

Universidade do Minho

Escola de Ciências

Departamento de Matemática e Aplicações

Manuel João Castigo

Desempenho dos Estudantes Portugueses: Modelos de Regressão Multinível

Dissertação de Mestrado Mestrado em Estatística

Trabalho realizado sob a orientação da **Professora Doutora Susana M. F. de Sá Faria**

Novembro 2017

DECLARAÇÃO

Nome: Manuel João Castigo Correio eletrónico: cmanueljoao@gmail.com Telemóvel: 935157960 Número de Passaporte: 13*AF*58672 Título da dissertação: Desempenho dos Estudantes Portugueses: Modelos de Regressão Multinível Ano de conclusão: 2017 Orientador: Susana Margarida Ferreira de Sá Faria Designação do Mestrado: Mestrado em Estatística Escola: Escola de Ciências Departamento: Matemática É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE, APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERES-SADO, QUE A TAL SE COMPROMETE. Universidade do Minho, 26/10/2017 Assinatura: _____

AGRADECIMENTOS

Agradeço a Deus por tudo. Agradeço a professora Laurinda Leite, por ter criado as condições determinantes para o meu ingresso na Universidade do Minho. Agradeço a minha orientadora, pela paciência, entrega e encorajamento na realização deste trabalho final. Agradeço finalmente a todos os meus professores, por terem fornecido as ferramentas que ditaram a realização deste trabalho.

RESUMO

Em estudos de contexto educacional, a população encontra-se estruturada de uma forma hierárquica, por exemplo, os alunos estão agrupados em escolas, as escolas estão agrupadas em regiões, as regiões estão agrupadas em países, etc. Ignorando esta estrutura, a utilização de modelos clássicos de regressão linear pode resultar em inferências erradas. Nestes estudos, a aplicação dos modelos de regressão multinível é a mais indicada.

Os modelos multinível são modelos de regressão que se aplicam em situações em que os dados se estruturam hierarquicamente, incorporando os diferentes níveis observacionais dos dados, produzindo assim inferências mais fiáveis.

O presente trabalho aplica os modelos de regressão multinível de três níveis (nível 1 - aluno, nível 2 - escola, nível 3 - região), aos dados obtidos no âmbito do *Programme for International Student Assessment* (PISA) de 2015 em Portugal, no domínio da literacia de Matemática. O objetivo principal é identificar e analisar os diferentes fatores que influenciam o desempenho em Matemática dos alunos de diversas regiões de Portugal.

O estudo permitiu concluir que os fatores como o índice económico, social e cultural do aluno, ser aluno do género masculino, ter iniciado o primeiro ano de escolaridade com 6 anos, ter o desejo de concluir o grau académico de Ensino Superior Universitário, o número total de alunos na escola e a proporção de raparigas na escola influenciam positivamente o desempenho do aluno em Matemática. Por outro lado, verifica-se que o fator repetir de ano escolar tem influência negativa no desempenho do aluno em Matemática.

Palavras-chave: Desempenho do aluno em Matemática, Modelos de Regressão Multinível, *Programme for International Student Assessment* (PISA) 2015.

ABSTRACT

In educational context studies, the population is structured in a hierarchical way, for example, students are grouped in schools, schools are grouped into regions, regions are grouped into countries, etc. Ignoring this structure, the use of classical linear regression models may result in erroneous inferences. In these studies, the application of multilevel regression models is the most indicated.

Multilevel models are regression models that apply in situations where data are hierarchically structured, incorporating the different observational levels of the data, thus producing more reliable inferences.

The present study applies the three-level multilevel regression models (level 1 - student, level 2 - school, level 3 - region), to data obtained under the Programme for International Student Assessment (PISA) of 2015 in Portugal, in the field of Mathematics literacy. The main objective is to identify and analyse the different factors that influence the performance in Mathematics of students from different regions of Portugal.

The study concluded that factors such as the economic, social and cultural index of the student, being a male student, started the first year of schooling with 6 years, had the desire to complete the University Higher Education, the total number of students in school and the proportion of girls in school positively influence the student's performance in mathematics. On the other hand, it is verified that the repetitive factor of school year has a negative influence on the performance of the student in Mathematics.

Keywords: Student Performance in Mathematics, Multilevel Regression Models, Programme for International Student Assessment (PISA) 2015.

CONTEÚDO

1	INT	RODUÇ	ÇÃO .	1
2	O PI	ROGRA	MA PISA	3
	2.1	Objeti	vos do PISA	3
	2.2	Descr	ição da amostra	4
	2.3	Novic	lades do PISA 2015	5
	2.4	Resul	tados do PISA 2015	5
3	REV	ISÃO I	DE LITERATURA	7
4	MOI	DELOS	DE REGRESSÃO	11
	4.1	Mode	los de Regressão Multinível	11
	4.2	Métod	dos de Estimação dos Parâmetros	17
	4.3	Testes	Estatísticos	18
		4.3.1	Teste de Wald	18
		4.3.2	Teste de Razão de Verosimilhança	19
	4.4	Quali	dade de ajustamento do modelo	20
		4.4.1	Coeficiente de determinação	20
		4.4.2	Critério de Informação de Akaike	21
	4.5	Centr	alização das variáveis explicativas contínuas	21
	4.6	Anális	se de Resíduos	21
5	APR	ESENT	AÇÃO DOS RESULTADOS	23
	5.1	Breve	descrição sobre os dados utilizados	23
	5.2	Anális	se exploratória dos dados	28
		5.2.1	Análise exploratória das variáveis explicativas categóricas	28
		5.2.2	Análise exploratória das variáveis explicativas contínuas	29
		5.2.3	Análise exploratória da variável resposta	36
		5.2.4	Relação entre a variável resposta e as variáveis explicativas	38
		5.2.5	Análise exploratória da variável resposta por região	43
	5.3	Mode	los de Regressão Multinível	51
		5.3.1	Modelo Nulo	51
		5.3.2	Modelo de regressão multinível de 3 níveis com variáveis ex	kpli-
			cativas ao nível do aluno	52
		5.3.3	Modelo de regressão multinível de 3 níveis com variáveis ex	kpli-
			cativas ao nível do aluno e ao nível da escola	- 4

Conteúdo

		5.3.4	Modelo de regressão multinível de 3 níveis com	variáveis ex-
			plicativas ao nível do aluno e ao nível da escola	a com efeitos
			aleatórios	56
	5.4	Análi	se dos Resíduos	58
6	CON	ICLUS	ÃO	61
	6.1	Suges	etões para trabalho futuro	63
Bi	bliogi	rafia		65
A	TAB	ELAS		67
В	FIGU	URAS		69

LISTA DE FIGURAS

Figura 5.1	Número de alunos em situação de repetente <i>vs</i> situação de grante	imi-
Figura 5.2	Número de alunos em situação de repetente <i>vs</i> região on	
11guiu 3.2	aluno se localiza	32
Figura 5.3	Número de alunos em situação de repetente <i>vs</i> idade com	_
8 5-5	o aluno iniciou o 1º ano de escolaridade	32
Figura 5.4	Número de alunos em situação de repetente vs grau acadé	_
0 1	que o aluno espera concluir	33
Figura 5.5	Número de alunos em situação de imigrante <i>vs</i> região on	
0 33	aluno se localiza	33
Figura 5.6	Número de alunos em situação de imigrante vs idade com	
	o aluno iniciou o 1º ano de escolaridade	34
Figura 5.7	Rácio aluno-professor vs região onde a escola se localiza	34
Figura 5.8	Tipo de escola vs região onde a escola se localiza.	35
Figura 5.9	Tipo de escola vs admissão do aluno na escola	35
Figura 5.10	Índice económico, social e cultural do aluno vs tipo de es	scola
	em cada região	36
Figura 5.11	Histograma do desempenho do aluno em Matemática	38
Figura 5.12	Gráfico de dispersão de Índice económico, social e cultura	al do
	aluno vs Desempenho do aluno em Matemática	41
Figura 5.13	Gráfico de dispersão do índice económico, social e cultura	al do
	aluno vs Desempenho do aluno em Matemática por região	42
Figura 5.14	Gráfico de dispersão do número total de alunos na esco-	la <i>vs</i>
	Desempenho do aluno em Matemática	42
Figura 5.15	Gráfico de dispersão do número total de alunos na esco.	la <i>vs</i>
	Desempenho do aluno em Matemática por região	43
Figura 5.16	Gráfico <i>Normal Q-Q plot</i> e histograma dos erros do nível 2	59
Figura 5.17	Valores estimados versus resíduos de nível 2 e ordem ve	ersus
	resíduos de nível 2	59
Figura B.1	Gráfico de dispersão da idade do aluno vs Desempenho	o do
	aluno em Matemática	69
Figura B.2	Gráfico de dispersão da proporção de raparigas da esco	la <i>vs</i>
	Desempenho do aluno em Matemática	70

Lista de Figuras

Figura B.3	Gráfico de dispersão da respress-mean por região vs De	esempe-
	nho do aluno em Matemática	70
Figura B.4	Gráfico de dispersão do pib per capita por região vs De	esempe-
	nho do aluno em Matemática	71
Figura B.5	Gráficos da análise dos Resíduos de nível 1	71

LISTA DE TABELAS

Tabela 5.1	Descrição da variável resposta 2	23
Tabela 5.2	Variáveis explicativas ao nível do aluno	4
Tabela 5.3	Variáveis explicativas ao nível da escola 2	25
Tabela 5.4	Variáveis explicativas ao nível da região 2	27
Tabela 5.5	Frequências absolutas e relativas das variáveis explicativas qua	ì-
	litativas ao nível do aluno	28
Tabela 5.6	Frequências absolutas e relativas das variáveis explicativas qua	ì-
	litativas ao nível da escola	29
Tabela 5.7	Estatísticas descritivas das variáveis explicativas contínuas a	.0
	nível do aluno após a imputação dos missings values (N^o d	e
	alunos=7296)	Ю
Tabela 5.8	Estatísticas descritivas das variáveis explicativas contínuas a	0
	nível da escola após a imputação dos missings values (N^o d	e
	escolas=245)	Ю
Tabela 5.9	Estatísticas descritivas das variáveis explicativas contínuas a	0
	nível das regiões após a imputação dos missings values (Númer	'O
	de regiões por NUTS II=7)	Ю
Tabela 5.10	Distribuição dos valores das variáveis explicativas ao nível d	.a
	região por cada região 3	6
Tabela 5.11	Estatísticas descritivas dos 10 valores plausíveis (N^o de alu	1-
	nos=7296) 3	7
Tabela 5.12	Resultado do teste de Kruskall-Wallis	7
Tabela 5.13	Estatísticas descritivas do desempenho do aluno em Matemátic	ca
	por região 3	8
Tabela 5.14	Desempenho dos alunos vs variáveis explicativas categóricas a	0
	nível do aluno 4	.0
Tabela 5.15	Desempenho dos alunos vs variáveis explicativas categóricas a	0
	nível da escola 4	.0
Tabela 5.16	Resultados do teste de Mann-Whitney e de Kruskal-Wallis 4	.0
Tabela 5.17	Correlação entre o desempenho do aluno em Matemática e a	ıs
	variáveis explicativas contínuas 4	-3
Tabela 5.18	Desempenho do aluno em Matemática por género em cad	a
	região 4	4

Lista de Tabelas

Tabela 5.19	Desempenho do aluno em Matemática por situação de i	mi-
	grante em cada região	45
Tabela 5.20	Desempenho do aluno em Matemática por situação de re	pe-
	tente em cada região	45
Tabela 5.21	Desempenho do aluno em Matemática por idade que o alu	uno
	começou o 1º ano de escolaridade em cada região	46
Tabela 5.22	Desempenho do aluno em Matemática por grau que o alu	uno
	espera concluir em cada região	47
Tabela 5.23	Desempenho do aluno em Matemática por grau que o alu	uno
	espera concluir em cada região	48
Tabela 5.24	Desempenho do aluno em Matemática por tipo de escola	em
	cada região	48
Tabela 5.25	Desempenho do aluno em Matemática por localização da esc	cola
	em cada região	49
Tabela 5.26	Desempenho do aluno em Matemática por critério de admis	são
	do aluno na escola em cada região	49
Tabela 5.27	Correlação entre o desempenho do aluno em Matemática e	e as
	variáveis explicativas contínuas por região	50
Tabela 5.28	Correlação entre o desempenho do aluno em Matemática e	e as
	variáveis explicativas contínuas por região	50
Tabela 5.29	Estimativas do parâmetro do modelo nulo	51
Tabela 5.30	Estimativas das variâncias do modelo nulo	51
Tabela 5.31	Estimativas dos coeficientes do modelo de regressão de 3 nív	veis
	com variáveis explicativas significativas ao nível do aluno	53
Tabela 5.32	Estimativas dos coeficientes do modelo de regressão de 3 nív	veis
	com variáveis explicativas significativas ao nível do aluno e	da
	escola	55
Tabela 5.33	Estimativas das variâncias do modelo obtido	55
Tabela 5.34	Resultados do teste da Razão de Verosimilhança	56
Tabela 5.35	Estimativas dos coeficientes do modelo de regressão de 3 nív	veis
	com variáveis explicativas significativas ao nível do aluno e	da
	escola onde a variável explicativa género tem efeito aleatório	57
Tabela 5.36	Estimativas das variâncias do modelo final	57
Tabela 5.37	Efeitos da escola por região no desempenho do aluno em 1	Ma-
	temática	60
Tabela A.1	Estatísticas descritivas das variáveis explicativas contínuas	ao
	nível do aluno antes da imputação dos missings values	67
Tabela A.2	Estatísticas descritivas das variáveis explicativas contínuas	ao
	nível da escola antes da imputação dos missings values	67

Tabela A.3 Estatísticas descritivas das variáveis explicativas contínuas ao nível da região antes da imputação dos *missings values* 67

LISTA DE ABREVIATURAS

age - Idade do aluno

agepri - Idade do aluno quando iniciou o 1º ano de escolaridade

AIC - Akaike Information Criterion

AM - Área Metropolitana

CBA - Computer Based Assessment

compa - Comportamento do aluno

compp - Comportamento do professor

despensino - Despesa anual média familiar com o ensino

ET - Estatística de Teste

expalunocat - Grau académico que o aluno espera concluir

FML - Full Maximum Likelihood

género - Género do aluno

GL - Graus de Liberdade

GLS - Generalized Least Square

imigcat - Situação de imigrante do aluno

indesc - Índice económico, social e cultural do aluno

loccat - Localização da escola

NUTS - Nomenclatura das Unidades Territoriais para fins Estatísticos

ESU - Ensino Superior Universitário

OECD - Organisation for Economic Co-operation and Development

PBA - Paper Based Assessment

pib - Produto interno bruto per capita da região

PIRLS - Progress in International Reading Literacy Study

PISA - Programme for International Student Assessment

PPS - Probability Proportional to Size

prop - Proporção de raparigas na escola

RA - Região Autónoma

racioap - Rácio aluno-professor na escola

repeatcat - Situação de repetente do aluno

Lista de Tabelas

respress-mean - Média do índice de responsabilização pela alocação de recursos

RML - Restricted Maximum Likelihood

selcat - Seletividade/admissão do aluno na escola

SPSS - Statistical Package for the Social Sciences

staffshort-mean - Média do índice de falta de pessoal educativo

tamanho - Número total de alunos da escola

TIMSS - Trends in International Mathematics and Science Study

tipocat - Tipo de escola

INTRODUÇÃO

A nível global são notórias as diferenças relacionadas com aspetos da educação. Aspetos financeiros, sociais, políticos e culturais, muitas vezes influenciam o objetivo do sistema educacional que é formar um aluno com a qualidade desejada para o exercício da sua cidadania para o estado.

Nos últimos anos, a análise das diferenças nos desempenhos educacionais entre alunos, entre escolas e entre regiões está se tornando cada vez mais interessante. Devido à crescente procura na responsabilidade da educação, diferentes estudos têm sido realizados para compreender quais os fatores que afetam o melhor/pior desempenho dos alunos, na perspetiva de comparar e melhorar o sistema educacional.

A população em estudo no contexto educacional encontra-se estruturada de uma forma hierárquica, por exemplo, os alunos agrupados em escolas, as escolas agrupadas em regiões, as regiões agrupadas em países, etc. É assim expectável que com estes agrupamentos, os alunos que frequentam a mesma escola/região apresentem desempenhos mais correlacionados entre si do que com os desempenhos de alunos de outras escolas/regiões. Ignorando a estrutura hierárquica em estudos de contexto educacional, a utilização de modelos clássicos de regressão linear pode resultar em inferências erradas dos parâmetros (conclusões erradas sobre as variáveis estatisticamente significativas, (Raudenbush, 2002)). Portanto, nestes estudos, a aplicação de modelos de regressão multinível é a mais indicada, porque tem em conta os diferentes níveis observacionais dos dados (aluno - nível 1, escola - nível 2, região - nível 3, etc).

No presente estudo, são usados os dados do *Programme for International Student Assessment* (PISA) 2015, no domínio da literacia Matemática dos alunos Portugueses. Modelos de regressão multinível de três níveis (alunos-nível 1, escolas-nível 2 e regiões-nível 3) são ajustados com o objetivo de identificar e analisar os fatores que podem influenciar o desempenho em Matemática dos alunos de diversas regiões de Portugal.

O trabalho está estruturado em seis capítulos. O Capítulo 1 designa-se por Introdução, faz referência ao enquadramento e contextualização do trabalho abordado. O Capítulo 2 - O Programa PISA, apresenta uma descrição do programa PISA

Capítulo 1. introdução

no que diz respeito aos objetivos, à amostra, à avaliação à descrição das novidades que o PISA 2015 apresenta relativamente aos estudos anteriores e os resultados do PISA 2015. O Capítulo 3 - Revisão de Literatura, apresenta um manancial teórico de estudos semelhantes realizados a nível de Portugal e a nível internacional. O Capítulo 4 - Modelos de Regressão Multinível, apresenta uma descrição teórica dos modelos de regressão numa ordem que serve como guia metodológico do cerne do trabalho. O Capítulo 5 - Apresentação dos Resultados, apresenta os resultados da análise exploratória dos dados e da análise dos modelos de regressão multinível ajustados. No Capítulo 6 - Conclusão, apresenta-se a descrição das conclusões da realização do trabalho e algumas sugestões para trabalhos futuros.

Para obtenção dos resultados, foi usado o *software Statistical Package for the Social Sciences* (SPSS) e o *software* livre R versão 3.3.1. Refira-se ainda que na estimação dos parâmetros dos diferentes modelos ajustados, foi usado o *package nlme* implementado no *software* R.

O PROGRAMA PISA

O Programme for International Student Assessment (PISA) é um estudo internacional que "avalia o desempenho em Ciências, Matemática e Leitura dos alunos de 15 anos entre o 7º a 12º ano de escolaridade, em todas modalidades de educação e formação" (Marôco et al., 2016). Para além das três áreas mencionadas, o PISA avalia outras áreas secundárias que se chamam áreas inovadoras, e na edição de 2015, Marôco et al. (2016) afirma que "o PISA avaliou a literacia financeira e a resolução de problemas em contexto colaborativo (collaborative problem solving), sendo que em Portugal, os alunos foram avaliados nesta última área secundária, e os resultados serão conhecidos em 2017".

Segundo OECD (2009), o estudo PISA é organizado e conduzido pela *Organisation for Economic Co-operation and Development* (OECD), uma organização que atualmente integra 35 países, cujo objetivo é promover o desenvolvimento e cooperação dos seus estados-membros. Foi no ano 2000 que decorreu o primeiro estudo PISA, envolvendo 32 países, 28 dos quais membros da OECD, e desde lá tem-se repetido com uma periodicidade de 3 anos.

Os questionários do PISA são aplicados aos alunos, encarregados de educação, professores e diretores das escolas. Para cada edição, o estudo PISA avalia uma área principal das três principais áreas referidas acima, e no ano 2015 priorizou a literacia científica. Sem querer tirar mérito à área principal, o presente trabalho centra a sua abordagem na literacia matemática. Marôco et al. (2016) entendem que a literacia matemática é a "capacidade que um indivíduo tem de formular, aplicar e interpretar a matemática em contextos diversos e formular juízos e decisões fundamentadamente, como cidadão participativo, empenhado e reflexivo".

2.1 OBJETIVOS DO PISA

O estudo PISA distingue-se dos outros estudos internacionais porque "não se centra no currículo de um determinado ano ou domínio específico, mas sim avalia de que forma os alunos de 15 anos, de todas as modalidades de educação e formação, conseguem mobilizar os seus conhecimentos e competências de leitura, matemática

Capítulo 2. o programa pisa

ou ciências na resolução de situações relacionadas com o dia-a-dia das sociedades contemporâneas" (Marôco et al., 2016).

Um dos grandes objetivos do PISA é "fornecer um conjunto de informações que permitem que a cada país e economia, estime as competências e os conhecimentos dos seus alunos, comparativamente aos alunos dos outros países participantes" (OECD, 2009). Deste modo, os governos poderão fazer uma análise do desempenho e das variáveis influenciadoras, o que lhes permitirá desenhar políticas e definir estratégias que concorram para uma melhoria dos sistemas educativos nacionais.

2.2 DESCRIÇÃO DA AMOSTRA

Em todas edições, o programa PISA incidiu os seus estudos sobre alunos de 15 anos de idade. O PISA 2015 teve como população alvo os alunos que frequentavam o "7º ano ou um grau superior do sistema de ensino nacional, em todas modalidades de educação e formação, com idades compreendidas entre os 15 anos e três meses e os 16 anos e dois meses no momento do teste, referidos nos estudos como alunos de 15 anos" (Marôco et al., 2016). O autor esclarece afirmando que na amostragem, as escolas foram agrupadas por Nomenclatura das Unidades Territoriais para Fins Estatísticos (NUTS III - 25 sub-regiões), tendo-se também em conta a tipologia da área urbana da localização da escola (área predominantemente rural/ área predominantemente urbana/ área medianamente urbana), e da natureza administrativa da escola (pública ou privada).

O processo de amostragem tem sido rigorosamente seguido pela organização dos estudos PISA. Em 2015, a organização (OECD) selecionou as escolas e os alunos com base numa amostragem aleatória multietapa, que segundo Marôco et al. (2016) consistiu em: na primeira etapa da seleção da amostra, as escolas foram estratificadas por NUTS III e tipologia e na segunda etapa, as escolas de cada estrato foram ordenadas por ordem crescente do número de alunos e selecionadas por amostragem aleatória sistemática proporcional à dimensão da escola (*Probability Proportional to Size* - PPS). Na terceira e última etapa, as escolas selecionadas dentro de cada estrato forneceram informações sobre os alunos que cumpriam os critérios de idade e escolaridade requeridos.

Fazendo referência a seleção dos alunos, Marôco et al. (2016) afirma que foi realizada de forma aleatória simples através dum *software* específico da OECD onde foram armazenados os dados, de acordo com o número máximo (42) de alunos por escola, com igual probabilidade para cada aluno. No caso das escolas em que o número de alunos elegíveis era inferior a 42, todos os alunos elegíveis foram selecionados para participar. Se por alguma razão um aluno previamente selecionado não podia participar no teste, não era possível fazer-se a substituição.

Para se ter uma ideia dos números nacionais, Marôco et al. (2016) esclarece que no PISA 2015, Portugal teve uma participação de 246 escolas (taxa de amostragem de 23,6%), sendo 90% escolas públicas, das regiões metropolitanas e da Região Autónoma dos Açores. O número de alunos foi de 7325 (taxa de amostragem de 7,5%) de ambos os sexos. Em comparação com o PISA 2012, observou-se um aumento de 2% na proporção de alunos que frequentavam o ano modal (10° ano). Foram igualmente amostrados 6881 encarregados de educação que responderam ao questionário aos pais, e 4228 professores de ciências e de outras disciplinas que os alunos frequentavam.

2.3 NOVIDADES DO PISA 2015

A OECD incorporou no estudo PISA 2015 algumas novidades. Diferentemente das edições anteriores em que a avaliação era realizada no formato de papel-e-lápis, em 2015 o PISA introduziu em larga escala a aplicação do teste e dos questionários em contexto de computador. Segundo Marôco et al. (2016), dos 72 países e economias que participaram no PISA 2015, 57 países, incluindo Portugal, fizeram o teste PISA em computador (*Computer Based Assessment-CBA*), e os restantes participantes realizaram o teste no formato tradicional de papel-e-lápis (*Paper Based Assessment-PBA*). Quer no formato PBA quer no formato CBA, a duração do teste PISA foi de duas horas.

As novidades implementadas no PISA 2015 não terminam com a descrição apresentada acima. Diferentemente das edições anteriores em que os valores plausíveis eram apenas 5, "em 2015 foram usados na estimação das literacias, dez (10) valores plausíveis, cujo objetivo era de reduzir os efeitos do erro de estimação e aumentar a fiabilidade das estimativas" (Marôco et al., 2016). Mais informações sobre valores plausíveis podem ser lidos em (OECD, 2009), nas páginas 43, 93 e 117.

2.4 RESULTADOS DO PISA 2015

Como foi referenciado nos objetivos, os testes PISA visam fornecer um conjunto de informações que permitam que países intervenientes possam delinear estratégias para melhoria da qualidade do ensino nacional. Tal delineamento é feito na base duma análise comparativa dos resultados das diversas regiões, o que terá sido decisivo para que, pela primeira vez o PISA 2015 fizesse uma análise regional por NUTS III, o que irá permitir avaliar as potenciais diferenças nos sistemas educativos regionais.

O número de países participantes no PISA 2015 (72 países) aumentou significativamente em relação à edição anterior (65 países). A menor amostra de alunos

Capítulo 2. o programa pisa

participantes no PISA 2015 foi observada na Islândia (3374 alunos) e a maior foi observada no Brasil (23141 alunos). A nível global, estiveram envolvidas aproximadamente 18000 escolas, 95000 professores, 143000 encarregados de educação e 509000 alunos (Marôco et al., 2016).

Segundo OECD (2009), o programa PISA estabelece na sua avaliação, uma escala de 0 a 1000 pontos com um desvio padrão de 100 pontos. O valor médio acordado que doravante se chamará média da OECD é de 500 pontos.

Os resultados do PISA 2015 observados em Marôco et al. (2016), indicam que a nível global, no conjunto dos dez países participantes com melhores desempenhos na avaliação da literacia científica (domínio principal no PISA 2015), sete países são asiáticos (Singapura, Japão, Taipé Chinês, Macau (China), Vietname, Hong Kong (China), B-S-J-G (China)), 2 países são europeus (Estónia e Finlândia) e 1 país é americano (Canadá). Em todas áreas avaliadas, os melhores resultados médios no PISA 2015 foram observadas em Singapura. Ao nível da Europa, os melhores resultados em ciências foram observados na Estónia (534 pontos), em leitura foram observados na Finlândia (526 pontos), e em matemática foram observados na Suíça (521 pontos).

À nível nacional, Marôco et al. (2016) afirma que "pela primeira vez na história do PISA, os resultados médios dos alunos portugueses estão acima da média da OECD: oito pontos em Ciência, cinco pontos em Leitura e dois pontos em Matemática (diferença não significativa)". Comparativamente à edição anterior (2012), os resultados de Portugal aumentaram 12 pontos em ciências, 10 pontos em leitura e 5 pontos em matemática. Desta forma, Portugal ocupou a 17ª posição na escala ordenada dos resultados em Ciências dos países membros da OECD, na avaliação de Leitura ocupou a 18ª posição, e na avaliação da Matemática ocupou a 22ª posição. Desde o primeiro ciclo, Portugal tem registado uma tendência de melhoria significativa dos resultados obtidos nas três áreas de avaliação, e foi o país que registou a maior progressão na percentagem de alunos *Top Perfomers* em literacia científica entre 2006 e 2015 (mais de 4,5%) (Marôco et al., 2016).

REVISÃO DE LITERATURA

Nos últimos anos, vários estudos têm sido realizados para identificar os diferentes fatores que influenciam o desempenho escolar dos alunos. Segundo Agasisti and Cordero-Ferrera (2013), "a Comissão Europeia tem salientado a necessidade de reforçar a eficiência e a equidade do sistema educacional na área europeia, através da identificação desses fatores."

Vários programas de avaliação internacional de alunos são desenvolvidos atualmente, o que torna mais fácil a obtenção de informações para realização dos estudos referidos. Por exemplo, o *Progress in International Reading Literacy Study* (PIRLS) avalia a leitura dos alunos no 4º ano de escolaridade, o *Trends in International Mathematics and Science Study* (TIMSS) avalia o desempenho dos alunos do 4º e do 8º ano de escolaridade em Matemática e Ciências, a *Trends in International Mathematics and Science Study advanced* (TIMSS *advanced*) avalia as tendências do desempenho dos alunos no final do ensino secundário em Matemática e Física, e o *Programme for International Student Assessment* (PISA) avalia o desempenho em Ciências, Matemática e Leitura dos alunos de 15 anos de todos os níveis de educação e formação.

Para o presente trabalho, será realizada uma revisão de trabalhos semelhantes desenvolvidos tendo como suporte os dados de diferentes estudos, principalmente os dados do programa PISA.

Usando os dados do PISA 2006, Sun et al. (2012) aplicaram modelos de regressão multinível para investigar os fatores ao nível do aluno e ao nível das escola que afetaram os resultados dos alunos do ensino secundário de Hong Kong. Concluíram que "alunos do sexo masculino, alunos de famílias de alto nível socioeconómico, alunos com maior motivação e maior auto-eficácia, e alunos cujos pais valorizam muito a ciência são mais propensos a obter elevados resultados a Ciências". Ao nível das escolas, os mesmos autores concluíram que as diferenças no desempenho dos alunos em Ciências eram explicadas pelo número de alunos da escola, pelo nível socioeconómico da escola e o tempo de instrução por semana, sendo que o número de alunos da escola afetou positivamente o desempenho, contrariando estudos anteriores em que este fator afetou negativamente o desempenho escolar dos alunos.

Capítulo 3. revisão de literatura

Silva (2016) aplicou modelos de regressão multinível com três níveis aos dados do PISA 2012 de vários países e concluiu que o facto do aluno ser do género masculino, ter elevado índice económico, social e cultural, a proporção de computadores ligados à *internet*, a proporção de raparigas na escola, o comportamento do aluno, o facto do aluno frequentar escola privada independente do governo ou a autonomia da escola na alocação dos recursos escolares influencia positivamente o desempenho do aluno em Matemática. Por outro lado, o autor concluiu que, o facto do aluno ser imigrante ou já ter repetido um ano escolar, o rácio aluno-professor de Matemática e o número de computadores para fins educacionais por aluno tinham uma influência negativa no desempenho do aluno em Matemática.

Para estudar o efeito das diferenças regionais no desempenho dos alunos Portugueses, Pereira and Reis (2012) trabalharam com os dados do PISA 2009 e concluíram que regiões com uma composição socioeconómica desfavorável, com uma maior proporção de repetentes, com uma fraca autonomia das escolas na alocação de recursos, com uma fraca participação e responsabilização dos professores e com um fraco envolvimento dos pais apresentaram baixos níveis de desempenho dos alunos.

Por outro lado, Dias and Ferrão (2005), aplicaram modelos multinível para estudar o desempenho escolar de alunos socialmente desfavorecidos em escolas públicas ou privadas usando os dados portugueses do PISA 2000. Os autores pretenderam testar as hipóteses (i) O resultado escolar dos alunos de classes sociais mais baixas é melhor em escolas privadas dependentes do governo do que em escolas públicas; (ii) O resultado escolar dos alunos de classes sociais mais baixas é relativamente melhor em escolas públicas do que privadas independentes do governo. Esses autores, ao nível de significância de 5% rejeitaram hipóteses em estudo, quando se leva em consideração as condições de ensino aprendizagem e clima de aula.

Na análise da eficiência e heterogeneidade das despesas públicas na educação entre as regiões italianas, Sibiano and Agasisti (2013) concluíram que as regiões do Norte superam as regiões do sul, com destaque para o contexto socioeconómico regional e o produto interno bruto *per capita* a aparecerem como os principais determinantes da eficiência das despesas públicas. Ainda no mesmo país de estudo, Masci et al. (2016) realizaram uma análise estatística multinível aos dados de mais de 500 mil alunos italianos no primeiro ano do ensino médio no ano 2012/2013 e chegaram às mesmas conclusões dos outros autores em termos de desempenho regional, destacando a situação de imigrante e o baixo contexto socioeconómico a afetarem negativamente o desempenho escolar dos alunos. Estes autores concluíram ainda que "em geral, os efeitos da classe no desempenho tendem a ser maiores que os efeitos da escola, indiciando a razão da maioria das variáveis ao nível da escola revelarem-se estatisticamente não correlacionadas com o desempenho".

Seguindo a mesma linha de estudos dos outros autores, Agasisti and Cordero-Ferrera (2013) aplicaram modelos multinível com três níveis aos dados do PISA 2006 para analisar as disparidades educacionais entre regiões de Espanha e Itália. Os dois autores concluíram que o desempenho dos alunos dos dois países é afetado por fatores comuns como: a desvantagem dos alunos provenientes de famílias imigrantes e provenientes de famílias com baixo nível cultural (falta de livros de arte, de poesia, filmes, magazines entre outros). Três anos depois, Agasisti et al. (2016) aplicaram modelos de regressão de três níveis ao conjunto de dados fornecido pelo Instituto Italiano de Avaliação do Sistema Educacional, para avaliar a extensão das diferenças no contexto do sistema educacional italiano dos alunos da 6ª série no ano 2011/2012. Os autores concluíram que os efeitos escolares eram estatisticamente significativas no desempenho dos alunos, e eram diferentes em termos de magnitude e tipo nas três áreas macro geográficas italianas.

Para investigar os efeitos de certas características da escola sobre os desempenhos em Matemática dos alunos na Turquia, Alacacı and Erbaş (2010) aplicaram modelos de regressão multinível aos dados do PISA 2006 e concluíram que "55% da variabilidade do desempenho escolar é atribuída à diferença entre escolas e os restantes 45% às características individuais dos alunos, sendo que cerca de dois terços dos 55% são explicados pela seletividade nas admissões, pelo tempo para estudar Matemática e contexto socioeconómico do aluno, género e região geográfica". Ainda na Turquia, Demir et al. (2010) aplicaram modelos de regressão multinível aos dados do PISA 2006 para avaliar os efeitos ao nível do aluno e das escolas no desempenho em Matemática. Estes autores concluíram que "alunos do sexo masculino, alunos que têm alta autoconfiança para usar computadores, alunos com alto índice económico, social e cultural e escolas com recursos educacionais de qualidade têm melhores pontuações em matemática, enquanto que as raparigas e as escolas que têm um rácio professoraluno elevado, têm pontuação mais baixa em matemática".

Em Singapura, Mohammadpour (2013) usou os dados do TIMSS 2007 e aplicou um modelo de regressão de três níveis para avaliar o desempenho em Ciências dos alunos do oitavo ano. O autor concluiu que "fatores de atitude do aluno, género do professor, limitações de ensino, média dos recursos educacionais de casa na sala, e a média dos recursos educacionais de casa na escola afetaram fortemente o desempenho escolar dos alunos".

MODELOS DE REGRESSÃO

Os modelos de regressão permitem estudar a relação existente entre duas ou mais variáveis, definindo uma variável de resposta e uma ou mais variáveis explicativas.

O modelo clássico de regressão linear, em forma matricial, é representado por

$$Y = X\beta + \epsilon \tag{4.1}$$

onde

 $\mathbf{Y}=(Y_1,...,Y_n)^T$ é o vetor de observações da variável resposta, \mathbf{X} é a matriz $n\times p$ de especificação do modelo (matriz de delineamento), com *i-ésima* linha $\mathbf{x}_i^T=(x_{i1},...,x_{ip})$ a representar a observação das p covariáveis do indivíduo i, $\boldsymbol{\beta}=(\beta_1,...,\beta_p)^T$ é o vetor de parâmetros de regressão e $\boldsymbol{\epsilon}=(\epsilon_1,...,\epsilon_n)^T$ é o vetor de componentes aleatórias, $\mathbf{E}(\boldsymbol{\epsilon})=0$ e $\mathbf{Var}(\boldsymbol{\epsilon})=\sigma^2\mathbf{I}_n$.

Nas situações em que as observações não são independentes, como por exemplo no contexto educacional, os modelos clássicos de regressão linear não devem ser aplicados.

4.1 MODELOS DE REGRESSÃO MULTINÍVEL

Segundo Finch et al. (2014), "se tivermos resultados do desempenho de alunos que frequentam várias escolas diferentes, seria razoável acreditar que aqueles alunos que frequentam a mesma escola terão desempenhos mais correlacionados entre si do que com os desempenhos de alunos de outras escolas". Esta correlação dentro da escola seria devido, por exemplo, a vários aspetos comuns da comunidade, a um conjunto de aspetos comuns de professores, a um currículo de ensino comum, a um conjunto único de políticas administrativas e a outros fatores. No contexto educacional, a população em estudo encontra-se estruturada de uma forma hierárquica, por exemplo, os alunos (nível 1) estão agrupados em escolas (nível 2), as escolas estão agrupadas em regiões (nível 3), as regiões estão agrupadas em países (nível 4), etc. Por essa razão, fatores do país (nível 4) interferem no desempenho das regiões (nível

3), fatores regionais interferem no desempenho das escolas (nível 2), e por sua vez, os fatores das escolas interferem no desempenho dos alunos (nível 1). Ignorando esta estrutura, a utilização de modelos clássicos de regressão linear pode resultar em inferências estatísticas erradas, uma vez que estes pressupõem independência dos erros, que é violado em dados multiníveis (Finch et al., 2014). Segundo Hox et al. (2010), "pequenas dependências nas observações de uma grande base de dados resultam em elevados enviesamentos dos erros padrões dos estimadores".

Os Modelos Multinível são modelos de regressão que se aplicam em situações em que os dados se estruturam hierarquicamente (por níveis), incorporando os diferentes níveis observacionais, produzindo assim inferências mais fiáveis. Segundo Cruz (2010), "os modelos multinível são uma extensão dos modelos de regressão linear clássicos, em que se elaboram vários modelos para cada nível de análise".

O presente estudo centrar-se-á nos modelos de regressão multinível com 3 níveis, cuja amostra é constituída por alunos (unidades de nível 1) agrupados em escolas (unidades de nível 2) e escolas agrupadas em regiões (unidades de nível 3). Nestes modelos, as regiões serão identificadas pelo índice k, as escolas pelo índice j e os alunos pelo índice i, onde

k = 1, 2, ..., K onde K representa o número total de regiões;

 $j = 1, 2, ..., n_k$ onde n_k representa o número total de escolas da região k;

 $i = 1, 2, ..., n_{jk}$ onde n_{jk} representa o número total de alunos da escola j da região k.

Segundo Silva (2016), a seleção de variáveis num modelo de regressão multinível pode ser realizada de duas maneiras distintas: *top-down* ou *botton-up*. A abordagem *top-down* consiste em criar um modelo com o máximo de variáveis explicativas e ir retirando sucessivamente as variáveis que não são significativas. A abordagem *botton-up* consiste em criar um modelo nulo (modelo sem variáveis explicativas) e acrescentar as variáveis explicativas dos diferentes níveis, testando-se sempre as suas significâncias. No presente estudo aplicar-se-á o método *botton-up*, devido ao risco de ocorrer problemas de convergência, e a necessidade de incluir muitas variáveis desnecessárias no modelo se se aplicar o método *top-down* . Sendo assim, apresentam-se as etapas da análise multinível propostas por Hox et al. (2010).

Etapa 1: Analisar o modelo nulo (modelo sem variáveis explicativas)

$$Y_{ijk} = \beta_{0jk} + \varepsilon_{ijk}, i = 1, \dots, n_{jk}; j = 1, \dots, n_k; k = 1, \dots, K$$

$$\beta_{0jk} = \mu_{00k} + \nu_{0jk}$$

$$\mu_{00k} = \delta_{000} + \nu_{0k}$$
 (4.2)

onde

 Y_{ijk} é o desempenho em Matemática do aluno i da escola j da região k;

 β_{0jk} é a ordenada na origem ou média do desempenho em Matemática da escola j da região k;

 μ_{00k} é a ordenada na origem ou média do desempenho em Matemática da região k; δ_{000} é a média global (ou de Portugal) do desempenho em Matemática;

 ε_{ijk} é o erro aleatório associado ao aluno i da escola j da região k, em que $\varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2)$ e $\varepsilon_{ijk's}$ são independentes entre si, isto é, $Cov(\varepsilon_{ijk}, \varepsilon_{i'jk}) = 0$;

 ν_{0jk} é o erro aleatório associado à escola j da região k, em que $\nu_{0jk} \sim N(0, \sigma_{\nu_0}^2)$ e $\nu_{0jk's}$ são independentes entre si, isto é, $Cov(\nu_{0jk}, \nu_{0j'k}) = 0$;

 v_{0k} é o erro aleatório associado à região k, em que $v_{0k} \sim N(0, \sigma_{v_0}^2)$ e $v_{0k's}$ são independentes entre si, isto é, $Cov(v_{0k}, v_{0k'}) = 0$;

 ε_{ijk} e ν_{0jk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, \nu_{0jk}) = 0$;

 ε_{ijk} e v_{0k} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, v_{0k}) = 0$;

 v_{0ik} e v_{0k} são independentes entre si, ou seja, $Cov(v_{0ik}, v_{0k}) = 0$;

 $\sigma_{v_0}^2$ é a variância ao nível das regiões;

 $\sigma_{v_0}^2$ é a variância ao nível das escolas;

 σ_{ε}^2 é a variância ao nível dos alunos.

O modelo nulo pode ainda ser escrito

$$Y_{ijk} = \delta_{000} + v_{0k} + v_{0jk} + \varepsilon_{ijk}$$
 (4.3)

onde

 δ_{000} é a componente fixa do modelo (constante) e $v_{0k} + v_{0jk} + \varepsilon_{ijk}$ é a componente aleatória do modelo.

Uma vez que os erros aleatórios são independentes, a variância total do modelo nulo é

$$Var(Y_{ijk}) = Var(\delta_{000}) + Var(v_{0k}) + Var(v_{0jk}) + Var(\varepsilon_{ijk}) = \sigma_{v_0}^2 + \sigma_{v_0}^2 + \sigma_{\varepsilon}^2$$

No estudo dos modelos de regressão multinível seguindo o método *botton up*, o modelo nulo permite dar uma ideia da necessidade de continuar com o estudo, pois através desse modelo, pode-se estimar a correlação existente entre indivíduos que pertencem a mesma classe, denominada por correlação intraclasse. A correlação intraclasse é calculada usando o coeficiente de correlação intraclasse (ρ) que indica a proporção da variância explicada pela estrutura de agrupamento na população, isto é, a correlação esperada entre duas unidades escolhidas aleatoriamente que estão no

mesmo grupo/nível. Os coeficientes de correlação ao nível das escolas, ao nível das regiões e ao nível dos alunos são respetivamente representados por

$$\rho_{escolas} = \frac{\sigma_{\nu_0}^2}{\sigma_{\varepsilon}^2 + \sigma_{\nu_0}^2 + \sigma_{\nu_0}^2} \tag{4.4}$$

$$\rho_{regi\tilde{o}es} = \frac{\sigma_{v_0}^2}{\sigma_{\varepsilon}^2 + \sigma_{v_0}^2 + \sigma_{v_0}^2} \tag{4.5}$$

$$\rho_{alunos} = 1 - (\rho_{escolas} + \rho_{regiões}) \tag{4.6}$$

O coeficiente de correlação intraclasse (ρ) toma valores que variam de 0 a 1. Quando os coeficientes $\rho_{escolas}$ e $\rho_{regiões}$ forem próximos de 0 não é aconselhável aplicar modelos de regressão multinível aos dados (ou seja, não há variabilidade entre escolas e regiões). Quando o $\rho_{escolas}$ e/ou $\rho_{regiões}$ é próximo de 1, há uma grande variabilidade entre alunos de escolas diferentes e/ou escolas de regiões diferentes.

Etapa 2: Análise do modelo com todas as variáveis explicativas ao nível do aluno assumindo-se que o efeito de cada variável explicativa é fixo, ou seja, o efeito de cada variável explicativa na variável resposta não varia de região para região e de escola para escola. A equação deste modelo pode ser representada por

$$Y_{ijk} = \beta_{0jk} + \beta_1 X_{1ijk} + \beta_2 X_{2ijk} + \dots + \beta_p X_{pijk} + \varepsilon_{ijk},$$

$$i = 1, 2, \dots, n_{jk}; j = 1, 2, \dots, n_k; k = 1, 2, \dots, K$$

$$\beta_{0jk} = \mu_{00k} + \nu_{0jk}$$

$$\mu_{00k} = \delta_{000} + \nu_{0k}$$

$$(4.7)$$

onde

 Y_{ijk} é o desempenho em Matemática do aluno i da escola j da região k; β_{0jk} é a ordenada na origem ou média do desempenho em Matemática da escola j da região k;

 X_{pijk} é a *p-ésima* variável explicativa ao nível do aluno (nível 1);

 β_p é a inclinação associada à *p-ésima* variável explicativa ao nível do aluno (nível 1); μ_{00k} é a ordenada na origem ou média do desempenho em Matemática da região k; δ_{000} é a média global (ou de Portugal) do desempenho em Matemática;

 ε_{ijk} é o erro aleatório associado ao aluno i da escola j da região k, em que $\varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2)$ e $\varepsilon_{ijk's}$ são independentes entre si, isto é, $Cov(\varepsilon_{ijk}, \varepsilon_{i'jk}) = 0$;

 ν_{0jk} é o erro aleatório associado à escola j da região k, em que $\nu_{0jk}\sim N(0,\sigma_{\nu_0}^2)$ e $\nu_{0jk's}$

são independentes entre si, isto é, $Cov(\nu_{0jk}, \nu_{0j'k}) = 0$;

 v_{0k} é o erro aleatório associado à região k, em que $v_{0k} \sim N(0, \sigma_{v_0}^2)$ e $v_{0k's}$ são independentes entre si, isto é, $Cov(v_{0k}, v_{0k'}) = 0$;

 ε_{ijk} e ν_{0jk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, \nu_{0jk}) = 0$;

 ε_{ijk} e v_{0k} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, v_{0k}) = 0$;

 v_{0jk} e v_{0k} são independentes entre si, ou seja, $Cov(v_{0jk}, v_{0k}) = 0$.

À semelhança do modelo nulo, o modelo 4.7 pode ser escrito da seguinte forma

$$Y_{ijk} = \delta_{000} + \beta_1 X_{1ijk} + \beta_2 X_{2ijk} + \dots + \beta_p X_{pijk} + v_{0k} + v_{0jk} + \varepsilon_{ijk}$$
(4.8)

onde

 $\delta_{000} + \beta_1 X_{1ijk} + \beta_2 X_{2ijk} + \ldots + \beta_p X_{pijk}$ é a componente fixa do modelo; $v_{0k} + v_{0jk} + \varepsilon_{ijk}$ é a componente aleatória do modelo.

Etapa 3: Análise do modelo com todas as variáveis explicativas ao nível da escola assumindo-se que os efeitos de cada variável explicativa são fixos. A equação deste modelo pode ser representada por

$$Y_{ijk} = \beta_{0jk} + \beta_1 X_{1ijk} + \beta_2 X_{2ijk} + \ldots + \beta_p X_{pijk} + \varepsilon_{ijk},$$

 $i = 1, \ldots, n_{jk}; j = 1, \ldots, n_k; k = 1, \ldots, K$

$$\beta_{0jk} = \mu_{00k} + \mu_1 W_{1jk} + \mu_2 W_{2jk} + \dots + \mu_q W_{qjk} + \nu_{0jk}$$
(4.9)

onde

 Y_{ijk} é o desempenho em Matemática do aluno i da escola j da região k;

 β_{0jk} é a ordenada na origem ou média do desempenho em Matemática da escola j da região k;

 X_{pijk} é a *p-ésima* variável explicativa ao nível do aluno (nível 1);

 β_p é a inclinação associada à *p-ésima* variável explicativa ao nível do aluno (nível 1);

 W_{qjk} é a *q-ésima* variável explicativa ao nível da escola (nível 2);

 μ_{00k} é a ordenada na origem ou média do desempenho em Matemática da região k;

 μ_q é a inclinação associada a *q-ésima* variável explicativa ao nível da escola (nível 2);

 ε_{ijk} é o erro aleatório associado ao aluno i da escola j da região k, em que $\varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2)$ e $\varepsilon_{ijk's}$ são independentes entre si, isto é, $Cov(\varepsilon_{ijk}, \varepsilon_{i'jk}) = 0$;

 ν_{0jk} é o erro aleatório associado à escola j da região k, em que $\nu_{0jk} \sim N(0, \sigma_{\nu_0}^2)$ e $\nu_{0jk's}$ são independentes entre si, isto é, $Cov(\nu_{0jk}, \nu_{0j'k}) = 0$;

 ε_{ijk} e ν_{0jk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, \nu_{0jk}) = 0$.

Etapa 4: Análise do modelo com todas as variáveis explicativas ao nível das regiões assumindo-se que os efeitos de cada variável explicativa são fixos. A equação deste modelo pode ser representada por

$$Y_{ijk} = \mu_{00k} + \mu_1 W_{1jk} + \mu_2 W_{2jk} + \dots + \mu_q W_{qjk} + \nu_{0jk} + \beta_1 X_{1ijk} + \beta_2 X_{2ijk} + \dots$$
$$+ \beta_p X_{pijk} + \varepsilon_{ijk}, i = 1, 2, \dots, n_{jk}; j = 1, 2, \dots, n_k; k = 1, 2, \dots, K$$
$$\mu_{00k} = \delta_{000} + \delta_1 Z_{1k} + \delta_2 Z_{2k} + \dots + \delta_r Z_{rk} + \nu_{0k}$$
(4.10)

onde

 Y_{ijk} é o desempenho em Matemática do aluno i da escola j da região k;

 β_{0jk} é a ordenada na origem ou média do desempenho em Matemática da escola j da região k;

 X_{pijk} é a *p-ésima* variável explicativa ao nível do aluno (nível 1);

 β_p é a inclinação associada à *p-ésima* variável explicativa ao nível do aluno (nível 1);

 W_{qjk} é a *q-ésima* variável explicativa ao nível da escola (nível 2);

 μ_{00k} é a ordenada na origem ou média do desempenho em Matemática da região k;

 μ_q é a inclinação associada à *q-ésima* variável explicativa ao nível da escola (nível 2);

 Z_{rk} é a *r-ésima* variável explicativa ao nível das regiões (nível 3);

 δ_{000} é a média global (ou de Portugal) do desempenho em Matemática;

 δ_r é a inclinação associada à *r-ésima* variável explicativa ao nível da região (nível 3);

 ε_{ijk} é o erro aleatório associado ao aluno i da escola j da região k, em que $\varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2)$ e $\varepsilon_{ijk's}$ são independentes entre si, isto é, $Cov(\varepsilon_{ijk}, \varepsilon_{i'jk}) = 0$;

 ν_{0jk} é o erro aleatório associado à escola j da região k, em que $\nu_{0jk} \sim N(0, \sigma_{\nu_0}^2)$ e $\nu_{0jk's}$ são independentes entre si, isto é, $Cov(\nu_{0jk}, \nu_{0j'k}) = 0$;

 v_{0k} é o erro aleatório associado à região k, em que $v_{0k} \sim N(0, \sigma_{v_0}^2)$ e $v_{0k's}$ são independentes entre si, isto é, $Cov(v_{0k}, v_{0k'}) = 0$;

 ε_{ijk} e ν_{0jk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, \nu_{0jk}) = 0$;

 $arepsilon_{ijk}$ e v_{0k} são independentes entre si, ou seja, $Cov(arepsilon_{ijk}, v_{0k}) = 0$;

 v_{0jk} e v_{0k} são independentes entre si, ou seja, $Cov(v_{0jk}, v_{0k}) = 0$.

Etapa 5: Análise do modelo assumindo-se a existência de variável/variáveis explicativa(s) com efeitos aleatórios. A equação deste modelo pode ser representada por

$$Y_{ijk} = \beta_{0jk} + \beta_{1jk} X_{1ijk} + ... + \beta_{pjk} X_{pijk} + \varepsilon_{ijk}, i = 1, ..., n_{jk}; j = 1, ..., n_k; k = 1, ..., K$$
$$\beta_{sjk} = \mu_{s0k} + \mu_{s1k} W_{1jk} + ... + \mu_{sqk} W_{qjk} + \nu_{sjk}, s = 0, ..., p$$

$$\mu_{stk} = \delta_{st0} + \delta_{st1} Z_{1k} + \delta_{st2} Z_{2k} + \dots + \delta_{str} Z_{rk} + v_{tk}, t = 0, \dots, q$$
(4.11)

onde

 Y_{ijk} é o desempenho em Matemática do aluno i da escola j da região k;

 β_{0jk} é a ordenada na origem ou média do desempenho em Matemática da escola j da região k;

 X_{vijk} é a *p-ésima* variável explicativa ao nível do aluno (nível 1);

 $\beta_{sjk}(s>0)$ é a inclinação associada à variável explicativa X_{pijk} do *i-ésimo* aluno da escola j da região k;

 W_{qik} é a *q-ésima* variável explicativa ao nível da escola (nível 2);

 μ_{00k} é a ordenada na origem ou média do desempenho em Matemática da região k; $\mu_{stk}(t>0)$ é a inclinação associada à variável explicativa W_{qjk} da escola j da região k; Z_{rk} é a r-ésima variável explicativa ao nível das regiões (nível 3);

 δ_{000} é a média global (ou de Portugal) do desempenho em Matemática;

 $\delta_{str}(r>0)$ é a inclinação associada à variável explicativa Z_{rk} da região k;

 ε_{ijk} é o erro aleatório associado ao aluno i da escola j da região k, em que $\varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^2)$ e $\varepsilon_{ijk's}$ são independentes entre si, isto é, $Cov(\varepsilon_{ijk}, \varepsilon_{i'jk}) = 0$;

 ν_{sjk} é o erro aleatório associado ao parâmetro β_{sjk} da escola j da região k, em que $\nu_{sjk} \sim N(0, \sigma_{\nu_s}^2)$ e $\nu_{sjk's}$ são independentes entre si, isto é, $Cov(\nu_{sjk}, \nu_{sj'k}) = 0$;

 v_{tk} é o erro aleatório associado ao parâmetro μ_{stk} da região k, em que $v_{tk} \sim N(0, \sigma_{v_t}^2)$ e $v_{tk's}$ são independentes entre si, isto é, $Cov(v_{tk}, v_{tk'}) = 0$;

 ε_{ijk} e v_{sjk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, v_{sjk}) = 0$;

 ε_{ijk} e v_{tk} são independentes entre si, ou seja, $Cov(\varepsilon_{ijk}, v_{tk}) = 0$;

 v_{sjk} e v_{tk} são independentes entre si, ou seja, $Cov(v_{sjk}, v_{sk}) = 0$.

A etapa 5 será aplicada nos casos de "variáveis explicativas cujo impacto no desempenho varia de escola para escola ou de região para região"(Finch et al., 2014). Após ajustar-se o modelo final (modelo com variáveis explicativas de efeitos fixos), serão avaliadas quais as variáveis explicativas que apresentam um efeito aleatório significativo. O processo consistirá em incorporar as variáveis uma-a-uma na componente aleatória do modelo, e de seguida comparar este modelo com o modelo sem essa variável na componente aleatória, aplicando-se o teste da Razão de Verosimilhança. Caso o teste aplicado prove a significância do efeito aleatório da variável incorporada, então o modelo final inclui essa variável na componente aleatória.

4.2 MÉTODOS DE ESTIMAÇÃO DOS PARÂMETROS

Baseando-se nos dados do PISA-2015, serão estimados os parâmetros do modelo de regressão multinível, que segundo Hox et al. (2010) "geralmente são estimados

Capítulo 4. modelos de regressão

pelo método de máxima verosimilhança que é robusto, e produz estimativas que são assintoticamente eficientes e consistentes". O autor volta ainda a afirmar que "dois métodos de estimação de máxima verosimilhança são usualmente usados na estimação de modelos multinível: método de máxima verosimilhança completa (Full Maximum Likelihood (FML)) em que ambos os parâmetros são estimados na função de verosimilhança, e método de máxima verosimilhança restrita (Restricted Maximum Likelihood (RML)) que inclui apenas os parâmetros da componente de variância na função de verosimilhança. Note-se que ambos os métodos estão implementados no package usado (package nlme) do programa estatístico R.

Segundo Silva (2016) o FML não tem em conta os graus de liberdade perdidos aquando da estimação dos parâmetros das variáveis com efeitos fixos, e por causa disso, produz estimativas enviesadas dos parâmetros das variáveis com efeitos aleatórios; por outro lado, o RML produz estimativas que são menos enviesadas ao ter em conta esta perda, sendo este um dos motivos para o RML ser teoricamente o método mais aconselhado na estimação dos parâmetros em regressão multinível. Em contrapartida, Hox (1998) afirma que o método FML apresenta duas vantagens em relação ao método RML: a primeira é que geralmente a computação é mais fácil, e a segunda vantagem é que o método FML ao incluir os coeficientes de regressão na função de verosimilhança, pode ser usado o teste da razão de verosimilhança para comparar dois modelos aninhados.

A computação das estimativas de FML "requer procedimentos iterativos, em que após uma iteração, serão obtidas as estimativas dos mínimos quadrados generalizados (*Generalized Least Square* (GLS))", (Hox, 1998). Mais informação sobre as estimativas GLS pode se ver em Goldstein (2003), secção 2.5.

4.3 TESTES ESTATÍSTICOS

Na análise dos modelos de regressão multinível é necessário usar alguns testes estatísticos. Dentre eles se destacam os seguintes:

4.3.1 *Teste de Wald*

É usado o teste de Wald para a avaliar a significância dos parâmetros com efeitos fixos estimados no modelo, de modo que se possa aferir a influência da variável explicativa em causa, na variável resposta. Portanto, o teste de Wald é usado para

testar as seguintes hipóteses: $H_0: \beta_p = 0$ vs $H_1: \beta_p \neq 0$, cuja estatística de teste

$$W = \frac{\hat{\beta}_p}{\sqrt{Var(\hat{\beta}_p)}} \sim N(0,1) \tag{4.12}$$

que, sob a hipótese nula, tem distribuição assintótica normal padrão.

Para avaliar a significância dos parâmetros com efeitos aleatórios será usado o teste da Razão de Verosimilhança.

4.3.2 Teste de Razão de Verosimilhança

Dados dois modelos(M1 e M2) aninhados, onde M1 é um subconjunto de M2 em termos de número de parâmetros, o teste da Razão de Verosimilhança é usado para comparar qual deles melhor se ajusta aos dados. As hipóteses a testar são

 H_0 : O modelo simples (M1) é o mais adequado

VS

 H_1 : O modelo complexo (M2) é o mais adequado

Sob a hipótese nula, o modelo M1 é adequado, a distribuição assintótica da estatística de teste é a distribuição qui-quadrado com $p_2 - p_1$ graus de liberdade, e é calculada por

$$D = -2\log(\frac{\lambda_1}{\lambda_2}) \sim \chi^2(p_2 - p_1)$$
 (4.13)

onde

 λ_1 e λ_2 é o valor da função de verosimilhança do modelo 1 (M1) e do modelo 2 (M2), respetivamente;

p₁ e p₂ representa o número de parâmetros do M1 e M2 respetivamente.

Note-se que este teste só é válido se os estimadores dos parâmetros nos dois modelos forem estimados pelo método da máxima verosimilhança. A um nível de significância de α , rejeita-se a hipótese nula se $D > \chi^2_{1-\alpha}(p_2-p_1)$. Por outro lado, Hox et al. (2010) afirma que dados dois modelos aninhados, o modelo que melhor se ajusta aos dados é o modelo com menor *deviance* (desvio), que é obtido por:

$$d = -2ln(\lambda) \tag{4.14}$$

onde λ representa o valor da função de verosimilhança do modelo estimado.

Finalmente, o teste de Razão de Verosimilhança também é usado para avaliar a significância dos parâmetros com efeitos aleatórios. Dados dois modelos (M1 e M2), diferentes apenas no facto dum apresentar variável explicativa com efeito aleatório e

Capítulo 4. modelos de regressão

o outro simplesmente não inclui essa variável, as hipóteses a testar são:

*H*₀: A variável explicativa não tem efeito aleatório significativo

 H_1 : A variável explicativa tem efeito aleatório significativo

Neste caso, o teste da Razão de Verosimilhança é utilizado, e ao contrário do que acontece com os efeitos fixos, as funções de verosimilhança são comparáveis quando os parâmetros do modelo são estimados através do método REML.

4.4 QUALIDADE DE AJUSTAMENTO DO MODELO

4.4.1 Coeficiente de determinação

Nesta secção é avaliada a qualidade de ajustamento do modelo final, aplicando o coeficiente de determinação (R^2) que indica a percentagem de variabilidade da variável resposta que é explicada pelo modelo de regressão estimado. Nos modelos multinível, para cada um dos níveis é calculado um coeficiente de determinação:

Coeficiente de determinação ao nível do aluno

$$R_1^2 = \frac{\sigma_{\varepsilon|n}^2 - \sigma_{\varepsilon|m}^2}{\sigma_{\varepsilon|n}^2} \tag{4.15}$$

Coeficiente de determinação ao nível da escola

$$R_2^2 = \frac{\sigma_{\nu_0|n}^2 - \sigma_{\nu_0|m}^2}{\sigma_{\nu_0|n}^2} \tag{4.16}$$

Coeficiente de determinação ao nível da região

$$R_3^2 = \frac{\sigma_{v_0|n}^2 - \sigma_{v_0|m}^2}{\sigma_{v_0|n}^2} \tag{4.17}$$

onde

 $\sigma_{\varepsilon|n'}^2, \sigma_{v_0|n'}^2, \sigma_{v_0|n}^2$ são as variâncias residuais ao nível dos alunos, das escolas e das regiões respetivamente, estimadas no modelo nulo;

 $\sigma_{\varepsilon|m}^2, \sigma_{v_0|m}^2, \sigma_{v_0|m}^2$ são as variâncias residuais ao nível dos alunos, das escolas e das regiões respetivamente, estimadas no modelo em que se pretende avaliar a qualidade de ajustamento.

4.4.2 Critério de Informação de Akaike

Nas situações em que dois modelos não são aninhados, é usado o Critério de Informação de Akaike (*Akaike Information Criterion* (AIC)) para sua comparação. Segundo Posada and Crandall (1998), se λ é o valor máximo da função de verosimilhança para um modelo específico usando p parâmetros ajustados independentemente do modelo, então o critério AIC é calculado por

$$AIC = -2ln(\lambda) + 2p \tag{4.18}$$

O autor termina afirmando que "menores valores do critério AIC indicam melhores modelos".

4.5 CENTRALIZAÇÃO DAS VARIÁVEIS EXPLICATIVAS CONTÍNUAS

Seguindo a orientação de vários autores, todas as variáveis explicativas contínuas deverão ser centradas antes de serem introduzidas nos modelos. Segundo Finch et al. (2014) a "centralização de uma variável implica a subtração de um valor médio de cada pontuação na variável", ou seja, criar uma nova variável resultante da subtração do valor da variável pela sua média. O autor afirma que "as variáveis centradas podem fornecer uma interpretação ligeiramente mais fácil dos termos de interação e também ajuda a aliviar a multicolinearidade decorrente da inclusão de ambos os principais efeitos e interações no mesmo modelo". Por outro lado, Hox et al. (2010) afirma que "a não centralização das variáveis pode levar a situações em que a ordenada na origem não possa ser interpretada, e isto acontece quando ela assume o valor zero, e zero não é um valor possível para a variável resposta, não sendo assim possível a sua interpretação".

4.6 ANÁLISE DE RESÍDUOS

No estudo dos modelos de regressão, a análise dos resíduos é fundamental para verificar a validade dos pressupostos subjacentes ao modelo final ajustado. Segundo Cruz (2010), "os resíduos representam os afastamentos das estimativas médias em relação à média geral predita, onde toda a inferência estatística no modelo de regressão (testes de hipóteses) se baseia nesses pressupostos, e se houver violação dos mesmos, a utilização do modelo deve ser posta em causa". No entanto, em modelos de regressão multinível, Hox et al. (2010) afirma que "há mais do que um resíduo, isto é, os resíduos se distribuem para cada um dos efeitos aleatórios do modelo ajustado, e consequentemente, muitos diferentes gráficos residuais podem ser construídos".

Capítulo 4. modelos de regressão

Cruz (2010) afirma que na análise de regressão assumimos que os erros satisfazem os seguintes pressupostos:

• Seguem uma distribuição normal.

Esta condição pode ser verificada usando um gráfico de probabilidade normal (*Normal Probability Plot/ Normal Q-Q plot*). Se os erros possuírem distribuição Normal, todos os pontos do gráfico devem posicionar-se mais ou menos sobre uma reta. Por outro lado, Silva (2016) afirma que pode-se também verificar este pressuposto através da utilização do teste de Shapiro-Wilk, para pequenas amostras, ou o teste de Kolmogorov-Smirnov, para grandes amostras.

 Apresentam média zero, variância constante (homocedastecidade) e são independentes entre si.

Estes três últimos pressupostos podem ser verificados graficamente, representando os resíduos em função dos valores estimados da variável dependente (gráfico residual) ou em função dos valores de uma das variáveis independentes. Os pontos do gráfico devem distribuir-se de forma aleatória em torno da reta que corresponde ao resíduo zero, formando uma mancha de largura uniforme. Desta forma será de esperar que os erros sejam independentes, de média nula e de variância constante.

APRESENTAÇÃO DOS RESULTADOS

5.1 BREVE DESCRIÇÃO SOBRE OS DADOS UTILIZADOS

A base de dados para o estudo foi criada da agregação de variáveis de duas bases de dados, isto é, foram recolhidas variáveis duma base de dados contendo informação dos alunos (variáveis ao nível do aluno) e variáveis duma base de dados com a informação das escolas (variáveis ao nível da escola). Algumas variáveis ao nível das regiões foram criadas pelo autor do trabalho, baseando-se em estudos semelhantes que foram realizados sobre os dados do PISA, e outras variáveis foram construídas com base em variáveis ao nível da escola. De seguida, realizou-se a renomeação das variáveis usadas, sendo que as variáveis categóricas foram recodificadas e acrescentada a categoria "Desconhecido" para os casos de falta de informação. Para as variáveis contínuas realizou-se o processo de imputação dos *missings values*, que consistia em substituir os valores em falta pela média da variável na escola para as variáveis ao nível do aluno, e pela média da variável na região para as variáveis ao nível da escola.

Em Portugal, no PISA 2015, participaram 7325 alunos, 246 escolas, 6881 encarregados de educação que responderam ao questionário dos pais, e 4228 professores de ciências e de outras disciplinas que os alunos frequentavam. Desse número, foi constatada uma escola da região norte com falta de informação em muitas variáveis, o que obrigou a retirar essa escola da amostra, e a base de dados usada era constituída por 7296 alunos e 245 escolas. De seguida, apresenta-se uma breve descrição das variáveis escolhidas para o estudo.

A Tabela 5.1 apresenta a variável resposta escolhida e o peso do aluno na análise realizada.

Tabela 5.1.: Descrição da variável resposta

Variável resposta	Desempenho do aluno em Matemática (PV5MATH)
Peso	Peso do aluno na análise realizada

- Desempenho do aluno em Matemática (PV5MATH): é uma variável que se designa por valor plausível nos dados do PISA 2015, e foi escolhida aleatoriamente de um conjunto de 10 valores plausíveis. Ela representa o desempenho do aluno em Matemática que será usada como variável resposta nos modelos em estudo. A escolha aleatória deveu-se ao facto de todos os valores plausíveis apresentarem resultados semelhantes, como se poderá observar na análise descritiva que será realizada aos 10 valores plausíveis.
- Peso do aluno: esta variável é bastante importante porque "alunos de uma mesma escola não têm necessariamente a mesma probabilidade de seleção, e todas as análises ou procedimentos estatísticos relativos aos dados PISA devem ter em conta os pesos (ponderados), sob pena de fornecerem estimativas enviesadas de parâmetros populacionais" (OECD, 2009). Nos dados do PISA 2015, a variável peso do aluno é representada por W.FSTUWT.

A Tabela 5.2 apresenta o conjunto de variáveis criadas ao nível do aluno. As variáveis ao nível do aluno foram divididas em demográficas, familiares e cognitivas. Para cada variável é apresentada a respetiva descrição com base em trabalhos de estudos semelhantes usados para a presente dissertação.

Variáveis explicativas ao nível do alunoDemográficasIdade do aluno(age)
Género do aluno (género)
Situação de imigrante do aluno(imigcat)FamiliaresÍndice económico, social e cultural do aluno (indesc)CognitivasSituação de repetente do aluno (repeatcat)
Grau académico que o aluno espera concluir (expalunocat)

Tabela 5.2.: Variáveis explicativas ao nível do aluno

• Idade do aluno (age): é uma variável que representa a idade do aluno no momento em que estava a preencher o questionário do PISA.

Idade do aluno quando iniciou o 1º ano de escolaridade (agepri)

- Género do aluno (género): é uma variável que representa o género do aluno e foi codificada como: 0 Feminino, 1 Masculino.
- Situação de imigrante do aluno (imigcat): é uma variável que representa se o aluno é ou não imigrante e foi codificada como: 0 Nativo, 1 Imigrante.
- Índice económico, social e cultural do aluno (indesc): representa o índice socioeconómico e cultural do aluno. Ela foi construída pelo PISA com base nos índices

de: bem-estar (traduzindo a disponibilidade de recursos em casa, como por exemplo, a existência de alguns eletrodomésticos, *software* educacional, presença de televisão, número de assoalhadas da casa, número de telemóveis e a posse de automóvel), comunicação cultural dos pais (exprime a frequência com que os pais se comprometem com a discussão de assuntos políticos e sociais em casa, a troca de ideias sobre livros, filmes ou programas televisivos e com a audição de música clássica) e posses culturais da família (deriva da existência em casa de itens como a literatura clássica, livros de poesia e trabalhos de arte, e nível de escolaridade mais elevado dos pais) (Silva, 2016).

- Situação de repetente do aluno (repeatcat): indica se o aluno repetiu um ano escolar alguma vez. Ela foi codificada em: 0 Não, 1 Sim, 2 Desconhecido.
- Grau académico que o aluno espera concluir (expalunocat): foi codificada em: 0 3º ciclo do ensino básico, 1 Ensino secundário (curso tecnológico ou profissional), 2 Ensino secundário (científico-humanístico), 3 Cursos de Especialização Tecnológica (CET), 4 Ensino Superior Universitário (ESU) (Licenciatura, Mestrado ou Doutoramento), 6 Desconhecido.
- Idade do aluno quando iniciou o 1º ano de escolaridade (agepri): foi codificada em: 1 cinco anos, 2 seis anos, 3 7 anos ou mais, 4 Desconhecido.

A Tabela 5.3 apresenta o conjunto de variáveis criadas ao nível da escola. Estas variáveis foram divididas em contexto, recursos e políticas/estratégias. Para cada variável é apresentada a respetiva descrição, com base em trabalhos de estudos semelhantes usados para a presente dissertação.

Tabela 5.3.: Variáveis explicativas ao nível da escola

	Variáveis explicativas ao nível da Escola		
Contexto	Tipo de escola (tipocat)		
	Localização da escola (loccat)		
	Número de alunos da escola (tamanho)		
	Proporção de raparigas na escola (prop)		
	Região onde a escola se localiza (regiao)		
Recursos	Rácio aluno-professor (racioap)		
Políticas/Estratégias	Comportamento do aluno (compa)		
	Comportamento do professor (compp)		
	Admissão do aluno na escola (selcat)		

• Tipo de escola (tipocat): representa o tipo de escola que o aluno frequenta e foi codificada como: 0 - Pública, 1 - Privada, 2 - Desconhecido.

- Localização da escola (loccat): representa a localização da escola onde o aluno frequenta e foi codificada como: 0 - Aldeia (< 15000 habitantes), 1 - Pequena Cidade (< 1000000 habitantes), 2 - Grande Cidade (> 1000000 habitantes), 3 -Desconhecido.
- Tamanho da escola (tamanho): representa o número total de alunos da escola onde o aluno frequenta.
- Proporção de raparigas na escola (prop): representa o quociente entre o número de raparigas da escola e o número total de alunos da escola.
- Região onde a escola se localiza (região): representa a região, por Nomenclatura das Unidades Territoriais para fins Estatísticos (NUTS II-7 sub-regiões), onde a escola se localiza. Foi codificada como: 1 Norte, 2 Centro, 3 Área Metropolitana (AM) de Lisboa, 4 Alentejo, 5 Algarve, 6 Região Autónoma (RA) dos Açores, 7 Região Autónoma (RA) da Madeira, 8 Desconhecido.
- Rácio aluno-professor (racioap): representa o quociente entre o número total de alunos pelo número total de professores na escola.
- Comportamento do aluno (compa): representa um índice construído pelo PISA
 com base nas respostas dos responsáveis das escolas sobre o absentismo dos
 alunos, a perturbação e falta as aulas, a falta de respeito, o consumo de álcool
 ou drogas e a intimidação e provocação de outros alunos (Silva, 2016).
- Comportamento do professor (compp): representa um índice construído pelo PISA
 com base nas respostas dos responsáveis das escolas sobre as expetativas dos
 professores em relação aos alunos, às relações aluno/professor, ao conhecimento
 dos professores das necessidades individuais dos alunos, ao absentismo dos professores, à resistência à mudança e ao encorajamento para o rendimento (Silva,
 2016).
- Admissão do aluno na escola (selcat): representa a forma como os alunos são selecionados/admitidos na escola. Foi categorizada, com base nas respostas dos responsáveis das escolas relativamente à consideração de dois fatores para a admissão do aluno na escola: recomendações de escolas anteriores ou registos académicos. A variável foi então categorizada como: 0 Os dois fatores nunca são considerados; 1 As vezes, pelo menos um dos fatores pode ser considerado; 2 Pelo menos um dos fatores é sempre considerado; 3 Desconhecido (Silva, 2016).

Tabela 5.4.: Variáveis explicativas ao nível da região

	Variáveis explicativas ao nível da região
Recursos	Produto Interno Bruto per capita da região (pib)
	Despesa anual média familiar com o ensino da região
	(despensino)
	Média do índice de autonomia pela alocação de recursos da região
	(respress-mean)
Políticas/ Es-	Média do índice de falta de pessoal educativo da região (staffshort-mean)
tratégias	

A Tabela 5.4 apresenta o conjunto de variáveis ao nível da região. À semelhança das escolas, estas variáveis também foram divididas em recursos e políticas/estratégias. Para cada variável é apresentada a respetiva descrição, com base em trabalhos de estudos semelhantes usados para a presente dissertação.

- Produto interno bruto *per capita* da região (pib): representa o produto interno bruto *per capita* da região referente ao ano de 2014, em milhões de euros. Ela foi retirada do Quadro 2 do INE (2016a).
- Despesa anual média familiar com o ensino por região (despensino): representa as despesas regionais das famílias com o ensino, em euros. Ela foi calculada através dos dados da Figura 2 e dos dados do Quadro 3 do INE (2016b).
- Média do índice de responsabilidades na alocação de recursos por região (respressmean): representa a média de um índice derivado de seis itens medindo as perceções dos diretores de escolas sobre as responsabilidades assumidas pelas escolas nas seguintes tarefas: (i) seleção de professores para contratação; (ii) demissão de professores; (iii) indicação de salários iniciais; (iv) aumento dos salários dos professores; (v) formulação do orçamento escolar; e (vi) decisão sobre as dotações orçamentais dentro da escola (Agasisti and Cordero-Ferrera, 2013).
- Média do índice de falta de pessoal educativo por região (staffshort-mean): representa a média de um índice que foi obtido a partir de quatro itens que medem as perceções de fatores potenciais que dificultam a instrução em sua escola. Estes fatores são a falta de: (i) professores qualificados de ciências; (ii) professores qualificados de matemática; (iii) professores qualificados de leitura e (iv) professores qualificados de outras disciplinas (Agasisti and Cordero-Ferrera, 2013).

5.2 ANÁLISE EXPLORATÓRIA DOS DADOS

Neste estudo, será realizada a análise exploratória das variáveis assim como, um estudo sobre as relações existentes entre as variáveis explicativas e as relações entre as variáveis explicativas com a variável resposta.

5.2.1 Análise exploratória das variáveis explicativas categóricas

As Tabelas 5.5 e 5.6 apresentam as frequências absolutas e relativas para cada uma das categorias das variáveis explicativas categóricas ao nível do aluno e ao nível da escola respetivamente. Analisando a Tabela 5.5 observa-se que o número de alunos

Tabela 5.5.: Frequências absolutas e relativas das variáveis explicativas qualitativas ao nível do aluno

Variável	Categoria	Nº de Alunos	% de Alunos
género	Masculino	3661	50,2%
_	Feminino	3635	49,8%
imigcat	Não	6728	92,2%
	Sim	568	7,8%
repeatcat	Não repetiu	4552	62,4%
	Repetiu	2634	36,1%
	Desconhecido	110	1,5%
agepri	5 anos	1904	26,1%
	6 anos	4246	58,2%
	7 anos ou mais	1009	13,8%
	Desconhecido	137	1,9%
expalunocat	3.º ciclo do ensino básico	586	8,0%
	Ensino secundário (curso tecnológico ou		
	profissional)	1735	23,8%
	Ensino secundário (científico-humanístico)	655	9,0%
	Cursos de especialização tecnológica	198	2,7%
	Ensino superior politécnico (3 anos)	1468	20,1%
	Ensino Superior Universitário		
	(Licenciatura, Mestrado, Doutoramento)	2499	34,3%
	Desconhecido	155	2,1%

de género masculino é ligeiramente superior ao número de alunos do género feminino com uma percentagem de cerca de 50,2% contra 49,8%. Apenas cerca de 7,8% dos alunos são imigrantes, 36,1% já repetiu de ano escolar, 58,2% iniciou o 1º ano de escolaridade com 6 anos. Observa-se ainda que cerca de 34,3% de alunos esperam concluir o ESU (Licenciatura, Mestrado ou Doutoramento).

Na Tabela 5.6 observa-se que as escolas públicas dominam a participação com uma percentagem de 89,4% (94,5% dos alunos frequentam este tipo de escolas). Quanto à localização, um maior número de escolas encontra-se localizada nas pequenas cida-

Tabela 5.6.: Frequências absolutas	e relativas das	s variáveis	explicativas	qualitativas	ao nível da
escola					

Variável	Categoria	Nº de Alunos	% de Alunos	Nº de Escolas	% de Escolas
tipocat	Pública	6897	94,5%	219	89,4%
	Privada	338	4,6%	23	9,4%
	Desconhecido	61	0,8%	3	1,2%
loccat	Aldeia	448	6,1%	22	9,0%
	Pequena Cidade	5758	78,9%	187	76,3%
	Grande Cidade	1029	14,1%	33	13,5%
	Desconhecido	61	0,8	3	1,2%
selcat	Nunca	4295	58,9%	138	56,3%
	As vezes	2467	33,8%	85	34,7%
	Sempre	395	5,4%	17	6,9%
	Desconhecido	139	1,9%	5	2,0%
região	Norte	2212	30,3%	72	29,4%
	Centro	1303	17,9%	46	18,8%
	AM de Lisboa	1307	17,9%	44	18,0%
	Algarve	202	2,8%	7	2,9%
	Alentejo	553	7,6%	23	9,4%
	RA dos Açores	1544	21,2%	47	19,2%
	RA da Madeira	175	2,4%	6	2,4%

des com uma percentagem de 76,3%. Cerca de 56,3% das escolas nunca consideraram as recomendações de escolas anteriores ou registos académicos para selecionar os alunos. Por outro lado, observa-se que em Portugal, o maior número de alunos e escolas participantes no PISA 2015 ocorreu na região Norte com uma percentagem de 30,3% e 29,4% respetivamente. A Região Autónoma da Madeira registou o menor número de alunos e escolas participantes, com uma percentagem igual a 2,4% para ambos os casos.

5.2.2 Análise exploratória das variáveis explicativas contínuas

Nesta secção pretende-se realizar a análise descritiva das variáveis explicativas contínuas. Tal como foi exposto no início do capítulo, o problema de existência de valores em falta nas variáveis explicativas contínuas foi resolvido pelo processo de imputação dos *missings values*, que consistia em substituir os valores em falta pela média da variável na escola para variáveis ao nível do aluno, e pela média da variável na região para variáveis ao nível da escola.

As Tabelas 5.7, 5.8 e 5.9 apresentam algumas estatísticas descritivas (média, mediana, máximo, mínimo e desvio padrão) das variáveis explicativas contínuas ao nível do aluno, ao nível da escola e ao nível da região depois da imputação dos valores em falta (missing values). Para verificar o nível de alterações que ocorreram nas estatísticas descritivas, foram também calculadas as estatísticas descritivas antes da imputação

dos *missing values* e os respetivos resultados podem ser encontrados na Tabela A.1, Tabela A.2 e Tabela A.3, nos Anexos.

Tabela 5.7.: Estatísticas descritivas das variáveis explicativas contínuas ao nível do aluno após a imputação dos *missings values* (N^o de alunos=7296)

Variável	% de alunos com <i>missing</i> values	Média	Mediana	Desvio Padrão	Mínimo	Máximo
age	0,000 %	15,780	15,750	0,284	15,330	16,330
indesc	1,370 %	-0,555	-0,674	1,146	-4,153	3,077

Tabela 5.8.: Estatísticas descritivas das variáveis explicativas contínuas ao nível da escola após a imputação dos *missings values* (N^o de escolas=245)

	-					
Variável	% de escolas	Média	Mediana	Desvio	Mínimo	Máximo
	com missing va-			Padrão		
	lues					
tamanho	7,350 %	1402	1288	909,179	2	3918
prop	7,350 %	49,140	49,248	4,670	26,830	68,540
racioap	9,388 %	10,446	10,421	4,028	1,980	41,421
compa	0,816 %	0,256	0,294	0,963	-2,387	3,001
compp	0,816 %	0,142	0,223	0,975	-2,118	3,139

Tabela 5.9.: Estatísticas descritivas das variáveis explicativas contínuas ao nível das regiões após a imputação dos *missings values* (Número de regiões por NUTS II=7)

	<u> </u>					
Variável	% de regiões	Média	Mediana	Desvio	Mínimo	Máximo
	com missing va-			Padrão		
	lues					
pib	0,000 %	34475,970	32632	22649,68	3706	63194
despensino	0,000 %	402,708	350,987	153,02	232,776	695,014
respress-mean	0,000 %	-0,539	-0,507	0,05	-0,681	-0,495
staffshort-mean	0,000 %	0,779	0,922	0,32	0,244	1,240

A comparação das tabelas das estatísticas descritivas das variáveis explicativas contínuas antes da imputação dos *missings values* com as tabelas das estatísticas descritivas das variáveis explicativas contínuas após a imputação dos *missings values* permite aferir que não houve grandes alterações dos valores. Este facto foi comprovado pelo teste de Mann-Whitney cujos resultados indicaram que não existem diferenças significativas entre antes e após a imputação dos *missings values* das variáveis.

Analisando a Tabela 5.7 observa-se que a idade média dos alunos é 15,780 anos e o índice económico, social e cultural médio dos alunos é -0,555.

Na Tabela 5.8 observa-se que o número total médio de alunos nas escolas é de 1402, e realça-se o facto de existir uma escola com apenas dois alunos da região Norte.

Ainda na mesma tabela observa-se que a proporção média de raparigas é próximo de 50%, e há em média cerca de 10,446 alunos por professor. Por outro lado, na Tabela 5.9 observa-se que a média do produto interno bruto *per capita* é de 34475,970 milhões de euros. Ainda na mesma tabela, observa-se que a despesa anual média familiar com o ensino é de 402,708 euros.

De seguida, apresentam-se alguns gráficos que ilustram o comportamento de algumas variáveis explicativas e as relações existentes entre elas.

A Figura 5.1 representa a relação entre a variável situação de repetente do aluno e a sua condição de imigrante, mostrando um elevado número de alunos nativos que não repetiram (4276) em comparação com o número de alunos nativos que já repetiram (2424) de ano escolar. Relativamente aos alunos imigrantes, observa-se que o número de alunos que já repetiram (210) é ligeiramente inferior ao número de alunos que não repetiram (276).

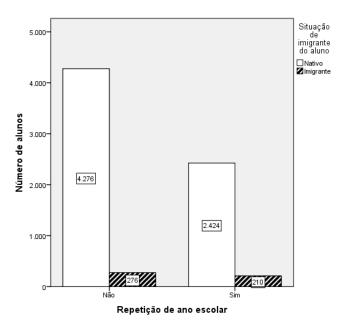


Figura 5.1.: Número de alunos em situação de repetente vs situação de imigrante

Na Figura 5.2 está representada a situação de repetente do aluno por região. Analisando esta figura observa-se que a região do Algarve é a única em que o número de alunos que já repetiram é ligeiramente superior ao número de alunos que não repetiram, com uma diferença de apenas 4 alunos.

Na Figura 5.3 observa-se que nos alunos que iniciaram o 1º ano de escolaridade com 7 anos ou mais de idade, há um maior número de alunos que já repetiram. O mesmo comportamento não se verifica nos alunos que iniciaram o 1º ano de escolaridade mais cedo, principalmente nos alunos que iniciaram com 6 anos de idade.

Na Figura 5.4 observa-se que, os alunos que esperam concluir os dois graus académicos mais baixos são os mais frequentes no grupo dos alunos que já repetiram.

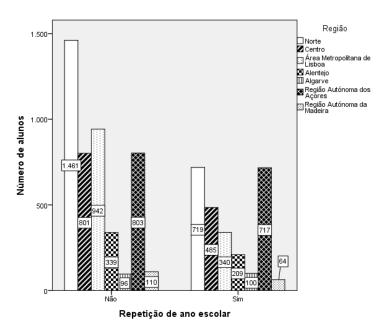


Figura 5.2.: Número de alunos em situação de repetente vs região onde o aluno se localiza

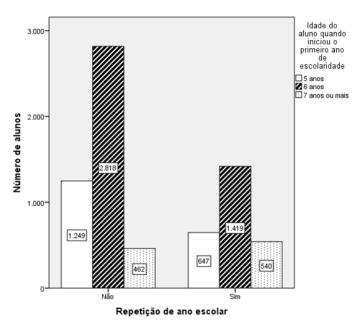


Figura 5.3.: Número de alunos em situação de repetente *vs* idade com que o aluno iniciou o 1º ano de escolaridade

Por outro lado, observa-se que no grupo de alunos que esperam concluir os dois graus académicos mais altos, os que nunca repetiram são em maior número.

Na Figura 5.5, observa-se que o maior número de alunos imigrantes se encontra localizada na Área Metropolitana de Lisboa e existem apenas quatro alunos imigrantes na Região Autónoma da Madeira. Por outro lado, a Figura 5.6 sugere que o maior número de alunos nativos iniciou o primeiro ano de escolaridade com 6 anos de idade e apenas 887 alunos nativos iniciaram o primeiro ano de escolaridade com 7 anos ou mais de idade.

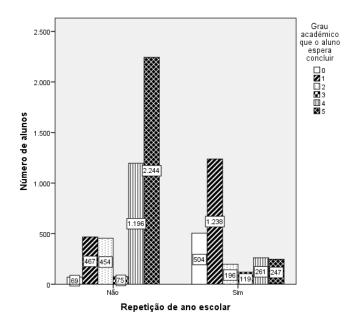


Figura 5.4.: Número de alunos em situação de repetente *vs* grau académico que o aluno espera concluir

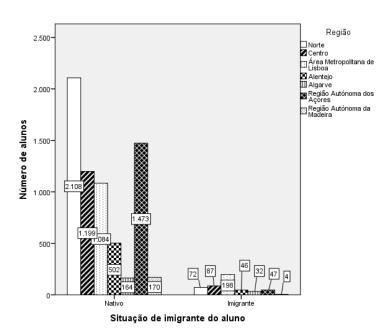


Figura 5.5.: Número de alunos em situação de imigrante vs região onde o aluno se localiza

Na Figura 5.7 está representado o rácio aluno-professor por cada região. Analisando esta figura observa-se que a Área Metropolitana de Lisboa apresenta maior rácio aluno-professor e a Região Autónoma da Madeira apresenta menor rácio.

Na Figura 5.8 está representada a relação entre as variáveis tipo de escola e a região onde a escola se localiza. Pretende-se com esta figura analisar a predominância dos tipos de escolas pelas diferentes regiões de Portugal, indicando que no PISA 2015 as regiões de Alentejo, Algarve e a Região Autónoma da Madeira participaram apenas escolas públicas, ou seja, não apresentam escolas privadas. O maior número

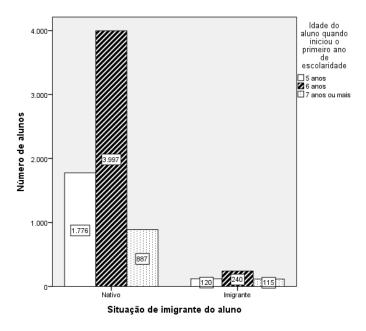


Figura 5.6.: Número de alunos em situação de imigrante *vs* idade com que o aluno iniciou o 1º ano de escolaridade

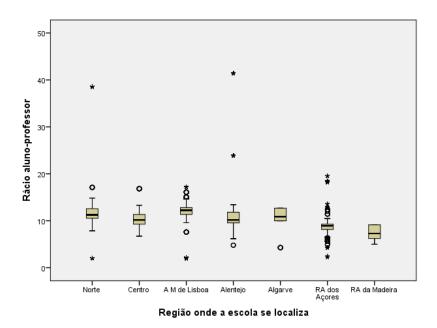


Figura 5.7.: Rácio aluno-professor vs região onde a escola se localiza

de escolas privadas que participou foi da Região Autónoma dos Açores. Na Figura 5.9 observa-se que há um maior número de escolas privadas que às vezes consideram pelo menos um dos dois fatores de admissão de alunos na escola. As escolas públicas que não consideram nenhum dos dois fatores de admissão de alunos na escola são as mais frequentes (133 escolas).

Na Figura 5.10 está representado o índice económico, social e cultural do aluno em cada tipo de escola por região. Analisando esta figura, observa-se que entre os alunos das escolas privadas, os alunos das escolas da Área Metropolitana de Lisboa

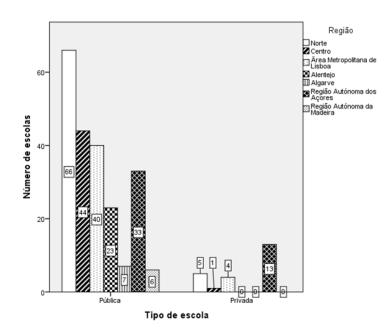


Figura 5.8.: Tipo de escola vs região onde a escola se localiza.

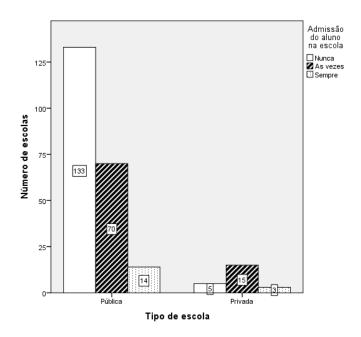


Figura 5.9.: Tipo de escola vs admissão do aluno na escola

apresentam o maior índice económico, social e cultural, e os alunos das escolas da RA dos Açores apresentam o menor índice económico, social e cultural. Por outro lado, entre os alunos das escolas públicas, os da Área Metropolitana de Lisboa apresentam um maior índice económico, social e cultural, e o menor índice verifica-se em alunos da RA dos Açores.

De seguida apresenta-se um estudo sobre a distribuição dos valores das variáveis explicativas contínuas ao nível da região por cada uma das regiões. Analisando a Tabela 5.10 observa-se que a Área Metropolitana de Lisboa apresenta valores mais elevados do produto interno bruto *per capita* e das despesas familiares com educação.

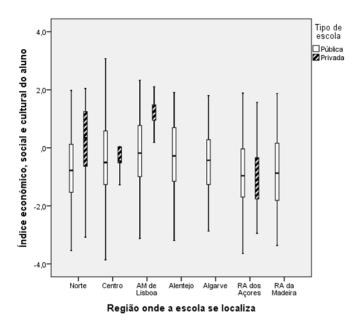


Figura 5.10.: Índice económico, social e cultural do aluno vs tipo de escola em cada região

A região do Algarve apresenta maior índice de falta de pessoal educativo (stafshort-mean), embora o resultado não se tenha revelado muito diferente da região do Alentejo.

Tabela 5.10.: Distribuição dos valores das variáveis explicativas ao nível da região por cada região

região	pib (10 ⁶ euros)	despensino (euros)	respress-mean	stafshort-mean
Norte	50779	429,177	-0,495	0,982
Centro	32632	329,667	-0,588	0,704
AM de Lisboa	63194	695,014	-0,566	0,922
Algarve	7501	312,690	-0,621	1,239
Alentejo	11104	232,776	-0,546	1,222
RA dos Açores	3706	257,490	-0,507	0,244
RA da Madeira	4124	350,987	-0,681	0,492

5.2.3 Análise exploratória da variável resposta

Após a análise exploratória das variáveis explicativas, apresentam-se de seguida os resultados da análise exploratória para a variável resposta. De referir que a variável resposta foi retirada aleatoriamente de um conjunto de 10 variáveis do PISA 2015 que se designam de valores plausíveis. Para se ter uma ideia do comportamento dos valores plausíveis, apresentam-se na Tabela 5.11 as suas estatísticas descritivas.

Analisando a Tabela 5.11 observa-se que todos os valores plausíveis apresentam uma média inferior a 500 pontos estabelecidos pela OECD. Para reforçar a escolha do valor plausível que foi usado como variável resposta, foi realizado o teste de Kruskall-

Valor Plausível	Nº de alunos	Mínimo	Máximo	Média	Desvio padrão	Mediana
PV1MATH	7296	157,556	783,224	491,806	96,827	494,198
PV2MATH	7296	145,684	774,265	490,849	97,078	494,249
PV3MATH	7296	172,010	784,568	491,648	95,724	493,532
PV ₄ MATH	7296	109,887	812,811	491,626	96,382	495,217
PV5MATH	7296	163,986	766,498	489,999	95,776	493,404
PV6MATH	7296	188,174	828,550	490,458	95,436	493,405
PV7MATH	7296	167,525	812,240	491,679	95,831	493,684
PV8MATH	7296	147,641	809,749	491,118	95,567	493,305
PV9MATH	7296	73,154	769,480	490,777	96,208	494,036
PV10MATH	7296	153,631	788,372	491,323	93,881	492,959

Tabela 5.11.: Estatísticas descritivas dos 10 valores plausíveis (N^o de alunos=7296)

Wallis para verificar se existem diferenças significativas entre as distribuições das populações dos 10 valores plausíveis apresentados. A Tabela 5.12 apresenta os resultados do teste realizado.

Tabela 5.12.: Resultado do teste de Kruskall-Wallis

ET	GL	P-valor
2,092	9	0,990

Sob a hipótese nula de que as populações dos 10 valores plausíveis seguem a mesma distribuição, a Tabela 5.12 apresenta um valor de prova que evidencia estatisticamente a não rejeição da hipótese nula, a um nível de significância de 5%. No contexto do problema, isso indica que os 10 valores plausíveis não apresentam diferenças significativas, daí então escolheu-se aleatoriamente o PV5MATH como variável resposta do trabalho, que em diante irá designar-se de "desempenho do aluno em Matemática". A Figura 5.11 representa o histograma da distribuição do desempenho do aluno em Matemática, que evidencia a simetria desta variável.

Após a análise dos valores plausíveis para a escolha da variável resposta, seguese a análise do desempenho em Matemática dos alunos por região (NUTS II). Note-se que um estudo semelhante foi realizado por Marôco et al. (2016) por regiões NUTS III. A Tabela 5.13 apresenta informação sobre o número de alunos e o respetivo desempenho por região.

Analisando a Tabela 5.13 observa-se que a região Centro apresenta a média de desempenho em Matemática mais elevada de todas as regiões. A região autónoma dos Açores apresenta o valor mais baixo da média do desempenho. Por outro lado, realizou-se o teste de Kruskal-Wallis para verificar se há diferenças significativas entre as medianas dos desempenhos em Matemática nas 7 regiões portuguesas. O valor de prova obtido foi inferior de 0,000, indicando claramente evidências de rejeição da hipótese nula, ou seja, existem diferenças significativas no desempenho em Ma-

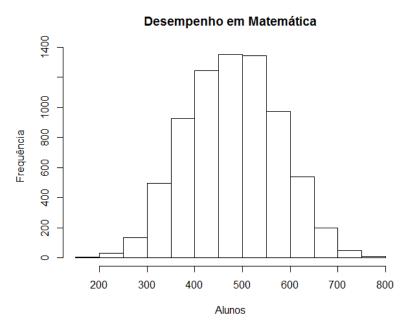


Figura 5.11.: Histograma do desempenho do aluno em Matemática

T-1-1	Tr-1-14-11		.1	1 1 .	1	A	A-1	~ _
- Tapela 5.13.:	ESTATISTICAS	descritivas do) aesem	penno ao	o aiumo	em N	viatematica	por regiao
10.2 010.).1		oreserver ore		P			, 20100111010101	P 0

Região	Nº de	Mínimo	Máximo	Média	Desvio	Mediana
	alunos				padrão	
Norte	2212	218,28	719,09	487,730	90,718	490,955
Centro	1303	238,94	755,43	501,042	88,220	506,667
AM de Lisboa	1307	219,34	733,70	493,401	90,617	498,730
Algarve	202	305,45	669,77	471,104	87,378	466,004
Alentejo	553	162,44	731,32	498,388	88,761	506,134
RA dos Açores	1544	239,39	723,23	462,267	87,715	457,495
RA da Madeira	175	280,82	717,98	489,650	89,463	493,732

temática nas 7 regiões a um nível de significância de 5%. De seguida, verificou-se através dos testes de comparações múltiplas as regiões onde ocorrem essas diferenças, tendo-se observado que o desempenho mediano em Matemática da região Norte é significativamente diferente dos desempenhos medianos de todas as outras regiões. Não há diferenças significativas entre os desempenhos medianos das regiões Centro e do Alentejo, sendo que os valores medianos nas duas regiões são bastante próximos (506,667-Centro e 506,134-Alentejo). Nos restantes casos não mencionados existem diferenças significativas entre os desempenhos em Matemática.

5.2.4 Relação entre a variável resposta e as variáveis explicativas

Depois de serem apresentadas as estatísticas descritivas dos valores plausíveis e a respetiva escolha aleatória dum valor plausível como variável resposta (desempenho do aluno em Matemática), apresentam-se os resultados da análise da relação da variável resposta com as diferentes variáveis explicativas. Na Tabela 5.14 pretende-se analisar o desempenho em Matemática (variável resposta) nas diferentes categorias de cada variável explicativa categórica ao nível do aluno. Observa-se que os rapazes apresentam o melhor desempenho médio em Matemática que as raparigas. Os alunos imigrantes apresentam um pior desempenho médio em Matemática do que os alunos nativos. Quanto à situação de repetente, os alunos que não repetiram de ano escolar apresentam um melhor desempenho médio em Matemática que aqueles que já repetiram. Ainda ao nível do aluno, os alunos que iniciaram o 1º ano de escolaridade com 6 anos apresentam um melhor desempenho médio em Matemática, evidenciando assim essa idade como a idade mais adequada para iniciar o ensino primário. Relativamente ao grau académico que o aluno espera concluir, os alunos que esperam concluir o Ensino Superior Universitário apresentam um melhor desempenho médio em Matemática quando comparados com os alunos que esperam concluir os graus académicos mais baixos.

Ao nível da escola, na Tabela 5.15 observa-se que as escolas privadas apresentam o melhor desempenho médio em Matemática do que as escolas públicas, e as escolas que se localizam nas grandes cidades também apresentam o melhor desempenho médio em Matemática do que as restantes escolas. Relativamente ao critério de seleção e admissão do aluno na escola, observa-se que o desempenho médio em Matemática não é muito diferente entre as escolas que nunca consideram os critérios de seleção e as escolas que às vezes consideram pelo menos um dos critérios de seleção.

Para verificar se existem diferenças significativas na distribuição do desempenho do aluno em Matemática entre as categorias de cada variável, aplicou-se o teste de Mann-Whitney (para variáveis qualitativas com duas categorias) e Kruskal-Wallis (para variáveis qualitativas com mais de duas categorias), tendo se concluído que existem diferenças significativas na distribuição do desempenho em Matemática entre as categorias de cada uma das variáveis a um nível de significância de 5%. Os resultados dos testes aplicados podem ser observados na Tabela 5.16

Realizada a análise do comportamento da variável resposta (desempenho do aluno em Matemática) pelas diferentes categorias das variáveis explicativas categóricas, o passo seguinte é analisar a relação entre a variável resposta e algumas variáveis explicativas contínuas.

Na Figura 5.12 observa-se claramente um elevado desempenho à medida que aumenta o índice económico, social e cultural do aluno. Portanto, os alunos com maior índice económico, social e cultural apresentam melhores ferramentas necessárias que lhes permitem ter um bom desempenho em Matemática. Por outro lado realiza-se a mesma análise por região (Figura 5.13). Neste gráfico, pode-se observar que o com-

Tabela 5.14.: Desempenho dos alunos vs variáveis explicativas categóricas ao nível do aluno

Variável	Categoria	Nº de	Mínimo	Máximo	Média	Desvio	Mediana
explica-		alunos				padrão	
tiva							
género	Masculino	3661	194,810	766,498	495,768	98,264	499,229
	Feminino	3635	163,986	762,156	484,107	90,700	488,377
imigcat	Não	6728	163,986	766,498	493,129	94,223	497,825
	Sim	568	196,660	716,097	459,436	94,731	450,132
repeatcat	Não repetiu	4552	247,398	766,498	529,528	78,366	531,375
	Repetiu	2634	163,986	646,772	408,228	69,493	409,877
	Desconhecido	110	171,499	632,825	409,785	85,797	411,695
agepri	5 anos	1904	194,810	762,156	497,475	92,499	501,463
	6 anos	4246	163,986	766,498	500,151	93,447	504,541
	Maior ou igual a 7 anos	1009	171,499	699,202	438,525	86,405	436,039
	Desconhecido	137	217,475	696,076	424,559	81,112	418,107
expalunoca	3.º ciclo do ensino básico	586	198,450	653,628	357,083	71,522	393,139
	Ensino secundário (curso tecnológico)						
	ou profissional	1735	171,499	646,772	418,563	73,055	420,202
	Ensino secundário (científico-humanístico)	655	235,902	691,893	483,533	79,917	486,048
	Cursos de especialização tecnológica	198	245,858	647,349	441,577	87,824	445,436
	Ensino superior politécnico						
	(3 anos)	1468	234,017	750,485	506,684	78,573	508,330
	Ensino superior universitário						
	(Licenciatura, Mestrado, Doutoramento)	2499	250,363	766,498	542,382	80,069	544,956
	Desconhecido	155	163,986	632,825	426,851	87,294	421,012

Tabela 5.15.: Desempenho dos alunos vs variáveis explicativas categóricas ao nível da escola

Variável	Categoria	Nº de	Mínimo	Máximo	Média	Desvio	Mediana
explicativa		alunos				padrão	
tipocat	Pública	6897	163,986	766,498	486,632	94,511	489,648
	Privada	338	292,887	760,743	540,635	83,515	540,746
	Desconhecido	61	271,347	691,893	539,198	85,635	541,077
loccat	Aldeia	448	171,499	681,004	437,082	93,987	424,686
	Pequena cidade	5758	163,986	766,498	484,640	93,959	487,416
	Grande cidade	1029	196,660	766,230	517,120	91,206	519,936
	Desconhecido	61	271,347	691,893	539,198	85,635	541,077
selcat	Nunca	4295	163,986	766,230	489,584	94,953	493,691
	As vezes	2467	194,810	762,156	489,104	94,685	490,623
	Sempre	395	231,693	766,498	483,907	92,201	487,686
	Desconhecido	139	271,347	743,493	546,781	80,753	548,765

Tabela 5.16.: Resultados do teste de Mann-Whitney e de Kruskal-Wallis

Variável qualitativa	ET	GL	P-valor
género	6291600	1	$5,635 \times 10^{-5}$
imigcat	2199300	1	$2,163 \times 10^{-9}$
repeatcat	10512000	1	$< 2,2 \times 10^{-16}$
agepri	340,110	2	$< 2,2 \times 10^{-16}$
expalunocat	1392,200	5	$< 2,2 \times 10^{-16}$
tipocat	788360	1	$< 2,2 \times 10^{-16}$
loccat	10512000	2	$< 2,2 \times 10^{-16}$
selcat	13,696	2	0,001

portamento do desempenho em função do índice económico, social e cultural dos alunos é semelhante nas regiões, com a exceção da RA da Madeira.

Na Figura 5.14 pretende-se analisar o comportamento do desempenho do aluno em Matemática em relação ao número total de alunos na escola. Observa-se um desempenho ligeiramente crescente em Matemática à medida que o número total de alunos da escola aumenta, indo de acordo com os resultados que Sun et al. (2012) encontrou quando trabalhou com os dados do PISA 2006. Realiza-se uma análise análoga por região (Figura 5.15), e pode-se observar alguma semelhança de comportamento de desempenho nas regiões Norte, Centro e Área Metropolitana de Lisboa.

Seguindo o mesmo tipo de análise, outros gráficos que relacionam o desempenho do aluno em Matemática com diferentes variáveis explicativas contínuas podem ser observadas nas Figuras B.1, B.2, B.3 e B.4, anexos.

Na Tabela 5.17 são apresentadas as correlações entre a variável resposta e as diferentes variáveis explicativas.

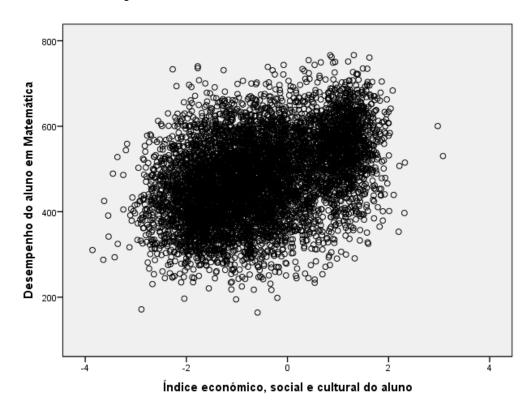


Figura 5.12.: Gráfico de dispersão de Índice económico, social e cultural do aluno *vs* Desempenho do aluno em Matemática

Analisando a Tabela 5.17 é possível observar uma correlação positiva entre o índice económico, social e cultural do aluno e a variável resposta, evidenciando assim o resultado apresentado na Figura 5.12. Observa-se ainda uma correlação positiva entre o desempenho do aluno em Matemática com a proporção de raparigas na escola (prop) e com o número total de alunos na escola (tamanho). Em geral, os resultados indicam correlações fracas e significativas entre o desempenho do aluno em

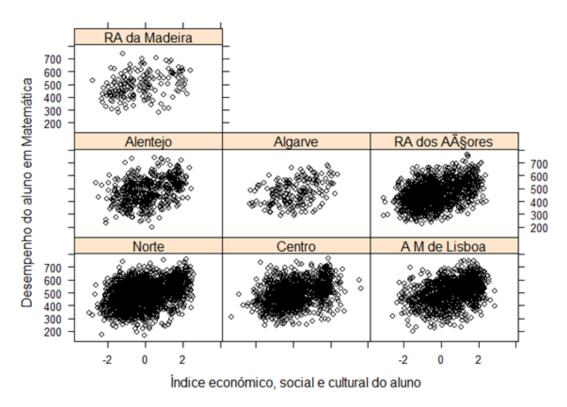


Figura 5.13.: Gráfico de dispersão do índice económico, social e cultural do aluno *vs* Desempenho do aluno em Matemática por região

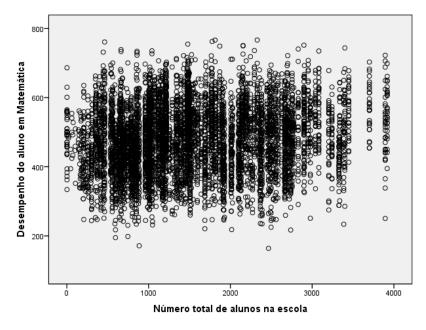


Figura 5.14.: Gráfico de dispersão do número total de alunos na escola *vs* Desempenho do aluno em Matemática

Matemática e as variáveis explicativas contínuas a um nível de significância de 5%, com a exceção da correlação entre o desempenho e o comportamento do professor, que não é significativa.

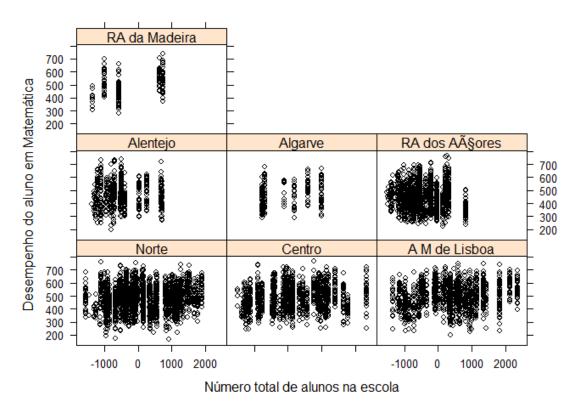


Figura 5.15.: Gráfico de dispersão do número total de alunos na escola *vs* Desempenho do aluno em Matemática por região

Tabela 5.17.: Correlação entre o desempenho do aluno em Matemática e as variáveis explicativas contínuas

Nível	Variável	Correlação	P-valor
Alunos	age	0,045	0,0001
	indesc	0,409	$< 2,2 \times 10^{-16}$
Escolas	tamanho	0,090	$< 2,2 \times 10^{-16}$
	prop	0,081	$3,4 \times 10^{-11}$
	racioap	0,066	3.3×10^{-5}
	compa	-0,068	5.4×10^{-9}
	compp	-0,017	0,1350
Regiões	pib	0,012	$< 2,2 \times 10^{-16}$
	despensino	0,004	< 2,2 × 10 ⁻¹⁶
	respress-mean	-0,032	$2,6 \times 10^{-14}$
	staffshort-mean	-0,012	$< 2,2 \times 10^{-16}$

5.2.5 Análise exploratória da variável resposta por região

Para finalizar o Capítulo 5, realiza-se uma análise comparativa do desempenho do aluno em Matemática nas regiões. Numa primeira fase apresenta-se essa análise nas variáveis explicativas categóricas.

No que diz respeito ao género do aluno, na Tabela 5.18 observa-se que a média de desempenho em Matemática dos rapazes é maior que a das raparigas para cada

uma das 7 regiões. De todas regiões, registou-se maior diferença na região Norte que foi de 12,990 pontos e a menor diferença registou-se na região do Alentejo, que foi de apenas 2,474 pontos. Para os alunos de ambos géneros, a região Centro registou o maior desempenho médio (504,680 pontos-género masculino e 497,259 pontos-género feminino), embora a diferença seja pequena, nos alunos do género feminino, com os do género feminino do Alentejo. A Região Autónoma dos Açores registou o desempenho mais baixo para alunos de ambos géneros (467,849 pontos-género masculino e 457,206 pontos-género feminino).

Tabela 5.18.: Desempenho do aluno em Matemática por género em cada região

				`		<u> </u>
região	género	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	Masculino	218,901	494,275	497,496	95,174	719,091
	Feminino	218,281	481,285	482,835	85,620	687,906
Centro	Masculino	238,943	504,680	508,972	91,653	755,428
	Feminino	270,520	497,259	503,075	84,342	746,683
AM de Lis-	Masculino	247,181	497,548	501,690	95,230	733,696
boa						
	Feminino	219,345	488,812	493,428	84,987	733,689
Alentejo	Masculino	162,443	499,669	505,560	94,760	719,229
	Feminino	243,542	497,195	508,452	82,779	731,323
Algarve	Masculino	305,450	475,130	471,111	89,436	669,773
	Feminino	313,710	466,861	456,528	84,970	664,702
RA dos	Masculino	239,395	467,849	458,969	91,361	723,234
Açores						
	Feminino	261,291	457,206	455,521	83,985	690,762
RA da Ma-	Masculino	280,820	493,824	499,968	98,967	717,983
deira						
	Feminino	307,983	486,011	485,829	80,119	633,192

Analisando a situação de imigrante dos alunos, na Tabela 5.19 observa-se que em todas as regiões, os alunos nativos apresentam desempenho superior aos alunos imigrantes. A grande diferença registou-se na Área Metropolitana de Lisboa com 48,542 pontos e a menor diferença registou-se na região Norte com apenas 18,685 pontos, embora muito próxima da região Centro com uma diferença de 18,713 pontos. O desempenho mais baixo dos alunos nativos foi observado na RA do Açores (463,509 pontos).

Quanto à situação de repetente, na Tabela 5.20 observa-se que os alunos que não repetiram de ano escolar apresentam maior desempenho médio em Matemática que os alunos que já repetiram em todas as regiões de Portugal, com uma diferença de mais de 100 pontos, sendo que a maior diferença ocorreu na RA da Madeira (133,224 pontos). Analisando ainda a situação de repetente, observa-se que em todas regiões, os alunos que não repetiram apresentam uma média de desempenho acima da média

Tabela 5.19.: Desempenho do aluno em Matemática por situação de imigrante em cada região

região	imigcat	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	Nativo	218,281	488,569	492,837	90,436	719,091
	Imigrante	282,761	469,884	458,624	94,805	690,316
Centro	Nativo	238,943	502,335	508,136	88,686	755,428
	Imigrante	276,830	483,622	475,226	79,701	640,614
AM Lisboa	Nativo	247,181	501,670	507,035	88,644	733,696
	Imigrante	219,345	453,128	442,487	89,333	699,444
Alentejo	Nativo	162,443	499,944	508,452	89,013	731,323
	Imigrante	281,871	481,319	495,683	84,153	663,923
Algarve	Nativo	305,450	478,177	473,396	86,644	669,773
	Imigrante	321,302	441,175	421,053	84,121	635,221
RA Açores	Nativo	239,395	463,509	458,969	87,420	723,234
	Imigrante	262,334	434,541	428,087	90,076	643,617
RA Madeira	Nativo	280,820	491,008	496,085	89,988	717,983
	Imigrante	381,224	443,424	429,003	51,268	530,556

estabelecida pela OECD, e o desempenho médio mais baixo dos alunos que já repetiram ocorreu na região Norte (399,500 pontos).

Tabela 5.20.: Desempenho do aluno em Matemática por situação de repetente em cada região

região	repeatcat	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	Não repetiu	321,087	526,365	528,108	72,093	719,091
	Repetiu	218,281	399,500	399,248	63,554	561,218
Centro	Não repetiu	305,983	539,315	536,954	69,480	755,428
	Repetiu	238,943	414,849	413,690	60,205	617,170
AM Lisboa	Não repetiu	285,589	533,156	536,995	74,538	733,696
	Repetiu	219,345	412,878	410,532	60,883	570,303
Alentejo	Não repetiu	303,215	533,578	534,922	70,104	731,323
	Repetiu	162,443	409,765	407,954	67,114	579,293
Algarve	Não repetiu	356,395	526,524	532,380	71,254	669,773
	Repetiu	305,450	410,589	407,417	57,147	585,085
RA Açores	Não repetiu	306,023	513,786	513,088	72,648	723,234
	Repetiu	239,395	400,415	395,779	58,669	588,658
RA Madeira	Não repetiu	332,593	535,178	538,376	68,637	717,983
	Repetiu	280,820	401,954	403,226	52,505	540,357

Na Tabela 5.21 observa-se que os alunos que iniciaram o 1º ano de escolaridade com 5 anos de idade apresentam maior desempenho médio em Matemática na Área Metropolitana de Lisboa, embora a diferença tenha sido de apenas 2,507 pontos em relação ao desempenho médio de alunos que iniciaram com 6 anos. Nas restantes regiões, os alunos que iniciaram o 1º ano de escolaridade com 6 anos apresentam maior desempenho médio em Matemática. Observa-se ainda que em todas as regioes, as diferenças de desempenho médio em Matemática entre os alunos que iniciaram

o 1º ano de escolaridade com 6 anos de idade e os alunos que iniciaram o 1º ano de escolaridade com 7 anos ou mais de idade é maior quando comparado com as diferenças entre os alunos que iniciaram o 1º ano de escolaridade com 6 anos e os que iniciaram com 5 anos de idade.

Tabela 5.21.: Desempenho do aluno em Matemática por idade que o aluno começou o 1º ano de escolaridade em cada região

região	agepri	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	5 anos	218,901	496,347	505,544	86,488	690,316
	6 anos	228,248	497,804	500,287	89,570	719,091
	Maior ou igual a 7 anos	242,889	437,006	432,018	81,720	650,675
Centro	5 anos	276,830	505,008	510,387	83,529	751,318
	6 anos	270,520	508,182	514,003	87,947	755,428
	Maior ou igual a 7 anos	238,943	448,896	443,830	82,579	689,400
AM Lisboa	5 anos	276,319	505,930	510,136	91,270	733,696
	6 anos	219,345	503,423	506,977	86,658	733,689
	Maior ou igual a 7 anos	237,074	441,201	431,295	82,965	607,951
Alentejo	5 anos	335,300	491,253	482,288	79,390	680,813
	6 anos	162,443	513,700	523,087	87,882	731,323
	Maior ou igual a 7 anos	215,838	449,979	458,426	91,199	635,318
Algarve	5 anos	329,997	478,071	478,172	90,844	669,773
	6 anos	322,214	490,673	499,516	79,189	664,702
	Maior ou igual a 7 anos	311,242	409,025	380,040	73,737	623,397
RA Açores	5 anos	239,395	472,586	470,213	86,621	709,562
	6 anos	245,824	473,026	469,153	87,467	723,234
	Maior ou igual a 7 anos	268,993	426,029	410,163	78,272	642,483
RA Madeira	5 anos	281,143	493,681	485,540	87,423	717,983
	6 anos	307,983	504,909	515,659	85,702	713,641
	Maior ou igual a 7 anos	299,405	429,163	426,953	74,299	622,023

Por último, na Tabela 5.22 e Tabela 5.23 observa-se que os alunos que esperam concluir o grau académico mais alto (Licenciatura, Mestrado ou Doutoramento) apresentam melhor desempenho em todas as regiões. Os desempenhos médios mais baixo ocorreram nos alunos que esperam concluir o grau académico mais baixo (3.º ciclo do ensino básico).

Ao nível da escola, na Tabela 5.24 observa-se um maior desempenho para as escolas privadas em comparação com as escolas públicas, com a exceção da região Centro onde as escolas públicas tiveram o melhor desempenho médio. A maior diferença de desempenho médio em Matemática entre as escolas públicas e privadas observou-se na Área Metropolitana de Lisboa, e a menor diferença observou-se na região Centro.

Analisando a Tabela 5.25 observa-se que a região do Algarve e do Alentejo não apresentam escolas localizadas nas grandes cidades no estudo. Relativamente ao desempenho do aluno por localização da escola, a mesma tabela sugere que as escolas localizadas nas grandes cidades apresentam maior desempenho médio em Matemática, exceto na região Centro. Na região Centro, o maior desempenho registou-se nas escolas das pequenas cidades.

Tabela 5.22.: Desempenho do aluno em Matemática por grau que o aluno espera concluir em cada região

região	expalunocat	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	3.º ciclo do ensino básico	252,889	388,479	385,437	62,691	591,934
Norte	Ensino secundário (curso tecnológico	252,009	300,479	303,437	02,091) 59±/954
	ou profissional)	218,901	419,818	422,380	65,476	618,556
	Ensino secundário (científico-humanístico)	282,761	476,542	466,131	72,309	633,939
	Cursos de especialização tecnológica	254,349	445,196	447,132	80,958	619,099
	Ensino superior politécnico	-34/349	443/190	44//-3-	00,930	019/099
	(3 anos)	292,796	510,812	512,420	71,196	686,110
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	260,201	544,003	546,420	72,309	719,091
Centro	3.º ciclo do ensino básico	269,321	396,083	400,416	56,049	536,954
	Ensino secundário (curso tecnológico					
	ou profissional)	238,943	428,436	422,477	64,107	598,128
	Ensino secundário (científico-humanístico)	294,189	493,679	496,295	78,763	672,853
	Cursos de especialização tecnológica	301,930	469,573	462,811	71,533	634,862
	Ensino superior politécnico					
	(3 anos)	330,544	523,602	520,889	70,866	689,400
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	278,622	550,322	551,731	71,776	755,428
AM Lisboa	3.º ciclo do ensino básico	309,529	417,261	405,425	69,109	626,317
	Ensino secundário (curso tecnológico					
	ou profissional)	219,345	409,796	410,207	64,934	585,206
	Ensino secundário (científico-humanístico)	319,636	497,938	489,955	70,208	699,444
	Cursos de especialização tecnológica	285,589	439,616	435,153	92,749	634,115
	Ensino superior politécnico					
	(3 anos)	303,265	500,000	505,683	73,679	709,655
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	305,345	542,952	548,738	74,492	733,696
Alentejo	3.º ciclo do ensino básico	162,443	385,266	390,238	100,621	643,261
	Ensino secundário (curso tecnológico					
	ou profissional)	250,491	427,275	416,670	69,000	579,293
	Ensino secundário (científico-humanístico)	366,846	489,938	505,955	64,451	645,470
	Cursos de especialização tecnológica	268,071	450,812	413,283	91,703	641,958
	Ensino superior politécnico					
	(3 anos)	215,838	507,299	517,818	81,850	652,476
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	341,403	537,803	543,256	76,573	731,323

Quanto à admissão do aluno por recomendação das escolas de proveniência, a Tabela 5.26 apresenta uma variação da média de desempenho nas três categorias principais da variável. Por exemplo, nas regiões Norte, Alentejo, Algarve e a Região Autónoma da Madeira, as escolas que não observam nenhum dos dois critérios apresentam maior desempenho médio em Matemática. Na região Centro, as escolas que sempre observam pelo menos um dos dois critérios apresentam maior desempenho médio em Matemática. Na Área Metropolitana de Lisboa e na Região Autónoma dos Açores, as escolas que às vezes observam pelo menos um dos dois critérios apresentam maior desempenho médio em Matemática. Observa-se ainda que a região do Algarve e a Região Autónoma da Madeira não apresentam escolas que sempre observam os dois critérios de seleção/admissão de alunos.

Tabela 5.23.: Desempenho do aluno em Matemática por grau que o aluno espera concluir em cada região

	eddd 1egido					
região	expalunocat	Mínimo	Média	Mediana	Desvio	Máximo
					Padrão	
Algarve	3.º ciclo do ensino básico	311,242	388,765	380,040	57,629	508,641
	Ensino secundário (curso tecnológico					
	ou profissional)	313,710	412,609	411,870	56,060	585,085
	Ensino secundário (científico-humanístico)	347,703	465,586	462,436	77,317	625,710
	Cursos de especialização tecnológica	360,776	422,541	389,429	59,750	526,526
	Ensino superior politécnico					
	(3 anos)	370,673	499,197	504,151	69,966	664,702
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	337,275	526,713	541,051	85,266	669,773
RA Açores	3.º ciclo do ensino básico	239,395	400,352	397,457	55,643	567,718
	Ensino secundário (curso tecnológico					
	ou profissional)	245,824	406,052	401,552	62,561	613,176
	Ensino secundário (científico-humanístico)	279,496	464,842	462,822	70,328	663,255
	Cursos de especialização tecnológica	291,292	413,991	405,574	67,275	581,306
	Ensino superior politécnico					
	(3 anos)	263,327	492,200	494,894	71,408	690,762
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	308,167	531,109	527,554	78,206	723,234
RA Madeira	3.º ciclo do ensino básico	281,143	388,246	375,272	66,181	509,412
	Ensino secundário (curso tecnológico					
	ou profissional)	307,983	415,886	408,078	54,227	584,801
	Ensino secundário (científico-humanístico)	344,336	456,045	447,079	51,824	540,357
	Cursos de especialização tecnológica	399,708	445,316	451,046	23,409	466,419
	Ensino superior politécnico					
	(3 anos)	366,944	518,893	515,659	66,294	626,915
	Ensino superior universitário					
	(Licenciatura, Mestrado, Doutoramento)	395,545	555,237	552,576	64,377	717,983

Tabela 5.24.: Desempenho do aluno em Matemática por tipo de escola em cada região

região	tipocat	Mínimo	Média	Mediana	Desvio Padrão	Máximo
Norte	Pública	218,281	484,152	485,149	90,686	719,091
	Privada	346,652	534,910	524,687	78,477	687,906
Centro	Pública	238,943	499,440	503,712	88,941	755,428
	Privada	446,073	487,583	490,436	34,996	523,727
AM Lisboa	Pública	219,345	486,877	492,214	88,826	733,696
	Privada	359,756	560,120	573,666	81,324	733,689
Alentejo	Pública	162,443	498,388	506,133	88,761	731,323
Algarve	Pública	305,450	471,104	466,004	87,378	669,773
RA Açores	Pública	239,395	462,989	458,153	88,145	723,234
	Privada	338,109	475,380	470,462	66,124	682,091
RA Madeira	Pública	280,820	489,650	493,732	89,463	717,983

Para além da análise exploratória da variável resposta pelas regiões no que diz respeito as variáveis explicativas qualitativas, realiza-se ainda uma análise das correlações entre a variável resposta e cada uma das variáveis explicativas contínuas nas 7 regiões. A Tabela 5.27 sugere que a correlação entre o desempenho em Matemática e a idade do aluno é maior na região do Alentejo (0,180) e do Algarve (0,114).

Tabela 5.25.: Desempenho do aluno em Matemática por localização da escola em cada região

região	loccat	Mínimo	Média	Mediana	Desvio	Máximo
					Padrão	
Norte	Aldeia	256,759	455,902	433,602	96,199	639,128
	Pequena cidade	218,281	482,447	483,369	90,264	714,963
	Grande cidade	260,201	516,804	522,667	84,698	719,091
Centro	Aldeia	269,321	417,301	417,989	80,452	589,632
	Pequena cidade	238,943	501,645	506,074	88,112	755,428
	Grande cidade	446,073	487,583	490,436	34,996	523,727
AM Lisboa	Pequena cidade	219,345	477,288	480,102	86,928	733,696
	Grande cidade	237,074	518,965	526,774	90,476	733,689
Alentejo	Aldeia	267,784	403,295	406,758	45,656	500,695
	Pequena cidade	162,443	501,442	510,328	88,120	731,323
Algarve	Pequena cidade	305,450	471,104	466,004	87,378	669,773
RA Açores	Aldeia	239,395	431,849	422,460	81,604	685,425
	Pequena cidade	245,824	463,213	427,856	87,450	723,234
	Grande cidade	279,496	500,051	496,114	81,974	718,970
RA Madeira	Aldeia	328,199	388,586	376,045	44,566	492,798
	Pequena cidade	280,820	461,933	451,046	88,717	713,641
	Grande cidade	378,364	539,150	538,848	64,432	717,983

Tabela 5.26.: Desempenho do aluno em Matemática por critério de admissão do aluno na escola em cada região

região	selcat	Mínimo	Média	Mediana	Desvio	Máximo
					Padrão	
Norte	Nunca	228,248	490,606	494,605	90,036	719,091
	Às vezes	218,281	487,289	489,891	92,528	697,691
	Sempre	269,478	470,658	468,851	85,499	674,447
Centro	Nunca	238,943	497,023	500,782	90,648	755,428
	Às vezes	269,321	490,064	494,649	86,596	689,400
	Sempre	356,199	529,211	527,522	70,114	748,031
AM Lisboa	Nunca	219,345	494,543	500,857	88,263	733,696
	Às vezes	237,689	495,570	499,448	91,866	733,689
	Sempre	331,237	400,084	394,422	48,413	526,774
Alentejo	Nunca	162,443	492,628	500,246	92,353	731,323
	Às vezes	215,838	490,326	495,624	80,006	680,813
	Sempre	267,784	392,821	395,789	55,846	500,695
Algarve	Nunca	305,450	481,006	486,076	87,967	669,773
	As vezes	313,710	408,901	409,818	50,056	497,535
RA Açores	Nunca	239,395	459,442	451,746	87,669	723,234
	Às vezes	261,291	474,843	474,222	89,118	686,888
	Sempre	319,968	443,280	441,870	66,260	637,820
RA Madeira	Nunca	328,199	491,612	495,34	91,360	713,641
	Às vezes	280,820	488,988	493,731	88,826	717,983

Analisando os valores de prova, observa-se que a correlação entre o desempenho e a idade não é significativa a um nível de significância de 5% nas duas Regiões Autónomas (0,365-RA dos Açores e 0,064-RA da Madeira). Relativamente a correlação entre o índice económico, social e cultural do aluno e o desempenho em Matemática, observa-se que não há muitas diferenças nas 7 regiões. Os valores de prova obtidos sugerem que a correlação é significativa a um nível de significância de 5% em todas as regiões. A correlação entre o desempenho em Matemática e o número total de alunos na escola é negativa no Alentejo (-0,072). A Região Autónoma da Madeira apresenta maior correlação positiva entre o desempenho do aluno em Matemática e o número total de alunos (0,430-Tabela 5.27), a proporção de rapariga (0,497-Tabela 5.28) e o rácio aluno-professor (0,419-Tabela 5.28). Quanto à correlação entre o desempenho em Matemática e o comportamento do aluno, é de realçar que ela mostra-se positiva na região autónoma dos Açores (0,183), Tabela 5.28. Analisando ainda a Tabela 5.28, observa-se que a mesma situação verifica-se entre o comportamento do professor e o desempenho do aluno em Matemática, cuja correlação é positiva no Algarve (0,234), na Região Autónoma dos Açores (0,014) e na Região Autónoma da Madeira (0,074), embora não tenha sido significativa na Região Autónoma dos Açores (valor de prova=0,460).

Tabela 5.27.: Correlação entre o desempenho do aluno em Matemática e as variáveis explicativas contínuas por região

Região	age	P-valor	indesc	P-valor	tamanho	P-valor
Norte	0,027	0,000	0,400	0,000	0,029	0,000
Centro	0,051	0,000	0,335	0,000	0,039	0,000
AM de Lisboa	0,036	0,000	0,401	0,000	0,131	0,000
Alentejo	0,180	0,000	0,325	0,000	-0,072	0,000
Algarve	0,114	0,000	0,373	0,000	0,251	0,000
RA dos Açores	0,017	0,365	0,432	0,000	0,113	0,000
RA da Madeira	0,035	0,064	0,338	0,000	0,430	0,000

Tabela 5.28.: Correlação entre o desempenho do aluno em Matemática e as variáveis explicativas contínuas por região

Região	prop	P-	racioap	P-	compa	P-	compp	P-
		valor		valor		valor		valor
Norte	0,153	0,000	-0,030	0,000	-0,135	0,000	-0,034	0,000
Centro	0,071	0,000	-0,006	0,450	-0,004	0,000	-0,077	0,000
AM de Lisboa	0,026	0,000	0,141	0,000	-0,200	0,000	-0,130	0,000
Alentejo	0,094	0,000	-0,079	0,000	-0,049	0,000	-0,029	0,000
Algarve	0,016	0,308	-0,138	0,000	-0,158	0,000	0,234	0,000
RA dos Açores	0,122	0,000	0,047	0,016	0,183	0,000	0,014	0,460
RA da Madeira	0,497	0,000	0,419	0,000	-0,171	0,000	0,074	0,000

5.3 MODELOS DE REGRESSÃO MULTINÍVEL

De seguida realiza-se a análise de modelos de regressão multinível com o objetivo de identificar fatores que afetam o desempenho do aluno português em Matemática. Este estudo realiza-se apenas para as escolas públicas, uma vez que após a realização da análise das estatísticas descritivas dos dados, observou-se um número bastante elevado de escolas públicas do que escolas privadas, sendo que algumas regiões não apresentavam escolas privadas (Alentejo, Algarve e Região Autónoma da Madeira).

5.3.1 Modelo Nulo

Tal como se descreveu no Capítulo 4, o modelo nulo é o modelo sem variáveis explicativas. A Tabela 5.29 apresenta as estimativas do modelo nulo do desempenho em Matemática dos alunos portugueses no programa PISA 2015.

Tabela 5.29.: Estimativas do parâmetro do modelo nulo

Parâmetro	Estimativa	Desvio Padrão	ET	P-valor	
Constante (δ_{000})	470,653	6,856	68,653	0,000	

O resultado do modelo nulo estima que o desempenho global médio em Matemática dos alunos portugueses é 470,653 pontos. Na Tabela 5.30 apresentam-se as estimativas para as componentes aleatórias do modelo nulo e os respetivos intervalos de confiança. Observa-se ainda o valor da estatística do Critério de Informação de Akaike (Akaike Information Criterion(AIC)) e o valor da função de verosimilhança.

Tabela 5.30.: Estimativas das variâncias do modelo nulo

Designação	Estimativa	Intervalo de confiança
Variância Residual (σ_{ε}^2)	1371,459	(1325,178 ; 1419,406)
Variância entre escolas $(\sigma_{\nu_0}^2)$	2410,012	(1904,188; 3050,242)
Variância entre regiões $(\sigma_{v_0}^2)$	188,359	(37,112 ; 955,861)
AIC	82744,510	-
log-verosimilhança	-41368,250	-

Segundo a Tabela 5.30, observa-se que a variabilidade entre escolas é maior que a variabilidade entre regiões. Usando esses valores, calculam-se os coeficientes de correlação intraclasse estimados, aplicando as expressões 4.4, 4.5 e 4.6 ao nível das escolas, das regiões e dos alunos respetivamente, obtendo-se $\hat{\rho}_{escolas} = 0,607$, $\hat{\rho}_{regiões} = 0,047$ e $\hat{\rho}_{alunos} = 0,346$. Os valores dos coeficientes de correlação intraclasse apresentados indicam que cerca de 60,7% da variabilidade do desempenho do aluno

em Matemática é explicada pelas diferenças entre escolas, e cerca de 4,7% da variabilidade do desempenho do aluno em Matemática é explicada pelas diferenças entre regiões. Por outro lado, cerca de 34,6% da variabilidade do desempenho do aluno em Matemática é explicada pelas diferenças entre alunos. Estes valores, indiciam que fatores das escolas e das regiões contribuem para o desempenho dos alunos em Matemática, evidenciando assim a necessidade da aplicação dos modelos de regressão multinível.

Para validar a hipótese da aplicação de modelos de regressão multiníveis, testase se a variabilidade entre as escolas ou entre as regiões é ou não significativa. Para isso aplica-se o teste da Razão de Verosimilhança e as hipóteses a testar são:

Ho: A variabilidade entre regiões não é estatisticamente significativa $(\sigma_{v_0}^2=0)$ Vs.

H1: A variabilidade entre regiões é estatisticamente significativa ($\sigma_{v_0}^2 > 0$)

e

Ho: A variabilidade entre escolas não é estatisticamente significativa ($\sigma_{\nu_0}^2=0$) Vs.

H1: A variabilidade entre escolas é estatisticamente significativa ($\sigma_{\nu_0}^2 > 0$)

Os valores de prova obtidos são: P-valor= 0,016 (para as regiões) e P-valor < 0,0001 (para as escolas). Rejeita-se Ho, ou seja, há evidência estatística de que a variabilidade entre regiões e entre escolas é estatisticamente significativa a um nível de significância de 5%, justificando a aplicação de modelos de regressão multinível para o estudo.

5.3.2 Modelo de regressão multinível de 3 níveis com variáveis explicativas ao nível do aluno

Após a apresentação do modelo nulo e ter-se constatado a necessidade da aplicação do modelo de regressão multinível, apresentam-se na Tabela 5.31 as estimativas dos coeficientes do modelo de regressão multinivel de três níveis com variáveis explicativas ao nível do aluno. Pode-se observar que todas as variáveis introduzidas são significativas a um nível de significância de 5%. O modelo estimado apresenta um desempenho médio global de 526,959 pontos. Observa-se ainda que o índice económico, social e cultural do aluno apresenta um efeito positivo no valor esperado do desempenho do aluno em Matemática, indicando que, por cada aumento de uma unidade no índice económico, social e cultural do aluno, espera-se que o desempenho em Matemática aumente em média 7,953 pontos, mantendo constantes as restantes variáveis explicativas. Os rapazes apresentam um desempenho médio em Matemática superior

em relação às raparigas de aproximadamente 27,253 pontos, quando se mantém constantes as restantes variáveis explicativas. Relativamente ao grau académico escolar que o aluno espera concluir, observa-se que os alunos que esperam concluir o 3º ciclo do ensino básico, que esperam concluir o ensino secundário (curso tecnológico ou profissional), que esperam concluir o ensino secundário (científico-humanístico), que esperam concluir o ensino superior politécnico (3 anos) apresentam um desempenho médio em Matemática inferior aos alunos que esperam concluir o Ensino Superior Universitário (Licenciatura, Mestrado ou Doutoramento), quando se mantêm constantes as restantes variáveis explicativas. Os alunos que já repetiram de ano escolar apresentam um desempenho médio em Matemática inferior aos alunos que não repetiram, quando se mantém constantes as restantes variáveis explicativas. Os alunos que iniciaram o 1º ano de escolaridade com cinco anos de idade e os alunos que iniciaram o 1º ano de escolaridade com sete ou mais anos de idade apresentam um desempenho médio em Matemática inferior aos alunos que iniciaram o 1º ano de escolaridade com seis anos de idade, quando se mantêm constantes as restantes variáveis explicativas. Relativamente aos resultados da variável género, da variável indesc e da variável agepri, realça-se que os resultados semelhantes foram igualmente encontrados em diferentes estudos anteriores (Masci et al., 2017).

Tabela 5.31.: Estimativas dos coeficientes do modelo de regressão de 3 níveis com variáveis explicativas significativas ao nível do aluno

Parâmetro	Estimativa	Desvio Padrão	ET	P-valor
Constante (δ_{000})	526,959	2,963	177,846	0,0000
indesc	7,953	0,843	9,436	0,0000
género (Ref: Feminino)				
Masculino	27,253	1,599	17,041	0,0000
expalunocat (Ref: Ensino superior universitário				
(Licenciatura, Mestrado, Doutoramento))				
3º ciclo do ensino básico	-70,881	3,218	-22,026	0,0000
Ensino secundário (curso tecnológico ou profissional)	-62,780	2,652	-23,672	0,0000
Ensino secundário (científico-humanístico)	-45,698	2,880	-15,866	0,0000
Cursos de especialização tecnológica (CET)	-72,613	4,805	-15,111	0,0000
Ensino superior politécnico (3 anos)	-22,250	2,421	-9,190	0,0000
Desconhecido	-69,481	7,176	-9,682	0,000
repeatcat (Ref: Não)				
Sim	-68,766	2,166	-31,744	0,0000
Desconhecido	-83,392	8,318	-10,025	0,0000
agepri (Ref: 6 anos)				
5 anos	-3,619	1,843	-1,964	0,0496
7 anos ou mais	-25,961	2,206	-11,767	0,0000
Desconhecido	-9,076	7,607	-1,193	0,2330

Após a estimação do modelo de regressão multinível com as variáveis explicativas ao nível do aluno, compara-se a qualidade de ajustamento deste modelo com a qualidade de ajustamento do modelo nulo, aplicando o teste da Razão de Verosimilhança.

Como o P-valor é inferior a 0,0001, há evidências estatísticas a um nível de significância de 5%, de que o modelo com as variáveis explicativas ao nível do aluno apresenta melhor qualidade de ajustamento.

5.3.3 Modelo de regressão multinível de 3 níveis com variáveis explicativas ao nível do aluno e ao nível da escola

Seguindo para etapa 3 do Capítulo 4, a Tabela 5.32 apresenta os valores estimados dos coeficientes das variáveis explicativas significativas ao nível do aluno e da escola. Segundo essa tabela, os valores estimados dos coeficientes do modelo para as variáveis explicativas ao nível do aluno não sofreram grandes alterações se comparadas com valores estimados do modelo anterior (Tabela 5.31). Observa-se ainda que a variável tamanho (número total de alunos na escola) apresenta um efeito positivo no valor esperado do desempenho do aluno em Matemática, indicando que, por cada aumento de uma unidade no número total de alunos na escola, espera-se que o desempenho em Matemática aumente em média 0,004 pontos, mantendo constantes as restantes variáveis explicativas. Um resultado semelhante foi obtido por Agasisti and Cordero-Ferrera (2013) e por Sun et al. (2012). Por outro lado, observa-se que a proporção de raparigas na escola apresenta um efeito positivo no valor esperado de desempenho, sendo que, por cada aumento de um ponto percentual na proporção de raparigas na escola, espera-se que o desempenho em Matemática aumente em média 1,063 pontos, mantendo constantes as restantes variáveis explicativas. De referir que um resultado semelhante da proporção de raparigas na escola foi também obtido por Silva (2016).

Após a análise das variáveis explicativas introduzidas no modelo, realiza-se o teste da Razão de Verosimilhança para comparar a qualidade de ajustamento do modelo com variáveis explicativas ao nível do aluno e da escola com a qualidade de ajustamento do modelo que contém apenas variáveis explicativas ao nível do aluno. O valor de prova obtido é 0,013, concluindo que há evidências estatísticas de que a qualidade do modelo com variáveis explicativas ao nível do aluno e da escola é a melhor, a um nível de significância de 5%.

A Tabela 5.33 apresenta as estimativas da componente aleatória e o respetivo intervalo de confiança, o valor do AIC e o valor da função de Verosimilhança para o modelo obtido.

Usando os valores das estimativas da componente aleatória apresentados na Tabela 5.33, calculam-se os coeficientes de correlação intraclasse estimados para o modelo obtido, aplicando as expressões (4.4), (4.5) ao nível das escolas e das regiões respetivamente. Deste modo, $\hat{\rho}_{escolas} = 0,231$ e $\hat{\rho}_{regioes} = 0,011$. Para ambos níveis superiores, os valores dos coeficientes de correlação intraclasse reduziram se compa-

Tabela 5.32.: Estimativas dos coeficientes do modelo de regressão de 3 níveis com variáveis explicativas significativas ao nível do aluno e da escola

Parâmetro	Estimativa	Desvio Padrão	ET	P-valor
Constante (δ_{000})	526,944	2,799	188,288	0,000
indesc	7,846	0,844	9,299	0,000
género (Ref: Feminino)				
Masculino	27,287	1,599	17,065	0,000
expalunocat (Ref: Ensino superior universitário				
(Licenciatura, Mestrado, Doutoramento))				
3º ciclo do ensino básico	-70,587	3,219	-21,930	0,000
Ensino secundário (curso tecnológico ou profissional)	-62,451	2,654	-23,531	0,000
Ensino secundário (científico-humanístico)	-45,431	2,881	-15,769	0,000
Cursos de especialização tecnológica (CET)	-72,327	4,805	<i>-</i> 15,053	0,000
Ensino superior politécnico (3 anos)	-22,051	2,421	-9,107	0,000
Desconhecido	-69,195	7,175	-9,644	0,000
repeatcat (Ref: Não)				
Sim	-68,256	2,172	-31,421	0,000
Desconhecido	-83,300	8,317	-10,016	0,000
agepri (Ref: 6 anos)				
5 anos	-3,656	1,843	-1,984	0,047
7 anos ou mais	-25,9450	2,206	-11,765	0,000
Desconhecido	-9,120	7,605	-1,199	0,231
tamanho	0,004	0,002	2,034	0,043
prop	1,063	0,511	2,079	0,039

Tabela 5.33.: Estimativas das variâncias do modelo obtido

	Modelo obtido	Intervalo de confiança
Variância Residual (σ_{ε}^2)	847,845	(819,333; 877,344)
Variância entre escolas $(\sigma_{\nu_0}^2)$	258,372	(181,306; 368,179)
Variância entre regiões $(\sigma_{v_0}^2)$	12,628	(1,164 ; 136,843)
AIC	79304,640	-
log-verosimilhança	-39633,320	-

rados com os do modelo nulo, sendo que a variabilidade do desempenho do aluno em matemática que é explicada pelas diferenças entre escolas é de aproximadamente 23,1%, e a variabilidade do desempenho do aluno em matemática que é explicada pelas diferenças entre regiões é de aproximadamente 1,1%. Ao nível do aluno, o coeficiente de correlação intraclasse aumentou para 0,758, indicando que a variabilidade de desempenho do aluno em Matemática que é explicada pelas diferenças entre alunos é de aproximadamente 75,8%.

Finalmente, aplicando-se as fórmulas (4.15), (4.16) e (4.17) calculam-se os coeficientes de determinação para avaliar a qualidade de ajustamento do modelo em todos os níveis:

• $R_1^2 = 0,382$, indicando que cerca de 38,2% da variabilidade do desempenho do aluno em Matemática é explicada ao nível do aluno pelo modelo ajustado.

Capítulo 5. apresentação dos resultados

- $R_2^2 = 0,893$, indicando que cerca de 89,3% da variabilidade do desempenho do aluno em Matemática é explicada ao nível da escola pelo modelo ajustado .
- $R_3^2 = 0,933$, indicando que cerca de 93,3% da variabilidade do desempenho do aluno em Matemática é explicada ao nível da região pelo modelo ajustado.

Após a análise do modelo de regressão multinível de três níveis com variáveis explicativas ao nível do aluno e ao nível da escola, assumindo-se que os efeitos de cada variável explicativa são fixos, o passo seguinte seria a análise do modelo de regressão multinível de três níveis com variáveis explicativas ao nível do aluno, ao nível da escola e ao nível da região, assumindo-se que os efeitos de cada variável explicativa são fixos. Não havendo nenhuma variável explicativa significativa ao nível da região, realiza-se um teste para avaliar se o modelo nulo com três níveis é significativamente diferente do modelo nulo com dois níveis. O valor de prova obtido é de 0,0002, indicando que os dois modelos são significativamente diferentes, ou seja, o efeito do nível 3 (regiões) é significativo. Por essa razão, opta-se em continuar o estudo com o modelo de três níveis.

5.3.4 Modelo de regressão multinível de 3 níveis com variáveis explicativas ao nível do aluno e ao nível da escola com efeitos aleatórios

Tal como foi referenciado na etapa 5 da secção 4.1, após ajustar-se o modelo com variáveis explicativas de efeitos fixos ao nível do aluno e ao nível da escola, nesta parte é analisado o modelo com variável/variáveis explicativa(s) que apresentam um efeito aleatório significativo ou seja, variáveis explicativas cujo impacto no desempenho varia de escola para escola.

A Tabela 5.34 ilustra o conjunto de variáveis explicativas ao nível do aluno em que através da aplicação do teste da Razão de Verosimilhança apresentam efeito aleatório significativo a um nível de significância de 5%. Após a observação das

Tabela 5.34.: Resultados do teste da Razão de Verosimilhança

Variável	ET	P-valor
género	25,726	<0,0001
indesc	74,223	<0,0001
repeatcat	65,297	<0,0001

variáveis explicativas com efeitos aleatórios, escolhe-se como modelo final o modelo com a variável explicativa género na componente aleatória, por ter apresentado a melhor qualidade de ajustamento em relação aos outros modelos. A Tabela 5.35 apresenta as estimativas dos parâmetros do modelo final ajustado. Analisando a Tabela

Tabela 5.35.: Estimativas dos coeficientes do modelo de regressão de 3 níveis com variáveis explicativas significativas ao nível do aluno e da escola onde a variável explicativa género tem efeito aleatório

Parâmetro	Estimativa	Desvio Padrão	ET	P-valor
Constante (δ_{000})	527,909	2,926	180,440	0,000
indesc	7,668	0,844	9,087	0,000
género (Ref: Feminino)				
Masculino	26,301	2,122	12,395	0,000
expalunocat (Ref: ESU (licenciatura, mestrado ou				
Doutoramento))				
3º ciclo do ensino básico	-70,714	3,220	-21,961	0,000
Ensino secundário (curso tecnológico ou profissional)	-62,548	2,656	-23,549	0,000
Ensino secundário (científico-humanístico)	-45,345	2,880	-15,745	0,000
Cursos de especialização tecnológica (CET)	-72,744	4,799	-15,159	0,000
Ensino superior politécnico (3 anos)	-22,496	2,423	-9,285	0,000
Desconhecido	-69,824	7,163	-9,748	0,000
repeatcat (Ref: Não)				
Sim	-68,816	2,176	-31,626	0,000
Desconhecido	-82,040	8,327	-9,852	0,000
agepri (Ref: 6 anos)				
5 anos	-3,774	1,843	-2,047	0,041
maior ou igual a 7 anos	-26,153	2,207	-11,852	0,000
Desconhecido	-9,546	7,611	-1,254	0,210
tamanho	0,004	0,002	2,089	0,038
prop	1,074	0,511	2,101	0,037

5.35 observa-se que não ocorreram grandes alterações nos parâmetros do modelo final em relação ao modelo anterior (modelo de efeitos fixos). A Tabela 5.36 apresenta estimativas da componente aleatória, o valor do AIC e o valor da função de verosimilhança para o modelo final obtido.

Tabela 5.36.: Estimativas das variâncias do modelo final

	Modelo Final	Intervalo de confiança
Variância Residual ($\sigma_{arepsilon}^2$)	839,602	(811,224; 868,953)
Variância entre escolas $(\sigma_{\nu_0}^2)$	311,411	(206,439 ; 469,719)
Variância género (Masculino)	134,195	(68,376; 263,348)
Variância entre regiões ($\sigma_{v_0}^2$)	12,998	(1,032 ; 163,814)
AIC	79287,530	-
log-verosimilhança	-39620,770	-

Usando os valores das estimativas da componente aleatória apresentados na Tabela 5.36 recalculam-se os coeficientes de correlação intraclasse estimados para o modelo final, aplicando as expressões (4.4) e (4.5) ao nível da escola e da região respetivamente. Deste modo, $\hat{\rho}_{escolas}=0,268$ e $\hat{\rho}_{regioes}=0,011$. Para ambos níveis superiores, os valores dos coeficientes de correlação intraclasse não sofreram grandes alterações se comparados com os do modelo anterior, sendo que a variabilidade do desempenho do aluno em Matemática que é explicada pelas diferenças entre escolas

Capítulo 5. apresentação dos resultados

é de aproximadamente 26,8%, e a variabilidade do desempenho do aluno em Matemática que é explicada pelas diferenças entre regiões é de aproximadamente 1,1%. Ao nível do aluno, o coeficiente de correlação intraclasse passou para 0,721, indicando que a variabilidade do desempenho em Matemática que é explicada pelas diferenças entre alunos é de aproximadamente 72,1%.

Finalmente, aplicando-se as fórmulas (4.15), (4.16) e (4.17) recalculam-se os coeficientes de determinação para avaliar a qualidade de ajustamento do modelo final em todos os níveis:

- $R_1^2 = 0.388$, indicando que cerca de 38,8% da variabilidade do desempenho do aluno em Matemática é explicada ao nível do aluno pelo modelo ajustado.
- $R_2^2 = 0.871$, indicando que cerca de 87.1% da variabilidade do desempenho do aluno em Matemática é explicada ao nível da escola pelo modelo ajustado.
- $R_3^2 = 0,931$, indicando que cerca de 93,1% da variabilidade do desempenho do aluno em Matemática é explicada ao nível da região pelo modelo ajustado.

Analisando os valores dos coeficientes de determinação, é também possível observar que não ocorreram grandes alterações em comparação com o modelo que inclui variáveis ao nível do aluno e ao nível da escola, assumindo que os efeitos das variáveis explicativas são fixos.

5.4 ANÁLISE DOS RESÍDUOS

Após a obtenção do modelo final, segue a análise dos resíduos desse modelo. Tal como foi exposto, os erros do modelo devem seguir uma distribuição normal, devem ter média zero e variância constante, e devem ser independentes entre si. O mesmo estudo, realiza-se também para o modelo de nível 1, e os respetivos gráficos podem ser observados na Figura B.5 nos anexos. Note-se que os resultados não foram diferentes para ambos os níveis.

Analisando a Figura 5.16 observa-se que todos os pontos estão posicionados sobre uma reta, e o histograma evidencia claramente que os resíduos do modelo obtido seguem uma distribuição normal. Para reforçar essa conclusão, aplicou-se o teste de Kolmogorov-Smirnov, tendo sido obtido um valor de prova igual a 0,4943.

Na Figura 5.17 (à esquerda) observa-se um conjunto de pontos que se distribuem de forma aleatória em torno da reta que corresponde ao resíduo zero, indicando que o pressuposto dos erros apresentarem média zero é verificado. Por outro lado, observa-se uma dispersão constante dos pontos relativamente aos valores estimados, indicando assim que o pressuposto de variância constante ou homocedasticidade foi

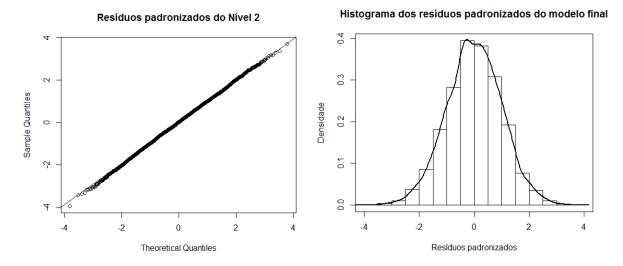


Figura 5.16.: Gráfico Normal Q-Q plot e histograma dos erros do nível 2

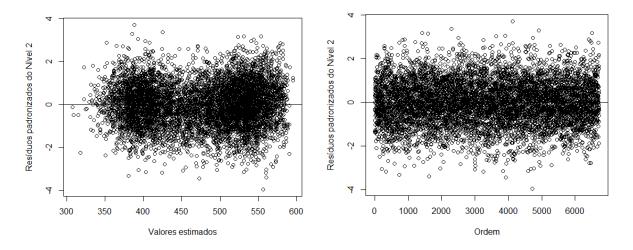


Figura 5.17:: Valores estimados versus resíduos de nível 2 e ordem versus resíduos de nível 2

verificado. Na Figura 5.17 (à direita) observam-se os resíduos em função da ordem pela qual os dados foram recolhidos. Os pontos dessa figura formam uma mancha de largura uniforme, ou seja, os resíduos não formam um padrão particular, indicando assim que o pressuposto da independência dos erros foi garantido.

Após a análise dos resíduos do modelo, de seguida realiza-se uma análise dos efeitos da escola no desempenho do aluno em Matemática pelas regiões. Analisando a Tabela 5.37 observa-se que as escolas da região Centro, da Região Autónoma da Madeira, do Algarve, da Área Metropolitana de Lisboa e do Alentejo apresentam efeitos positivos no desempenho do aluno em Matemática. Contrariamente, as escolas da Região Autónoma dos Açores e da região Norte apresentam efeitos negativos no desempenho do aluno em Matemática. Verifica-se ainda que as escolas da região Centro são as que apresentam maior efeito positivo, evidenciando que são estas escolas que mais influenciam positivamente no desempenho do aluno em Matemática. Por outro lado, verifica-se que as escolas que mais influenciam negativamente no desempenho

Capítulo 5. apresentação dos resultados

Tabela 5.37.: Efeitos da escola por região no desempenho do aluno em Matemática

região	Efeito da escola	Intervalo de confiança
Norte	-2,188	(-3,064 ; -1,312)
Centro	3,409	(2,179 ; 4,640)
AM de Lisboa	0,273	(-0,874 ; 1,419)
Alentejo	0,003	(-1,539 ; 1,545)
Algarve	0,397	(-2,274; 3,068)
RA dos Açores	-3,618	(-4,867 ; -2,368)
RA da Madeira	1,723	(-1,161 ; 4,608)

do aluno em Matemática são da Região Autónoma dos Açores. De seguida realiza-se uma análise de significância dos efeitos através do cálculo dos intervalos de confiança a um nível de significância de 5%, tendo em conta a distribuição normal dos erros. A análise consiste em observar se o valor zero pertence ou não ao intervalo de confiança obtido, e concluir que o efeito não é significativo caso o zero pertença ao intervalo de confiança. A Tabela 5.37 sugere que a região Norte, Centro e a Região Autónoma dos Açores apresentam efeitos significativos a um nível de significância de 5%.

CONCLUSÃO

Este trabalho aplicou os modelos de regressão multinível aos dados do PISA 2015, para identificar e analisar os diferentes fatores que influenciam o desempenho em Matemática de alunos de diversas regiões de Portugal.

A grande novidade que se observou nos resultados do PISA 2015, foi que, pela primeira vez na história do PISA, os resultados de alunos Portugueses em Matemática estiveram ligeiramente acima da média da OECD (502 pontos) e aumentaram 5 pontos em relação aos resultados da edição anterior, PISA 2012.

Da análise exploratória das variáveis explicativas, concluiu-se que o número de raparigas e de rapazes na amostra não é muito diferente. A região do Algarve é a única em que o número de alunos que já repetiram é ligeiramente superior ao número de alunos que não repetiram. Relativamente a idade com que o aluno iniciou o 1º ano de escolaridade, observa-se que o maior número de alunos que já repetiram iniciaram o 1º ano de escolaridade com 7 anos ou mais de idade. Há um maior número de alunos que esperam concluir os dois graus académicos mais baixos, principalmente os que esperam concluir o ensino secundário profissional, entre os alunos que já repetiram o ano escolar. A Área Metropolitana de Lisboa apresenta maior número de alunos imigrantes e maior rácio aluno-professor, enquanto que a Região Autónoma da Madeira apresenta menor número de alunos imigrantes e menor rácio aluno-professor.

Ao nível das variáveis da escola, conclui-se que o número de escolas privadas é menor, sendo que algumas regiões não apresentam escolas privadas na amostra (Alentejo, Algarve e a Região Autónoma da Madeira). Entre as escolas privadas, há um número elevado de escolas que às vezes consideram pelo menos um dos dois fatores de admissão de alunos na escola. Entre as escolas públicas, há um número elevado de escolas que não consideram nenhum dos dois fatores de admissão de alunos na escola. A proporção de raparigas na escola é aproximadamente igual a 50%. Em ambos os tipos de escolas (escolas públicas e privadas), os alunos da Área Metropolitana de Lisboa apresentam maior índice económico, social e cultural.

Capítulo 6. conclusão

Da análise exploratória da variável resposta, o estudo revelou que os alunos da região Centro apresentam o melhor desempenho médio em Matemática (501,042 pontos), e os alunos da Região Autónoma dos Açores apresentam o pior desempenho em Matemática (462,267 pontos). Os alunos nativos apresentam o melhor desempenho médio em Matemática que os alunos imigrantes.

O estudo revelou uma correlação positiva relativamente elevada entre o índice económico, social e cultural do aluno e o desempenho em Matemática.

Ao nível da escola, as escolas privadas apresentam o melhor desempenho médio em Matemática do que as escolas públicas, e as escolas que se localizam nas grandes cidades também apresentam o melhor desempenho médio em Matemática do que as restantes escolas. Relativamente ao critério de seleção e admissão do aluno na escola, observa-se que o desempenho médio em Matemática não é muito diferente entre as escolas que nunca consideram os dois fatores de admissão e as escolas que às vezes, pelo menos um dos dois fatores de admissão pode ser considerado.

Ao longo do trabalho ajustaram-se modelos de regressão multinível de três níveis (nível 1-aluno, nível 2-escola e nível 3-região). Note-se que nesta subsecção, a análise foi realizada apenas para os alunos das escola públicas, pelas razões já referenciadas no início da secção 5.3. O estudo iniciou com a análise do modelo sem variáveis explicativas (modelo nulo) e sucessivamente acrescentou-se as variáveis explicativas dos diferentes níveis, assumindo-se que os efeitos de cada variável explicativa são fixos. De seguida foram testadas se, as variáveis explicativas significativas ao nível do aluno tinham efeito aleatório significativo, e concluiu-se que o modelo onde a variável explicativa género tinha efeito aleatório significativo era o melhor, por ter apresentado a melhor qualidade de ajustamento. Este modelo revelou que a variabilidade do desempenho do aluno em Matemática que é explicada pelas diferenças entre escolas é de aproximadamente 26,8%, e a variabilidade do desempenho do aluno em Matemática que é explicada pelas diferenças entre regiões é de aproximadamente 1,1%. Da análise realizada nos coeficientes do modelo concluiu-se o seguinte:

- O índice económico, social e cultural do aluno apresenta um efeito positivo no valor esperado do desempenho do aluno em Matemática;
- Os alunos de género masculino apresentam um desempenho médio em Matemática superior em relação aos alunos de género feminino;
- Os alunos que esperam concluir o 3º ciclo do ensino básico, que esperam concluir o ensino secundário (curso tecnológico ou profissional), que esperam concluir o ensino secundário (científico-humanístico), que esperam concluir o ensino superior politécnico (3 anos) apresentam um desempenho médio em Matemática inferior aos alunos que esperam concluir o Ensino Superior Universitário (Licenciatura, Mestrado ou Doutoramento);

- Os alunos que já repetiram de ano escolar apresentam um desempenho médio em Matemática inferior aos alunos que não repetiram;
- Os alunos que iniciaram o 1º ano de escolaridade com cinco anos de idade e os alunos que iniciaram o primeiro ano escolar com sete ou mais anos de idade apresentam um desempenho médio em Matemática inferior aos alunos que iniciaram o 1º ano de escolaridade com seis anos de idade;
- O número total de alunos na escola apresenta um efeito positivo no valor esperado do desempenho do aluno em Matemática;
- A proporção de raparigas na escola apresenta um efeito positivo no valor esperado do desempenho do aluno em Matemática.

6.1 SUGESTÕES PARA TRABALHO FUTURO

No trabalho futuro será importante incluir outras variáveis explicativas que possam influenciar o desempenho em Matemática do aluno português.

Será importante ainda comparar os resultados obtidos neste trabalho com os resultados obtidos em trabalhos semelhantes, de modo a estabelecer teorias sobre os fatores que influenciam o desempenho do aluno.

Um tema muito interessante a desenvolver no futuro será estudar modelos de regressão multínivel bivariados para se comparar os fatores que influenciam o desempenho do aluno português em duas áreas científicas distintas.

BIBLIOGRAFIA

- Agasisti, T. and Cordero-Ferrera, J. M. (2013). Educational disparities across regions: A multilevel analysis for italy and spain. *Journal of Policy Modeling*, 35(6):1079–1102.
- Agasisti, T., Ieva, F., and Paganoni, A. M. (2016). Heterogeneity, school-effects and the north/south achievement gap in italian secondary education: evidence from a three-level mixed model. *Statistical Methods & Applications*, 26(1):157–180.
- Alacacı, C. and Erbaş, A. K. (2010). Unpacking the inequality among turkish schools: Findings from pisa 2006. *International Journal of Educational Development*, 30(2):182–192.
- Cruz, C. C. M. S. (2010). *Modelos multi-nível: fundamentos e aplicações*. Tese de Mestrado, Universidade Aberta.
- Demir, İ., Kılıç, S., and Ünal, H. (2010). Effects of students' and schools' characteristics on mathematics achievement: findings from pisa 2006. *Procedia-Social and Behavioral Sciences*, 2(2):3099–3103.
- Dias, V. M. and Ferrão, M. E. (2005). Modelo multinível do desempenho escolar de alunos socialmente desfavorecidos em escolas públicas/privadas—aplicação aos dados portugueses do pisa 2000. *Revista Brasileira de Economia*, 5(2):63–77.
- Finch, W. H., Bolin, J. E., and Kelley, K. (2014). Multilevel modeling using R. CRC Press.
- Goldstein, H. (2003). *Multilevel Statistical Models*. London, Edward Arnold: New York, Wiley.
- Hox, J. (1998). Multilevel modeling: When and why. New York: Springer Verlag.
- Hox, J. J., Moerbeek, M., and van de Schoot, R. (2010). *Multilevel analysis: Techniques and applications 2nd edition*. New York: Routledge.
- INE (2016a). STATISTICS PORTUGAL, Informação à comunicação social: contas regionais 2014/2015. INE, Portugal.
- INE (2016b). STATISTICS PORTUGAL, Informação à comunicação social: Orçamentos Familiares 2015/2016. INE, Portugal.
- Marôco, J., Gonçalves, C., Lourenço, V., and Mendes, R. (2016). *PISA 2015-PORTUGAL*, volume 1.

BIBLIOGRAFIA

- Masci, C., Ieva, F., Agasisti, T., and Paganoni, A. M. (2016). Does class matter more than school? evidence from a multilevel statistical analysis on italian junior secondary school students. *Socio-Economic Planning Sciences*, 54:47–57.
- Masci, C., Ieva, F., Agasisti, T., and Paganoni, A. M. (2017). Bivariate multilevel models for the analysis of mathematics and reading pupils' achievements. *Journal of Applied Statistics*, 44(7):1296–1317.
- Mohammadpour, E. (2013). A three-level multilevel analysis of singaporean eighth-graders science achievement. *Learning and Individual Differences*, 26:212–220.
- OECD (2009). PISA Data Analysis Manual: SPSS. SECOND EDITION. OECD Publishing, Paris.
- Pereira, M. and Reis, H. (2012). Diferenças regionais no desempenho dos alunos portugueses: evidência do programa pisa da ocde. *Boletim Económico de Inverno, Banco de Portugal*, 59–83.
- Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of dna substitution. *Bioinformatics*, 14(9):817–818.
- Raudenbush, W., B. A. (2002). *Hierarchical Linear Models: Applications and Data Analysis Methods 2nd edition*. Sage Publications.
- Sibiano, P. and Agasisti, T. (2013). Efficiency and heterogeneity of public spending in education among italian regions. *Journal of Public Affairs*, 13(1):12–22.
- Silva, J. P. (2016). *Modelos de regressão multinível no estudo do desempenho escolar*. Tese de Mestrado, Universidade do Minho.
- Sun, L., Bradley, K. D., and Akers, K. (2012). A multilevel modelling approach to investigating factors impacting science achievement for secondary school students: Pisa hong kong sample. *International Journal of Science Education*, 34(14):2107–2125.

TABELAS

Tabela A.1.: Estatísticas descritivas das variáveis explicativas contínuas ao nível do aluno antes da imputação dos *missings values*

Variável	Número de alunos	Média	Mediana	Desvio Padrão	Mínimo	Máximo
age	7296	15,780	15,750	0,284	15,330	16,330
indesc	7196	-0,556	-0,679	1,152	-4,153	3,077

Tabela A.2.: Estatísticas descritivas das variáveis explicativas contínuas ao nível da escola antes da imputação dos *missings values*

Variável	Número de escolas	Média	Mediana	Desvio Padrão	Mínimo	Máximo
tamanho	227	1401	1215	938.339	2	3918
prop	227	49,133	49,228	4,850	26,830	68,540
racioap	222	10,419	10,357	4,217	1,981	41,421
compa	243	0,257	0,294	0,967	-2,387	3,001
compp	243	0,142	0,223	0,978	-2,118	3,139

Tabela A.3.: Estatísticas descritivas das variáveis explicativas contínuas ao nível da região antes da imputação dos *missings values*

Variável	Número de regiões	Média	Mediana	Desvio Padrão	Mínimo	Máximo
pib	7	34475,970	32632	22649,68	3706	63194
auton-mean	7	0,614	0,608	0,023	0,571	0,649
despensino	7	402,708	350,987	153,018	232,776	695,014
respress-mean	7	-0,539	-0,507	0,045	-0,681	-0,495
staffshort-mean	7	0,779	0,922	0,317	0,244	1,240

FIGURAS

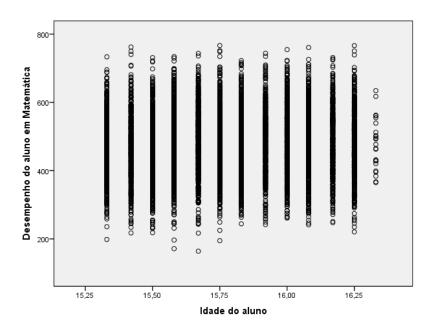


Figura B.1.: Gráfico de dispersão da idade do aluno vs Desempenho do aluno em Matemática

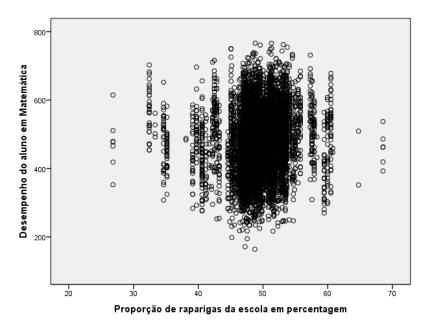


Figura B.2.: Gráfico de dispersão da proporção de raparigas da escola *vs* Desempenho do aluno em Matemática

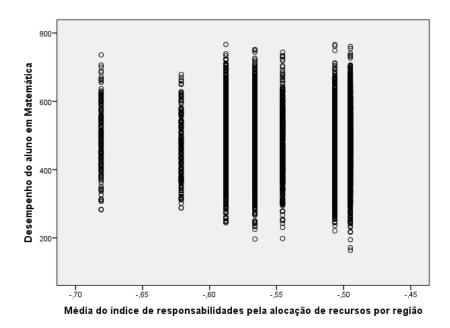


Figura B.3.: Gráfico de dispersão da respress-mean por região vs Desempenho do aluno em Matemática

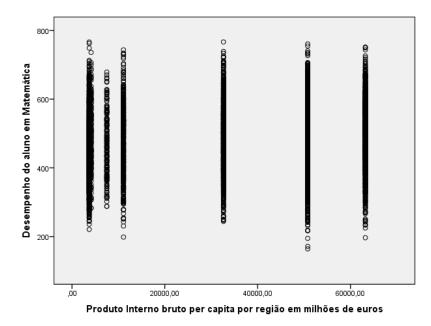


Figura B.4.: Gráfico de dispersão do pib *per capita* por região *vs* Desempenho do aluno em Matemática

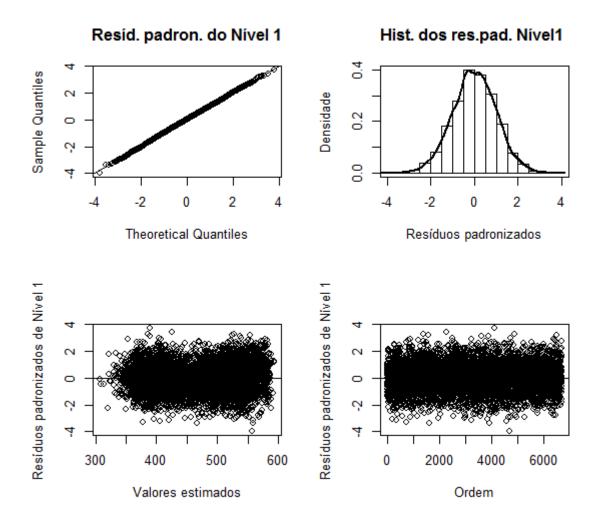


Figura B.5.: Gráficos da análise dos Resíduos de nível 1