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Abstract

In this paper, we introduce a new concept called left (right) g-MP inverse
in a ∗-semigroup. The relations of this type of generalized inverse with left
(right) inverse along an element are investigated. Also, the reverse order law
for the inverse along an element is studied. Then, the existence criteria and
formulae of the inverse along an element of triple elements are investigated
in a semigroup. Finally, we further study left and right g-MP inverses, the
inverse along an element, core and dual core inverses in the context of rings.
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1. Introduction

There are many types of generalized inverses in mathematical literature,
such as, Drazin inverses, group inverses [2], Moore-Penrose inverses [7], (left,
right) inverse along an element [8, 11, 12], core and dual core inverses [1, 10]
and so on. Many properties of these generalized inverses were considered in
different settings. In particular, a large amount of work has been devoted to
the study of the reverse order law for Moore-Penrose inverses, group invers-
es, core and dual core inverses. However, few results have been presented

∗Corresponding author
Email addresses: ahzhh08@sina.com (Huihui Zhu), jlchen@seu.edu.cn (Jianlong

Chen), pedro@math.uminho.pt (Pedro Patŕıcio)
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concerning the reverse order law for the inverse along an element since it was
introduced.

In this article, we introduce a new concept called left (right) g-MP inverse
in a ∗-semigroup S. An element a ∈ S is called left (resp., right) g-MP
invertible if Sa = Sa2 = Saa∗a (resp., aS = a2S = aa∗aS). The relations
of this type of generalized inverse with left (right) inverses along an element
will be considered in semigroups. Also, the reverse order law for the inverse
along an element is studied. Then, the existence criteria and formulae of the
inverse along an element of triple elements are investigated in a semigroup.
Finally, we further study left and right g-MP inverses, the inverse along an
element, core and dual core inverses in rings.

An element a in a semigroup S is called (von Neumann) regular if there
exists x ∈ S such that a = axa. Such x is called an inner inverse (von
Neumann inverse) of a, and is denoted by a(1). The symbol a{1} := {x ∈ S :
axa = a} means the set of all inner inverses of a ∈ S.

Let ∗ be an involution on S, that is the involution ∗ satisfies (x∗)∗ = x
and (xy)∗ = y∗x∗ for all x, y ∈ S. We call S a ∗-semigroup if there exists an
involution on S. Recall that an element a ∈ S (with involution) is Moore-
Penrose invertible (see [7]) if there exists x ∈ S satisfying the following
equations

(i) axa = a (ii) xax = x (iii) (ax)∗ = ax (iv) (xa)∗ = xa.

Any element x satisfying the equations above is called a Moore-Penrose in-
verse of a. If such x exists, then it is unique and is denoted by a†. If x
satisfies the conditions (i) and (iii), then x is called a {1, 3}-inverse of a, and
is denoted by a(1,3). If x satisfies the conditions (i) and (iv), then x is called
a {1, 4}-inverse of a, and is denoted by a(1,4). Recall that a† exists if and only
if both a(1,3) and a(1,4) exist. In this case, a† = a(1,4)aa(1,3). If x in conditions
(i) and (ii) satisfies ax = xa, then a is group invertible. Moreover, the group
inverse of a is unique if it exists, and is denoted by a#. By S† and S# we
denote the sets of all Moore-Penrose invertible and group invertible elements
in S, respectively.

Green’s preorders (see [3]) in a monoid semigroup S are defined by: (i)
a ≤L b ⇔ Sa ⊆ Sb ⇔ a = xb for some x ∈ S; (ii) a ≤R b ⇔ aS ⊆ bS ⇔
a = bx for some x ∈ S; (iii) a ≤H b⇔ a ≤L b and a ≤R b.

Let a, d ∈ S. An element a is called left (resp., right) invertible along d
[11] if there exists b ∈ S such that bad = d (resp., dab = b) and b ≤L d (resp.,
b ≤R d). It is known [11] that a is both left and right invertible along d if
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and only if it is invertible along d if and only if d ≤H dad. In this case, the
inverse of a along d is unique, and is denoted by a‖d.

2. Left (right) g-MP inverse and reverse order law in semigroups

Definition 2.1. Let S be a ∗-semigroup and let a ∈ S. We call a left g-MP
invertible if Sa = Sa2 = Saa∗a.

We next give several examples of left g-MP invertible elements.

Example 2.2. (i) The unity 1 in S is left g-MP invertible.
(ii) An EP element a (i.e., a ∈ S# ∩ S† and a# = a†) is left g-MP

invertible. Indeed, a = a#a2 ∈ Sa2, i.e., Sa = Sa2. Also, a = aa†a =
(a†)∗a∗a = (a†)∗a†aa∗a ∈ Saa∗a. So, Sa = Sa2 = Saa∗a.

(iii) Let S = M2(C) be the semigroup of 2 × 2 complex matrices and
A = ( 1 0

1 0 ) ∈ S. Then A is left g-MP invertible since A = I · A2 = 1
2
AA∗A.

Next, we give the definition of right g-MP inverse in a ∗-semigroup.

Definition 2.3. Let S be a ∗-semigroup and let a ∈ S. We call a right g-MP
invertible if aS = a2S = aa∗aS.

Lemma 2.4. [11, Theorem 2.3] Let a, d ∈ S. Then
(i) a is left invertible along d if and only if d ≤L dad.
(i) a is right invertible along d if and only if d ≤R dad.

The following theorem characterizes the relations between Sa = Saa∗a
and left inverse along an element in a ∗-semigroup.

Theorem 2.5. Let S be a ∗-semigroup and let a ∈ S. Then following con-
ditions are equivalent:

(i) Sa = Saa∗a.
(ii) a∗ is left invertible along a.

Proof. (i) ⇒ (ii) Suppose Sa = Saa∗a. Then a ≤L aa∗a. Hence, a∗ is left
invertible along a by Lemma 2.4.

(ii) ⇒ (i) If a∗ is left invertible along a, it follows from Lemma 2.4 that
a ≤L aa∗a, i.e., Sa ⊆ Saa∗a. So, it follows Sa = Saa∗a. �

Dually, we have the following result:
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Theorem 2.6. Let S be a ∗-semigroup and let a ∈ S. Then following con-
ditions are equivalent:

(i) aS = aa∗aS.
(ii) a∗ is right invertible along a.

It follows from [11, Theorem 2.16] that aS = aa∗aS if and only if Sa =
Saa∗a if and only if a is Moore-Penrose invertible. Hence, we get

Corollary 2.7. Let S be a ∗-semigroup and let a ∈ S. Then following con-
ditions are equivalent:

(i) a is Moore-Penrose invertible.
(ii) a∗ is left invertible along a.
(iii) a∗ is right invertible along a.
In this case, (a†)∗ is a left (right) inverse of a∗ along a.

From [8, Theorem 11] and Corollary 2.7, a ∈ S† if and only if a is invertible
along a∗ if and only if a∗ is invertible along a. Moreover, a‖a

∗
= a† and

(a∗)‖a = (a†)∗. Moreover, left (right) g-MP invertibility can be presented as
between Moore-Penrose invertibility and left (right) regularity. If a ∈ S is
both left and right g-MP invertible, then a ∈ S# ∩ S†.

The relations between left g-MP inverse and the recently introduced no-
tion called left inverse along an element will be given in Theorem 2.10 below.
Herein, we first give a relation between {1,3}-inverse and {1,4}-inverse in a
∗-semigroup.

Theorem 2.8. Let S be a ∗-semigroup and let a ∈ S. If a = xaa∗a for
some x ∈ S, then (xa)∗ is both a {1, 3}-inverse and a {1, 4}-inverse of a and
a† = (xa)∗a(xa)∗.

Proof. From [13, Lemma 2.2], we know that (xa)∗ is a {1,3}-inverse of a.
Note that

(xa)∗a = a∗x∗a = (xaa∗a)∗x∗a = a∗aa∗(x∗)2a

= a∗(xaa∗a)a∗(x∗)2a = a∗x(xaa∗a)a∗aa∗(x∗)2a

= a∗x2(aa∗)3(x2)∗a.

Hence, [(xa)∗a]∗ = (xa)∗a, that is, (xa)∗ is a {1,4}-inverse of a. Hence,
a† = a(1,4)aa(1,3) = (xa)∗a(xa)∗. �
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Theorem 2.9. Let S be a ∗-semigroup and let a ∈ S. If a = aa∗ay for
some y ∈ S, then (ay)∗ is both a {1, 3}-inverse and a {1, 4}-inverse of a and
a† = (ay)∗a(ay)∗.

It follows from Lemma 2.4 that Sa = Sa2 if and only if a is left invertible
along a. Also, Theorem 2.5 ensures that Sa = Saa∗a if and only if a∗ is left
invertible along a. Suppose Sa = Sa2 = Saa∗a. Then there exist s, t ∈ S
such that a = sa2 = taa∗a. So, a = t(sa2)a∗a, which means a ≤L a2a∗a
and hence aa∗ is left invertible along a from Lemma 2.4. One may guess
whether the converse holds? that is, if aa∗ is left invertible along a implies
Sa = Sa2 = Saa∗a? Theorem 2.10 below illustrates this fact.

Theorem 2.10. Let S be a ∗-semigroup and let a ∈ S. Then a is left g-MP
invertible if and only if aa∗ is left invertible along a.

Proof. We need only to prove “ if ” part.
Suppose that aa∗ is left invertible along a. It follows from Lemma 2.4

that a ≤L a2a∗a, which leads to Sa = Saa∗a.
Also, a ≤L a2a∗a means a = ba2a∗a for some b ∈ S. Moreover, (ba2)∗ is a

{1,4}-inverse of a from Theorem 2.8. Therefore, a = a(ba2)∗a = a[(ba2)∗a]∗ =
aa∗ba2, which yields Sa = Sa2.

So, a is left g-MP invertible. �

The following theorem can be proved similarly.

Theorem 2.11. Let S be a ∗-semigroup and let a ∈ S. Then a is right
g-MP invertible if and only if a∗a is right invertible along a.

Further, we have

Theorem 2.12. Let S be a ∗-semigroup and let a ∈ S. Then the following
conditions are equivalent:

(i) a is both left and right g-MP invertible.
(ii) aa∗ is left invertible along a and a∗a is right invertible along a.
(iii) a∗a is invertible along a.
(iv) aa∗ is invertible along a.
In this case, (a∗a)‖a = a#(a†)∗ and (aa∗)‖a = (a†)∗a#.
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Proof. (i) ⇔ (ii) follows from Theorems 2.10 and 2.11.
(ii) ⇒ (iii) We need only to prove that a∗a is left invertible along a. The

condition (ii) implies a ∈ S#∩S†. Then a = a#(a†)∗a†aa∗a2, i.e., a ≤L aa∗a2.
Hence, a∗a is invertible along a.

(iii) ⇒ (ii) If a∗a is invertible along a, then we have a ≤L aa∗a2, which
implies a = ya2 for some y ∈ S. Furthermore, a ≤R aa∗a2 means a =
aa∗a2x ∈ aa∗aS for some x ∈ S. So, it follows from [11, Theorem 2.19] that
a ∈ S† and hence a = (a†)∗a†aa∗a = (a†)∗a†(ya2)a∗a ≤L a2a∗a. Therefore,
aa∗ is left invertible along a by Lemma 2.4.

(ii) ⇔ (iv) can be proved similarly.
Once given the formula, it is easy to check (a∗a)‖a = a#(a†)∗ and (aa∗)‖a =

(a†)∗a#. �

We next consider some relations between left and right g-MP inverses,
under certain conditions.

Theorem 2.13. Let S be a ∗-semigroup and aS = a∗S. Then the following
conditions are equivalent:

(i) a is left g-MP invertible.
(ii) a is right g-MP invertible.
In this case, a is EP.

Proof. (i) ⇒ (ii) Suppose that a is left g-MP invertible. Then a is Moore-
Penrose invertible and hence aS = aa∗aS. On the other hand, aS =
aa∗(a†)∗S ⊆ aa∗S = a2S since aS = a∗S. Therefore, a is right g-MP in-
vertible.

(ii) ⇒ (i) It is similar to the proof of (i) ⇒ (ii).
The EP-ness follows from [6, Proposition 2(1)]. �

It is well known that the reverse order law holds for the classical inverse in
any monoid semigroup S. More precisely, (ab)−1 = b−1a−1 for any invertible
elements a and b in S. However, (ab)‖d = b‖da‖d does not hold in general in
S. For instance, in the semigroup of 2 by 2 complex matrices, take a = ( 1 0

1 0 )

and d = ( 1 1
0 0 ), then a‖d = (

1
2

1
2

0 0
). However, (a2)‖d = (

1
2

1
2

0 0
) 	= a‖da‖d = (

1
4

1
4

0 0
).

Next, we consider the reverse order law for the product of the inverse
along an element under certain conditions.

Lemma 2.14. [8, Theorem 10] Let a, d ∈ S with ad = da. If a‖d exists, then
a‖d commutes with a and d.
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Theorem 2.15. Let a, b, d ∈ S with ad = da. If a‖d and b‖d exist, then
(ab)‖d exists and (ab)‖d = b‖da‖d.

Proof. Since b‖d can be written as xd for some x ∈ S, we have
b‖da‖dabd = b‖daa‖dbd = x(daa‖d)bd = xdbd = b‖dbd = d and dabb‖da‖d =

adbb‖da‖d = ada‖d = daa‖d = d.
As a‖d ≤H d and b‖d ≤H d, then b‖da‖d ≤H d.
Therefore, ab is invertible along d and (ab)‖d = b‖da‖d. �

Similarly, we have

Theorem 2.16. Let a, b, d ∈ S with bd = db. If a‖d and b‖d exist, then (ab)‖d

exists and (ab)‖d = b‖da‖d.

We next consider the existence criteria and formulae of the inverse along
an element of triple elements.

Theorem 2.17. Let S be a semigroup and let a, b, d ∈ S. If a is invertible
along d, then the following conditions are equivalent:

(i) b is invertible along d.
(ii) adb and bda are both invertible along d.
In this case, (adb)‖d = b‖dd(1)a‖d and (bda)‖d = a‖dd(1)b‖d for all choices

d(1) ∈ {. 1}.

Proof. (i) ⇒ (ii) Suppose that b is invertible along d. Then d ≤H dbd by
Lemma 2.4, i.e, d = sdbd = dbdt for some s, t ∈ S. Also, as a is invertible
along d, then d = xdad = dady for some x, y ∈ S. Hence, d = x(sdbd)ad =
db(dady)t, namely, d ≤H dbdad. So, bda invertible along d from Lemma 2.4.

Similarly, d = s(xdad)bd = da(dbdt)y and hence d ≤H dadbd. Thus, adb
invertible along d.

(ii) ⇒ (i) As adb is invertible along d, then d ≤H d(adb)d, which implies
d ≤L dbd. On the other hand, since bda is both invertible along d, it follows
that d ≤R dbd. Hence, d ≤H dbd. So, d is invertible along d.

It is well known that a is invertible along d implies that d is regular (see
[9]). We next show that m = b‖dd(1)a‖d is the inverse of adb along d.

We have a‖dad = d = daa‖d and a‖d = x1d = dx2 for some x1, x2 ∈ S.
Also, b‖dbd = d = dbb‖d and b‖d = y1d = dy2 for some y1, y2 ∈ S.
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It follows that

madbd = b‖dd(1)(a‖dad)bd = b‖dd(1)dbd

= y1dd
(1)dbd = y1dbd = b‖dbd

= d.

and

dadbm = da(dbb‖d)d(1)a‖d = dadd(1)a‖d

= dadd(1)dx2 = dadx2 = daa‖d

= d.

As m = b‖dd(1)a‖d = dy2d
(1)a‖d = b‖dd(1)x1d, then m ≤H d.

Hence, (adb)‖d = b‖dd(1)a‖d.
Similarly, we can check (bda)‖d = a‖dd(1)b‖d. �

Remark 2.18. If S is a ring, then the condition (ii) in Theorem 2.17 can
be weakened to: (ii)′ adb is invertible along d or (ii)′′ bda is invertible along
d (see Theorem 3.7 below).

The following result can been seen as a generalization of the reverse order
law for the inverse along an element of triple elements.

Corollary 2.19. Let S be a semigroup and let a, b, d ∈ S. If both a and d
are invertible along d, then the following conditions are equivalent:

(i) b is invertible along d.
(ii) adb and bda are both invertible along d.
In this case, (adb)‖d = b‖dd‖da‖d and (bda)‖d = a‖dd‖db‖d.

As special results of Theorem 2.17, it follows that

Corollary 2.20. Let S be a semigroup and let b, d ∈ S. If 1 is invertible
along d, then the following conditions are equivalent:

(i) b is invertible along d.
(ii) bd and db are both invertible along d.
In this case, (bd)‖d = d‖db‖d and (db)‖d = b‖dd‖d.

Proof. Since 1‖d = dd#, d‖d = d# and b‖d = dx for some x, we have
(bd)‖d = 1‖dd(1)b‖d = d#dd(1)dx = d#dx = d#b‖d = d‖db‖d.

We may use the same reasoning to obtain (db)‖d = b‖dd‖d. �
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Suppose a = d∗ in Theorem 2.17. Then it follows that

Corollary 2.21. Let S be a ∗-semigroup and let b, d ∈ S. If d∗ is invertible
along d, then the following conditions are equivalent:

(i) b is invertible along d.
(ii) d∗db and bdd∗ are both invertible along d.
In this case, (d∗db)‖d = b‖dd‖d

∗
(d∗)‖d and (bdd∗)‖d = (d∗)‖dd‖d

∗
b‖d.

Proof. By Theorem 2.17, we have (d∗db)‖d = b‖dd(1)(d∗)‖d. Note that
(d∗)‖d = (d†)∗ and b‖d can be written as xd for an appropriate x. Hence,
(d∗db)‖d = xdd(1)dd†(d†)∗ = xdd†(d†)∗ = b‖dd‖d

∗
(d∗)‖d.

Similarly, (bdd∗)‖d = (d∗)‖dd‖d
∗
b‖d. �

3. Further results in rings

Let R be an associative unital ring. An involution ∗ : R → R; a �→ a∗

is an anti-isomorphism in R satisfying (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and
(ab)∗ = b∗a∗ for all a, b ∈ R.

An element a ∈ R with involution is called core invertible [10] if there
exists x ∈ R such that axa = a, xR = aR and Rx = Ra∗. The core inverse
of a is unique if it exists, and is denoted by a#©. The dual core inverse of a
when exists is defined as the unique a#© such that aa#©a = a, a#©R = a∗R and
Ra#© = Ra. By R−1, R#© and R#© we denote the sets of all invertible, core
invertible and dual core invertible elements in R, respectively. It is known
[10] that a ∈ R#© ∩R#© if and only if a ∈ R# ∩R†.

We next begin with two lemmas, which play an important role in the
sequel.

Lemma 3.1. Let a, b ∈ R. Then we have
(i) If (1 + ab)x = 1, then (1 + ba)(1− bxa) = 1.
(ii) If y(1 + ab) = 1, then (1− bya)(1 + ba) = 1.

It follows from Lemma 3.1 that 1 + ab ∈ R−1 if and only if 1 + ba ∈ R−1.
In this case, (1 + ba)−1 = 1 − b(1 + ab)−1a, which is known as Jacobson’s
Lemma.

Lemma 3.2. [11, Corollaries 3.3 and 3.5] Let a,m ∈ R with m regular. Then
the following conditions are equivalent:

(i) a is (left, right) invertible along m.
(ii) u = ma+ 1−mm(1) is (left, right) invertible.
(iii) v = am+ 1−m(1)m is (left, right) invertible.
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For an element a ∈ R, the symbols a−1l and a−1r denote a left and a right
inverse of a, respectively.

Applying Theorem 2.7 and Lemma 3.2, we derive the following results,
which recover the classical existence criterion of Moore-Penrose inverse (see,
e.g. [5, Theorem 1.2]) in rings.

Theorem 3.3. Let R be a ring with involution and let a ∈ R be regular.
Then the following conditions are equivalent:

(i) a ∈ R†.
(ii) u = aa∗ + 1− aa(1) is left invertible.
(iii) v = a∗a+ 1− a(1)a is left invertible.
(iv) u′ = aa∗ + 1− aa(1) is right invertible.
(v) v′ = a∗a+ 1− a(1)a is right invertible.
In this case, we have a† = (u−1l a)∗a(u−1l a)∗ = [(v′)−1r a]∗a[(v′)−1r a]∗.

Also, we get

Corollary 3.4. Let R be a ring with involution and let a ∈ R be regular.
Then the following conditions are equivalent:

(i) a is left g-MP invertible.
(ii) a2a∗ + 1− aa(1) is left invertible.
(iii) aa∗a+ 1− a(1)a is left invertible.

Corollary 3.5. Let R be a ring with involution and let a ∈ R be regular.
Then the following conditions are equivalent:

(i) a is right g-MP invertible.
(ii) aa∗a+ 1− aa(1) is right invertible.
(iii) a∗a2 + 1− a(1)a is right invertible.

The following theorem gives equivalences among left, right g-MP inverses,
core and dual core inverses, which are characterized by units.

Theorem 3.6. Let R be a ring with involution and let a ∈ R be regular.
Then the following conditions are equivalent:

(i) a is both left and right g-MP invertible.
(ii) a is both core and dual core invertible.
(iii) u = aa∗a+ 1− aa(1) is invertible.
(iv) v = aa∗a+ 1− a(1)a is invertible.
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Proof. (i) ⇔ (iii) ⇔ (iv) followed from Theorem 2.12 and Lemma 3.2.
(i) ⇒ (ii) Suppose that a is both left and right g-MP invertible. Then

a ∈ R# ∩R†. So, a is both core and dual core invertible.
(ii) ⇒ (i) If a is both core and dual core invertible, then a ∈ S# ∩ S†

and hence a = a#a2 = (a†)∗a†aa∗a. So, a is left g-MP invertible since
Sa = Sa2 = Saa∗a. Similarly, a = a2a# = aa∗aa†(a†)∗, which implies
aS = a2S = aa∗aS. Hence, a is both left and right g-MP invertible. �

The following theorem considers the reverse order law for the inverse
along an element in rings.

Theorem 3.7. Let a, b, d ∈ R and let a be invertible along d. Then the
following conditions are equivalent:

(i) b is invertible along d.
(ii) adb is invertible along d.
(iii) bda is invertible along d.
In this case, (adb)‖d = b‖dd(1)a‖d and (bda)‖d = a‖dd(1)b‖d.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) follow from Theorem 2.17.
(ii)⇒ (i) Suppose that adb is invertible along d. Then dadb+1− dd(1) =

(dadd(1) + 1− dd(1))(db+ 1− dd(1)) ∈ R−1 by Lemma 3.2. As a is invertible
along d, then we have da + 1 − dd(1) ∈ R−1 from Lemma 3.2 and hence
dadd(1) + 1 − dd(1) ∈ R−1 by Jacobson’s Lemma. Hence, db + 1 − dd(1) =
(dadd(1)+1−dd(1))−1(dadb+1−dd(1)) ∈ R−1. Again, Lemma 3.2 guarantees
that b is invertible along d.

(iii) ⇒ (i) If bda is invertible along d, then bdad + 1 − d(1)d = (bd +
1 − d(1)d)(d(1)dad + 1 − d(1)d) ∈ R−1. Also, a is invertible along d, then
ad + 1 − d(1)d ∈ R−1 and hence d(1)dad + 1 − d(1)d ∈ R−1 using Jacobson’s
Lemma. So, bd+ 1− d(1)d ∈ R−1 and b is invertible along d. �

Corollary 3.8. Let b, d ∈ R and let 1 be invertible along d. Then the fol-
lowing conditions are equivalent:

(i) b is invertible along d.
(ii) bd is invertible along d.
(iii) db is invertible along d.
In this case, (bd)‖d = d‖db‖d and (db)‖d = b‖dd‖d.
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Corollary 3.9. Let R be a ring with involution and let b, d ∈ R. If d∗ is
invertible along d, then the following conditions are equivalent:

(i) b is invertible along d.
(ii) d∗db is invertible along d.
(iii) bdd∗ is invertible along d.
In this case, (d∗db)‖d = b‖dd‖d

∗
(d∗)‖d and (bdd∗)‖d = (d∗)‖dd‖d

∗
b‖d.

Setting b = 1 in Corollary 3.9, we further obtain

Corollary 3.10. Let R be a ring with involution and let d ∈ R. If d∗ is
invertible along d, then the following conditions are equivalent:

(i) 1 is invertible along d.
(ii) dd∗ is invertible along d.
(iii) d∗d is invertible along d.
In this case, (dd∗)‖d = (d∗)‖dd‖d and (d∗d)‖d = d‖d(d∗)‖d.

We remark the fact that if d ∈ R#© or d ∈ R#©, then d ∈ R#. In particular,
d ∈ R#© ∩ R#© if and only if d ∈ R# ∩ R†. Moreover, d#© = d#dd† and
d#© = d†dd#. Note that 1 is invertible along d if and only if d# exists.
Moreover, 1‖d = dd#. We can derive characterizations and presentations of
core and dual core inverses by the inverse along an element.

Corollary 3.11. Let R be a ring with involution and let d ∈ R†. Then the
following conditions are equivalent:

(i) d ∈ R#©.
(ii) d ∈ R#©.
(iii) dd∗ is invertible along d.
(iv) d∗d is invertible along d.
In this case, d#© = 1‖dd‖d

∗
and d#© = d‖d

∗
1‖d.

ACKNOWLEDGMENTS

This research was carried out by the first author during his visit to the
Department of Mathematics and Applications, University of Minho, Portu-
gal. He gratefully acknowledges the financial support of China Scholarship
Council. This research is also supported by the National Natural Science
Foundation of China (No. 11371089), the Specialized Research Fund for

12



the Doctoral Program of Higher Education (No. 20120092110020), the Nat-
ural Science Foundation of Jiangsu Province (No. BK20141327), the Sci-
entific Innovation Research of College Graduates in Jiangsu Province (No.
CXLX13-072), the Scientific Research Foundation of Graduate School of
Southeast University and the Fundamental Research Funds for the Central
Universities (No. 22420135011), the FEDER Funds through Programa Op-
eracional Factores de Competitividade-COMPETE’, the Portuguese Funds
through FCT- ‘Fundação para a Ciência e Tecnologia’, within the project
PEst-OE/MAT/UI0013/2014.

References

[1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilin-
ear Algebra 58 (2010) 681-697.

[2] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer.
Math. Monthly 65 (1958) 506-514.

[3] J.A. Green, On the structure of semigroups, Ann. Math. 54 (1951) 163-
172.

[4] P. Patricio, A.V. da Costa, On the Drazin index of regular elements,
Cent. Eur. J. Math. 7 (2009) 200-205.
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