbing technique is applied where the bad medoids are replaced by new ones, 

which is chosen accordingly to the minimal average distance between itself and the clusters 

objects; 

4. A new distance evaluation is made between the new medoids and the other objects that 

compose each cluster, resulting in an object re-assigning to new clusters accordingly to the 

closest medoid. 

Table 2.7 General procedure to adapt for k-medoid algorithm implementation. 

K-medoid algorithm 

Phase 1- Initialisation 

Set ë = ëI,…ëy  

Randomly generated ' = 'I, … , 'µ  

Objective function= ∞ 

Phase 2 – iterative process 

for all clusters '> ∈ ' 

Calculate cluster medoid 9*¿> ⊆ 	ℛ
y  

for all object ë> ∈ ë 

for all clusters '> ∈ ' 

Calculate ¿ ë, '> = ¿	(ë,9*¿>) 

Let “*/1 ë, 'ñ = ∀	'ö ∈ ': [¿ ë,9*¿ºñ ≤ ¿ ë,9*¿ºö ] 

end_for 

end_for 

Return “*/1 ë, 'ñ  

End procedure 

2.7. CONCLUSIONS  

The present Chapter started by presenting the commonly used methods to assess the 

geomechanical parameters to use in a future characterisation model (empirical systems like RMR, 

GSI, RQD, etc.) As it has been presented in this Chapter, deterministic methods and tools are very 

limited to realistically characterise rock masses, mainly regarding their heterogeneity and spatial 

variability. This is due to the mistaken starting assumption that there is no estimation error in the 

geomechanical parameters of the rock mass. 

In the last years, probabilistic techniques have been applied to overcome this limitation and provide 

range of values for the geomechanical parameters instead of single ones. However, they undertake 

the variable(s) global values (mean and variance) and only contemplate the pointwise variability of 

the parameters. By doing that, the extreme values are hardly identified and, therefore, the natural 

variability of the rock mass is not considered. Examples of these techniques are the MC simulation, 

FOSM and PEM, that apart from their simplicity are associated with significant computational times. 
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As the main goal of this work is to study the effect of the heterogeneity and spatial variability on the 

rock mass mechanical behaviour, the use of stochastic techniques, namely random fields, that are 

able to characterise the variable (s) spatial behaviour, is essential. An example of these techniques 

is geostatistics that, contrarily to the traditional probabilistic techniques, considers the variable as 

spatially dependent, which result in a more accurate and realistic prediction of the variable(s). As 

previously stated, the random field simulation is the most adequate approach when the goal is to 

quantify the spatial variability and heterogeneity since the extreme values are not smoothed, unlike 

the kriging estimation. As a result of the geostatistical simulation, 4 equivalent realities can be 

obtained for the random field(s); however, the use of the full realisations set could not be practical 

and a reduction scenario methodology based on a clustering algorithm was presented. Since the 

amount of techniques that can be used to reduce the full realisations set is limited, the ones 

commonly used in mining and petroleum engineer were presented; nonetheless, some changes 

need to be made to adapted them into the geomechanical practise. In what concerns the 

geostatistical simulation, there are a wide range of simulation algorithms fitted to different type of 

variables (continuous, discrete and objects), hence two of them were detailed exposed, along with 

their advantages and limitations (turning bands method and truncated Gaussian methods). Finally, 

aiming to assess the accuracy of the geostatistical simulation some validation techniques were 

presented, namely the cross validation and the jack knife technique. 

Even though geostatistics can be used to predict the geomechanical parameters of the rock masses 

there are still insufficient works and research made in this field, mainly in the application of the 

technique in geotechnical engineering. 
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3.1. INTRODUCTION 

The characterisation of rock masses in a more accurate and realistic way, mainly regarding the 

geomechanical parameters is, nowadays, an important task to accomplish in geotechnical 

engineering. Therefore, geostatistical techniques emerged as an alternative to traditional 

probabilistic approaches once they consider the spatial behaviour of the parameters. 

In this Chapter, it is intended to highlight the main steps required to simulate a random field 

representing a geomechanical parameter along with an application example, as it will be of interest 

in the remaining chapters. In section 3.2 the used random field, in this case for the RMR empirical 

system, is presented alongside with the simulation approaches. Following, in section 3.3, all the 

details concerning the random field simulation methodology are presented, with modelling 

approaches based on a continuous scale and on a discrete one. 

In Section 3.4, the approaches are applied to a case study aiming the Rock Mass Rating (RMR), 

which is used to geomechanically characterise the rock mass in geotechnical works. The results are 

compared in terms of computation time, practical implementation, level of details and post-

processing outputs. Besides the RMR mapping and associated uncertainty, the deformation modulus 

of the rock mass is subsequently obtained based on these maps together with empirical 

expressions. Finally, all the simulations are validated through a split-sample jack-knife technique. 

3.2. GEOSTATISTICAL SIMULATION MODELS 

3.2.1. General 

Geostatistical models can be used to develop an approach that is able to reduce the uncertainty 

associated with the rock mass characterisation, with the existing variability in this characterisation 

and with the natural heterogeneities of the rock masses. Indeed, in these models, the 

geomechanical parameters are viewed as outcomes (realisations) of spatial random fields, the 

properties of which can be inferred from the available in situ measurements and laboratory tests. 

Kriging techniques (Matheron, 1971) can be used to predict the values of the parameters of interest 

at any specific location, based on the information available at neighbouring locations and on the 

spatial correlation structure of the underlying random fields. These techniques aim to minimise the 
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expected squared error between predicted and true values, but, in return, they provide over-

smoothed maps that do not reflect the actual variability of the true parameters. To avoid this 

drawback, conditional simulation techniques have been developed to construct numerical models 

that reproduce the spatial variability at all scales and allow a better understanding of the rock mass 

heterogeneities (Journel, 1974; Chilès and Delfiner, 2012). Unlike kriging, that provides a single 

prediction for each parameter of interest, simulation yields as many case scenarios as desired, 

which are helpful to assess the uncertainty in the actual (unknown) parameter values at any specific 

location or jointly over several locations. The use of geostatistical techniques in geotechnical 

engineering was already dealt with in Chapter 2. 

The next section presents three geostatistical approaches to use in the geomechanical parameters 

simulation, depending on whether one considers that the properties are measured on a continuous 

quantitative scale or on a discrete scale. In the first and second approaches, the most 

straightforward and usual ones, the chosen variables are viewed as variables measured on a 

continuous scale and are directly simulated with a Gaussian algorithm; however, in brief, since more 

details will be given below, while the first approach simulates only the final variable, the second 

approach considers the underlying parameters and simulates them in their original scale. In 

contrast, the third approach is more complete, as the variables are considered on a discrete scale, 

and a specific geostatistical model (truncated Gaussian model) is used for the purpose of simulation. 

3.2.2. First and second approaches: continuous variables 

In these approaches, the variables are viewed in a continual scale (see Figure 0.1a). To this end, the 

Gaussian random field model is used, through the following steps (Chilès and Delfiner, 2012): 

1. First, a representative distribution of the variables values is calculated, by weighting each 

value depending on the geometrical configuration of the data. This procedure aims at down-

weighting the data that are spatially clustered, which contain redundant information 

(Deutsch and Journel, 1998). In case of a regular sampling design, the data value can be 

assigned the same weights; 

2. The variables data are then transformed into data with a standard Gaussian distribution, 

accounting for the previously calculated declustering weights. These transformed data are 

associated with a parent second-order stationary Gaussian random field, which is fully 

characterised by its covariance function or, equivalently, by its variogram (Lantuéjoul, 

2002); 
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3. The experimental variogram of the Gaussian data is computed and subsequently fitted with 

a theoretical model. At this stage, the study can be performed in one or more directions of 

space, in order to identify a possible anisotropy and to better understand the spatial 

behaviour of the data; 

4. A Gaussian random field is then simulated at the target locations, conditionally to the 

available data (i.e. such that the values simulated at the data locations match the data 

values). In the present case, the turning bands algorithm (Emery and Lantuéjoul, 2006) is 

used for simulation; 

5. The simulated Gaussian values are back-transformed to the original scale. 

Similar approaches, which differ in the specific simulation algorithm used at step (4), have been 

proposed by Ryu et al. (2003), Jeon et al. (2009), Egaña and Ortiz (2013) and Ferrari et al. (2014), 

among others, for the spatial prediction of RMR and for uncertainty quantification. 

 

(a) (b) 

Figure 0.1 Flow charts for the variable simulation under: a) the Gaussian model (Approaches 1 and 2); and b) the 

truncated Gaussian model (Approach 3).  
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3.2.3. Third approach: discrete variable 

The third approach is more innovative and consists in simulating the variable assigned by ratings, 

viewed as discrete variables (i.e. variables that only take integer values). For the simulation, the 

truncated Gaussian model (Armstrong, et al., 2011) is used, which relies on the truncation of 

second-order stationary Gaussian random fields. The application of this model is carried out through 

the following steps (see Figure 0.1b): 

1. First, the original data are transformed into class-indicator data, i.e. data that take the value 

0 or 1 depending on each parameter score; 

2. A set of truncation thresholds is defined for the variable, which allows the proportion of each 

class to be reproduced by the simulation (Armstrong, et al., 2011); 

3. Given the experimental variograms of the class-indicator data, a variogram can be calculated 

for the underlying Gaussian random field associated with the variable, based on the existing 

relationships between the indicator and Gaussian variograms (Emery and Cornejo, 2010). 

The obtained Gaussian variogram can be fitted with theoretical models; 

4. The class-indicator data are then transformed into simulated Gaussian data, using an 

iterative algorithm known as the Gibbs sampler (Armstrong et al., 2011; Lantuéjoul, 2002); 

5. The Gaussian random fields are simulated at the target locations, conditionally to the 

Gaussian values obtained at the previous step, and are truncated in order to get back to 

simulated class-indicator values. As for the first approach, the turning bands algorithm is 

used for the simulation of Gaussian fields; 

6. The indicators are converted into the variable.  
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3.3. CASE STUDY – CHILEAN DEPOSIT 

3.3.1. Introduction 

The Rock Mass Rating (RMR) proposed by Bieniawski (1989) and already introduced in Chapter 2, 

was the system used to perform the geostatistical simulation using the previously mentioned 

approaches. This system allows classifying the rock mass into five classes (very good, good, fair, 

poor and very poor) using a continuous scale that varies from 0 to 100 obtained after weighting six 

individual parameters regarding the rock mass and its discontinuities. In this case study, the sixth 

parameter (P6) will not be used because it does not depend only on the characteristics of the rock 

discontinuities but also on their relationship with the structure and this is unknown. The RMR under 

consideration is therefore the so-called basic RMR, which is obtained considering only the 

contribution of parameters P1 to P5. 

Therefore, the RMR system will be handled for the geostatistical simulation in three different ways 

(see Figure 0.2). The first two approaches consider the rating value of each one of the five 

parameters and the basic RMR final value as continuous variables. On the other hand, the third 

approach considers the parameters rating as discrete variables. 

 

Figure 0.2 Scheme showing the three approaches considered in the RMR simulation. 

The data set used in this case study was obtained from exploration boreholes performed in an 

epithermal gold deposit located in the “Cordillera de Los Andes”, region of Atacama, northern Chile, 

and surveyed through a set of exploration boreholes. The regional geology of the area is 

characterised by a group of intrusive, volcanic and sedimentary rocks, affected by fault zones that 

control the mineralisation, allowing the identification of four main lithological units of sedimentary 

rocks. 
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The available data comprise 3969 samples obtained from boreholes with a horizontal spacing of 40 

m × 40 m and depths ranging from 96 m to 390 m. Along these boreholes, the samples were taken 

with a spacing of 20 m, yielding a regular sampling design of 40 m × 40 m × 20 m. The uniaxial 

compressive strength (P1) was measured from laboratory tests. Cylindrical rock samples were 

prepared according to the standard ASTM D4543–08, and then tested under uniaxial compressive 

conditions using the standards included in ASTM D7012–04. The average prepared sample has an 

aspect ratio (H/D) of 2. Table 0.1 presents the average density and the uniaxial compressive 

strength normalised to a diameter of 50 mm (UCS50mm) for each lithological unit. The RQD (P2) was 

estimated directly from borehole logging. To estimate the average discontinuity spacing (P3), the 

average frequency of fractures (FF/m) was estimated. Bias correction was then applied by 

considering the average angle of each measured discontinuity. The condition of discontinuities (P4) 

was not quantitatively measured at the field. A regular condition was assumed for all lithological 

units. Finally, the water condition (P5) was assigned in agreement with the level of water determined 

at different depths at each borehole; two classes were mainly identified: wet and damp. 

Table 0.1 Information about average UCS and average density by lithological unit. 

Lithological unit Description 

Average 

density 

(t/m3) 

Average 

UCS (MPa) 

Silty and clayey 

limestone 
Medium to fine calcareous sandstone and limestone 2.68±0.05 215±56 

Calcareous sandstone 
Fine bioclastic calcareous sandstones, limestones and 

bioclastic clams 
2.68±0.09 154±47 

Sandstone Calcareous sandstone with rounded fragments of quartz 2.64±0.02 143±20 

Calcareous sandstone 
Sandstones with interblended limestones; levels of fine 

multicolored calcareous sandstones 
2.63±0.06 152±40 

According to the results of rock mechanics laboratory tests and the interpreted RMR values from the 

borehole samples, the rock mass is classified with a quality of fair to good (mostly in the range of 50 

to 60). This range of RMR values is used in the mine design process. Plan views of the data are 

shown in Figure 0.3. 

As mentioned above, in the first approach, the RMR was viewed as a variable measured on a 

continuous scale (0 to 100) and its value was directly simulated with a Gaussian algorithm, still the 

second approach uses the same algorithm to simulate each parameter individually (P1 to P5) also in 

a continuous scale. In contrast, the third approach uses a truncated Gaussian model, insofar as 

each one of the five parameters (P1 to P5) was simulated individually in a discrete scale. At the end 

of approach 2 and 3 simulations, the results are then summed to obtain the final mapping of RMR. 



Numerical Methodology to Model Heterogeneous Rock Masses 69 

 

The RMR simulation should result in a better and improved understanding of the spatial distribution 

and an easier identification of heterogeneities and uncertainty levels. In addition to RMR, the 

underlying geomechanical parameters (P1 to P5) could also be mapped and consequently used in 

numerical models and mine design process in order to obtain a more accurate zoning of the rock 

mass. 

 

(a) (b) (c) 

Figure 0.3 2D maps of spatial distribution at elevation 3439 m for: a) RMR original values; b) Parameter P2; and c) 

Parameter P3. 

3.3.2. Exploratory analysis 

Table 0.2 displays the basic statistics of the RMR data resulting from the 3969 samples. For the 

RMR variable a variation of 0 to 100 was considered, while the information of the parameters 

regarding their rating was obtained from the application of the RMR system. 

Table 0.2 Basic statistics on RMR ratings and original data (3969 samples). 

 

RMR 
P1 (UCS) P2 (RQD) P3 (JS) P4 (JC) P5 (GW) 

 Rating MPa Rating % Rating mm Rating JC Rating GW 

Minimum 48.0 12.0 138.0 3.0 0.0 5.0 23.0 20.0 1.01 7.0 1.02 

Maximum 78.0 14.0 208.0 20.0 100.0 19.0 1923.0 20.0 1.01 10.0 2.02 

Mean 66.7 13.1 177.8 16.4 87.3 10.2 220.5 20.0 1.01 7.0 1.0 

Standard 

deviation 
3.8 1.0 32.5 2.7 12.3 2.0 170.2 0.0 0.0 0.3 0.112 

                                                
1 1.0 was the value used to represent the intermediate rating of the joint condition 

2 1.0 and 2.0 represent a groundwater condition of wet and damp, respectively. 
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According to the data statistics, with a minimum RMR value of 48 and a maximum value of 78, the 

geomechanical quality of the rock mass varies from fair to good. Concerning the individual 

parameters ratings (see Figure 0.4), P1 varies within a short range, meaning that the UCS of the 

intact rock was almost constant, unlike P2 and P3 that vary in a much wider range showing very 

different levels of rock mass fracturing. In contrast, for all the samples, the fourth parameter (P4) 

was constant and equal to 20. This parameter is related to the condition of the discontinuities, so 

they were all classified as having slightly rough surfaces with a separation smaller than 1 mm and a 

highly-weathered wall rock. Accordingly, the same score (20) was assumed for all the points of the 

target simulation grid. Lastly, like P1, parameter P5 varies within a short range, with only two 

different scores, representing a groundwater condition that was mostly wet (7) and punctually damp 

(10). In addition, Figure 0.5 displays the histograms of Approach 2, computed by assuming the RMR 

individual parameters in their original scale. While P1 and P5 show a concentration of data samples 

in a few classes (four different UCS values for P1 and 2 for P5), parameters 2 and 3 show some 

more distributed histograms with a wide range of values. 

Before performing an individual simulation of the four RMR parameters, it was necessary to observe 

the existing correlations between all of them, in order to make sure that they were not (or weakly) 

cross-correlated. Otherwise, the separate parameter simulation in the second approach should be 

replaced by a joint simulation (cosimulation), which would make the model quite more complex 

(Emery and Cornejo, 2010). The correlation matrix, which contains the Pearson product-moment 

correlation coefficients between all the parameters, is presented in Table 0.3. 

Table 0.3 Correlation matrix between parameters P1, P2, P3 and P5. 

 P1 P2 P3 P5 

P1 1.000 -0.096 -0.164 -0.113 

P2 -0.096 1.000 0.292 0.045 

P3 -0.164 0.292 1.000 -0.032 

P5 -0.113 0.045 -0.032 1.000 

Thus, it was possible to notice that the correlation between all four parameters was rather weak. 

Analysing these coefficients, the only parameters with a positive correlation, although weak, were P3 

and P5 comparatively to P2. Whereas, the other parameters show a slightly negative correlation 

between them. However, these correlations are rather weak from a statistical point of view (less than 

0.3 in absolute value), so that the information on a parameter actually brings little information on 

the other parameters. The low correlation between P2 (RQD) and P3 (discontinuity spacing) can be 

explained by the good quality of the rock mass, which translates into a wide spacing of the 
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discontinuities and high RQD values, making the latter parameter less sensitive to closer 

discontinuities. As such, in Approaches 2 and 3, the simulation of the four RMR parameters can be 

performed separately as individual variables; cosimulation, which enhances the simulation of a set 

of variables in order to reproduce their cross-correlation, was not necessary here. 

 

(a) (b) 

 

(c) (d) 

Figure 0.4 Data histograms for the RMR individual parameters in a rating scale for: a) P1; b) P2; c) P3; and d) P5. 



72 Chapter 3 – Geostatistical Simulation of Geomechanical Parameters 

 

	

(a) (b) 

 

(c) (d) 

Figure 0.5 Data histograms for the RMR individual parameters in their original scale for: a) P1 (in MPa); b) P2; c) P3 (in 

mm); and d) P5 (wet or damp). 

3.3.3. Modelling univariate distributions 

As previously mentioned (3.2.2), for the first approach, the data should be transformed into normal 

scores. Since the sampling design is regular, there is no need for declustering, i.e. all the data are 

assigned the same weighting. The function that relates the original RMR values and the associated 

Gaussian values (anamorphosis function) can be calculated empirically with the available data. This 

function was modelled by using a piecewise linear interpolation between the empirical points and 

exponential functions for tail extrapolation, as explained in Emery and Lantuéjoul (2006). The 

parameters of these exponential functions are chosen in order to fit a model as continuous as 

possible. The fit of the anamorphosis should be done as good as possible in order to improve the 

simulation result of the variables and, in this case, as showed in Figure 0.6 the continuity and shape 
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of the function obtained from the original data was deemed satisfactory. The minimum and 

maximum values for RMR are set to 45 and 80, respectively. 

 

Figure 0.6 Anamorphosis function used for Approach 1. The ordinate indicates the RMR value and the abscissa the 

associated Gaussian value. 

Similarly, for approach two all the four parameters values had to be transformed into normal scores 

and, consequently, an anamorphosis function was computed to all. The maximum and minimal 

values of each parameter are presented in Table 0.2. 

Regarding Approach 3, the data related to parameter P1 only present two different scores, 12 and 

14, with relative proportions of 0.468 and 0.532, respectively. This distribution can therefore be 

modelled by truncating a standard normal distribution using a single truncation threshold set to  

G-1(0.468) = -0.08, where G is the standard normal cumulative distribution function. In other words, 

the probability for a standard Gaussian random variable to be less than -0.0803 is 0.468, and the 

probability to be more than -0.0803 is 0.532, coinciding with the proportions of the two scores of 

parameter P1. Likewise, the data of Parameter P5 only assume two different scores, 7 and 10, with 

relative proportions of 0.989 and 0.011, respectively. Again, the model uses a single truncation 

threshold, here equal to G-1(0.989) = 2.2904. 

In a different way, the data of Parameters P2 and P3 assume almost every score. As result, a larger 

number of truncation thresholds had to be defined, as shown in Table 0.4 and   
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Table 0.5, respectively. These truncation thresholds are such that the proportion of data with a given 

score coincides with the probability for a standard Gaussian random variable to be between the 

lower and upper thresholds associated with this score. 

Table 0.4 Calculated proportions for P2 data with the corresponding Gaussian thresholds. 

Category Cumulative proportion Lower threshold Upper threshold 

1 0.0030 -¥ -2.7478 

2 0.0032 -2.7478 -2.7266 

3 0.0033 -2.7266 -2.7164 

4 0.0043 -2.7164 -2.6276 

5 0.0073 -2.6276 -2.4422 

6 0.0080 -2.4422 -2.4089 

7 0.0150 -2.4089 -2.1701 

8 0.0200 -2.1701 -2.0537 

9 0.0250 -2.0537 -1.9600 

10 0.0360 -1.9600 -1.7991 

11 0.0510 -1.7991 -1.6352 

12 0.0780 -1.6352 -1.4187 

13 0.1120 -1.4187 -1.2160 

14 0.1710 -1.2160 -0.9502 

15 0.2710 -0.9502 -0.6098 

16 0.4520 -0.6098 -0.1206 

17 0.6200 -0.1206 0.3055 

18 0.8180 0.3055 0.9078 

19 0.9900 0.9078 2.3263 

20 1.0000 2.3263 +¥ 
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Table 0.5 Calculated proportions for P3 with the corresponding Gaussian thresholds. 

Category Cumulative proportion Lower threshold Upper threshold 

1 0 -¥ -¥ 

2 0 -¥ -¥ 

3 0 -¥ -¥ 

4 0 -¥ -¥ 

5 0.0500 -¥ -1.6449 

6 0.0501 -1.6449 -1.6439 

7 0.0502 -1.6439 -1.6429 

8 0.1842 -1.6429 -0.8995 

9 0.3432 -0.8995 -0.4037 

10 0.5422 -0.4037 0.1060 

11 0.8152 0.1060 0.8972 

12 0.9182 0.8972 1.3931 

13 0.9582 1.3931 1.7302 

14 0.9762 1.7302 1.9809 

15 0.9872 1.9809 2.2322 

16 0.9912 2.2322 2.3739 

17 0.9952 2.3739 2.5899 

18 0.9998 2.5899 3.5401 

19 1.0000 3.5401 +¥ 

20 1.0000 +¥ +¥ 

3.3.4. Modelling spatial continuity 

For all approaches, following the methodology explained in 3.2.2, the variograms of the Gaussian 

random fields to simulate had to be calculated along the main directions of anisotropy. Because of 

the sampling design (vertical boreholes), it was not possible to experimentally calculate variograms 

in inclined directions, thus calculations are restricted to the vertical direction and to the horizontal 

plane. Furthermore, isotropic variograms were calculated on this plane, insofar as no clear 

anisotropy was detected in the experimental variograms associated with different horizontal 

directions. For calculations, the lag distances were multiple of 20 m along the vertical, which 

corresponds to the data spacing along the boreholes, and of 40 m along the horizontal (borehole 

spacing), with a tolerance of 20 m. 

The experimental variograms (hereafter denoted with the Greek letter !) calculated were then fitted 

using combinations of basic nested structures (exponential, spherical, cubic and Gaussian, see 

Chapter 2 for details on these basic models), as follows. 
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§ Variogram model for Approach 1 (normal score transform of RMR): 

! = 0.7	'()*+,+-./0	 250	3; 250	3 + 	0.1	7/899./+	(2000	3; 300	3)	

§ Variogram models for Approach 2: 

P1: 
	!= = 0.63	'()*+,+-./0 500	3; 500	3 + 0.63	'()*+,+-./0 ∞	; 150	3

+ 0.42	7/899./+(700	3; 700	3) 

P2: 
	!A = 0.28	'()*+,+-./0 180	3; 100	3 + 0.39	'()*+,+-./0 180	3; 180	3

+ 0.46	7/899./+(400	3; 400	3) 

P3: 
!D = 0.19	'()*+,+-./0 180	3; 100	3 + 0.37	'()*+,+-./0 180	3; 180	3

+ 0.55	7/899./+	(400	3; 400	3) 

P5: 
!E = 0.41	7/899./+ 500	3; 200	3 + 0.44	F8G.H ∞; 250	3

+ 0.14	'()*+,+-./0(300	3; 300	3) 

§ Variogram models for Approach 3: 

P1: 	!= = 1.0	F8G.H	(700	3; 100	3) 

P2: !A = 1.0	'()*+,+-./0	 400	3; 350	3  

P3: !D = 0.8	'()*+,+-./0	 300	3; 250	3 + 0.2	7/899./+	(300	3; 350	3) 

P5: 	!E = 0.3	'()*+,+-./0	 500	3; 200	3 + 0.7	7/899./+	 700	3; 150	3  

In the above equations, the coefficient preceding a basic nested structure indicates the sill of this 

structure (contribution to the total variance), while the distances written between brackets represent 

the correlation ranges of the structure along the horizontal plane and the vertical direction, 

respectively. The experimental and theoretical variograms for Approaches 1, 2 and 3 are shown in 

Figure 0.7, 3.8 and 3.9, respectively. 
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Figure 0.7 Experimental (crosses) and theoretical (solid lines) variograms for RMR (Approach 1) along the main 

anisotropy directions, horizontal plane (black) and vertical direction (blue). 

 

(a) (b) 

 

(c) (d) 

Figure 0.8 Experimental (crosses) and theoretical (solid lines) variograms for Approach 2 along the main anisotropy 

directions, horizontal plane (black) and vertical direction (blue) for parameters: a) P1; b) P2; c) P3; and d) P5. 
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(a) (b) 

 

(c) (d) 

Figure 0.9 Experimental (crosses) and theoretical (solid lines) variograms for Approach 3 along the main anisotropy 

directions, horizontal plane (black) and vertical direction (blue) for parameters: a) P1; b) P2; c) P3; and d) P5. 

Through the variogram analysis, it can be noticed that none of the variograms exhibit a nugget effect 

(discontinuity near the origin), indicating that the RMR and its underlying parameters were 

continuous in space. Even more, the variogram models for P1 and P5 have a smooth behaviour 

near the origin and a large correlation range along the horizontal direction (500 m), which indicates 

that the regions where these parameters were constant had smooth boundaries and a large spatial 

extent or spatial connectivity (recall that both P1 and P5 only assume two different scores). The 

same effect happens either in their original scale or in their rating scale. Moreover, it is important to 

highlight the existence of anisotropy for parameters P1, P3 and P5 where the range of both curves 

to reach the same sill (variance equal to 1) is different. As expected, the variograms of Approach 2 

showed a similar behaviour as for Approach 3. Contrarily, for Approach 1, the RMR variogram shows 

small differences in the range for the horizontal plan and the vertical direction, similarly to 

parameter P2 of Approach 3. 
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3.3.5. Conditional simulation results 

Once the model parameters were specified (anamorphosis function in Approach 1 and 2, truncation 

thresholds in Approach 3, and variograms of the underlying Gaussian random fields in all 

approaches), conditional realisations of the RMR and of its parameters can be constructed. For 

these simulations, adaptations of previously published computer programs were used for simulating 

Gaussian and truncated Gaussian random fields (Emery and Lantuéjoul, 2006; Emery, 2007). The 

number of realisations was set to one hundred, so that the post-processing outputs (average and 

conditional probabilities) could be calculated with a reasonable approximation. In both cases, the 

turning bands algorithm was applied with 1500 turning lines to generate the Gaussian random 

fields, and simple kriging was used to condition the realisations to the borehole data. For Approach 

3, the Gibbs sampler was stopped after one hundred iterations and the simulated Gaussian random 

fields were truncated, based on the thresholds indicated in Tables 3.5 and 3.6, resulting in 

realisations of parameters P1 to P5 that were subsequently summed to obtain realisations of the 

RMR values (more details on algorithms are given in Chapter 2). 

In order to perform simulation, it was necessary to define the target locations that could be a regular 

two-dimension or three-dimension grid. For ease of display, the locations targeted for simulation 

correspond to a regular two-dimensional grid placed at elevation 3560 m, with a mesh of 5 m × 5 m 

and a total of 160 nodes along the east direction (I-axis) and 240 nodes along the north direction 

(J-axis). 

As result of the geostatistical simulation, one obtained 22500 target locations with RMR simulated 

values for the three approaches (see Table 0.6) and it was possible to compare the minimum and 

maximum values resulting from the average of the realisations with the original data. The difference 

between them was quite important namely regarding the minimum values that are higher in the 

simulation (realisation average) when comparing with the original values; this can be explained by 

the smoothing effect provoked by the averaging of the realisations. 

Table 0.6 Statistics on the average of 100 conditional realisations of RMR obtained with Approaches 1, 2 and 3. 

 Approach 1 Approach 2 Approach 3 

Number of target locations 22500 22500 22500 

Minimum RMR value 54.8 54.0 57.5 

Maximum RMR value 76.2 73.0 74.1 

Mean RMR value 66.6 65.8 66.8 

Variance of RMR values 4.7 4.8 3.5 
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The average of the RMR realisations was used to map the expected RMR over the region of interest 

resulting from Approaches 1, 2 and 3 (see Figure 0.10). Furthermore, in order to demonstrate the 

spatial variability existing in this rock mass, the first realisation was mapped as an example (see 

Figure 0.11). In these figures, the neighbouring data values were superimposed on the maps to 

highlight the effect of conditioning the RMR realisations to the borehole data: when a target grid 

node coincides with a data location, the simulated RMR value exactly matches the conditioning data 

value. 

 

(a) (b) 

 

(c) 

Figure 0.10 Maps of RMR at elevation 3560 m of the average of 100 realisations obtained with: a) Approach 1; b) 

Approach 2; and c) Approach 3. 
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(a) (b) 

 

(c) 

Figure 0.11 Maps of RMR at elevation 3560 m for realisation #1 obtained with: a) Approach 1; b) Approach 2; and c) 

Approach 3. 
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(a) (b) 

 

(c) 

Figure 0.12 Maps of RMR at elevation 3560 m of the standard deviation of 100 realisations obtained with: a) Approach 

1; b) Approach 2; and c) Approach 3. 

By the figures analysis, it is possible to state, at this stage, that Approaches 1 and 2 do not show a 

significant difference, not only in the RMR maps but also in the RMR resulting statistics. 

The visual comparison suggests that the two approaches (Approach 1 and 3) produce similar results 

for RMR unlike Approach 2. It is worth noticing that the map of the realisation average tends to 

smudge the contrasts and that spatial heterogeneities appear as much more faded. The analysis of 
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the individual realisations is therefore important to visualize the real heterogeneity that it is expected 

to be observed in the field, whereas the average of the realisations shows an overall trend, which 

was much smoother. 

3.3.6. Post-processing simulations 

More outputs can be represented, such as the probability that the RMR exceeds or falls short of a 

predefined value, which can be estimated by the frequency of threshold exceedance or non-

exceedance observed over the realisations. This representation is of great interest if one wants to 

identify regions on the rock mass where very high or low geomechanical properties could be 

present, and with which probability (0 to 1). As an example, for the three approaches, Figure 0.13 

shows the map with the probability that the actual (unknown) RMR exceeds a threshold of 65. 

Comparing all three probability maps, it was possible to perceive minor differences between 

Approach 1 and 3, however, comparing the last two maps with the one obtained from Approach 2 

the same cannot be stated. In detail, in the upper central zone, Approach 2 showed a higher 

probability to find an RMR value above 65.  
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(a) (b) 

 

(c) 

Figure 0.13 Maps of probability (between 0 and 1) that the RMR is less than a threshold of 65 at elevation 3560 m, 

obtained with: a) Approach 1; b) Approach 2; and c) Approach 3. 

Figure 0.14 and Figure 0.15 shows the maps of parameters P2 and P3 for the first realisation and 

for the average of 100 realisations obtained with Approach 3, which helps to visualise the spatial 

distribution and variability of these discontinuity parameters. Comparing realisation #1 with the 

average of 100 realisations for both parameters, the pattern in lower or higher score were similar, 

however, as already referred, the average mapping exhibits smoother values. The individual analysis 

of the discontinuity parameters can, by itself, result in a powerful tool in geotechnical works to 

understand the regions where the rock mass can be more or less fractured. Attentively, comparing 

the P2 and P3 maps (average and first realisation), it was possible to identify a small region in the 
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western part of the grid, with low values of RQD (P2) and intermediate values of the discontinuity 

spacing (P3). These incoherent values were truly present in the borehole data used for conditioning 

the realisations, therefore they were not a problem of the proposed simulation approach, but rather 

a problem of the input data. This could be explained by human errors in the measurement of 

parameter P2. 

 

(a) (b) 

Figure 0.14 Maps of discontinuity parameters at elevation 3560 m for realisation #1 of a) P2; and b) P3. 

  

(a) (b) 

Figure 0.15 Maps of discontinuity parameters at elevation 3560 m for the average of 100 realisations of a) P2; and b) 

P3. 
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(a) (b) 

Figure 0.16 Maps of discontinuity parameters at elevation 3560 m for the standard deviation of 100 realisations of: a) 

P2; and b) P3. 

Maps of other geomechanical parameters can be obtained based on the realisations of RMR. In this 

work, considering that the RMR values are higher than 50, the distribution maps of the deformation 

modulus ('K) were developed with the Bieniaskwi (1976) empirical formula presented in Equation 

(0.1). 

'K = 2×MNM − 100	 (0.1) 

This formula uses the simulated values of RMR to obtain the 'K values, in GPa at the same 

locations. Alike the maps computed for the RMR values, Figure 0.17 shows the average of 'K 

obtained from the 100 conditional realisations of Approach 1, as well as the first realisation, as an 

example. With these maps, it is possible to distinguish zones where the rock mass is significantly 

stiffer and zones with lower rigidity. 
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(a) (b) 

Figure 0.17 Maps of deformation modulus (in GPa) at elevation 3560 m obtained with Approach 1, for: a) realisation #1; 

and b) average of 100 realisations. 

 

Figure 0.18 Standard deviation of 100 realisations map of deformation modulus (in GPa) at elevation 3560 m obtained 

with Approach 1. 

Finally, to visualise the uncertainty in the simulated values, the standard deviation (or any other 

uncertainty measure, such as the coefficient of variation or the limits for a given level of confidence) 

can be calculated at each target node over the 100 realisations and mapped throughout the grid of 

interest. As an example, the standard deviations of RMR obtained with both approaches, of 
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parameters P2 and P3 obtained in the truncated Gaussian model (Approach 3) and of the 

deformation modulus ('K) obtained in the Gaussian model (Approach 1) were mapped in Figure 

0.12, Figure 0.16 and Figure 0.18, respectively. Such maps indicate how much the true unknown 

values are likely to deviate from their expected values (averages of the realisations) at each target 

grid node, therefore quantify the local uncertainty concerning the true values. The mapped standard 

deviations depend on the number and location of the surrounding borehole data (they increase in 

under-sampled areas and peripheral areas without data) and, to a lesser extent, on the parameter 

values: for P3, whose distribution was positively skewed, the standard deviation tends to increase in 

high-valued areas, while the reverse happens for RMR, P2 and 'K whose distributions were 

negatively skewed, a phenomenon known as proportional effect (Manchuk et al., 2009) or regressive 

effect (David, 1988). Furthermore, the maximum standard deviation for RMR occurs in the north-

western side of the grid of interest and was about 7 (see Figure 0.12), which represents a small 

deviation for a variable that varies from 0 to 100. This suggests a relatively low uncertainty in the 

true RMR values at unsampled locations. 

The standard deviations mapped in Figure 0.12, Figure 0.16 and Figure 0.18 should not be 

confused with the ones presented in Table 2: the former measures the variability across the 

realisations at a given location, therefore depend on the location under consideration, whereas the 

latter measures the variability of a data set across the region of interest, without distinguishing any 

specific location. 

3.3.7. Split-sample validation 

To validate the three proposed approaches, the original data set was randomly divided into two 

subsets, each containing one half of the data. Thereby, the first subset (training subset) was then 

used to simulate the RMR at the locations of the data belonging to the second subset (validation 

subset). Two types of validation were performed aiming to assess the prediction capability and the 

modelling of uncertainty via the simulation approaches. 

First, in order to validate the prediction capability of all the approaches, the expected RMR, 

calculated as the average of the simulated RMR values, was compared with the real values at the 

locations of the validation subset (see Figure 0.19). To analyse the results, a linear regression and 

coefficient of determination (MA) between expected and real RMR values were calculated. For all the 

approaches, the resulting points of the scatter plot were distributed close to the diagonal line and 

the coefficient of determination shows a high value (0.72, 0.73 and 0.74, respectively, for 

approaches 1, 2 and 3). This indicates that the simulations allow an accurate prediction of RMR, 
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with small error fluctuation and no conditional bias (Chilès and Delfiner, 2012). Regarding the 

accuracy, it can be confirmed by calculating the Root Mean Squared Error (RMSE) presented in 

Equation (0.2). 

MNP' =
(QR − QR)

AS
RT=

U
,	 (0.2) 

where U denotes the number of data in the validation subset, QR the true value and QR  the expected 

value (average of the realisations). The RMSE values were 1.74 for Approach 1, 1.98 for Approach 2 

and 1.81 for Approach 3. Since RMR varies from 0 to 100, an error less than 2 was almost residual. 

  

(a) (b) 

 

(c) 

Figure 0.19 Scatter plots between true and expected RMR values for: a) Approach 1; b) Approach 2; and c) Approach 3. 
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In order to validate the capability of modelling uncertainty, accuracy plots (Goovaerts, 2001) were 

constructed. In these plots, one considers a given probability ) and, based on the obtained 

realisations, one can define at each target location an interval with such a probability (the interval 

bounds are the quantiles 1-p/2 and 1+p/2 of the set of simulated values). Subsequently, the 

location was assigned a value of 1 if the true RMR belongs to the interval and 0 otherwise. It was 

expected that, on average over all the locations of the validation subset, the proportion of 1 should 

be close to the probability p under consideration. This procedure has been applied with )	varying 

from 0 to 1 (see Figure 0.20). In Approaches 1 and 3, the observed proportion was close to the 

theoretical probability (points close to the diagonal line, with a slightly better coincidence for 

Approach 3), indicating that the realisations accurately assess the uncertainty in the actual RMR 

values.  In contrast, the same cannot be stated regarding Approach 2, since this model showed a 

lower accuracy justified by the existing separation between the theoretical probability and the 

observed proportion (see Figure 0.20b). In this case, the model tends to simulate higher values in 

comparison with the expected ones.  
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(a) (b) 

 

(c) 

Figure 0.20 Accuracy plots showing the uncertainty modelling of the simulations for: a) Approach 1; b) Approach 2; and 

c) Approach 3. 

3.3.8. Discussion of the results 

All the simulation approaches give an insight into two characteristics of the geomechanical 

parameters of interest: (1) their heterogeneity at all spatial scales, especially at short scale, which 

can be assessed on each individual realisation; and (2) the uncertainty in the true values at 

unsampled locations. The latter can be assessed by comparing a set of realisations at the same 

location or jointly over several locations, e.g., by calculating the standard deviation of the realisations 

at each location, which measures how much the true unknown values may deviate from their 

expected values (average of the realisations). 
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There are several differences between these three proposed approaches, mainly regarding pre and 

post processing. While Approach 1 allows directly simulating the RMR as a continuous variable, the 

quantity and detail of the geomechanical information is more limited when compared with 

Approaches 2 and 3 that allow the simulation of the parameters underlying the definition of RMR. 

Also, the difference in modelling and computational efforts for these approaches is substantial, 

Approach 1 being a faster and simpler alternative than Approaches 2 and 3. Regarding the results, 

the observed differences are generally not significant when mapping one realisation or the average 

of a set of realisations, but differences are perceptible when mapping the standard deviations of the 

realisations: Approach 3 yields a lower standard deviation (reflecting less uncertainty) than Approach 

1 in the peripheral zones. All things considered, the choice of the best approach should be made 

based on the resources and needs of the practitioner (degree of required geotechnical detail, 

understanding of the models, software and time availability). Also, as mentioned previously, despite 

the computational time, quality and detail of the geomechanical information, Approaches 1 and 2 

are almost similar, which emphasises the importance of comparing Approaches 1 and 3 since the 

simulation process are distinct. 

3.4. CONCLUSIONS 

The use of geostatistical techniques is very common in the mining and petroleum industry, being its 

use in geotechnical problems still scarce; however recent works have been able to perform the 

geomechanical parameters estimation using Kriging techniques. Although, the use of geostatistical 

simulation in this field is still rare. As such, in this Chapter the Gaussian and truncated Gaussian 

models were the ones chosen to simulate the empirical system, RMR. This is a commonly used 

system in rock mechanics since it allows obtaining a rock mass quality classification according to 

five classes (from very poor to very good). The RMR is presented in a continuous scale varying from 

0 to 100 and is obtained by summing five basic parameters, most of them acquired throughout a 

visual inspection (P2, P3, P4 and P5) and other using the results of the laboratory tests (P1). 

In detail, to perform the geostatistical simulation of the RMR, three different approaches were 

idealised. The first considers the direct simulation of the RMR final values, viewed as a variable 

measured on a continuous scale. In the second approach the same assumption is made but in turn 

the underlying RMR parameters were simulated individually, while the third approach simulates 

them as variables measured in a discrete scale, i.e. the simulation of the RMR final ratings was 
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performed. At the end of Approaches 2 and 3, the simulated values were transformed and summed 

until the RMR final value was obtained. 

As mentioned, the specific algorithm used in all three approaches was the Turning bands method, 

however, while Approaches 1 and 2 model the variables as Gaussian with a normal distribution, 

Approach 3 requires the application of the truncated Gaussian model, which simulates class-

indicators. 

All the developed approaches were applied to the same data set, in this case a real data set 

obtained from an epithermal gold deposit located in Chile. The data comprise the RMR information 

and the underlying parameters for a total of 3969 points. 

In all the three approaches, it was required for the simulation the computation of the variogram 

models as well as the statistical treatment of the data to use as conditioning information in the 

simulation. As a result, several types of maps were obtained, the average values of 100 realisations, 

the individual realisations, as well as standard deviations and probabilities maps. The latter allow 

identifying the zones where the rock mass has a higher or lower probability of having a RMR value 

under a predefined threshold. 

To validate the results a split-sample technique was adopted and the RMSE metric was calculated 

between the simulated values and the true RMR values. 

Regarding the obtained outcomes, all the approaches lead to similar results in terms of RMR values 

and processed outputs. In fact, according to the split-sample validation technique and the calculated 

RMSE, the three approaches show small differences in terms of prediction accuracy and 

measurement of uncertainty, which makes them viable for RMR modelling. Although it is worth 

mentioning that Approach 2 resulted in the highest RMSE value. 

The first approach presents the advantage of needing a lower computation and pre-processing time, 

maintaining a good predictive accuracy, which is an interesting feature from a practical 

implementation point of view. On the other hand, even though with higher computational costs 

needed for its implementation, the third approach presents a slightly higher accuracy and, jointly 

with the second approach, provides information on the RMR individual parameters, which can be 

useful for geotechnical analyses. For example, the simulation of parameters P2 and P3, which are 

related with fracturing of the rock mass, can provide an overview about the regions where higher 

permeability is expected. Furthermore, since it simulates variables measured on discrete scales, this 

third approach is consistent with the nature of the geomechanical parameters to be modelled, which 

are ratings rather than variables defined on a continuous scale. If these parameters were cross-

correlated, they should be jointly simulated in order to reproduce such cross-correlations. 
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The three proposed approaches prove that individual realisations were much more accurate in 

defining the heterogeneities at short scale, while the average of the realisations tends to smooth 

these heterogeneities. Besides the mapping of the RMR, the realisations allow mapping the 

probability that the actual RMR is above or below a defined threshold, thus are helpful to quantify 

uncertainties and risks. In further Chapters, new applications of the conditional simulation validated 

steps will exist, this time taking into account the concerns and limitations referred throughout this 

Chapter. 
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4.1. INTRODUCTION 

This chapter addresses a new methodology developed to model the geomechanical parameters of 

heterogeneous rock masses. This methodology is the core of this PhD thesis, since it combines 

different techniques, starting with a probabilistic technique, more specifically, the geostatistical 

simulation of geomechanical parameters, already explored in Chapter 3. Thereafter, the adaptation 

of a scenario reduction methodology that uses a clustering technique to apply in geostatistical 

simulations in order to obtain reduced number of representative realisations. Subsequently, the 

outputs of the proposed methodology are imported to a finite difference software and a mechanical 

behaviour analysis of a case study is performed. 

As mentioned in Chapter 2, geostatistics is a powerful tool that allows the simulation of 

geomechanical parameters using some preliminary data. In these conditional simulations, the 

interaction between the sample data is considered, i.e. the sample structure (variogram) is honoured 

and their correlation maintained. As result, several realisations of the random fields representing the 

variables of interest are obtained, in this case the geomechanical parameters or the empirical 

classification system used to classify the quality of the rock mass. 

In order to avoid averaging the realisations, it is of extreme importance to consider a scenario 

reduction methodology. Some authors have been applying clustering techniques, mainly in the 

mining industry and the petroleum area (Scheidt and Caers, 2009a, 2009b; Armstrong et al., 2013; 

Deutsch and Srinivasan, 1996; McLennan and Deutsch, 2005). Therefore, the contents presented in 

section 4.2.2 are addressed to an adapted scenario reduction methodology to apply to the 

geostatistical realisations of the rock mass geomechanical parameters. 

Then, to validate the previously mentioned methodologies, an analysis of the rock mass mechanical 

behaviour during the excavation of a tunnel was examined. To this end, the Flac3D (Itasca, 2012) 

finite difference software was used. Hence, the main purpose of applying the referred methodologies 

consists in mapping, simultaneously, the uncertainty associated with the geomechanical parameters 

quantification, their spatial variability and the heterogeneities existing in the rock masses at different 

spatial scales. 

For this purpose, real data from a Chilean ore deposit, located in the Atacama Region in Chile, was 

used. The data include the Rock Mass Rating (RMR) information extracted from mechanical 

boreholes performed in a spatial regular grid. Using this information, a theoretical tunnel was 
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modelled, using the developed methodology to simulate the rock mass properties, and the results 

were then compared with a similar analysis performed using a more traditional approach, that 

means, assuming the rock as a homogeneous mass. 

In the final section, some conclusions will be drawn regarding the potential of this innovative 

characterisation methodology for heterogeneous rock masses, highlighting the developed work to 

give a step ahead in implementing geostatistical techniques, which, until now, were assumed 

complex and unpractical, mainly in what concerns the geomechanical characterisation of rock 

masses. 

4.2. METHODOLOGY OUTLINE 

4.2.1. General 

The present methodology starts with a data collection, i.e. all the available geotechnical information 

originating from different sources, such as boreholes, in situ and laboratory tests, should be 

assembled together (see Figure 4.1:step 1). Hence, a statistical analysis of the available data should 

be performed in order to outline the behaviour of the variable(s) of interest through the calculation of 

the mean, variance, minimum and maximum, among other geostatistical parameters required for 

simulation.  

Alongside the aforementioned step, another primary step concerns the development of the grid 

model selected to represent the rock mass block and the underground structures using Flac3D 

software. Once all the shapes and elements of the model in study are defined, the corresponding 2D 

or 3D spatial information from all zones centroids is exported so that it could be used in the 

following rock mass characterisation methodology (see Figure 4.1:step 2). 

Thus, a conditional simulation of the chosen variable(s) on the target grid points (zones centroids of 

the Flac3D grid) is performed. The chosen variable(s) can represent either a geomechanical 

parameter or an empirical system commonly used to characterise the rock mass. If the variable(s) is 

an empirical system, the use of empirical formulas to obtain the geomechanical parameter values is 

an additional required step (see Figure 4.1:step3). 

Due to the smoothing effect arising from averaging the geostatistical realisations, a scenario 

reduction methodology based on clustering was developed and used. This methodology allows 
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obtaining a reduced number of realisations from the full set of realisations for the subsequent 

numerical analysis of the mechanical behaviour. 

Furthermore, to connect the information resulting from the geostatistical realisations to the Flac3D 

grid, a command routine was programmed using FISH, an embedded language in Flac3D. This 

routine allows assigning a set of different values to each zone centroid in the whole model, i.e. each 

centroid shows different values for the geomechanical parameters (see Figure 4.1:step 4). 

 

Figure 4.1 General workflow containing the general steps of the proposed characterisation methodology. 
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4.2.2. Geostatistical simulation 

As mentioned in Chapter 2, where details are given regarding the geostatistical techniques and 

algorithms, simulation is an increasingly used technique that allows the prediction of rock mass 

properties and, at the same time, identifies different scales of heterogeneities and quantifies the 

uncertainty in the predicted values. Geostatistical simulation results in multiples representations of 

the random field(s) or variable(s), called realisations, which can be obtained in a conditional or non-

conditional way, depending on whether or not the initial data of the variable are used and honoured 

in the simulation process. Throughout this thesis, the conditional simulation is the only applied type 

of simulation since it results in more accurate and realistic outputs always in line with the initial data 

and their true values. 

To perform conditional simulation, it is important to analyse the structural behaviour of the data by 

computing their variogram (!), which is a tool that relates the values observed at two points as a 

function of their distance in space (h) (see details in Chapter 2). Several steps should be followed 

from the time when the initial data is available until obtaining the final number of realisations of the 

chosen variable(s). Therefore, in this work the general steps proposed by Chilès and Delfiner (2012) 

and adapted by Pinheiro et al. (2015), are used and listed below: 

1. Primarily, the data are analysed and basic statistics are calculated; 

2. The data are then transformed into data with a standard Gaussian distribution (normal 

scores transformation); 

3. The experimental variograms are then computed and accordingly fitted using mathematical 

basic structures (Gringarten and Deutsch, 2001). At this point, a spatial behaviour study of 

the data can be performed in order to identify the main anisotropy directions in the 

parameters spatial behaviour. It is important to notice that this anisotropy is related with the 

directional variation of the data in space and is not equivalent to the anisotropy of the 

geomechanical parameters; 

4. Using the Flac3D zone centroids as a simulation grid, a Gaussian random field is simulated 

(non-conditional simulation) at the target points using the Turning Bands Method (Matheron 

1973; Emery and Lantuéjoul, 2006). In addition, a post-processing stage based on ordinary 

kriging is used to condition the simulation to the initial data; 

5. Back-transform the Gaussian values of each realisation into their original scale; 

6. Perform a model validation by calculating some error metrics and linear regressions. 
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In addition, a scenario reduction can be applied to the obtained number of realisations, for which 

further details are given in the following section. 

4.2.3. Scenario reduction methodology 

It is worth noticing, once again, that the scenario reduction methodology was required due to the 

smoothing effect existing when the realisations average is calculated, which precludes reproducing 

the spatial variability and heterogeneity in the rock mass. Therefore, and considering that the main 

goal of this thesis is to assess the uncertainty, to quantify the spatial variability and to identify the 

rock mass heterogeneities, it was of utmost importance not to eliminate the extreme values of the 

simulated variable. Since a high number of realisations is used to calculate an average, the values 

tend to the initial data mean value and the most unfavourable, the most favourable or even the most 

realistic scenarios would be eliminated. However, the use of all the obtained realisations would be 

unpractical, especially in geotechnics, where numerical analysis of the mechanical behaviour is 

currently carried out. As alternative, individual realisations can be used to characterise the variable 

of interest, although this selection cannot be made randomly and without any type of criteria. 

Consequently, two relevant questions arose: 1) How can the selection of the individual realisations 

be carried out?; 2) How many realisations are needed to achieve a full set of possibilities for the 

variable (geomechanical parameter) of interest?. 

For this reason, it was important to apply a methodology able to reduce the number of realisations 

to a reasonable number for practical applications and, at the same time, to realistically characterise 

the random field. A list of this kind of methodologies was proposed in Chapter 2; however, none of 

them could be directly applied in this problem without making some adjustments. 

Using as a reference the work of Scheidt and Caers (2009a), the methodology proposed here also 

applies clustering techniques to reduce the number of geostatistical realisations, more precisely a 

partitioning type of clustering, the K-medoid algorithm (Scheidt and Caers, 2009a). It is worth 

noticing that the main goal is to find an optimum number of realisations that is capable to 

statistically represent the whole set of realisations without needing a high computational time and 

enabling a field application in underground works. The general steps outlined for the methodology 

are as follows: 

1. Calculate the Euclidean distance of all the grid points between each one of the n 

realisations; 
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2. Define the dissimilarity matrix between the n realisations using the Euclidean distance 

resulting from them; 

3. Apply a Multi-Dimensional Scaling technique (MDS) to represent the dissimilarity matrix in a 

2D space, and herewith a spatial representation of the n realisations is accomplished, in 

which each point represents one realisation; 

4. Apply the kernel function to obtain the Featured Space (i.e. a more linear representation of 

the points, meaning the realisations) (see Chapter 2 for details); 

5. Perform the kernel k-medoid clustering for a previously defined maximum value of clusters; 

6. Calculate the silhouette value for each cluster (from 1 until the maximum of clusters) and 

evaluate the optimum number of clusters to use; 

7. Plot the optimum number of clusters and their respective medoids (centres); 

8. Perform the post-processing analysis to understand the validity of each cluster. 

As a note, it is important to underline that each point represented in the 2D space corresponds to 

one of the n geostatistical realisations. Also, in what concerns numbers 6 and 7 above, as regards 

the optimum number of clusters, it is noteworthy that in the developed methodology the maximum 

number of clusters is not assumed as an input variable but as an automatic process, i.e. using 

optimisation methods. In this regard, a Matlab toolbox called evalclusters (Tibshirani et al., 2001). 

was used, resulting in the computation and plotting of each cluster configuration adopting as 

evaluation criterion the silhouette value. 

The silhouette method was firstly introduced by Rousseeuw (1987) aiming to be a measure of 

similarity between the points within the same cluster compared with the points of the other clusters. 

For this purpose, it is required to have the partition obtained after applying the clustering technique 

and using the dissimilarity between each realisation. From here, the silhouette value for each "#$ 

object can be obtained through 

%& = ()& − +&)/max	(+& , )&)	 (4.1) 

where +& represents the average distance from the "#$ point to the other points in the same cluster 

", and )& is the minimum average distance from the "#$ point to all the other points placed in a 

different cluster, minimised over all the clusters. 

By definition, the value of %& can vary between -1 to +1. A positive value closer to the unit is 

desirable because it means that the  "#$ point is well-matched to its own cluster and poorly-matched 

with the neighbouring clusters, indicating that the point is classified in the right cluster. 
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On other hand, a negative value for the silhouette (-1) corresponds to a case in which +& is greater 

than )& reflecting that the clustering solution has too many or too few clusters. 

In an intermediate case, if %& has a value near 0, +& and )& are approximately equal and it is not 

clear whether " should have been assigned to cluster A or B, i.e. the "#$ point lies in-between both 

clusters. 

For each cluster, a unique silhouette value can be defined by performing the average of the %& 

values for all objects " belonging to the cluster. For example, if a cluster is composed by a total of 

100 points, an average of 100 silhouette values is performed, resulting in the so-called average 

silhouette width. An overall average silhouette width can be obtained for the entire plot considering 

all the points that compose the whole data set (Rousseeuw, 1987). 

After plotting the average silhouette width for all the clusters, the optimum number is chosen for the 

configuration that results in the higher value, taking as a reference the ranges presented in Table 

4.1. 

Table 4.1 Silhouette reference values used to evaluate the optimum number of clusters (Struyf et al., 1997). 

Silhouette value Designation 

[0.71 - 1] A strong structure has been found 

[0.51 - 0.7] A reasonable structure has been found 

[0.26 - 0.50] A week structure has been found and could be artificial 

< 0.25 No substantial structure 

It is important to stress that all the mentioned techniques and algorithms were programmed in 

Matlab (MathWorks, 2016) and were entirely adapted and rewritten to allow the integration of the 

geostatistical information and to consider the geotechnical type of variables used during this thesis 

development. Also, some internal functions, like the Multi-Dimensional Scaling (MDS) and 

evalclusters (Tibshirani et al., 2001) were integrated into the new developed routines (see Figure 

4.2). 
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Figure 4.2 Scheme to follow in order to apply the scenario reduction methodology proposed in this section. 
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4.3. CASE STUDY - CHILEAN DEPOSIT 

4.3.1. Geotechnical data 

Once again, the data resulting from an epithermal gold deposit located in the Atacama Region in 

Chile will be used here to validate the proposed methodology. The available data set comprises a 

total of 3669 samples obtained from a regular grid, spaced 40 m in directions 3 and 4, in the 

horizontal plane and 20 m in 5 direction. These data were used to obtain the information regarding 

the RMR five parameters (all excepting parameter P6 related to the orientation of discontinuities) 

and, subsequently, used to measure the UCS through the execution of laboratory tests using 

cylindrical rock samples showing an isotropic behaviour. According to the data statistics, the RMR 

varies from 48 to 78, i.e. from a fair to a good geomechanical quality of the rock mass. More details 

about the data set were given in Chapter 3. 

4.3.2. Three-dimensional numerical model 

A 3D numerical model was developed using Flac3D software in order to investigate the differences in 

the tunnel behaviour when a heterogeneous approach is used to obtain the geomechanical 

parameters of the rock mass. The modelled tunnel presents a length of 90 m and is composed by a 

6 m radius arch with vertical sidewalls with the same height. The Flac3D model grid is 108 m wide 

along the direction 3, 90 m along direction 4 and 200 m along the direction 5 and is composed, 

mostly, of brick elements, which size increases as one moves far away from the tunnel, resulting in 

a finer mesh near the excavation. A total of 100,800 zones and 105,742 grid points compose the 

model. The tunnel central axis is located 96 m below the ground surface (see Figure 4.3). 
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(a) (b) 

Figure 4.3 Finite difference grid of tunnel model: a) 345 perspective; b) 35 plan view of the tunnel zone. 

In what concerns the model boundary conditions, the horizontal displacements in the model vertical 

boundaries were blocked, along with all displacements in the inferior boundary. 

The adopted tunnel support system is composed of 0.20 m thick shotcrete simulated with shell 

elements with a linear elastic isotropic behaviour, with a deformation modulus of 20 GPa and a 

Poisson’s ratio of 0.25. The construction process begins with the excavation of the tunnel arch in a 

3 m length followed by the application of shotcrete in the arch. Then, the remaining part of the 

tunnel is excavated and finally the shotcrete is applied in the walls of the tunnel. A gravitational initial 

stress field with a horizontal to vertical stress ratio (67) of 0.5 was adopted. 

4.3.3. Geostatistical simulation results 

Taking into account the available data of the case study, the geostatistical simulation was performed 

for RMR and UCS variables on the previously constructed Flac3D mesh (i.e. considering the zone 

centroids spatial information). As mentioned in section 1.2, the required variogram of both variables 

(previously transformed into normally-distributed variables) was built along two main directions of 

anisotropy (regarding the spatial variation of the data), namely, the horizontal plane (34 plane) and 

the vertical direction (5), considering lag distances multiples of 40 m for the horizontal plane and 

20 m for the vertical direction (see Figure 4.4). 
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(a) (b) 

Figure 4.4 Experimental (crosses) and theoretical (solid lines) variograms along the main anisotropy directions: 

horizontal plane (black) and vertical (blue): a) RMR; and b) UCS. 

Analysing Figure 4.4a, it is possible to observe that the RMR shows an almost isotropic behaviour 

since the variogram range is similar for both analysed directions. However, the same does not 

happen for UCS, with the vertical direction showing a smaller range than the horizontal plane, i.e. 

confirming the distinctive spatial behaviour in both directions (high variability for smaller distances in 

the vertical direction). Nonetheless, in Figure 4.4 it is also possible to observe in solid lines the 

variogram models. The variograms are modelled with exponential and Gaussian basic structures, as 

presented below (the distances between brackets represent the correlation range for each anisotropy 

direction and the number preceding the basic structure indicates the sill of the structure): 

§ RMR variogram model: 

	! = 0.61	<3=>?@?A"+B	 250	E; 250	E + 	0.05	H+IJJ"+?	(450	E; 250	E)	

§ UCS variogram model: 

	! = 0.44	<3=>?@?A"+B	 450	E; 150	E + 	0.66	H+IJJ"+?	(500	E; 105	E)	

Once obtained the variogram models, the realisations of both variables can be constructed using the 

TBM mentioned before (with a total of 1500 turning lines) and conditioned to the sampling data. The 

number of realisations was set to 100, resulting in a total of 100 RMR and UCS realisations. 

For the simulation process the average of the 100 realisations for each of the 100,800 zone 

centroids of the Flac3D mesh (3, 4 and 5 coordinates) was calculated. In Table 4.2 the RMR basic 

statistics for the initial values and for the 100 realisations average are provided, as well as for the 

UCS variable. Analysing the simulations closely, it is possible to detect a good fit between the initial 

statistics and the simulated ones for the UCs variable; however, the same cannot be stated for the 
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RMR variable that shows a variation scale considerably narrow, probably justified by the high RMR 

values in zones with more mesh elements (a more refined mesh was used in the elements near the 

tunnel). Furthermore, in order to demonstrate the spatial variability existing in this rock mass, the 

RMR first realisation and average of 100 realisations were mapped in three-dimensions as shown in 

Figure 4.5. The scale of variation for the RMR is considerably low and the rock mass can be 

assumed as nearly homogeneous. 

Table 4.2 RMR and UCS (in MPa) statistics for the initial values and the average of 100 conditional realisations. 

 RMR UCS 

 Initial values 
Average of simulated 

RMR 
Initial values 

Average of simulated 

UCS 

Number of grid 

points 
3969.0 100,800 3969.0 100,800 

Minimum 48.0 68.01 137.9 139.31 

Maximum 78.0 73.01 207.7 189.81 

Mean 66.7 70.8 176.9 163.5 

Variance 14.2 5.6 1054.7 908.7 

 

 

 

 

 

(a) (b) 

Figure 4.5 3D maps of RMR simulated on Flac3D mesh, for: a) realisation #1; and b) average of 100 realisations. 

4.3.4. Reduction scenario methodology applied to RMR simulations 

                                                
1 The minimum and maximum values were evaluated after averaging the 100 realisation values. 
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As perceived from the content of Table 4.2 by performing the 100 realisations average the extreme 

values of the RMR were, when compared with the initial data set values, much closer to the mean. 

In the previous Chapters, it was already stated the smoothing effect existing after averaging the 

geostatistical realisations, which cannot translate, in a precise and accurate way, the variable spatial 

model. Consequently, it is of interest to use a scenario reduction methodology, as previously 

exposed, in order to keep with a few realisations instead of their average. 

Firstly, it was necessary to spatially represent the 100 RMR realisations, achieved after computing 

the Euclidean distance between the 100 realisations using all the realisations grid points. To make it 

clear, the Euclidean distance L(3, 4) is computed between realisation 3	and realisation 4 using the 

sum of the square difference of both realisations values in all the grid points (3& and 4&) as, 

L(3, 4) = (3& − 4&)
M

N

&OP

	 (4.2) 

where Q represents the number of grid points, and 3& 	and 4	& 	take, in this case, values of RMR in 

each "	point of the realisation 3 and 4, respectively. From here, and using as reference the 

Euclidean distances between all the realisations, a dissimilarity matrix was calculated (see Table 

4.3). 

Table 4.3 Extract of the RMR 100 realisations dissimilarity matrix (each column and line represent the realisation 

number). 

 1 2 3 4 5 6 7 8 9 ... 95 96 97 98 99 100 

1 0 695 956 706 979 708 1229 768 662 

... 

1322 963 1237 683 792 687 

2 695 0 955 834 744 658 1234 761 659 1431 1190 1218 711 926 740 

3 956 955 0 1183 1254 682 658 756 1009 733 871 1843 867 686 1084 

4 706 834 1183 0 1103 917 1497 947 821 1569 1066 1185 776 1064 715 

5 979 744 1254 1103 0 925 1411 1120 863 1674 1567 1128 1126 1178 1045 

6 708 658 682 917 925 0 981 714 769 1093 993 1451 734 731 808 

7 1229 1234 658 1497 1411 981 0 991 1257 633 1129 2152 1138 883 1380 

8 768 761 756 947 1120 714 991 0 746 1167 847 1621 624 777 762 

9 662 659 1009 821 863 769 1257 746 0 1445 1090 1186 677 874 673 

... ... 
       

... 
       

95 1322 1431 733 1569 1674 1093 633 1167 1445 

... 

0 1036 2289 1260 944 1506 

96 963 1190 871 1066 1567 993 1129 847 1090 1036 0 1867 885 782 1036 

97 1237 1218 1843 1185 1128 1451 2152 1621 1186 2289 1867 0 1472 1612 1256 

98 683 711 867 776 1126 734 1138 624 677 1260 885 1472 0 829 632 
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99 792 926 686 1064 1178 731 883 777 874 944 782 1612 829 0 964 

100 687 740 1084 715 1045 808 1380 762 673 1506 1036 1256 632 964 0 

Through the application of a Multi-Dimensional Scaling technique (MDS), a 2D spatial representation 

of the dissimilarity values obtained between realisations was obtained (see Figure 4.6). This 

representation is accomplished through a random generation of coordinates (R and S in meters) 

and consecutive spatial arrangement in a way that the distance between the realisations (in the 

figure represented by black points) have the same spatial distance as the dissimilarity distance 

computed before. 

 

Figure 4.6 2D spatial representation of the RMR 100 realisations (black points) using the Euclidean distance. 

In order to apply the kernel k-medoid algorithm an essential step lies in the transformation of the 

Euclidean space representation into a more linear one, the Featured Space. In this regard, a Kernel 

width of 2000 was adopted to guarantee the linearity of the points that represent the RMR 100 

realisations (see more details in Chapter 2). Before setting the final number of clusters, a cluster 

evaluation was performed. For this purpose, a Matlab toolbox called evalclusters (Tibshirani et al., 

2001) was used and the cluster evaluation was made considering the calculation and plot of the 

clusters Silhouette values (Rousseeuw, 1987). As result, Figure 4.7 shows the graphic obtained – 

relating in the 3 axis the number of evaluated clusters and in 4 axis the results for the average 

silhouette width. 
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Figure 4.7 Average silhouette width values for the performed clusters evaluation. 

According to Figure 4.7, the optimum number of clusters obtained for this case study was 2, which 

corresponds to an average silhouette width value of 0.62. However, the differences in the average 

silhouette width values for other number of clusters are not pronounced, meaning that almost every 

number of clusters (with an average silhouette width value higher than 0.50) could be chosen in this 

case. 

Hence, and considering a total of 2 clusters to perform the reduction scenario of the RMR full 

realisation set, Figure 4.8 shows the final configuration for both clusters with the identification of the 

associated medoids (centres). This configuration was set by applying the kernel k-medoid for a 

maximum of 500 iterations. By way of comparison, a single cluster with no data set division was 

also considered. It is noted that, in Figure 4.8, the R and S axes show the scale resulting from the 

Euclidean distance representation (see Figure 4.6).  
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(a) (b) 

Figure 4.8 Clusters final configuration (points) with the matching medoids (squares) for: a) 2 clusters; and b) single 

cluster. 

Along with the clusters graphical representation, the use of this methodology allows the identification 

and listing of the medoids corresponding realisations to be used in the following steps of this 

characterisation methodology. As mentioned, the main goal of this scenario reduction methodology 

is to select individual realisations of the random field with a mathematical foundation, avoiding loose 

statistical and meaningless information. 

Hence, a validation of the selected clusters configurations was carried out to analyse the differences 

with the full realisation set. Therefore, the percentiles 10, 50 and 90 of each realisation that 

composes both data sets (full realisation set and the selected clusters) were computed. This metric 

indicates the value below which a given percentage of realisations falls. Since in the present 

problem, the chosen variable (RMR) cannot be related with a time step, as happens in the 

petroleum and mining studied fields (e.g. net present value of oil production for each time interval), 

the ways defined to graphically represent the percentiles values obtained for each grid point and 

computed between the realisations (full realisation set and selected clusters) were: 1) the percentiles 

10, 50 and 90 values were summed point by point in order to represent the percentile evolution for 

all the grid points. The goal was to understand if with a smaller set of realisations (two and one) the 

percentiles value show the same trend. As an example, for percentile 10 of grid point number 1 was 

represented in the graph, then for point number 2 the corresponding percentile 10 value was 

summed with percentile 10 value of grid point 1 and so one until the total of grid points is achieved; 

and 2) the percentiles 10, 50 and 90 values of each grid point were summed until the total of grid 

points are reached. Then the total is divided by the number of grid points so that an average value of 

percentile 10, 50 and 90 is obtained. This last type of graphical representation allows obtaining a 

more linear overview of the sets differences in all the simulated block (grid points). Figure 4.9 
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displays the referred two graphics for a two-clusters and a single cluster structure in comparison 

with the full realisation set. From figure analysis, it is possible to observe that, in both cases, the 

RMR average values for all the percentiles are never higher than 1.5 (see Figure 4.9a and Figure 

4.9c). Indeed, analysing in detail Figure 4.9a andFigure 4.9c, it is possible to notice that the 

differences between the selected realisations set and the 100 realisations set are smaller in a case 

of a single cluster.  

With regard to the percentile point by point representation, Figure 4.9b allows perceiving that the 

percentiles plot of the selected realisation set, when compared with the full realisation set, are 

following the same evolution and are almost coincident, proving that by assuming a two clusters 

configuration the full set of the 100 realisations can be statistically well represented. In the following 

table (see Table 4.4) the basic statistics (mean, variance, minimum, maximum and percentiles) of 

all the sets, initial values, 100 realisations and selected realisations, are presented. As presented in 

Table 4.4, when the average of the 100 realisations is performed the minimum and maximum value 

are closer to the RMR mean value, so the extreme values are not considered into the rock mass 

model, as anticipated. Henceforth, Table 4.5 displays the basic statistics of the RMR for the central 

realisations (corresponding medoids) of the two clusters and single cluster configurations along with 

the 100 realisations average values for comparison.  
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(a) (b) 

 

(c) 

Figure 4.9 Validation of the two clusters configurations compared with the 100 realisations set using the percentiles 10, 

50 and 90, for: a) average percentiles values for the 2 clusters configuration; b) point by point percentile sum for the 2 

clusters configuration; and c) average percentiles values for the single cluster configuration.  
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Table 4.4 Basic statistics of the RMR variable for the initial values, 100 realisations and selected realisation data sets. 

Table 4.5 Basic statistics of the RMR for the individual realisations of the two clusters, single cluster configurations and 

100 realisations average values. 

As displayed in Table 4.5 by considering individual realisations, the maximum values stay closer to 

the initial values (see first column of Table 4.4); however, the same statement cannot be made 

regarding the minimum values since the initial set shows a minimum RMR equal to 48, while the 

two and single clusters resulted in minimum values of 65 and 64, respectively. When a different 

metric is compared, namely the variance between the points, it is possible to observe that along with 

the 100 realisations average, the individual realisation set are still far from the variance that 

                                                
2 Variance obtained after performing the average of the realisations for each grid point and then compute the variance 

between the grid points. 

3 Variance obtained after computing the variance between realisations for each grid point and then calculate the average 

variance values. 
4 the minimum and maximum values were obtained after preforming the realisations average and, therefore, the values 

are higher and lower than the ones obtained in each individual realisation. 

 
Initial values 

100 realisations 

(average values) 

2 Clusters 

(average values) 
Single cluster 

Number of grid points 3969 100,800 100,800 100,800 

Mean 66.69 70.78 70.64 70.71 

Variance between 

points 
14.21 0.122 1.022 1.93 

Variance between 

realisations 
- 5.633 4.134 - 

Minimum  48.00 68.004 67.504 64.00 

Maximum  78.00 73.004 75.503 77.00 

Percentile 10 - 67.99 69.44 69.00 

Percentile 50 - 70.58 70.64 71.00 

Percentile 90 - 73.79 71.84 73.00 

 
Cluster 1  Cluster 2  

Single  

Cluster 

100 realisations 

(average values) 

Number of grid points 100,800 100,800 100,800 100,800 

Realisation number 15 83 41 - 

Number of realisations per 

cluster 

53.00 47.00 100.00 - 

Mean 71.71 69.56 70.71 70.03 

Variance between points 2.23 1.63 1.93 0.12 

Standard deviation 1.50 1.28 1.39 0.35 

Minimum 66.00 65.00 64.00 68.00 

Maximum 81.12 76.00 77.00 73.00 
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composed the initial set. Even though, seems reasonable to assume that the best approach to 

construct the rock mass model is to assume geostatistical realisations as possible characterisation 

scenarios for the rock mass, namely the individual realisations instead of the average values. 

4.3.5. From geotechnical data to geomechanical parameters 

Once having finished the Flac3D mesh construction, the simulation of the geotechnical information 

and the realisations selection through the application of a reduction scenario methodology, a 

subsequent and crucial step consists in obtaining the geomechanical parameters to use in Flac3D, 

namely the rock mass deformation modulus, since a linear elastic behaviour was adopted to 

represent the rock mass. A unit weight of 25 kN/m3 and a Poisson’s ratio of 0.20 were assumed for 

the rock mass. 

With the purpose of obtaining the geomechanical parameters using the RMR information, several 

empirical expressions were considered. Then, by applying a statistical methodology proposed by 

Miranda (2003) all the empirical expressions were used to obtain the rock mass deformation 

modulus (<T). The aim of the methodology is to reduce the uncertainty of applying only one 

empirical formula to obtain <T and combines different expressions found in the literature. 

The empirical expressions that required the RMR as an input parameter were already listed in 

Chapter 2, thus four formulas proposed by different authors were used to calculate the <T. It is 

important to notice that all the used formulas were developed using data from similar rock types as 

the one in this case. Since the information regarding the Uniaxial Compressive Strength (UV%) 

exists and the geostatistical simulation was performed, some of the selected formulas also consider 

its value as an input. Likewise, the same happens for the Geological Strength Index (GSI) that could 

be obtained from the RMR using a correlation formula (Hoek et al., 1995). Table 4.6 shows the 

selected <T expressions along with their limitations of application and their authors.  
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Table 4.6 Empirical expressions used to obtain <T and the corresponding authors. 

Number Author 
Required 

Parameters 
Limitations Equation (WX in GPa) 

1 Bieniawski (1989) RMR RMR>50 <T = 2×Z[Z − 100 

2 

Mohammadi and 

Rahmannejad 

(2011) 

RMR - 

<T = 0.0003×Z[Z] − 0.0193×Z[ZM

+ 0.315×Z[Z

+ 3.4064 

3 Hoek et al. (2002) UCS, GSI 
UCS>100 

MPa 
<T = 1 −

_

2
×10(`abcP7)/d7 

4 Read et al. (1999) RMR - <T = 0.1×
Z[Z

10

]

 

In the third formula, an additional parameter represented by the D letter is required. This coefficient 

is dependent on the disturbance degree of the rock mass due to the excavation process and, in this 

case, an intermediate value was adopted (D=0.5). 

The admissible interval (AI) methodology (Miranda, 2003) uses as an input the data obtained when 

different formulas are applied and combined them in order to get an admissive interval, which can 

be calculated using Equation (4.3). 

ef = E@+? ± h	 (4.3) 

where the mean term corresponds to the average values of <T using all the chosen formulas and h 

represents the standard deviation of the average values. The range of the interval is given by the 

<T	mean plus and minus one standard deviation. 

Subsequently, a filter on the <T values for each one of the four formulas was applied, aiming to 

identify the values located outside the range of the AI. These outside values were then eliminated 

and a new average of <T was computed using the remaining and accepted values. As 

consequence, a single <T value was calculated for each grid point of the Flac3D mesh. In the case of 

all the values being rejected, the <T value was obtained with the average of the four formulas. Note 

that the methodology was applied to each point of the Flac3D mesh and then to each one of the 100 

realisations. 

4.3.6. Models in analysis 

In order to understand the advantages of these heterogeneous approaches, the results of the 

numerical models obtained from individual realisations needed to be compared with the traditional 
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approach of assuming a homogeneous medium (deterministic values for the geomechanical 

parameters). Indeed, this comparison allows assessing the main differences in terms of accuracy 

and uncertainty reduction in the rock mass characterisation process. For this model, called as 

model 4, the deformation modulus was obtained from the average value of the RMR in the 100,800 

zone centroids, using the four empirical formulas above and averaging the obtained <T results. 

Therefore, apart from the single cluster (model 1) and two clusters (model 2) configurations, a third 

model was considered using the realisations average values calculated in each grid point of the 

Flac3D mesh, resulting in the called Mean model (model 3). The inclusion of this model aims to show 

the limitation in using the realisations average values instead of individual realisations since the 

extreme values are smoothed. 

In addition, to confirm the advantages of using the scenario reduction methodology instead of the 

realisation averages or another methodology, the selected clusters results (two clusters and single 

cluster configurations) were compared with the numerical results obtained considering each one of 

the 100 realisations. It is important to point out that these calculations were carried out because the 

theoretical tunnel excavated in the Chilean rock mass was a simple case and therefore the 

computational time was modest. 

For the sake of clarification of all the analysed models, Figure 4.10 presents a scheme illustrating 

the path followed on the mentioned process, starting with the variable selection and its geostatistical 

simulation, then the application of the scenario reduction methodology and, finally, the <T output 

values used in the Flac3D analysis. Moreover, Table 4.7 summarises the adopted values for models 

1, 2 and 3 (see Figure 4.10). Regarding model 4, the deterministic value adopted to represent <T 

was 32.73 GPa. 
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Figure 4.10 Workflow applied to build the different models to represent the rock mass characterisation of the Chilean 

rock mass using as an input the RMR system.  
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Table 4.7 Rock mass deformation modulus (<T in GPa) basic statistics of model 1 (single cluster), model 2 (two 

clusters) and model 3 (100 realisations average). 

Figure 4.11 presents a 345 perspective with the spatial distribution of the <T values for the 

previously defined models where it is possible to observe, in the case of models 1 and 2, zones with 

lower and higher deformation modulus marking the variability of the <T values. 

In particular, looking at model 2, it is possible to observe that both clusters are almost 

complementary, i.e. in cluster number 1 zones with lower <T value correspond to zones with higher 

<T value in the case of cluster number 2, and vice-versa. In the case of model 1, the <T values 

pattern are quite different from the one presented in the 2 clusters of model 2; however, the latter 

were the ones that presented the highest and lowest <T value. 

Concerning model 3, it is important to stress out that the resulting heterogeneity level is very small, 

since the <T minimum value is 33 GPa and the maximum value is 36 GPa. 

For the remaining 100 models (model 5 to 104) the spatial distribution was not represented due to 

their large number; although the numerical analysis was performed and the results will be 

commented further. 

 Model 1 Model 2 Model 3 

 Single 

Cluster (real. 41) 

Cluster 1  

(real. 15) 

Cluster 2  

(real. 83) 
Mean 

Number of grid points 100,800 100,800 100,800 100,800 

Number of real. per cluster 100.00 53.00 47.00 - 

Mean 36.03 39.39 35.27 32.73 

Variance between points 5.21 8.31 5.53 0.32 

Minimum 25.79 29.00 27.39 29.98 

Maximum 49.95 59.25 47.82 38.02 
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(a) (b) 

 

(c) (d) 

Figure 4.11 Flac3D 345 perspective with <T values (colour scale in Pa) used in: a) model 1; b) model 2 – cluster 1; c) 

model 2 – cluster 2; and d) model 3.  
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4.3.7. Numerical results 

In this section, the numerical results obtained from the calculations carried out using the finite 

difference software Flac3D are presented. Emphasis will be given to the results in terms of 

displacements since the deformation modulus affects them in a direct way; however, some 

reference will be made to the maximum and minimum principal stress values calculated in the rock 

mass. This analysis was performed for all the mentioned models to allow a further comparison 

between the values. In detail, regarding the displacements on the rock mass, the maximum values 

obtained on the top of the tunnel arch, at the mid-point of the invert, and at mid-height on the left 

and right side walls were registered. 

Primarily, Table 4.8 presents a summary of the maximum, minimum and percentile values obtained 

from the calculations for all the 100 individual realisations. Since models 1 and 2 concern to 

individual realisations, they are also included in the 100 realisations values. Note that these values 

should serve as a reference for further comparisons. 

Table 4.8 Displacements and stresses values obtained for the 100 individual realisations. 

Comparing the 100 realisations results, some differences are worthy of reference, namely the 

differences between the maximum and minimum values for the vertical and horizontal 

displacements. In terms of principal stresses, those differences are subtler with variations smaller 

than 1 MPa. If analysed the mean values, the displacement values differences between the left and 

right sidewalls are zero, confirming that the heterogeneity in this rock mass is truly smaller. 

Looking in detail models 1, 2, and 4, Table 4.9 shows a summary of the displacements and 

stresses obtained from the numerical analysis. 

 Vertical displacement 

(mm) 

Horizontal displacement 

(mm) 

Max. stress 

(MPa) 

Min. stress 

(MPa) 

Arch Invert Left wall Right wall  

Minimum 5.20 6.82 1.50 1.42 6.67 1.77 

Maximum 8.34 11.31 2.75 2.63 7.91 1.84 

Mean 6.60 8.62 2.00 2.00 6.97 1.80 

P10 5.92 7.76 1.73 1.71 6.81 1.77 

P50 6.60 8.62 2.00 2.00 6.97 1.79 

P90 7.49 9.80 2.28 2.33 7.21 1.82 
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Table 4.9 Summary of the displacements and stresses results obtained in each one of the first four models. 

Regarding the vertical displacements of model 1 (single cluster), the maximum value was observed 

on the centre of the tunnel invert with a magnitude of 8.03 mm, while the central point of the tunnel 

arch shows a smaller value of 6.74 mm (see Figure 4.12). Moreover, the tunnel walls show, as 

expected, maximum horizontal displacements of different values, recording a 1.89 mm 

displacement on the middle of the left wall and 2.10 mm on the right wall. The observed disparity 

between the horizontal displacements can be explained by the assumed variability in the <T values 

(see Table 4.9). 

Concerning the results of model 2 (two clusters) the same qualitative displacement pattern as model 

1 can be observed. Indeed, cluster number 1 of model 2 shows lower values for all the 

displacements controlled points, while cluster number 2 registered higher values in the same points. 

The maximum vertical displacement occurs in the centre of the tunnel invert with, approximately, 

9.00 mm (cluster 2), whereas the maximum displacement on the tunnel arch admits a magnitude of 

6.06 mm (cluster 1). For the sidewalls, the range of values vary between 1.82 mm (left) and 

1.93 mm (right) for cluster number 1 and 2.19 mm (left) and 2.11 mm (right) for cluster number 2. 

Indeed, an opposite effect happens between both clusters, since the maximum horizontal 

displacement is in contrary sidewalls. As anticipated, the displacements value for cluster 1 are 

smaller when compared with cluster 2, corroborating the pattern of the rock mass deformation 

modulus contour that are higher in cluster 1 (see Table 4.9). 

As expected, for model 3 (100 realisations average) the differences registered between the 

horizontal displacements were residual. The same tendency as the previous models was followed for 

the maximum vertical displacements happening in the centre of the tunnel invert with a value of 

9.48 mm. In similar grounds, model 4 shows similar results presenting horizontal displacements on 

the tunnels walls with the same value, 1.79 mm. For the vertical displacement, the maximum value 

Model 
Corresponding 

realisation 

Maximum vertical 

displacement (mm) 

Maximum horizontal 

displacement (mm) 

Principal stress 

(MPa) 

Centre of 

the arch 

Centre of 

the invert 

Centre of 

the arch 

Centre of 

the invert 
Maximum Minimum 

Model 1 Realisation 41 6.741 8.027 1.887 2.091 6.972 1.791 

Model 2 - 

Cluster 1 
Realisation 15 6.059 7.988 1.820 1.932 6.890 1.807 

Model 2 - 

Cluster 2 
Realisation 83 6.977 8.934 2.188 2.110 6.941 1.782 

Model 3 Average 7.159 9.478 2.211 2.176 6.914 1.781 

Model 4 - 5.860 9.360 1.790 1.790 6.910 1.770 
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was of 9.36 mm on the tunnel invert while in the tunnel arch the registered value was 5.86 mm (see 

Table 4.9). 

Note that all the previously presented values were obtained after the tunnel excavation and in the 

same section of the tunnel, with an 4	equal to 0. Figure 4.12 shows the displacements contour in all 

the three models for comparison. In the figure, it is possible to observe that the overall 

displacements are considerably small due to the fact that the rock mass shows a good 

geomechanical quality, resulting in high <T values. 

In terms of stress distribution, and based on the maximum and minimum principal stresses, it is 

possible to conclude that the rock mass surrounding the tunnel is predominantly in compression for 

all the three models. In model 1 the tunnel walls are the most compressed zones, with values of 

6.0 MPa and 1.8 MPa for the maximum and minimum principal stresses, respectively. Moreover, 

the tunnel arch and invert show compression stresses ranging between 4.0 MPa and 0.4 MPa. Also, 

a value of 7.0 MPa is obtained in the connection between the arch and the tunnel walls, a small 

zone where the compression stresses are concentrated. 

In what concerns model 2, cluster 1, the most compressed zones are the same as referred before 

and with the same magnitude of values for the maximum principal stress and minimum principal 

stress values for the tunnel walls, while the arch and invert show values ranging between 2.0 MPa 

and 0.5 MPa. Likewise, for cluster 2 of model 2, the range of the stress values show slight 

difference from cluster 1, presenting smaller values, mostly in the tunnel arch and invert (see Table 

4.9). 

Similarly, the stresses of model 3 show the same range of values as model 1. Indeed, this similarity 

in the stress values can be justified by the lower influence of the <T variation on the rock mass 

principal stresses. As expected, the stresses are smaller on the tunnel invert and arch where the 

maximum displacements were observed in all the 104 models. 

In addition, in all the models a small zone located between the arch and the walls presents 

compression of almost 7.0 MPa. 

Regarding the tensile stresses, they only appear in the centre of the walls and invert with values 

under 0.2 MPa. Figure 4.13 presents the contour for the maximum principal stress of the rock mass 

after the excavation process for the same section as previously presented for the displacements 

contour of model 1, 2, 3 and 4. 
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(a)  (b) 

  

(c) (d) 

  

(e) 

Figure 4.12 Ri plane at y=0 with Flac3D contour of displacement (colour scale in m) of the rock mass after the 

excavation for: a) model 1; b) model 2 – cluster 1; c) model 2 – cluster 2; d) model 3; and e) model 4. 
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(a) (b) 

  

(c) (d) 

  

(e) 

Figure 4.13 XZ plane at y=0 with Flac3D contour of the principal maximum stresses (compression- colour scale in Pa) 

after the excavation process for: a) model 1; b) model 2 – clusters 1; c) model 2 – cluster 2; d) model 3; and e) model 

4. 
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In order to understand the full data set representation using the clusters, an individual analysis was 

completed for each displacement and stress value. The aim was to represent and identify the 

percentiles, maximum and minimum values of all the analysed models including the mean and 

homogeneous models. 

Therefore, in Figure 4.14 to Figure 4.16 all the models’ values for the displacements and principal 

stresses obtained after the tunnel excavation are represented. Observing the mentioned figures, it is 

possible to draw some conclusions regarding the clusters’ models and compare them. As such, in 

the tunnel displacements graphics it is possible to conclude that cluster 1 and cluster 2 from model 

2 always result in values limited by percentile 10 and 90, respectively, with exception of the right 

sidewall displacements, where the clusters show values closer to percentile 50 (see Figure 4.15b). 

Concerning model 1, the chosen cluster is most of the times near percentile 50 but the same does 

not happen in the tunnel invert displacements, with model 1 getting closer to percentile 10. 

Comparing models 3 and 4, except for the tunnel invert displacements where both models show 

similar values, in the remaining control points both models are quite different from each other. 

Regarding the principal stress results, since the values for the maximum principal stress are less 

disperse, model 2 clusters show similar values, closer to percentile 10. In the case of the minimum 

principal stress this does not happen and both clusters are quite distant from each other. In this last 

case, cluster 1 that has been showing the lowest values for the maximum principal stress and 

displacements, show here the highest value, switching place with cluster 2. 

 

 

(a) (b) 

Figure 4.14 Representation of the displacements (in mm) obtained for all the analysed models (104), the single cluster 

of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the deterministic model 4 (Homogeneous) and the 100 

realisations, in: a) centre of the tunnel arch; b) centre of the tunnel invert. 
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(a) (b) 

Figure 4.15 Representation of the displacements (in mm) obtained for all the analysed models (104), the single cluster 

of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the deterministic model 4 (Homogeneous) and the 100 

realisations, in: a) centre of left sidewall; b) centre of the right sidewall. 

 

 

(a) (b) 

Figure 4.16 Representation of the principal stresses (in MPa) obtained for all the analysed models (104), the single 

cluster of model 1 (Single), cluster 1 (C1) and 2 (C2) of model 2, the deterministic model 4 (Homogeneous) and the 

100 realisations: a) maximum principal stress; b) minimum principal stress. 

4.3.8. Discussion 

In this section an exhaustive analysis will be made comparing the obtained values for the 

displacements and principal stresses of this tunnel case, aiming to address three main points: 1) the 

heterogeneity representation of the individual realisations when compared with a traditional 

approach that assumes the rock mass as an homogeneous medium; 2) the advantage in using the 

scenario reduction methodology in comparison with the realisations average or even the 100 

realisations; and 3) comparing the results, in terms of values and computational time, of using the 
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scenario reduction optimal cluster configuration with respect to all the 100 realisations, i.e. giving an 

answer to the question if the optimal clusters configuration is able to integrate the most conservative 

and optimistic values and embody a good solution to integrate in the numerical analysis. 

Regarding the first point, it was possible to observe from Figure 4.12 that the heterogeneity of the 

rock mass is manifested by the asymmetrical pattern of the contour of displacements in models 1 

and 2. Indeed, the disparity of the values of the horizontal displacements came to confirm this 

statement. In relation to model 4, models 1 and 2 show percentage differences in displacements 

values ranging from 18% to 2%, being either positive or negative. In detail, these differences can be 

consulted in Table 4.10 where the presented percentages were obtained using model 4 

(homogeneous model) as a reference. In terms of principal stresses the maximum difference 

between the heterogeneities models and the homogeneous model was of only 2%. 

It seems important to mention that, even if small, the differences between a heterogeneous and a 

homogeneous model can be relevant in geotechnical analysis of underground works; in fact, these 

differences should be higher as the rock mass spatial variability increases. 

Table 4.10 Percentage differences between the displacements values obtained for model 1 and models 2 in relation to 

model 4 (homogeneous model). 

 Model 1 Model 2 – C1 Model 2 – C2 

Maximum horizontal displacement (mm) – left 

sidewall 
2% 18% 6% 

Maximum horizontal displacement (mm) – right 

side wall 
7% 15% -5% 

Maximum vertical displacement - centre of the 

arch (mm) 
3% 16% 2% 

Maximum vertical displacement- centre of the 

invert (mm) 
-17% -5% -16% 

In what concerns point number 2, as already mentioned by calculating the 100 realisations average, 

the representation of the heterogeneities is smoothed, which in this case results in equal or higher 

values for the displacements in comparison with the individual realisations. This proves that the 

heterogeneities models, namely model 2 by considering two clusters, provides a range of values for 

the displacements and stress resulting in the reduction of uncertainty and, consequently, in a more 

optimised design phase for geotechnical works. 

To perform the analysis regarding point number 3, histograms containing all the models results had 

to be computed (see Figure 4.17 to Figure 4.19). Like the graphical representation of the 

displacements and principal stress value, using the histograms it is possible to confirm the same 

tendency observed in model 2, where cluster 1 shows values closer to percentile 10 and cluster 2 



130 Chapter 4 – Numerical Methodology to Characterise Heterogeneous Rock Masses 

 

 

closer to percentile 90, which allows assuming a more conservative and optimist scenario, 

respectively. Also, it is possible to state that a big part of the 100 realisations show values that are 

located between the referred clusters, confirming the capability of the scenario reduction 

methodology to represent, statistically, the full set of realisations. To complete this analysis in Table 

4.11 can be consulted the first three moments (mean, standard deviation and skewness) obtained 

from the 100 realisations distribution fitting. The skewness value should be close to zero to translate 

a symmetrical distribution and, for all the zones analysis the displacements show a symmetrical 

distribution with some tendency to the right side, that is higher displacements. 

 

 

(a) (b) 

Figure 4.17 100 realisations histograms and distribution fitting curve and models 1 to 5 values (lines) of displacements 

in: a) centre of the tunnel arch; b) centre of the tunnel invert.  
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(a) (b) 

Figure 4.18 100 realisations histograms and distribution fitting curve and models 1 to 5 values (lines) of displacements 

in: a) centre of left sidewall; b) centre of the right sidewall. 

 

 

(a) (b) 

Figure 4.19 100 realisations histograms and distribution fitting curve and models 1 to 5 values (lines) of the principal 

stresses (in MPa) for: a) maximum principal stress; b) minimum principal stress. 
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Table 4.11 Distribution curve fitting details (first three moments) regarding the 100 realisations obtained value for 

displacements and principal stresses. 

 Mean Standard deviation Skewness 

Maximum horizontal 

displacement (mm) – left 

sidewall 

2.01 0.67 0.091 

Maximum horizontal 

displacement (mm) – right side 

wall 

2.00 0.24 0.100 

Maximum vertical displacement 

- centre of the arch (mm) 
6.63 0.67 0.006 

Maximum vertical displacement 

- centre of the invert (mm) 
8.71 0.83 0.003 

Maximum principal stress (MPa) 6.99 0.19 0.013 

Minimum principal stress (MPa) 1.79 0.02 1.07e-6 

4.4. CONCLUSIONS 

In the context of underground works, the use of more complete and detailed rock mass models is 

more and more fundamental, especially in the design and construction phases, where a balance 

between costs and safety must be found. The deterministic approaches used to model the rock 

masses are somehow limited since they assume the rock mass as a homogeneous medium, instead 

of considering the spatial variability and heterogeneities that exist. The use of probabilistic 

techniques has been a step forward in reducing the characterisation uncertainty and spatial 

variability of the geomechanical parameters, but leaving apart the identification of the 

heterogeneities intrinsic to rock masses. 

Therefore, geostatistics was the key technique identified to be used in the characterisation 

methodology developed within the scope of this thesis. The methodology aims to reduce the 

uncertainty associated with geomechanical parameters, quantify their spatial variability and, more 

importantly, identify the heterogeneities present in the rock masses. 

In this Chapter, the main steps, inputs and techniques required to apply the mentioned methodology 

were detailed. The methodology was outlined to combine the geostatistical simulation and the finite 

difference software Flac3D. This type of simulation allows the use of geotechnical information 

commonly obtained from field survey and honour its location and value. A less relevant step consists 

in using a statistical method to convert the geotechnical data into geomechanical parameters, 

namely the deformation modulus of the rock mass (<T), decreasing the uncertainty linked to the 

use of empirical formulas. 
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The interface between both techniques is made in a zone centroid level, meaning that it is necessary 

to firstly create the mesh in Flac3D and then perform the geostatistical simulation of the geotechnical 

information to obtain the parameters values at the zones centroids. Then, and because there is a 

smoothness problem in using the 100 realisations average values, a scenario reduction 

methodology had to be developed to overcome the problem. In this step, the 100 realisations set is 

statistically represented by a more reduced set of realisations obtained using a clustering technique. 

Finally, and after a clusters validation, the clusters medoids (individual realisations) are imported to 

Flac3D and a numerical analysis is performed. 

To validate all the numerical methodology mentioned steps a case study composed of real data 

obtained from an epithermal gold deposit, located in Chile, was used. The data set contains 

information about the empirical classification systems RMR and values of the UCS. In order to 

validate the numerical part of the methodology using these real data, a theoretical tunnel had to be 

idealised and constructed. The analysis was carried out using: i) the optimal and second best 

clusters configurations obtained from the scenario reduction methodology, ii) the 100 realisations 

average, iii) a homogeneous approach using deterministic values for the geomechanical parameters, 

and iv) each individual realisation obtained from the geostatistical simulation. The goal was to 

compare the results in terms of displacements and principal stresses between all the assumed 

models and to conclude on the validity of applying the scenario reduction methodology and 

difference between the heterogeneity and homogeneous models (models 1 and 2 versus model 4). 

For both points the results had been proving encouraging, initially having the two clusters from 

model 2 able to provide a range of values, which can represent at the same time, a conservative and 

an optimistic reality of the rock mass condition, and then confirming the limitations of the traditional 

approach that, for this case, had most of the times resulted in higher displacements and, 

consequently higher costs for the work. 

Therefore, the findings of this Chapter show that, for rock masses with more pronounced 

heterogeneities/variability, the proposed methodology tends to show better results and their 

difference should increase significantly and that when the variability of the rock mass parameters is 

small their influence in the rock mass mechanical behaviour is also small and the rock mass can be 

modelled using average values. However, since the influence of the geomechanical parameters in 

the mechanical behaviour of rock masses in underground works is unquestionable, this methodology 

should provide distinctive results for rock mass with higher levels of variability/heterogeneity. This 

fact can bring numerous advantages to the geotechnical community once the characterisation 

models of the rock masses will become more accurate and closer to reality. In this sense, it is 
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important to highlight the short time required to apply this methodology, which only increases in the 

geostatistical simulation compared to the traditional approach. 
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5.1. INTRODUCTION 

The construction of the Salamonde Dam located in the North of Portugal, namely in the Cávado river 

was finished in 1953. This complex structure resulted in an arch dam with a height of 75.0 m 

totalling a reservoir area of 2.4 km2. In the downstream of the Salamonde dam, which is situated at 

an elevation of approximately 270.4 m, another dam was constructed (at an elevation equal to 

152.5 m), named Caniçada. Thereby, due to an existing gap in height between the two dams of 

approximately 120.0 m, the Portuguese electrical company, Electricity of Portugal (EDP) took 

advantage of this gap by promoting the reinforcement of the first electrical power of Salamonde. As 

a result, an almost parallel power station was constructed giving rise to a new hydroelectric complex 

named afterward as Salamonde II. (see Figure 5.1). 

 

Figure 5.1 General overview of the Salamonde II hydroelectric circuit implementation (adapted from EDP (2009)). 

Considering that the Salamonde dam is located closely to the National Park of Peneda-Geres 

(situated in one side of the river), the construction for this new electrical power station, Salamonde 

II, was limited to the left side of the existing dam. At this location, the rock mass under consideration 

was a typical granite from the region. 

The new powerhouse of Salamonde II entails the construction of complexes underground elements, 

like caverns and access tunnels. More precisely, the geotechnical underground structures comprise 

(see Figure 5.2): 
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§ The central containing the power complex, built as a cavern at a depth of 200.0 m and a 

high that varies from 27.5 m to 67.5 m extended by 65.7 m; 

§ The access tunnel to the powerhouse with an extension of 985.0 m and a diameter of 8.2 

m; 

§ The tailrace tunnel with an extension of 1909.0 m with a nominal diameter of 11.8 m; 

§ The headrace tunnel with a total extension of approx. 200.0 m composed by a vertical 

segment of 130.0 m and nominal diameter of 8.3 m followed by a 70.0 m horizontal 

segment and with 7.8 m as nominal diameter that finishes in the powerhouse cavern; 

§ The hydraulic circuit with 8.3 m of diameter with an extension of 200.0 m. 

 

Figure 5.2 Salamonde II underground structures detailed scheme (adapted from EDP (2009)). 

Among all the underground structures previously described, the study will focus only on the 

powerhouse of Salamonde II. As such, the geotechnical data surrounding the powerhouse was taken 

into analysis and further used to perform a geostatistical conditional simulation as a new method of 

rock mass characterisation and modelling. To do that, all the steps described in Chapter 3 were 

considered, simply making some small adjustments, mainly in what concerns the type of variable 

chosen for the simulation. The collected data comprises the information about the empirical systems 

used to classify the rock masses encountered on the project, as well as all the in situ and laboratory 

tests performed to complement the rock mass characterisation. Even with different information 

sources, from there, the geomechanical parameter, namely the deformation modulus (!") of the 

granite formation was calculated using empirical formulas found in the literature. Though, to reduce 

the uncertainty associated with the use of only one empirical formulas, different data sets of !" 
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were created. Subsequently, a 3D numerical model was built, using the finite differences software, 

Flac3D (Itasca, 2012) and the geomechanical information was imported for further analysis. In 

essence, this model aims to describe and analyse the deformational behaviour of the rock mass 

during the excavation of the powerhouse cavern. All the excavation phases were simulated in the 

numerical model to allow a more detailed analysis during the excavation process. To show the 

advantages in using the numerical methodology proposed in Chapter 4, the obtained results were 

compared with the ones obtained by assuming a deterministic, i.e. the rock mass as a 

homogeneous mean. Also, and because Salamonde II is, at this stage, almost active, the data 

obtained from monitoring campaigns was also used in this validation process. 

In detail, in this Chapter the following sections will contain, firstly the information about the 

geotechnical data available for this study, as well as all the statistical treatment adopted for the data. 

Then, some relevant aspects regarding the powerhouse cavern geometry and auxiliary structures will 

be given. In a third section, and using the geotechnical information previously gathered, a 

conditional simulation of the geomechanical parameters are performed and the details adequately 

exposed. The following sections are then reserved for the final application of the numerical 

methodology proposed within the scope of this thesis. Ultimately, an emphasis is given to the 

numerical results and a comparison is made with the deterministic approach results and real data 

obtained from monitoring. In the last section, some conclusions are drawn and statements are 

made regarding the utility and importance of this methodology to help in the planning and 

construction of underground works. 

5.2. GEOTECHNICAL PROSPECTION AND TESTS 

Bearing in mind Salamonde II tender phase, EDP had performed a total of 15 mechanical boreholes 

(S1, S2, S4 to S16) to characterise the area. Boreholes S3 was not executed due to adverse weather 

conditions. Regarding the area lithology, as already mentioned, a granite from the region was the 

most abundant rock type. It was formed after the third hercynian orogeny, which corresponds to a 

recent granite, namely post tectonic. In brief, this rock mass is composed by porhyrioids of medium 

to coarse grains. 

Regarding the 15 boreholes, they show a diameter of 98 mm in the zones with residual soils and 78 

mm in zones of rock mass. To characterise the rock mass, the weathering and fracturing degrees as 

defined by the International Society of Rock Mechanics (ISRM) were considered. Furthermore, to 
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classify the quality of the rock mass the Rock Quality Designation system (Deere, 1968) was used. 

Those three geotechnical variables were obtained for all the boreholes whose depth varies from 30 

to 200 m (see Appendix 1 for more details about the geotechnical information). 

In engineering projects with this dimension different detail levels of information are normally 

required. Therefore, in order to correctly characterise the rock formation interesting in Salamonde II, 

laboratory and in situ tests were performed in some boreholes to assess the rock mass deformation 

and strength properties. These tests were carried out by the National Laboratory of Civil Engineering 

(LNEC) in two distinct phases of the hydroelectric reinforcement project. Firstly, in 2009 

corresponding to the beginning of the design phase, six STT tests were performed in two boreholes 

with the goal to perform a preliminary analysis of the rock mass stress field (LNEC, 2009). Later in 

2012, and already in a construction phase where the areas of interest could already be accessed, 

ten small flat jacks (SFJ) were performed in three different areas of the rock mass (LNEC, 2012). 

The tests information was used to estimate the initial stress field of the rock mass near the 

powerhouse cavern. Figure 5.3 shows the places were the mentioned tests were performed for both 

campaigns. In this section, the tests results are summarily presented, firstly for the ones performed 

in 2009 and secondly in 2012. 

 

Figure 5.3 Salamonde II powerhouse general plant with the in situ tests identification (LNEC, 2012). 
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In 2009 six STT tests were performed in two boreholes, S8 and S13 located near the powerhouse 

cavern as shown in Figure 5.3. The first borehole was vertical and the second presented an angle of 

70º with the vertical and was executed from the inside of the valve chamber. Table 5.1 presents the 

obtained results along with the rock mass formation characteristics. 

Table 5.1 STT tests results and rock characteristics (adapted from LNEC (2009)). 

Boreholes 
Depth 

(m) 

Lithological 

description 

Fracturing/Weathering 

degree 

Recovery 

(%) 
RQD 

S8 

79.33 
Porphyry granite (grey 

colour) of coarse 

grain, biotitic. 

F2/W2 100 100 

93.48 F3-4/W2-3 100 100 

95.98 F3/W2 100 100 

S13 

28.29 Porphyry granite (grey 

colour) of coarse 

grain, biotitic. 

Bedrock without 

fractures 

F1/W1 100 100 

37.97 F1/W1 100 100 

48.06 F1/W1 100 100 

To complement the presented tests, additional uniaxial strength tests were performed on boreholes 

S7 and S8. As a result, an average value of 50 GPa and 0.21 were obtained for the elastic 

parameters, the elasticity modulus and the Poisson ratio, respectively. 

In March of 2012, three SFJ were performed, namely near the left wall of the powerhouse access 

tunnel (SFJ1 and SFJ2) and in the north part of the powerhouse cavern (SFJ3). In Table 5.2 are 

displayed the obtained values for all three SFJ tests. 

Table 5.2 SFJ tests results (adapted from LNEC (2012)). 

Code 
Number 

of slots 
Slot 

Termination stress 

(MPa) 

Azimuth/Stress slant 

(°) 
#$(GPa) 

SFJ1 2 
Horizontal 

135° 

17.0 

13.8 

0/90 

175/45 

39.7 

39.0 

SFJ2 3 

Vertical 

45° 

Horizontal 

6.5 

7.8 

12.1 

350/0 

350/45 

0/90 

47.9 

43.5 

31.9 

SFJ3 5 

Horizontal 

135° 

Vertical 

45° 

Vertical 

6.2 

9.4 

6.3 

6.8 

5.3 

0/90 

225/45 

45/0 

45/45 

45/0 

28.8 

26.4 

29.6 

31.6 

33.2 

This geotechnical information was used by LNEC to assess the initial stress of the rock mass 

through the construction of a 2D Flac3D model. In this model, a vertical section perpendicular to the 
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cavern axis with 210 m width, 350 m large and a range of value between 193 m and 350 m on the 

vertical direction was adopted. For the rock mass an elastic behaviour was assumed and, contrarily 

to the value obtained from the uniaxial strength tests, for this stress field test the average value 

obtained from the SFJ tests was assumed, that is 35 GPa, a Poisson ratio of 0.20 and a unit weight 

equal to 27 kN/m3. 

At this stage, it is important to mention that since all the geotechnical prospection, laboratory and in 

situ tests mentioned above were performed during the design phase, from now, they will be 

addressed as phase 1 information. 

As a common practice to analyse the initial stresses in the normal plane, on the lateral boundaries 

the perpendicular displacements were blocked, as well as all the displacements in the inferior 

boundary. On the other hand, to analyse the shear stresses in the horizontal plane, the horizontal 

displacements and all the displacements were blocked in the lateral boundaries and in the inferior 

boundary, respectively. To perform this analysis a methodology described in LNEC (2009) had to be 

developed, from which it was possible to conclude the following: 

§ Near the surface the minimum and maximum principal stresses were mainly parallel and 

perpendicular to the Cávado river direction, respectively. Also, a maximum principal stress 

two times higher than the minimum principal stress was obtained; 

§ Between the maximum principal stress and longitudinal axis of the powerhouse cavern an 

angle of 45° is made; 

§ Regarding the intermediate principal stresses, they were almost vertical and correspond to 

the weight of the overlaying terrains; 

§ At the powerhouse cavern depth, a value of approximately 1.30 times the weight of the 

overlaying terrains was obtained for the maximum principal stress, while the minimum 

principal stress shows a ratio of 0.60 in relation to the overlaying terrains. 

As presented above, the phase information can also be divided into two different data sets. First, the 

information that directly results from the boreholes analysis was called data set 1 and is composed 

by 1036 information points resulting from the 9 boreholes that are located near the powerhouse 

cavern (S2, S5, S6, S7, S8, S12, S14 and S16). This amount of points was obtained after reading 

the logs of the 15 boreholes from where the geotechnical information was recovered at every 1 m 

depth. Then, the second data set comprises the results of all the laboratory and in situ tests 

executed in the same 15 boreholes. As a result, was achieved a total of 32 points with common 

geotechnical information as displayed in Table 5.3. 
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Table 5.3 List of the geotechnical variables that compose the data set 1 and data set 2 of phase 1 information. 

Set 1 Set 2 

§ Rock Quality Designation (RQD) § Weathering degree (W) 

§ Fracture degree (F) § Deformation modulus of the intact rock (!%) 

§ Weathering degree (W) § Uniaxial Compressive Strength (&') 

 § Poisson’s ratio (() 

After combining both data sets from phase 1, it was possible to obtain the basic statistics of the 

geotechnical variable to use in further analysis. These are the deformation modulus of the intact 

rock (!)) measured in laboratory, the weathering degree (W) and the Rock Quality Designation 

system (RQD). Therefore, Table 5.4 shows the variables statistics and Figure 5.4 presents the 

obtained histograms. Also, and since the other geotechnical variables were mentioned, in Appendix 

1 the matching statistics and histograms can be found. 

Table 5.4 Statistical analysis of the phase 1 geotechnical information of Salamonde II (!%, W and RQD). 

Variable 
Number of 

samples 
Minimum Maximum Mean Variance 

!% (GPa) 81.00 18.10 77.20 56.40 101.07 

W 1570.00 1.00 5.00 2.331 0.87 

RQD (%) 1568.00 0.00 100.00 69.64 951.26 

  

                                                
1 The mean value of the weathering degree was computed to give a notion of the averaging value, however, the most 

correct way to represent this type of variables is computing the histograms. 
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(a) (b) 

 

(c) 

Figure 5.4 Histograms obtained using the phase 1 information of Salamonde II, for: a) !%; b) RQD; and c) W. 

5.3. THE POWERHOUSE CAVERN 

The Salamonde II powerhouse is located in a cavern built in a depth of 200 m in the left side of the 

Salamonde dam. As already referred, the cavern was built with a vault section with a total high of 

27.5 m in the south area and 44.7 m in the north area, presenting a plant area of 65.7 x 26.5 m2. 

The power group was placed in the centre of the cavern, more precisely at an elevation between 

115.0 m and 97.0 m. At the north side of the power group there is numerous equipment distributed 

by six different floors. The access to the cavern is done through a tunnel with a diameter of 8.2 m 
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and a high of 8.4 m extended by 985.0 m with a slope of 10% (this was contemplated as an 

auxiliary underground work). 

 A second and smaller cavern can be found 40 m downstream the main cavern with an area of 7.0 x 

15.0 m2 and design to allocate the motor responsible for the engaging the downstream group gate. 

The connection between both caverns is made through a tunnel with length of 130 m and a 

horseshoe section with 5.5 x 6.0 m2 (see Figure 5.5). 

 

Figure 5.5 Powerhouse complex geometry and elements (EDP, 2009). 

In what concerns the geotechnical conditions near the powerhouse complex, four geotechnical 

zones were defined based on information from phase 1. Closer to the cavern, until 30 m depth the 

rock mass was classified as varying between a high to medium weathering while the fracturing 

degree gives a classification from very close to medium fractures. This zone was named as 

geotechnical zone number 3 and the geotechnical characteristics can be found in Table 5.5. From 

that depth value, the rock mass starts to show better geotechnical conditions, with a low weathering 

degree and very distant fractures (geotechnical zone number 1 and 2). 

Taking as a reference the overall good conditions of the rock mass, the powerhouse cavern 

excavation was made using explosives, mostly techniques that result in a low disturbance for the 

rock mass like smooth blasting and pre-cut in bench dismantling.  
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Table 5.5 Geotechnical zoning characteristics (EDP, 2009). 

Zone 

Weathering 

degree 

(W) 

Fracturing degree 

(F) 

RQD 

(%) 

sc 

(MPa) 

g 

(kN/m3) 
GSI 

ZG1 ≤ W2 ≤ F2 
> 70 

100 27.0 70-85 

ZG2 W2 to W3 F2 to F3
2(**) 60 26.0 50-70 

ZG3 W3 to W4 F3 to F4
3(***) > 20 45 25.0 30-50 

ZG4 W4 to W5 
4(*) F4 to F5 < 20 0.5 24.0 <30 

During the powerhouse construction, new geotechnical information was recovered. As so, the entire 

cavern (excavation front and walls) has been detailed and characterised using three different 

empirical systems for rocks characterisation, the Rock Mass Rating (RMR), the Q-Barton and the 

Geological Strength Index (GSI). These mappings were one of the two types of information that 

composes Salamonde II second phase of geotechnical information (data set 1). In detail, considering 

that this information was registered in individual documents as the advance step increases, it was 

necessary to identify the corresponding coordinates in order to reproduce this information in space. 

To this effect, the kilometre points was used and transformed into *, +	and - coordinates. In order 

to characterise the all area and not only the powerhouse cavern, additional mappings were also 

included, mainly from underground works located near the cavern. More details regarding the 

method adopted to recover this information from phase 2 can be found in Appendix 1. As a result, a 

total of 205 points with information about the RMR, the Q-Barton value in a logarithmic scale and 

GSI were obtained and the systems basic statistics are provided in Table 5.6, along with the 

empirical systems histograms showed in Figure 5.6. 

Table 5.6 Statistics analysis of data set 1 of the phase 2 geotechnical information of Salamonde II (RMR, Log Q and 

GSI). 

 RMR Log Q GSI 

Total of points with 

information 
205 205 205 

Mean 68.93 1.03 67.50 

Variance 12.50 0.05 12.50 

Standard deviation 3.54 0.23 3.54 

Minimum 62.00 0.15 60.00 

Maximum 67.00 1.22 65.00 

                                                
2 Sometimes F4 
3 Sometimes F4-5 
4 Sometimes W3 
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(c) 

Figure 5.6 Histograms obtained using data set 1 of Salamonde II phase 2 information, for: a) RMR; b) Log Q; and c) GSI. 

In addition, in order to evaluate the behaviour of the rock mass and support system during the 

excavation, a monitoring system using extensometers and piezometers was installed in the cavern. 

Therefore, some supplementary information was obtained from laboratory tests executed in some 

piezometers and extensometers holes recovered at the time. These elements were installed in two 

different sections of the cavern, namely the section A (SA) located at 38.4 m and section B (SB) at 

19.2m, both distances were measured from the cavern south top wall. A total of 7 extensometers 

were installed in section A, three of them in the carver arch (E1A, E2A and E3A), while the 

remaining four were placed in the side walls (E4A, E5A, E6 and E7). In section B, the number of 

extensometers was reduced to five, three placed in the cavern arch (E1B, E2B and E3B) and two 

installed in the side walls. Also, the number of installed piezometers was set to eleven, all located in 
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the cavern sidewalls in random sections over the cavern. The mentioned extensometers and 

piezometers adopted for the monitoring plan of Salamonde II can be seen in Figure 5.7. 

 

Figure 5.7 Cross section of the powerhouse cavern showing the monitoring plan adopted (adapted from EDP (2009)).  

The laboratory tests carried out in some piezometers and extensometers allowed the measurement 

of the intact rock deformation modulus (!%) through uniaxial compressive tests. In addition to this 

information, the weathering and fracturing degree, as well as the RQD system was also recovered 

and the geotechnical variables statistics are provided in Table 5.7 and the corresponding histograms 

can be found in Figure 5.19. 

Table 5.7 Statistical analysis of data set 2 of the phase 2 geotechnical information of Salamonde II (F, W, RQD and !%). 

 F W RQD (%) #. (GPa) 

Total of points with 

information 
21 21 21 21 

Mean 2.10 1.60 90.50 53.20 

Variance 0.47 0.14 394.79 369.09 

Standard deviation 0.68 0.38 19.87 19.21 

Minimum 1.00  1.00  45.00 9.70 

Maximum 3.00 3.00 100.00 71.40 
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(a) (b) 

 

(c) 

Figure 5.8 Histograms obtained using data set 2 of Salamonde II phase 2 information, for: a) !% (in GPa); b) RQD (%); 

and c) W. 

5.4. NUMERICAL MODEL 

5.4.1. Numerical Model presentation 

The numerical model used in this Chapter was developed during the study of the rock mass initial 

stress field by LNEC in 2009. However, some changes were made, namely the remove of some 

auxiliary tunnels and the addition of the construction sequence adopted for the powerhouse 
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complex. The numerical model was carried out using the finite difference software Flac3D (Itasca, 

2012) and is composed by a total of 664,022 grid points and 642,086 elements. In addition to the 

main cavern, also some nearby underground works were added into the model, namely the 

floodgate chamber (FC), the access tunnel (AFC) between the main cavern (C) and the floodgate 

chamber and a smaller tunnel design only for pedestrian access (PAT) (see Figure 5.9). 

In detail, the Flac3D mesh is 210 m wide along direction /, 350 m along direction	0, a range 

between 303 and 460 m along direction 1 and is composed by elements, whose size increase as 

one moves far away from the powerhouse cavern (Espada and Lamas, 2014). 

In what concerns the model boundary conditions, the horizontal displacements in the model vertical 

boundaries were blocked, along with all displacements in the inferior boundary. 

 

Figure 5.9 3D mesh developed for the Salamonde II powerhouse complex (adapted from Espada and Lamas (2014)). 

Regarding the powerhouse cavern excavation, a total of fifteen stages were considered and are 

described in Table 5.8. The cavern excavation was modelled in a way simpler than the reality, which 

had a minor impact in the computed displacements since the rock mass had shown good 

geomechanical quality during the excavation phase. In brief, the excavation sequence starts with the 

cavern arch, where two longitudinal galleries were excavated followed by three transversal galleries, 

remaining three rock piles to excavate in further stages (stage 3, 4 and 5). Stage 6 ends the 
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excavation of the cavern arch, while stages 7 to 10 reach the cavern base level. The auxiliary tunnels 

and structures were excavated from stages 11 to 15. 

Concerning the adopted support system, it was mainly composed by shotcrete with a variable 

thickness (250 mm in the cavern arch and 100 mm in the walls and in the tops walls) and 

reinforced with metallic fibres, which results in a material with Young modulus equal to 20 GPa, a 

Poisson ratio of 0.20 and a unit weight of 25 kN/m3. In the numerical model, this material was 

modelled using a shell type of element with a linear elastic and isotropic behaviour. Beside the 

shotcrete, a 2 to 3 m spaced mesh of rock bolts (their length varies from 4 to 12 m) with a diameter 

of 25 mm was also considered. To simulate the rock bolts into the Flac3D model, a cable type of 

elements was considered, which can yield tensile strength with two nodes and one axial degree of 

freedom. 

Table 5.8 Adopted construction stages for Salamonde II 3D numerical model. 

Stage Model Description 

1 and 2 

 

Excavation of two longitudinal galleries in the cavern arch (stage 1) 

and 3 transversal galleries (stage 2). 

Application of 25 cm fibre reinforced shotcrete and 25 mm 

rockbolts. 

3, 4 and 5 

 

Excavation of the remaining rock piles on the cavern arch. 

Application of 25 cm fibre reinforced shotcrete and 25 mm rock 

bolts. 

6 

 

Excavation of the cavern arch from elevation 143 m to 136 m 

Application of 25 cm fibre reinforced shotcrete and 25 mm 

rockbolts. 

7, 8, 9 and 

10 

 

Excavation of the main cavern until the base level. 

Application of 10 cm fibre reinforced shotcrete and 25 mm 

rockbolts. 

11, 12, 13, 

14 and 15 

 

Excavation between elevation 126 m and 89,8 m including all the 

auxiliary galleries and access tunnels 

Application of 10 cm fibre reinforced shotcrete and 25 mm 

rockbolts. 
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5.4.2. Numerical modelling results 

In LNEC (2013) numerical analysis, a homogeneous and continuous mean for the rock mass was 

assumed along with an isotropic and linear elastic behaviour. Due to the use of explosives as an 

excavation method, a 2 m band was created to take into account some damage that could exist in 

the rock mass as a consequence of the explosions. In this way, for this 2 m zone a rock mass 

deformation modulus half of the one adopted for all the rock mass was assumed, that was 12 GPa 

(see Figure 5.10). 

 

Figure 5.10 Detail of Salamonde II numerical mesh with the identification of the considered damage zone near the 

cavern (adapted from LNEC (2013)) 

The method used to achieve the rock mass deformation modulus was an inverse analysis technique 

performed using the displacements results in all the excavations stages of the six extensometers 

installed in two sections of the cavern, as explained in section 5.3. However, in the same report 

(LNEC, 2013) it is stated that the SFJ tests had registered higher values for !", such as 30 GPa 

near the cavern and 40 GPa near the access tunnel to the cavern, all these values as harmonic 

averages. Likewise, all the remaining tests (Uniaxial compressive strength test) and boreholes 

analysis corroborate the !" high values (45 GPa). The gap between the !" values obtained from 

the inverse analysis and the ones obtained from in situ and laboratory tests, may exist in the fact 

that the tests samples are not adequate to fully characterise the rock mass since normally the best 

samples are picked for analysis. Also, a meaningful number of zones showing an elevated 

weathering degree were found during the excavation coming to confirm this gap (LNEC, 2013). 

In what concerns the numerical results, and assuming Section A and Section B adopted in the 

monitoring process, the maximum displacements after the cavern excavation were of 12.9 mm and 
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11.8 mm in the left and right side walls respectively for section A. In section B, the maximum 

displacement was on the cavern invert with a magnitude of 11.2 mm. 

In terms of stress distribution, it was possible to conclude that the rock mass surrounding the tunnel 

is, predominantly, under compression with the maximum value recorded in the last excavation 

stage. In detail, stresses of 7 MPa can be detected in the cavern arch, while in the sidewalls the 

values ranging from 3 to 5 MPa. In what concerns the minimum principal stresses the maximum 

value was of 0.3 MPa located in sidewalls (shear stresses). 

Apart from the two analysed sections, the maximum horizontal displacements and principal stresses 

were analysed in the cavern side walls and both tops for the last excavation stage (stage 15) and the 

results are summarised in Table 5.13. 

Table 5.9 Summary of the displacements and stresses for the last excavation stage (adapted from LNEC (2013)). 

Zone Maximum displacement (mm) 

Left sidewall (horizontal towards the cavern) 14 

Right sidewall (horizontal towards the cavern) 13 

North top (horizontal towards the cavern) 10 

South top (horizontal towards the cavern) 8 

Zone Maximum principal stresses (MPa) 

Arch 7 

Left sidewall 5 

Right sidewall 4 

5.5. APPLICATION OF THE NEW CHARACTERISATION 

METHODOLOGY 

5.5.1. Introduction 

In order to characterise the rock mass of Salamonde II a new proposed methodology will be used. 

All the details regarding this characterisation methodology were already provided in Chapter 4 along 

with its validation using a theoretical case study. This methodology combines the geostatistical 

simulation and used the difference finite software Flac3D to perform the following numerical analysis 

of the rock mass when the powerhouse cavern is excavated. As first step, the methodology required 

the existence of geotechnical data, which in this case study has been obtained in two different 
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phases (Figure 5.11: step 1). Then, a 3D numerical mesh created by Espada and Lamas (2014) 

was used and the zone centroids information exported for the following steps of the methodology 

(see Figure 5.11: step 2). 

A third step entails the conditional simulate of each geotechnical parameter in the target grid points 

(zone centroids of the Flac3D mesh). The geotechnical parameters considered for simulation were, 

for phase 1 the !%, the W and the RQD value, while phase 2 considers the conditional simulation of 

the empirical systems, RMR, Log Q and GSI, as well as the previously mentioned parameters of 

phase 1 (see Figure 5.11: step 2). At this stage, is possible to obtain for each individual variable, a 

total of 100 realisations for the all rock mass. Then, and in order to perform the numerical analysis 

of the Salamonde II model, the previously simulated geotechnical data had to be converted into the 

geomechanical parameter !" through the application of empirical formulas. 

At this stage, it is important to note, that from now on the !" values obtained using the 

geotechnical data from phase 1 will be addressed as data set 1, while data set 2 are composed by 

the !" values obtained after combining the geotechnical data from phase 1 and phase 2. 

Subsequently, and still in step 4, a scenario reduction methodology is applied in order to reduce the 

number of realisations to import for Flac3D for both data sets. This is a required step, since 

performing the average of the 100 realisations leads to a smoothing effect and the extreme values 

disappeared (see Figure 5.11: step 4). As a fifth and final step, the selected data sets are imported 

to Flac3D and the !" values assigned to each zone centroid of the mesh throughout a command 

routine programed suing FISH language (see Figure 5.11: step 5). 
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Figure 5.11 General workflow containing the general steps of the characterisation methodology using in Salamonde II. 

5.5.2. Geostatistical simulation 

Considering both phases of the geotechnical data, the geostatistical simulation of all the parameters 

was performed individually. Firstly, the data from phase 1 composed by 81 values of !%, 1570 

values of W and 1568 values of RQD.  

Before performing an individual simulation of the three parameters, it was necessary to observe the 

existing correlations between all of them, specially between the !% and the W parameters, in order to 

make sure that they were not (or weakly) cross-correlated. Otherwise, a joint simulation 
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(cosimulation) should be performed. The correlation matrix, which contains the Pearson product-

moment correlation coefficients between all the parameters, is presented in Table 5.10. 

Table 5.10 Correlation matrix between parameters P1, P2, P3 and P5. 

 #. W RQD 

#. 1.000 -0.402 -0.431 

W -0.402 1.000 0.009 

RQD -0.431 0.009 1.000 

As a following step, and before computing the experimental variograms of these variables, a 

declustering cell size study had to be performed in order to weight the initial data to use in this type 

of simulation (see details in Appendix 1). From this study, a 7 m x 7 m x 7 m was identified as the 

optimal cell size for the presented variables. Then, as an imperative step, the variables had to be 

transformed into a normally-distributed variable (more details could be found in Appendix 1, as well 

as in the previous Chapters). Finally, the experimental variogram was built along the horizontal plane 

(/0 plane), considering a maximum lag distance of 100 m. Here an isotropic behaviour for the 

variable was assumed for all variables (see Figure 5.12). 

Secondly, the empirical systems gathered during phase 2 totalling 205 values of RMR, Log Q and 

GSI, were simulated. Then, and after combining the in common information from phase 1 and 

phase 2 (data set 2), a total of 102 points with information of !%, 1795 points with information of W 

and 1793 points with information of RQD, was obtained. In the same way as the data from phase1, 

in this case a declustering cell size study was also performed (see details in Appendix 1); however, 

for this data the cell size increased to 8 m x 8 m x 8 m (seeFigure 5.13 and Figure 5.14). 

Except for the W variable, all the others were modelled in a continuous scale. In the case of W, and 

since it varies in a discrete scale a different type of simulation had to be used, a truncated Gaussian 

model (Armstrong et al., 2011). All the steps required to the application of this model were detailed 

in section 3 of Chapter 3. In brief, a set of truncation threshold needed to be defined using the 

preliminary information and, with the help of the iterative algorithm known as Gibbs sampler, the 

class-indicator data are transformed into Gaussian data and the application of the TBM possible. 

In what concern the experimental variogram computation, the lag distances were multiple of 10 m 

along the horizontal with a tolerance of 5 m for all the variables. All the experimental variograms 

were fitted using exponential, spherical and Gaussian basic structures, as presented below (the 

distances between brackets represent the correlation range of the structure along the horizontal 

plane and the number preceding the basic structure indicates the sill of the structure):  
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§ Variogram models of the data from phase 1: 

RQD: 2 = 0.27 + 0.10	:;ℎ=>)?@A	 12	B; 12	B + 	0.40	E@FGG)@H	(80	B; 80	B) 

W: γ = 0.06	 + 	0.94	!/;OH=HP)@A	(100	B; 	100	B) 

!%: γ = 0.16	 + 	0.97	!/;OH=HP)@A	(25	B; 	25	B) 

§ Variogram models of the data from phase 1 plus phase 2: 

RQD: 2 = 0.23 + 0.18	E@FGG)@H	 8	B; 8	B + 	0.54	E@FGG)@H	(150	B; 150	B) 

W: 	γ = 0.17	 + 	0.83	:;ℎ=>)?@A	(150	B; 	150	B) 

!%: γ = 0.72	!/;OH=HP)@A	 8	B; 	8	B + 0.40	!/;OH=HP)@A	(50	B; 50	B) 

RMR: 2 = 0.09 + 0.38	:;ℎ=>)?@A	 20	B; 20	B + 	0.18	E@FGG)@H	(80	B; 80	B) 

LogQ: γ = 0.16	 + 	0.50	:;ℎ=>)?@A	(18	B; 	18	B) 

GSI: γ = 0.23	 + 	0.90	E@FGG)@H	(120	B; 	120	B) 

 

(a) (b) (c) 

Figure 5.12 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal plane /0 plane for !" 

using information from data set 1, for: a) !%; b) W; and c) RQD. 

 

(a) (b) (c) 

Figure 5.13 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal plane /0 plane for !" 

using information from data set 2, for: a) RMR; b) Log Q; and c) GSI. 
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(a) (b) (c) 

Figure 5.14 Experimental (crosses) and theoretical (solid lines) variograms along the horizontal plane /0 plane for !" 

using information from data set 2, for: a) !%; b) W; and c) RQD. 

All the variograms shows a nugget effect, proving that in all the geotechnical variables exist some 

significant errors of measurement and, at the same time, questions the spatial continuity of the 

variables. Even more, analysing the variograms of variable !%, W and RQD was detected some 

considerable differences on the variables behaviour, which was more linear, if more data are added. 

like showed by the variograms in. Also, this statement can be confirmed by the nugget effect values 

that are lower in the variograms showed in Figure 5.14. Regarding the empirical systems 

experimental variograms, the GSI system was the one showing a more linear behaviour with a sill 

near one. The remaining two systems show lower sills, and consequently lower ranges, proving the 

higher spatial variability of the systems for lower distances. 

As already mentioned, in order to apply the TBM the information of each variable should be 

transformed into normal scores. Therefore, the computation of the anamorphosis function is utmost 

important to improve the results of the simulated variables. All the details regarding the 

anamorphosis of both data sets variables can be found in Appendix 1. Regarding the W variable, the 

Gaussian thresholds adopted for the variable proportions can be consulted in Appendix 1, for both 

data sets. 

Once the model parameters were specified (anamorphosis function for all the parameters with 

exception of W, truncation thresholds for variable W and the variograms of the underlying Gaussian 

random fields), conditional realisations of the variables in both phases can be constructed using the 

TBM mentioned before. For the algorithm, a total of 1500 turning lines was used and the number of 

realisations was set to one hundred. Also, it is important to mention that all the realisations were 

conditioned to the initial data and simulated on the mesh obtained from Flac3D mesh (642,086 zone 

centroids). 
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Table 5.11 Statistical analysis of the variable from phase 1 and 2 after the geostatistical simulation. 

Information 

phase 
Variable 

Number of 

samples 
Minimum Maximum Mean Variance 

P
h
a
se

 1
 !% (GPa) 642,086 10.00 79.99 55.77 174.46 

W 642,086 1.00 5.00 2.125 0.94 

RQD (%) 642,086 0.00 100.00 69.19 314.64 

P
h
a
se

 1
 +

 P
h
a
se

 2
 

RMR 642,086 50.23 74.92 63.35 13.45 

Log Q 642,086 0.02 1.30 1.05 0.04 

GSI 642,086 50.01 70.72 65.25 20.86 

!% (GPa) 642,086 5.02 84.99 54.52 264.24 

W 642,086 1.0 5.0 2.016 0.86 

RQD (%) 642,086 0.0 100.0 85.94 456.46 

Before going further with both data sets simulation results, they should be validated throughout the 

application of the cross-validation technique. Contrarily to the technique used in Chapter 3 (jack 

knife), in here, the limited number of samples had led to opt for the cross-validation technique. This 

technique temporarily removes one by one all the observations and simulate the variable in the 

removed locations, from which it is possible to relate the simulated values and compare them with 

the true ones. Using this technique as a basis, the quantification of uncertainty was evaluated 

through accuracy plots computed using a probability ; varying from 0 to 1, from where based on 

the obtained realisations, an interval bounded by the quantiles 1-p/2 and 1+p/2 at each data 

location is computed (more details can be found in Chapter 2). A value of 1 is assigned to the data 

location if the true variable value belongs to the previously defined interval and 0 otherwise. A 

desirable accuracy plot would be the one where the points are coincident with the 45º line (diagonal 

line). As shown in Figure 5.15, for the variable of data set 1, the one that results in a poor 

assessment of the uncertainty was !%. Since the number of input data for the simulation was 

smaller (81 points with information) the simulation resulted in an optimistic model, giving higher 

slightly higher !% values than the reality. Regarding the RQD and W variables, the uncertainty 

assessment was good, being the W variable resulted in a more conservative model. 

In what concerns data set 2, the same variables were simulated, this time with an increase in the 

input information used for the conditional simulation. Therefore, and as expected, the uncertainty 

modelling of the three variables (!%, W and RQD) are better than the one obtained for data set 1. 

                                                
5 The mean value of the weathering degree was computed to give a notion of the averaging value, however, the most 

correct way to represent this type of variables is computing the histograms. 
6 The mean value of the weathering degree was computed to give a notion of the averaging value, however, the most 

correct way to represent this type of variables is computing the histograms. 
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Indeed, the !% variable now resulted in a more balance accuracy plot, giving lower values than 

reality for lower !% and higher value for higher !%. The same presented effect happens with variable 

W, where for higher W values the model are able to give slightly higher W than the true ones (see 

Figure 5.16). 

Regarding the empirical systems validation, the accuracy plots are very good in all the three 

variables, being the best uncertainty assessment achieved by the RMR, while GSI give slightly 

conservative values (see Figure 5.17). Although the difference between the three variables are 

residual. 

  

(a) (b) 

 

(c) 

Figure 5.15 Accuracy plots of data set 1 showing the uncertainty modelling for: a) !% (in GPa); b) RQD; and c) W. 
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(a) (b) 

 

(c) 

Figure 5.16 Accuracy plots of data set 2 showing the uncertainty modelling for: a) !% (in GPa); b) RQD; and c) W. 
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(a) (b) 

 

(c) 

Figure 5.17 Accuracy plots of data set 2 showing the uncertainty modelling for: a) RMR; b) Log Q; and c) GSI. 

5.5.3. From geotechnical data to geomechanical parameters  

For the numerical models to use in this work, the geomechanical parameters of the rock mass are 

required, namely the rock mass deformation modulus (!"). Although, the collected information in 

both phases are geomechanically different, while in phase 1 information about the !%, W and RQD 

are available, in phase 2 an additional geomechanical classification was performed using the 

empirical systems, RMR, Q and GSI. 
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Since the geotechnical information obtained is quite distinct in both phases of the underground 

works, a division was made. For the first group of geotechnical information (phase 1) that 

contemplates information of the !%, W and RQD was used a single empirical formula to obtain the 

!" for further calculations. This formula was proposed by Kayabasi et al. (2003) and related all the 

three geotechnical parameters available in phase 1. On the other hand, using the geotechnical 

information from phase 2, and since there are two data sets that are geotechnically distinct, a 

separate analysis was performed. In the first data set 1 and, similarly to the data from phase 1, the 

Kayabasi et al. (2003) formulas was applied, while in data set 2, where all the available information 

is used, an average of some empirical formulas was performed (see Figure 5.18). The empirical 

formulas selected to use in this process can be consulted in Appendix 1. The basic statistics of rock 

mass deformation modulus can be seen in Table 5.12 accordingly divided by their geotechnical 

information phase. Likewise, Figure 5.19 shows the histograms for the !" values in all the 100 

realisations, and it is possible to observe that for data set 1 and 2 (that uses the geotechnical 

information obtained from the boreholes) the !" values are considerably lower in comparison with 

data set 3, where there is an offset higher than 10 GPa (more data with a deformation modulus of 

20 and 30 GPa value). Also, in this last data set, the range of !" value is considerable lower, since 

the maximum is equal to 42.15 GPa, while data set 1 and 2 presents maxima close to 60 GPa. It is 

important to stress out that these !" values were assumed in all the remaining process until the 

numerical results are achieved. 

 

Figure 5.18 Summary of the geotechnical information that compose each considered data set. 

Geotechnical data

Information of 

Ei, W and RQD from 

phase 1

Information of

Ei, W and RQD from 

phase 1 + phase 2

Information of

RMR, Log Q and GSI 

from phase 2

Data set 1 Data set 2 Data set 3
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Table 5.12 Statistical analysis of !" (in GPa) obtained values for data set 1, 2 and 3 of the geotechnical information. 

 Data set 1 Data set 2 Data set 3 

Total of points with information 642,086 642,086 642,086 

Mean  19.27 19.23 25.83 

Variance 149.56 165.38 32.30 

Standard deviation 12.23 12.86 5.68 

Minimum 0.31 0.14 4.53 

Maximum 54.14 58.16 42.15 

  

(a) (b) 

 

(c) 

Figure 5.19 Histograms of the !" values (in GPa) of Salamonde II obtaining for all the 100 realisation (each colour 

represents one realisation), for: a) data set 1; b) data set 2; and c) data set 3. 

5.5.4. Scenario reduction methodology 

A first step required to apply the scenario reduction methodology presented in Chapter 4, is the 

representation of all the 100 realisations of the !" in a 2D space using the Euclidean distance as 

metric. Therefore, in Figure 5.20 the 100 realisations obtained considering the !" values from data 
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set 1, data set 2 and data set 3, are represented. In the following graphics, the / and 0 axes 

represent the distances of the dissimilarity matrix computed after the Euclidean distance calculation. 

 

(a) (b) 

 

(c) 

Figure 5.20 2D spatial representation of the !" 100 realisations (black points) using the Euclidean distance computed 

with data from: a) data set 1; b) data set 2; and c) data set 3. 

The following step of the methodology goes through the transformation of the Euclidean space into a 

more linear space, the Featured space and that is done using the Kernel algorithm with a kernel 

bandwidth of approximately 20% of the maximum Euclidean distance (more details can be found in 

Chapter 2 and Chapter 4). Subsequently, to choose the optimal number of clusters, a silhouette 

average width test was performed (Rousseeuw, 1987). This test allows assessing the number of 

clusters that best represents the all group of realisations and was performed for 2 until 10 clusters 

(i.e. the maximum number allowed was predefined as 10). Normally a silhouette average width 

(SAW) value higher than 0.5 gives a satisfactory division for the 100 realisations set. As a result, the 

optimal number of clusters obtained using data set 1 was 3 clusters with a SAW value of 0.55, while 

for data set 2 the number increased to 9 clusters (SAW equal to 0.56) and, for the last data set 3, 
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the number decreases again giving an optimal number of clusters of two (see Figure 5.21). Even 

though, the subsequent number of clusters for data set 3 was 4, with a final SAW value of 0.58. 

 

(a) (b) 

 

(c) 

Figure 5.21 Average silhouette width values for the performed clusters evaluation using the data from: a) data set 1; b) 

data set 2; and c) data set 3. 

Since the main goal is to identify the rock mass heterogeneities by assuming only two individual 

realisations this goal may be limited. Therefore, in the case of data set 3, other configuration of 

clusters was chosen, where a higher number of clusters (at least 3) are here assumed as a valid 

configuration. Certainly, the scenario reduction methodology could be defined to start with a minimal 

number of clusters set to three, however, the methodology would be at start eliminating one of the 

possibilities. Consequently, for the case study under consideration, the number of clusters chosen to 

represent the full realisations set of the !" values were 3 clusters in the case of data set 1, 9 

clusters for data set 2 and 4 clusters for data set 3. Accordingly, Figure 5.22 shows in colours the 

division made by the kernel k-medoid algorithm after performing 500 iterations of all three data sets, 

where some difference between the data sets can be noticed, namely the dispersions of the points 

that is higher for data set1, which difficult the clusters division. In Figure 5.22 each cluster medoid 
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is identified with a square form with the corresponding cluster colour. It is important to stress out 

that each cluster centre corresponds to individual realisations chosen after a mathematical 

foundation to represent the full realisation sets. Furthermore, note that the / and 0 axes of Figure 

5.22 show the same scale resulting from the Euclidean distance representation (see Figure 5.20). 

 

(a) (b) 

 

(c) 

Figure 5.22 Clusters final configuration (points) with the matching medoids (squares) for: a) data set 1 (3 clusters); b) 

data set 2 (9clusters); and c) data set 3 (4 clusters). 

Once the clusters configuration is defined its validation is the next step to execute in this scenario 

reduction methodology. As a matter of fact, the main goal of this validation goes through a 

comparison for percentiles 10, 50 and 90 between the full realisations sets (data set 1, 2 and 3) 

and the selected realisations sets (data set 1, 2 and 3). These percentiles are computed in two 

ways: first, the percentiles are computed for each point of the grid and then their values are divided 

by total number of grid points. In this way, it is possible to obtain a single (average) value to 

represent each percentile (10, 50 and 90); secondly the percentile value is summed point by point 

resulting in a relation between the summed !" value and the total of grid points. This last type of 
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graphical representation allows obtaining a more linear overview of the sets differences. Figure 5.23 

and Figure 5.24 provides the mentioned graphics for all three data sets. 

In the case of a three clusters configuration and since three is a relatively small number to represent 

the full set of realisations, the adjustment shows, as expected, some mismatches, namely in 

percentile 10 and 90 with difference of almost 5 GPa. O the other hand, for a nine clusters 

configuration, the correspondence between the full realisation set and the selected set is almost 

coincident. 

 

(a) (b) 

 

(c) 

Figure 5.23 Validation of clusters configurations in comparison with the 100 realisations set using the average values of 

!" for percentiles 10, 50 and 90, for: a) data set 1 (3 clusters); b) data set 2 (9clusters); and c) data set 3 (4 clusters). 
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(a) (b) 

 

(c) 

Figure 5.24 Validation of clusters configurations in comparison with the 100 realisations set after summing point by 

point the !" values of percentiles 10, 50 and 90, for: a) data set 1 (3 clusters); b) data set 2 (9 clusters); and c) data 

set 3 (4 clusters). 

From Figure 5.23 analysis, it is possible to observe that the difference in the !" average value 

between the full set of realisations and the selected realisations of both data sets is always lower 

than 2 GPa, which can be considered as a residual value in a universe of !" between 5 GPa and 

45 GPa, except for data set 1 that shows a difference of 5 GPa. Indeed, analysing in detail Figure 

5.23, it is possible to notice that the major difference between the selected realisations sets and the 

100 realisations set happens in percentile 10 and 90, while percentile 50 shows correspondence. 

Regarding data set 3 (see Figure 5.23c), contrarily to data set 1, the major difference happens for 

percentile 10, however, in percentile 50 and 90 both sets are close to the full realisations set. An 

almost perfect correspondence is achieved by data set 2 (see Figure 5.23). 

In regard to the representation of the percentiles point by point, Figure 5.24 allows perceiving that 

for data set 2 and data set 3 a better tuning is achieved between the selected realisations and full 

realisations sets when compared with data set 1; however, the differences are very small. 
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Particularly, it is important to stress out that in three data sets, the !"  values of percentile 50 are 

the quasi coincident between the sets. Furthermore, and to complete the clusters validation process, 

the !" values were computed using a kernel smoothing function (Bowman and Azzalini, 1997) that 

returns the probability distribution of the !" values in each set using a kernel function instead of a 

normal Gaussian one. This analysis was made for the three data sets (see Figure 5.25a, b and c) to 

compare the density function of the !" values in each set of realisations, the selected, full and 

average of the 100 realisations. Through Figure 5.25 analysis, it can be stated that the selected 

realisations for all data sets of information follow the full realisations set density, while in the 100 

realisations average there is a concentration of points with !" values between 30 and 40 GPa. All 

the presented facts come to reinforce the option of using cluster configurations to statistically 

represent the full set of realisations. Due to this reason, the option of using the 3, 9 and 4 clusters 

to represent data set 1, 2 and 3, respectively, is strengthened. 

In the following tables (see Table 5.13, Table 5.14 and Table 5.15) the basic statistics (mean, 

variance, minimum, maximum and percentiles values) of all data sets are displayed. The columns 

contain information concerning the initial data, the average values of the 100 realisations and of the 

selected realisations (see Table 5.13, Table 5.14 and Table 5.15). In addition, the basic statistics of 

each realisation that composed the scenario reduction chosen to represent each data set are 

provided in Table 5.16, Table 5.17 and Table 5.18, respectively for data set 1, data set 2 and data 

set 3.   
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(a) (b) 

 

(c) 

Figure 5.25 Validation of clusters configurations using a kernel smoothing function to represent the selected and full 

realisations sets along with the average of the 100 realisations, for: a) data set 1 (3 clusters); b) data set 2 (9 clusters); 

and c) data set 3 (4 clusters). 

Table 5.13 Basic statistics of the !" values (in GPa) for the initial values, average of the 100 realisations and selected 

realisations for data set 1. 

 100 realisations 

 (average values) 

3 clusters  

(average values)  

Number of grid points 642,086 642,086 

Mean 19.27 19.78 

Variance between realisations 149.56 153.81 

Variance between points  27.51* 75.44* 

Standard deviation 12.23 12.28 

Minimum  0.31 0.40 

Maximum  54.14 50.55 

Percentile 10  6.66 10.57 

Percentile 50  16.03 18.19 

Percentile 90  38.98 30.57 
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* Variance obtained after performing the average of the realisations and compute the variance between the grid points 

Table 5.14 Basic statistics of the !"	values (in GPa) for the initial values, average of the 100 realisations and selected 

realisations for data set 2. 

* Variance obtained after performing the average of the realisations and compute the variance between the grid points 

Table 5.15 Basic statistics of the !"	values (in GPa) for the initial values, average of the 100 realisations and selected 

realisations for data set 3. 

* Variance obtained after performing the average of the realisations and compute the variance between the grid points  

 100 realisations (average 

values) 

9 clusters  

(average values)  

Number of grid points 642,086 642,086 

Mean 19.24 19.35 

Variance between realisations 165.38 167.98 

Variance between points  20.00* 37.28* 

Standard deviation 12.86 12.96 

Minimum  0.14 3.37 

Maximum  58.16 48.27 

Percentile 10  5.50 6.13 

Percentile 50  15.94 16.78 

Percentile 90  40.25 37.27 

 100 realisations (average 

values) 

4 clusters  

(average values)  

Number of grid points 642,086 642,086 

Mean 25.83 26.14 

Variance between realisations 32.30 31.21 

Variance between points  5.86* 13.57* 

Standard deviation 5.68 5.59 

Minimum  4.53 4.65 

Maximum  42.15 41.96 

Percentile 10  18.23 20.22 

Percentile 50  26.21 26.36 

Percentile 90  32.86 31.62 
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Table 5.16 Basic statistics of the !" values (in GPa) for the individual realisation that compose the three-clusters 

configuration of data set 1. 

 C1 C2 C3 

Number of points 642,086 642,086 642,086 

Realisation n. 69 76 93 

Number of real. per cluster 27 31 42 

Mean 21.59 19.68 18.07 

Variance between points 198.08 171.60 158.05 

Standard deviation 14.07 13.10 12.57 

Minimum 0.31 0.31 0.31 

Maximum 53.92 54.10 53.94 

Table 5.17 Basic statistics of the !"	values (in GPa) for the individual realisation that compose the nine-clusters 

configuration of data set 2. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Number of 

points 
642,086 642,086 642,086 642,086 642,086 642,086 642,086 642,086 642,086 

Realisation 

n. 
5 43 46 59 61 63 68 80 83 

Number of 

real. per 

cluster 

6 15 6 18 5 4 13 16 17 

Mean 16.09 16.27 21.68 20.02 21.27 21.15 20.31 18.27 19.12 

Variance 

between 

points 

157.94 139.23 201.93 179.82 205.17 213.50 185.58 170.58 190.59 

Standard 

deviation 
12.57 11.80 14.21 13.41 14.32 14.61 13.62 13.06 13.80 

Minimum 0.16 0.15 0.16 0.21 0.17 0.15 0.24 0.16 0.14 

Maximum 58.03 57.93 58.04 57.83 57.88 57.96 57.81 57.79 58.13 
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Table 5.18 Basic statistics of the !"	values (in GPa) for the individual realisation that compose the four-clusters 

configuration of data set 3. 

 C1 C2 C3 C4 

Number of points 642,086 642,086 642,086 642,086 

Realisation n. 28 38 40 62 

Number of real. per 

cluster 
22 29 26 23 

Mean 27.51 24.57 26.16 26.31 

Variance between 

points 
31.15 44.82 33.95 33.63 

Standard deviation 5.58 6.69 5.82 5.80 

Minimum 5.20 4.65 4.96 5.19 

Maximum 41.83 41.57 41.96 41.47 

5.6. NUMERICAL MODELLING RESULTS 

5.6.1. Introduction 

Once defined the number of complementary and optimal clusters, a Flac3D numerical analysis can 

take place. For this analysis, the three different data sets will be considered and their analysis will be 

performed separately, although they will be compared with the numerical results obtained when the 

rock mass is modelled as a homogeneous mean, i.e. deterministic values are assumed for the 

geomechanical parameters. Indeed, this analysis will allow understanding the advantages and 

powerfulness of using this new characterisation methodology instead of a deterministic one. For the 

homogeneous model, and since there are two different phases of information, a similar process to 

the one adopted for the heterogeneous models was considered, i.e. the same empirical formulas 

used for the heterogeneous approach were also applied to obtain the average value of the !" to 

represent the Homogeneous model. In detail, the !" values used in this last model, was 19 GPa for 

data set 1 and 2, and 29 GPa for data set 3 (consult Appendix 1 for more details). 

Therefore, apart from the clusters and Homogeneous models, an additional one considering the 100 

realisations average was also taken into account. This model was defined to understand the 

differences in considering the individual realisations rather than their average and, consequently, the 

limitations of using the latter. For this model was adopted the term Mean, following the same line of 

terms used in Chapter 4. 

In order to perform an accurate comparison with LNEC (2013) numerical results, only data set 2 

and data set 3 were used since they shared the same type of geotechnical information used in LNEC 
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(2013); however, an individual analysis of data set 1 will be performed in order to understand if, 

with less information, the new characterisation methodology is able to give similar results as if more 

geotechnical information is contemplated. 

Moreover, it is worth mentioning, once again, the adoption of a damage zone in the LNEC numerical 

model to take into account the micro fractures that could result from the explosive use. Therefore, 

and since the information from phase 2 considers the excavation front mapping gathered after the 

powerhouse cavern excavation, the damage zone was not integrated in the new models. 

For the sake of clarification, Figure 5.26 presents a scheme illustrating the path followed and the 

main steps required to build each data set model for analysis, being the first step, the geostatistical 

simulation of the geotechnical parameters, followed by the application of empirical formulas to 

obtain the rock mass deformation modulus. Subsequently, and due to the smoothing effect of 

averaging the 100 realisations, a scenario reduction methodology had to be applied. As output of the 

process were generated: 1) the data set 1 composed by three clusters; 2) the data set 2, where 9 

clusters were assumed to represent the 100 realisations of !"; and 3) the data set 3 represented 

by four clusters. 

The main goal of this section is to compare the results in terms of displacements and principal 

stresses maximum values between all the built models. In detail, the displacements maxima were 

analysed to last excavation stage in the cavern left and right walls, arch and invert, as well as in 

section A and B previously presented in section 5.3. Likewise, the principal maximum and minimum 

stresses were also evaluated in the same sections and zones of the powerhouse cavern. Moreover, 

aiming to prove, once again, the limitations of using the 100 realisations average or a deterministic 

model, a control point located in the middle of the rock mass was defined, specifically in the upper 

left of the powerhouse cavern. 
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Figure 5.26 Workflow applied to build the data sets to represent the rock mass characterisation of Salamonde II using as 

input the geotechnical information from two distinct phases. 

5.6.2. Data set 1 vs. deterministic model 

In this subsection, the numerical results of data set 1 when 3 realisations are chosen to represent 

the full set of realisations, will be presented. Emphasis will be given to the results in terms of 
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displacements and principal stresses in the cavern walls, arch and invert, as well as in sections A 

and B. In addition, and as mentioned before, the same type of evaluation was made in the selected 

control point. Apart from the 3 individual realisations, the Mean and Homogeneous models will also 

be taken into analysis. Primarily, Table 5.19 presents a summary of the maximum displacements 

obtained for data set 1, as well as in the Mean and Homogeneous models. In the table second 

column, a section of the numerical model (was selected section A) is displayed from where it is 

possible to observe the spatial distribution of the !". The parameter variation is represented using a 

colour scale in which the blue colour embodies a !" equal to 0 GPa and the red colour the upper 

limit with a deformation modulus of 60 GPa. From the table analysis, some differences should be 

highlighted, such as: 1) the ones obtained between the three clusters, where it is possible to notice 

that the maximum displacement value is always registered on the right sidewall for section A and 

jumps between the left sidewall and the cavern invert for section B, always with different 

magnitudes. This proves the ability of the scenario reduction methodology, that is part of the 

proposed characterisation methodology, in covering a wide range of possibilities (higher and lower 

values of !"); 2) the differences between the clusters and the Mean model, where for the latter the 

registered displacements values in all the analysed sections were, significantly, inferior. On the other 

hand, the maximum displacement for all three clusters are always higher than the ones obtained 

with the Homogeneous model, showing values 110% higher in the vertical displacement of the 

tunnel invert (cluster 1) and 109% in the horizontal displacements of the right sidewall (cluster 3); 

and 3) the Homogeneous and Mean models resulted in similar values, proving, once again, the 

inability of the realisations average in consider the extreme parameter values. Furthermore, the 

differences between the displacements observed in all data set 1 clusters and the Homogeneous 

one can also be found in Table 5.19. These percentages were obtained considering the 

homogeneous displacements as reference. The disparity between models that are worthy of 

reference are: 1) the maximum absolute difference of 119% registered by cluster 2 in the south top 

of the cavern with a magnitude of 6.8 mm, while the homogeneous model showed a magnitude of 

3.1 mm; and 2) in the south top and cavern invert the displacements exhibited magnitudes that are, 

sometimes, twice higher than the values of the Homogeneous model. These can be considered as 

significant differences, mainly in geotechnical engineering since they can translate in a more 

accurate mechanical analysis of the underground works. 

With regard to the principal stresses, the difference between all the analysed models follows the 

same line as previously inferred for the displacements (see Table 5.20), with a maximum being 

registered for cluster 1 on the tunnel invert with a magnitude of 18 MPa (compression stress). For 
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the minimum stresses, that is shear stresses, the values vary from 0.5 MPa to 2.7 MPa in all 

clusters. 

To have a visual representation of these differences, Figure 5.27 and Figure 5.28 display, for section 

A and section B, the magnitude of the displacements along with their directional vector (black arrow) 

for the homogeneous model and the clusters that present, for each section, the maximum value in 

the displacement (see Table 5.19). Similarly, Figure 5.29 shows the magnitude of the displacements 

along the cavern surface for the last excavation stage, where a deformational command is used to 

give an idea of how the cavern deforms. Also, and because some references were made to the 

maximum principal stresses, Figure 5.30 exhibits a 3D perspective of the cavern for the 

Homogeneous model and cluster number 1 of data set 1, where can be perceived the 

heterogeneous distribution of the stresses around the cavern. 

With the purpose to summarise the main results obtained for data set 1, Table 5.21 indicates the 

average, standard deviation, minimum and maximum values obtained between all three clusters. 

These summary values should be used as a reference by the engineers in the underground design 

since they give an idea of what to encounter in situ, in terms of displacements. 

Table 5.19 Summary of the maximum displacements (in mm) obtained for data set 1 - 3 clusters, Mean and 

Homogeneous models and the differences (in percentage) in relation to the Homogeneous. 

Scenario Model SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Homo. 

 

5.40 

RW 

4.65 

LW 
0.32 5.21 5.66 4.10 5.60 4.27 3.10 

Mean 

 

5.31 

(-1%) 

LW 

5.51 

(+18%) 

LW 

0.35 

(+9%) 

5.80 

(+11%) 

5.20 

(-8%) 

3.78 

(-10%) 

5.80 

(+4%)  

3.80 

(-11%) 

4.23 

(+36%) 

C1 

 

6.90 

(+28%) 

RW 

11.50 

(+58%) 

I 

0.22 

(-31%) 

8.21 

(+58%) 

7.22 

(+28%) 

3.11 

(-26%) 

11.77 

(+110%) 

3.20 

(-26%) 

5.88 

(-25%) 

C2 

 

6.49 

(+20%) 

RW 

6.62 

(+42%) 

LW 

0.39 

(+22%) 

6.90 

(+32%) 

7.09 

(+25%) 

6.30 

(+50%) 

5.40 

(-4%) 

3.90 

(-9%) 

6.80 

(+119%) 

C3 

 

7.21 

(+34%) 

RW 

5.98 

(+29%) 

LW 

0.44 

(+38%) 

6.00 

(+15%) 

11.84 

(+109%) 

7.60 

(+81%) 

6.40 

(+14%) 

6.20 

(+45%) 

5.50 

(+77%) 
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Table 5.20 Summary of the maximum principal stresses (in MPa) obtained for data set 1 – 3 clusters, Mean and 

Homogeneous models (all the values should be negative corresponding to compressive stresses) and the differences (in 

percentage) in relation to the Homogeneous. 

Scenario SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch (A) 
Invert 

(I) 

North 

top (NT) 

South top 

(ST) 

Homo. 
10.0 

I 

11.0 

I 
2.9 8.0 11.0 9.0 10.0 11.0 11.0 

Mean 

11.0 

(+9%) 

I 

12.0 

(+9%) 

I 

2.8 

(-1%) 

12.0 

(+50%) 

10.0 

(-9%) 

11.0 

(+22%) 

13.0 

(+30%) 

13.0 

(+18%) 

11.0 

(0%) 

C1 

11.0 

(+9%) 

I 

19.0 

(+73%) 

A 

2.9 

(0%) 

14.0 

(+75%) 

11.0 

(0%) 

10.0 

(+11%) 

18.0 

(+78%) 

13.0 

(+18%) 

12.0 

(+9%) 

C2 

10.0 

(0%) 

A 

11.0 

(0%) 

RW 

2.9 

(0%) 

14.0 

(+75%) 

16.0 

(+45%) 

11.0 

(+22%) 

17.0 

(+70%) 

15.0 

(+36%) 

10.0 

(-9%) 

C3 

12.0 

(+18%) 

I 

13.0 

(+18%) 

RW 

2.9 

(0%) 

11.0 

(+38%) 

15.0 

(+36%) 

10.0 

(+11%) 

16.0 

(+60%) 

15.0 

(+36%) 

15.0 

(+36%) 

Table 5.21 Summary statistics of the displacements (in mm) regarding the 3 clusters of data set 1 in all the analysed 

zones. 

 

SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Clusters S 6.87 6.64 0.35 7.04 8.71 5.67 7.86 4.43 6.06 

Clusters & 0.29 0.55 0.09 0.91 2.21 1.88 2.80 1.28 0.55 

Minimum 6.497 5.987 0.22 6.00 7.09 3.11 5.40 3.20 5.50 

Maximum 7.218 7.338 0.44 8.21 11.84 7.60 11.77 6.20 7.10 

  

                                                
7 These minima values represent the minimum between the maximum displacements registered for section A and 

B in all the selected clusters. 
8 These maxima values represent the minimum between the maximum displacements registered for section A and 

B in all the selected clusters. 
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(a) (b)  

Figure 5.27 2D contours of the displacements magnitude (in m) and vectors for section A in the last excavation stage, 

for: a) the Homogeneous model; and b) cluster 3 of data set 1. 

    

(a) (b)  

Figure 5.28 2D contours of the displacements magnitude (in m) and vectors for section B in the last excavation stage, 

for: a) the Homogeneous model; and b) cluster 1 of data set 1. 

 

(a) (b)  

Figure 5.29 3D contours of the displacements magnitude (in m) with a deformed factor equal to 1000 in the last 

excavation stage, for: a) the Homogeneous model; and b) cluster 2 of data set 1. 



Numerical Methodology to Model Heterogeneous Rock Masses 181 

 

 

 

(a) (b)  

Figure 5.30 3D maximum principal stresses (in Pa) contours at the last excavation stage, for: a) the Homogeneous 

model; and b) cluster 3 of data set 1. 

5.1.1.1 Comparison with the observed results 

In order to assess the methodology accuracy, the data obtained from the monitoring campaign was 

used. This campaign was composed by 12 extensometers, located in section A (extensometers E1A, 

E2A, E3A, E4A, E5A, E6 and E7) and in section B (extensometers E1B, E2B, E3B, E4B and E5B) of 

the cavern. However, extensometers 1, 2 and 3 presented very small displacements readings, 

confirming the inadequacy of using these extensometers in this analysis; therefore, they were 

removed in both sections. Since the extensometers were installed in different timelines, some 

additional calculations had to be performed on the numerical results extracted from the software 

Flac3D. Each extensometer is composed by 3 rods, with 5 m, 10 m and 30 m long, with exception of 

extensometers E5A and E5B that are composed by two rods of 5 m and 20 m, and extensometer E7 

with two rods of 5 m and 15 m. All the displacements readings were made in an automatic way, 

except for the first readings that were registered manually. To facilitate the analysis and further 

comparisons, the measured displacements are represented assuming at the end of the rod (30 m 

and 20 m) a null displacement. This type of representation was executed since it was the one 

adopted in LNEC (2013). Thereby, the measured displacements are shown in Figure 5.31, from 

where it is possible to state that they are coherent with the cavern geometry. In brief, in section A 

higher values were measured in comparison with section B, and the same happens for the 

extensometers located in the lower elevations (6 and 7). To complement it is worth mentioning the 

decompression effect that can happen in the walls with higher height that can justify the highest 

horizontal displacements (section A). 
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(a) (b) 

Figure 5.31 Displacements evolution measured by all the extensometers installed in: a) section A; and b) section B. 

All the previously represented extensometers will be used for data set 1 comparison analysis. 

Therefore, the results computed for extensometer 4 installed after the sixth excavation stage on both 

sections, are presented in Figure 5.32, where the dashed line represents the displacement 

measured at 0 m, 10 m, 20 m and 30 m, the dotted line represents the displacements computed 

using the Homogeneous model and the remaining lines represent the calculated displacements for 

each one of the three clusters. As can be observed, the maximum displacements achieved by the 

three clusters and by the Homogeneous model, is half the value measured by E4A; however, it 

seems relevant to point out that all the three clusters are able to follow the same qualitative trend as 

the measured displacements and the Homogeneous line is, most of the times, located between 

clusters or under them (with lower displacements). In what concerns E4B, the case is different, 

since clusters 3 is able to track the measured displacements line. The main difference exists at a 

20 m distance, where there is an increase in the measured displacement. Similarly, Figure 5.33 and 

Figure 5.34 show the results obtained for extensometers 5A and 5B and 6 and 7, the firsts with a 

total length of 20 m and the lasts with a total length of 15 m. From the figures analysis, it is possible 

to observe that for a length equal to 0 m, meaning near the cavern surface in section A, all the 

clusters lines are far from the measured displacements confirming the ability to underestimate the 

displacements by the considered models - although in the middle and end points the adjustments 

are almost achieved. The dispersion in the first meters is more accentuated for the extensometers 

installed in section A, showing section B extensometers (E4B and E5B) displacements value almost 

equal to the one obtained by the clusters. 

Analysing closely, extensometers 5A and 6 are the ones with a higher difference between the 

measured and calculated values showing Mean Absolute Deviation (MAD) values higher than 2 mm 

for E5A and 5 mm for E6; however, and as can be proved by the MAD average values between all 
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the extensometers (see Table 5.22), the clusters provide more adjusted displacements when 

compared with the Homogeneous model (with all clusters showing an average MAD value lower than 

2.327 mm obtained for the Homogeneous). In a practical point of view, and by computing the 

average MAD values of all the 3 clusters for each extensometer, it is possible to obtain values, most 

of the times, lower than the ones obtained for the Homogeneous model (with exception of E5A). 

Also, the maximum standard deviation of the three clusters absolute deviation in each individual 

extensometer is of 0.635 mm, which can be considered residual since the displacements are in a 

millimetre’s scale. Even though, these relevant differences in the measured versus computed 

displacements, can be justified by some disturbance of the rock mass at the time of the excavation 

provoked by the use of explosives, as well as some considerable errors associated with the used 

equipment. 

In sum, considering a wider range of !" values, it is possible to state from a qualitative point view, 

that the contemplated clusters are able to reproduce the spatial variability existing in the rock mass, 

namely in more interior zones of the rock mass. 

 

 

(a) (b) 

Figure 5.32 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 1, for: a) E4A; and b) E4B. 
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(a) (b) 

Figure 5.33 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 1, for: a) E5A; and b) E5B. 

 

 

(a) (b) 

Figure 5.34 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 1 in section A, for: a) E6; and b) E7.  
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Table 5.22 MAD values (in mm) obtain between the computed and the measured displacements for all the 

extensometers for data set 1. 

 Homogeneous C1 C2 C3 
Clusters 

T (mm) 

Clusters 

U (mm) 

E4A -2.389 -2.505 -1.833 -1.565 -1.968 0.395 

E4B -1.062 -0.996 -0.664 -0.510 -0.723 0.203 

E5A -1.877 -2.322 -1.913 -2.357 -2.197 0.201 

E5B -0.991 -1.120 -0.654 -1.374 -1.050 0.298 

E6 -6.441 -4.497 -6.051 -5.286 -5.278 0.635 

E7 -1.204 -1.827 -2.041 -1.729 -1.878 0.415 

S (mm) -2.327 -2.211 -2.193 -2.137 - - 

& (mm) 1.905 1.268 1.983 1.604 - - 

5.6.3. Data set 2 vs. deterministic model 

In this subsection, and similarly to the subsection focused on data set 1, the numerical results of 

data set 2 are presented. They contain the results from all the nine clusters previously chosen in the 

scenario reduction methodology, as well as for the Homogeneous and Mean models. Once the 

model used in LNEC (2013) was developed using the same information as data set 2, the 

deterministic numerical results will also be compared with the ones obtained here; however, it is 

important to mention, that the rock mass deformation modulus assumed by LNEC is significantly 

lower (12 GPa and 6 GPa for the damage zone) than the one assumed for this data set 2 numerical 

analysis (which is in average 19 GPa). Thereby, any comparison made should take this !"	disparity 

into account. The main numerical results of all the mentioned models are provided in Table 5.23 

and Table 5.24, where the first column shows the models cross section with the !" distribution in 

the same scale used before, varying from 0 GPa (blue) to 60 GPa (red). 

In general, the displacements are higher than the ones obtained for data set 1, with special 

emphasis for the difference between the left and right sidewalls that, in some cases is very relevant, 

proving, once again, the advantages of considering the spatial variability of the rock mass in the 

mechanical analysis. 

In what concerns maximum displacements, in-depth look, the differences between the models to be 

highlighted are: 1) the Homogeneous model shows lower displacements when compared with each 

individual cluster; 2) by cross-checking the Mean and Homogeneous models, the differences are not 

as relevant as expected, corroborating the inadequacy of using the 100 realisations mean for this 

numerical analysis (with differences average of approximately 10%); 3) comparing the clusters and 
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the LNEC (2013) results, as expected, the displacements are lower than the values obtained by 

LNEC (see Table 5.23). In detail, in LNEC model, the maximum displacement reached a magnitude 

of 14.0 mm in the left sidewall, while cluster number 3 shows a maximum magnitude of 8.41 mm 

in the cavern arch (see Table 5.23). Also, in the cavern sidewalls, LNEC model presented as 

maximum displacements values of 14 mm and 13 mm, while cluster 1 showed nor very detached 

value of 12 mm and 15.30 mm for the left and right sidewalls. These displacements magnitudes 

prove, once again, the ability of the methodology in reaching the same displacements that were 

obtained assuming lower !"values obtained from a back analysis of the measured displacements. 

Yet, in the cavern north top, the displacement magnitude was 10 mm in LNEC model and 16.2 mm 

in cluster number 1, being this last higher than expected according to the rock mass deformation 

modulus. 

In terms of displacements contours, it is possible to confirm in Figure 5.35 and Figure 5.36 that due 

to the spatial variability of the deformation modulus, this contour is not as linear as the one obtained 

in LNEC. Indeed, by analysing the cavern deformation (see Figure 5.37) it is possible to confirm 

some irregularity of the cavern surface, justified by the lower values of the rock mass deformation 

modulus. 

In what concerns the principal stresses, since the displacements are higher, one would expect to 

have lower magnitude of values in comparison with the results from data set 1. Indeed, Table 5.24 

displays the maximum values of the principal stresses, from where it is possible to confirm that they 

are, in overall, lower; however, a maximum of 16 MPa was registered for cluster 3. Furthermore, it 

is important to highlight the relevant stresses value that appeared in the cavern walls in comparison 

with the lower value obtained by LNEC. Regarding the minimum principal stresses the magnitudes 

vary from 0.8 to 3.2 MPa. 

As with the table shown for data set 1, Table 5.25 shows a summary of the values that a 

geotechnical engineer should use for the underground design to be aware of the displacements 

possibilities that can exist in the field.  
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Table 5.23 Summary of the maximum displacements (in mm) obtained for data set 2 - 9 clusters, LNEC (2013), Mean 

and Homogeneous models and the differences (in percentage) in relation to the Homogeneous. 

Scenario Model SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Homo. 

 

5.40 

RW 

4.65 

LW 
0.32 5.21 5.66 4.10 5.60 4.27 3.10 

LNEC 

(2013) 

 

12.90 

(+139%) 

LW 

11.20 

(+124%) 

I 

- 
14.00 

(+169%) 

13.00 

(+130%) 
- - 

10.00 

(+134%) 

8.00 

(+158%) 

Mean 

 

4.95 

(-8%) 

RW 

4.10 

(--18%) 

I 

0.31 

(-19%) 

4.60 

(-12%) 

5.30 

(+6%) 

3.70 

(-12%) 

5.60 

(-18%) 

4.12 

(-4%) 

3.10 

(0%) 

C1 

 

7.70 

(+43%) 

RW 

6.62 

(+32%) 

LW 

0.40 

(+54%) 

12.00 

(+130%) 

15.30 

(+170%) 

6.3 

(+50%) 

5.80 

(+4%) 

16.4 

(+284%) 

4.20 

(+35%) 

C2 

 

6.73 

(+25%) 

RW 

5.6 

(+12%) 

I 

0.28 

(+8%) 

6.20 

(+19%) 

7.50 

(+33%) 

5.60 

(+34%) 

8.70 

(+55%) 

4.10 

(-4%) 

4.10 

(+32%) 

C3 

 

4.79 

(-11%) 

LW 

3.98 

(-20%) 

I 

0.33 

(+27%) 

5.51 

(+6%) 

4.90 

(-13%) 

5.20 

(-7%) 

3.90 

(-7%) 

4.90 

(+15%) 

2.70 

(-13%) 

C4 

 

5.40 

(0%) 

RW 

4.36 

(-13%) 

LW 

0.33 

(+27%) 

4.90 

(-6%) 

6.20 

(+10%) 

5.40 

(+29%) 

5.70 

(+2%) 

5.80 

(+36%) 

3.70 

(+19%) 

C5 

 

8.41 

(+56%) 

A 

5.00 

(0%) 

LW 

0.48 

(+85%) 

6.50 

(+25%) 

5.50 

(-3%) 

9.05 

(+116%) 

5.20 

(-7%) 

6.60 

(+55%) 

3.50 

(+16%) 

C6 

 

5.54 

(+8%) 

RW 

7.70 

(+54%) 

I 

0.59 

(+127%) 

9.70 

(+86%) 

8.00 

(+41%) 

5.0 

(+22%) 

12.00 

(+114%) 

3.00 

(-30%) 

5.70 

(+84%) 

C7 

 

6.46 

(+20%) 

RW 

5.52 

(+10%) 

I 

0.23 

(-12%) 

7.10 

(+36%) 

8.90 

(+57%) 

4.40 

(+5%) 

7.50 

(+34%) 

5.40 

(+26%) 

3.70 

(+52%) 

C8 

 

7.72 

(+43%) 

RW 

5.39 

(+8%) 

RW 

0.35 

(+35%) 

7.30 

(+40%) 

9.12 

(+61%) 

6.30 

(+77%) 

7.40 

(+13%) 

14.68 

(+244%) 

3.10 

(0%) 

C9 

 

5.07 

(-6%) 

RW 

3.97 

(-21%) 

I 

0.25 

(-4%) 

3.50 

(-33%) 

5.10 

(-10%) 

4.12 

(-2%) 

4.50 

(-20%) 

2.70 

(-35%) 

3.10 

(0%) 
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Table 5.24 Summary of the maximum principal stresses (in MPa) obtained for data set 2 – 9 clusters, LNEC (2013), 

Mean and Homogeneous models (all the values should be negative corresponding to compressive stresses) and the 

differences (in percentage) in relation to the Homogeneous. 

Scenario SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Homo. 
10.0 

I 

11.0 

I 
2.9 8.0 11.0 9.0 10.0 11.0 11.0 

LNEC (2013) 

7.0 

(-30%) 

A 

- - 
5.0 

(-38%) 

4.0 

(-64%) 

7.0 

(-22%) 
- - - 

Mean 

9.0 

(0%) 

A/I 

10.0 

(+11%) 

A/I 

2.9 

(0%) 

11.0 

(-7%) 

12.0 

(+18%) 

11.0 

(-10%) 

13.0 

(+15%) 

12.0 

(0%) 

10.0 

(0%) 

C1 

10.0 

(0%) 

I 

10.0 

(-9%) 

I 

2.9 

(0%) 

12.0 

(+50%) 

12.0 

(+9%) 

11.0 

(+22%) 

15.0 

(+50%) 

12.0 

(+9%) 

11.0 

(0%) 

C2 

10.0 

(0%) 

A/I 

10.0 

(-9%) 

A 

2.9 

(0%) 

12.0 

(+50%) 

10.0 

(-9%) 

10.0 

(+11%) 

13.0 

(+30%) 

10.0 

(-9%) 

12.0 

(+9%) 

C3 

10.0 

(0%) 

A/I 

11.0 

(0%) 

I 

2.9 

(0%) 

16.0 

(+100%) 

13.0 

(+18%) 

11.0 

(+22%) 

12.0 

(+20%) 

13.0 

(+18%) 

12.0 

(+9%) 

C4 

10.0 

(0%) 

I 

12.0 

(+9%) 

I 

2.9 

(0%) 

11.0 

(+38%) 

14.0 

(+27%) 

12.0 

(+33%) 

13.0 

(+30%) 

13.0 

(+18%) 

10.0 

(-9%) 

C5 

11.0 

(+10%) 

A 

11.0 

(0%) 

A/I 

2.8 

(-3%) 

14.0 

(+75%) 

13.0 

(+18%) 

11.0 

(+22%) 

12.0 

(+30%) 

12.0 

(+18%) 

10.0 

(-9%) 

C6 

10.0 

(0%) 

I 

10.0 

(-9%) 

A/I 

2.9 

(0%) 

15.0 

(+88%) 

13.0 

(+18%) 

11.0 

(+22%) 

14.0 

(+40%) 

14.0 

(+27%) 

11.0 

(0%) 

C7 

10.0 

(0%) 

A/I 

10.0 

(-9%) 

A/I 

2.9 

(0%) 

15.0 

(+88%) 

14.0 

(+27%) 

12.0 

(+33%) 

17.0 

(+70%) 

11.0 

(0%) 

12.0 

(+9%) 

C8 

11.0 

(+10%) 

A/I 

10.0 

(-9%) 

A/I 

2.8 

(-3%) 

12.0 

(+50%) 

13.0 

(+18%) 

12.0 

(+33%) 

12.0 

(+20%) 

11.0 

(0%) 

12.0 

(+9%) 

C9 

10.0 

(0%) 

A/I 

12.0 

(+9%) 

I 

2.9 

(0%) 

15.0 

(+88%) 

12.0 

(+9%) 

12.0 

(+33%) 

14.0 

(+40%) 

12.0 

(+9%) 

10.0 

(-9%) 
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Table 5.25 Summary statistics of the displacements (in mm) regarding the 9 clusters of data set 2 in all the analysed 

zones. 

 SA SB Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top (NT) 

South 

top (ST) 

Clusters S 6.45 5.35 0.36 6.97 7.84 5.70 6.77 7.06 3.87 

Clusters & 1.21 1.16 0.11 2.41 3.03 1.58 2.21 4.70 0.88 

Minimum 4.797 3.977 0.23 3.50 4.90 3.90 4.50 2.70 2.70 

Maximum 8.41 7.70 0.59 12.00 15.30 9.05 12.00 16.40 5.70 

  

  

(a) (b) 

 
 

(c)  

Figure 5.35 2D contours of the displacements magnitude (in m) and vectors for section A in the last excavation stage, 

for: a) the LNEC model (displacements with a scale of 400); b) cluster 5 of data set 2; and c) the Homogeneous model 
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(a) (b) 

  

(c)  

Figure 5.36 2D contours of the displacements magnitude (in m) and vectors for section B in the last excavation stage, 

for: a) the LNEC model (displacements with a scale of 400); b) cluster 6 of data set 2; and c) the Homogeneous model. 
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(a) (b) 

 
 

(c)  

Figure 5.37 3D contours of the displacements magnitude (in m) with a deformed factor equal to 500 in the last 

excavation stage, for: a) the LNEC model; b) cluster 1 of data set 2; and c) the Homogeneous. 
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(a) (b) 

  

(c)  

Figure 5.38 2D maximum principal stresses (in Pa) contours in section A at the last excavation stage, for: a) the LNEC 

model; b) cluster 8 of data set 2; and c) the Homogeneous model. 

5.1.1.2 Comparison with the observed results 

Similarly to subsection 5.1.1.1, in this subsection only the extensometers installed in section A and 

B will be presented for analysis. In this second data set, the results from LNEC (2013) will also be 

considered for the displacements comparison. Even though, note that the rock mass deformation 

modulus assumed in LNEC (2013) was lower than the one assumed for data set 1 and 2. The !" 

value of 12 GPa was the result of a back-analysis performed using the extensometers 

displacements, therefore, one expects an almost perfect coincidence between the measured 

displacements and the ones displayed in LNEC (2013). 

From Figure 5.39 to Figure 5.41 the results of all models are compared with the measured ones for 

extensometers E4A, E4B, E5A, E5B, E6 and E7 installed in sections A and B of the powerhouse 

cavern for the last excavation stage. From a qualitative point of view, all the clusters are able to 



Numerical Methodology to Model Heterogeneous Rock Masses 193 

 

 

reproduce perfectly the trend of the measured displacements in all the extensometers unlike the 

LNEC resulting lines (dotted blue line). Looking closely, in extensometers E4A, E4B, E5A and E5B 

the clusters show better adjustments when compared with the Homogeneous model. In comparison 

with the LNEC results, for E6, cluster number 8 achieved a better adjustment than LNEC, and the 

same happens for E7 with cluster number 1 showing a MAD value lower than the one obtained by 

LNEC. It is important to stress out that the !" values assumed for each cluster are at almost twice 

the ones assumed by LNEC. 

The biggest difference happens for E6, with the clusters showing an average MAD value around 

7 mm, while LNEC presents a value around 2 mm (see Table 5.26). In almost all the 

extensometers, the results from LNEC (2013) show adjustments above the measured displacements 

for extensometers E4B, E5A and E7 and the opposite for the remaining ones. In the middles 

sections of the extensometers, LNEC results are, most of the times, worse than the one obtained by 

the clusters, achieving a good fit near the cavern surface but missing the value as going deeper in 

the rock mass. 

In an overall analysis, the average of the MAD values indicates LNEC (2013) as the best fitted 

model, with average values under 0.5 mm, followed by clusters 1 and 8 with average value of 

2.012 mm and 2.154 mm, respectively. All the made statements can be confirmed in Table 5.26, 

where the clusters can be analysed individually and in average. 

  

 

(a) (b) 

Figure 5.39 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 2, for: a) E4A; and b) E4B. 
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(a) (b) 

Figure 5.40 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 2, for: a) E5A; and b) E5B. 

  

 

 (a) (b) 

Figure 5.41 Total displacements (in mm) in the longer rod measured (dashed line) and computed (dotted and solid 

lines) for data set 2 in section A, for: a) E6; and b) E7.  
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Table 5.26 MAD values (in mm) obtain between the computed and the measured displacements for all the 

extensometers for data set 2. 

 
Hom

o. 

LNEC 

(201

3) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

Clust

ers 

T 

(mm) 

Clust

ers 

U 

(mm) 

E4A 
-

3.015 
0.889 

-

1.365 

-

2.561 

-

3.061 

-

3.458 

-

2.690 

-

2.387 

-

2.716 

-

2.034 

-

3.025 

-

2.589 
0.582 

E4B 
-

2.802 
1.330 

-

1.281 

-

1.700 

-

1.885 

-

1.617 

-

1.619 

-

1.404 

-

1.346 

-

0.902 

-

1.522 

-

1.457 
0.269 

E5A 
-

1.840 

-

0.070 

-

1.322 

-

1.757 

-

2.436 

-

2.066 

-

1.439 

-

1.912 

-

2.680 

-

2.225 

-

2.502 

-

2.038 
0.446 

E5B 
-

1.926 
0.288 

-

1.621 

-

0.634 

-

1.432 

-

1.495 

-

0.940 

-

1.164 

-

1.492 

-

1.474 

-

1.348 

-

1.289 
0.301 

E6 
-

6.592 

-

2.057 

-

6.096 

-

5.876 

-

7.078 

-

7.243 

-

13.28

8 

-

5.893 

-

6.608 

-

5.120 

-

7.095 

-

7.144 
2.271 

E7 
-

1.336 
1.324 

-

0.388 

-

1.604 

-

1.097 

-

0.585 

-

4.495 

-

0.840 

-

1.004 

-

1.168 

-

1.035 

-

1.357 
1.157 

S 

(mm) 

-

2.919 
0.348 

-

2.012 

-

2.355 

-

2.832 

-

2.744 

-

4.079 

-

2.267 

-

2.641 

-

2.154 

-

2.755 
- - 

& 

(mm) 
1.740 1.165 1.866 1.671 2.004 2.187 4.278 1.697 1.899 1.403 2.059 - - 

5.6.4. Data set 3 vs. deterministic model 

Finally, in this subsection, and similarly to the subsections focused in data set 1 and 2, the 

numerical results of data set 3 are presented. They contain the results from all the five clusters 

previously chosen in the scenario reduction methodology, as well as for the Homogeneous and 

Mean models. Similarly to data set 2 analysis, the model used in LNEC (2013) was used for 

comparison. 

The main numerical results of all the mentioned models are provided in Table 5.27 and Table 5.28, 

where the first column shows the models cross section with the !" distribution in a scale that 

varies from 0 GPa (blue) to 60 GPa (red). The main differences between data set 2 and data set 3 

are the inclusion of the information obtained from the powerhouse front mapping, that had resulted 

in an increase of the !" value. Therefore, and as expected, the displacements are somewhat higher 

than the ones obtained for data set 1 and data set 2. 

The main differences to be highlighted for this last data set are that: 1) the Homogeneous and Mean 

models show similar displacements values in all the analysed points; 2) all four clusters give 

displacements magnitude that are twice higher than the one obtained by LNEC (2013) model, which 

would be expected since the !" value is two times higher; 3) the differences between the four 
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clusters are not as higher as expected, proving that , at the end, the simulated realisations had a 

lower dispersion of the !" values. Looking closely, and in comparison with the Homogeneous 

model, the displacements are 50% higher for section A (cluster 4) and 21% higher for section B 

(cluster 1), while the absolute maximum difference happens between cluster 4 and Mean model, 

namely in the north wall, with the clusters giving a displacement 56% higher. 

In what concerns to the stresses, the values are higher than the ones obtained by LNEC (2013); 

although, there are no important differences between the cluster, Mean and Homogeneous models 

(see Table 5.28 and Figure 5.45). The compression stresses reached 14 MPa in the left sidewall, 

while the shear stresses vary from 0.5 MPa to 1.2 MPa. 

In terms of displacements contours, it is possible to confirm by Figure 5.42 and Figure 5.43 the one 

obtained for section A and B of the powerhouse cavern, as well as the cavern deformation in Figure 

5.44. From the figure analysis, it is possible to observe that lower deformations happen for the 

homogeneous and data set 3 clusters, contrarily to LNEC (2013). 

As with the table shown for data set 1 and 2, Table 5.29 shows a summary of the displacements 

reference values, namely the average, standard deviation, maximum and minimum values to use by 

the engineers in situ. 

Table 5.27 Summary of the maximum displacements (in mm) obtained for data set 3 - 4 clusters, LNEC (2013), Mean 

and Homogeneous models and the differences (in percentage) in relation to the Homogeneous. 

Scenario Model SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Homo. 

 

4.46 

RW 

4.12 

I 
0.26 4.32 4.67 3.19 4.60 3.51 2.65 

LNEC 

(2013) 

 

12.90 

(+189%) 

LW 

11.20 

(+172%) 

I 

- 
14.00 

(+224%) 

13.00 

(+178%) 
- - 

10.00 

(+185%) 

8.00 

(+202%) 

Mean 

 

4.47 

(-13%) 

RW 

4.24 

(-6%) 

I 

0.24 

(-8%) 

4.60 

(+6%) 

4.70 

(+1%) 

3.20 

(0%) 

4.73 

(+3%) 

3.73 

(+6%) 

2.70 

(+2%) 

C1 

 

4.75 

(20%) 

RW 

4.43 

(-21%) 

I 

0.21 

(-19%) 

4.40 

(+2%) 

4.90 

(+5%) 

2.95 

(-8%) 

4.80 

(+4%) 

3.82 

(+9%) 

2.60 

(-2%) 

C2 

 

4.87 

(49%) 

RW 

4.55 

(-18%) 

I 

0.26 

(0%) 

4.91 

(+14%) 

5.14 

(+10%) 

3.70 

(+16%) 

5.00 

(+9%) 

4.80 

(+37%) 

2.90 

(+9%) 
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C3 

 

4.73 

(33%) 

RW 

4.92 

(20%) 

I 

0.24 

(-8%) 

4.73 

(+9%) 

4.72 

(+1%) 

3.23 

(+1%) 

5.45 

(+18%) 

3.85 

(+10%) 

2.81 

(+6%) 

C4 

 

4.62 

(50%) 

LW 

4.19 

(20%) 

I 

0.25 

(-4%) 

4.65 

(+8%) 

4.60 

(-1%) 

3.20 

(0%) 

4.60 

(0%) 

5.49 

(+56%) 

2.80 

(+6%) 
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Table 5.28 Summary of the maximum principal stresses (in MPa) obtained for data set 3 – 4 clusters, LNEC (2013), 

Mean and Homogeneous models (all the values should be negative corresponding to compressive stresses) and the 

differences (in percentage) in relation to the Homogeneous. 

Scenario SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top 

(NT) 

South 

top 

(ST) 

Homo. 
10.0 

I 

9.0 

A/I 
2.9 14.0 11.0 10.0 13.0 12.0 11.0 

LNEC (2013) 

7.0 

(-30%) 

A 

 - 
5.0 

(-64%) 

4.0 

(-64%) 

7.0 

(-30%) 
- - - 

Mean 

10.0 

(0%) 

I 

10.0 

(+11%) 

I 

2.9 

(0%) 

13.0 

(-7%) 

13.0 

(+18%) 

9.0 

(-10%) 

15.0 

(+15%) 

12.0 

(0%) 

11.0 

(0%) 

C1 

10.0 

(0%) 

I 

10.0 

(+11%) 

I 

2.9 

(0%) 

10.0 

(-29%) 

10.0 

(-9%) 

9.0 

(-10%) 

14.0 

(+8%) 

11.0 

(-8%) 

10.0 

(-9%) 

C2 

10.0 

(0%) 

I 

10.0 

(+11%) 

I 

2.9 

(0%) 

12.0 

(-14%) 

12.0 

(+9%) 

9.0 

(-10%) 

15.0 

(+15%) 

12.0 

(0%) 

11.0 

(0%) 

C3 

10.0 

(0%) 

I 

10.0 

(+11%) 

I 

2.8 

(-3%) 

12.0 

(-14%) 

11.0 

(0%) 

11.0 

(+10%) 

14.0 

(+8%) 

12.0 

(0%) 

12.0 

(+9%) 

C4 

10.0 

(0%) 

I 

12.0 

(+33%) 

I 

2.9 

(0%) 

14.0 

(0%) 

12.0 

(+9%) 

10.0 

(0%) 

13.0 

(0%) 

10.0 

(-17%) 

11.0 

(0%) 

Table 5.29 Summary statistics of the displacements (in mm) regarding the 4 clusters of data set 3 in all the analysed 

zones. 

 

SA SB 
Control 

point 

Left 

sidewall 

(LW) 

Right 

sidewall 

(RW) 

Arch 

(A) 

Invert 

(I) 

North 

top (NT) 

South 

top (ST) 

Clusters 

S 
4.74 4.52 0.24 4.67 4.84 3.27 4.96 4.49 2.78 

Clusters 

& 
0.09 0.26 0.02 0.18 0.20 0.27 0.31 0.70 0.11 

Minimum 4.627 4.197 0.21 4.40 4.60 2.95 4.60 3.82 2.60 

Maximum 4.87 4.91 0.26 4.73 5.14 3.70 5.45 5.49 2.90 
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(a) (b) 

  

(c)  

Figure 5.42 2D contours of the displacements magnitude (in m) and vectors for section A in the last excavation stage, 

for: a) the LNEC model (displacements with a scale of 400); b) cluster 2 of data set 3; and c) the Homogeneous model. 
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(a) (b) 

  

(c)  

Figure 5.43 2D contours of the displacements magnitude (in m) and vectors for section B in the last excavation stage, 

for: a) the LNEC model (displacements with a scale of 400); b) cluster 3 of data set 3; and c) the Homogeneous model. 
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(a) (b) 

  

(c)  

Figure 5.44 3D contours of the displacements magnitude (in m) with a deformed factor equal to 500 in the last 

excavation stage, for: a) the LNEC model; b) cluster 2 of data set 3; and c) the Homogeneous. 
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(a) (b) 

  

(c)  

Figure 5.45 2D maximum principal stresses (in Pa) contours in section A at the last excavation stage, for: a) the LNEC 

model; b) cluster 1 of data set 3; and c) the Homogeneous model. 

5.6.5. Discussion of the results 

Due to the number of models considered for the numerical analysis, the discussion of the results will 

be focused on the main ones, that is data set 1, 2 and 3. Firstly, the numerical results will be 

commented for data set 1, highlighting the heterogeneity representation of the individual realisations 

when compared with a deterministic approach. Then, for data set 2 and 3 a comparison will be 

made with the numerical results obtained by LNEC (LNEC, 2013). Since an observational campaign 

was carried out during the cavern excavation, the displacements measured by extensometers will 

also be integrated for analysis. Finally, some evaluations will be made about the use of clusters to 

identify the heterogeneity and spatial variability of the rock mass of Salamonde II. 
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In what concerns the first point, and for data set 1, it was possible to observe from Table 5.21 that 

the adopted three clusters (individual realisations) provided good results in the definition of a lower 

and upper bound for the cavern displacements, as well as for the maximum principal stresses. It 

seems relevant to mention, that comparison with the Homogeneous model the displacements 

disparities reached 119%, with cluster 2 computing a displacement of 6.8 mm in the cavern south 

top and the Homogeneous model a smaller value of 3.1 mm. Analysing this difference from a 

geotechnical point of view, a deviation of almost 4.0 mm makes a relevant difference (in the 

millimetres’ magnitude). Regarding the Mean model, as expected, the displacements and principal 

stresses values obtained agree with the ones from the Homogeneous model, confirming, once again 

the limitation of using he 100 realisations average values. 

The displacements results, when compared with the measured displacements during the 

observational campaign, were not as good as expected, namely for the extensometers instated in 

section A; however, on most of the extensometers the qualitative trend is achieved and in the ones 

of section B the displacements magnitudes are achieved. In relation to the Homogeneous model, for 

most of the clusters were registered lower average MAD values. Overall, the significant differences 

between the clusters and the measured displacements happen, mainly in the first point, near the 

cavern surface, and can be explained by some disturbance provoked on the rock mass during the 

excavation. 

With regard to the second point (data set 2 and 3), here assumed as the main data set, the 

numerical results from data set 2 are in line with the ones obtained for data set 1. However, and 

according with the rock mass empirical systems, the !" value are higher for data set 3 and, 

consequently the displacements lower. In a general way, for data set 2 the displacements 

differences, in comparison with the Homogeneous model, are in all the clusters, above the 

displacements and principal stresses observed with a deterministic approach. Although the same 

does not happen in data set 3, where the Homogeneous model presents, in a semi part of the time, 

lower or higher values in comparison with the analysed clusters. 

In LNEC model, the maximum displacement reached a magnitude of 14.0 mm in the left sidewall, 

while cluster number 3 shows a maximum value of 8.4 mm in a different point, the cavern arch. 

Similarly, in the cavern north top, while LNEC resulted in a 10.0 mm displacement, cluster number 

1 showed a 16.2 mm magnitude, which is higher than expected. 

For data set 3, with an increase of the rock mass deformation modulus for almost three times the 

value assumed in LNEC (2013), and since a linear elastic behaviour of the rock mass was assumed, 
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the expected displacements would be approximately one third of the ones obtained by LNEC; 

however, that effect did not happen in a linear way. Indeed, the maximum displacement in the north 

top is only 50% lower than the LNEC result (10.0 mm to 4.8 mm), which allows to conclude that the 

individual realisations can, by fact, identify and reproduce the spatial variability of the !".  All the 

mentioned differences can be analysed in more detail in Figure 5.46, which includes the minimum 

mean and maximum displacements values in all analysed models, as well as the maximum 

displacement registered by LNEC(2013) model. 

In terms of the comparison with the observed displacements for data set 2, the same qualitative 

trend is maintained, with a more succeeded adjustment in extensometers installed in section B. In 

the remaining extensometers, the results were worse, mainly in the first distances (0 m and 10 m). 

Regarding results obtained by LNEC, and since they used these observed displacements to obtain 

the !" value by back-analysis techniques, it would be expected almost perfect adjustments in the 

extensometers (see Table 5.30); however, the obtained lines do not show the same qualitative trend 

as the one obtained using the clusters. Yet, analysing the average error between the considered 

extensometers this was the model with the lowest error, 0.348 mm. In what concerns data set 2 

almost all clusters models, showed an average deviation closer to 2 mm, with the lowest value 

observed for clusters 1 and 8. 

It is important to stress out that in underground works, a deviation of 1 or even 2 mm can be 

considered residual. Note, once again that the magnitude of the displacements (mm) is very small, 

which gives sufficient prominence to the extensometers electronical errors. Also, and because is a 

millimetre scale, temperature changes inside the rock mass can truly influence the displacements 

results, leading to measured higher values. 

Table 5.30 Average values of the MAD mean values (in mm) obtain between the computed and the measured 

displacements for all the extensometers and the standard average values. 

 Homo. 1/2 Data set 1 Data set 2 LNEC (2013) 

Mean of S -2.919 -2.183 -2.645 -0.348 

Mean of & -1.740 -0.357 -0.838 -1.000 



Numerical Methodology to Model Heterogeneous Rock Masses 205 

 

 

 

 

Figure 5.46 Graphical representation of the minimum, mean and maximum values of the maximum displacements 

registered in each analysed numerical model (data set 1, 2 and 3 and corresponding Homogeneous models). The red 

line represents the maximum displacement obtained by LNEC(2013) model for terms of compression. 

5.7. CONCLUSIONS 

In order to validate the numerical methodology proposed in Chapter 4, a complex underground work 

had to be considered. Therefore, the electrical power reinforcement of Salamonde was the selected 

case study to apply the developed methodology. This new complex of underground structures, are 

located near the Salamonde dam as denotes the name of Salamonde II. From all the underground 

structures the one chosen for numerical analysis was the powerhouse cavern and some auxiliary 

structures, namely the floodgate chamber and some access tunnels. 

The reinforcement works started in 2009, where an initial campaign of characterisation of the rock 

mass was carried out (phase 1 of the information), mainly through mechanical boreholes executed 

from the surface. From there, it was possible to evaluate a total of 81 points with information of the 

!%, 1570 with the information of W and 1568 with the information of RQD. In a second phase, and 
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during the cavern excavation more information was gathered from the cavern front. This time 

information about the RMR, Q and GSI, all empirical systems used to characterise the rock masses. 

Since both phases of information have different geotechnical parameters and quantity of information 

the geotechnical parameters were, firstly geostatistical simulated and then, using different empirical 

formulas, they were convert into the geomechanical parameters, namely the rock mass deformation 

modulus. At the end, and in order to take into account both phases of the information, three data 

sets of !" values were created, data set 1 that used information from phase 1, data set 2 suing the 

information form phase 1 plus some additional laboratory tests performed in the extensometers and 

piezometers logs, and finally, the third data set where the information regarding the empirical 

systems were added. Since the laboratory tests the front mappings give different type of 

geomechanical information, it seemed relevant to performed and individual analysis of data set 2 

and 3. 

A main step of the numerical methodology goes through the geostatistical simulation of the 

geomechanical or geotechnical information and, in this Chapter, it was done individually in several 

geotechnical parameters. The simulation was performed using as target points the Flac3D mesh 

developed by Espada and Lamas (2014). Then, after the use of the empirical formulas, the 100 

realisations of the !" were reduced to a small number obtained after a scenario reduction 

methodology is applied. A lower bound of 3 clusters was defined for this methodology application, 

and the optimal number of clusters obtain for the third data set (2 clusters) was not used 

afterwards. As a consequence, a total of 3, 9 and 4 clusters were selected to represent the full 

realisation set of data set 1, 2 and 3, respectively. These scenarios were validated using the 

percentiles 10, 50 and 90, where quasi overlapping lines were obtained between the clusters 

configurations and the full realisations set. This good fitting can be attested by the !" distribution of 

the values obtained using kernel smoothing function. At this point, with the scenario reduction 

results, it was possible to affirm that the rock mass of Salamonde II should be well characterised, 

represented by geostatistical individual realisations that allows the uncertainty reduction and 

consider the existence of variability in the !" spatial distribution. 

Finalised the clusters configurations selection and validation, the numerical analysis was performed 

in several models using Flac3D (three for data set 1, nine for data set 2 and four for data set 3). 

Aiming to demonstrate the advantages of using this new numerical methodology, the numerical 

analysis of a Homogeneous model was carried out for the different data sets. Hence, and as the 

individual realisations that compose the clusters configurations give results that always bounced the 

homogeneous ones, it is possible to state the importance of having a wide range of possibilities to 
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use in underground works, mainly because the deterministic approach can compute displacements 

and principal stresses value that are underestimated. 

A relevant point to stress out regards the numerical results from data set 1. The data set is 

composed by information gathered in a prospection phase and the numerical results are similar to 

the ones obtained when more information is added (data set 2). This can also be attested by the 

comparative analysis made with the extensometers measured displacements, reaching in each 

cluster better adjustments than the ones obtained with the deterministic approach. This fact shows 

the power of the developed methodology that, even with a small amount of data, is able to reach 

coherent results. 

Moreover, it seems important to mention the advantages of using the individual realisations, mainly 

for the powerhouse cavern deformation analysis, where some irregularity zones can be identified 

and justified by the lower !" values. This is from a great utility to identify zones more unstable in 

the rock mass. 

Finally, note that considering the geotechnical data the estimated deformation modulus to consider 

into the numerical analysis would be closer to 30 GPa, although by using this methodology it was 

possible to obtain results that are closer to the ones obtained by LNEC that used the observational 

displacements of 12 extensometers to perform a back analysis of !". For this reason, and others 

already mentioned, it seems unmistaken to affirm that the findings of this Chapter show the utility 

and advantages of characterising the rock mass with the new proposed methodology, through which 

the heterogeneities/variability can be identified and reproduced. Even more, when compared with a 

deterministic approach, as proven by the Homogeneous model results. 
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Chapter 6  

METHODOLOGY FOR OPTIMISATION OF 

BOREHOLES PLANS 
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6.1. INTRODUCTION 

Prospection plans have the difficult task of ensuring a complete and rich characterisation of the rock 

mass providing a fair balance between costs optimisation and safety in geotechnical projects. In a 

desirable scenario, the number of boreholes to perform in situ should be as high as possible; 

however, in the reality of geotechnical works, this is not the case. The costs associated with 

boreholes execution in rock masses are considerably high, which limits their number. Moreover, due 

to the frequently large spacing between boreholes and the fragmentary nature of the obtained data, 

considerable uncertainties affect the geotechnical models, mostly in highly heterogeneous rock 

masses. Currently, boreholes location and depth are mainly defined based on experience and know-

how of professionals, as such they are user-dependent. 

Therefore, the search for more rational and balanced ways of planning the borehole locations, as 

they can provide higher quality data and decrease the uncertainties, is of utmost importance, 

essentially in large geotechnical projects, where the time and money available for rock mass model 

construction is short. 

The geotechnical prospection plans in large geotechnical works are generally divided into two main 

phases: the initial phase, where a preliminary and confined characterisation of the rock mass is 

carried out, and a second phase, where the number of executed boreholes, as well as laboratory 

and in situ tests, are significantly higher and performed according to the necessary detail level. 

Thus, the application of a borehole plan optimisation methodology in geotechnical engineering is 

suitable in the second phase where the preliminary geotechnical information resulting from phase 

one can be used. After performing a literature review, a gap of consolidated methodologies for this 

purpose and to help professionals to optimise the boreholes position in the second phase of the 

prospection works by giving them information regarding the borehole quantity and depth was 

identified. 

In this search, a few existing methodologies for boreholes optimisation combining different types of 

algorithms, in which the goal consists in minimising a wide range of uncertainty measures, were 

found. Some of the used measures are obtained by using geostatistical techniques, e.g., the 

variance of spatial prediction errors or other metrics obtained through kriging (McBratney et al., 

1981; Scheck and Chou, 1983; Englund and Heravi, 1994; Van Groenigen et al., 1998; Marchant 

and Lark, 2005; Brus and Heuvelink, 2007; Soltani and Hezarkhani, 2009, 2013a, 2013b). 
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For detail, from all the mentioned works, authors like Olea (1984), Englund and Heravi (1994), 

Marchant and Lark (2005) and Soltani and Hezarkhani (2009, 2013a, 2013b) proposed interesting 

approaches to reduce the uncertainty associated with boreholes placement. 

First, Olea (1984) presented a method to minimise the sampling requirements necessary to 

estimate a mappable spatial function at a specific level of accuracy based on the technique of 

kriging. This work uses the average standard error as global indices of sampling efficiency. As a 

result, an optimised pattern for the wells was obtained. 

Subsequently, Englund and Heravi (1994) following Olea’s work, applied the methodology to predict 

subunits of the site that need remediation (second phase) using as information the data obtained 

from remediation campaigns performed in a called phase one. At this stage, a cost-effectiveness 

optimisation was performed to assess the number of samples and phases required to remediate 

contaminated soil balanced with reasonable costs. 

In 2005, Marchant and Lark developed an approach to optimise the sampling scheme used to build 

the variogram. The main goal was to understand what type of sampling scheme, of regular or 

iterative, could result in more accurate variograms to use in further simulations and, consequently, 

reduce the sampling costs. In each phase the information from previous phases is used to generate 

new information and to decide if a new phase is required. As an objective function, the authors 

minimised the developed expression to evaluate the uncertainty of variogram parameter estimation 

(e.g. sill, range, nugget, etc.). 

Later, in 2009, Soltani and Hezarkhani proposed a more complex methodology upgrading to a 3D 

application. In this work, the authors assumed as an objective function the maximisation of the 

kriging variance reduction, a metric calculated after dividing the kriging variance values obtained 

from the initial samples with the new additional boreholes. The goal was to find the optimal pattern 

for new boreholes to execute in gold and copper deposits using the Simulated Annealing 

optimisation algorithm. 

In 2013, the same authors published two more works based on the previously proposed 

methodology, this time combining the simulated annealing algorithm and an objective function to 

assess the realistic value information that additional boreholes will bring for the deposit 

characterisation. So, the objective function considered was the range of reliability of each individual 

block resulting from their prediction. 

In these recent papers, Soltani and Hezarkhani stated that, hitherto, the published works share the 

same limitation since they use the kriging variance value as the objective function and, therefore, 

they proposed the use of a different metric that in fact also results from the kriging prediction. 
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This fact leads to the identification of a weakness in this domain, mostly because the use of 

prediction only results in one possible “reality” for the random field and the obtained metrics do not 

reflect the local variability of the regionalised variable under consideration (Chilès and Delfiner, 

2012). Thus, the replacement of kriging by geostatistical simulation that results in several 

realisations and, consequently, in a greater uncertainty reduction and accuracy in the spatial 

variability quantification of a random field, is a way to overcome those limitations. In what concerns 

the optimisation algorithm, almost all mentioned works used the Simulated Annealing; therefore, 

and since the goal is to search for the global minima, the stochastic algorithm was the best choice 

to use in the optimisation process of the proposed methodology. In Figure 6.1 a summary 

containing all the mentioned works, as well as the identification of all the methodologies limitations, 

is presented. The shown table served as a basis for the development of the boreholes plans 

optimisation methodology presented in this Chapter. The main purpose of the proposed 

methodology is to work as a helping tool in supporting the decision-maker when defining the 

prospection plans and to provide as main output the optimal position for additional boreholes, the 

gain in terms of geotechnical details and the minimum depth of each borehole.  

This Chapter is organised as follows. Firstly, the chosen optimisation algorithm is presented in a 

general way in subsection 2. Then, the proposed methodology and all the detail regarding its 

application are exposed in subsection 3, followed by the application to a case study described in 

subsection 4. Discussion and conclusions follow in the last subsections. 

 

Figure 6.1 Identification of all the optimisation methodologies and their limitations along the years. 

Sampling optimisation

methodologies

Kriging estimation variance metrics

Olea

Soltani and Hezarkhani

Englund and Heravi

Marchant and Lark

1984

1994

Area of interest: Hidrogeology

Input: Samples

Point-Patterns

Method: Universal Kriging

OF: Average estimation error

Optimisation algorithm:

iterative process

Output: best pattern design

Area of interest: soils

(contamination)

Input: soil samples

Method: SGS + Ordinary Kriging

(WMA)

OF: Kriging variance

(minimisation)

Optimisation algorithm:

Monte-Carlo approach

Output: optimal number of soil

cells needing remediation

Area of interest:

Input: 6 transects with 10 points

each

Method: LU simulation

OF: Kriging variance

(minimisation)

Optimisation algorithm:

Space Simulated Annealing

Output: best sampling scheme

Area of interest: Hydrology

Input: 51 observations of relative

altitude, drainage depth and

drainage density

Method: Universal Kriging

OF: mean variance

(minimisation)

Optimisation algorithm:

Simulated Annealing

Output: optimal pattern for 25,

50 and 100 samples

Brus and Heuveliknk

Area of interest: Mining

Input: drill holes in a cooper

mine

Method: Block Kriging

OF: Range of reliability (Kriging

standard deviation)

Optimisation algorithm:

Simulated Annealing

Output: position of additional

drill holes

2005

2006

2013

Identified limitations:

All methodologies:

- Apply estimation techniques (kriging) to calculate the objective function

- Only uses one objective function (the variance or standard deviation value)

Some methodologies:

- Require the samples pattern as input
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6.2. OPTIMISATION CONCEPTS 

6.2.1. Simulated Annealing 

In the metallurgical industry, a thermal process named annealing aims to forge iron in order to 

minimise the energy spent to cool and freeze the metal. The metal is heated to a maximum 

temperature able to change its physical properties (creating a particle disorder) and followed by slow 

cooling to guarantee that the final configuration of the solid is structurally superior. Simulated 

annealing (SA) (Kirkpatrick et al., 1983) is an iterative algorithm to solve combinatorial optimisation 

problems inspired in this process in order to find a balanced state for each temperature, this way 

minimising the internal energy of the process. In engineering problems, the use of SA has been 

increasing once it is an alternative to gradient-based methods or other local classical methods that 

can be trapped in local optima. 

This algorithm starts by randomly generate a solution, the so-called new solution (!) that emerges 

after random changes in the parameters that generate the previous solution ("). Then, in the case of 

facing a minimisation problem, SA compares the objective function (OF) values for each solution. On 

the one hand, if #$% 	≤ 	#$(  , solution ! is automatically accepted and assumed as the temporary 

best solution. Under these conditions, the algorithm jumps to another iteration and new solutions 

are generated. On the other hand, if #$% 	> 	#$( there is a possibility to accept solution !, even if it 

is a “worse” solution than solution ". By allowing these controlled uphill moves to counter the 

downhill moves, the algorithm is forced towards the global minimum that sometimes can be found 

near the worst solutions. This selection is made through the calculation of an acceptance probability 

(*+,,-./) that depends on a temperature parameter that decreases in a slow rhythm to avoid, once 

again, the algorithm to be trapped into a local minimum: 

*+,,-./ =
1														#$% ≤ #$(

2
3∆5
6 										78ℎ2:;"<2

	 (6.1) 

where ∆O represents the difference between the OF values in the states " and ! (∆#	 = 	#$% 	−

	#$() and ? is the control temperature. In the case of lower temperature values, the probability of 

accepting worse solutions is also lower, allowing SA to converge faster (see Figure 6.2). 
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Figure 6.2 Simulated Annealing functioning method - hill climbing (adapated from Zhigljavsky, 1991). 

As previously mentioned, the initial temperature to start the process must be high enough to allow 

SA exploring all the space of solutions. However, during the process, the temperature is 

progressively reduced until a threshold value defined by the user. This cooling should be slow in 

order to avoid rushing the stopping criteria of the algorithm, e.g.: 

?% = @	×	?( 	 (6.2) 

where ?( represents the temperature value used when solution " is generated and @ represents the 

cooling constant, whose values usually range from 0.80 to 0.99 for a fast and slow cooling, 

respectively (Aarts and Korst, 1989). 

Besides the previously mentioned parameters, other should be defined: 

§ A perturbation or transition kernel, which indicates the mechanism used to generate a new 

solution to be tested given a current solution; 

§ A maximum number of allowed moves for each temperature value. This number translates 

the number of times that SA generates new solutions before decreasing the temperature. 

Once reached this maximum number of moves, the temperature is decreased using the 

aforementioned cooling process. Additionally, the maximum number of accepted solutions 

given the same temperature value must also be defined. 

§ A stopping criterion: this criterion can be defined based on one or more key parameters. 

Many authors stop SA by defining a final value for the temperature, while others add more 
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criteria to the process (Yang, 2010; Brus and Heuvelink, 2007; Hernandez and Emery, 

2009). In the present case, the stopping criterion will be composed of a temperature, an 

iteration number and a maximum number of rejections within a given temperature state. 

The latter will allow stopping the algorithm if no progress is shown; 

To sum up, the algorithm should be applied using the following general steps: 

Step 1: The values of the above key parameters (initial temperature, maximum number of 

iterations, cooling constant and maximum number of rejections in a given temperature state) 

must be set. This can be defined after performing a sensitivity analysis to identify which 

parameter values allow the convergence of the algorithm to the global minima, or using as a 

reference existing values for similar optimisation problems. 

Step 2: In the first iteration, an initial solution " should be randomly generated within the space 

limits. For the remnant process, the new generated solutions are based in random changes 

made to the current solution. 

Step 3: The objective function is calculated for the new solution ! and the decision of whether or 

not moving to the new solution is made. 

Step 4: The temperature is decreased until reaching the thresholds defined for the stopping 

criterion, for which the algorithm gives the near-optimal solution for the optimisation problem. 

In what concerns the algorithm advantages, it is important to highlight the fact that a mathematical 

model is not required, i.e. the algorithm only needs to perturb and evaluate the optimisation function 

without further details on the problem, which in real-life problems, where the amount of information 

is limited, is very useful. 

6.2.2. Multi-criteria optimisation 

With the growth in complexity and plurality of perspectives of engineering problems, the need to 

optimise more than one function or variable has increased. Therefore, the use of a multi-criteria 

approach allows a better understanding of the reality and supports the user in the decision because 

most of the functions in an optimisation process are in conflict, i.e. while some objective functions 

increase, a reverse movement may happen for the remaining. Since a unique and admissible 

solution does not exist for this type of problems, the approach main goal goes through finding the 

best solution that can, at the same time, satisfy all the objectives. In essence, a multi-criteria 
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approach entails an advantage not only in the problem conception, but also in the critical analysis 

once a range of solutions with different characteristics is obtained. 

A wide range of methods can be applied to solve this multi-criteria optimisation problem, some more 

classical and others that appeared more recently. In the first group, the classical methods, the aim 

is to find the ideal solution by minimising an objective function B(C), which is a vector containing all 

the decisions variables 	C. Here, the ideal solution should be the one corresponding to the minimum 

value in all the decisions variables. To help in the optimum identification, Pareto (1912) presented a 

concept to identify compromise solutions where each solution C∗ ∈ G (G represents the feasible 

space - set of constraints) is a Pareto optimum for a multi-objective problem if all other solutions 

C	 ∈ G have: 

B((C) ≥ B((C
∗)	 with "	 ∈ I = [1, 2, . . , N] 	 (6.3) 

Or, at least there exists one objective function "	 ∈ I such that, 

B((C) > B((C
∗)		 (6.4) 

In the previous formulations, the letter "	denotes the number of objectives that compose the multi-

objective problem and N	the number of functions that composes the vector function I. 

Examples of the classical methods that could be applied are: 

§ Weight Sum Method; 

§ Hierarchical Optimisation Method; 

§ Trade-off Method. 

The Weight Sum Method proposed by Zadeh in 1963 transforms a set of objectives of an 

optimisation problem into a single and scalar objective function, where each decision variable 

receives a weight value (@() in accordance to its importance in the subject. This relation is given by: 

B C = @(B( C ,P
(QR 		where					 @( = 1P

(QR 	for	@( ≥ 0	 (6.5) 

Furthermore, to apply the method, it is important that all the decision variables are expressed in a 

similar unit or, if needed, standardise the set of objectives. This method represents the simplest and 

fastest way to transform a complex and hard multi-objective problem into an uni-objective one and, 

therefore, is widely used. As a disadvantage, the one most often pointed out, is the fact that for 
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mixed problems, like minimum and maximum problems only one type should be assumed; however, 

and since the present optimisation problem relies only on the objective function minimisation, this 

was the method adopted to perform the multi-criteria optimisation. 

In what concerns the Hierarchical Optimisation Method (Osyczka, 1981) the decision variable is 

ordered in terms of its importance and, using this order, each objective function is minimised 

separately adding in each step a constraint to prevent the change in value of the previously 

minimised criterion. The complexity associated to this method can lead to a reduced use of it. 

Regarding the Trade-off Method, also known as T-Constraint Method, it is more linked to the 

economical field and consists in keeping only one of the objectives and restricting the remaining to 

the selected one as in the form of constraints. Details about the method can be found in Eskelinen 

and Miettinen (2012). 

6.3. PROPOSED METHODOLOGY 

6.3.1. Overview 

To establish this methodology, it was necessary to combine two important techniques: the 

geostatistical simulation of the geotechnical variable of interest, conditionally to the available 

preliminary information, and an optimisation algorithm known as simulated annealing (SA). 

In detail, the methodology starts by performing a geostatistical simulation from preliminary data 

(input), for which a wide range of geotechnical information can be obtained such as the Fracturing 

Degree (F), Weathering Degree (W), Rock Quality Designation (RQD) or the empirical rock mass 

classification systems, like Rock Mass Rating (RMR) (Bieniawski, 1989), Q-system (Barton, 1974) or 

Geological Strength Index (GSI) (Hoek et al., 2002). Geostatistical simulation is performed in a 

conditional way, thus guaranteeing that the preliminary data are reproduced in information and 

position, following the methodology presented by Pinheiro et al. (2016) (see Figure 6.3:Stage 1). As 

a result, a total of U	realisations of the geotechnical information, which enable the determination of 

the objective function to use in the optimisation process, are obtained. In this case, two metrics will 

be used as objective functions: the local variance of the simulated values and the width of their 95% 

probability interval. Then, the SA algorithm is used to minimise the objective function values, which 

translate the uncertainty of the geotechnical model. In this sense, the output of the previously 
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explained process corresponds to the optimal length and position of additional boreholes to execute 

during the second phase of the prospection plans (see Figure 6.3:Stage 2). 

 

Figure 6.3 Diagram of the proposed methodology combining geostatistical simulation and simulated annealing. 

6.3.2. Optimisation process 

As already mentioned, the methodology requires geotechnical information to use as preliminary 

data. In general, this information is obtained from a limited number of boreholes already executed in 

the field, the location and depth of which are usually based on the know-how of the professionals 

and geological aspects. This geotechnical information should allow the calculation and fitting of a 

variogram of the measured regionalised variable (Chilès and Delfiner, 2012), which is an imperative 

tool to use in geostatistical simulation. The type of information used as initial data in this 

optimisation process can be diverse and directly derived from the borehole data.  

In what concerns the optimisation process, it is initialised by randomly generating V points in a 

confined space used to represent the additional boreholes to execute. Then, conditional simulation is 

performed and a total of U realisations of the chosen variable at the V	target points are obtained. At 

this stage, the turning bands algorithm is used to construct the realisations and the residual kriging 

approach is used to condition the realisations to the preliminary data values, i.e. to force the 

realisations to honour the information and position of the preliminary data (Emery and Lantuéjoul, 

2006). The average of the U realisations is computed in order to represent each target point with a 

single value. After this process, each additional point has some simulated information comparable to 

the preliminary data and the remaining optimisation process can then be executed. The purpose of 

Preliminary data

Geotechnical information

Geostatistical 

simulation of data on Px

coordinates

Randomly generates 

new point(s)

P x=(x, y, z)

Stage 1

Design Sn = Preliminary data + Px

Stage 2 – SA optimisation 

Geostatistical simulation

100 realisations on a predefined grid

Objective functions minimisation
Variance value and 95% probability interval

Optimal solution

Px
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this first stage is to investigate the contribution of each point in reducing the uncertainty of the 

geotechnical model by using the simulated values. 

In the second stage, the V	simulated values assigned to the additional boreholes to execute are 

joined to the preliminary data, resulting in a new sampling design (WV). Consequently, using the 

points of the new design, once again a conditional simulation is executed, this time using as target 

points a predefined grid (2D or 3D) covering the region of interest. As an outcome of this simulation 

process, the objective function to be minimised, in order to find out the optimal solution for the 

presented problem, is obtained (see Figure 6.4). All the geostatistical routines and the SA algorithm 

have been programmed in a Matlab environment (Emery and Lantuéjoul, 2006; Lin and Fei, 2012; 

Yang, 2010), using a desktop computer with an Intel ® Core ™ i7-3610QM CPU @2.30GHz 

processor. 

Considering that each borehole lists information at several depth ranges, i.e. each borehole contains 

the geotechnical information at several points, the optimisation is also made by considering 

alignments of points in the generation of the sampling design. Therefore, in this work, the developed 

methodology is also tested by assuming each borehole as a vertical alignment of points originated 

from an isolated point in the surface (header). This action allows the integration of all vertical 

information that can emerge from a borehole and best represents reality. 
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Figure 6.4 Simulated annealing workflow adapted to the proposed methodology. 
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6.3.3. Uni-objective approach 

The bound constrained problem to be addressed here has the following form: 

X"V #$ WV

<YZ!2[8	87 \Z ≤ WV ≤ YZ
	 (6.6) 

where #$(WV) represents the value of the objective function for design WV. The bound constraints 

on the values of the variables WV are related to the rock block dimensions, where the lower (\Z) and 

upper (YZ) bounds give the minimum and maximum values of the (C, ], ^) coordinates, 

respectively. 

Thereafter, two distinct objective functions are considered in the optimisation process: the variance 

of simulated values and the width of the 95% probability intervals of the simulated values. These two 

metrics are considered in order to provide more options to the decision-maker in choosing the 

metric that, from his/her point of view, is able to better represent the uncertainty of the geotechnical 

model. To simplify the notation, the argument of each objective function will be shown in the 

following sections. 

The first objective function to be presented is the average width of the probability intervals obtained 

using the U realisations results, calculated as follows: 

*I_`% = X2bV *I_`% 	 (6.7) 

where *I_`% is obtained for each target location from the set of U simulated values at this location, 

by calculating the difference between the percentiles of a lower limit and an upper limit given by 

1 − c 2 and 1 + c 2, respectively, for a probability c	equal to 0.95. After that, the average 

of the *I_`% widths over all the target points is computed and used as an objective function. The 

*I_`% final value should be as low as possible to decrease the uncertainty associated with the 

geotechnical property at unsampled locations. 

The second objective function is based on the variance of the simulated values for each created 

design (WV), calculated after the execution of two main steps: first, the variance of the U simulated 

values is calculated at each location; second, the average value of these variances over all the target 

locations is computed. Again, the lower this average variance, the lower the uncertainty at 

unsampled locations. 



Numerical Methodology to Model Heterogeneous Rock Masses 223 

 

Table 6.1 shows details of the first step, where e represents the total number of grid nodes that 

compose each WV design, U is the total number of geostatistical realisations, and G.,f	represents 

the simulated value for point c	at realisation U. 

Table 6.1 First step to calculate the variance value. 

gh points 
Realisation number 

Local variance 
1 2 U 

1 GR,R GR,i GR,f jb:R =
1

U
(GR,k − GR)

i

f

kQR

 

2 Gi,R Gi,i Gi,f jb:i =
1

U
(Gi,k − Gi)

i

f

kQR

 

e Gl,R Gl,i Gl,f jb:l =
1

U
(Gl,k − Gl)

i

f

kQR

 

Thus, the objective function based on the variance is given by: 

jb: =
1

e
jb:.

l

.QR

	 (6.8) 

where jb: denotes the variance average between all the points and jb:. represented the variance 

value between all the U	realisation for point c. 

6.3.4. Multi-criteria approach 

Taking into account the difficulty and plurality of possibilities associated with in situ decisions in 

geotechnics, a multi-criteria approach is also considered in this work. The goal is to facilitate future 

decisions and to analyse the effectiveness of the objectives (used metrics) when applying SA to 

boreholes optimisation. 

Therefore, the two previously presented objective functions (criteria) are combined into a single 

function, since they can be complementary. Using this multi-criteria approach, the decision-maker 

will be able to use both objectives (metrics) and to identify one criterion that is dominated by the 

other by analysing the trade-off existing between them. 

Hence, the multi-criteria problem to be optimised exhibits the following form: 
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X"V #$R WV , #$i WV

<YZ!2[8	87 \Z ≤ WV ≤ YZ
	 (6.9) 

where, 

#$R =
*I_`%

*I_`%,(m(/(+k
	 (6.10) 

and 

#$i =
jb:

jb:(m(/(+k
	 (6.11) 

Note that #$R and #$i are the objective functions normalised using the values of the objective 

functions of the preliminary data (initial data used for conditioning the geostatistical simulation). As 

mentioned before, the argument WV is removed in order to simplify the notation. *I_`% represents 

the average width of the 95% probability intervals and jb: is the average variance obtained after the 

geostatistical simulation of the tested design (WV). *I_`%,(m(/(+k and jb:(m(/(+k  denote the average 

width of the 95% probability intervals and the average variance, respectively, obtained after 

geostatistical simulation on the predefined grid conditioned only to the preliminary data. 

The Weight Sum Method, already presented in previous sections was the selected method to 

standardise the set of objectives into a single objective function by multiplying each one by a weight. 

This method is chosen among all the mentioned due to its simple use, as well as the assurance in 

finding the ideal and admissible space of solutions (Marler and Arora, 2009). The weight definition 

can be made using different approaches. However, in this work the weights were attributed manually 

since the weight and the solution vectors do not show a linear correspondence. The manual weight 

definition intends to simulate the decision-maker perspective, regarding the objective function. 

Hence, the problem to be minimised is converted into a uni-objective problem by aggregating the 

two objective functions into a single one, given by: 

X"V nR. #$R(WV) + 	ni. #$i(WV)

<YZ!2[8	87	 nR +ni = 1

\Z ≤ WV ≤ YZ

	 (6.12) 

where nR is the weight for objective function #$R and ni is the weight for objective function #$i. 
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6.4. THEORETICAL APPLICATION - CHILEAN DEPOSIT 

6.4.1. Data presentation 

The proposed methodology was applied using information of mechanical boreholes from an 

epithermal gold deposit located in the Andes mountain range, region of Atacama, northern Chile. 

Details regarding the information were already given in Chapter 3. For this application, the 

information gathered from the boreholes was the empirical Rock Mass Rating (RMR) system.  

Considering the high quantity of the available data it was necessary to restrict the information to a 

confined area (block). Thus, using this information, two optimisation scenarios were built, one using 

isolated points and the second one using vertical alignments of points that better represent the 

reality of boreholes. 

In what concerns the scenario composed by isolated points, 22 points were randomly selected from 

the available boreholes to represent the preliminary information to use in the geostatistical 

simulation and in the optimisation procedure. The number of 22 points was chosen having in mind 

a reasonable number of points to start for the proposed methodology validation. Regarding the 

scenario with vertical alignments of points, a total of 6 boreholes composed of 12 points each were 

chosen as preliminary information. Thus, each alignment to be found in the optimisation should be 

composed by 12 points evenly spaced along the depth. Each one of the 22 points (scenario 1) and 

6 boreholes (scenario 2) contains information about the RMR within a rock block with the 

dimensions of 120 m × 440 m × 220 m along the east (G), north (o) and vertical (p) directions. 

In this regard, to a better understating and perception of the two scenarios, maps with the 22 points 

and 6 chosen boreholes used as preliminary data are represented in Figure 6.5 and Figure 6.6, 

respectively. 
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(a) (b) 

Figure 6.5 Mapping of the initial boreholes data used in the isolated points scenario in: a) Go plane; and b) Gop 

perspective (G, o and p in meters). 

 

(a) (b) 

Figure 6.6 Mapping of the initial boreholes data used in the vertical alignments scenario in: a) Go plane; and b) Gop 

perspective (G, o and p in meters). 
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6.4.2. Geostatistical simulation 

Regarding the geostatistical simulation conditioned to the preliminary data, some steps proposed by 

Pinheiro et al. (2016a, 2016b) needed to be implemented: 

§ First, the RMR preliminary data were analysed through the calculation of basic statistics (see 

Table 6.2). According to these statistics, the rock mass in consideration shows a good 

quality, because the RMR value ranges from 51 to 71, with a mean of 67 that can classify 

the rock mass as almost homogeneous; 

§ The preliminary data corresponding to the 22 points or to the 6 alignments were then 

transformed into data with a standard Gaussian distribution with a zero mean and a unit 

variance. Such a transformation was necessary for subsequent geostatistical modelling and 

simulation (Chilès and Delfiner, 2012); 

§ The experimental variograms of the Gaussian data were computed, using either the isolated 

points or the point alignments. These variograms were computed until a maximum distance 

of 100 m, beyond which the data values are found to exhibit a low correlation; 

§ The experimental variograms were fitted using isotropic spherical functions, as presented in 

Equations (6.13) and (6.14), where the distance written between brackets represents the 

correlation range and the number before the spherical structure denotes the adopted value 

for the sill (Chilès and Delfiner, 2012): 

Scenario with isolated points (see Figure 6.7a): 

q = 0.495	Wcℎ2:"[b\	 40	X 	 (6.13) 

Scenario with point alignments (see Figure 6.7b): 

q = 0.80	Wcℎ2:"[b\	 70	X 	 (6.14) 
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(a) (b) 

Figure 6.7 Experimental (crosses) and theoretical (solid line) variograms along the horizontal plane using: a) 22 isolated 

points; and b) 6 point alignments. 

§ A two-dimensional regular grid with a mesh of 5 m × 5 m and a total of 60 nodes along the 

east direction and 120 nodes along the north direction was defined to conditionally simulate 

the RMR and to calculate the objective functions; 

§ A Gaussian random field was simulated at the target grid nodes using the turning bands 

method (Emery and Lantuéjoul, 2006). The number of turning lines used to generate the 

random field was 1500, while the number of realisations was set to U	= 100, so that the 

post-processing outputs (variances and probability intervals) could be calculated with a 

reasonable approximation (this number of realisations is commonly used in geostatistical 

applications as suggested by Chilès and Delfiner (2012)). Residual kriging was then used to 

condition the simulation to the preliminary data, with a unique neighbourhood 

implementation. 

§ The simulated Gaussian values for each realisation were finally back-transformed into their 

original scale (RMR). 

Table 6.2 Basic statistics on RMR preliminary data and their Gaussian transforms. 

 22 isolated points 6 point alignments 

 RMR original scale  Gaussian values RMR original scale Gaussian values 

Number of points 22 22 62 62 

Mean 66.77 0.00 67.29 0.00 

Variance 19.99 0.94 12.27 0.98 

Minimum 51.00 -2.00 51.00 -2.41 

Maximum 71.00 2.00 74.00 2.41 
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To understand the differences between the preliminary data and the geotechnical improvements 

when new boreholes are added, the simulation conditioned only to the preliminary data was also 

performed on the predefined grid. As a result, the values obtained for the variance and width of 95% 

probability interval objective functions were jb:(m(/(+k= 9.00 and *I_`%,(m(/(+k= 11.28 when using 

the 22 isolated points and jb:(m(/(+k= 9.39 and *I_`%,(m(/(+k= 11.36 in the case of using the 6 

point alignments. As an example, Figure 6.8 shows the first realisation of the RMR and the variance 

of 100 realisations, obtained conditioned to the preliminary data. 

  

(a) (b) 

Figure 6.8 RMR preliminary data geostatistical simulation results: a) first realisation; and b) variance of 100 realisations. 

6.4.3. Simulated Annealing internal parameters study 

In order to execute the Simulated Annealing (SA) and to start the optimisation process, some 

internal parameters needed to be defined. Therefore, a sensitivity study was carried out, which 

enables to understand the influence of each parameter and find the best values for the algorithm. 

Several attempts were made, in this case for the optimisation of one additional point, firstly to 

comprehend the influence of the initial temperature value and then for the maximum number of 

rejections and runs within each temperature value. Table 6.3 displays the attempts made in this 
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sensitivity test as well as the SA internal parameters values. It is worth mentioning that in all the 

tests, a cooling factor equal to 0.80 was adopted in order to provide a slow cooling and allow the 

algorithm to better explore the searching space. This value represents the lower bound used for SA 

and commonly used in similar optimisations problems (Van Groenigen et al., 1998; Brus and 

Heuvelink, 2007). 

Table 6.3 SA internal parameters values assumed for the sensitivity test performed. 

Attempt 

n. 

Cooling 

factor 

(w) 

Initial 

temperature 

(˚) 

Final 

temperature 

(˚) 

Maximum 

number of 

rejections 

Maximum 

number of 

moves 

Maximum 

number of 

acceptances 

1 0.80 1.00 0.10 20.00 20.00 5.00 

2 0.80 2.00 0.10 30.00 20.00 5.00 

3 0.80 2.00 0.01 40.00 30.00 10.00 

More details regarding the optimisation results of all the attempts can be found in Appendix 2. Since 

the cooling factor remained the same in all the attempts (@ = 0.80), a value of 1.00˚ for the initial 

temperature was found to be too low, since the algorithm took too little time to converge to a 

solution and the searching space was too limited. Therefore, a value of 2.00˚ for the initial 

temperature was adopted. In what concerns the maximum number of rejections and moves, the 

tested values have proven insufficient and, therefore, new tests with higher values 

(xbCy-%-,/(zm{ = 100.00 and xbC|z}-{ = 50.00) were performed. From these results, it was 

possible to define the SA internal values to adopt in this optimisation case study as being the ones 

shown in Table 6.4. 

In what concerns the computational time required by the geostatistical simulation, it could be 

divided in two. First, the necessary time to simulate U times the variable into the randomly 

generated coordinates, which in this case was approximately 30 minutes. Then, in a second stage, 

100 realisations were simulated on a target grid to later compute the objective function value. 

Table 6.4 SA internal parameters. 

Cooling 

factor (w) 

Initial 

temperature 

(˚) 

Final 

temperature 

(˚) 

Maximum 

number of 

rejections 

Maximum 

number of 

moves 

Maximum number 

of acceptances 

0.80 2.00 0.01 100 50 10 



Numerical Methodology to Model Heterogeneous Rock Masses 231 

 

6.5. OPTIMISATION RESULTS 

6.5.1. Uni-objective results 

Regarding the validation of the proposed optimisation methodology, a wide range of additional points 

and alignments of points was considered. 

Concerning the isolated points scenario, the optimisation process starts by adding one point to the 

preliminary 22 points, so V = 1, and then by adding points consecutively one by one up to a total of 

13 additional points. A number of points of 16, 20, 24 and 30 were also tested in order to 

accelerate the optimisation process and to understand the advantage of using a large number of 

additional points, i.e. the gain of using a large number of additional points to characterise the rock 

mass. 

In the alignments scenario, the same logic as for the isolated point optimisation was followed. In this 

case, the optimisation also started by adding one alignment of points composed by a total of 12 

points (X = 12), then 5 alignments were added one by one. In what concern the isolated points 

optimisation results, Table 6.5 and Table 6.6 show the number of evaluations performed by the 

algorithm, the final temperature and objective function values in the case of *I_`% and jb: 

functions, respectively. 

Table 6.7 reports a summary with the optimal values of each objective function for every number of 

tested points. Moreover, to compare the geotechnical gain obtained by adding the points, a column 

represented by the symbol ∆ shows the difference, in percentage, between the objective function 

original value for each additional point and the reference value obtained after the simulation using 

only the preliminary data (see section 6.4.2). In some cases, the difference in the objective function 

value was up to 80% (for the variance average value when 30 points are added). A graphical 

representation presented in Figure 6.9  gives a more practical view of the differences in the objective 

function value when a small or a high number of additional points is considered.  
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Table 6.5 Isolated points optimisation results when the 95% probability interval (*I_`%) was the objective function. 

Number of additional 

points 
Number of evaluations ~�ÄhÅÇ 

Objective function 

value 

1 143 0.088 10.460 

2 149 0.090 10.330 

3 147 0.009 10.400 

4 152 0.087 10.220 

5 155 0.087 9.730 

6 155 0.087 8.880 

7 155 0.009 8.360 

8 155 0.087 7.740 

9 145 0.087 7.400 

10 153 0.087 7.030 

11 153 0.087 6.750 

12 148 0.087 6.450 

13 151 0.087 6.350 

16 160 0.087 5.960 

20 156 0.087 5.560 

24 152 0.009 5.160 

30 152 0.009 4.610 

Table 6.6 Isolated points optimisation results when the variance (jb:) average value was the objective function. 

Number of 

additional points 
Number of evaluations ~�ÄhÅÇ 

Objective function 

value 

1 235 0.015 8.12 

2 284 0.080 7.37 

3 241 0.050 6.94 

4 231 0.080 6.81 

5 228 0.080 6.55 

6 233 0.080 6.09 

7 212 0.090 5.91 

8 231 0.080 5.33 

9 230 0.080 4.99 

10 230 0.080 4.59 

11 208 0.110 4.36 

12 253 0.080 3.80 

13 147 0.420 3.67 

16 147 0.420 3.54 

20 236 0.420 2.25 

24 230 0.420 2.01 

30 230 0.420 1.60 
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Table 6.7 Summary of the SA results for each additional point using two different objective functions (*I_`% and jb:). 

Number 

of 

additional 

points 

 ÉÑÖÜ%   áÅà  

Objective 

function values 

Initial value 

(reference) ∆ 
Objective 

function 

values 

Initial value 

(reference) ∆ 

1 10.46 

11.28 

-7% 8.12 

9.00 

-10% 

2 10.33 -8% 7.37 -18% 

3 10.40 -8% 6.94 -23% 

4 10.22 -9% 6.81 -24% 

5 9.73 -14% 6.55 -27% 

6 8.88 -21% 6.09 -32% 

7 8.36 -26% 5.91 -34% 

8 7.74 -31% 5.33 -41% 

9 7.40 -34% 4.99 -45% 

10 7.03 -38% 4.59 -49% 

11 6.75 -40% 4.36 -52% 

12 6.45 -41% 3.80 -58% 

13 6.35 -44% 3.67 -59% 

16 5.96 -47% 3.54 -61% 

20 5.56 -51% 2.25 -75% 

24 5.16 -54% 2.01 -78% 

30 4.61 -59% 1.60 -82% 

 

Figure 6.9 Convergence study for the number of additional points considering the average width of 95% probability 

intervals (black line) and the average variance (red line). 

It was possible to observe, as expected, that both objective functions values decrease as the number 

of additional points increases. However, this decrease was not constant. In what concerns the 
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variance objective function, the decrease was significant until 12 additional points and also when the 

number of points increases from 16 to 20. After this value, the decrease in the objective function 

was modest. Analysing the objective function magnitudes with 20 additional points the variance 

value decreased to 25% of the initial value, while for the probability interval this reduction was more 

modest yet significant. In relation to the probability interval objective function, a significant reduction 

in the value was only observed starting from 5 additional points and up to 13. After this value, the 

decrease rate was smaller. 

Since the number of additional points was considerably high, Figure 6.10 shows, as an example, a 

3D representation with the optimised positions for 12 additional points at each objective function, 

along with the representation of the preliminary data (black points). A certain proximity between the 

points optimised with each objective function could be observed. However, their spatial locations 

were different, meaning that both objective functions behave differently in space. Also, it was 

interesting to notice that some of the points were aligned, which allow their simultaneous 

characterisation by performing non-vertical boreholes that reduce the execution costs. For this 

specific case, using the variance objective function results, the number of additional boreholes to 

perform is not 12, as the number of suggested points, but can be reduced to, approximately, 7 or 8 

boreholes (see Figure 6.10a). Even so, in Figure 6.10b the number of boreholes to execute is lower 

(5 to 6 boreholes). 

   

(a) (b) 

Figure 6.10 3D location of 12 additional points (colour points) with preliminary data represented by black points for: a) 

average width of 95% probability intervals; and b) average variance. 

Concerning the SA output parameters, for the specific case of 12 points, the final temperature was 

0.08 for both objective functions and these functions were evaluated a total of 400 times. Also, the 

computational time spent in all the process was of 9 hours approximately. 
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In addition, Figure 6.11 shows a 3D graph that intends to represent the search block used in the 

case of the 95% probability interval and variance functions. It was possible to observe that the 

algorithm was able to explore quite well within the block in order to find the optimal combination of 

12 points, behaving in a more regular way in the case of the *I_`% and in a more clustered way for 

the jb:	function. 

 

(a) (b) 

Figure 6.11 3D representation of the block used in the search when 12 points were added, for: a) average width of 95% 

probability intervals; and b) average variance. 

Following the same logic as for the isolated point optimisation, the point alignment optimisation also 

started by adding one alignment of points composed by a total of 12 points (V	 = 	12), then 5 

alignments were added one by one. As a result, Table 6.8 and Table 6.9 displays the number of 

evaluations, final temperature and objective function values for each additional alignment of points 

when a  *I_`% and a jb: functions was used, respectively. Likewise, Table 6.10 shows the 

obtained values for both objective functions, as well as the difference in relation to the objective 

values obtained using the 6 preliminary alignments. Likewise, Figure 6.12 presents the optimal 

value for each one of the objective functions for every alignment of points added to the preliminary 

data.  
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Table 6.8 Point alignments optimisation results when the 95% probability interval (*I_`%) was the objective function. 

Number of 

additional 

alignments 

Number of evaluations ~�ÄhÅÇ 
Objective function 

value 

1 273 0.110 9.910 

2 398 0.029 8.620 

3 307 0.056 8.400 

4 373 0.036 7.830 

5 377 0.029 7.480 

6 421 0.023 7.110 

Table 6.9 Point alignments optimisation results when the variance (jb:) average value was the objective function. 

Number of 

additional 

alignments 

Number of evaluations ~�ÄhÅÇ 
Objective function 

value 

1 415 0.056 7.330 

2 417 0.056 6.091 

3 203 0.215 5.310 

4 231 0.080 4.956 

5 417 0.056 4.712 

6 233 0.080 3.796 

Table 6.10 Summary of the SA results for each additional alignment using two different objective functions (*I_`% and 

jb:). 

Number of 

additional 

alignments 

ÉÑÖÜ%  áÅà  

Objective 

function values 

Initial value 

(reference) 
∆ 

Objective 

function values 

Initial value 

(reference) 
∆ 

1 9.91 

11.36 

-15% 7.33 

9.39 

-22% 

2 8.62 -29% 6.09 -35% 

3 8.40 -31% 5.31 -43% 

4 7.83 -38% 4.96 -47% 

5 7.48 -41% 4.71 -50% 

6 7.11 -45% 3.80 -60% 
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Figure 6.12 Convergence study for the number of additional alignments considering the average width of 95% probability 

intervals (black line) and the average variance (red line). 

As observed in the isolated point optimisation, both objective functions decrease as the number of 

additional alignments increases. The decrease was more significant for the variance objective 

function when passing from 5 to 6 alignments, while the 95% probability function shows a more 

constant behaviour. 

Figure 6.13 shows the 3D maps with the optimised positions for 3 additional alignments at each 

objective function along with the representation of the preliminary data (black points). In this case, 

and when compared to the isolated point optimisation, one notices that the obtained alignments 

were located closer to the preliminary alignments; however, the spatial locations of the alignments 

for both objective functions are considerably different, showing, once again, that both functions 

behave distinctly. 

       

(a) (b) 

Figure 6.13 3D location of 3 additional point alignments (colour points) with preliminary data represent by black points 

for: a) average width of 95% probability intervals; and b) average variance. 
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In what concerns the algorithm convergence, a study was performed by running the algorithm twice 

for each one of the objective functions. In the case of the isolated points and point alignments 

scenarios, it was possible to state, by observing Figure 6.14, that the assumed values for SA internal 

parameters, namely the maximum number of iterations, were adjusted for the problem. This was 

confirmed by the existing sill between iterations 250 and 400 for both objective functions in the 

isolated points scenario (see Figure 6.14a and Figure 6.14c). Concerning the point alignments 

convergence results, the same trend was observed. Indeed, the minimum value for the objective 

function happens between iteration 300 and 400 (see Figure 6.14b and Figure 6.14d); however, in 

the case of the variance function second run, though the algorithm reached the 400 iterations the 

minimum value was registered much earlier (approximately at iteration number 110). Analysing 

Figure 6.14 closely, it was possible to observe that, for the variance of the points alignments and for 

the 95% probability interval of the isolated points, the algorithm stopped before 400 iterations, which 

allows to conclude that 400 was a satisfactory maximum to assume for the algorithm iterations. 
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(a) (b) 

 

(c) (d) 

Figure 6.14 Convergence study relating the maximum number of iterations with the objective function value using: a) and 

b) variance as the objective function; c and d) 95% probability interval as the objective function obtained for 12 isolated 

points (a and c) and 3 point alignments (b and d). 

6.5.2. Multi-criteria results 

To provide an insight into the most influential objective function in the optimisation results for each 

case, different weights values were assigned. These combinations of weights, nR and ni for the 

*I_`% and jb: functions, respectively, are presented in Table 6.11 along with the optimisation 

results for both objective functions when 5 points (V = 5) are added to the 22 preliminary points. 

This number of additional points was chosen based on the fact that a total of 5 additional points can 

be sufficient to increase the quality of the geotechnical model. 

Since trying a large number of weight values could lead to a computational burden, a total of 11 

most common combinations of weights was considered. Both objective functions corresponding 

weights are represented in Table 6.11 by the test number, while the *I_`% and jb: values are 

given in their normalised scale (ratio between the obtained value and the reference value presented 
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previously). The representation of the range of solutions in the objective space is depicted in Figure 

6.15. 

Table 6.11 Isolated points optimisation results for each combination of weights for both objective functions along with 

the combination of the two objective functions (Both). 

Test number âä âã ÉÑÖÜ% áÅà Both 

T1 0.00 1.00 0.85 0.69 0.69 

T2 0.10 0.90 0.87 0.72 0.73 

T3 0.20 0.80 0.86 0.72 0.75 

T4 0.25 0.75 0.84 0.69 0.73 

T5 0.40 0.60 0.82 0.68 0.74 

T6 0.50 0.50 0.86 0.71 0.79 

T7 0.60 0.40 0.89 0.73 0.83 

T8 0.75 0.25 0.90 0.67 0.85 

T9 0.80 0.20 0.91 0.76 0.88 

T10 0.90 0.10 0.82 0.67 0.81 

T11 1.00 0.00 0.84 0.70 0.84 

In Figure 6.15, the G-axis represents the *I_`% values obtained for each weighted test and the o-

axis, likewise, represents the jb: values. As expected, one can observe that both objectives are not 

conflicting since the points represented in Figure 6.15 result in a linear trend. In this sense, it was 

possible to detect that T5 and T10 result in the non-dominated points since the trade-off between 

the two objectives was softer, showing that the ideal solution should not exclude the variance 

criterion (T10). Also, T8 that valorises the probability interval in 75% gave a worse solution (a 

solution far from the diagonal). This information confirms that the variance criterion, even for lower 

weight values results in objective function values that are lower than the *I_`%, meaning that 

cannot be excluded of the optimisation process and should be seen as the main objective function. 

Besides that, the differences were not as high as expected and, in this case, the adoption of a multi-

criteria approach gives similar results as the uni-objective one. 



Numerical Methodology to Model Heterogeneous Rock Masses 241 

 

  

Figure 6.15 Isolated points objective function values for each weight combination test. 

Furthermore, and in order to easily understand the contribution of each function in the decision of 

the number of boreholes to execute, Figure 6.16 presents the performance of each objective 

function individually and the aggregation of the two objective functions in the multi-criteria approach, 

for each weight combination test. From the graphical analysis, it was possible to observe that, for 

the first five tests, where the variance objective weights were higher (ni in Table 6.11), the 

combination of the two objective functions (blue line) showed the lowest values, which was in line 

with the state above about the variance as the main objective function. 

 

Figure 6.16 Representation of the objective functions values (95% probability interval, variance and both functions) 

obtained in the multi-criteria approach. 
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A multi-criteria approach was also performed in the scenario with point alignments and, similarly to 

the isolated points, this turn with the addition of 3 alignments of points. The results of both objective 

functions, when different combinations of weights were assumed, are displayed in Table 6.12. 

Table 6.12 Point alignments optimisation results for each combination of weights for both objective functions along with 

the combination of the two objective functions (Both). 

Test number âä âã ÉÑÖÜ% áÅà Both 

T1 0.00 1.00 0.72 0.53 0.53 

T2 0.10 0.90 0.73 0.57 0.59 

T3 0.20 0.80 0.72 0.53 0.57 

T4 0.25 0.75 0.84 0.57 0.63 

T5 0.40 0.60 0.74 0.58 0.64 

T6 0.50 0.50 0.76 0.64 0.70 

T7 0.60 0.40 0.74 0.59 0.68 

T8 0.75 0.25 0.74 0.58 0.70 

T9 0.80 0.20 0.74 0.59 0.71 

T10 0.90 0.10 0.78 0.69 0.77 

T11 1.00 0.00 0.74 0.61 0.74 

In this case, the graphical analysis of both objective functions with the goal to detect conflicting 

solutions is presented in Figure 6.17. In the same way that the isolated points multi-criteria results, 

for this case, the linear trend between the solutions means that they were not in conflict. However, 

the worse solution was registered in test number four where the variance function was valorised in 

75% (solution far from the diagonal). This result meets the conclusion stated for the isolated points 

approach confirming that the variance criterion should not be excluded (the worst value was 

obtained for the 95% probability interval criterion). 
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Figure 6.17 Point alignments objective function values for each weight combination test. 

The relation between the weights combination tests and the objective functions normalised values is 

given in Figure 6.18. The aggregation of both objective functions is in the plot represented by the 

designation both. As expected, for test number four a peak value appeared in the *I_`% line, 

highlighting once again the worst obtained solution. In terms of the function value evolution, the 

variation was considerably small in all performed tests. Regarding the variation criterion, was 

possible to perceive that, even in the tests where it receives the lowest weight values, the results are 

always the lowest ones, as can be observed by the both functions aggregations (blue line). These 

results agree with the ones obtained for the isolated points multi-criteria optimisation. 

 

Figure 6.18 Representation of the objective functions values (95% probability interval, variance and both functions) 

obtained in the multi-criteria approach of the point alignments information. 
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6.5.3. Discussion of the results 

Both approaches provide an important insight into how optimising the boreholes location increases 

the geotechnical detail of the rock mass and decreases the associated uncertainties. The uni-

objective problem shows good results in giving the boreholes near-optimal locations according to two 

different objective functions. Figure 6.9 displays the resulting curve between the variance value and 

the number of additional points tested, and it was possible to observe a higher downhill compared 

with the 95% probability interval objective function. Also, it was possible to notice the differences 

between assuming the borehole as an isolated point or as a point alignment; however, they were not 

as significant as expected, once the total number of points used in the alignment optimisation was 

almost the triple as the one used in the point optimisation. In terms of values, the biggest difference 

was observed for jb: function, where for one point versus one alignment the variance value was 

10% lower for the last case, while the *I_`%  showed a reduction of only 5% compared with the 

results obtained from isolated point optimisation. 

In this regard, Figure 6.15 shows that, when a higher weight was given to the probability interval 

function (T7 to T11), the *I_`%   value was, sometimes, higher and the variance was lower. This 

effect is called a trade-off (how much of a loss in one objective is one willing to sacrifice for a gain in 

another objective) and, in this case, the 95% probability interval was the objective function that 

sacrifices more, i.e. minimises slower when the goal is to give importance to the variance objective 

(see Figure 6.17). Identifying this trade-off may become difficult, once both functions are 

dimensionless (Marler and Arora, 2009). Nevertheless, this type of trade-off analysis can be helpful 

for the decision-maker in the weight values definition and in choosing the best metric to achieve the 

optimisation goals. In Figure 6.19 is showed a Go plane representation of 3 alignments optimised 

using the variance and 3 alignments optimised using the 95% probability interval as objective 

functions. For comparison, Figure 6.20 shows the same Go plane, this time showing the results of 

the multi-criteria approach when 3 points alignments are optimised. From the figures analysis, it was 

possible to observe that for T1 and T11 (corresponding to a unit weight for the variance and 95% 

probability interval function, respectively), the optimal locations are different from the ones obtained 

with the uni-objective approach (same colour points); however, in some of the points the locations 

are close of each other. 
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Figure 6.19 Spatial representation (Go	plane) of the optimal points alignments (colour points) obtained for the variance 

(black plus) and 95% probability interval (red circles) as the objective functions. 

 

Figure 6.20 Spatial representation (Go	plane) of the optimal points alignments (colour points) obtained in all the tests 

performed in a multi criteria optimisation.  
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6.6. CONCLUSIONS 

The goal of this work was to define a methodology to optimise boreholes plans. The proposed 

methodology combines two methods: geostatistical conditional simulation, which results in the 

definition of the objective functions to measure the uncertainty at locations without data, and 

simulated annealing, used to perform the optimisation by minimising the defined objective functions. 

In this Chapter, boreholes information from a Chilean deposit was used, as an example used to 

validate and adjust the proposed methodology. 

Two different objective functions were defined and tested in this work: the average variance of the 

simulated values and the average width of the 95% probability intervals of the simulated values over 

a region of interest. Moreover, not only a uni-objective problem was solved, but also a multi-criteria 

approach was carried out using the weight sum method. The methodology was applied using real 

data from the Chilean deposit and a different number of additional isolated points or point 

alignments (each alignment representing an additional borehole) were used in order to analyse the 

best spatial location for each isolated point or point alignment. 

Compared with the multi-criteria approach, the uni-objective approach presents the advantage of 

needing a lower computational time (9 to 10 hours while the multi-criteria approach requires 18h to 

22h), as the use of only one metric as an objective function simplifies the problem. On the other 

hand, the multi-criteria approach allows the decision-maker to give more importance to the metric 

(objective function) that is considered relevant, increasing the confidence in the optimisation results. 

Regarding the isolated point and point alignment optimisations, the results are very different, mainly 

because of the total number of initial points used in both cases: in isolated point optimisation, a total 

of 22 points are used, while 62 points are used in point alignment optimisation. In the latter case, 

the objective functions are not as low as expected, compared with the isolated point optimisation. 

This fact comes to endorse that the Go location of the boreholes takes, in this case, an important 

role in geotechnical prospection, although the point alignment optimisation brings a more realistic 

output to represent boreholes. Also, by assuming a multi-criteria approach, throughout the weights 

implementation, the user of the methodology can have an additional feature that choose to apply 

according to the type of geotechnical detail needed. 

It is important to point out that a point-by-point study allows the decision-maker to understand the 

geotechnical gain balanced with the economic costs. For example, will performing five boreholes 

instead of four bring a significant gain in the rock mass characterisation that justifies the difference 

in cost? 



Numerical Methodology to Model Heterogeneous Rock Masses 247 

 

Therefore, one concludes that this methodology can contribute for a more rational approach in the 

formulation of prospection plans. Since the output is the measurement of the gain obtained from the 

addition of boreholes, including their spatial location, an indirect optimisation of costs can be 

expected as a consequence. Also, it is worth mentioning that the output information of this 

methodology should be seen as complementary information to be paired with expert knowledge from 

geotechnical engineers and other existing geotechnical information. One extra advantage associated 

with this methodology is the possibility to perform an updating in the information as the additional 

boreholes are executed. 
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Chapter 7  

SALAMONDE II POWERHOUSE COMPLEX -

BOREHOLE OPTIMISATION  
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7.1. INTRODUCTION 

In the previous Chapter, a methodology to optimise boreholes plans was proposed. In essence, 

some geotechnical information regarding boreholes executed in a Chilean deposit was taken into 

consideration aiming to validate the methodology, mainly in terms of process; however, the optimal 

positions results could not be compared with really executed boreholes. In fact, an interesting 

exercise to carry out to truly validate the methodology would be the removal and then the 

optimisation of one or more boreholes that have already been performed. Thereby, the spatial 

location and geotechnical gain could be compared between the optimised positions and the one that 

was in fact adopted. 

To perform the referred approach, a second case study was considered, this time using a complete 

and real area of interest. As mentioned, one and then two boreholes are removed from the data set 

and their location optimised and compared with the real ones. This type of analysis intends to 

measure the effectiveness of the proposed methodology in comparison to the traditional method, 

predominantly based on professional know how. 

This Chapter starts, with a section where details are given regarding the used data set, as well as 

some scenarios considered for the optimisation tests. These scenarios were created by removing, 

firstly one borehole from the seven initial ones (scenario 1) and secondly, two boreholes (scenarios 

2 and 3, where in each scenario the two removed boreholes were different). 

Then, a third section presents the optimisation process, where the main differences in relation to the 

Chilean case study are highlighted. Subsequently, and because the variables of interest of this case 

study are different from the ones previously used, details concerning the geostatistical simulation are 

presented in a fourth section. 

Subsequently, all the optimisation results are displayed in sections 5 and 6 along with the studies 

executed concerning the simulated annealing internal parameters values. They are extremely 

important to guarantee the accuracy and optimisation capability of the used methodology. Also, in 

this section the optimal positions obtained in all the three scenarios are compared with the real ones 

and the uncertainty reduction in using this methodology assessed. Finally, some discussion of the 

results and conclusions are drawn from the results. 
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7.2. DATA PRESENTATION 

For the power reinforcement of Salamonde, new and larger underground structures had to be built, 

namely a powerhouse cavern. For this purpose, a detailed prospection plan was carried out to 

obtain some rock mass information regarding the area of interest. All the information regarding this 

underground work is presented in Chapter 5, namely the geotechnical and geometrical details 

required in this application. 

Before the powerhouse construction, during the design phase, a total of 16 mechanical boreholes 

were executed from the surface, although only seven of them were located near the area of interest 

for this optimisation. These boreholes have a wide range of depths and orientations defined 

according to the in situ rock mass conditions. 

The boreholes identification codes used in this application are: S1, S2, S5, S8, S9, S15 and S16. 

While some of them are located close to the powerhouse cavern, others were drilled in more distant 

places (see Figure 7.1). Due to the geotechnical complexity of the Salamonde II powerhouse 

complex, the number of boreholes executed was relatively large. For that reason and because in 

most of the geotechnical works the number of boreholes is not as high as in this case, some of them 

were not included in the initial set (boreholes S6 and S14). 

Moreover, and to justify the removal of the mentioned boreholes, the selection criteria adopted were: 

1) approximately the same number of boreholes in the north and south zones of the powerhouse 

cavern, that is why four boreholes are located in the north and northeast zones (S1, S2, S15 and 

S16) and three in the south zone (S5, S8 and S19); 2) because borehole S1 is very small, in the 

north part were selected four and three in south zone; 3) then, and because the geotechnical 

information regarding borehole S7 was not available for this study in due time, boreholes S14 and 

S6 had to be excluded from the data set selection, in order to avoid an unbalanced number of 

information in the north zone. This removal was made, not because the methodology is not able to 

consider unbalance data but because the goal was to test it with a more usual number of boreholes 

(reduced number); and 4) in the north zone, two sub zones were created, on the north and 

northeast of the powerhouse cavern, to obtain a wider range of geotechnical information 

(represented by blue and green colours in Figure 7.1). 
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Figure 7.1 Section of the geological and prospection location plant with the identification of the selected boreholes 

(colour circles) (adapted from EDP (2009)). 

Considering that each borehole lists the information at several depth ranges, i.e. each borehole 

allows obtaining numerous points containing geotechnical information, all these points must be 

represented and considered in the optimisation. Due to this fact, and similarly to the case study 

presented in Chapter 6 where a point alignment optimisation was performed, the SA algorithm had 

to be adapted and modified in order to replicate the !	coordinate (depth) to match the reality of the 

borehole geotechnical information. 

Looking further into the details, the optimisation process adopted in this case study starts with the 

generation of # additional points. Note that these points have the goal of representing the removed 

boreholes. Then, for each randomly generated point, a total of $ different ! coordinates was 
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created (the %	and & coordinates of the point remain the same). By doing this, the integration of all 

vertical information that can emerge from a borehole was contemplated. It is worth mention, that the 

optimisation methodology, at this stage, only allows the optimisation of vertical alignments. 

In what concerns the geotechnical data used in this application, and differently from the Chilean 

deposit case study, the Rock Quality Design (RQD), the weathering degree (W) and the fracturing 

degree (F) were the variables chosen to perform the geostatistical simulation and, subsequently, 

used in the objective function definition. At this stage, it is important to mention the process used to 

withdraw and register all the boreholes information. Since the final logs only record something if the 

RQD, W and F values change along the depth, and for the sake of the geostatistical simulation, an 

almost regular grid was adopted for this log reading. Hence, for all the boreholes the geotechnical 

information was gathered at every 1 m in depth. In this way, some consistency was maintained in all 

the three variables. 

Table 7.1 provides the basic statistics of the seven used boreholes composed by a total of 1036 

points with information. According to these basic statistics, the rock mass shows an overall good 

quality, because the RQD has a mean of approximately 64 and is represented by a fracturing and 

weathering degree that is in average 3. 

To better understand the location of each borehole, as well as the variation of the geotechnical 

information in depth, Figure 7.2 shows the spatial distribution of the seven boreholes for the three 

geotechnical variables considered, where it can be noticed that the area of interest is relatively well 

characterised. In addition, and in a geotechnical point of view, it is possible to observe from the 

RQD, F and W colour scales that the rock mass shows better quality for greater depths and a higher 

spatial variability for the first 100 m. 

Table 7.1 Basic statistics of the initial data set composed by boreholes with codes S1, S2, S5, S8, S9, S15 and S16. 

 RQD F W 

Number of points with 

information 
1087 1087 1087 

Mean 64 31 31 

Variance 964.4 1.1 0.8 

Minimum 0 1 1 

Maximum 100 5 5 

                                                
1
 The mean value of the fracturing and weathering degree was computed to give a notion of the rock parameters 

averaging value, however, the most correct way to represent this type of variables (with a scale by classes) is computing 

the histograms. 
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(a) (b) 

 

(c) 

Figure 7.2 Spatial distribution of the boreholes with codes S1, S2, S5, S8, S9, S15 and S16 with a colour scale 

representing: a) RQD; b) F; and c) W. 

7.3. OPTIMISATION PROCESS 

Since the variables chosen to perform the geostatistical simulation of this optimisation process are 

different from the ones used in the Chilean case study, the resulting objective function to use in SA 

optimisation is consequently different. As mentioned, the data obtained from Salamonde II comprise 

the information of three geotechnical variables, RQD, F and W, and in order to use the information of 

all of the three variables, a tri-objective function was built. This was achieved after combining the 

variance of the geostatistical individual simulation of the three variables. As a consequence, the 

following minimisation problem was defined, 

$'# ()* +# , ()-(+#), ()0(+#)

1234567	78 93 ≤ +# ≤ 23
	 (7.1) 
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where, 

()* =
<=>(?@A)

<=>(?@A)BCBDBEF
	 (7.2) 

()- =
<=>())

<=>())BCBDBEF
	 (7.3) 

()0 =
<=>(G)

<=>(G)BCBDBEF
	 (7.4) 

Note that ()*, ()- and ()0 are the objective functions normalised using the values resulting from 

the geostatistical simulation of the preliminary data (data used for conditioning the geostatistical 

simulation). In this case, all the reference values are represented by the variance values of the three 

considered variables (<=>(?@A)BCBDBEF , <=>())BCBDBEF and <=>(G)BCBDBEF). 

Since the RQD system and the fracturing degree classification give a similar type of information, i.e. 

the qualitative classification of the rock mass in terms of fractures, it was found relevant to reduce 

the overall contribution of both variables in the optimisation process. Hence, considering the Weight 

Sum Method already presented (see Chapter 6), it was possible to transform the three variables to 

minimise into a single objective function (see equation (7.5)). 

$'# G*. ()* +# +	G-. ()- +# + G0. ()0 +#

1234567	78	 G* +G- +W0 = 1

93 ≤ +# ≤ 23

	 (7.5) 

where G*, G- and G0 represent the weight values for objective functions ()*, ()- and ()0, 

respectively. In what concerns the weights values assumed for all the three variables, the following 

trios were taken into consideration: 

L* =
0.15

0.15

0.70

	 L- =
0.20

0.20

0.60

	 L0 =
0.25

0.25

0.50

	 LR =
0.30

0.30

0.40

	 LU =
0.35

0.35

0.15

	

Going into details about the optimisation process followed, three different scenarios were 

considered. In the first scenario, the information of one borehole, namely S5, was removed, 

remaining only the geotechnical information of 6 boreholes. It is important to stress out that this first 
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scenario was the one chosen to test all the previously presented weight trios. Then, in the second 

scenario, two boreholes, specifically S8 and S15, were removed from the total of 7 boreholes. These 

were chosen since they are in different zones of the area of interest (upper and bottom zones). 

Finally, the third scenario considers the removal of boreholes S5 and S9, chosen due to their 

proximity and to counter the assumption made in the second scenario  

At this point it is important to mention that scenarios 2 and 3 were considered, mainly to execute 

some assessments regarding the SA input parameters values to adopt in the optimisation process of 

scenario 1. 

The optimisation of each scenario starts by removing the selected boreholes (one or two) and, then, 

by combining the SA algorithm with geostatistical simulation techniques, their location is optimised. 

As a matter of fact, the main goal of this application is to understand if, using the developed 

methodology, one or two of the seven boreholes could be in different positions, bringing more quality 

information and reducing the error in the area to geomechanically characterise, when compared 

with the original positions (7 initial boreholes). As a consequence, to validate the proposed 

methodology the value of the OF obtained for the additional boreholes is compared with the value 

obtained after the geostatistical conditional simulation of the 7 initial boreholes in the same 

predefined grid and using the same techniques and conditions as the ones used before. This type of 

analysis was imperative to truly quantify the exact gain of using the proposed methodology in 

comparison with the actual reality of the borehole plans. In Figure 7.3 one can find the 3D graphical 

representation of the boreholes remaining in all the three scenarios using the RQD as an example 

variable.  
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(a) (b) 

 

(c) 

Figure 7.3 Spatial distribution of the remaining boreholes with a colour representing the RQD in: a) scenario 1; b) 

scenario 2; and c) scenario 3. 

7.4. GEOSTATISTICAL SIMULATION 

7.4.1. Scenario 1 

To perform the geostatistical simulation the main steps adopted in the first case study are the same 

adopted here, and are based on the ones presented in Pinheiro et al. (2016a, 2016b). So, first, the 

RQD, F and W selected data composed of only 6 boreholes (since one borehole was removed to 

execute the optimisation) had to be analysed through the calculation of basic statistics (see Table 

7.2). Based on these results, and since the variation ranges of the three variables are wide, the rock 

mass under consideration can be classified as slightly heterogeneous in all the area.  
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Table 7.2 Basic statistics of boreholes with codes S1, S2, S8, S9, S15 and S16 (6 boreholes). 

 RQD F W 

Number of information 

points 
855 855 855 

Mean 65 3 3 

Variance 1012.8 1.0 0.8 

Minimum 0 1 1 

Maximum 100 5 5 

In a second stage, the selected data were transformed into data with a standard Gaussian 

distribution with a zero mean and a unit variance. From this point, a subsequent step was the 

analysis of existing correlations between the three parameters. This checking will allow confirm if 

they are not (or are weakly) cross-correlated. Otherwise, the separate variable simulation should be 

replaced by a joint simulation (cosimulation), which would make the model quite more complex but 

accurate (Emery and Cornejo, 2010). Table 7.3 displays the correlation coefficient between the 

three variables computed using the Pearson product-moment. 

Table 7.3 Correlation matrix between RQD, F and W. 

 RQD F W 

RQD 1.000 -0.690 -0.605 

F -0.690 1.000 0.600 

W -0.605 0.600 1.000 

Accordingly to Table 7.3 results, it was possible to notice that the correlation between the RQD and 

the other two variables is inverse, which hinders the possibility of joint simulation. On the other 

hand, the weathering (W) and fracturing (F) degrees are strongly correlated (>0.5), indicating, at a 

first glance, that a joint simulation between both variables should be performed. However, a joint 

simulation between variables W and F was performed but the results, in terms of realisations 

average, were similar to the ones of the individual simulations. Indeed, for variable W the cross 

validation performed showed slight worst results when the joint simulation of both variables is 

considered. In this sense, an individual simulation of the three variables was adopted. A following 

step concerns the computation of the experimental variograms to a maximum distance of 100 m, 

beyond which the data values are found to exhibit a low correlation. To fit the experimental 

variograms, isotropic spherical and Gaussian functions were used. Equations (7.6), (7.7) and (7.8) 

present the functions used in the variogram fitting, where the distance written between brackets 

represents the correlation range and the number before the spherical and Gaussian structures 
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denotes the adopted value for the sill (Chilès and Delfiner, 2012). In Figure 7.4 the experimental 

and theoretical variograms of the three variables using the information of 6 boreholes are displayed. 

From figure analysis, it was possible to detect the existence of nugget effect in all three variables, 

proving some spatial discontinuity of the variables. 

RQD: V = 0.36 + 	0.31	+Wℎ5>'6=9	 40	$ + 0.22	Y=211'=#	(100	$)	 (7.6) 

F: V = 0.19 + 	0.64	+Wℎ5>'6=9	 20	$ 	 (7.7) 

W: V = 0.18 + 	0.65	+Wℎ5>'6=9	 50	$ 	 (7.8) 

 

(a) (b) 

 

(c) 

Figure 7.4 Experimental (crosses) and theoretical (solid line) variograms along the horizontal plane using the information 

of 6 boreholes, for: a) RQD; b) F; and c) W. 
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A two-dimensional regular grid with a mesh of 5 m × 5 m and a total of 50 nodes along the east 

direction and 70 nodes along the north direction was defined to conditionally simulate the three 

variables and to calculate the objective function. 

To perform the geostatistical simulation at the target grid nodes, the turning bands method (Emery 

and Lantuéjoul, 2006) was used. Alike to all geostatistical simulations performed in this thesis, the 

number of turning lines used was 1500 and the number of realisations was set to 100. To condition 

the simulation an ordinary kriging was used with a moving neighbourhood implementation. The 

radius chosen for the neighbourhood was 400 m with a total of 100 points per octant. As a final 

step, the simulated Gaussian values were back-transformed into their original scale to map and post-

process the output values. 

To understand the differences between the initial data and the geotechnical improvements when the 

removed boreholes are optimised (preliminary data), the simulation conditioned to the initial data (7 

boreholes) was also performed on the predefined grid. All the details can be consulted in the 

following section. Moreover, to facilitate any type of analysis, the reference values used to normalise 

the results were the variance of the 100 realisations average obtained for the simulation of the 6 

boreholes in the predefined grid (see Table 7.4). So, the selected data set is the one that should 

serve as a basis for future comparisons. 

Table 7.4 Basic statistics using the 6 boreholes data set to perform the geostatistical simulation of variables RQD, F and 

W. 

 
Average of simulated 

RQD 

Average of simulated F Average of simulated 

W 

Total of grid points 3500 3500 3500 

Mean 76 3 2 

Variance (reference values) 764.4 1.0 0.5 

Maximum  90 4 3 

Minimum  46 1 1 

7.4.2. Initial data  

Regarding the initial set experimental variograms, the scenario 1 omnidirectional assumption was 

made here. For the variogram models, the chosen mathematical functions are presented in 

Equations (7.9), (7.10) and (7.11), where the distance written between brackets represents the 

correlation range and the number before the spherical and exponential structures denotes the 

adopted value for the sill. 
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In Figure 7.5 the obtained variograms and the corresponding models for all the three variables 

(RQD, F and W) are represented. Through the variogram analysis, it can be noticed that all three 

variables variograms exhibit a nugget effect, which implies some spatial discontinuity of the 

variables, possible due to some error measurement in the data recovery; however, and comparing 

with scenario 1 variogram models, the nugget effect in all variable is, as expected, smaller since the 

number of data had increased significantly (the addition of 1 borehole represents the addition of a 

considerable number of points with information). 

RQD: V = 0.28 + 	0.14	+Wℎ5>'6=9	 15	$ + 0.28	\]W8#5#7'=9	(70	$)	 (7.9) 

F: V = 0.18 + 	0.48	+Wℎ5>'6=9	 20	$ + 0.07	\]W8#5#7'=9	(70	$)	 (7.10) 

W: V = 0.14 + 	0.17	+Wℎ5>'6=9	 20	$ + 0.38	\]W8#5#7'=9	(70	$)	 (7.11) 

 

(a) (b) 

 

 (c) 

Figure 7.5 Experimental (crosses) and theoretical (solid line) variograms using the initial data set of 7 boreholes, for: a) 

RQD; b) F; and c) W. 
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For the conditional simulation, the turning bands method was chosen with a total of 1500 turning 

lines, while the total number of realisations was set to 100. The remaining simulation assumptions 

were the same as the ones adopted for scenario 1. As a result, Table 7.5 shows the basic statistics 

of the 7 original boreholes simulation, including the normalised values of all the three variables 

using as a reference the variance obtained from the 6 boreholes simulation. 

Table 7.5 Basic statistics using the 7 boreholes data set to perform the geostatistical simulation of variables RQD, F and 

W. 

 
Average of simulated 

RQD 

Average of simulated F Average of simulated 

W 

Total of grid points 3500 3500 3500 

Mean 79 3 2 

Variance  630.6 0.9 0.50 

Variance normalised 0.8 1.0 0.9 

Maximum  99 4 3 

Minimum  44 1 1 

7.5. SIMULATED ANNEALING INPUT PARAMETERS STUDY  

7.5.1. Introduction 

Before presenting any optimisation results, it is important to refer that an additional SA parameter 

study had to be carried out. A similar study was performed for the case study presented in Chapter 

6, mostly to assess the temperature values and rejections inside each temperature state. Even 

tough, since the problem under consideration is different, additional parameters had been tuned. 

Therefore, the study was divided into two parts: 1) along with some changes of the maximum 

number of rejections and moves, the main goal was to assess the step size value to use in the 

function responsible for the new points generations. In this regard, a total of seven tests was 

performed where the step size and maximum number of rejections and acceptances were varied. In 

this first test only the information of scenario 2 was used; 2) then, and after finding the best step 

size value, the points generating function had to be chosen out of two. This was an important step to 

guarantee that the algorithm truly explores all the space in study; therefore, in this second test not 

only scenario 2 was tested but also scenario 3, which assumes different removed boreholes. This 

third scenario inclusion diminishes a possible influence of the boreholes positions in the points 

generating function choice. 
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7.5.2. Step size value (Scenario 2) 

To perform the step size study, the information of scenario 2 (without boreholes S8 and S15) was 

used in the optimisation. As such, a total of seven tests was executed where different step values 

varying from 1 to 0.01 were assumed. For the initial temperature, a higher value of 4 was adopted 

so that the algorithm could explore all the space. Also, from test number 1 to test number 3, the 

function used to generate the points coordinates was Equation (7.12), while from test number 4 to 

test number 7 the function was the one presented in Equation (7.13). The main difference between 

both equations is in the range of random values used to increment in the generated points; in the 

first the increment is lower and the algorithm performs closer searches, whereas in the second 

equation the algorithm is allowed to go further. 

Ĉ_` = âFb + 1× 23 − 93 ×>=#e −1; 1 	 (7.12) 

Ĉ_` = âFb + 1× 23 − 93 ×>=#e −2; 2 	 (7.13) 

The new point Ĉ_` is generated using a previously generated point, âFb, an advance step size 

value (1) and the difference between the lower bound (93) and the upper bound (23) of the 

searching space, and the random part of this generation is given by the product of the difference 

with a range of random values. 

In this regard, Table 7.6 displays the values adopted in all the tests for the SA input parameters. The 

main goal was to tune the step size (1) value and the number of iterations that should be executed 

to result in the minimum objective function value. 

Table 7.6 Input parameters values for all the seven tests performed using information from scenario 2 to study the step 

size value. 

Test 

n. 

Cooling 

factor 

(g) 

Initial 

Temperature 

(°) 

Final 

Temperature 

(°) 

Max. 

number of 

rejections 

Max. 

number 

of moves 

Max. 

number of 

accepted 

points 

Step 

size 

(h) 

1 0.8 4 0.1 300 50 15 0.01 

2 0.8 4 0.1 300 50 15 0.10 

3 0.8 4 0.1 300 50 15 1.00 

4 0.8 4 0.1 300 50 15 0.10 

5 0.8 4 0.1 500 100 30 1.00 

6 0.8 4 0.1 500 100 30 0.10 

7 0.8 4 0.1 400 150 20 0.10 
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The results of all the seven optimisation tests are represented in Figure 7.6, from where it is 

possible to observe that the best results were obtained for tests number 2 and number 4, having 

both adopted a step size of 0.10. These two tests gave the lowest value for the objective function 

and both converged before reaching 700 iterations. However, both tests have different functions to 

generate the random points, meaning that an additional study has to be carried out to choose the 

best point generating function. 

 

 Figure 7.6 Convergence study for a total of seven tests using as information the scenario 2. 

7.5.3. Points generating function study (Scenarios 2 and 3) 

As mentioned before, tests number 2 and 4 were the ones that showed the best results. Hence, the 

SA input parameters values adopted in this function study were the same as the ones used in the 

previous study. Since test number 4 had stopped before the 400 iterations, this was the value used 

here. The number of iterations was set constant since the convergence study was not carried out at 

this stage (see Table 7.7). In this subsection, a study to choose the best function to generate new 

points was carried out, considering the data from scenarios 2 and 3.  
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Table 7.7 Input parameters values for tests number 2 and 4 using information from scenarios 2 and 3 to study the 

points generating function. 

Test 

n. 

Cooling 

factor 

(g) 

Initial 

Temperature 

(°) 

Final 

Temperature 

(°) 

Max. 

number of 

rejections 

Max. 

number 

of 

iterations 

Max. 

number 

of 

moves 

Max. 

number 

of 

accepted 

points 

Step 

size 

(h) 

2a 0.8 4 0.1 300 400 50 15 0.1 

4a 0.8 4 0.1 300 400 50 15 0.1 

In the following tables the main results for the optimisation tests performed using the data from 

scenarios 2 and 3 are represented. Each table contains the number of evaluations, which 

corresponds to the number of times that the OF was executed, the final temperature value, working 

here as one of the SA stopping criteria, the maximum number of iterations, the OF minimum value, 

which should be the lowest possible, and the time spent in each run. Furthermore, the optimal 

solution coordinates are also given. Note that these coordinates represent the starting point location 

for the borehole. The results from all the four runs executed assuming the input parameters value 

from test 2a are represented in Table 7.8 and 7.9, while for test 4a they are displayed in Table 7.10 

and 7.11 for scenarios 2 and 3, respectively. 

Table 7.8 Scenario 2 optimisation results of test number 2a. 

Run n. 
Number of 

evaluations 

Final 

Temperature 

(°) 

Objective 

function 

value 

Time 

Optimal points 

i (m) j	(m) k	(m) 

1 409 0.7 540.4 17h20 
3576 

3506 

224389 

224519 

122 

227 

2 409 0.7 517.1 17h20 
3389 

3510 

224362 

224436 

126 

131 

3 409 0.7 544.0 17h20 
3628 

3520 

224565 

224502 

187 

152 

4 409 0.7 544.1 17h10 
3491 

3449 

224446 

224540 

271 

150 
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Table 7.9 Scenario 3 optimisation results of test number 2a. 

Run n. 
Number of 

evaluations 

Final 

Temperature 

(°) 

Objective 

function 

value 

Time 

Optimal points 

i (m) j	(m) k (m) 

1 409 0.7 353.0 16h35 
3489 

3521 

224390 

224534 

337 

338 

2 409 0.7 348.6 16h35 
3626 

3524 

224582 

224519 

141 

133 

3 409 0.7 345.0 16h35 
3577 

3456 

224300 

224422 

217 

174 

4 409 0.7 349.0 16h35 
3514 

3612 

224491 

224577 

141 

132 

Table 7.10 Scenario 2 optimisation results of test number 4a. 

Run 

n. 

Number of 

evaluations 

Final 

Temperature 

(°) 

Objective 

function 

value 

Time 

Optimal points 

i (m) j	(m) k	(m) 

1 409 0.7 540.4 17h20 
3390 

3518 

224355 

 224435 

150 

285 

2 409 0.7 510.4 17h20 
3497 

3389 

224464 

224365 

162 

111 

3 409 0.7 538.4 17h20 
3558 

3514 

224423 

224518 

130 

359 

4 409 0.7 532.4 17h10 
3524 

3556 

224533 

224424 

353 

113 

Table 7.11 Scenario 3 optimisation results of test number 4a. 

Run 

n. 

Number of 

evaluations 

Final 

Temperature 

(°) 

Objective 

function 

value 

Time 

Optimal points 

i (m) j	(m) k (m) 

1 409 0.7 336.4 17h16 
3523 

3531 

224524 

224332 

168 

233 

2 409 0.7 376.6 17h16 
3612 

3622 

224596 

224621 

99 

101 

3 409 0.7 341.1 17h16 
3523 

3523 

224343 

224530 

224 

361 

4 409 0.7 336.4 17h16 
3523 

3531 

224524 

224332 

168 

233 

In order to analyse the main differences in the convergence between the two tests, 2a and 4a, 

including their 4 runs, a convergence representation was built. This graphic relates the number of 

performed iterations for each test in each run with the corresponding objective function value (see 

Figure 7.7). It was possible to observe that, for scenario 2, test 4a was the one registering the lowest 
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OF value in run number 2 (see Figure 7.7a). However, the subsequent best test was test 2a, also in 

run number 2, which confirms that both tested functions can give similar results. In addition, it can 

be stated that apart from run number 3 of test 2a and 4a, all the other tests and runs stabilised 

before reaching the maximum number of iterations, meaning that the chosen number of 400 

iterations is enough to guarantee a suitable optimisation of the two additional boreholes. Regarding 

scenario 3 convergence, the lowest OF value was reached in run number 4 for test 4a (see Figure 

7.7b). Even though, the difference between both tests are almost residual, confirming, once again, 

that both tested point generating functions show a good potential in exploring the search space. 

Moreover, it is worth noticing that almost all the runs have stabilised in the OF minimum value 

before reaching 400 iterations, with exception of runs number 1 and 4 in test 2a where it was 

possible to observe a small stabilisation sill. 

 

(a) (b) 

Figure 7.7 Convergence analysis comparing the number of iterations with the OF value for tests number 2a and 4a in 

each run for: a) scenario 2; and b) scenario 3. 

Moreover, Figure 7.8 depicts the starting locations (%& plane) of all the optimal points obtained in 

both tests and scenarios, as well as the original removed boreholes positions (starting coordinates) 

to facilitate any further comparison. By analysing Figure 7.8a, it was possible to observe for scenario 

2 that almost all the tests provide a similar solution, supported by the density of optimal points 

located near each other. Also, it is worth mentioning that three clusters (density of points) could be 

defined, the first near one of the removed boreholes (upper zone), a second one in the right side of 

the other removed borehole and, finally, a third cluster defined far from each one of the original 

boreholes coordinates in the left bottom part of the search square. These three clusters intend to 

translate possible solutions if two new additional boreholes had to be executed. In what concerns 

scenario 3, from Figure 7.8b analysis, it is possible to detect two main clusters of points, one in the 
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upper right part of the area and the other one in the central left part; however, none of them near 

the original boreholes points. However, two of the obtained points are located near one of the 

original boreholes (test 2a in runs number 1 and 3). Similarly to scenario 2, the identified clusters 

represent the most probable zones of the rock mass where two new additional boreholes should be 

executed. 

Furthermore, in order to understand the moves from run to run in each test of scenarios 2 and 3, a 

new 2D representation was added (see Figure 7.9 and 7.10). From there, it was possible to confirm 

that for a total of 4 runs the algorithm tends to jump between the same solutions, i.e. from run to 

run the first and second points exchange positions, which confirms that those are, indeed, the 

optimal positions. The mentioned effect can be detected, more easily, between the runs of test 4a 

(see Figure 7.9b and 7.10b).  
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(a) (b) 

Figure 7.8 Spatial representation (%&	plane) of the optimal points obtained for test number 2a and 4a in all the runs 

along with the original locations of the two removed boreholes (blue circles), for: a) scenario 2; and b) scenario 3. 

 

(a) (b) 

Figure 7.9 Scenario 2 spatial representation (%&	plane) of the optimal points movements (coloured arrows) obtained 

from run to run, in: a) test 2a; and b) test 4a. 

 

(a) (b) 

Figure 7.10 Scenario 3 spatial representation (%&	plane) of the optimal points movements (coloured arrows) obtained 

from run to run using data from scenario 2, in: a) test 2a; and b) test 4a. 
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7.6. OPTIMISATION RESULTS 

7.6.1. Scenario 1 

From the previous section results, it was possible to observe that the most adjustable step size value 

was 0.10, while the most exploratory point generating function was the one presented in Equation 

(7.13). In addition, using the results of the SA internal parameters study it was possible to define the 

range of values to adopt for the number of iteration threshold. The optimisation tests executed using 

the data from scenario 1 considers a threshold of 400 and 500 iterations. The adopted values for 

the SA input parameters are represented in Table 7.12, being the maximum number of iterations 

the only difference between tests number 1 and number 2. Note that all the assumptions made for 

the SA input parameters study are valid here, once the number of removed boreholes is the single 

changeable feature between scenarios. 

Furthermore, for this first scenario, to better represent the boreholes information in depth, the 

average of points in the !-axis of all the six considered boreholes was computed. As such, an 

average number of 150 points per alignment (borehole) was considered in the point generation by 

the SA algorithm. 

Table 7.12 Input parameters values adopted to perform the optimisation using the data from scenario 1. 

Test 

n. 

Cooling 

factor 

(g) 

Initial 

Temperature 

(°) 

Final 

temperature 

(°) 

Max. 

number of 

rejections 

Max. 

number 

of 

iterations 

Max. 

number 

of runs 

Max. 

number 

of 

accepted 

points 

Step 

size 

1 0.8 4 0.1 300 400 50 10 0.1 

2 0.8 4 0.1 300 500 50 10 0.1 

In the following tables the main results of all the runs completed in the optimisation of scenario 1 

are presented. Each table contains the number of objective function evaluations, the final 

temperature value, which represents one of the stopping criteria, the minimum OF value and the 

total time spent in the process. Besides, the optimal solution, meaning the %, &	and !	coordinates, 

are also represented in the tables, as well as the final coordinate !, which gives the maximum depth 

to consider in this new borehole execution. Each trio was tested 4 times, 2 runs for a limit of 400 

iterations and 2 times for a limit of 500. 

The optimisation results obtained using the weights from trio number 1 are displayed in Table 7.13. 

As can be observed, in all the tests the objective function value was almost the same (0.82). This 
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fact confirms that the maximum number of iterations, for trio 1 weights, is not as relevant as 

expected. Figure 7.11a shows the spatial location of the optimal points, from where it is possible to 

observe that they are located near each other which validate the optimisation methodology. 

Table 7.13 Optimisation results using the weight values from trio number 1. 

Test 

n. 

Run 

n. 

Number of 

evaluations 

Final 

temperature 

(°) 

Objective 

function 

value 

Time Optimal point Final k 

cord. 

(m) i (m) j	(m) k	(m) 

1 1 400 0.3 0.82 72h 3505 224346 300 102 

2 400 0.3 0.81 72h 3516 224377 300 100 

2 1 500 0.3 0.82 76h 3511 224390 300 101 

2 500 0.3 0.82 76h 3515 224389 300 104 

If the weights values from trio number 2 are assumed, the obtained results are quite similar, not 

only in the final objective function value but also in the points coordinates (see Table 7.14). As a 

matter of fact, some of the optimal points are almost in the same position as the ones obtained in 

trio 1, as can be observed in Figure 7.11b. In what concerns the computational time, 72 hours and 

76 hours (approximately 3 days) were the registered times from a maximum number of 400 and 

500 iterations, respectively. Note that all the SA runs were performed using a desktop computer with 

an Intel ® Core ™ i7-3610QM CPU @2.30GHz processor. 

Table 7.14 Optimisation results using the weight values from trio number 2. 

Test 

n. 

Run 

n. 

Number of 

evaluations 

Final 

temperature 

(°) 

Objective 

function 

value 

Time 

Optimal point Final 

k 

cord. 

(m) 
i (m) j	(m) k	(m) 

1 
1 400 0.3 0.82 72h 3525 224396 300 101 

2 400 0.3 0.82 72h 3512 224393 300 100 

2 
1 500 0.3 0.82 76h 3510 224369 300 101 

2 500 0.3 0.82 76h 3505 224366 300 100 

Regarding trio 3, the optimisation results were similar to the previous ones. Indeed, the objective 

function values were the same as obtained before (see Table 7.15). Even though the optimal points 

are still in the same zones as for trio 1 and 2, in this case they are located more closely to each 

other, reinforcing, once again, the lower influence that the number of iterations assumes (see Figure 

7.11c). 

Likewise, assuming the weight values from trio number 4 (see Table 7.16), the obtained results are 

quite similar to the ones obtained in trio 3, not just in the objective function value but also in their 
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locations, as can be perceived by comparing Figure 7.11c and 7.11d. Finally, the results from trio 

number 5 are displayed in Table 7.17, which are in line with all the previous trio results. 

Table 7.15 Optimisation results using the weight values from trio number 3. 

Test 

n. 

Run 

n. 

Number of 

evaluations 

Final 

temperature 

(°) 

Objective 

function 
Time 

Optimal point Final 

k 

cord. 

(m) 
i (m) j	(m) k	(m) 

1 
1 400 0.3 0.82 72h 3511 224389 300 100 

2 400 0.3 0.81 72h 3513 224374 300 102 

2 
1 500 0.3 0.82 76h 3517 224366 300 100 

2 500 0.3 0.81 76h 3509 224372 300 102 

Table 7.16 Optimisation results using the weight values from trio number 4. 

Test 

n. 

Run 

n. 

Number of 

evaluations 

Final 

temperature 

(°) 

Objective 

function 
Time 

Optimal point Final 

k 

cord. 

(m) 
i (m) j	(m) k	(m) 

1 
1 400 0.3 0.82 72h 3524 224356 300 102 

2 400 0.3 0.82 72h 3514 224371 300 100 

2 
1 500 0.3 0.82 76h 3509 224365 300 101 

2 500 0.3 0.82 76h 3525 224362 300 102 

Table 7.17 Optimisation results using the weight values from trio number 5. 

Test 

n. 

Run 

n. 

Number of 

evaluations 

Final 

temperature 

(°) 

Objective 

function 
Time 

Optimal point Final 

k 

cord. 

(m) 
i (m) j	(m) k	(m) 

1 
1 400 0.3 0.82 72h 3505 224357 300 102 

2 400 0.3 0.82 72h 3511 224367 300 100 

2 
1 500 0.3 0.82 76h 3519 224381 300 101 

2 500 0.3 0.82 76h 3538 224346 300 102 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.11 Spatial representation (%&	plane) of the optimal points (colour points) obtained in all the tests, for: a) trio 1; 

b) trio 2; c) trio 3; d) trio 4; and e) trio 5. 

The convergence study of all the trios that were analysed and the graphical results are displayed in 

Figure 7.12. The behaviour of each run for each trio was quite similar, having all of them found the 

minimum value for the OF before reaching the 400 iterations and, more precisely, in run number 2 
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of test 1. Even though, the remaining runs resulted in values near the optimum. The difference 

between the optimal solution and the worst solution was of 10% in all the tests. 

  

(a) (b) 

 

(c) (d) 

 

(e) 

Figure 7.12 Convergence study for all the tests performed assuming the weights values from: a) trio 1; b) trio 2; c) trio 

3; d) trio 4; and e) trio 5.  
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7.6.2. Analysis of the results 

All the performed tests provide relevant information into how using this optimisation methodology is 

possible to gain some geotechnical detail and accuracy in the numerical model. Regarding scenario 

1 optimisation, all the five trios were tested four times, each with the expectation of getting different 

results between them, since different weights were assigned to the three variables into 

consideration: however, the obtained differences between the trios were almost residual. In this 

regard, Table 7.18 contains the gain in each run of all the five trios in comparison with the OF value 

obtained after simulating the initial set. In there, it is possible to observe that almost every trio show 

a 11% improvement in the OF values. Even if apparently small, a difference of 11% in geotechnical 

engineering can be interesting and important, mostly, in a scope of 7 boreholes. Moreover, because 

in this case the resulting optimal points in each tested trio were located far from the original 

borehole position, as can be seen in Figure 7.13. In detail, a single cluster was formed from this 

optimisation case study, confirming the assertiveness of this optimisation methodology since, in 

every run and for every tested weights trios, the result is almost the same. Logically, even if the 

optimal borehole location was far from the original one, an evaluation from the professional should 

be employed in order to understand the advantages in performing the borehole in that place and 

probably drill an inclined borehole in the optimal rock zone limited by [3505, 3538; 224346, 

224389]. 

Regarding the weights trios tested in this scenario, contrarily to expected, the differences were 

insignificant. This leads to the conclusion that, in this case, the distinction made in the three 

variables in terms of the global geotechnical gain were not relevant, but can exist and influence 

further analysis if the professional so decides.  
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Table 7.18 Results comparison between the optimised objective function values and the initial ones considering the 

weight values from all the five trios. 

Test n. Run n. 
Initial OF value (7 

boreholes) 

Δ (%)	

Trio	1	 Trio	2	 Trio	3	 Trio	4	 Trio	5	

1 
1 

0.9 

-11% -11% -11% -10% -11% 

2 -11% -11% -11% -11% -11% 

2 
1 -11% -11% -11% -11% -11% 

2  -11% -11% -11% -11% -11% 

 

Figure 7.13 Spatial representation (%&	plane) of the optimal points (colour points) obtained in all the tests for all the five 

trios. 

In what concerns scenarios 2 and 3, both provide an important insight into how this methodology 

increases the geotechnical detail of the rock mass and decreases the associated uncertainties 

comparing to the traditional positioning method. This can be stated after analysing the existing 

differences of OFs’ between both scenarios and the one obtained considering the initial boreholes 

data set (7 boreholes). As already mentioned, the initial data set was simulated into the same target 

grid as used in this optimisation. Using the OF value from the geostatistical simulation using the 

initial set (OF=779.28), percentage differences were calculated and the outcomes are presented in 

Table 7.19. In detail, for scenario 2 the geotechnical gain, here measured by comparing the average 

variance resulting from the conditional simulation, was, in average, of 32%. For scenario 3 the 

calculated gains were higher, reaching a value of 55% in average. These values can be translated in 

an uncertainty decrease in the geotechnical model if the two removed boreholes, for both scenarios, 

were executed in the optimal positions instead of their original locations. 
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Table 7.19 Comparative analysis using the optimisation results of scenarios 2 and 3 with the OF value obtained from the 

initial set simulation.  

Test n. Run n. 
Optimal OF value Initial OF value (7 

boreholes) 

Δ (%)	

Scenario 2 Scenario 3 Scenario 2	 Scenario 3	

2a 

1 540.4 353.0 

779.3 

-31% -55% 

2 517.1 348.6 -34% -55% 

3 544.0 345.0 -30% -56% 

4 544.1 349.0 -30% -55% 

4a 

1 540.4 336.4 -31% -57% 

2 510.4 376.6 -35% -52% 

3 538.3 341.1 -31% -56% 

 4 532.4 336.4  -32% -57% 

7.7. CONCLUSIONS 

The goal of this work was to apply a new methodology developed to optimise borehole plans. The 

methodology combines the geostatistical simulation, core technique of this PhD thesis, with the 

optimisation algorithm SA. All the details about the methodology were given in Chapter 6. In this 

application, a real case study was used to truly assess and validate the optimisation methodology. 

Therefore, the data resulting from the design phase of the power reinforcement of Salamonde dam 

were taken into consideration. The main goal was to use the information of previously executed 

boreholes, mainly the RQD, W and F geotechnical information, remove some of them and then 

perform their optimisation. As results, the optimal coordinates could be compared with the real ones 

and some uncertainty assessment was made comparing the objective function of the optimal and 

real data. 

In detail, the objective function was defined after combining the variance average value of the 

mentioned geotechnical variables, the RQD empirical system and the qualitative evaluation of the 

rock mass fracturing and weathering degrees. To build this single objective function, a weight sum 

method was adopted. The goal was defining different weight values according the three variables 

importance in the geotechnical detail desired by the user. As input, the information of seven 

boreholes was used. These boreholes compose the prospection plan of an important underground 

work built to reinforce the electrical power of the already built Salamonde dam. Contrarily to the 

Chilean deposit case study, in this application only the alignments optimisation was performed. Also, 

the main goal was somewhat different since it was not to add new boreholes and quantify the 

decrease in terms of the OF value, but to remove the original boreholes, use the remaining ones to 
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perform the optimisation and compare the OF value with the original location. In this regard, three 

different scenarios were tested: the first considered the removal of one borehole and works as the 

main tested scenario where the weight values trios were tried, then in the second and third 

scenarios two distinct boreholes were removed and their locations were optimised. 

Compared with the first scenario, the measured geotechnical gain of scenarios 2 and 3, here 

translated by the difference between the OF value of the optimised scenarios and the original one, 

was considerably higher, reaching around 55% decrease in the average of the simulation variance. 

In turn, scenario 1 achieved only 11% of difference, which in geotechnical engineering can still be 

relevant. In particular, through the analysis of all the tests and runs, it was possible to observe that 

the optimal point locations were close to one another, which in comparison to the original location of 

the removed borehole were considerably far (30 m in the % −direction and 70 m &-direction). This 

fact leads to the conclusion that: first, the optimisation methodology is coherent in all the tests and 

runs, providing in almost all cases the same optimal solution, and, secondly, the original boreholes, 

if executed near the optimal zone had decreased the uncertainty of the geotechnical model. From a 

geological point of view, scenario 1 results should be faced as trustworthy and a useful help in the 

decision on where to drill the borehole (since all the runs and trios gave very close results). In detail, 

the removed borehole should be drilled in a rock zone between 3505 m and 3525 m in the % 

direction and beteween 224346 m and 224380 m in the &- direction, that is a 20 m x 35 m block. 

Also, and according to all optimisation tests results, the borehole must have a minimum length of 

approximately 200 m. Note that at this stage the methodology only optimises vertical boreholes and 

their inclination is not one of the obtained features. 

By assuming a multi-criteria approach, throughout the weights implementation, the user of the 

proposed methodology can have an additional feature to apply according to the type of geotechnical 

detail needed. 

In essence, it is possible to conclude the validity of the methodology to optimise boreholes positions 

if some initial information exists. It is important to stress out the need in having preliminary borehole 

information to allow the variogram computation. 

As observed by the optimisation results, the uncertainty reduction can be significant if the 

methodology is used as a helping tool for the professionals at the time of the prospection plan 

elaboration. As a matter of fact, the time spent in the plan definition can considerably decrease and 

the level of geotechnical detail increase, which from an engineer point of view is, nowadays, an 

essential point to optimise not only the work costs but also to respect the deadlines. 
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Chapter 8  

CONCLUSIONS AND FUTURE WORKS 
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8.1. SUMMARY AND MAIN CONTRIBUTIONS 

This thesis addressed one of the major issues of the geotechnical engineering, namely in 

underground works, the heterogeneity and spatial variability of rock masses. The existing 

characterisation methodologies are limited to a rock mass modelling as a homogeneous mean, even 

if the geotechnical community knows that in most cases the rock masses are heterogeneous. The 

influence of this simplification has relevant impacts in geotechnical works, not only in an economical 

point of view but also in the safety role. 

Seen in these terms, the main goal of this thesis in developing a numerical methodology that are 

able to reduce uncertainty associated to the geomechanical parameters assessment, their spatial 

variability and at the same time identify the heterogeneities existing in the rock masses was 

achieved. Besides the new numerical methodology, another relevant problem, such as the boreholes 

plan definition, was raised and a new helping methodology was developed. 

These two new methodologies were established after an intensive literature review of probabilistic 

methodologies applied in geotechnics and after performing a first analysis on the robustness and 

viability of the geostatistics as the core technique of both. 

The organisational scheme followed in the thesis included each Chapter conclusions, therefore, in 

this section, a summary and reference to the main and original contributions of this thesis, as well 

as some future work, are presented next. 

 

Methodology 1: Numerical methodology to model heterogeneous rock masses 

Before starting any kind of original work, an updating and summary of the most recent works, where 

probabilistic and stochastics techniques were applied in geotechnical works was carried out. At the 

same time, a list of empirical formulas to be used in order to obtain the geomechanical parameters 

was made. Moreover, some reference to methodologies used to select the geostatistical realisations 

was presented aiming to help in the development of a scenario reduction methodology to use after 

the geomechanical parameters conditional simulation. 

In what concerns to the the first methodology original accomplishments worth mentioning, they were 

the following: 
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§ A first test on the geostatistical techniques applied to geotechnical parameters was carried 

out. In there, some different approaches (as categorical and as continuous variable) were 

formulated to simulated the RMR empirical system and their main differences analysed. By 

using empirical formulas was possible to spatially represent the rock mass deformation 

modulus in 2D. 

§ Individual realisations, realisations average and probability maps were obtained from the 

geostatistical simulation that can be used for different purposes, since risk analysis to 

geomechanical parameters assessment. 

§ A first known attempt to import to the finite difference software, Flac3D the “heterogeneity 

information” was made. To do that, a new FISH code was written to allow the importation of 

the geomechanical information to each zone centroid, separately. 

§ Development of a new and innovative methodology that models the rock mass as a 

heterogeneous mean starting with the preliminary geotechnical information, passing through 

the conditional geostatistical simulation, followed by a scenario reduction step and finally, 

the exportation to a finite differences software to perform the rock mass mechanical 

behaviour analysis. 

§ The development of a new scenario reduction methodology based on clusters and fitted for 

the geomechanical parameters geostatistical realisations, as well as the metrics used to 

assess the statistical representability of the selected realisations in comparison with the full 

set of realisations. 

§ Enhanced the need of this new numerical methodology, by comparing the results of the 

used realisations with the considered deterministic model (shaped to simulate the reality of 

the nowadays geotechnical models). 

§ The application of the developed methodology to a real case study, in this case a 

powerhouse complex of Salamonde II, where a detailed and extensive analysis was made 

using the developed methodology and a deterministic approach. In there, information 

obtained in two distinct phases of the works were considered, having the data set of the first 

phase resulting in overall in better values and adjustments when compared with a second 

and third data sets composed by a higher number of preliminary information. This fact 

proves the power of the developed methodology and its advantage since requires a low 

number of information to give accurate results. 

§ The increase in security and cost optimisation are some of the main advantages of this 

methodology, which does not translate into greater pre, calculation and pos - processing 

time when compared with the normally used methodologies. 
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Methodology 2: Borehole plans optimisation methodology 

This second methodology is related to the boreholes optimisation through which results the optimal 

location and the minimum depth to be consider at the time that new additional boreholes are 

executed. This methodology intends to function as a helping tool to be used by the professionals 

jointly with yours know how in geotechnical prospection. As performed in the thesis first chapter, an 

updating and summary of existing optimisation methodologies was carried out. From there was 

possible to assess the need in developing this methodology that combines the geostatistical 

technique with the optimisation algorithm, Simulated Annealing. 

The main conclusions to withdraw from the last two chapters of the thesis, are: 

§ The formulation of the optimisation problem to be minimised and the associated constrains. 

To do that, was necessary to combine several techniques, like geostatistics, with the 

optimisation algorithm. 

§ The use of two different metrics as the objective function of the optimisation problem. This 

fact allows the professional to decide which statistical metric is more fitted and reliable 

according to the geotechnical parameters used in the optimisation. 

§ The combination of both tested metrics in a multicriteria approach, to understand the 

influence and behaviour of each objective function in the optimisation process. 

§ The integration of an alignments of points optimisation instead of individual points, which 

are closer to the reality since for each borehole the information is gathered at several 

depths. 

§ Application of the developed methodology to a Chilean gold deposit, where the information 

of the RMR empirical systems was used from some randomly selected boreholes and the 

optimisation was performed one by one until a certain level (13 new boreholes) and in a 

sparser way until a total of 30 new additional boreholes was achieved. From this analysis 

was possible to understand the geotechnical gain and uncertainty reduction that results 

from each additional borehole and decide the best number to execute according to the 

existing budget. 

§ The developed methodology was applied to a second case study, this turn the powerhouse 

complex used before, to which was randomly removed, firstly one borehole and then, two 

boreholes. The optimisation methodology was applied to assess the removed boreholes 

optimal locations and only one metric was used as objective function, however, a 

multicriteria approach with three different geotechnical parameters was carried out in order 

to understand their influence in the optimisation process. 
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§ Highlighted the conclusions of this second application, from which it was possible to state 

that by using the developed methodology, the geotechnical gain (error reduction) can reach 

10% if one additional borehole is executed and more than 50% in the case of two additional 

boreholes. Also, the computational time need in not as relevant as other methodologies, and 

the outputs can be obtained after a day of calculations. 

In sum, the main innovative contributions of this thesis were the following: 

§ The development and validation of a new numerical methodology to use in the rock masses 

characterisation. The methodology as the advantage of identifying the rock mass 

heterogeneities, of modelling the geomechanical parameters spatial variability and to reduce 

the uncertainty associated to its characterisation. The differences in comparison with the 

deterministic approach commonly adopted are significant, enhance the need in perform this 

type of numerical analysis in complex underground works. 

§ The application of innovative tools to simulate the geomechanical parameters, namely the 

geostatistics that had been proving robust and adequate to use in geotechnical engineering. 

§ The development of a borehole plans optimisation methodology that was validated as a 

relevant tool to help the professional in assessing the best location to performed additional 

boreholes, as well as the economic viability associated to a certain number of additional 

boreholes. 

8.2. FUTURE WORKS 

Besides the step forward in applying geostatistical technique to use in the rock mass 

characterisation, the proposed methodologies are not enclosed to improvements. Both 

methodologies still have some steps that need optimisation and more thinking in order to improve 

the quality and range of application for them. Therefore, future works should be focus in the 

mentioned problem and each methodology step evaluated and tested for different types of 

formations, namely a shale rock type that adds some complexity in the characterisation due to the 

existence of the foliation. Regarding the first characterisation methodology the points that need 

further development are: 

§ A very important improvement should be performed at the geotechnical data collection since 

the accuracy of this information will determinate the accuracy of the simulated rock mass 

models. If the in situ and laboratory tests are performed only in rock mass zones that show 
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the better quality, and since the geostatistical simulation uses the interaction between the 

points, the simulation will translate and mimic the input values. Therefore, it is of utmost 

importance gather realistic preliminary information of the rock mass. 

§ Apply the proposed methodology as it is, in different rock masses, where the presence of 

heterogeneities is more accentuate and their effects on the rock mass mechanical behavior 

assessed. Although the rock mass of the Salamonde II powerhouse complex used in this 

thesis could be classified as homogeneous, however, had permitted to prove some points 

and advantages of this proposed methodology. 

Regarding the second proposed methodology destined to borehole plans optimisation some relevant 

improvement can be performed, such as: 

§ In the first part of the optimisation methodology, the chosen variable (geotechnical 

parameters) was conditionally simulated on the randomly generated points coordinates and 

the average of the 100 realisations was used to characterise this point; however, and has 

been said throughout the thesis, the average value tends to smooth the extreme values. For 

that reason, the scenario reduction methodology developed in the characterisation 

methodology can be used in this second methodology to select some relevant realisations to 

use in the remaining optimization process. By doing this, the uncertainty is reduced even 

more, since a higher number of possibilities is used. 

§ If the mentioned step is included, an additional step must be added to help deciding the 

optimal locals for new boreholes, once each one of the selected realisations will be 

optimised.  

§ Finally, and because boreholes are not always vertical, a relevant contribution will be the 

integration of inclined boreholes. To do that, will be required to performed a large amount of 

calculation since in each randomly generated coordinates a 360º search have to be 

performed. 
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A1.1. BOREHOLES MAIN CHARACTERISTICS 

Table A1.1 Summary of the boreholes main characteristics (EDP, 2009). 

Borehole 

code 

Initial 

coordinate 

(m) 

Azimuth 

(°) 

Angle with the 

horizontal 

(°) 

Length 

(m) 

Water level depth 

(m) 

S 1 294.7 256 60 60.0 10.0 

S 2 297.8 099 60 160.0 16.0 

S 3 NOT PERFORMED 

S 4 152.0 - 90 30.0 9.0 

S 5 311.4 256 45 160.0 13.4 

S 6 273.9 136 58 65.0 1.0 

S 7 298.3 - 90 190.0 22.5 

S 8 310.53 - 90 190.0 13.4 

S 9 308.6 250 51 130.0 23.8 

S 10 356.1 116 50 180.0 17.5 

S 11 371.8 040 50 80.0 0.5 

S 12 281.2 104 50 185.0 31.0 

S 13 146.4 034 70 48.3 0.0 

S 14 298.3 231 80 200.0 3.0 

S 15 297.7 180 55 180.0 0.8 

S 16 272.1 107 60 60.0 6.0 
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Table A1.2 Summary of the uniaxial compressive strength tests performed on the borehole 

Borehole 

code 

Length 

(m) 

Weathering 

degree 

W 

Length of 

the used 

sample 

(mm) 

Diameter 

Ø 

(mm) 

!" 

(MPa) 

#$ 

(GPa) 
n 

a
1 

(°) 

S2 

144.7 – 

145.0 
W1-W2 125.7 50.7 104.8 38.0 0.18 60 

149.6 – 

150.0 
W1-W2 125.7 50.7 120.6 51.3 0.16 60 

154.4 – 

154.7 
W1-W2 125.3 50.7 81.8 55.6 0.16 60 

158.0 – 

158.2 
W1-W2 125.6 50.8 71.7 55.1 0.13 60 

159.6 – 

160.0 
W1-W2 125.2 50.7 117.8 49.2 0.19 60 

S5 

149.3 – 

149.7 
W3 125.5 50.6 47.9 - - 45 

154.2 – 

154.6 
W3 125.6 50.6 69.7 - - 45 

158.4 – 

158.7 
W2 125.4 50.6 92.9 - - 45 

S6 

23.9 – 

24.3 
W3 125.0 50.6 21.8 - - 58 

55.0 – 

55.3 
W1-W2 125.8 50.4 102.2 - - °8 

S7 

107.6 – 

108.0 
W1-W2 125.8 50.5 129.4 44.3 0.18 90 

121.6 – 

122.1 
W1 125.7 50.4 139.3 57.6 0.25 90 

148.5 – 

148.9 
W2 125.7 50.6 113.7 51.7 0.24 90 

165.6 – 

166.0 
W1 125.7 50.7 119.7 47.7 0.23 90 

187.1 – 

187.5 
W1 126.0 50.6 100.7 56.6 0.17 90 

S11 

17.8 – 

18.0 
W3 125.6 50.3 49.3 - - 50 

58.0 – 

58.3 
W3 125.8 50.0 84.7 - - 50 

69.6 – 

70.0 
W3 125.6 50.5 92.6 - - 50 

S12 

145.1 – 

145.6 
W1-W2 125.5 50.8 114.2 71.3 0.23 50 

161.9 – 

162.1 
W1-W2 125.8 50.8 98.0 62.9 0.29 50 

177.8 – 

178.1 
W1-W2 125.7 50.7 114.0 69.0 0.23 50 

S14 

42.1 – 

42.4 
W2-W3 126.3 50.6 89.1 34.1 0.15 80 

62.2 – 

62.7 
W3 126.3 50.4 86.1 50.7 0.16 80 

66.2 – 

66.7 
W2-W3 126.2 50.6 97.5 45.8 0.18 80 

120.8 – 

121.5 
W3 124.4 50.7 99.0 47.6 0.19 80 

195.0 – 

195.6 
W3 126.5 50.7 84.5 41.9 0.14 80 

S16 

7.6 – 7.9 W3 125.2 50.7 43.4 - - 60 

11.5 – 

11.9 
W3 124.3 50.7 37.6 - - 60 

17.5 – 

17.8 
W3 125.1 50.8 61.0 - - 60 

                                                
1 Angle between the sample longitudinal axis and the horizontal axis.  
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A1.2. BASIC STATISTICS FROM PHASE 1 

Table A1.3 Statistical analysis of the geotechnical information that composes data set 1 of phase 1 (RQD, F and W). 

Variable 
Number of 

samples 
Minimum Maximum Mean Variance 

RQD (%) 1479.00 0.00 100.00 64.00 964.40 

W 1479.00 1.00 5.00 2.602 0.70 

F 1479.00 1.00 5.00 2.902 1.50 

Table A1.4 Statistical analysis of the geotechnical information that composes data set 2 of phase 1 (%&, W, '( and )). 

Variable 
Number of 

samples 
Minimum Maximum Mean Variance 

%& (GPa) 81 18.10 62.10 56.403 101.10 

W 81 1.00 3.50 1.902 0.30 

'( (MPa) 28 21.80 138.30 87.60 902.70 

) 79 0.08 0.42 0.21 0.003 

 

(a) (b) 

Figure A1.1 Histograms obtained using all the phase 1 information of Salamonde II, for: a) F; and b) '(. 

 

 

                                                
2 The mean values of the weathering and fracturing degrees were computed to give a notion of the averaging value, 

however, the most correct way to represent this type of variables is by computing their histograms. 
3 For the deformation modulus of the rock intact, the computed mean was harmonic. 
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A1.3. INFORMATION FROM PHASE 2 – RECOVERY METHOD 

Before going into details concerning the method adopted to recover the geotechnical mapping 

information, it is important to present all the zones that were considered in this process. Therefore, 

beside the powerhouse cavern, other underground works were taken into account (see Figure A1.2 

and Table A1.5). 

Table A1.5 List of all the structures considered in this phase 2 information recovery. 

Powerhouse cavern (C) Other structures 

Right side wall of the cavern (C); 

Left side Wall of the cavern (C); 

North end of the cavern (C); 

South end of the cavern (C); 

 

Access tunnel to the cavern (TAC); 

Attack tunnel to the cavern roof (TAAC); 

Access tunnel to the floodgate chamber (TACC); 

Tailrace tunnel – only in zones near the cavern (TR); 

Headrace tunnel – only in zones near the cavern (TAD). 

 

Figure A1.2 Representative scheme identifying all the zones from where the geotechnical mappings were recovered 

(adapted from EDP (2009)). 

In Figure A1.2 the points represented by the letter C correspond to the four edge points of the 

cavern from which all the coordinates calculation was performed. The coordinates of these points 

can be found in Table A1.6. Thereafter, the mapping registered was made using the sequence 

presented in Table A1.7 and was named as step 1. Then, and because the numerical model has 

different coordinates, it was necessary to transform the *, P	 and	 Z	 coordinates into global 

coordinates like X, Y	 and Z. It is important to mention that a range of 20 m was adopted for 
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coordinate 0 in the power house cavern mappings (direction	1 of the cavern). However, and since 

the advance step used to build the mappings was higher than 20 m, some information had to be 

looped to maintain a regular grid of information. For the remaining structures, the adopted step for 

the register was the same as shown in the mapping documents (see Table A1.7). 

Finally, it was possible to organise all the underground works geotechnical information in the layout 

presented in Table A1.8 for further analysis. 

Table A1.6 Information regarding the coordinates of the powerhouse cavern edge points for an elevation equal to 126 m. 

Point ID 2 (m) 3 (m) 4	(m) 

C1 3591.47 224522.72 126.00 

C2 3512.06 224539.38 126.00 

C3 3531.46 224473.26 126.00 

C4 3552.06 224489.92 126.00 

Table A1.7 Details about the mapping registered for the left side wall of the cavern. 

Elevation (m) PK initial (m) PK final (m) Document page 

138.50 

0+65.85 0+38.50 11 

0+38.50 0+18.00 10 

0+18.00 0+05.00 10 

0+05.00 0+0.00 10 

135.50 
0+28.00 0+65.50 9 

0+0.00 0+28.00 9 

125.50 

0+21.50 0+31.00 8 

0+31.00 0+55.00 7 

0+0.00 0+21.50 7 

... ... ... ... 

Table A1.8 Final layout of the recovered information for the left side Wall of the cavern. 

5 (m) 6 (m) 4 (m) RMR RQD Q GSI 

3512.08 224539.38 138.50 67.00 90.00 15.00 65.00 

3512.08 224519.38 138.50 67.00 90.00 15.00 65.00 

3512.08 224499.38 138.50 71.00 95.00 15.83 70.00 

3512.08 224479.38 138.50 72.00 95.00 15.83 70.00 

3512.08 224473.53 138.50 72.00 95.00 15.83 70.00 
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A1.4. CELL SIZE STUDY TO USE IN DECLUSTERING 

According to Deutsch (1989) the size of the cell used to perform the data declustering is an 

essential step to achieve good results in the variable uncertainty assessment and simulation. 

Declustering techniques organise the data based on their proximity and to avoid redundancy of the 

information, since close data get a reduced weight and the contrary for data located far apart 

(Deutsch, 2015). 

Several types of declustering can be used (e.g. polygonal, cell, kriging, inverse distance weighting, 

etc.), however the most common and adjusted to all data types are the cell-based type, which in 

opposition with a polygonal type is more fitted for declustering in 3D. 

In a cell based type a grid of equal volume is placed over the data domain and the number of 

occupied cells is counted (78((), then to each occupied cell a same weight value is attributed to the 

data according to the number of samples inside the cell (1/78((). In order to find the best cell size 

a plot of the declustered mean should be constructed from where a minimum or a maximum mean 

value can be chosen as the optimal cell size. In this particular case, the first reached minimum 

mean value was set as the selection criteria, mainly so that the declustered mean is not very 

different from the original data mean. Therefore, from Figure A1.3 analysis it was possible to detect 

the minimum mean value registered for a cell size of 7 m x 7 m x 7 m for data set 1 and 8 m x 8 m 

x 8 m for data set 2. 

  

(a) (b) 

Figure A1.3 The cell declustering mean versus 25 cell sizes (each value represents a 3D square in m) for: a) data set 1; 

and b) data set 2. 
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A1.5. GEOSTATISTICAL SIMULATION OF DATA SET 1 AND 2 

The anamorphosis is a function that relates the original %< values with the associated Gaussian 

values and can be computed using the available data. To fit this function, a piecewise linear 

interpolation between the empirical points and exponential functions for tail extrapolation is used 

(Emery and Lantuéjoul, 2006). This adjustment should be as continuous as possible to give good 

simulation results of the variable. Figure A1.4 displays the anamorphosis function used for the both 

data sets simulation and as can be observed, both show a good continuity and shape. 

	 	

(a) (b) 

Figure A1.4 Anamorphosis function with the %< values in GPa (ordinate) and the associated Gaussian value (abscissa) 

for: a) data set 1; and b) data set 2. 

Table A1.9 Calculated proportions for W of data set 1 with the corresponding Gaussian thresholds. 

Category Cumulative proportion Lower threshold Upper threshold 

1 0.253 -¥ -0.665 

2 0.584 -0.665 +0.225 

3 0.874 +0.225 +1.150 

4 0.960 +1.150 +1.980 

5 1.000 +1.980 +¥ 

Table A1.10 Calculated proportions for W of data set 2 with the corresponding Gaussian thresholds. 

Category Cumulative proportion Lower threshold Upper threshold 

1 0.26 -¥ -0.645 

2 0.62 -0.645 +0.305 

3 0.89 +0.305 +1.235 

4 0.97 +1.235 +1.885 

5 1.00 +1.885 +¥ 
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A1.6. EMPIRICAL FORMULAS USED IN THE GEOTECHNICAL 

PARAMETERS 

Table A1.11 Empirical expressions used to obtain %< and the corresponding authors for both phases of geotechnical 

information. 

Data Author(s) 
Require 

parameters 
Limitations Equation (#= in GPa) 

D
a
ta

 

se
t 

1
 

a
n
d
 2

 

Kayabasi et al. 

(2003) 
RQD, %&and W 

- 
%< = 0.135×(

%&×(1 + FGH/100)

I
)J.JKJJ 

Data set 

3 

Read et al. 

(1999) 
RMR - %< = 0.1×

F*F

10

L

 

Barton et al. 

(1983) 
Q Q>1 %< = 25×log	(G) 

Hoek and 

Diedecrichs 

(2006) 

D, GSI - %< = 100000× (1 −
H

2
)/(1 + R

STUVTWXYZ[
JJ )  

 Kayabasi et al. 

(2003) 
RQD, %&and W 

- 
%< = 0.135×(

%&×(1 + FGH/100)

I
)J.JKJJ 

 Nicholson and 

Bieniawski 

(1990) 

%&, RMR 

- 

E] = (%&/100)×(0.0028RMR
V + 0.9e

cdc
VV.KV) 

In order to understand the main differences between each one of the formulas presented in Table 

A1.9, the basic statistics using data from phase 1 and phase 2 are computed. It is possible to 

observe that the formulas resulting in lower %< value are Kaybasi et al. (2003) and Nicholson and 

Bieniawski (1990), while the one using the empirical systems show higher %< values. 

Table A1.12 E] (in GPa) basic statistics after applying the empirical formulas selected for data set 3.  

 
Read et al. 

(1999) 

Barton et al. 

(1983) 

Hoek and 

Diedecrichs 

(2006) 

Kayabasi et al. 

(2003) 

Nicholson and 

Bieniawski (1990) 

Mean  32.26 26.30 33.86 19.23 17.48 

Variance 23.59 23.13 108.43 165.38 40.43 

Standard 

deviation 
4.86 4.81 10.41 12.86 6.35 

Minimum 12.67 0.43 7.89 0.14 0.80 

Maximum 42.05 32.58 48.93 58.16 33.38 
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A1.7. DETERMINISTIC APPROACHES 

Contrarily to the heterogeneous approaches where the geotechnical parameters were geostatistical 

simulated to obtain the deformation modulus of the rock mass, for the deterministic approach the 

methodology is slightly different. 

Since the goal of this Chapter is to prove the value and enrichment in using the geostatistical 

simulation in comparison with the deterministic and more traditional approach, the geotechnical 

data obtained in both phases is used, directly and without preforming any type of geostatistical 

simulation. Although, the empirical formulas applied are the same as the one used for the 

heterogeneous data sets. 

Therefore, and preforming the same division as before, the information from both phases were 

treated separately. 

The results of the deterministic model 1 and 2 are similar and, therefore, only one homogeneous 

model was used to compare both data sets. 

Table A1.13 Statistical analysis of %< (in GPa) obtained values for the deterministic approaches to use for comparison 

with data sets 1, 2 and 3. 

 Deterministic 1 Deterministic 2 Deterministic 3 

Total of points with information 81 102 307 

Mean 21.68 21.87 29.00 

Variance  172.97 174.95 107.85 

Standard deviation 13.15 13.23 10.39 

Minimum 2.00 2.00 2.00 

Maximum 49.25 49.25 49.25 
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A2.1. SIMULATED ANNEALING INTERNAL PARAMETERS 

STUDY 

A2.1.1  Initial values 

In Table A2.1 the input parameters values adopted for all the tests performed using as an objective 

function the 95% probability interval and the variance average, are presented. 

Table A2.1 Input parameters for all the tests. 

Attempt 

n. 

Cooling 

factor 

(!) 

Initial 

temperature 

(˚) 

Final 

temperature 

(˚) 

Maximum 

number of 

rejections 

Maximum 

number of 

moves 

Maximum 

number of 

acceptances 

1 0.80 1.00 0.10 20 20 5 

2 0.80 2.00 0.10 30 20 5 

4 0.80 4.00 0.10 40 30 10 

A2.1.2  Test 1 

In test number one, SA algorithm performed a total of 34 evaluations of the objective function and 

the minimum value encountered was 11.69 for the 95% probability interval (see Figure A2.1a). 

Considering the variance as an objective function, the algorithm was executed 46 times resulting in 

a minimum value of 7.76 (see Figure A2.1b). The final temperature was lower than the predefined 

limit (0.09). To illustrate the behaviour of the algorithm in this first test, Figure A2.1 shows a colour 

surface obtained using the v4 type of interpolation (bi-harmonic spline interpolation) existing in 

software Matlab (Matlab, 2015a). As observed, in both objective functions case the algorithm 

performed the hill climbing movement where higher values for the objective function were accepted. 

Since the total number of evaluations was quite reduced, a second test with different values for the 

input parameters had to be carried out. 
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(a) (b) 

Figure A2.1 Spatial plot for test number 1 using the ‘v4’ type of interpolation to obtain the colour surface for; a) "#$%%; 

and b) '(). 

A2.1.3  Test 2 

For this second test the algorithm increased the number of evaluations with a total of 44 and 235 

for the 95% probability interval and variance average, respectively. Regarding the objective functions 

values both registered a decrease to 10.48 and 6.70, as expected (see Figure A2.2). However, for 

the 	"#$%%optimisation, the number of evaluations was insufficient to allow a good search of the 

space by the SA, leading to conclude that, similarly to test number 1, the input parameters value 

showed to be adjusted. Moreover, in this test the final temperature value was equal and inferior to 

the limit and the interpolation used for both objective functions was a v4 type. 

  

(a) (b) 

Figure A2.2 Spatial plot for test number 2 using the ‘v4’ type of interpolation to obtain the colour surface for; a) "#$%%; 

and b) '().  
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A2.1.4  Test 3 

In this final test, a lower value for the final temperature was adopted in order to expect a 

considerable increase in the number of the objective function evaluations. Although, in the case of 

the variance objective function the increase was not very meaningful, rising from 235 to 252. In 

contrast, the "#$%% function had an increased to a total of 95 evaluations. Nonetheless, the number 

of evaluations is still lower, which allows to conclude that the input parameters that should be 

increased are the maximum number of rejections, maximum number of moves and maximum 

number of acceptances. 

In what concerns the objective functions minimisation, a value of 10.46 was obtained for the "#$%% 

function, while contrarily to the expected, the '()	function shows a minimum of 10.00. Regarding 

the surface interpolation, a nearest type was chosen for the "#$%% and a v4 in the case of the 

variance function (see Figure A2.3). 

  

(a) (b) 

Figure A2.3 Spatial plot for test number 3 using the ‘nearest’ and ’v4’ type of interpolation to obtain the colour surface, 

respectively for; a) "#$%%; and b) '(). 


	Page 1
	Page 1

