
Dominic Noy

PARAMETER ESTIMATION OF THE LINEAR
PHASE CORRECTION MODEL BY
MIXED-EFFECTS MODELS

Do
m

in
ic

No
y

November, 2017UM
in

ho
 |

 2
01

7
PA

RA
M

ET
ER

 E
ST

IM
AT

IO
N

 O
F

TH
E

LI
N

EA
R

PH
AS

E
CO

RR
EC

TI
O

N
 M

O
DE

L
BY

 M
IX

ED
-E

FF
EC

TS
 M

O
DE

LS

Universidade do Minho
Escola de Ciências

November, 2017

A thesis presented for the degree of
Master of Science in Statistics

Supervised by
Dr. Raquel Menezes

Dominic Noy

PARAMETER ESTIMATION OF THE LINEAR
PHASE CORRECTION MODEL BY
MIXED-EFFECTS MODELS

Universidade do Minho
Escola de Ciências

Declaration

Email:

dominic.noy@gmail.com

Title:

Parameter Estimation of the Linear Phase Correction Model by Mixed-Effects Models

Supervisor:

Dr. Raquel Menezes

Year of Conclusion:

2017

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS

PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ES-

CRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

University of Minho, 30/11/2017.

The author:

i

Dedication

To Inês.

iii

iv

Acknowledgement

Raquel Menezes, thank you for the abundance of patience, effort, personal and profes-

sional support, trust, and most importantly, a lot of fun!

Financial support from the Portuguese Funds through FCT-“Fundação para a Ciência

e a Tecnologia”, within the Project UID/MAT/00013/2013.

v

vi

Abstract

The control of human motor timing is captured by cognitive models that make as-

sumptions about the underlying information processing mechanisms. A paradigm for

its inquiry is the Sensorimotor Synchronization (SMS) task, in which an individual

is required to synchronize the movements of an effector, like the finger, with repeti-

tive appearing onsets of an oscillating external event. The Linear Phase Correction

model (LPC) is a cognitive model that captures the asynchrony dynamics between the

finger taps and the event onsets. It assumes cognitive processes that are modeled as

independent random variables (perceptual delays, motor delays, timer intervals).

There exist methods that estimate the model parameters from the asynchronies

recorded in SMS tasks. However, while many natural situations show only very short

synchronization periods, the previous methods require long asynchrony sequences to

allow for unbiased estimations. Depending on the task, long records may be hard to

obtain experimentally. Moreover, in typical SMS tasks, records are repetitively taken

to reduce biases. Yet, by averaging parameter estimates from multiple observations,

the existing methods do not most appropriately exploit all available information.

Therefore, the present work is a new approach of parameter estimation to inte-

grate multiple asynchrony sequences. Based on simulations from the LPC model, we

first demonstrate that existing parameter estimation methods are prone to bias when

the synchronization periods become shorter. Second, we present an extended Linear

Model (eLM) that integrates multiple sequences within a single model and estimates

the model parameters of short sequences with a clear reduction of bias. Finally, by

using Mixed-Effects Models (MEM), we show that parameters can also be retrieved

robustly when there is between-sequence variability of their expected values.

Since such between-sequence variability is common in experimental and natural

vii

viii

settings, we herewith propose a method that increases the applicability of the LPC

model. This method is now able to reduce biases due to fatigue or attentional issues,

for example, bringing an experimental control that previous methods are unable to

perform.

Resumo

O controlo de factores temporais que ocorrem na execução de movimentos é captado por

modelos cognitivos. Estes modelos são aproximações do processamento de informação,

que ocorre no sistema nervoso. Para investigar este processo é utilizada a “Sensori-

motor Synchronization Task” (SMS) que consiste em sincronizar os movimentos, por

exemplo, de um dedo com eventos externos repetitivos. O “Linear Phase Correction

Model” (LPC) permite prever a evolução da diacronia entre o movimento e o evento

externo. Este modelo inclui variáveis aleatórias independentes, tais como atrasos no

processamento da informação e execução da resposta.

Para se estimar os parâmetros do LPC são utilizados métodos que incluem as

diacronias obtidas na SMS. Estes métodos precisam de sequências longas, no entanto

o sincronismo verifica-se durante curtos peŕıodos de tempo. Além disso, registam-se

observações múltiplas para diminuir o viés na estimativa. Contudo, recorrendo à média

de múltiplas estimativas, nem toda a informação dispońıvel é considerada.

Com vista a colmatar as lacunas identificadas, este trabalho apresenta uma nova

abordagem ao ńıvel da estimativa dos parâmetros. Num primeiro momento, com

base em simulações do LPC, demonstramos que os métodos existentes são enviesados,

quando as sequências são curtas. Num segundo momento, apresentamos o “extended

Linear Model” (eLM) que integra diacronias múltiplas no mesmo modelo. Por fim,

usando o “Mixed-Effects Model” (MEM), mostramos que os parâmetros podem ser

estimados quando os valores esperados variam entre sequências.

Uma vez que tal variabilidade é frequente e observável em contexto real, o método

desenvolvido neste trabalho permite maior aplicabilidade do modelo LPC e reduz o viés

causado por factores relacionados com problemas de atenção e de fadiga, introduzindo

um novo controlo experimental.

ix

x

Contents

1 Introduction 1

2 Event-Based Timing Models 5

2.1 Timing of Discrete Motor Responses . 5

2.2 The Linear Phase Correction model (LPC) 8

3 Parameter Estimation Methods 15

3.1 The bounded Generalized Least Square (bGLS) Method 15

3.1.1 Method . 15

3.1.2 Computation . 17

3.1.3 Results & Discussion . 20

3.2 The extended Linear Model (eLM) . 28

3.2.1 Method . 28

3.2.2 Computation . 30

3.2.3 Results & Discussion . 32

3.3 The Mixed-Effects Model (MEM) . 40

3.3.1 Method . 40

3.3.2 Computation . 41

3.3.3 Results & Discussion . 42

4 General Discussion 45

4.1 Contributions of the extended Linear Model (eLM) 45

4.2 Contributions of the Mixed-Effects Model (MEM) 46

4.3 Limitations . 47

4.4 Further Contributions . 49

xi

xii

4.5 Conclusions . 49

References . 51

Appendices . 54

A Auxiliary functions . 54

B Simulation function (bGLS) . 55

C Parameter estimation function (bGLS) 56

D Method validation (bGLS) . 58

E Method validation for asynchrony sequences that vary among se-

quences (bGLS) . 59

F Simulation function (eLM) . 61

G Parameter estimation function (eLM) 61

H Method validation (eLM) . 63

I Simulation function (MEM) . 65

J Parameter estimation function (MEM) 65

K Method validation (MEM) . 66

L Comparison of the bGLS method and the eLM by Mean Squared

Error (MSE) . 69

M Benchmark function . 69

N Maximum Likelihood vs. Restricted Maximum Likelihood 70

List of Figures

2.1 Model of continuation tapping . 6

2.2 Linear Phase Correction Model. 10

2.3 Output of a LPC model simulation. 11

3.1 Parameter estimation by the bGLS method. 21

3.2 Multiple short asynchrony sequences . 25

3.3 Comparisons of the estimation methods for varying sequence lengths . . 35

3.4 Comparisons of the accuracies of the estimation methods for varying

sequence lengths . 36

3.5 Comparions of the efficiencies of the estimation methods for varying

sequence lengths . 37

3.6 Asynchrony sequences with between-sequence variability 39

3.7 Comparison of estimation methods with between-sequence variability . . 43

1 Mean Squared Error (MSE) of LPC model parameter estimation as a

function of true α for different sequence lengths. MSE of the bGLS

method are displayed in red and the MSE of the eLM method are dis-

played in magenta. 69

2 Comparison of Maximum Likelihood Estimation (ML) and Restricted

Maximum Likelihood Estimation (REML). The between-sequence vari-

ability was sampled from NV (0, 52). The parameters were estimated for

different αs from sequences of length ni = 30, simulated m = 15 times

from the LPC model with σT = 10 and σM = 5. 70

xiii

xiv

Theoretical Concepts

1 Note 1: Random Variable . 7

2 Note 2: Independence . 7

3 Note 3: Estimator . 8

4 Note 4: Least Squares Estimators . 12

5 Note 5: Expected Value . 16

6 Note 6: Maximum Likelihood Estimator (MLE) 18

7 Note 7: Stationarity . 24

8 Note 8: The Extended Linear Model (eLM) 26

9 Note 9: Linear Mixed-Effects Model (lMEM) 27

10 Note 10: Mixed-Effects Model (MEM) 28

xv

xvi

Abbreviations

CNS Central Nervous System

SMS Sensorimotor Synchronization

acvf autocovariance function

LPC Linear Phase Correction Model

OLS Ordinary Least Squares

GLS Generalized Least Squares

bGLS bounded Generalized Least Squares

MLE Maximum Likelihood Estimator

ML Maximum Likelihood Estimation

REML Restricted Maximum Likelihood Estimation

BLUE Best Linear Unbiased Estimator

eLM extended Linear Model

lMEM linear Mixed-Effects Model

MEM Mixed-Effects Model

MA1 Moving Average Model of order 1

xvii

xviii

Chapter 1

Introduction

Humans coordinate their movements with nearby moving objects in the environment

with a remarkable ease. This requires a highly timed communication of the perception-

action systems underpinning the movement control. In order to investigate the under-

lying timing mechanisms, employed by the Central Nervous System (CNS), researchers

study participants’ attempt to synchronize their movements concurrently with repeti-

tively occurring environmental events. Synchronization can be understood as a simpli-

fied type of coordination because it is constrained in space and time. It is particularly

important in activities such as music, sports, and manufacturing. Synchronizing move-

ments with a partner was also shown to increase social aspects, such as social attach-

ment and cooperation (Wiltermuth & Heath, 2009; Valdesolo, Ouyang, & DeSteno,

2010; Reddish, Fischer, & Bulbulia, 2013), rapport (Miles, Nind, & Macrae, 2009), and

likability (Launay, Dean, & Bailes, 2014), and it was traditionally used as a means to

enhance self-esteem and obedience (Valturio, 1921).

The study of motor synchronization is mostly focused on effectors like the fin-

gers (Repp, 2005), the forearms (Mörtl et al., 2012), or the feet (van Ulzen, Lamoth,

Daffertshofer, Semin, & Beek, 2008) to be timed with external events like auditory

metronomes, light displays, or interacting partner movements (Schmidt & Richardson,

2008; Noy et al., 2017).

Successfull synchronization requires the individual to a) perceive the event onsets;

b) perceive one’s movement onset; c) compute the asynchrony between both onsets; d)

compute the temporal progression of the repeated event series; e) follow all these steps

1

2

to predict upcoming event onsets.

Based on these perceptual processes, appropriate motor commands can be com-

puted so that the asynchrony—between the movement and the event—becomes reduced

to a minimum (Grush, 2004; Van Der Steen & Keller, 2013). When the external event is

presented with constant temporal intervals (these may also vary slightly), this paradigm

is called Sensorimotor Synchronization (SMS) (Repp, 2005).

There are cognitive models accounting for the empirical findings obtained from

SMS tasks. Cognitive models usually use a mathematical representation, formalized

as a parameterized system of equations that receives input, for example, sensory cues

about the onsets and previous asynchronies (Wing & Kristofferson, 1973; Schulze &

Vorberg, 2002; Jacoby, Tishby, Repp, Ahissar, & Keller, 2015) and produce output, for

example a motor response to reduce the next asynchrony. By solving (or approximating)

such systems, its parameters are revealed.

These models can be challenged by comparing their analytical or simulated

output—for a given input and set of parameters—with experimental observations. By

systematically manipulating the input, it can be validated whether such processes–as

postulated by the particular model– in fact underpin the information processing of the

CNS.

Because in experiments there are always variables that can neither be manip-

ulated nor controlled–i.e., there is noise within and beyond the CNS–these problems

are usually approached in a probabilistic manner. Within the framework of probabil-

ity theory, a model can be defined as a parametric family of probability distributions.

The combination of probability distributions (indexed by parameters) determines the

distribution of the input and associates a probability of occurrence to each output.

Probabilistic models are used to model cognitive abilities. Usually, the challenge is

to determine how the observed quantities relate to the model parameters in question

(Myung, 2003).

In cognitive models of motor synchronization, the observed quantities are the

asynchrony dynamics between the onsets of oscillating motion of an individual and the

onsets of a repetitively appearing stimulus. The subject of inquiry is the relation of

these asynchronies to the parameters of the underlying timing model.

3

Our scope is a) to give a brief overview of such models, b) present their current

parameter estimation approaches and limitations, and c) to introduce a novel approach

of parameter estimation. In Chapter 2, we present the synchronization models of

interest. In Chapter 3, we first, present the most recent parameter estimation method

and illustrate that it is biased when certain experimental conditions are not met (i.e.,

when the asynchrony sequences become shorter). We, then, present an extended Linear

Model revealing superior estimation performance in such conditions. Finally, we present

a Mixed-Effects Model that also accounts for additional intergroup-specific factors, and

therefore most robustly estimates the model parameters. The main contribution of this

work is the finding of robust parameter estimation methods that allow validating the

LPC model on more complex empirical observations from movement synchronization

experiments.

Throughout this manuscript, there are presented gray-shaded text fields referred

to as “Notes”. These introduce mathematical theorems and general models. They can

be utilized to gain further insight into theoretical concepts but their considerations are

not necessary for following the study.

4

Chapter 2

Event-Based Timing Models

2.1 Timing of Discrete Motor Responses

In order to account for human timing processes, Wing and Kristofferson (1973) devel-

oped a probabilistic cognitive model, which describes the timing behavior of individuals

who have to execute repetitive movements at constant temporal intervals. When the

intervals are determined by an external metronome that suddenly stops and the indi-

vidual is required to continue executing the constant movement intervals, this method

is called the synchronization-continuation paradigm. Based on the variability of the

movement intervals (i.e., the time between two successive taps), Wing and Kristofferson

(1973) proposed the following model (see Figure 2.1) 1:

Ij = Cj −Dj−1 +Dj , (2.1)

where Ij is the movement interval j, Cj is the internal representation of the interval Ij

(Time Keeper), and Dj comprises the perceptual and motor delays. Ij is the temporal

response interval bounded by two successive taps, which are determined by Cj−1 −

Dj−2+Dj−1 and Cj−Dj−1+Dj . In follow-up studies, this was changed to Cj−Dj−1+Dj

and Cj+1−Dj+Dj+1 (Schulze & Vorberg, 2002). Cj and Dj are defined as independent

random variables with Cj ∼ NV (µC , σ
2
C) and Dj ∼ NV (µD, σ

2
D).

1For the introduction of the existing models and techniques, we used the notation of the original

articles. For this reason, notations of the same variables and parameters can vary throughout this

work.

5

6

Reprinted from Wing and Kristofferson (1973).

Figure 2.1: Model of continuation tapping: “Schematic of a two-process mechanism for

the timing of repetitive discrete motor responses” (Wing & Kristofferson, 1973, p.6).

By assuming Cj and Dj (i 6= j) as independent (consult Note 1 and Note 2 for a

brief introduction of the concept of independent random variables), the parameters of

the model can be analytically estimated based on the serial dependence of the successive

movement intervals:

ρI(1) =
γI(1)

γI(0)
,

γI(1) = E[(Ij − µI)(Ij−1 − µI)], j = . . . ,−1, 0, 1, . . . ,

= E[(Cj −Dj−1 +Dj − µI)(Cj−1 −Dj−2 +Dj−1 − µI)],

= −E[(Dj−1 − µD)(Dj−1 − µD)],

= −σ2
D,

γI(0) = E[(Ij − µI)(Ij − µI)],

= σ2
I ,

= E[(Cj −Dj−1 +Dj − µI)(Cj −Dj−1 +Dj − µI)],

= σ2
C + 2σ2

D,

(2.2)

where ρI(1) is the lag-1 autocorrelation of successive movement intervals, γI(1) is the

lag-1 autocovariance, γI(0) is the lag-0 autocovariance, i.e. the variance of the move-

ment intervals (Ij), µD is the mean of the perceptual and motor delays, and µC is the

mean of the constant stimulus interval. The former can be set to zero without loss

7

of generality and the latter is determined by the experimenter. See Note 3 for the

introduction of an estimator.

Note 1: Random Variable

If Ω is the sample space of all possible outcomes of an experiment, and to all

elements of Ω is associated a probability measure and a real valued function X,

then X is referred to as random variable.

Note 2: Independence

The random variables X and Y are independent if their realizations do not affect

the distributions of the other random variables.

For (cumulative) distribution functions:

FX,Y (x, y) = FX(x)FY (y).

For probability density functions:

fX,Y (x, y) = fX(x)fY (y).

Assuming independent random variables Xj , Xi, Yj , and Yi (i 6= j) implies:

Cov(Xi, Xj) = 0, Cov(Yi, Yj) = 0,

Cov(Xi, Yi) = 0, Cov(Xi, Yj) = 0,

∀i 6= j

The model in Equation 2.1 suggests that γI(1) is different of zero due to the

simultaneous presence of Dj−1 and Dj at the jth iteration. Assuming independent

random variables, γI is supposed to be zero at larger lags (> 1). Taking into account

that Dj comprises perceptual and motor delays, the serial dependence of Ij may reflect

the degree of noise (variability) within their respective information processing pathways

(Wing & Kristofferson, 1973).

This was supported by systematic manipulation of the experimental conditions.

It was possible to decompose the overall variability of σ2
I into the variabilities of the

two independent subprocesses σ2
C and σ2

D by experimentally increasing the time be-

8

tween two successive stimulus onsets. While Cj increased σ2
T , σ2

D was unaffected. This

makes it possible to dissociate both processes (see Wing & Kristofferson, 1973). Such

dissociation was consistent with theoretical concepts and highlights the applicability of

quantitative cognitive modeling to activities like music or sports. It allows to attribute

performance variability to its causes so that training/treatments can be developed to

address such causes and therefore reduce the variability of the identified process.

Note 3: Estimator

Random variables are distributed according to a parametrized model (e.g., the

normal distribution). The parameters of the model (e.g., µ and σ) are unknown

and have to be estimated from an observed sample of realizations of the random

variable.

A “statistic” is a function of these random variables (e.g., the sample mean

1
N

∑N
i xi, i = 1, . . . , N). Using the statistic, the parameter of the model can be

estimated. If θ is the model parameter, then a statistic is called the estimator θ̂

of θ.

If θ̂ estimates θ “on the long run”, θ̂ is considered an unbiased estimator of θ.

The “bias” of θ is defined as

B(θ̂) = E[θ̂ − θ],

where E[.] is the expected value. The bias is used to reflect the “accuracy” of the

θ̂. When comparing two estimators θ̂1 and θ̂2, the estimator with lower variance

is considered as more “efficient”.

For evaluating the goodness of fit of θ̂, it is often used the “Mean Squared Error”,

which is the sum of the efficiency and the squared bias:

MSE(θ̂) = V ar(θ̂) +B(θ̂)2.

2.2 The Linear Phase Correction model (LPC)

Based on Wing and Kristofferson (1973)’s model, Schulze and Vorberg (2002) developed

the Linear Phase Correction model (LPC) (see Figure 2.2 and Equation 2.3). Figure 2.3

presents an example of an asynchrony sequence that can be observed when an individual

9

synchronizes ones’ finger taps with a metronome in a SMS task for 100 metronome

onsets. The asynchrony sequence is a set of random variables captured by the LPC

model:

An+1 = (1− α)An + Tn +Mn+1 −Mn − C, (2.3)

where An is the asynchrony at iteration n, C is a constant metronome interval, Mn is

the motor delay, and Tn is the Time Keeper interval. Mn and Tn are random variables

with Mn ∼ NV (µM , σ
2
M) and Tn ∼ NV (µT , σ

2
T)

Thus, the LPC describes the temporal behavior of the observed asynchronies

An+1 as a linear combination of the preceding asynchronies An, a cognitive represen-

tation of the external event structure Tn, and the information processing delays within

the CNS, Mn and Mn+1. Although there have been attempts to treat them separately,

similar to the previous model in Equation 2.1, Schulze and Vorberg (2002) summarized

the information processing delays (perceptual delays & motor delay) in a single variable,

referred to as motor delays Mn. This is so because with the existing approaches it is not

possible to find a unique solution for both, the motor and perceptual delay parameters.

This is referred to as “parameter identifiability problem”. Parameter identifiability im-

plies that different combinations of parameters cannot lead to the same results (Schulze

& Vorberg, 2002).

The parameters of the model in Equation 2.3 can be estimated by the empirical

autocovariance function (acvf) (see Schulze & Vorberg, 2002). The LPC received em-

pirical support for its validity (see e.g., Repp, 2005; Torre & Balasubramaniam, 2009;

Zelaznik, Spencer, & Ivry, 2002) and was extended to circumstances in which the base

tempo of the metronome changed (i.e., Cn as a function of n) and therefore µT had

to be adjusted (i.e., period correction) (Repp & Keller, 2004; Repp, 2001) or when the

metronome adjusted its intervals as a function of the individuals’ movement dynamics

(Repp & Keller, 2008).

Yet, there were published two articles demonstrating shortcomings of the esti-

mation method of Schulze and Vorberg (2002) (Jacoby, Tishby, et al., 2015; Jacoby,

Keller, Repp, Ahissar, & Tishby, 2015). The authors argued that it is biased when the

asynchrony sequences were obtained from SMS tasks with variable metronome inter-

10

Reprinted from Schulze and Vorberg (2002).

Figure 2.2: Linear Phase Correction Model. “Timing diagram for the two-level model

of synchronization” (Schulze & Vorberg, 2002, p. 83). This is the most prominent

Linear Phase Correction Model.

vals. When the temporal intervals changed or phase perturbations occurred—what is

common in natural settings—the parameters had to be estimated by fitting the em-

pirical acvf to computer simulations. This is slow and often no unique solution exists.

Therefore, Jacoby, Tishby, et al. (2015) suggested an alternative method of parame-

ters estimation, called the “bounded Generalized Least Squares method” (bGLS). See

Note 4 for an introduction of Least Squares Estimators. The bGLS method formalizes

the serial dependence of asynchronies as a simple regression problem in which succeed-

ing asynchronies linearly depend on previous asynchronies.

This method could master observations from experiments with variable metronomes

and was generally less biased, more efficient, and faster than the traditional estimation

techniques (Schulze & Vorberg, 2002) for a wide range of settings (Jacoby, Tishby, et

al., 2015). In addition, the bGLS method could capture the synchronization dynamics

of two or more interacting individuals that coordinate in a group, as for instance when

musical orchestra elements had to be coordinated (see also Wing, Endo, Bradbury, &

Vorberg, 2014). A detailed description of the bGLS method follows in Section 3.1.

11

−20

−10

0

10

20

30

0 25 50 75 100
Iteration number n

A
(n

)

Figure 2.3: Output of the LPC model simulation with α = 0.5, σT = 5, and σM = 10.

It shows a sequence of asynchronies An, n = 1, . . . , 100. The goal of the individual is

to minimize An. Due to variability within the CNS, An fluctuates around µA, which is

here set to zero.

12

Note 4: Least Squares Estimators

Ordinary Least Squares (OLS). In order to estimate parameters of the linear

model, it can be used the OLS method:

β̂ = (XT IX)−1XT y,

V ar(β̂) = σ2(XT IX)−1,

where X is a N x N design matrix, I is a N x N identity matrix, and y is a

N x 1 column vector of observations. Thus, the OLS assumes independent and

identically distributed observations. It is biased when these assumptions are not

met.

Generalized Least Squares (GLS). The GLS estimator relaxes those as-

sumptions by modeling heteroscedasticity and correlations between observations

through the N x N variance-covariance matrix W that can have varying diagonal

and off-diagonals entries:

β̂GLS = (XTW−1X)−1XTW−1y,

V ar(β̂GLS) = (XTW−1X)−1.

While the OLS is then different than the Maximum Likelihood Estimator (MLE)

(see Note 6, the OLS coincides with the MLE, when W is diagonal and ho-

moscedastic), the GLS coincides with the MLE in such circumstances. It is also

known as the best linear unbiased estimator (BLUE) of the population parame-

ters.

Feasible Generalized Least Squares (fGLS). In order to use the GLS, the

entries of W must be specified. The problem is that W is unknown and therefore

the GLS cannot be used as such. For this reason, W is estimated from the

empirical observations and then β is estimated by β̂GLS .

When alternately estimating W and β with the GLS, β̂GLS is called a fGLS

estimator

Concluding, we presented briefly the framework of linear phase correction models.

13

The bGLS method appears to be currently the “state-of-art method” of LPC model

parameter estimation. The scope of this work is to present two alternatives to the bGLS

method. In order to evaluate and compare the performance of different methods, we

simulated asynchrony sequences that could be the output of an experiment using SMS

tasks. This was done by running the LPC model in Equation 2.3, see Appendix B. It

received as input an initial asynchrony A1, constant metronome onsets with iteration

number, and a set of parameters (σT , σM & α). Parameter settings were held close

to those of previous studies (Jacoby, Tishby, et al., 2015). The output of a single

simulation is a sequence of asynchronies. Such a simulation was performed multiple

times and the parameter estimation methods were evaluated by considering its bias

and efficiency with which they recovered the set of parameters of the LPC model that

had generated the data.

The main chapter of this thesis, Chapter 3, is structured as follows: First, we

present and scrutinize the above-mentioned bGLS method. Therefore, we replicate the

code of Jacoby, Tishby, et al. (2015) (from Matlab code to R code) and compare it with

their results. Subsequently, we present and evaluate two alternative methods on the

simulated output. The reader can consult the Appendices for reproducible R codes of

all performed simulations, estimations, and method validations.

14

Chapter 3

Parameter Estimation Methods

3.1 The bounded Generalized Least Square (bGLS) Method

The goal of this section is to present the bGLS method and replicate the results of

Jacoby, Tishby, et al. (2015). Section 3.1.1 describes the formal method, section 3.1.2

describes the computations, and section 3.1.3 shows the results of the perfomed com-

putations on the simulated data (see Appendices B, C, & D for the here developed R

programs).

3.1.1 Method

In order to introduce the bGLS method, it is convenient to write the LPC model in

matrix form:

y = Bx+ Z, (3.1)

where

y =

∣∣∣∣∣∣∣∣∣
A1 − E[Ak]

...

AN − E[Ak]

∣∣∣∣∣∣∣∣∣ , B =

∣∣∣∣∣∣∣∣∣
A0 − E[Ak]

...

AN−1 − E[Ak]

∣∣∣∣∣∣∣∣∣ , x = (1− α), Z =

∣∣∣∣∣∣∣∣∣
H0

...

HN−1

∣∣∣∣∣∣∣∣∣ ,
and where Ak is the asynchrony at iteration k = 1, . . . , N , N is the length of the

sequence, E[Ak] is the expected value of Ak, α is the correction coefficient. For this

approach, N should be the same for all sequences.

15

16

Note 5: Expected Value

The expected value of a random variable is the average of realizations of X

referred to as x obtained from a theoretically infinite number of repetitions of

an experiment. Because X is here a continous random variable, it admits a

probability density funcion f(x) (pdf). The expected value of X is:

E[X] =

∫ ∞
−∞

xf(x)dx

Z follows a multivariate normal distribution with zero mean and N x N variance-

covariance matrix Σ. Considering that Z = [Z0, Z1, . . . , ZN−1]T , where Zk = Tk +

Mk+1 −Mk − E[Tk], it can be specified by γZ(j) = Cov[Zk, Zk+j] according to

γZ(1) = Cov[(Tk +Mk+1 −Mk), (Tk+1 +Mk+2 −Mk+1)]

= Cov[Mk+1,−Mk+1]

= −σ2
M ,

γZ(0) = V ar[Tk +Mk+1 −Mk]

= σ2
T + 2σ2

M ,

γZ(j) = 0, j > 1,

(3.2)

so that

Z ∼MVN(0,Σ), Σ = γZ(0)I + γZ(1)∆,

γZ(0) = 2σ2
M + σ2

T , γZ(1) = −σ2
M , γZ(j) = 0, j > 1,

17

∆ =



0 1 0 · · · 0 0

1 0 1
. . .

... 0

0 1 0
. . . 0

...
... 0

. . . 0 1 0

0
...

. . . 1 0 1

0 0 · · · 0 1 0


.

I is aN xN identity matrix and ∆ is aN xN matrix determining non-zero correlations.

In short, the asynchrony in the next iteration Ak+1 is linearly related to the

asynchrony in the previous iteration Ak captured by Bx. This is conceptually related

to the fact that the individual attempts to correct the asynchrony by a correction

parameter α. However, at each iteration, there is also variability within the CNS arising

from noise within the time keeper, motor, and perceptual processes. This variability

is captured by Zk, which is not independent from Zk−1 and Zk+1 and therefore should

lead to autocorrelated asynchrony sequences of Ak.

Next, it is presented how the parameters of the model in Equation 3.1 can be

estimated by the Maximum Likelihood Estimator. For its introduction, consult Note 6.

3.1.2 Computation

The likelihood of x and Σ(σT , σM) given Z (Z = y −Bx) is

L(x,Σ(σT , σM) | Z) =
1√

(2π)N |Σ|
e−

1
2

(y−Bx)T Σ−1(y−Bx), (3.3)

where Σ can be determined by the acvfs γZ(0) and γZ(1) (see Equation 3.2).

The log-likelhood function is

l(x,Σ(σT , σM) | Z) = −N
2
log(2π)− 1

2
log(|Σ|)− 1

2
(y −Bx)TΣ−1(y −Bx). (3.4)

Since x and Σ (i.e., α, σT and σM) are unknown, their estimation requires to it-

eratively estimate x and Σ referred to as Feasible Generalized Least Squares (see Jung,

1987 in Repp, Keller, & Jacoby, 2012). This means that x was estimated when Σ

was fixed at a particular (estimated) value and Σ was estimated when x was fixed at

a particular (estimated) value. Because, the MLE estimator coincides with the GLS

18

estimator, as noted by Jacoby, Tishby, et al. (2015), we performed the estimations by

maximizing l(x,Σ|Z) of Equation 3.4. The function l(x,Σ|Z) is usually maximized

rather than L(x,Σ|Z) because it is computationally easier. Both functions, have a

3-dimensional shape spanned by the parameters x, σM and σT and the best estimator

of all three parameters is the position within the parameter space where their joint

function has its maximum, which is the same for both L(x,Σ|Z) and l(x,Σ|Z).

Note 6: Maximum Likelihood Estimator (MLE)

The MLE is another parameter estimator. While OLS, GLS, and fGLS estima-

tors search for the parameters that minimize the sum of squared residuals of the

model, the MLE searches for parameters that make the observations most likely.

y = [y1, . . . , ym] are observations, randomly sampled from a population of inter-

est. w is a vector of parameters. f(y | w) is the probability to observe y given

w, called conditional probability densitiy function.

The MLE makes explicit assumptions about the distribution that had generated

the observations:

Assuming the elements to be independent, that is yi and yj , ∀i 6=j, the pdf of y

can then be written as

f(y | w) = f1(y1 | w)f2(y2 | w) . . . fm(ym | w).

Usually the experimenter observed a sample y and wants to find w. This is

approached by the likelihood function:

L(w | y) = f(y | w).

the likelihood function denotes the likelihood of the parameter w given the ob-

servations y.

By maxizing L(w | y)—therefore called MLE—we obtain the parameters w that

most likely produced y.

maxL(w)
w1,w2,...,wr

⇒ ∂L

∂wi
(i = 1, . . . , r) = 0.

19

In general, the MLE is a consistent, unbiased, and efficient estimator of the

parameters.

The bGLS algorithm

In order to obtain the LPC model parameters, it is used the bGLS algorithm of

Jacoby, Tishby, et al. (2015). Input are nseq sequences of N asynchronies (Aik, i =

1, . . . , nseq, k = 1, . . . , N). Output are α̂, σ̂M , and σ̂T . For the first iteration, matrix

Σniter=1 is assumed/set as the identity matrix I. Then, the following equations are

iterated Niter times (niter = 1, . . . , Niter) for each sequence i, with Niter = 20.

Iteration:

1. xniter is estimated by OLS with Σniter = I: xniter = (BTΣ−1
niterB)−1(BTΣ−1

niter)y.

2. The residuals d of the model fit are obtained by computing dniter = y −Bxniter.

3. γniter(0) is obtained by computing the acvfd(0) of the residuals d at lag 0.

4. γniter(1) is obtained by computing the acvfd(1) of the residuals d at lag 1.

5. γniter(1) is adjusted by decreasing/increasing so that:

0 < −γniter(1) < γniter(0) + 2γniter(1)1.

6. Σniter+1 is specified by γniter(0) and γniter(1).

At the last iteration (Niter = 20), the parameter estimates of each sequence i

are obtained by

α̂i = 1− x20, σ̂Mi =
√
−γ20(1), σ̂Ti =

√
γ20(0)− 2σ̂2

Mi
, i = 1, . . . , nseq.

This procedure is then repeated for each sequence i (i = 1, . . . , nseq), with

nseq = 15, and the average of the nseq parameter estimates is taken as final esti-

mate:

1

nseq

nseq∑
i=1

α̂i = α̂,
1

nseq

nseq∑
i=1

σ̂Mi = σ̂M ,
1

nseq

nseq∑
i=1

σ̂Ti = σ̂T .

1Step 5 of the iteration is an additional constraint justified in Jacoby, Keller, et al. (2015), referred

to as “bounded”, giving their method the name bGLS.

20

See Appendix C for the implementation of these computations in R.

3.1.3 Results & Discussion

Figure 3.1 shows the means and the 95% confidence intervals of the parameter estimates

with the bGLS method (α̂, σ̂T , and σ̂M) for different α. For the range of α from 0.1 to

1.2, the bGLS method estimates α and σT almost without bias and σM with a slight

negative bias of approximately 0.5. At this α range, the estimations of α and σT are

very similar to the results of Jacoby, Tishby, et al. (2015). Yet, for σM , Jacoby, Tishby,

et al. (2015) presented less biased but also less efficient estimations compared to the

present results. However, Jacoby, Tishby, et al. (2015) conducted extensive simulations,

with more than 1000 repetitions of the method, which might by parts explain such

differences. Furthermore, while Jacoby, Tishby, et al. (2015) did not present estimates

at α > 1.2, larger values are theoretically possible up to α = 2. At this range, our

results revealed that the bias for α and σT is increased. On the other hand, σM seems

to be estimated with slightly more accuracy. Nevertheless, those biases are very small

and estimations might be sufficiently satisfying for most applications.

Overall, we are the opinion that the results are quite similar to the results of

Jacoby, Tishby, et al. (2015)’s study and, therefore, we propose that their method was

here successfully replicated.

Limitations

Sequence length. A limitation with the above-described approach, and former meth-

ods, is that they require long and constant asynchrony sequences. The more traditional

methods used the acvf of the asynchrony sequence (Schulze & Vorberg, 2002). For a

meaningful acvf, it was suggested that the length should be at least min(N) ≥ 50

(Murteira, Muller, & Turkman, 1993). Similarly, the bGLS method searches for an

approximated MLE. This is only reliable and unbiased if the sequence is relatively

large (Ljung, 1998 in Jacoby, Keller, et al., 2015). As stated by Jacoby, Tishby, et al.

(2015), this should be at least min(N) ≥ 30. Considering the slightly biased estimates

in Figure 3.1, our results point towards that this may be even larger than 30.

21

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

α̂

5.0

7.5

10.0

12.5

15.0

0.0 0.5 1.0 1.5 2.0

σ̂ T

0.0

2.5

5.0

7.5

10.0

0.0 0.5 1.0 1.5 2.0
α

σ̂ M

Figure 3.1: Parameter estimation by the bGLS method. The plots show the sample

mean and the 95% confidence intervals of 50 estimates for different α values. Red

dots are the means. When lying on the black line, the estimates coincide with the

true values. The sequences were obtained by simulating the LPC model with σM = 5,

σT = 10 and α according to the ordinate. Each estimate was obtained from nseq = 15

asynchrony sequences of length N = 30.

22

However, in many natural situations that an experimenter might want to simu-

late, synchronization can be observed for only very short time periods. In dance, part-

ners alternately synchronize and eventually desynchronize their movements; in man-

ufacturing work, the demand to coordinate with machines and other workers may be

repetitive but short lasting; in a symphony orchestra, instruments such as cello, violin,

piano, and celesta stand alone or together, and sometimes start and stop for very short

time periods. A typical strategy in gait rehabilitation is that the patient synchronizes

the stepping pattern during walking with external cues (see e.g., Lim et al., 2005), but

only for a few steps, probably in order to avoid fatigue. Short lasting interactions that

involve movement synchronization also exist in sports and in everyday coordination.

These activities have in common that the movements become synchronized very quickly

and last only short periods of time. Up to now, there do not seem to exist appropriate

estimation approaches within the framework of event-based timing models, presented

above, that can deal with short-lasting synchronization phenomena.

Experimental Design. Another important limitation of the bGLS method

and former methods is that it disregards information due to averaging. In a typical

experimental paradigm, one makes inferences about parameters of the model that is

supposed to have generated the behavior. To achieve this, behavioral records are usually

obtained repetitively, called trials or runs, and an average of these records, or their

parameter estimates, across trials is taken.

When the trials were performed by the same individual, averaging may eliminate

noise caused by factors such as tiredness, training effects, and distraction. When the

trials were performed by different individuals (or groups), averaging may eliminate

irrelevant between-subject variability not related to the study goals. Yet, by averaging,

one may lose essential information, outliers can bias the results, and if trials with

different lengths are included, they are weighted equally inducing further bias. It should

be desirable to estimate the parameters without applying such “mean-function”. This

is particularly important when there is little information on each trial, that is, when

trials are short.

23

Solutions

For the present problem, an asynchrony sequence can be regarded as the output of the

performance of a participant in one of multiple trials of an experiment (see Figure 3.2 for

an illustration). In order to implement such so called repeated-measurement paradigm,

appropriate methods must be developed that can estimate the parameters from multiple

and short asynchrony sequences. Models that may account for these patterns of results

are known as longitudinal models, mixed effect models, multilevel regression models,

extended linear models, panel data models, growth curve models, etc. The repeated

measurements of asynchronies can be viewed as multilevel, where the lowest level are

the asynchronies nested within the sequence. At this lowest level, according to the

LPC, the asynchronies are not independent, and the model parameters could then be

estimated based on the within-sequence correlation structure. In the remainder of this

manuscript, we adopted the terminology of Pinheiro and Bates (2000). Models that

capture within-sequence correlations are referred to as extended Linear Models (see

Note 8). Those models allow for the inclusion of all sequences within a single model

rather than computing an average.

Furthermore, asynchrony sequences may vary owing to other factors not con-

trolled here, which might have a unique contribution on each sequence. This could

affect different parameters causing variability between the expected asynchronies of the

sequences. Such between-sequence variability can be captured by random effects, which

are associated with each individual sequence, sampled randomly from the population

of sequences. When the model incorporates random effects, it is referred to as linear

Mixed-Effects Models (see Note 9). Since this approach focused on stationary asyn-

chronies, only the intercept of each sequence varied. Therefore, the model included a

random intercept term. Finally, when incorporating both, a particular within-sequence

correlation structure and a random intercept, the models referred to as Mixed-Effects

Models (see Note 10 and Pinheiro & Bates, 2000).

The remainder of this manuscript is structured as followed: First, we present

the extended Linear Model (eLM) and illustrate its superior estimation performance

to the bGLS method, particularly when the sequences are short. Second, we show

that the bGLS method and the eLM fail in estimating parameters from sequences with

24

varying intercepts. Finally, we demonstrate that the Mixed-Effects Model (MEM) can

robustly estimate the parameters of the LPC model by accounting for within-sequence

correlations and between-sequence variability.

Note 7: Stationarity

Strict stationarity:

If Xk is stochastic process that models the observable discrete time series

xk1 , xk2 , . . . , xkN , at time points k1, . . . , kN , a strictly stationary process is de-

fined by the equality of the joint distribution of the individuals cumulative dis-

tribution functions:

FX(xk1 , . . . , xkN) = FX(xk1+δ, . . . , xkN+δ). (A1)

This means that the joint cumulative distribution function is invariant to arbi-

trary time-shifts (δ) and implies

E[xk] = µ, V ar[xk] = σ2, Cov[xk1 , xk2] = γ(| k1 − k2 |). (A2)

Weak stationarity:

A weak stationary process relaxes the assumption A1 and assumes the covariance

to depend only on the distance between k1 to k2, γ(| k2 − k1 |) (Brockwell &

Davis, 2016).

25

−20

0

20

40

1 2 3 4 5 6 7 8 9 10
k

A
(ik

)

Figure 3.2: Illustration of multiple “short” asynchrony sequences Aik, i =

1, . . . , 15, k = 1, . . . , 10. The asynchronies were produced by simulating the LPC

model nseq = 15 times, with the parameters set to α = 0.5, σT = 10, σM = 5. Each

line segment represents one independent sequence. A1i was randomly sampled from a

uniform distribution U(−20, 20).

26

Note 8: The Extended Linear Model (eLM)

In the linear model y = Xβ + ε, the error ε is identically distributed (iid). This

means that each element in the vector ε follows the same pdf, here NV (0, σ2),

and is independent.

In the extended Linear Model (eLM), this assumption is relaxed and εij can be

correlated with εik, j 6= k, within group i. Then, the model is formalized as:

yi = Xiβ + εi, i = 1, . . . ,m,

εi =



εi1

εi2

εi3
...

εij
...

εini


∼MVN(0, σ2Λi), j = 1, . . . , ni,

where

· yi is a ni x 1 response vector

· Xi is an ni x p fixed-effects design matrix

· β is p x 1 fixed-effects vector

· εi is a ni x 1 within-group error vector

· Λi is a ni x ni positive-definite matrix parametrized by a vector of parameters

λ.

All elements of the error vector εi are independent of the error vector εj , i 6= j

but εih can be correlated with εik, h 6= k, within group i, specified by the non-

diagonal elements of Λi. The errors εih and εik are related to the position vectors

pih and pik only through the distance abs(j − k) and their particular values are

irrelevant. The dependence among the within-group errors is called correlation

structure.

27

Note 9: Linear Mixed-Effects Model (lMEM)

The linear Mixed-Effects Model is an extention of the linear model. The model

consists of fixed effects and random effects. Fixed effects are the part of the

conventional linear model. Random effects are related to particular units (e.g.,

participant or trial). Both are called “effects” because they reflect the deviation

from the overall expected value of the response variable. “Fixed” referres to the

effects that are constant across the units. “Random” referres to the effects that

are randomly sampled from a population of units, according to some model,

here NV (0, σ2
Random). Since the observations within the same unit share the

same random effects, observations within a unit can be correlated.

The standard form of the linear Mixed-Effects Model is

yi = Xiβ + Zibi + εi, i = 1, . . . ,m,

bi ∼MVN(0,Ψ), εi ∼MVN(0, σ2I),

where

· m is the total number of units

· yi is a ni x 1 response vector

· Xi is an ni x p fixed-effects design matrix

· β is p x 1 fixed-effects vector

· Zi is a ni x q random-effects design matrix

· bi is a q x 1 random-effects vector

· εi is a ni x 1 within-group error vector

· Ψ is a q x q symmetric and positive semi-definite matrix, with q being the total

number of random effects

· I is a ni x ni identity matrix

· σ2 is the error variance.

28

Note that the variability accounted for by random effects could also by modeld

by additional fixed effects. Fixed effects should be used when one wants to make

inferences about the exact levels of the classification factor. Random effects

should be used when making interences about the factors’ population rather

than about the particular levels.

Note 10: Mixed-Effects Model (MEM)

The lMEM can be extended by relaxing the assumption of independently and

identically distributed within-group errors with mean zero and constant variance.

This more general Mixed-Effects Model is a combination of the eLM and the

lMEM. It accounts for within-group variability and allows within-group errors

to be correlated (and to be heteroscedastic) .

yi = Xiβ + Zibi + εi, i = 1, . . . ,m,

bi ∼MVN(0,Ψ), εi ∼MVN(0, σ2Λi),

where the variables are defined as in Note 8 and Note 9.

3.2 The extended Linear Model (eLM)

In this section, we present the eLM method. It is used to estimate the parameters of

the LPC model. For this reason, as in the previous section, we simulated asynchrony

sequences from the LPC model in Equation 2.3 (see Appendix F), estimated the LPC

parameters by the eLM method from these simulations (see Appendix G), and repeated

this estimation multiple times in order to validate the performance of the eLM method

(see Appendix H).

3.2.1 Method

We developed the eLM method based on Pinheiro and Bates (2000). It is able to

capture multiple sequences of asynchronies within a single model. Each asynchrony is

denoted by aij , i = 1, . . . ,m, j = 1, . . . , ni, where i indexes the sequence and j indexes

29

the jth asynchrony within sequence i. The length of ai is denoted by ni and N denotes

here the length of all sequences together N =
∑m

i=1 ni.

The model can be written for each sequence i as:

yi = xiβ + si,

si ∼MVN(0,Σi),
(3.5)

where yi is a (ni−1) x 1 column vector of asynchronies of sequence i, xi is a (ni−1) x 1

column vector of asynchronies of sequence i one iteration earlier than the asynchronies

in vector yi, si is a (ni − 1) x 1 column vector of the errors of sequence i, and Σi is a

(ni − 1) x (ni − 1) variance-covariance matrix:

Σi =



σ2
T + 2σ2

M −σ2
M 0 · · · 0 0

−σ2
M σ2

T + 2σ2
M −σ2

M

. . .
... 0

0 −σ2
M σ2

T + 2σ2
M

. . . 0
...

... 0
. . . σ2

T + 2σ2
M −σ2

M 0

0
...

. . . −σ2
M σ2

T + 2σ2
M −σ2

M

0 0 · · · 0 −σ2
M σ2

T + 2σ2
M


.

si corresponds to Z of the bGLS method: si = [si1, si2, . . . , sini−1]T , sij =

Tij + Mij+1 −Mij − E[Tij]. We changed its notation to prevent confusion with the

random effects column vector zi, which is introduced in Section 3.3. See Note 9 for the

formalization of the linear Mixed-Effects Model.

The model including all sequences is then

Y = MVN(Xβ,Σ), (3.6)

where Y and X are column vectors with dimension (N −m) x 1, and Σ is a variance-

covariance matrix with dimension (N −m) x (N −m):

30

Y X β S

a12 − E[a1j]

a13 − E[a1j]

a14 − E[a1j]
...

ai2 − E[aij]

ai3 − E[aij]

ai4 − E[aij]
...

am2 − E[amj]

am3 − E[amj]

am4 − E[amj]



=



a11 − E[a1j]

a12 − E[a1j]

a13 − E[a1j]
...

ai1 − E[aij]

ai2 − E[aij]

ai3 − E[aij]
...

am1 − E[amj]

am2 − E[amj]

am3 − E[amj]



(1− α) +



s11

s12

s13

...

si1

si2

si3
...

sm1

sm2

sm3



,

where ni = 4, ∀i, i = 1, . . . ,m, for illustration purpose only.

3.2.2 Computation

The LPC model parameters α, σT , and σM can be obtained from β and Σ. Based on

the approach of Pinheiro and Bates (2000), a single β and Σ can be estimated by a

model including all sequences.

For computational reasons, σ2 was factored out of Σi:

Σi

σ2
= Λi. (3.7)

Λi is parametrized by λ:

Λi =



1 λ 0 · · · 0 0

λ 1 λ
. . .

... 0

0 λ 1
. . . 0

...
... 0

. . . 1 λ 0

0
...

. . . λ 1 λ

0 0 · · · 0 λ 1


.

31

Because it is a positive-definite matrix, it has an invertible square root Λ
1
2
i so

that Λi = (Λ
1
2
i)TΛ

1
2
i . Then, Λ−1

i = Λ
− 1

2
i (Λ

− 1
2

i)T , where Λ
− 1

2
i is the inverse of Λ

1
2
i . The

transformation to a linear model is then achieved by:

y∗i = (Λ
− 1

2
i)T yi, s

∗
i = (Λ

− 1
2

i)T si, x
∗
i = (Λ

− 1
2

i)Txi, (3.8)

which provides the linear model:

y∗i = x∗iβ + s∗i , (3.9)

where s∗i ∼MVN((Λ
− 1

2
i)T 0, σ2(Λ

− 1
2

i)TΛiΛ
− 1

2
i) = MVN(0, σ2Ii).

For a fixed λ, the conditional MLEs are:

β̂(λ) = ((X∗)TX∗)−1(X∗)TY ∗,

σ̂2(λ) =
(Y ∗ −X∗β̂)T (Y ∗ −X∗β̂)

(N −m)
,

(3.10)

where X = [X1, . . . , Xm]T , Y = [Y1, . . . , Ym]T , β = (1− α), and N =
∑m

i ni.

In the so called “profiled log-likelihood”, β can then be replaced by its conditional

MLE so that β is expressed as a function of λ, β(λ). Therefore, the profiled log-

likelihood is solely a function of λ:

l(λ|y)profiled = const− (N −m)log

√
(Y ∗ −X∗β̂)T (Y ∗ −X∗β̂)− 1

2

m∑
i=1

log|Λi|.

(3.11)

By optimizing Equation 3.11 and using λ̂ in Equation 3.10, the MLEs for β̂ and σ̂2

can be computed. Subsequently, by using λ̂, β̂, and σ̂2, the final LPC model parameters

are obtained by:

α̂ = 1− β̂,

σ̂M =

√
−σ̂2λ̂,

σ̂T =
√
σ̂2 − 2σ̂2

M .

(3.12)

32

As an alternative to implementing the above-described algorithm, one could also

utilize the “gls” function of the nlme R-package and define the within-sequence corre-

lation structure as a Moving Average Model of order 1, referred to as MA(1). α̂ could

then be obtained by computing 1 − β̂ and σ̂M and σ̂T could be obtained by reparam-

eterizing the variance-covariance matrix according to Equation 3.13. This is possible

because, similar to the LPC model, the MA(1) assumes non-zero autocorrelations only

at lag h = 1.

LPC : Zij = Tij +Mi(j+1) −Mij .

γZ(h) =


2σ2

M + σ2
T , if h = 0

−σ2
M , if |h| = 1

0, if |h| ≥ 2,

MA(1) : Xt = εt − θεt−1.

γX(h) =


σ2
ε (1− θ2), if h = 0

−θσ2
ε , if |h| = 1

0, if |h| ≥ 2.

⇒ σ2
M = σ2

ε θ, σ
2
T = σ2(1− θ2)− 2σ2

M

(3.13)

3.2.3 Results & Discussion

For method validation, we estimated 50 times the LPC parameters with the above-

presented eLM method and the bGLS method from 50 x 15 = 450 simulated asyn-

chrony sequences. Results revealed that the eLM method is less biased for different

sequences lengths compared to the bGLS method (see Figure 3.3). While the bias of

the bGLS method increased with decreasing sequence length and the size of the 95%

confidence intervals remained very similar, the eLM method seems unbiased at any

length but increased the confidence intervals.

This was expectable, considering that the bGLS method averaged estimates from

single sequences. When estimating the parameters by approximating a MLE from a

33

short sequence, estimations can fail easily, which results in estimates that may con-

sistently deviate from the theoretical mean. In addition, mean estimates are very

susceptible to outliers. Thus, when there are few asynchronies, bGLS estimates can be

biased.

In contrast, in the eLM method, a single parameter λ̂ is estimated by maximiz-

ing a profiled MLE (see Equation 3.11) involving all indexed sequences. Afterwards,

two single parameters β̂(λ) and σ̂(λ) can be estimated by the conditional MLEs (see

Equation 3.10) and a simple transformation reveals then the final parameter estimates

of the LPC model α̂, σ̂M , and σ̂T (see Equation 3.12). This method employs each

single sequence for parameter estimation while other sequences provide additional in-

formation about “what is going on” in the particular sequence. This makes the eLM

method more resistant to estimation biases (see Figure 3.4). However, short sequences

should still lead to a less efficient estimation. This is here reflected by an increase of

the standard deviation (σ) (see Figure 3.5).

Notwithstanding, the SD in the eLM method is particularly high at α around

1. Similar results were reported for the unbounded GLS method (see Jacoby, Keller,

et al., 2015). In future studies, additional bounding conditions could be included and

evaluated for the eLM method.

A common practice is to evaluate the Goodness of models by considering the

Mean Squared Error (MSE) (see Note 3). We, however, considered the bias and SD

separately because they are more transparent and intuitive, and for the present study

purpose, the MSE might weight the SD too strong. For example, we find it more

relevant to consider that the confidence intervals of the eLM estimates did not exceed

the biased estimates of the bGLS method. This means that even largely deviating

estimates were still as good as the biased estimates of the bGLS method for retrieving

the correct parameters.

Concluding, the eLM method seems to exploit a trade-off between accuracy (mean

deviation from the parameter) and efficiency (variability of estimations) in favor of

the former. When uncertainty increases due to less information within the simulated

observations, its efficiency decreased in order to hold a high accuracy. 95% estimates of

the eLM method seem at least as accurate or more accurate as the estimates from the

34

bGLS method. For this reason, we suggest that the eLM method should be preferred

when multiple and stationary sequences are available. Although the choice of one

over the other method depends on the particular study goals and should be carefully

considered by the user, the advantage of our modeling approach becomes very obvious

in section 3.3.

Limitations

A shortcoming of the eLM method and the bGLS method is that they presume the

same parameter settings among all sequences. Apparently, proposing a general model,

like the LPC, only has value if the process in question is stable in its parameter settings,

as long as the environment is constant.

However, when the asynchronies were obtained from experiments, there should

be variability between the measurements that are not related to the LPC model. For

instances, in an repeated-measurement design, identical experimental conditions among

trials are impossible to achieve. When there are noise factors that are independent

among all asynchronies, the variability is captured by the error term of the model. Yet,

there may be factors that have a unique contribution on each trial and are hard to

control. This leads to variability between trials that is neither accounted for by the

LPC model nor by the introduced parameter estimation methods.

Concretely, we have shown that the eLM is appropriate if the mean asynchrony

is expected to be constant among trials. Jacoby, Tishby, et al. (2015) normalized the

asynchronies by the mean asynchrony obtained from so many asynchrony records as

possible. However, if each sequence is exposed to variability factors whose magnitude is

unique to each sequence, such a normalization is inappropriate. Another possibility is to

normalize each sequence by the mean asynchrony of the respective sequence. This can

be done when using the eLM method. Yet, for short sequences, such mean asynchrony

might not be very representative.

Solutions

Figure 3.6 shows asynchrony sequences whose expected asynchronies vary between the

sequences by different magnitudes. One possibility to account for this variability could

35

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

α̂

Method

bGLS

eLM

Comparison of bGLS and eLM on asynchrony sequences with different lengths

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
5.0

7.5

10.0

12.5

15.0

σ̂ T

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.0

2.5

5.0

7.5

10.0

α

σ̂ M

Figure 3.3: Comparison of the LPC model parameter estimation methods as a func-

tion of true α for different sequence lengths. The plots show the mean and the

95% confidence intervals of 50 estimates for each α. The estimates of the bGLS

method are displayed in red and the estimates of the eLM method are displayed

in magenta. Dots are the mean estimates. When lying on the black line, the es-

timates coincide with the true values. The sequences were obtained by simulating

the LPC model with σM = 5, σT = 10 and α according to the ordinate. Each

estimate was obtained from m = 15 asynchronies sequences with varying length

(ni = 30, ni = 10, ni = 5, ∀i, i = 1, . . . , 15).

36

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
−0.2

−0.1

0.0

0.1

α̂
−

α Method

bGLS

eLM

Accuracy (bias) of the bGLS and the eLM for asynchrony sequences with different lengths

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
−1.2

−0.8

−0.4

0.0

0.4

σ̂ T
−

σ T

5 10 30

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

α

σ̂ M
−

σ M

Figure 3.4: LPC model parameter estimation bias as a function of true α for different

sequence lengths. Estimation biases of the bGLS method are displayed in red and the

estimation biases of the eLM method are displayed in magenta. When lying on the

black line, the bias is minimal.

37

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

σ α̂

Method

bGLS

eLM

Efficiency (SD) of the bGLS and the eLM on asynchrony sequences with different lengths

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

1

2

σ σ̂
T

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

1

2

3

4

α

σ σ̂
M

Figure 3.5: The standard deviations (σ) of the LPC model parameter estimations as

a function of true α for different sequence lengths. The σs of the bGLS method are

displayed in red and the σs of the eLM method are displayed in magenta.

38

be to incorporate another fixed effect in the eLM, with as many parameters as there

are sample means. Considering that this value was sampled from a continuous distribu-

tion, the number of parameters would equal the number of sequences i = 1, . . . ,m. Yet,

we were not interested in making inferences about the specific effects of these “noise

factors” but must control them for an unbiased estimation of the LPC model parame-

ters. For this reason, a solution could be to account for varying µai among sequences

i by incorporating random-effects (random intercepts) in the eLM model, making it a

single-level Mixed-Effects model (MEM) (see also Note 10). This requires the estima-

tion of far fewer parameters than when using fixed effects and it seems theoretically

more plausible. In the next section, we introduce the MEM method and subsequently

compare its performance with the performance of the bGLS and the eLM methods.

39

−40

−20

0

20

1 2 3 4 5 6 7 8 9 10
j

a(
ij)

random

Sigma = 10

Sigma = 5

Sigma = 2

Figure 3.6: Illustration of multiple (m = 45) short (ni = 10) asynchrony sequences (aij)

with between-sequence variability of E[aij]. The asynchronies were produced by simu-

lating the LPC model with α = 0.5, σT = 10, σM = 5. Each line segment represents

one independent sequence. The ai1 was randomly sampled from a uniform distribution

U(−20, 20). A random intercept was added to each sequence that shifted the expected

value E[aij] away from zero. The intercept was sampled from NV (0, σ2
b), σb = 2, 5, 10.

15 sequences were exposed to one of the three additional σb conditions. The colored

areas are the empirical standard deviations. The area increases slightly with σb.

40

3.3 The Mixed-Effects Model (MEM)

In this section, we present the MEM method. It is used to estimate the parameters of

the LPC model when µi varies among sequences. For this reason, we simulated asyn-

chrony sequences from the LPC model in Equation 2.3 and added after each simulation

a constant bi to each aij sampled from NV (0, σ2), σ = 2, 15, 10 (see Appendix I for

the R code). From these simulations, we estimated the LPC parameters by the MEM

method (Appendix J), the bGLS method (Appendix C), and the eLM method (Ap-

pendix G). These estimations were repeated multiple times in order to validate and

compare the performance of the methods (see Appendix K, D, & K).

3.3.1 Method

The MEM is denoted as

yi = xiβ + zibi + si,

bi ∼ NV (0, σ2
b), si ∼MVN(0, σ2Λi), i = 1, . . . ,m,

(3.14)

where yi, xi, and si are defined as in Equation 3.5: yi is a (ni − 1) x 1 column vector

of asynchronies of sequence i, xi is a (ni − 1) x 1 column vector of asynchronies of

sequence i one iteration earlier than the asynchronies in vector yi, si is a (ni − 1) x 1

column vector of the errors of sequence i, and Λi is a (ni − 1) x (ni − 1) covariance

matrix.

The bi is a m x 1 column vector of random effects for sequence i and zi is a

(ni − 1) x m design matrix, indexing bi. The bi is normally distributed with zero

mean and (the scalar) standard deviation σb. It represents the variability between the

expected asynchrony values E[aij] among the sequences. The bi and si are independent

within and between sequences.

41

Y X β Z b S

a12

a13

a14
...

ai2

ai3

ai4
...

am2

am3

am4



=



a11

a12

a13
...

ai1

ai2

ai3
...

am1

am2

am3



(1− α) +



1 . . . 0 . . . 0

1 . . . 0 . . . 0

1 . . . 0 . . . 0

...
...

...

0 . . . 1 . . . 0

0 . . . 1 . . . 0

0 . . . 1 . . . 0

...
...

...

0 . . . 0 . . . 1

0 . . . 0 . . . 1

0 . . . 0 . . . 1





b1
...

bi
...

bm


+



s11

s12

s13
...

si1

si2

si3
...

sm1

sm2

sm3



,

where ni = 4, ∀i, i = 1, . . . ,m, for illustration purpose only.

3.3.2 Computation

In order to obtain the parameters β, σb, and σ2, the following likelihood function can

be maximized:

L(β, δ, σ2 | y) =
1

(2πσ2)(N−m)/2
exp

(
−
∑m

i=1 || ỹi − x̃iβ − z̃ib̂i ||2

2σ2

)
m∏
i=1

| δ |√
| z̃Ti z̃i |

,

(3.15)

where δ parametrizes the variance-covariance matrix of the random effects bi (which is

here a scalar σb), σ is the residual standard error of si, ỹi, x̃i, and z̃i are the augmented

data vectors

ỹi =

yi
0

 , x̃i =

xi
0

 , z̃i =

zi
δ

 , δ =

√
σ2

σ2
b

, (3.16)

and b̂i is estimated by:

b̂i = (z̃Ti z̃i)
−1z̃Ti (ỹi − x̃iβ), i = 1 . . . ,m. (3.17)

42

Since the OLS for b̂i depends on β, and the OLS for β̂ depends on bi, they must

be estimated jointly (iteratively).

However, because the within-sequence errors are correlated, it was performed a

linear transformation of the variables, as previously (see Equation 3.8):

y∗i = (Λ
− 1

2
i)T yi, s

∗
i = (Λ

− 1
2

i)T si, x
∗
i = (Λ

− 1
2

i)Txi, z
∗
i = (Λ

− 1
2

i)T zi, (3.18)

which provided the linear Mixed-Effects Model

y∗i = x∗iβ + z∗i bi + s∗i ,

bi ∼ NV (0, σ2
b), s

∗
i ∼MVN(0, σ2I), i = 1, . . . ,m.

(3.19)

Its profiled likelihood function can be expressed as

L(β, δ, σ2, λ | y)profiled = L(β, δ, σ2, λ | y∗)
m∏
i=1

|Λ−1/2
i |, (3.20)

where λ parametrizes Λi, as in Equation 3.11. By optimizing Equation 3.20, its best

fitting parameters can be obtained from which α, σT , and σM were computed. For

a detailed description of the proof and most efficient computation of L(β, δ, σ2, λ |

y)profiled, see Pinheiro and Bates (2000).

The above-described computational method was implemented in the “lme” func-

tion of the “nlme” R-package. The within-sequence correlation structure was defined

as a Moving Average Model of order 1. The α̂ could be obtained by computing 1− β̂

and σ̂M and σ̂T could be obtained by reparameterizing the variance-covariance matrix

according to Equation 3.13. See Appendix J for the R code.

3.3.3 Results & Discussion

The results revealed that the bGLS method and the eLM method deteriorated with

increasing between-sequence variability. The eLM method normalized the sequences by

the sample mean of each sequence and the bGLS method computed the sample mean

by all asynchronies from all sequences The biases increased with between-sequence

variability and was smaller for lower α. The patterns of these biases is quite complex

and we do yet not know how to interpret them.

43

2 5 10

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

α̂

Method

bGLS

eLM

MEM

Between−Sequences Variability σb

2 5 10

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

σ̂ T

2 5 10

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

α

σ̂ M

Figure 3.7: Comparison of the bGLS, eLM, and MEM when there is additional between-

sequence variability of E[aij] that is not incorporated in the LPC model. This between-

sequence variability was sampled from NV (0, σ2
b), σb = 2, 5, 10, as indicated at the top

of the plots. The parameters were estimated for different α from sequences of length

ni = 30. The sequences were obtained by simulating the LPC model with σT = 10 and

σM = 5.

44

In contrast, the MEM method, which modeled the between-sequence variability

by random effects, led to unbiased estimates for different magnitudes of variability (see

Figure 3.7). We did not compare the efficiency of the models, as previously, because

Figure 3.7 clearly illustrates its superior performance when there is between-sequence

variability.

We further benchmarked the functions showing that the most complex MEM

method is slightly faster than the bGLS method (MEM=15ns, bGLS=20ns) (see Ap-

pendix M). We, therefore, suggest that the MEM method is an appropriate alternative

that can be used for single sequences when they are sufficiently long and stationary,

and for short and multiple sequences when they are stationary.

Chapter 4

General Discussion

The main goal of this work was to introduce unbiased methods of parameter estimation

of the LPC model. Therefore, we simulated asynchrony sequences from the LPC model,

replicated the currently “state of art” estimation method (bGLS), and compared this

with two here-developed methods in conditions that often occur in experimental setups.

4.1 Contributions of the extended Linear Model (eLM)

We demonstrated that the bGLS is prone to bias when the asynchrony sequences be-

come shorter. We suggest that this owes to the inefficient technique of averaging pa-

rameter estimates, particularly when there is little information on each sequence. For

this reason, we presented eLM, which integrates multiple sequences into a single model.

Our results revealed that eLM estimates the model parameters of longer and shorter

sequences with less bias than the bGLS.

Besides the simultaneous consideration of multiple sequences, another advantage

of such an approach is that it can deal with balanced and unbalanced data. This implies

that sequences of different lengths and/or missing values can be included. In contrast

to the bGLS method, the eLM weights stronger the sequences with greater lengths,

what is appropriate because longer sequences include more information and lead to less

biased estimates. As far as we know, the authors of the bGLS method did not address

this issue. We assume that shorter sequences or sequences with missing values were

disregarded.

45

46

4.2 Contributions of the Mixed-Effects Model (MEM)

Subsequently, we applied a MEM. This model considers the between-sequence vari-

ability of the expected asynchrony within each sequence. By relating random effects

to the asynchronies sharing the same sequence, the MEM could flexibly account for

this variability. It provided unbiased estimates where the bGLS and the eLM methods

largely deteriorated.

For the simulation, we produced between-sequence variability by adding a value

(sampled from NV (0, σ2
b), with different σ2

b) that was constant within a sequence but

variable between sequences. How could one justify the validity of this manipulation?

When the different sequences result from repeated measurements on the same

individual, such between-sequence variability might reside from an interplay of phys-

iological factors—the properties of the individual sensory system—and psychological

factors—for instances attentional focus and distraction. In order to achieve synchro-

nization, the asynchronies have to be perceived as such. The perception of asynchrony

depends on a complex interaction of a multitude of sensory cues from various modal-

ities (e.g., tactile, auditory, & visual). Different sensory systems vary in propagation,

transduction, transmission, and processing times, leading to different magnitudes of the

physical (actual) asynchronies when an environmental event is represented by multiple

modalities (see e.g., Noy, 2017).

The attentional focus of the individual on a particular sensory cue determines the

size of the asynchrony that is required to be perceived as synchronous. Thus, attention

might affect the information processing delays represented by the parameter µM in

the LPC model. Consequently, the individual might attempt to achieve and stabilize

different asynchronies, resulting in different mean asynchronies among sequences.

Yet, it is not clear why the attentional focus should vary between sequences and

not within a sequence. In a typical synchronization experiment, event sequences are

presented visually on a computer screen or aurally through headphones and suddenly

appear and disappear. Before a sequence is presented, the participant’s attention is

purposefully caught by the presentation of, for instance, a visual fixation cross or a

beep sound. Individual sequences are usually separated by short time periods. During

stimulus presentation within a trial (e.g., a sequence of 10 to 30 metronome clicks),

47

an individual should be able to stay focused and remains within a similar cognitive

state. However, completing the task may require 15min to 120min; time enough for the

individual’s mind to wander and to focus different stimulus attributes. Although these

issues should be approached in further studies, we believe the presence of attentional

shifts during such paradigms can produce between-sequence variability by affecting

information processing delays.

When sequences are the performance of different individuals, then the between-

sequence variability could owe to factors specific to each individual. This is, for example,

the individual’s focus of attention. But also, the parameter settings of the underlying

LPC model (e.g., perceptional delays and motor delays) should be different among

individuals. Such individual differences produce very large between-sequence variations.

While the former parameter estimation methods cannot be used when each se-

quence is the performance of a different participant, the MEM approach can be imple-

mented. A possible application would be to assess the effects of particular experimen-

tal conditions—for example, some stimulus properties—on general timing parameters.

Then, one is not interested in making inferences about the differences of the LPC pa-

rameters among individuals, but still, has to control them in order to achieve unbiased

estimates. This can be done by incorporating random effects on the individual level,

as illustrated by the present work.

Finally, another variability factor that could be controlled by the MEM is method-

ological. Variability between sequences could result from the stimulus-presenting or the

performance-capturing systems.

Concluding, we presented several examples that emphasize that it is highly rele-

vant to include random intercept parameters into methods that estimate the parameters

of the LPC model from experimental data. Here, we simulated sequences with between-

sequence variability and assessed a model with a single random intercept but such a

model could also incorporate multiple and nested random-effects.

4.3 Limitations

It must be mentioned that the eLM and the MEM approach estimated the parameters

by maximizing likelihood functions (ML). Alternatively, one could have used restricted

48

maximum likelihood functions (REML), which are generally more robust since they

consider the number of degrees of freedom (Pinheiro & Bates, 2000). In order to test

this, we compared the ML with the REML on the same observations and did not

observe any significant differences (see Appendix N). It is known that both functions

estimate the same fixed effects and that the ML estimate is unbiased for large overall

sample sizes (Pinheiro & Bates, 2000). This is usually the case in experimental setups.

Nevertheless, future studies should approach this question by estimating the parameters

with both functions while systematically manipulating the size of the sample.

A limitation might be that the presented methods require stationary asynchronies.

This is difficult to assure for short synchronization periods taking into account that

synchronization might be a highly transient process (see e.g., van Ulzen et al., 2008).

Nevertheless, stationary asynchronies are an important requirement of the LPC model

and we suggest that non-stationarity should be prevented by cautiously designing the

experiments and preparing the data set for analysis, rather than being modeled explic-

itly.

Another limitation of this work might be that between-sequence variability values

were chosen without being externally validated. For the LPC model parameter settings,

we could use settings similar to previous studies (Jacoby, Tishby, et al., 2015; Schulze &

Vorberg, 2002). For the between-sequence variability, however, we have chosen values

based on several tests and theoretical plausibility. Future studies should address this

question and actually quantify the between-sequence variability that occurs in SMS

tasks.

Related to the previous limitations, the here developed methods were validated

on simulated asynchrony sequences. The next step should be to validate the methods

on observations obtained from experiments.

Finally, our work was strictly concerned with the LPC model. The principal

assumption of the LPC model is that corrections are performed on the perceived devi-

ations from the participants’ taps from the corresponding stimulus event onset. Surely,

this is a quite simplistic model of reality since it presumes that even highly small asyn-

chronies are registered by the individual. There are plenty of studies showing that

asynchronies falling into a temporal integration window are actually not perceived as

49

such and, consequently, might not be corrected (see Vroomen & Keetels, 2010). It would

be interesting to evaluate this model regarding the inquiry of asynchrony thresholds for

awareness, phase and period correction, etc. (see Repp, 2005).

Nevertheless, this work does not address the plausibility of the LPC model but

instead proposes a more flexible approach to parameter estimations, likely to increase

the applicability of the model to more complex settings. Moreover, motivated by par-

simony as a fundamental principle for developing models, the LPC still finds great use

in basic and applied research (see Jacoby, Tishby, et al., 2015).

4.4 Further Contributions

One advantage of the approaches here developed is the existence of validated software

for fitting the eLM and the MEM, namely the “nlme” and the “lmer” R-packages.

Their use requires a reparametrization of the variance-covariance matrix, but, besides

being more robust, they are also quicker than the bGLS method.

Moreover, in order to examine the different parameter estimation methods, we

translated the Matlab code provided by Jacoby, Tishby, et al. (2015) into R code and

adjusted it for the particular question. We also implemented computational methods

presented in Pinheiro and Bates (2000), in order to flexibly modify the Mixed-Effects

model structure for the purpose of our study. This complemented the above-mentioned

R-packages and will be provided in CRAN (2017). In addition, all programs (R codes)

developed for this study will be available on GitHub (2017).

4.5 Conclusions

In sum, we provided a general framework of Mixed-Effects Models to estimate the

parameters of the LPC model. We do not claim for the overall validity of the LPC. A

more profound exploration of the LPC applicability to a large scope of natural settings

is outside the scope of this work. Nevertheless, we demonstrated that Mixed-Effects

Models are highly useful for achieving unbiased and efficient parameter estimations of

the LPC from synchronization performances in SMS tasks. It remains to explore the

extention of these methods, to more complex and realistic models, incorporating period

50

correction, phase transition, and non-stationary asynchronies.

51

References

Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting.

springer.

CRAN. (2017). The comprehensive r archive network. https://cran.r-project.org.

(Accessed: 2017-09-30)

GitHub. (2017). Github. https://github.com.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery,

and perception. Behavioral and brain sciences, 27 (03), 377–396.

Jacoby, N., Keller, P. E., Repp, B. H., Ahissar, M., & Tishby, N. (2015). Lower

bound on the accuracy of parameter estimation methods for linear sensorimotor

synchronization models. Timing & Time Perception, 3 (1-2), 32–51.

Jacoby, N., Tishby, N., Repp, B. H., Ahissar, M., & Keller, P. E. (2015). Parameter es-

timation of linear sensorimotor synchronization models: phase correction, period

correction, and ensemble synchronization. Timing & Time Perception, 3 (1-2),

52–87.

Launay, J., Dean, R. T., & Bailes, F. (2014). Synchronising movements with the

sounds of a virtual partner enhances partner likeability. Cognitive processing ,

15 (4), 491–501.

Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., . . .

Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with

parkinson’s disease: a systematic review. Clinical rehabilitation, 19 (7), 695–713.

Miles, L. K., Nind, L. K., & Macrae, C. N. (2009). The rhythm of rapport: Interpersonal

synchrony and social perception. Journal of experimental social psychology , 45 (3),

585–589.

Mörtl, A., Lorenz, T., Vlaskamp, B. N., Gusrialdi, A., Schubö, A., & Hirche, S.

(2012). Modeling inter-human movement coordination: synchronization governs

joint task dynamics. Biological cybernetics, 106 (4-5), 241–259.

Murteira, B. F., Muller, D. A., & Turkman, K. F. (1993). Analise de sucessoes crono-

logicas. McGraw-Hill, Lisboa.

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of mathe-

matical Psychology , 47 (1), 90–100.

52

Noy, D. (2017). A multimodal approach to interpersonal gait synchronization. (Unpub-

lished doctoral dissertation). Uminho. (unpublished thesis)

Noy, D., Mouta, S., Lamas, J., Basso, D., Silva, C., & Santos, J. A. (2017). Audiovisual

integration increases the step synchronization of side-by-side walkers. Human

Movement Science.

Pinheiro, J., & Bates, D. (2000). Mixed-effects models in s and s-plus. Springer, New

York.

Reddish, P., Fischer, R., & Bulbulia, J. (2013). Let
’
Äôs dance together: synchrony,

shared intentionality and cooperation. PloS one, 8 (8), e71182.

Repp, B. H. (2001). Processes underlying adaptation to tempo changes in sensorimotor

synchronization. Human movement science, 20 (3), 277–312.

Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature.

Psychonomic bulletin & review , 12 (6), 969–992.

Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor

synchronization: Effects of intention, attention, and awareness. Quarterly Journal

of Experimental Psychology Section A, 57 (3), 499–521.

Repp, B. H., & Keller, P. E. (2008). Sensorimotor synchronization with adaptively

timed sequences. Human movement science, 27 (3), 423–456.

Repp, B. H., Keller, P. E., & Jacoby, N. (2012). Quantifying phase correction in

sensorimotor synchronization: empirical comparison of three paradigms. Acta

psychologica, 139 (2), 281–290.

Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination.

In Coordination: Neural, behavioral and social dynamics (p. 281-308). Springer.

Schulze, H.-H., & Vorberg, D. (2002). Linear phase correction models for synchroniza-

tion: Parameter identification and estimation of parameters. Brain and Cogni-

tion, 48 (1), 80–97.

Torre, K., & Balasubramaniam, R. (2009). Two different processes for sensorimotor

synchronization in continuous and discontinuous rhythmic movements. Experi-

mental Brain Research, 199 (2), 157–166.

Valdesolo, P., Ouyang, J., & DeSteno, D. (2010). The rhythm of joint action: Synchrony

promotes cooperative ability. Journal of Experimental Social Psychology , 46 (4),

53

693–695.

Valturio, R. (1921). De re militari. Wechel.

Van Der Steen, M. C., & Keller, P. E. (2013). The adaptation and anticipation model

(adam) of sensorimotor synchronization. Frontiers in human neuroscience, 7 ,

253.

van Ulzen, N. R., Lamoth, C. J., Daffertshofer, A., Semin, G. R., & Beek, P. J. (2008).

Characteristics of instructed and uninstructed interpersonal coordination while

walking side-by-side. Neuroscience Letters, 432 (2), 88–93.

Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: a tutorial

review. Attention, Perception, & Psychophysics, 72 (4), 871–884.

Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological

science, 20 (1), 1–5.

Wing, A. M., Endo, S., Bradbury, A., & Vorberg, D. (2014). Optimal feedback correc-

tion in string quartet synchronization. Journal of The Royal Society Interface,

11 (93), 20131125.

Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete

motor responses. Perception & Psychophysics, 14 (1), 5–12.

Zelaznik, H. N., Spencer, R., & Ivry, R. B. (2002). Dissociation of explicit and implicit

timing in repetitive tapping and drawing movements. Journal of Experimental

Psychology: Human Perception and Performance, 28 (3), 575.

54

Appendices

A Auxiliary functions

#Matrix inverse

#compute inverse of invertible square-root of Lambda, called Y

matrix_inverse<-function(LAMBDA)

{

E <- eigen(LAMBDA)

V <- E$values

Q <- E$vectors

Y <- Q%*%diag(1/sqrt(V))%*%t(Q)

Y

}

#Off diagonal function

#Allows filling the offdiagonal entries of a matrix

off_diag<-function(N)

{

mat<-matrix(1, nrow=N, ncol=N)

A companion matrix that indicates how "off" a diagonal is

delta <- row(mat) - col(mat)

Set these to select on the "delta" matrix

low <- -1

high <- 1

Operate on the "mat" matrix

mat[delta < low | delta > high] <-0

diag(mat)<-0

mat

}

#Multiplot was retrieved from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

#Allows plotting multiple independent plots together

{

multiplot <- function(..., plotlist=NULL, file, cols=1, rows=1, layout=NULL,

labs=list(), labpos=list(c(0.525,0.35), c(0.023,0.67))) {

require(grid)

Make a list from the ... arguments and plotlist

plots <- c(list(...), plotlist)

numPlots = length(plots)

If layout is NULL, then use 'cols' to determine layout

if (is.null(layout)) {

Make the panel

ncol: Number of columns of plots

nrow: Number of rows needed, calculated from # of cols

layout <- matrix(seq(1, cols * rows),

ncol = cols, nrow = rows)

}

if (numPlots==1) {

print(plots[[1]])

} else {

55

Set up the page

grid.newpage()

pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

Make each plot, in the correct location

for (i in 1:numPlots) {

Get the i,j matrix positions of the regions that contain this subplot

matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,

layout.pos.col = matchidx$col))

}

if(!length(labs) == 0){

grid.text(labs[1], x=labpos[[1]][1], y=labpos[[1]][2], gp=gpar(fontsize=16))

grid.text(labs[2], x=labpos[[2]][1], y=labpos[[2]][2], rot=90, gp=gpar(fontsize=16))

}

}

}

}

B Simulation function (bGLS)

Simulate_bGLS<-function(N, nseq, alpha, st, sm)

{

As<-matrix(NA, nrow=N, ncol=nseq)

for(o in 1:nseq)

{

M=rnorm(N+2)

T=rnorm(N+2)

Z=st*T[1:(N+1)]-sm*M[2:(N+2)]+sm*M[1:(N+1)]

AA=rep(0,N+2)

for(I in 1:(N+1))

{

AA[I+1]<-(1-alpha)*AA[I]+Z[I]

}

As[,o]<-AA[3:(N+2)]

}

As

}

#Simulation function with random intercept

Simulate_bGLS_RANDOM<-function(N, nseq, alpha, st, sm, random)

{

As<-matrix(NA, nrow=N, ncol=nseq)

for(o in 1:nseq)

{

M=rnorm(N+2)

T=rnorm(N+2)

Z=st*T[1:(N+1)]-sm*M[2:(N+2)]+sm*M[1:(N+1)]

AA=rep(0,N+2)

for(I in 1:(N+1))

{

AA[I+1]<-(1-alpha)*AA[I]+Z[I]

56

}

As[,o]<-AA[3:(N+2)]+rnorm(1,0,random) #add random intercept

}

As

}

C Parameter estimation function (bGLS)

Estimate_bGLS<-function(As, MEAN_A)

{

ITER=20

TRESH=1e-3

N=dim(As)[1]

nseq=dim(As)[2]

#MEAN_A<-mean(As)

esm=As-MEAN_A

b=esm[2:N,]

B=esm[1:(N-1),]

alpha_s<-rep(NA, nseq)

st_s<-rep(NA, nseq)

sm_s<-rep(NA, nseq)

#forloop for each nseq

for (KK in 1:nseq)

{

#KK<-1

b1<-b[,KK]

B1<-B[,KK]

z<-solve(t(B1)%*%B1)%*%t(B1)%*%b1

zold<-z

for (II in 1:ITER)

{

d=b1-B1*z

K11<-var(d)

K12<-cov(d[1:(length(d)-1)], d[2:(length(d))])

#apply bound of the bGLS

if(K12>0){K12=0}

if(K11<3*(-K12)){K11=-3*K12}

#off diagonal matrix

mat<-matrix(1, nrow=N-1, ncol=N-1)

delta <- row(mat) - col(mat)

low <- -1

high <- 1

mat[delta < low | delta > high] <-0

diag(mat)<-0

mat

57

CC<-K11*diag(1, nrow=N-1, ncol=N-1)+K12*mat

iC<-solve(CC)

z<-solve(t(B1)%*%iC%*%B1)%*%t(B1)%*%iC%*%b1

if(max(abs(z-zold))<TRESH) {break}

zold=z

}

alpha_s[KK]<-1-z

sm_s[KK]<-sqrt(-K12+2.2204e-16)

st_s[KK]<-sqrt(K11-2*(sm_s[KK]^2))

}

alpha<-mean(alpha_s)

st<-mean(st_s)

sm<-mean(sm_s)

out<-data.frame(alpha, st, sm)

names(out)<-c("alpha","st","sm")

out

}

Estimate_bGLS_RANDOM<-function(As, MEAN_A)

{

ITER=20

TRESH=1e-3

N=dim(As)[1]

nseq=dim(As)[2]

MEAN_A<-mean(As)

esm=As-MEAN_A

b=esm[2:N,]

B=esm[1:(N-1),]

alpha_s<-rep(NA, nseq)

st_s<-rep(NA, nseq)

sm_s<-rep(NA, nseq)

#forloop for each nseq

for (KK in 1:nseq)

{

b1<-b[,KK]

B1<-B[,KK]

z<-solve(t(B1)%*%B1)%*%t(B1)%*%b1

zold<-z

for (II in 1:ITER)

{

d=b1-B1*z

K11<-var(d)

K12<-cov(d[1:(length(d)-1)], d[2:(length(d))])

#apply bound of the bGLS

if(K12>0){K12=0}

if(K11<3*(-K12)){K11=-3*K12}

58

#off diagonal matrix

mat<-matrix(1, nrow=N-1, ncol=N-1)

delta <- row(mat) - col(mat)

low <- -1

high <- 1

mat[delta < low | delta > high] <-0

diag(mat)<-0

mat

CC<-K11*diag(1, nrow=N-1, ncol=N-1)+K12*mat

iC<-solve(CC)

z<-solve(t(B1)%*%iC%*%B1)%*%t(B1)%*%iC%*%b1

if(max(abs(z-zold))<TRESH) {break}

zold=z

}

alpha_s[KK]<-1-z

sm_s[KK]<-sqrt(-K12+2.2204e-16)

st_s[KK]<-sqrt(K11-2*(sm_s[KK]^2))

}

alpha<-mean(alpha_s)

st<-mean(st_s)

sm<-mean(sm_s)

out<-data.frame(alpha, st, sm)

names(out)<-c("alpha","st","sm")

out

}

D Method validation (bGLS)

###---Set parameters

#Parameters chosen according to Vorberg and Schulze (2002) Table 1

alphaS=seq(from=0.1, to=2, by=0.1)

st=sqrt(100)

sm=sqrt(25)

N=31

nseq=15

MEAN_e=0

###---

###---Simulate Mode

SIMULATION_REPEATS=50 #

#summary variables for estiamtes.

estimates_alpha=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

estimates_st=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

estimates_sm=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

for(KK in 1:SIMULATION_REPEATS)

{

for(I in 1:length(alphaS))

{

#I<-1

alpha=alphaS[I]

es=Simulate_bGLS(N, nseq, alpha, st, sm) #simulate data

59

results=Estimate_bGLS(es,MEAN_e) #estimate parameters

estimates_alpha[KK,I]<-results$alpha

estimates_st[KK,I]<-results$st

estimates_sm[KK,I]<-results$sm

}

}

#join data

ALPHA$type<-"ALPHA"

SM$type<-"SM"

ST$type<-"ST"

data<-rbind(ALPHA,SM,ST)

###---

#---Plotting

require(ggplot2)

fs<-15

plt_alpha<-ggplot(data[data$type=="ALPHA",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=0, yend=2, col="green",linetype=2)+

ylab("hat{Alpha}")+

xlab("")

plt_st<-ggplot(data[data$type=="ST",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=10, yend=10, col="green",linetype=2)+

ylim(0, 20)+

ylab("hat{Sigma T}")+

xlab("")

plt_sm<-ggplot(data[data$type=="SM",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=5, yend=5, col="green",linetype=2)+

ylim(0, 20)+

ylab("hat{Sigma M}")+

xlab("Alpha")

E Method validation for asynchrony sequences that vary among se-

quences (bGLS)

###---Set Parameters

#Parameters chosen according to Vorberg and Schulze (2002) table 1.

alphaS=seq(from=0.1, to=2, by=0.1)

st=sqrt(100)

sm=sqrt(25)

N=31

nseq=15

random=10

MEAN_e=0

###---

60

###---Simulate Model

SIMULATION_REPEATS=50

summary variables for estiamtes.

estimates_alpha=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

estimates_st=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

estimates_sm=matrix(NA, nrow=SIMULATION_REPEATS, ncol=length(alphaS))

for(KK in 1:SIMULATION_REPEATS)

{

for(I in 1:length(alphaS))

{

#I<-1

alpha=alphaS[I]

es=Simulate_bGLS_RANDOM(N, nseq, alpha, st, sm, random) #simulate data

results=Estimate_bGLS_RANDOM(es,mean(As)) #or 0

estimates_alpha[KK,I]<-results$alpha

estimates_st[KK,I]<-results$st

estimates_sm[KK,I]<-results$sm

}

}

###---

###---DRAW results

mean_alpha<-apply(estimates_alpha, 2, function(x) mean(x)) #mean

sdt_alpha<-apply(estimates_alpha, 2, function(x) sd(x)) #standard deviation

#confidence interval

ALPHA<-as.data.frame(cbind(mean_alpha, mean_alpha+qnorm(0.975)*sdt_alpha/sqrt(SIMULATION_REPEATS),

mean_alpha-qnorm(0.975)*sdt_alpha/sqrt(SIMULATION_REPEATS), alphaS))

names(ALPHA)<-c("mean", "cl", "cu", "alphaS")

##st

mean_st<-apply(estimates_st, 2, function(x) mean(x))

sdt_st<-apply(estimates_st, 2, function(x) sd(x))

ST<-as.data.frame(cbind(mean_st, mean_st+qnorm(0.975)*sdt_st/sqrt(SIMULATION_REPEATS),

mean_st-qnorm(0.975)*sdt_st/sqrt(SIMULATION_REPEATS), alphaS))

names(ST)<-c("mean", "cl", "cu", "alphaS")

##sm

mean_sm<-apply(estimates_sm, 2, function(x) mean(x))

sdt_sm<-apply(estimates_sm, 2, function(x) sd(x))

SM<-as.data.frame(cbind(mean_sm, mean_sm+qnorm(0.975)*sdt_sm/sqrt(SIMULATION_REPEATS),

mean_sm-qnorm(0.975)*sdt_sm/sqrt(SIMULATION_REPEATS), alphaS))

names(SM)<-c("mean", "cl", "cu", "alphaS")

ALPHA$type<-"ALPHA"

SM$type<-"SM"

ST$type<-"ST"

data_RANDOM<-rbind(ALPHA,SM,ST)

###---

###---Plotting

require(ggplot2)

fs<-15

plt_alpha<-ggplot(data_RANDOM[data_RANDOM$type=="ALPHA",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=0, yend=2, col="green",linetype=2)+

theme(axis.line = element_line(colour = "black"),panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),panel.background = element_blank(),

strip.background = element_blank(),

61

axis.text=element_text(size=fs),axis.title=element_text(size=fs))+

ylab("hat{Alpha}")+

xlab("")

plt_st<-ggplot(data_RANDOM[data_RANDOM$type=="ST",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=10, yend=10, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),axis.title=element_text(size=fs))+

ylab("hat{Sigma T}")+

xlab("")

plt_sm<-ggplot(data_RANDOM[data_RANDOM$type=="SM",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=5, yend=5, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),axis.title=element_text(size=fs))+

ylab("hat{Sigma M}")+

xlab("Alpha")

multiplot(plt_alpha, plt_st, plt_sm, rows=3)

F Simulation function (eLM)

Simulate_eLM<-function(N, nseq, alpha, st, sm)

{

As<-matrix(NA, nrow=N, ncol=nseq)

for(o in 1:nseq)

{

M=rnorm(N+2)

T=rnorm(N+2)

Z=st*T[1:(N+1)]-sm*M[2:(N+2)]+sm*M[1:(N+1)]

AA=rep(0,N+2)

for(I in 1:(N+1))

{

AA[I+1]<-(1-alpha)*AA[I]+Z[I]

}

As[,o]<-AA[3:(N+2)]

}

As

}

G Parameter estimation function (eLM)

62

eLM<-function(As, MEAN_A)

{

MEAN_A=0

esm=As-MEAN_A

b=esm[2:dim(As)[1],]

B=esm[1:(dim(As)[1]-1),]

#construct dataframe depending on nseq=1 or >1

if(dim(data.frame(B))[2]>1){

require(reshape2)

data<-melt(b); names(data)<-c("n", "nseq", "b")

data$B<-melt(B)$value

} else {data<-data.frame(c(1:length(b)), rep(1,length(b)), b, B);

names(data)<-c("n", "nseq", "b", "B")}

##--Alpha_hat as function of lambda

fun_lambda<-function(lambda)

{

#Construct subset LAMBDA

out<-lapply(split(data, data$nseq), function(x)

{

M<-dim(x)[1]

#contruct LAMBDA

diagonal=diag(M)

offdiagonal=off_diag(M)*lambda

LAMBDA=diagonal+offdiagonal

#transformation

LAMBDA_inv=matrix_inverse(LAMBDA)

y_star<-LAMBDA_inv%*%x$b

x_star<-LAMBDA_inv%*%x$B

list(y_star, x_star, LAMBDA)

})

##OLS

#x and y are stacked for OLS

x_star<-unlist(lapply(out, `[[`, 1))

y_star<-unlist(lapply(out, `[[`, 2))

#get each individual LAMBDA

ind_LAMBDA<-lapply(out, `[[`, 3)

#OLS

alpha_lambda_hat=solve(t(x_star)%*%x_star)%*%t(x_star)%*%y_star

#output

return(list(x_star, y_star, alpha_lambda_hat, ind_LAMBDA))

}

##--

##--PROFILED MAXIMUM LIKELIHOOD

MLE<-function(lambda)

{

#lambda<--0.2

out<-fun_lambda(lambda)

x_star<-out[[1]]

63

y_star<-out[[2]]

M<-length(x_star)

alpha<-out[[3]]

ind_LAMBDA<-out[[4]]

LA<-sum(unlist(lapply(ind_LAMBDA, function(x) log(det(x)))))

return(-(-M*log(sqrt(t(y_star-x_star%*%alpha)%*%(y_star-x_star%*%alpha)))-0.5*LA))

}

##--

lambda_hat<-optim(par=0.1, MLE,

method = c("L-BFGS-B"),

lower = -0.5, upper = -0.1)$par

M<-dim(data)[1]

#contruct LAMBDA

diagonal=diag(M)

offdiagonal=off_diag(M)*lambda_hat

LAMBDA=diagonal+offdiagonal

##--transformation

LAMBDA_inv=matrix_inverse(LAMBDA)

y_star<-LAMBDA_inv%*%data$b

x_star<-LAMBDA_inv%*%data$B

##--OLS

alpha_hat=1-solve(t(x_star)%*%x_star)%*%t(x_star)%*%y_star

sig_e<-summary(lm(y_star~x_star))$sigm^2

sm<-sqrt(-(sig_e*lambda_hat))+2.2204e-16)

st<-sqrt(sig_e-2*(sm^2))

data.frame(alpha_hat, st, sm)

}

H Method validation (eLM)

###---Set Parameters

alphaS=seq(from=0.1, to=2, by=0.1); st=10; sm=5; N=6

nseq=15

MEAN_e=0

###---

###---Simulation Model

BOOT<-50 #number of simulation

estimate_BOOT<-list()

for(KK in 1:BOOT)

{

#KK<-1

estimates=list()

for(I in 1:length(alphaS))

{

#I<-1

alpha=alphaS[I]

es=Simulate_eLM(N, nseq, alpha, st, sm) #simulate data

results=eLM(es,MEAN_e)

results<-cbind(results, alphaS[I], nseq, N);

64

names(results)[4:6]<-c("alphas", "N", "nseq")

estimates[[I]]<-results

}

estimates<-do.call(rbind,estimates)

estimates$boot<-KK

estimate_BOOT[[KK]]<-estimates

}

estimates_BOOT<-do.call(rbind, estimate_BOOT)

estimates_BOOT<-estimates_BOOT[complete.cases(estimates_BOOT),]

###---

###---DRAW results

mean_est<-aggregate(.~ alphas, estimates_BOOT, FUN = function(x) mean(x))

sd_est<-aggregate(.~ alphas, estimates_BOOT, FUN = function(x) sd(x))

#mean

mean_alphas<-mean_est[,1:2]; names(mean_alphas)<-c("alphas", "mean"); mean_alphas$type<-c("ALPHA")

mean_st<-mean_est[,c(1,3)]; names(mean_st)<-c("alphas", "mean"); mean_st$type<-c("ST")

mean_sm<-mean_est[,c(1,4)]; names(mean_sm)<-c("alphas", "mean"); mean_sm$type<-c("SM")

mean_eLM<-rbind(mean_alphas, mean_st, mean_sm)

sd_alphas<-sd_est[,1:2]; names(sd_alphas)<-c("alphas", "sd"); mean_alphas$type<-c("ALPHA")

sd_st<-sd_est[,c(1,3)]; names(sd_st)<-c("alphas", "sd"); mean_st$type<-c("ST")

sd_sm<-sd_est[,c(1,4)]; names(sd_sm)<-c("alphas", "sd"); mean_sm$type<-c("SM")

sd_eLM<-rbind(sd_alphas, sd_st, sd_sm)

mean_eLM$cl<-mean_eLM$mean-qnorm(0.975)*sd_eLM$sd/sqrt(BOOT)

mean_eLM$cu<-mean_eLM$mean+qnorm(0.975)*sd_eLM$sd/sqrt(BOOT)

eLM_data<-data.frame(mean_eLM$mean, mean_eLM$cl, mean_eLM$cu, mean_eLM$alphas, mean_eLM$type)

names(eLM_data)<-c("mean", "cl", "cu", "alphaS", "type")

###---

###---Plotting

eLM_alpha_standard<-ggplot(eLM_data[eLM_data$type=="ALPHA",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

ggtitle("bGLS Normal")+

annotate("segment", x=0, xend=2,y=0, yend=2, col="green",linetype=2)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Alpha}")+

xlab("")

eLM_st_standard<-ggplot(eLM_data[eLM_data$type=="ST",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=10, yend=10, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

65

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Sigma T}")+

xlab("")

eLM_sm_standard<-ggplot(eLM_data[eLM_data$type=="SM",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=5, yend=5, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Sigma M}")+

xlab("Alpha")

multiplot(eLM_alpha_standard, eLM_st_standard, eLM_sm_standard, rows=3, cols=1, labs=list("", ""))

I Simulation function (MEM)

Simulate_MEM<-function(N, nseq, alpha, st, sm, random)

{

As<-matrix(NA, nrow=N, ncol=nseq)

for(o in 1:nseq)

{

M=rnorm(N+2)

T=rnorm(N+2)

Z=st*T[1:(N+1)]-sm*M[2:(N+2)]+sm*M[1:(N+1)]

AA=rep(0,N+2)

for(I in 1:(N+1))

{

AA[I+1]<-(1-alpha)*AA[I]+Z[I]

}

As[,o]<-AA[3:(N+2)]+rnorm(1,0,random)

}

As

}

J Parameter estimation function (MEM)

Estimate_MEM<-function(As, MEAN_A) #MEAN_A from data #output alpha, st, sm)

{

esm=As

b=esm[2:dim(As)[1],]

B=esm[1:(dim(As)[1]-1),]

#wide to long

66

require(reshape2)

data<-melt(b);

names(data)<-c("n", "nseq", "b")

data$B<-melt(B)$value

require(eLMe)

MA1.lme<-lme(b~B, data=data, random=~1|nseq, correlation=corARMA(q=1, form=~1|nseq), method="ML")

#obtain parameters

beta_hat<-summary(MA1.lme)$coefficients$fixed[2]

theta<-coef(MA1.lme$modelStruct$corStruct,unconstrained=FALSE)

alpha_hat<-1-beta_hat

sig_e<-summary(MA1.lme)$sigma

sigM2<--theta*sig_e^2

sigT2<-sig_e^2*(1-theta^2)-2*sigM2

sm_hat<-sqrt(sigM2)

st_hat<-sqrt(sigT2)

data.frame(alpha_hat, st_hat, sm_hat)

}

K Method validation (MEM)

###---Set Parameters

alphaS=seq(from=0.1, to=2, by=0.1)

st=10; sm=5; N=31; nseq=15; random=20; MEAN_e=0

###---Simulate the Model

BOOT<-50 #number of repetitions

estimate_BOOT<-list()

for(KK in 1:BOOT)

{

#KK<-1

estimates=list()

for(I in 1:length(alphaS))

{

#I<-1

alpha=alphaS[I]

es=Simulate_MEM(N, nseq, alpha, st, sm, random) #simulate data

results=Estimate_MEM(es,MEAN_e)

results<-cbind(results, alphaS[I], nseq, N);

names(results)[4:6]<-c("alphas", "N", "nseq")

estimates[[I]]<-results

}

estimates<-do.call(rbind,estimates)

estimates$boot<-KK

estimate_BOOT[[KK]]<-estimates

}

estimates_BOOT<-do.call(rbind, estimate_BOOT)

estimates_BOOT<-estimates_BOOT[complete.cases(estimates_BOOT),]

###---

67

###---DRAW results

mean_est<-aggregate(.~ alphas, estimates_BOOT, FUN = function(x) mean(x))

sd_est<-aggregate(.~ alphas, estimates_BOOT, FUN = function(x) sd(x))

#mean

mean_alphas<-mean_est[,1:2]; names(mean_alphas)<-c("alphas", "mean"); mean_alphas$type<-c("ALPHA")

mean_st<-mean_est[,c(1,3)]; names(mean_st)<-c("alphas", "mean"); mean_st$type<-c("ST")

mean_sm<-mean_est[,c(1,4)]; names(mean_sm)<-c("alphas", "mean"); mean_sm$type<-c("SM")

mean_MEM<-rbind(mean_alphas, mean_st, mean_sm)

sd_alphas<-sd_est[,1:2]; names(sd_alphas)<-c("alphas", "sd"); mean_alphas$type<-c("ALPHA")

sd_st<-sd_est[,c(1,3)]; names(sd_st)<-c("alphas", "sd"); mean_st$type<-c("ST")

sd_sm<-sd_est[,c(1,4)]; names(sd_sm)<-c("alphas", "sd"); mean_sm$type<-c("SM")

sd_MEM<-rbind(sd_alphas, sd_st, sd_sm)

mean_MEM$cl<-mean_MEM$mean-qnorm(0.975)*sd_MEM$sd/sqrt(BOOT)

mean_MEM$cu<-mean_MEM$mean+qnorm(0.975)*sd_MEM$sd/sqrt(BOOT)

MEM_data<-data.frame(mean_MEM$mean, mean_MEM$cl, mean_MEM$cu, mean_MEM$alphas, mean_MEM$type)

names(MEM_data)<-c("mean", "cl", "cu", "alphaS", "type")

###---

###---Plotting

MEM_alpha_standard<-ggplot(MEM_data[MEM_data$type=="ALPHA",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

ggtitle("bGLS Normal")+

annotate("segment", x=0, xend=2,y=0, yend=2, col="green",linetype=2)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Alpha}")+

xlab("")

MEM_st_standard<-ggplot(MEM_data[MEM_data$type=="ST",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=10, yend=10, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Sigma T}")+

xlab("")

MEM_sm_standard<-ggplot(MEM_data[MEM_data$type=="SM",], aes(x=alphaS, y=mean)) +

geom_point()+

theme_bw() +

68

geom_errorbar(aes(ymin=cl, ymax=cu), colour="black", width=.05)+

annotate("segment", x=0, xend=2,y=5, yend=5, col="green",linetype=2)+

ylim(0, 20)+

theme(axis.line = element_line(colour = "black"),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

strip.background = element_blank(),

axis.text=element_text(size=fs),

axis.title=element_text(size=fs))+

ylab("hat{Sigma M}")+

xlab("Alpha")

69

L Comparison of the bGLS method and the eLM by Mean Squared

Error (MSE)

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0.000

0.025

0.050

0.075

M
S

E
α̂ Method

bGLS

eLM

Length (n iterations)

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0

2

4

6

M
S

E
σ̂ T

5 10 30

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0

5

10

15

α

M
S

E
σ̂ M

Figure 1: Mean Squared Error (MSE) of LPC model parameter estimation as a function

of true α for different sequence lengths. MSE of the bGLS method are displayed in red

and the MSE of the eLM method are displayed in magenta.

M Benchmark function

N<-10; nseq=15; a=0.5; st=10; sm=5; random=5

As_MEM<-Simulate_MEM(N=N, nseq=nseq, a=a, st=st, sm=sm, random=random)

As_bGLS<-Simulate_bGLS_RANDOM(N=N, nseq=nseq, a=a, st=st, sm=sm, random=random)

mbm = microbenchmark::microbenchmark(Estimate_bGLS_RANDOM(As,mean(As)),

Estimate_bGLS_RANDOM(As_MEM,mean(As_MEM)))

70

N Maximum Likelihood vs. Restricted Maximum Likelihood

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
α

α̂

Method

ML

REML

LPC Parameter Estimation by Mixed−Effects Model

0

5

10

15

20

0.0 0.5 1.0 1.5 2.0
α

σ T

0

5

10

15

20

0.0 0.5 1.0 1.5 2.0
α

σ M

Figure 2: Comparison of Maximum Likelihood Estimation (ML) and Restricted Max-

imum Likelihood Estimation (REML). The between-sequence variability was sampled

from NV (0, 52). The parameters were estimated for different αs from sequences of

length ni = 30, simulated m = 15 times from the LPC model with σT = 10 and

σM = 5.

