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Abstract

Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin 
stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble 
remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we 
provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the 
thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a represen-
tation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and 
momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet con-
figurations and L −2S spins 1/2 that are paired within Msp = L/2 −S spin–singlet pairs. The Bethe-ansatz 
strings of length n = 1 and n > 1 describe a single unbound spin–singlet pair and a configuration within 
which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed 
strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 repre-
sentation provides useful physical information on the problem under investigation in contrast to often less 
controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in 
the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing 
magnetic field h → 0 and within the grand-canonical ensemble.
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1. Introduction

The anisotropic spin-1/2 XXZ Heisenberg chain [1] with anisotropy parameter � ≥ 0, ex-
change integral J , and Hamiltonian, J

∑L
j=1(Ŝ

x
j Ŝx

j+1 + Ŝ
y
j Ŝ

y

j+1 + � Ŝz
j Ŝ

z
j+1), where Ŝx,y,z

j are 
components of the spin-1/2 operators at site j = 1, ..., L, is a paradigmatic example of an inte-
grable strongly correlated quantum many-body system.

However, the isotropic point at � = 1 (the spin-1/2 XXX Heisenberg chain [2,3]) is the most 
experimentally relevant [4–6]. It is also the case that poses the most challenging technical prob-
lems for theory. For instance, the problem of clarifying the possibility of ballistic spin transport 
at nonzero temperatures in the spin-1/2 XXX chain in a magnetic field h is one of the most 
intensely debated unsettled fundamental questions in the theory of strongly correlated systems. 
Its Hamiltonian with periodic boundary conditions reads,

Ĥ = J

L∑
j=1

�̂Sj · �̂Sj+1 − 2μB h

L∑
j=1

Ŝz
j , (1)

where h ∈ [−hc, hc], μB is the Bohr magneton and ±hc = ±J/μB are the critical fields for fully 
polarized ferromagnetism.

The model’s spin stiffness D(T ), also called spin Drude weight, defined via the singularity in 
the real part of the spin conductivity,

σ(ω,T ) = 2π D(T ) δ(ω) + σ reg(ω,T ) , (2)

can be interpreted as a quantitative measure of ballistic spin transport. In the thermodynamic 
limit (TL), L → ∞, the corresponding stiffness expressions given below in this paper involve 
the expectation values of the z-component spin current operator,

Ĵ z = −i J

L∑
j=1

(Ŝ+
j Ŝ−

j+1 − Ŝ+
j+1Ŝ

−
j ) , (3)

where Ŝ±
j = Ŝx

j ± iŜ
y
j .

Different approximate approaches [4,7–26], ranging from numerical simulations through ef-
fective field-theoretical descriptions to calculations partially based on the Bethe ansatz (BA) 
have yielded different, contradictory results, either showing that the model’s spin stiffness D(T )

converges as h → 0 in the TL to zero [4,8,9,20] or to a finite value [11,13,15,21,22].
For instance, the schemes used in the studies of Refs. [11,13,15,21,22] lead to a finite value 

for the spin stiffness at nonzero temperature. In contrast, the investigations of Ref. [4] indicate 
that transport at finite temperatures is dominated by a diffusive contribution, the spin stiffness 
being very small or zero. Such studies exclude the large spin stiffness found in Ref. [15] by a 
phenomenological method that relies on a spinon and anti-spinon basis for the thermodynamic 
Bethe ansatz (TBA) [3]. The results obtained by a completely different and more direct use of 
the TBA in Refs. [8,9] as well as the more recent results of Ref. [20] that rely on the combination 
of several techniques find a vanishing spin stiffness for zero spin density.

http://creativecommons.org/licenses/by/4.0/
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The nature of the exotic spin transport properties at nonzero temperature of one-dimensional 
(1D) correlated lattice systems has been a problem of also experimental interest [5,6,27–31]. The 
spin stiffness is directly related to the long-time asymptotic current–current correlation function 
as

D(T ) = 1

2LT
lim

t→∞〈Ĵ z(t)Ĵ z(0)〉 . (4)

(The angle brackets 〈.〉 denote here the thermal average.) In integrable models there is a lower 
bound for D(T ), which is encoded in an inequality due to Mazur [32],

D(T ) ≥ 1

2L

∑
j

〈Ĵ zQ̂j 〉2

〈Q̂2
j 〉

. (5)

Here the sum runs over a complete set of linearly extensive orthogonal commuting conserved 
quantities Q̂j for which 〈Q̂2

j 〉 ∝ L, local and quasilocal [18,24,33–35]. In the case of the spin-1/2
XXZ chain, the sum over strictly local conserved quantities responsible for integrability gives at 
nonzero temperatures (i) a finite value and thus ballistic spin transport for h �= 0 and (ii) vanishes 
and is inconclusive at h = 0.

Two recent results provided some essential preliminary steps for the clarification of the prob-
lem studied in this paper. The first of these results is that the Mazur’s inequality sum over 
quasilocal conservation laws associated with deformed symmetries gives for the spin-1/2 XXZ

chain a stiffness lower bound at h = 0, Dl(T ) ≤ D(T ), which for T → ∞ reads [24]

Dl(T ) = 16J 2

T

sin2(πl/ l′)
sin2(π/l′)

(
1 − l′

2π
sin

(
2π

l′

))
. (6)

It refers to a dense set of commensurate easy-plane anisotropies, � = cos(πl/ l′), where l, l′ ∈
Z

+ and l ≤ l′ > 0 are such that 0 ≤ � ≤ 1. Since this lower bound vanishes at the isotropic point, 
� = 1, it does not discard the possibility that the spin stiffness of the spin-1/2 XXX chain is 
also vanishing as h → 0.

The second recent result presented in Ref. [26] is a upper bound for the spin stiffness of the 
spin-1/2 XXX chain, Du(T ) ≥ D(T ), valid within the canonical ensemble for spin densities 
m ∈ [0, 1] and the whole T > 0 range, in the TL. Its limiting behaviors are

Du(T ) = (Jπ)2

2T
m2 L, for m � 1 ,

= J 2

2T
(1 − m)2 L, for (1 − m) � 1 . (7)

That Du(T ) vanishes as m2 L in the m → 0 limit ensures that within the canonical ensemble the 
stiffness vanishes as m → 0 yet leaves out, marginally, the grand canonical ensemble as h → 0
in which 〈m2〉 = O(1/L). A schematic phase diagram of temperature T versus spin density m
of ballistic spin transport is shown in Fig. 1.

In this paper we provide new insights on the above unsolved problem concerning the spin 
stiffness for the spin 1/2 XXX chain in the TL. Specifically, we provide strong theoretical evi-
dence that for high temperatures T → ∞ it also vanishes for h → 0, within the grand-canonical 
ensemble. While for a canonical ensemble one considers that the spin density m is kept con-
stant, in the case of a grand-canonical ensemble it is the magnetic field h that is fixed. In general 
the canonical-ensemble and grand-canonical ensemble lead to the same results in the TL. This 
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Fig. 1. Phase diagram of ballistic spin transport of the spin-1/2 XXX Heisenberg chain. Ballistic regions with posi-
tive spin Drude weight, D > 0, namely temperature T = 0 or spin density m �= 0, are painted in cyan, whereas in the 
complementary region, T > 0 and m = 0 (white), the spin stiffness vanishes, D = 0, in the thermodynamic limit. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is generally true except near a phase transition or a critical point. Hence this issue deserves a 
careful analysis in the m → 0 and h → 0 limits, respectively.

The use of effective spinon representations [36–38] provides a suitable description of the 
model low-energy physics and excitations of the S = 0 ground state. However, they do not apply 
to high-temperature problems at a magnetic field h ∈ [−hc, hc] that involve all 2L energy eigen-
states, as that studied in this paper. Our approach then rather uses the representation of Ref. [26]
in terms of the spin-1/2 XXX chain L physical spins 1/2. Within such a representation, all con-
figurations that generate the exact energy and momentum eigenstates of spin S involve a number 
2S of unpaired spins 1/2 in multiplet configurations and L − 2S spins 1/2 that are paired within 
Msp = L/2 − S spin–singlet pairs. Within the TBA, the imaginary part of the complex rapidities 
simplify in the TL, which corresponds to the ideal strings of length n > 1 [3]. For large L values 
there is in addition two types of deformed complex rapidities that deviate from such an ideal 
behavior [39–41].

Importantly, the general representation in terms of 2S unpaired physical spins 1/2 plus Msp =
L/2 − S spin–singlet pairs of physical spins 1/2 used in the studies of this paper applies both to 
the TBA [3] and to BA schemes including three types of complex rapidities [39], respectively. 
On the one hand, both for an ideal string and a deformed string of length n > 1 the corresponding 
set of n complex rapidities with the same real part refer to an independent configuration with a 
number n of spin–singlet pairs bound within it. On the other hand, the real rapidities correspond 
to single unbound spin–singlet pairs.

Our derivation relies on the spin stiffness expression in terms of matrix elements of the 
z-component current operator, Eq. (3), and the operator algebra relating that operator to both 
the other two SU(2) symmetry operator components,

Ĵ+ = (Ĵ−)† = 2i J

L∑
j=1

(Ŝ+
j Ŝz

j+1 − Ŝ+
j+1Ŝ

z
j ) , (8)

and the three generators Ŝη = ∑L
j=1 Ŝ

η
j , η = ±, z of that global symmetry. This includes the 

commutators,[
Ĵ z, Ŝ±]

=
[
Ŝz, Ĵ±]

= ±Ĵ± ;
[
Ĵ±, Ŝ∓]

= ±2Ĵ z

[
Ĵ z, Ŝz

]
= 0 ;

[
Ĵ z, ( �̂S)2

]
= Ĵ+Ŝ− − Ŝ+Ĵ− , (9)

which follow directly from the SU(2) algebra for the operators under consideration.
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There is a general consensus that the use of ideal strings of TBA for energy and momentum 
eigenstates described by groups of real and complex rapidities [3] leads in the TL to exact results 
as long as either the temperature or the magnetic field are nonzero [39,42]. Our studies involve the 
spin stiffness at very hight temperature, T → ∞, so that concerning thermal effects they are not 
affected in the TL by the string deformations. On the one hand, concerning the case h = 0, we use 
a method other than the BA or TBA to compute the exact current operator expectation values of 
the corresponding Sz = 0 energy and momentum eigenstates [26]. On the other hand, in what the 
contributions to the spin stiffness for the model at finite magnetic field from the square of current 
operator expectation values of finite-Sz energy and momentum eigenstates is concerned, we rely 
on upper bounds. In contrast to those used in Ref. [26], the present upper bounds involve sums 
that run over a large, macroscopic number, of energy and momentum eigenstates. As justified 
below in Sec. 6, such upper bounds are in the TL insensitive to the use of ideal [3] or deformed 
[39] BA strings.

Our representation in terms of configurations of the L physical spins 1/2 provides useful 
physical information on the problem under investigation, in contrast to the often less controllable 
numerical studies on the occurrence or lack of ballistic spin transport in the spin-1/2 XXX chain 
as h → 0 in the TL.

The remainder of the paper is organized as follows. In Sec. 2 the finite-temperature spin 
stiffness and the representation in terms of configuration of the L physical spins 1/2 used in 
the studies of this paper are introduced. The general expressions of the spin stiffness at high 
temperature T → ∞ is the issue addressed in Sec. 3. In Sec. 4 a non-BA-related method used 
to compute the spin currents of the Sz = 0 energy and momentum eigenstates for the strictly 
zero magnetic-field case is briefly reported and the physical consequences of the corresponding 
exact results are discussed. Useful and needed inequalities and corresponding current absolute 
values upper bounds are introduced in Sec. 5. The effects of the string deformations on the 
spin currents in the TL at finite magnetic field is the issue addressed in Sec. 6. In Sec. 7 the 
high-temperature stiffness upper bounds within the TL used in our study are derived. Finally, the 
concluding remarks are presented in Sec. 8. Additional technical information useful for details 
of our analysis is provided in Appendices A and B.

2. The finite-temperature spin stiffness and L physical spins 1/2 configurations

We denote the energy eigenstate’s spin and spin projection by S and Sz = −(N↑ − N↓)/2, 
respectively. Here N↑ and N↓ such that L = N↑ + N↓ are the numbers of spins 1/2 with up and 
down spin projection, respectively. For the so-called lowest-weight-states (LWSs) and highest-
weight-states (HWSs) of the SU(2) algebra we have S = −Sz and S = Sz, respectively. The 
class of LWSs and the non-LWSs generated from those that are used in our analysis are en-

ergy and momentum eigenstates. They are as well eigenstates of ( �̂S)2 and Ŝz with eigenvalues 
S(S + 1) and Sz, respectively. We thus label all 2L energy, momentum (as well as spin and spin 
projection) eigenstates by |lr, S, Sz〉. Here lr stands for all quantum numbers other than S and Sz

needed to specify an energy and momentum eigenstate, |lr, S, Sz〉. This is independent of using 
the general BA or the TBA for these states, always holding that 

∑
lr

= Nsinglet(S) for the model 

in each fixed-S subspace. Here Nsinglet(S) = (
L

L/2−S

) − (
L

L/2−S−1

)
is that subspace number of 

independent spin–singlet configurations and thus N (S) = (2S + 1) Nsinglet(S) is its dimension. 
Since the LWSs and non-LWSs generated from them considered in this paper are energy and 
momentum eigenstates, these designations are often used for the latter states.
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Within the canonical-ensemble description at fixed value of Sz, the spin stiffness D(T ) ex-
pression involves the current operator expectation values, 〈lr, S, Sz|Ĵ |lr, S, Sz〉, which in the TL 
and for nonzero temperatures are the current matrix elements that contribute to it [7,26,43]. 
As justified below in Sec. 4, for the non-LWSs, which are generated from the corresponding 
LWSs |lr, S, −S〉 as |lr, S, Sz〉 = 1√

C (Ŝ+)ns |lr, S, −S〉 where C = (ns !) ∏ns

j=1( 2S + 1 − j ) and 
ns ≡ S + Sz = 1, ..., 2S, such current operator expectation values can be expressed in terms of 
that of the corresponding LWS by suitable use of the spin SU(2) operator algebra. From such 
considerations one finds that in the TL the spin stiffness reads D(T ) = 0 for Sz = 0 and for 
|Sz| ≥ 1/2 it can be written as [26]

D(T ) = (2Sz)2

2LT

L/2∑
S=|Sz|

∑
lr

plr,S,Sz
|〈Ĵ z(lr, S)〉|2

(2S)2
. (10)

Here Ĵ z is the z component of the spin current operator, Eq. (3), plr,S,Sz are the Boltzmann 
weights, and 〈Ĵ z(lr, S)〉 ≡ 〈lr, S, −S|Ĵ |lr, S, −S〉 are the LWSs spin currents. In this and all fol-
lowing expressions for the spin stiffness, the sums over S always increase in steps of 1, whereas 
Sz and S have to be integers (half-odd integers) for even (odd) L.

For each S value there are N (S) = (2S + 1) Nsinglet(S) energy and momentum eigenstates. 
Our study accounts for all corresponding 

∑L
2S=0 (integers) N (S) = 2L energy and momentum 

eigenstates. For S > 0 each such a state is populated by a set of 2S spins 1/2 that participate in its 
multiplet configuration, which is one of the 2S+1 multiplet configurations, and a complementary 
set of even number L − 2S of spins 1/2 that form a tensor product of singlet states. Since all the 

N (S) states with the same S value have the same �̂S2 eigenvalue, the energy and momentum 
eigenstates are superpositions of such configuration terms. Each such terms is characterized by 
a different partition of L physical spins 1/2 into 2S such spins that participate in a 2S + 1 spin 
multiplet and a product of singlets involving the remaining even number L − 2S of spins 1/2.

As in Ref. [26], we call unpaired spins and paired spins the members of such sets of 2S and 
L − 2S spins, respectively. In the TL this partition is common to the general BA solution and the 
TBA representation of its energy and momentum eigenstates. Both for large L and within the TL 
the L − 2S paired spins 1/2 are contained in a number

Msp = 1

2
(L − 2S) = L

2
(1 − mS) , (11)

of spin–singlet pairs. Hence each fixed-S subspace is spanned by energy and momentum eigen-
states with exactly the same number Msp = L/2 − S of such pairs. Moreover, Msp = L/2 − S

also is the total number of BA rapidities that describe such states. And this is independent of such 
rapidities being all real or some being real and other complex. Consistently, within the present 
representation each BA rapidity describes a spin–singlet pair.

The derivation of the spin stiffness upper bound of Ref. [26], whose limiting behaviors are 
given in Eq. (7), used a large overestimate of the current absolute values |〈Ĵ z(lr, S)〉|. Specifi-
cally, for the whole set of energy and momentum eigenstates with the same Sz value correspond-
ing to the sums 

∑
lr

∑L/2
S=|Sz| in Eq. (10) it used the largest magnitude of the current expectation 

value among these states. Since the probability distribution plr,S,Sz in each fixed-Sz canonical 
ensemble is normalized as 

∑L/2
S=|Sz|

∑
lr
plr,S,Sz = 1, this then allowed performing exactly such 

sums for all nonzero temperatures, T > 0.
The large overestimate of the currents used in deriving that spin stiffness upper bound is 

behind its m → 0 behavior reported in Eq. (7) leaving out the grand canonical ensemble in 
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which 〈m2〉 = O(1/L). Our main goal is to derive an alternative spin stiffness upper bound 
whose estimate of the current absolute values |〈Ĵ z(lr, S)〉| is closer to yet larger than those of the 
currents in Eq. (10). Here we perform such a program for high temperatures, T → ∞.

The Msp = L/2 − S spin–singlet pairs of each energy and momentum eigenstate include 
Mp unbound pairs. The remaining MB

sp = Msp − Mp spin–singlet pairs of energy and momen-
tum eigenstates described by groups of both real and complex BA rapitities are bound within 
a well-defined number MB

st < MB
sp of independent configurations. (For energy and momentum 

eigenstates described only by groups of real BA rapitities such numbers read Mp = Msp and 
MB

sp = 0, respectively.) As discussed in the following, there is a one-to-one correspondence be-

tween such MB
st independent configurations and the MB

st strings of length larger than one, each 
of which is associated with a set of complex BA rapidities with the same real part.

The unbound and bound spin–singlet pairs of the L − 2S paired spins are indeed described by 
groups of real and complex solutions, respectively, of the model BA equation [2,3],

2 arctan(�j ) = qj + 1

L

∑
α �=j

2 arctan

(
�j − �α

2

)
(mod 2π). (12)

Here the α = 1, ..., Mp summation is over the subset of occupied qα quantum numbers out of 
the full set,

qj = 2π

L
Ij , where j = 1, ...,Mb , (13)

Mb = Mp + Mh, and Mh = 2S + 2(MB
sp − MB

st ). The different occupancy configurations of the 
related quantum numbers Ij (defined modulo L) such that j = 1, ..., Mb generate different en-
ergy and momentum eigenstates. The latter are successive integers or half-odd integers according 
to the boundary conditions,

Ij = 0,±1, ...,±Mb − 1

2
for Mb odd ,

= ±1/2,±3/2, ...,±Mb − 1

2
for Mb even . (14)

The set of j = 1, ..., Mb quantum numbers qj can only have occupancy zero and one, re-
spectively. Within our representation, the α = 1, ..., Mp occupied momentum values qα refer to 
the center of mass translation degrees of freedom of Mp neutral composite pseudoparticles. The 
internal degrees of freedom of each of these Mp pseudoparticles refer to one of the Mp unbound 
spin–singlet pairs.

Our functional representation involves a qj distribution function Mp(qj ) that reads 0 and 
1 for the Mh = 2S + 2(MB

sp − MB
st ) unoccupied and Mp occupied qj values, respectively. 

Since the contribution to the momentum eigenvalues of the Mp pseudoparticles reads π +∑Mb

j=1 Mp(qj ) qj , the set j = 1, ..., Mb of quantum numbers qj such that qj+1 − qj = 2π/L

may be associated with the discrete momentum values of a pseudoparticle spin band. For LWSs 
described only by groups of real rapidities, all Msp = L/2 − S spin–singlet pairs are unbound, 
so that Mp = Msp = L/2 − S, Mh = 2S, Mb = L/2 + S, MB

sp = 0, and MB
ps = 0.

Consistently with the 0 and 1 allowed occupancies of the spin-band momentum values, the 
LWS BA wave functions formally vanish when two rapidities �j and �j ′ in Eq. (12) become 
equal. If one considered all the rapidities to be real, this property could suggest that simply choos-
ing α = 1, ..., Mp distinct occupied momentum values qα among the set of j = 1, ..., Mb allowed 
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spin-band discrete momentum values qj , which gives a dimension 
(
Mb

Mp

) = (
L/2+S
L/2−S

)
, would allow 

the reconstruction of all 2L energy eigenstates that span the model Hilbert space.
However, only some of the solutions to the model general BA equation involve only a group 

of Msp = Mp real rapidities �j . As mentioned above, there also exist solutions involving groups 
of real and complex rapidities [2,3]. There are Msp = Mp + MB

sp BA rapidities that describe the 
Msp spin–singlet pairs of a general energy and momentum eigenstate. Within our representation 
in terms of L − 2S paired physical spins 1/2, the Mp real rapidities and MB

sp complex rapidities 
describe their Mp unbound spin–singlet pairs and their MB

sp spin–singlet pairs bound within the 
state MB

st independent configurations, respectively.
The following general relations between the different numbers under consideration apply

Mp = Msp − MB
sp = L

2
(1 − mS) − MB

sp ,

Mh = 2S + 2(Msp − Mst) = 2S + 2(MB
sp − MB

st ) ,

Mb = Mp + Mh . (15)

Here Mst = Mp + MB
st gives the total number of both Mp unbound spin–singlet pairs and cor-

responding spin-band pseudoparticles and MB
st independent n-pair configurations with n > 1

spin–singlet pairs bound within them. The n complex rapidities with the same real part that de-
scribe each such a n-pair configuration is labeled by a quantum number l = 1, ..., n. It also labels 
each of the spin–singlet pairs bound within such a configuration. These l = 1, ..., n rapidities 
with the same real part have the general form [39]

�
n,l
j = �n

j + i(n + 1 − 2l) + D
n,l
j where l = 1, ..., n . (16)

The roots of Eq. (12) are here partitioned in a configuration of strings. A n-string is a group of 
n roots also called rapidities. Within our representation such a string describes an independent 
n-pair configuration. The number n is often called the string length. The real part of the set 
of n rapidities, �n

j , is called the string center [39]. Hence Mst = Mp + MB
st is in Eq. (15) the 

number of strings. Mp and MB
st refer to the number of strings of length n = 1 and length n > 1, 

respectively. Note that for n = 1 one has that l = 1 and the corresponding single rapidity �1,1
j is 

real. The quantity Dn,l
j = R

n,l
j + iδ

n,l
j in Eq. (16), where Rn,l

j and δn,l
j are real numbers, is the 

fine-structure deviation from the TBA ideal strings for which Dn,l
j = 0 [3]. Importantly, D1,1

j = 0

for the Mp real rapidities �1,1
j of all energy and momentum eigenstates.

There is a one-to-one correspondence between an energy eigenstate MB
st strings of length 

n > 1 and the MB
st independent n-pair configurations with n > 1 spin–singlet pairs bound within 

them, respectively. The string length n > 1 is thus the number of spin–singlet pairs bound within 
the corresponding n-pair configuration. The present representation clarifies the physical meaning 
of the imaginary parts of the n > 1 complex rapidities with the same real part that refer to a 
string of length n, Eq. (16): Such imaginary parts are associated with the binding within the 
corresponding n-pair configuration of n > 1 spin–singlet pairs. Consistently and as mentioned 
above, for n = 1 the rapidity �1,1

j is real and describes a single unbound pair.
The maximum possible value of the number n of spin–singlet pairs bound within a n-pair con-

figuration and corresponding string length is obviously given by the number of spin–singlet pairs, 
Msp = (L −2S)/2, Eq. (11). The set of energy and momentum eigenstates that span each fixed-S
subspace have all the same number Msp = (L − 2S)/2 of such pairs. Provided that (1 − ms) is 
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finite, that number is such that Msp → ∞ as L → ∞. Hence in general we consider in the TL 
that n has the range n = 1, ..., ∞.

For a given large L, the complex solutions of the spin-1/2 XXX chain BA equation, Eq. (12), 
are found to belong to three classes [39]. The first class refers to the ideal strings for which Dn,l

j =
0 in Eq. (16). The second class was first identified by Essler, Korepin and Schoutens (EKS) for 
n = 2 complex rapidities [40] yet also occurs for n > 2. The corresponding strings deviate from 
the ideal behavior and are known as EKS-strings [39]. The imaginary part of their complex 
rapidities are smaller than 1/2. It decreases upon increasing L, vanishing at some L value. The 
third class of solutions corresponds to another type of deformed strings usually called V-strings, 
which have been first found by Vladimirov (V) [41]. In the case of a system with a fixed large L, 
the number of energy eigenstates obtained by accounting for the three classes of BA equations 
groups of real and complex solutions is given by the correct Hilbert space dimension, 2L [39].

In Sec. 6 it is justified why concerning the model at finite magnetic field our final results 
are independent from the use in the TL of ideal or deformed strings of length n > 1 for the 
|Sz| ≥ 1/2 energy and momentum states described by groups of real and complex rapidities. The 
unbinding of spin–singlet pairs by processes associated with the vanishing of the EKS-strings 
imaginary parts, usually called collapse of narrow pairs, is for a large system and finite magnetic 
field the aberration from the ideal strings that must be accounted for. The effects of the V-strings 
are unimportant in the TL for the physical quantities studied in this paper. For large finite sys-
tems they behave in a rather normal way, consistent with the predictions of the 1/L expansion 
methods [39].

The direct relation reported in the following of the TBA quantum numbers to our repre-
sentation configurations of 2S unpaired spins 1/2, L − 2S paired spins 1/2, corresponding 
Msp = L/2 − S spin–singlet pairs, and Mp and MB

sp unbound and bound such pairs, respec-
tively, is useful and needed for the studies of Secs. 5 and 7. Within the TBA, the l = 1, ..., n
complex rapidities of a string, Eq. (16), simplify in the TL to their ideal form [3]

�
n,l
j = �n

j + i(n + 1 − 2l) where l = 1, ..., n . (17)

Such rapidities are solutions of the TBA coupled integral equations given below. The number 2L

of energy eigenstates prevails under the use of the TBA in terms of only ideal strings, Eq. (17).
We call Mn the number of n-pair configurations and corresponding strings of length n. Within 

our representation the Mst = Mp + MB
st BA strings correspond to Mst = Mp + MB

st n-pair 
configurations involving for each spin-S energy and momentum eigenstate its Msp = L/2 − S

spin–singlet pairs, Eq. (11). Consistently, the TBA quantum numbers obey the following sum 
rule [3],

msp =
∞∑

n=1

nmn = 1

2
(1 − mS) ; Msp =

∞∑
n=1

nMn = L/2 − S = msp L, (18)

where msp is the density of spin–singlet pairs and

mS = 2S/L ≥ m, mn = Mn/L . (19)

Within the momentum-distribution functional notation used here and in Ref. [26], the TBA 
equations derived in Ref. [3] from the general BA equation, Eq. (12), by means of real and 
complex rapidities associated with ideal strings, Eq. (17), read

qj = kn
j − 1

L

∑
′ ′

Mn′(qj ′)
n n′(�n
j − �n′

j ′) . (20)

(n ,j )�=(n,j)
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In this equation,

kn
j ≡ kn(qj ) = 2 arctan(�n

j /n) , (21)

and 
n n′(x) is an odd function of x given by


n n′(x) = δn,n′
{

2 arctan
( x

2n

)
+

n−1∑
l=1

4 arctan
( x

2l

)}

+ (1 − δn,n′)
{

2 arctan
( x

|n − n′|
)
+2 arctan

( x

n + n′
)

+
n+n′−| n−n′ |

2 −1∑
l=1

4 arctan
( x

|n − n′| + 2l

)}
. (22)

Here n, n′ = 1, ..., ∞ and δn,n′ is the usual Kronecker symbol. (The relation of the n = 1 rapidity 
momentum k1

j = 2 arctan(�1
j ), Eq. (21) for n = 1, to the rapidity momentum kj of Ref. [3], such 

that �1
j = cot(kj /2), is k1

j = π − kj .)
The function Mn(qj ) in Eq. (20) is the n-band momentum distribution function associated 

with each energy and momentum eigenstate. It is such that Mn(qj ) = 1 and Mn(qj ) = 0 for 
occupied and non-occupied qj values, respectively. Such variables

qj = 2π

L
In
j , j = 1, ...,Mb

n , (23)

are the momentum values of a n-band. It is associated with the set of Mn n-pair configurations 
with the same n value.

On the one hand, the TBA n = 1 band refers to the general BA spin band considered above. 
On the other hand, in the case of the TBA the n-pair configurations with n > 1 spin–singlet pairs 
bound within them are also associated with n-band sets of Mb

n real momentum values, Eq. (23). 
Here Mb

n = Mn + Mh
n where the numbers {Mn} of occupied momentum values in each such a 

n band obey the sum rule 
∑∞

n=1 n Mn = Msp, Eq. (18). The corresponding unoccupied values 
{Mh

n } are uniquely defined by the spin S and occupied values {Mn} as follows [3,26]:

Mh
n = mh

n L ; mh
n = mS +

∞∑
n′=n+1

2(n′ − n)mn′ . (24)

Moreover, the quantum numbers In
j on the right-hand side of Eq. (23) are successive integers or 

half-odd integers according to the boundary conditions,

In
j = 0,±1, ...,±Mb

n − 1

2
, for Mb

n odd ,

= ±1/2,±3/2, ...,±Mb
n − 1

2
, for Mb

n even , (25)

respectively.
For each string of length n there is thus a BA branch momentum n-band whose successive 

set of momentum values qj , Eq. (23), have the usual separation, qj+1 − qj = 2π/L, and only 
occupancies zero and one. Often an index α = 1, ..., Mn is used to label the subset of occupied 
quantum numbers In

α of an energy and momentum eigenstate [3,26].
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In the case of the TBA, we associate a n-band pseudoparticle with each of the Mn n-band oc-
cupied momentum values [26]. For n > 1 the n-band pseudoparticles are specific to the TBA. On 
the one hand, the Mn occupied n-band momentum values qj refer to their translational degrees 
of freedom. They are associated with the center of mass motion of the Mn n-band pseudopar-
ticles of momentum qj . The corresponding Mh

n unoccupied momentum values qj left over are 
associated with Mh

n n-band holes. Within a corresponding real-space lattice representation, they
interchange position with the n-band pseudoparticles under their center of mass motion. On the 
other hand, the internal degrees of freedom of a n-band pseudoparticle correspond to a single un-
bound spin–singlet pair for n = 1 and to a n-pair configuration with n spin–singlet pairs bound 
within it for n > 1.

The n-band momentum distribution function Mn(qj ) obeys the sum rule 
∑Mb

n

j=1 Mn(qj ) = Mn. 
Each reduced subspace spanned by the set of energy and momentum eigenstates with fixed spin 

S and fixed number values {Mn} has dimension 
(Mb

n
Mn

)
. It corresponds to the available different 

occupancy configurations of the Mn n-band pseudoparticles over the Mb
n momentum values.

The exact momentum eigenvalues have the simple form:

P = π +
∞∑

n=1

Mb
n∑

j=1

Mn(qj ) qj . (26)

This is consistent with the n-branch quantum numbers qj , Eq. (23), playing the role of n-band 
pseudoparticle momentum values.

There are sum rules for the number of n-band pseudoparticles that populate the n = 1, ..., ∞
bands of a LWS or non-LWS. Such sum rules are related to those of spin–singlet pairs and 
density of spin–singlet pairs, Eqs. (11) and (18). Indeed, the latter sum rule implies that M1 =
Msp − ∑∞

n=2 n Mn and thus that M1 = L(1 − mS)/2 − ∑∞
n=2 n Mn. From the use of this relation 

in the number of pseudoparticles belonging to all n = 1, ..., ∞ bands, Mps ≡ ∑∞
n=1 Mn, one 

confirms that the following exact sum rules for Mps and mps = Mps/L are obeyed,

Mps =
∞∑

n=1

Mn = 1

2
(L − Mh

1 ) = mps L ; mps =
∞∑

n=1

mn = 1

2
(1 − mh

1) , (27)

where the density mh
1 = Mh

1 /L refers to the number Mh
1 of n = 1 band holes, Eq. (24) for n = 1.

As a result of the TBA exact sum rule, Eq. (27), the number of n = 1 band holes Mh
1 and 

corresponding density mh
1 play an important role in our study. They can be written in terms of 

the density of spin–singlet pairs msp, Eq. (18), and density of pseudoparticles mps, Eq. (27), as 
follows,

Mh
1 = mh

1 L ; mh
1 = mS + 2(msp − mps) = mS + 2(mB

sp − mB
ps) . (28)

The numbers MB
sp of bound spin–singlet pairs and MB

ps of n > 1 band pseudoparticles within 
which they are bound and the corresponding densities mB

sp = MB
sp/L and mB

ps = MB
ps/L, respec-

tively, appearing in Eq. (28) are given by

MB
sp = mB

sp L ; mB
sp =

∞∑
n=2

nmn = 1

2
(1 − mS) − m1 ,

MB
ps = mB

ps L ; mB
ps =

∞∑
mn = 1

2
(1 − mh

1) − m1 . (29)

n=2
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As in Ref. [26], mh,0
1 = M

h,0
1 /L and m0

1 = M0
1/L denote corresponding densities of energy 

and momentum eigenstates with spin S = 0. Those are given by mh,0
1 = ∑∞

n=2 2(n − 1)mn

and m0
1 = 1/2 − ∑∞

2 n mn, respectively. Hence, mh,0
1 = 2(mB

sp − mB
ps) and m0

1 = 1/2 − mB
sp. 

One then finds that mB
sp = 1

2m
h,0
1 + mB

ps. Similarly, Mh,0
n = ∑∞

n′=n+1 2(n′ − n) Mn′ and mh,0
n =∑∞

n′=n+1 2(n′ − n) mn′ .
The number Mps in Eq. (27) of pseudoparticles belonging to all n = 1, ..., ∞ bands equals 

within the TBA that in Eq. (15) of Mst = Mp + MB
st strings of all lengths n = 1, ..., ∞. Also the 

number MB
ps in Eq. (29) of pseudoparticles of n > 1 bands equals within the TBA that of MB

st
strings of length n > 1. As discussed below in Sec. 6, the unbinding of spin–singlet pairs by the 
collapse of narrow pairs is for a very large system and finite magnetic field the aberration from 
the ideal strings that may have effects on the spin currents values. Such processes are behind the 
inequalities Mst ≥ Mps and MB

st ≤ MB
ps that apply to energy and momentum eigenstates described 

by groups of real and complex rapidities within the general BA for a large system generated from 
string deformations of corresponding TBA states in the TL. The equalities in these relations are 
reached when the string deformations of the former states do not lead to the collapse of narrow 
pairs.

On the one hand, in the case of a LWS or non-LWS with MB
st deformed strings of length 

n > 1 the corresponding independent n-pair configurations cannot be associated with n-band 
pseudoparticles carrying a real momentum qj . On the other hand, the Mp real rapidities of a 
LWS or non-LWS are both within the general BA for a large system and the TBA in the TL 
associated with Mp pseudoparticles whose internal degrees of freedom refer to a single unbound 
spin–singlet pair.

3. General expressions for the spin stiffness at high temperature T → ∞

For |Sz| ≥ 1/2, high temperature T → ∞, and L → ∞ the spin stiffness, Eq. (10), can in the 
TL be written as,

D(T ) = (2Sz)2

2LT

∑L/2
S=|Sz|

∑
lr

|〈Ĵ z(lr,S)〉|2
(2S)2∑L/2

S=|Sz|
{(

L
Msp

) − (
L

Msp−1

)} , (30)

where Msp = L/2 − S and 
∑

lr
is the sum over the Nsinglet(S) = (

L
Msp

) − (
L

Msp−1

)
independent 

spin–singlet configurations of each fixed-S subspace. Those are associated with the N (S) =
(2S + 1) Nsinglet(S) energy and momentum eigenstates that span it.

The spin stiffness, Eq. (30), can alternatively be written as

D(T ) = (2Sz)2

2LT

∑L/2
S=|Sz|

∑
lr

|〈Ĵ z(lr,S)〉|2
(2S)2∑L/2

S=|Sz|
∑

{Mn}mS

∏∞
n=1

(Mb
n

Mn

) , (31)

where the summation 
∑

{Mn}mS
is over all n = 1, ..., ∞ band occupancies that refer to the 

same number Msp = L/2 − S of spin–singlet pairs. Provided that one uses on the right-hand 
side of Eq. (31) the exact spin currents absolute values, |〈Ĵ z(lr, S)〉|, this spin stiffness ex-
pression is rigorous for |Sz| ≥ 1/2, T → ∞, and L → ∞. It is approximation free because 

when written as Nsinglet(S) = ∑
{Mn}mS

∏∞
n=1

(Mb
n

Mn

)
the number of independent spin–singlet con-

figurations Nsinglet(S) in each fixed-S subspace of dimension N (S) = (2S + 1) Nsinglet(S) has 
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exactly the same value as when expressed in terms of the number L of physical spins 1/2 and 
the number Msp = L/2 − S of spin–singlet pairs, Nsinglet(S) = (

L
Msp

) − (
L

Msp−1

)
or equivalently 

Nsinglet(S) = (
L

L/2−S

) − (
L

L/2−S−1

)
. Indeed, the TBA has been inherently constructed in Ref. [3]

to the dimensions N (S) = (2S + 1) Nsinglet(S) of all fixed-S subspaces being exact in terms of 
the set of all n-bands occupancy configurations corresponding to a fixed number Msp = L/2 − S

of spin–singlet pairs.
This is shown specifically in Appendix A of Ref. [3] for LWSs for which the number of 

unpaired spins 1/2 with down-spin projection reads 2S = −2Sz. Due to symmetry, that proof 
applies as well to the non-LWSs in the fixed-S subspaces. The off-diagonal generators that 
transform a S > 0 LWS into its 2S tower states merely flip the spins of the 2S unpaired spins 
1/2 without changing the LWS configurations of the Msp spin–singlet pairs involving that state 
L − 2S paired spins 1/2.

Within the general BA equations, Eq. (12), the spin current expectation values in Eq. (30) of 
energy and momentum eigenstates described only by groups of real rapidities read,

〈Ĵ z(lr, S)〉 =
∑
α

jS(qα) , (32)

both for large but finite chains and the TL. Here qα denotes the corresponding occupied values 
of the BA spin band and the elementary currents jS(qj ) are given by

jS(qj ) = −2J sinkj

2πσ(kj )
,

kj = k(qj ) = 2 arctan(�j ) , j = 1, ...,Mb . (33)

The distribution 2πσ(kj ) in the jS(qj ) expression obeys the following equation that within the 
TL can be transformed into an integral equation,

2πσ(kj ) = 1 − 1

2L cos2(kj /2)

Mp∑
α=1

2πσ(kα)

1 +
(

tan(kj /2)−tan(kα/2)

2

)2
. (34)

In this case the index lr in Eq. (30) labels the 
∑

lr
= Nsinglet(S) = (

L
Msp

) − (
L

Msp−1

)
independent 

spin–singlet configurations of the L − 2S paired spins 1/2 and corresponding Msp = L/2 − S

spin–singlet pairs associated with the set of energy and momentum eigenstates that span each 
fixed-S subspace.

In the general case of energy and momentum eigenstates described by groups of both by real 
and complex rapidities, there appear new types of contributions to the current operator expecta-
tion value expression, Eq. (32). Such additional contributions emerge from the strings of length 
n > 1 associated with independent n-pair configurations with n > 1 spin–singlet pairs bound 
within them. They can be computed from the use in the general BA equation, Eq. (12), of the 
suitable sets of specific complex rapidities of general form given in Eq. (16).

Within the TBA, the spin currents 〈Ĵ z(lr, S)〉 in Eq. (31) of LWSs described by groups of real 
and complex rapidities can be written in the TL in terms of n-band pseudoparticle occupancies 
as follows [26],

〈Ĵ z(lr, S)〉 =
∞∑ Mb

n∑
Mn(qj ) jn(qj ) . (35)
n=1 j=1
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Here lr labels the 
∑

lr
= Nsinglet(S) = ∑

{Mn}
∏∞

n=1

(Mb
n

Mn

)
independent spin–singlet configura-

tions of the L − 2S paired spins 1/2. They correspond to a well-defined set of numbers {Mn}
of n-pair configurations associated with the energy and momentum eigenstates that span each 
fixed-S subspace. The n-band elementary currents jn(qj ) in Eq. (35) read [26]

jn(qj ) = − 2J sinkn(qj )

2πσn(kn(qj ))
, where qj ∈ [−qb

n, qb
n ] , (36)

and qb
n = π mb

n, the LWS rapidity functions kn(qj ) are obtainable from solution of the TBA 
equations, Eq. (22), and within the TL the distribution 2πσn(kj ) is given by

2πσn(kj ) ≡ 2πσn(k)|k=kj
; 2πσn(k) = ∂qn(k)

∂k
. (37)

Here qn(k) stands for the inverse function of the n-band rapidity momentum function kn(q).
In Appendix A.1 it is found that for LWSs for which mh

1 � 1 and (1 −mh
1) � 1 the elementary 

currents, Eq. (36), have the following exact limiting behaviors for the n = 1 band:

j1(qj ) = −J
π

2
sin(qj ) , for mh

1 � 1

= −2J sin(qj ) , for (1 − mh
1) � 1 . (38)

For the n > 1 bands the corresponding exact limiting behaviors are

jn(qj ) = −J
(n − 1)

3n
(2πmh

1)2 sin

(
qj

mb
n

)
, for mh

1 � 1

= −2J sin(qj ) , for (1 − mh
1) � 1 . (39)

In addition, in that Appendix some of the exact behaviors useful for our studies of such elemen-
tary currents for a class of energy and momentum eigenstates whose currents absolute values 
reach largest values are reported.

4. The case of strictly zero magnetic-field

The general consensus is that the use of ideal strings for the energy and momentum eigenstates 
described by groups of real and complex rapidities of the spin-1/2 XXX Heisenberg chain leads 
in the TL to exact results as long as either the temperature or the magnetic field are nonzero [39]. 
Concerning the spin stiffness, our results refer to T → ∞, so that they are not affected in the TL 
by the finite-system string deformations.

A technical difference between the cases h = 0 and h �= 0 is that for the former case of strictly 
zero magnetic-field there may occur deformations whose deviations Dn,l

j from the ideal string 
behavior may not occur in the strings themselves, Eq. (16). Hence at zero field the problem is 
more complex in terms of the BA solution than for h �= 0 and the use of the ideal strings in the 
BA equations to compute current operator expectation values of the corresponding Sz = 0 energy 
and momentum eigenstates is often considered questionable, even in the TL.

Fortunately, though, the current operator expectation values of these Sz = 0 states, both with 
spin S = 0 and S > 0, can be computed by a method that does not rely on the BA and TBA. It is 
then found that such expectation values exactly vanish [26]. In the TL this applies both to energy 
and momentum eigenstates described by ideal and deformed strings of length n > 1.

In order to briefly revisit that problem, we consider a class of spin current operator expectation 
values 〈lr, S, Sz|Ĵ z|lr, S, Sz〉 for energy and momentum eigenstates with arbitrary S ≥ 1/2 and 



76 J.M.P. Carmelo, T. Prosen / Nuclear Physics B 914 (2017) 62–98
Sz values for which the following relation is exact [26],

〈lr, S, Sz|Ĵ z|lr, S, Sz〉 = −Sz

S
〈lr, S,−S|Ĵ z|lr, S,−S〉 , (40)

where Sz = −S + ns and ns = 1, ..., 2S. This relation is obtained by combining the system-
atic use of the commutators given in Eq. (9) with the state transformation laws Ŝ−|lr, S, 0〉 = 0
and Ŝ+|lr, 0, 0〉 = Ŝ−|lr, 0, 0〉 = 0, which follow straight-forwardly from the corresponding spin 
SU(2) symmetry operator algebra. The calculations to reach Eq. (40) are relatively easy for 
non-LWSs whose generation from LWSs involves small ns = S − Sz values. As discussed in 
Ref. [26], they become lengthy as the ns value increases, but they remain straightforward. The 
exact relation, Eq. (40), is behind the T > 0 spin stiffness expression given in Eq. (10).

The form of the spin currents, Eq. (40), confirms that the Sz = 0 expectation values 
〈lr, S, 0|Ĵ z|lr, S, 0〉 indeed all vanish exactly for S ≥ 1/2. The S = Sz = 0 spin currents, 
〈lr, 0, 0|Ĵ z|lr, 0, 0〉, are also found to vanish. They refer to energy and momentum eigenstates 
|lr, 0, 0〉 which are both LWSs and HWSs. It follows from Eq. (9) that the current operator Ĵ z, 
Eq. (3), may be expressed in terms of the commutator, Ĵ z = 1

2 [Ĵ+, Ŝ−]. Thus the spin currents 
〈lr, 0, 0|Ĵ z|lr, 0, 0〉 can be written as, (〈lr, 0, 0|Ĵ+Ŝ−|lr, 0, 0〉 − 〈lr, 0, 0|Ŝ−Ĵ+|lr, 0, 0〉)/2. That 
this expression vanishes is readily confirmed by applying the above state transformation laws. 
Hence all Sz = 0 spin currents 〈lr, S, 0|Ĵ z|lr, S, 0〉 vanish for S ≥ 0.

The number and density of spin–singlet pairs reach their maximum values, Msp = L/2 and 
msp = 1/2, respectively, at S = 0. Within both the general BA and the TBA, the S = 0 absolute 
ground state has numbers values Msp = L/2, Mst = Mps = M1 = Msp = L/2 and thus Mh,0

1 = 0. 
For the TBA this implies that Mn = 0 for n > 1. For that ground state the spin/n = 1 band is full. 
It has a symmetrical pseudoparticle compact momentum occupancy. Hence such a state spin 
current exactly vanishes in the TL.

Both mS = 0 and mh,0
1 = 0 for such a ground state. In contrast, the remaining S = 0 energy 

and momentum eigenstates may within the TBA have densities of n = 1 band holes spanning 
the whole range, mh,0

1 = ∑∞
n=2 2(n − 1) mn ∈ [0, 1]. For each n > 1 band pseudoparticle of 

momentum qj that populates such states, there are exactly 2(n − 1) holes in the n′ = 1 band with 
momentum values {qh

j ′ } where j ′ = 1, ..., 2(n − 1).
What are the consequences of both in the case of the general BA and the TBA all Sz = 0 cur-

rent expectation values 〈lr, S, 0|Ĵ z|lr, S, 0〉 vanishing for S ≥ 0? On the one hand, in the former 
case this implies the exact canceling in the TL of the virtual elementary spin currents carried 
by the Mst = (L − Mh)/2 independent spin–singlet pair configurations associated with strings 
of all lengths, n = 1, 2, ..., ∞. On the other hand, in the case of the TBA such an exact can-
celing can be expressed in terms of the virtual elementary spin currents carried by the set of 
M

h,0
n = ∑∞

n′=n+1 2(n′ − n) Mn′ holes in the n-bands for which Mn > 0. (The current contribu-

tions from n bands for which Mn = 0 vanish.) Such set of 
∑

n M
h,0
n virtual elementary currents 

exactly cancel each other.
The Sz = 0 energy and momentum eigenstates with spin S > 0 have relative to the S = 0

states an additional number of 2S holes in the spin/n = 1 band. Within the TBA, all n bands have 
an additional number of 2S holes. An average number of 2S holes in that band and bands, re-
spectively, now describe the translational degrees of freedom of the 2S unpaired spins 1/2. Since 
S of such unpaired spins have up-spin projection and the other S unpaired spins have down-spin 
projection, the corresponding Sz = 0 states with spin S > 0 are non-LWSs. As confirmed below 
in Sec. 5, for such states the additional virtual elementary current contributions from an average 
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number of 2S holes also cancel each other. (The remaining virtual current canceling processes 
are similar to those of the S = 0 energy and momentum eigenstates.)

Such a virtual current cancelation mechanism is encoded both in the general BA equation, 
Eq. (12), and in the n = 1, ..., ∞ TBA equations, Eq. (20), and corresponding general spin-
current expressions. However, for increasingly larger numbers of spin/n = 1 band holes it is 
technically difficult to access from direct solution of these equations.

The problem can be explicitly solved in terms of such equations for the simplest case of the 
class of S = 0 energy eigenstates with two holes in the spin/n = 1 band. Such states thus have 
one n = 2-pair configuration described by one string of length two. (Within the TBA its two 
bound pairs refer to the internal degrees of freedom of one n = 2 composite pseudoparticle.) 
This simplest case has been studied within the BA solution, as in Ref. [44] for the present model, 
by use of the method of Ref. [45] for the related large-on-site-repulsion half-filled 1D Hubbard 
model. (In this paper the spin current operator, Eq. (3), and its expectation values are given in 
units of 1/2, which justifies that extra factor within the notation of Ref. [44].) One then explicitly 
finds that, independently of the momentum values qj and qj ′ of the two holes, their virtual spin 
currents exactly cancel each other.

As confirmed in the ensuing section, the virtual current mechanism also occurs for |Sz| > 0
energy and momentum eigenstates. For such states it corresponds though to a partial cancella-
tion [26].

5. Useful inequalities and upper bounds on current absolute values

The inequalities and corresponding current absolute values upper bounds introduced in this 
section refer to the TBA. More general inequalities accounting for the effects of the string defor-
mations on the spin currents at finite magnetic field are introduced below in Sec. 6.

The spin-1/2 XXX chain in a uniform vector potential �/L whose Hamiltonian is given 
in Eq. (A2) of Ref. [26] remains solvable by the BA. Within the TBA the LWSs momentum 
eigenvalues, P = P(�/L), have the general form

P(�/L) = P(0) + L − ∑∞
n=1 2nMn

L
� = P(0) + mS � = P(0) + 2S

�

L
. (41)

Here the � = 0 momentum eigenvalue P(0) is given in Eq. (26) and the sum rule 
∑∞

n=1 2n Mn =
L − 2S involving the number L − 2S of paired physical spins 1/2 has been used. (Such a sum 
rule follows from that of the corresponding Msp = L/2 − S spin–singlet pairs, Eq. (18).) Im-
portantly, for large L exactly the same exact momentum eigenvalues expression, P(�/L) =
P(0) + 2S (�/L), is obtained by use of the BA accounting for deformed strings.

On the one hand, the expectation values of the current operator in the � → 0 LWSs, 
Eq. (35), can be derived from the �/L dependence of the energy eigenvalues E(�/L) as 
〈Ĵ z〉 = dE(�/L)/d(�/L)|�=0 [26]. On the other hand, dP (�/L)/d(�/L)|�=0 gives the num-
ber of spin carriers that couple to the vector potential. The natural candidates are the model L
physical spins 1/2. The form of the exact momentum eigenvalues, Eq. (41), reveals that only the 
2S unpaired spins 1/2 contributing to the multiplet configurations couple to the vector potential 
�/L. Since the L − 2S physical spins 1/2 left over are those within the Msp = L/2 − S neutral
spin–singlet pairs, this exact result is physically appealing.

A second exact result is consistent with only the 2S unpaired physical spins 1/2 coupling 
to the vector potential also holding for non-LWSs. For simplicity, we consider that L is even 
yet within the TL the same results are reached for L odd. For a general LWS carrying a spin 
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current 〈Ĵ z
LWS(lr, S)〉 all 2S unpaired spins 1/2 have up-spin projection. Let Sσ be the number 

of unpaired spins 1/2 with spin projection σ =↑, ↓ of a non-LWS such that 
∑

σ=↑,↓ Sσ = 2S. 
The exact relation, Eq. (40), can then be written simply as

〈Ĵ z(lr, S↑, S↓)〉 = (S↑ − S↓)

2S
〈Ĵ z

LWS(lr, S)〉
= S↑ × j+1/2 + S↓ × j−1/2 , (42)

where

j±1/2 = ±〈Ĵ z
LWS(lr, S)〉

2S
= ± 1

2S

∞∑
n=1

Mb
n∑

j=1

Mn(qj ) jn(qj ) . (43)

The exact relation, Eqs. (42) and (43), confirms that only the 2S = S↑ + S↓ unpaired spins 
1/2 contribute to the spin currents. For each spin flip generated by application of the off-diagonal 
spin generator Ŝ+ (and Ŝ−) onto an energy eigenstate with finite numbers S↑ and S↓, the spin 
current exactly changes by a LWS current quantum 2j−1/2 (and 2j+1/2). Hence each unpaired 
spin 1/2 with spin projection ±1/2 carries an elementary current j±1/2, Eq. (43). For a LWS one 
has that S↑ = 2S and S↓ = 0, so that 〈Ĵ z

LWS(lr, S)〉 = 2S × j+1/2.
That only the 2S = mS L unpaired physical spins 1/2 couple to the vector potential justifies 

the validity of the result of Ref. [26] that all spin currents exactly vanish as mS → 0. This exact 
result can be used to confirm that, as found in that reference, within the canonical-ensemble de-
scription at fixed value of Sz, in the TL, and for nonzero temperatures the spin stiffness D(T ), 
Eq. (10), vanishes as mS → 0. The main goal of this paper is to extend that result to the grand-
canonical-ensemble description for T → ∞.

Relying on the exact relation, Eq. (40), the spin stiffness expressions given in Eqs. (10), (30), 
and (31) involve only spin current expectation values 〈Ĵ z(lr, S)〉 of LWSs. It is thus useful to 
consider here the LWS fixed-S subspace that is spanned by the Nsinglet(S) LWSs with a given 
spin S. It is a subspace of the larger fixed-S subspace spanned by all N (S) = (2S +1) Nsinglet(S)

energy and momentum eigenstates with the same spin S.
A LWS fixed-S subspace can be further divided into smaller LWS reduced subspaces for 

which both the number 2S of unpaired physical spins 1/2 and that of pseudoparticles Mps are 
fixed. The Mh

1 = 2S + 2(Msp − Mps) = 2S, ..., 2S + 2(Msp − 1) value is thus also fixed. Hence 
such subspaces refer to fixed values of the densities mS ∈ [0, 1] and mh

1 ∈ [mS, 1].
Each LWS fixed-S subspace contains one real-rapidity reduced subspace. It is spanned by 

real-rapidity LWSs for which mh
1 = mS . All Msp = L/2 −S spin–singlet pairs that populate such 

LWSs are unbound and thus Mps = M1 = Msp = L/2 − S and Mn = 0 for n > 1. We denote its 
finite numbers by M1 = M

p
S , Mh

1 = Mh
S , and Mb

1 = Mb
S where

M
p
S = L/2 − S ; Mh

S = 2S ,

Mb
S = M

p
S + Mh

S = L/2 + S . (44)

All remaining reduced subspaces of a LWS fixed-S subspace are called complex-rapidity reduced 
subspaces. Indeed those are spanned by complex-rapidity LWSs described by groups of both real 
and complex rapidities. Their mh

1 > mS values belong to the range mh
1 ∈ [mS, 1].

We denote by |〈Ĵ z
LWS〉|T (mS,mh

1) the largest current absolute value of each LWS reduced sub-
space of a given LWS fixed-S subspace. It is of the general form,

|〈Ĵ z
LWS〉|L(m ,mh) = cT 2J 2S Mps = cT 2JLmS mps . (45)
S 1 L
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The coefficient cT in this expression obeys the inequality cT ≤ π . It is a function of the densities 
mS and mh

1 with the following limiting behaviors,

cT = π

2
for mS = mh

1 → 0 ,

= 1 for mS = mh
1 → 1 , (46)

and

cT = sin(πmS)

mS

for mS ∈ [0,1/2] and mh
1 → 1 ,

= 1

mS

for mS ∈ [1/2,1] and mh
1 → 1 . (47)

On the one hand, for mS → 0 and mh
1 ∈ [0, 1] it is an increasing function of mh

1 given by cT =
π c1 where c1 = 1/2 for mh

1 → 0 and c1 = 1 for mh
1 → 1. On the other hand, for mh

1 = mS it is a 
decreasing function of mh

1 whose limiting values are given in Eq. (46).
The LWSs spin currents result from processes that are simpler to be described in terms of 

local spins 1/2 occupancy configurations in the spin-1/2 XXX chain lattice. Within these pro-
cesses, each 2n-site configuration of the Mps = ∑∞

n=1 Mn pseudoparticles that populate a LWS 
interchanges position under its motion along the lattice with such a state single-site 2S unpaired 
physical spins 1/2. This justifies why the largest current absolute value of a LWS reduced sub-
space is proportional to 2S × Mps, as given in Eq. (45). Consistently, LWSs for which 2S = 0
and/or Mps = 0 carry no spin current.

The degrees of freedom of the 2S unpaired spins 1/2 are distributed over different quan-
tum numbers of the exact BA solution. They are the physical spins 1/2 whose spin is flipped 
by the spin SU(2) symmetry algebra off-diagonal generators. The spin degrees of freedom 
of the S↑ and S↓ unpaired spins 1/2 with up and down spin projection, respectively, de-
termine the spin S = (S↑ + S↓)/2 and spin projection Sz = −(S↑ − S↓)/2 of all energy 
eigenstates. Their translational degrees of freedom are described in each n-band by its Mh

n =
2S + ∑∞

n′=n+1 2(n′ − n) Mn′ holes. Hence in terms of the exact solution quantum numbers 
the above local processes that generate the spin currents refer to the relative occupancy con-
figurations of the Mn pseudoparticles and corresponding Mh

n holes in each n band for which 
Mn > 0. Consistently, the LWSs spin currents 〈Ĵ z

LWS(lr, S)〉 in the general spin current expres-

sion 〈Ĵ z(lr, S↑, S↓)〉 = ([S↑ − S↓]/2S) 〈Ĵ z
LWS(lr, S)〉, Eq. (42), can alternatively be expressed in 

terms of pseudoparticles, as given in Eq. (35), or of n-band holes. Within the latter represen-

tation, they read 〈Ĵ z(lr, S)〉 = ∑∞
n=1

∑Mb
n

j=1 Mh
n (qj ) jh

n (qj ) where Mh
n (qj ) = 1 − Mn(qj ) and 

jh
n (qj ) = −jn(qj ).

For non-LWSs, one can consider that Mh
n = Mh

n,↑ +Mh
n,↓ where Mh

n,σ = Sσ +∑∞
n′=n+1(n

′ −
n) Mn′ for σ =↑, ↓. The role of the additional number 

∑∞
n′=n+1 2(n′ − n) Mn′ of holes in Mh

n =
2S + ∑∞

n′=n+1 2(n′ − n) Mn′ is to ensure that in each fixed-S subspace dimension, N (S) =
(2S + 1) Nsinglet(S), the factor Nsinglet(S) = (

L
Msp

) − (
L

Msp−1

)
where Msp = L/2 − S is exactly 

given by Nsinglet(S) = ∑
{Mn}mS

∏∞
n=1

(Mb
n

Mh
n

)
.

On the one hand, for the S = 0 energy eigenstates considered in Sec. 4, the number Mh
n

reads Mh
n = M

h,0
n = ∑∞

n′=n+1 2(n′ − n) Mn′ . In this case the elementary currents carried by ∑∞′ (n′ − n) Mn′ n-band holes exactly cancel those carried by the remaining 
∑∞′ (n′ −
n =n+1 n =n+1
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n) Mn′ such holes. On the other hand, for S > 0 energy eigenstates for which 
∑∞

n′=n+1 2(n′ −
n) Mn′ > 0 there is a corresponding partial elementary current cancellation. In that case out of 
the Mh

n = 2S +∑∞
n′=n+1 2(n′ −n) Mn′ n-band holes there is in average number 2S of such holes 

that describe the translational degrees of freedom of the 2S unpaired spins 1/2. Hence their 
elementary currents contribute to the LWSs spin currents. The elementary currents carried by an 
average number 

∑∞
n′=n+1 2(n′ − n) Mn′ of n-band holes cancel each other. In the case of LWSs, 

such a partial canceling does not occur in n-bands for which Mh
n = 2S.

We denote by |〈Ĵ z
LWS〉|A(mS,mh

1) the average current absolute value of each LWS reduced 
subspace. It is given by

|〈Ĵ z
LWS〉|A(mS,mh

1) =
∑

l
mS ,mh

1

|〈Ĵ z(lmS,mh
1
)〉|

∑
{Mn}

mS,mh
1

∏∞
n=1

(Mb
n

Mn

) . (48)

Here the sum 
∑

l
mS ,mh

1

runs over all n = 1, ..., ∞ band occupancy configurations that generate the ∑
{Mn}

mS,mh
1

∏∞
n=1

(Mb
n

Mn

)
LWSs with the same number 2S of unpaired physical spins 1/2 and Mps

of pseudoparticles. Hence the summation 
∑

{Mn}
mS,mh

1

is over all sets of n-band pseudoparticle 

numbers {Mn} that obey both the sum rules 
∑∞

n=1 n Mn = 1
2 (L − 2S) = Msp, Eq. (18), and ∑∞

n=1 Mn = 1
2 (L − Mh

1 ) = Mps, Eq. (27), respectively.
That each fixed-S reduced subspace is spanned by energy eigenstates with exactly the same 

number Mps of pseudoparticles simplifies the form of the average current absolute values, 
Eq. (48). In the TL they are related to the corresponding largest current absolute values, Eq. (45), 
as follows,

|〈Ĵ z
LWS〉|A(mS,mh

1) = cA

cT

|〈Ĵ z
LWS〉|L(mS,mh

1)√
2Mps

= cA

L
J 2S

√
2Mps ≈ J mS

√
2Mps . (49)

The coefficient cA reads here cA = 1 for (1 −mh
1) � 1 and otherwise obeys the inequality cA ≤ 1, 

being of the order of unity. The factor 1/
√

2Mps that multiplies |〈Ĵ z
LWS〉|L(mS,mh

1) stems from the 
LWSs that span the reduced subspace being generated by all possible occupancy configurations 
of the Mps pseudoparticles.

In the case of the reduced subspace for which Mps reaches its maximum value at fixed S, 
the average current absolute value general form, Eq. (49), follows from the calculations of Ap-
pendix B. Its generalization to the remaining reduced subspaces involves in the TL lengthy yet 
straightforward calculations. The precise value of the coefficient cA remains though an involved 
open problem. Fortunately, the only related information needed for our studies is that cA is of the 
order of the unity.

At fixed spin S the number 2S of unpaired physical spins 1/2 that couple to a vector potential 
is fixed. Hence the current absolute values are largest for LWSs for which these 2S unpaired 
spins 1/2 have a larger number Mps of n-band pseudoparticles to interchange position with.

On the one hand, for a given LWS fixed-S subspace the average current absolute value is thus 
smallest for its Mps = 1 reduced subspace. For it the Msp = L/2 − S spin–singlet pairs are all 
bound within a single gigantic n = Msp = L/2 −S pair-configuration. The single pseudoparticle 
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of the LWSs that span such a LWS reduced subspace has one of the j = 1, ..., 2S + 1 momentum 
values qj = 0, ± 2π

L
, ..., ± 2π

L
(S − 1), ± 2π

L
S. For such LWSs the Msp = L/2 − S spin–singlet 

pairs involving the L −2S paired spins 1/2 reach the smallest dilution relative to the 2S unpaired 
spins 1/2. The spin current of these LWSs, 〈Ĵ z

LWS(lr, S)〉 = 〈Ĵ z
LWS(qj , S)〉 = −2J sinqj , results 

from the motion of the single gigantic pseudoparticle relative to a number 2S of n = L/2 − S

band holes. Those describe the translational degrees of freedom of the 2S unpaired physical spins 
1/2.

On the other hand, both the largest current absolute |〈Ĵ z
LWS〉|T (mS,mh

1), Eq. (45), and the av-

erage current absolute value |〈Ĵ z
LWS〉|A(mS,mh

1), Eq. (49), reach their maximum values for the 
real-rapidity reduced subspace for which Mps = M1 = Msp = L/2 − S and thus Mn = 0 for 
n > 1. Its average current absolute value, Eq. (48), can be written as

|〈Ĵ z
LWS〉|A(mS,mS) =

∑
lmS

|〈Ĵ z(lmS
)〉|(Mb

S

M
p
S

) . (50)

The sum 
∑

lmS
in this expression runs over the set of n = 1 band occupancy configurations that 

generate the 
(Mb

S

M
p
S

)
LWSs with the same spin S whose Mp

S , Mh
S , and Mb

S numbers are given in 

Eq. (44).
That at fixed mS = 2S/L the average current absolute value |〈Ĵ z

LWS〉|A(mS,mh
1) ≈ J mS

√
2Mps

in Eq. (49) where Mps = 1, ..., Msp reaches the largest value for the real-rapidity reduced sub-
space for which Mps = Msp plays a key role in our analysis. This implies that in each LWS 
fixed-S subspace the set of average current absolute values, Eqs. (48) and (49), for which 
mh

1 > mS obey the inequality

|〈Ĵ z
LWS〉|A(mS,mh

1) < |〈Ĵ z
LWS〉|A(mS,mS) for mS < mh

1 < 1 . (51)

Here |〈Ĵ z
LWS〉|A(mS,mS) is the corresponding real-rapidity reduced subspace average current ab-

solute value, Eq. (50).
We call |〈Ĵ z

LWS〉|A(mS) the average current absolute value of a LWS fixed-S subspace. It reads

|〈Ĵ z
LWS〉|A(mS) =

∑
lr
|〈Ĵ z(lr, S)〉|

Nsinglet(S)
=

∑
lr
|〈Ĵ z(lr, S)〉|∑

{Mn}mS

∏∞
n=1

(Mb
n

Mn

) . (52)

As in Eq. (31), the sum 
∑

lr
in this expression runs over all n = 1, ..., ∞ band occupancy con-

figurations that generate the Nsinglet(S) = ∑
{Mn}mS

∏∞
n=1

(Mb
n

Mn

)
LWSs with the same spin S. As 

in that equation, the summation 
∑

{Mn}mS
is thus over all sets of n-band pseudoparticle numbers 

{Mn} that obey the sum rule 
∑∞

n=1 n Mn = Msp = L/2 − S, Eq. (18). This corresponds to the set 
of all energy eigenstates with the same number Msp = L/2 −S of spin–singlet pairs and different 
numbers Mps = 1, ..., Msp of pseudoparticles.

That the inequalities, Eq. (51), are valid for all reduced subspaces of any LWS fixed-S
subspace for which mh

1 > mS straightforwardly implies the validity of the following related in-
equality,

|〈Ĵ z 〉|A(m ,m ) ≥ |〈Ĵ z 〉|A(m ) . (53)
LWS S S LWS S
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Since that validity refers to all S > 0 values, it ensures the validity, within the TL, of the following 
important inequality used below in the analysis of Sec. 7,

∑
S

∑
lmS

|〈Ĵ z(lmS
)〉|2

(2S)2∑
S

(Mb
S

M
p
S

) ≥
∑

S

∑
lr

|〈Ĵ z(lr,S)〉|2
(2S)2∑

S

∑
{Mn}mS

∏∞
n=1

(Mb
n

Mn

) . (54)

Before presenting such an analysis, a more general inequality accounting for the effects of the 
string deformations is introduced in the ensuing section.

6. The effects of the string deformations on the spin currents at finite magnetic field

At finite magnetic field only the deviations Dn,l
j that occur in the strings themselves, Eq. (16), 

may have effects in the TL on the spin currents and other quantities. The set of these complex 
rapidities with the same real part of form �n,l

j = �n
j + i(n + 1 − 2l) +D

n,l
j remain being labeled

by the quantum numbers n = 1, ..., ∞ and l = 1, ..., n that refer to the number of bound spin–
singlet pairs and each of these pairs, respectively. Physically, this means that, as in the case of an 
ideal string, the distorted string associated with that set of complex rapidities also describes an 
independent configuration within which n = 1, ..., ∞ spin–singlet pairs are bound.

The set of TBA complex rapidities with the same real part, Eq. (17), obey the symmetry 
relation �n,l

j = (�
n,n+1−l
j )∗. The two complex rapidities �n,l

j and �n,l′
j associated with two 

spin–singlet pairs labeled by the quantum numbers l and l′ = n + 1 − l, respectively, being 
related as �n,l

j = (�
n,l′
j )∗ for l = 1, ..., n is actually a necessary condition for the binding of the 

l = 1, ..., n spin–singlet pairs within the n-pair configuration.
Importantly and due to self-conjugacy, the deviations Dn,l

j = R
n,l
j + iδ

n,l
j in Eq. (16) for the set 

of complex rapidities with the same real part associated with a distorted string are also such that 
D

n,l
j = (D

n,n+1−l
j )∗. This reveals that the symmetry �n,l

j = (�
n,n+1−l
j )∗ prevails under string 

deformations. This ensures that as for the ideal strings, the imaginary parts of the n real rapidities 
with the same real part associated with deformed strings also describe the binding within the 
corresponding n-pair configurations of l = 1, ..., n spin–singlet pairs.

The V-strings deformations [39] have in the TL and finite magnetic field no effects on the 
spin currents. At finite magnetic field the EKS-strings collapse of narrow pairs, described below 
within our representation in terms spin–singlet pair unbinding processes, is in the TL the only 
aberration from the ideal strings [39] that may have effects on the spin currents. This refers only 
to the currents of |Sz| > 0 energy and momentum eigenstates described by groups of real and 
complex rapidities. Here we identify such effects and justify why in the TL they have no impact 
whatsoever in the high-temperature stiffness upper bounds introduced in the ensuing section.

The general consensus is that the use ideal strings for energy and momentum eigenstates 
described by groups of real and complex rapidities leads in the TL to exact results as long as 
either the temperature or the magnetic field are nonzero [39]. Consistently, although the collapse 
of narrow pairs is indeed found to enhance the spin currents absolute values of a few states, it 
does no change in the TL the stiffness upper bounds used in our study.

The string deviations from the TBA ideal strings do not change the value of the number of 
spin–singlet pairs. Hence their density is also exactly given by msp = (1 − mS)/2 for the cor-
responding LWSs and non-LWSs. Narrow pairs refer to a string deformation originated by a 
deviation Dn,l

j that renders the separation between two rapidities �n,l
j and �n,l+1

j in the imag-
inary direction less than i. Such a separation may become narrower and eventually merge and 
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split back onto the horizontal axis [39]. Such a process is what is called the collapse of a narrow 
pair.

Within our representation in terms of the model physical spins 1/2, it then refers to an ele-
mentary process that leads to the unbinding of two spin–singlet pairs. On the one hand, for the set 
of n > 2 complex rapidities with the same real part associated with n bound pairs, it leads to the 
partition of the corresponding n-pair configuration into a n′-pair configuration where n′ = n − 2. 
The latter is described by a smaller number n′ = n − 2 of complex rapidities with the same real 
part in a string of smaller length n′ = n −2. The process also generates two unbound spin–singlet 
pairs described by real rapidities. On the other hand, for n = 2 complex rapidities with the same 
real part it leads in turn to the unbinding of the two spin–singlet pairs of the corresponding n = 2
pair configuration. This gives rise solely to the two unbound spin–singlet pairs described by real 
rapidities.

Hence the collapse of a narrow pair is a process that causes an increase in the value of the 
number of strings of all lengths, Mst = Mp + MB

st , Eq. (15). It does not change though that of 
spin–singlet pairs, Msp = L/2 − S. Specifically, it always leads to a positive deviation δMp = 2
in the value of the number of spin-band pseudoparticles and corresponding unbound spin–singlet 
pairs. Moreover, it gives rise to a negative deviation δMB

sp = −2 in the value of the number of 
bound spin–singlet pairs. There is as well either an additional negative deviation δMB

st = −1 or 
no deviation δMB

st = 0 in the number MB
st of independent configurations with bound spin–singlet 

pairs within them. This depends on whether the deformed n-pair configuration that suffers the 
collapse of a narrow pair has n = 2 or n > 2 spin–singlet pairs bound within it, respectively.

We denote by |〈Ĵ z
LWS〉|AD(mS) the average current absolute value of the LWS fixed-S subspace 

spanned by energy eigenstates for which some of the complex strings are deformed. It is given 
by

|〈Ĵ z
LWS〉|AD(mS) =

∑
lrD

|〈Ĵ z(lrD , S)〉|
Nsinglet(S)

. (55)

The sum 
∑

lrD
in this expression runs over all L − 2S paired physical spins 1/2 occupancy 

configurations that generate the Nsinglet(S) LWSs with the same spin S and thus the same number 
Msp = L/2 − S of spin–singlet pairs.

As given in Eq. (53), within the TBA the average of the current absolute values is largest in 
the fixed-S subspaces spanned by energy and momentum eigenstates described only by groups 
of real rapidities. Such an average is larger than that in the fixed-S subspaces spanned by all 
energy and momentum eigenstates of spin S. The main point is that a larger fraction of unbound 
spin–singlet pairs relative to bound spin–singlet pairs at the fixed number Msp = L/2 −S of such 
pairs tends to enhance the spin current absolute values.

A generalization of the inequality, Eq. (53), which accounts for the effects of the collapse 
of narrow pairs and thus of spin–singlet pair unbinding processes, involves the average current 
absolute value, Eq. (55), and reads

|〈Ĵ z
LWS〉|A(mS,mS) ≥ |〈Ĵ z

LWS〉|AD(mS) ≥ |〈Ĵ z
LWS〉|A(mS) . (56)

On the one hand, the validity of the inequality |〈Ĵ z
LWS〉|A(mS,mS) ≥ |〈Ĵ z

LWS〉|AD(mS) in this 
equation follows from the energy and momentum eigenstates described by real rapidities hav-
ing no strings of length n > 1 and thus being string-deformation free. This is because all their 
Msp = L/2 − S spin–singlet pairs are unbound. The binding of spin–singlet pairs within n-pair 
configurations for which n > 2 in states with groups of real and complex rapidities lessens the 
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current absolute values. The unbinding of spin–singlet pairs under string deformations only par-
tially neutralizes this effect. Indeed, it does not refer to all spin–singlet pairs bound within n-pair 
configurations for which n > 2. In contrast, for the energy and momentum eigenstates described 
by real rapidities all Msp = L/2 − S spin–singlet pairs are unbound.

On the other hand, the inequality |〈Ĵ z
LWS〉|AD(mS) ≥ |〈Ĵ z

LWS〉|A(mS) in Eq. (56) is valid because 
the collapse of narrow pairs caused by complex rapidity string deformations may unbind some 
spin–singlet pairs. This effect tends to enhance the average of the current absolute values in the 
fixed-S subspaces whose strings of some states are deformed. This effect is though very small 
in the TL. Indeed most string deformations involve small variations in the string fine structure 
that do not lead to the collapse of narrow pairs and in the TL have no effects on the spin currents 
absolute values.

Since the inequalities in Eq. (56) are valid for all S > 0 values, the following important in-
equality, which is an extension of that given in Eq. (54), holds,

∑
S

∑
lmS

|〈Ĵ z(lmS
)〉|2

(2S)2∑
S

(Mb
S

M
p
S

) ≥
∑

S

∑
lrD

|〈Ĵ z(lrD ,S)〉|2
(2S)2∑

S Nsinglet(S)
. (57)

7. High-temperature stiffness upper bounds within the thermodynamic limit

The high-temperature stiffness upper bounds introduced in this section rely on replacing av-
erages of the spin current absolute values in the full LWS spin-S subspaces by those in the 
corresponding smaller LWS real-rapidity reduced subspaces. It follows from the inequalities, 
Eqs. (54) and (57), that our final results are independent from the use in the TL of ideal or 
deformed strings for the states described by groups of real and complex rapidities.

For simplicity, we use the number notation in Eq. (44), within which Mp
S (qj ) = M1(qj ), 

qj = (2π/L) Ij ∈ [−qb, qb], Ij = I 1
j , and qb = qb

1 = π(Mb
S − 1)/L. Each LWS real-rapidity 

reduced subspace is then spanned by 
(Mb

S

M
p
S

)
energy and momentum eigenstates with the same S

value.
A first spin stiffness upper bound, Du1(T ) ≥ D(T ), is derived from the direct use in the 

high-temperature stiffness expression, Eq. (31), of the inequalities in Eqs. (54) and (57). This 
leads to

Du1(T ) = (2Sz)2

2LT

∑L/2
S=|Sz|

∑
lmS

|〈Ĵ z(lmS
)〉|2

(2S)2∑L/2
S=|Sz|

(Mb
S

M
p
S

) . (58)

The sums 
∑

lS
in this expression run over the real-rapidity LWSs whose number is 

(Mb
S

M
p
S

)
that 

span each LWS real-rapidity reduced subspace. The spin currents 〈Ĵ z(lmS
)〉 are given by

〈Ĵ z(lmS
)〉 =

Mb
S∑

M
p
S (qj ) jS

1 (qj ) , (59)

j=1
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where 
∑Mb

S

j=1 M
p
S (qj ) = M

p
S . The elementary current jS

1 (qj ) in this expression is that in 

Eq. (A.20) of Appendix A.2. It reads jS
1 (qj ) = j1(qj ) for qj ∈ [−qb, qb] and M1 = Mps = Msp

where j1(qj ) is the elementary current, Eq. (36) for n = 1.
For the present real-rapidity LWSs one has that mh

1 = mS . Hence the limits given in 
Eq. (38) apply. The elementary current jS

1 (qj ) changes thus from jS
1 (qj ) = −π

2 J sinqj for 
qj ∈ [−π/2, π/2] as mS → 0 to jS

1 (qj ) = −2J sinqj for qj ∈ [−π, π] as mS → 1. It can be 
written as jS

1 (qj ) = −jS
1 sS

1 (qj ) where |sS
1 (qj )| ≤ 1 for qj ∈ [−π

2 (1 − mS), π
2 (1 − mS)

]
. As jus-

tified in Appendix A.2, the elementary current coefficient jS
1 > 0 in that expression reaches its 

largest value jS
1 = 2J for the whole mS ∈ [0, 1] range for mS → 1. Moreover, in that Appendix 

it is found that the replacement in jS
1 (qj ) = −jS

1 sS
1 (qj ) of jS

1 and sS
1 (qj ) by 2J and sinqj , re-

spectively, ensures that | ∑Mb
S

j=1 M
p
S (qj ) 2J sinqj | ≥ | ∑Mb

S

j=1 M
p
S (qj ) jS

1 (qj )| for all real-rapidity 
LWSs and the whole mS ∈ [0, 1] interval. This thus implies the validity of the following inequal-
ity,

L/2∑
S=|Sz|

∑
lmS

J 2∗ (lmS
)

(2S)2
≥

L/2∑
S=|Sz|

∑
lmS

|〈Ĵ z(lmS
)〉|2

(2S)2
, (60)

where J∗(lmS
) = − 

∑Mb
S

j=1 M
p
S (qj ) 2J sinqj .

Our second stiffness upper-bound, Du2(T ) ≥ D(T ), is thus obtained by replacing in Eq. (58)
the factor on the right-hand side of Eq. (60) by that on its left-hand side. This accounts for 
replacing the exact elementary spin current jS

1 (qj ) by a upper-bound elementary spin current 
given by

j (qj ) = −2J sinqj . (61)

Under this replacement, the sum 
∑

lrS
in Eq. (58) can be performed. Such a sum is carried out 

in Appendix B, with the result,

Du2(T ) =
∑−

S
J 2(Sz)2

LT S2

(
Msp + 2S + sin(2πS/L)

sin(2π/L)

)(Msp+2(S−1)

Msp−1

)
∑

S

(Msp+2S

Msp

)

=
∑−

S
J 2(Sz)2

LT S2

(
L/2 + S + sin(2πS/L)

sin(2π/L)

)(
L/2+S−2
L/2−S−1

)
∑

S

(
L/2+S
L/2−S

) , (62)

for T → ∞. Here the summations refer to 
∑−

S = ∑L/2−1
S=|Sz| and 

∑
S = ∑L/2

S=|Sz|, respectively, and 
for simplicity we have chosen L to be even so that Sz and S are integers. (In the present TL this 
reaches again the same final results as for L odd.)

The following behaviors of the spin stiffness upper bound Du2(T ), Eq. (62), corresponding 
to m � 1 and (1 − m) � 1 are derived in Appendix B,

Du2(T ) = J 2 cu2

2T
m2 ≈ J 2

2T
m2 , for m � 1 ,

= J 2

(1 − m) , for (1 − m) � 1 , (63)

2T
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respectively, where

cu2 = 9

4
(
√

5 − 2)

(
5

3
+

√
3

2π

)
≈ 1.032 . (64)

Finally, we emphasize that our T → ∞ upper bound, Eq. (62), has been inherently constructed 
to the exact T → ∞ stiffness reading,

D(T ) = Du2(T ) = J 2

2T
(1 − m) , (65)

for (1 − m) � 1 and

D(T ) = J 2 c2

2T
m2 , (66)

for m � 1. Here c is a m and T independent coefficient, c ≈ 1 such that c2 < cu2.
The calculations of Appendix B that reached the expressions in Eqs. (65) and (66) corre-

spond in these two limits to average current absolute values of the form |〈Ĵ z
LWS〉|A(mS,mS) =

c J mS

√
2Mps = c J mS

√
L − 2S where c = 1 for (1 − mS) � 1 and c ≈ 1 for mS � 1, consis-

tently with Eq. (49) for mh
1 = mS where mS = m for LWSs.

8. Concluding remarks

The upper bound on high-temperature spin stiffness derived in this paper, Eqs. (62)–(64), van-
ishes as m2 in the m → 0 limit and is independent of the system size L. This ensures that the spin 
stiffness vanishes within the grand-canonical ensemble as h → 0 for high temperature T → ∞
in the TL. We believe that our result is exact in these limits. The possibility of the absence of 
ballistic spin transport for the whole finite-temperature range T > 0 within the grand-canonical 
ensemble in the limit of zero magnetic field remains though an interesting unsolved problem.

Concerning the relation of our results to previous results on the spin stiffness of the 
spin-1/2 XXX chain, the upper bound of Ref. [26] is valid for the whole temperature range 
T > 0 and vanishes as m2 L in the m → 0 limit. This latter behavior reveals that within the 
canonical ensemble the model spin stiffness vanishes as m → 0 for finite temperature within the 
TL. However and as mentioned above, it leaves out, marginally, the grand canonical ensemble 
in which 〈m2〉 = O(1/L). The large overestimate of the current absolute values used in deriv-
ing the stiffness upper bound of that reference, whose limiting values are given in Eq. (7), leads 
for high temperature to an extra factor of the order O((1 − m)L) relative to our upper bound, 
Eq. (62). This refers to an overestimate of the method used in Ref. [26] that has ignored the factor 
1/

√
2Mps = 1/

√
(1 − mS)L in the corresponding spin current average value, first expression of 

Eq. (49) for mh
1 = mS where mS = m for LWSs.

We note that our result on vanishing spin stiffness as h → 0 in the TL crucially depends 
on the existence of a global SU(2) symmetry where the current under consideration is a part 
of the symmetry operator algebra. We thus expect that our result should be extendable to other 
integrable models with similar one or several global SU(2) symmetries, such as e.g. the fermionic 
1D Hubbard model.

In conclusion, in this paper we addressed the important fundamental and highly debated ques-
tion on the possibility of ballistic spin transport within the grand-canonical ensemble for h → 0



J.M.P. Carmelo, T. Prosen / Nuclear Physics B 914 (2017) 62–98 87
in what is arguably one of the simplest strongly correlated quantum many-body system, the 
spin-1/2 XXX chain. Our main result is the strong evidence of lack of such a ballistic transport 
within the grand-canonical ensemble as h → 0 in the TL at high temperature T → ∞.

Our results thus imply that the spin-1/2 XXX Heisenberg chain exhibits at infinite tempera-
ture anomalous sub-ballistic spin transport. This is consistent with the studies of Ref. [19] that 
rely on a nonequilibrium open system approach.

Combination of the result of Ref. [26] that within the canonical ensemble the spin stiffness 
vanishes in the m → 0 limit at all nonzero temperatures with the absence of phase transitions in 
the spin-1/2 XXX chain at T > 0, could be an indication of the lack of ballistic spin transport 
for the whole nonzero temperature range, T > 0, also within the grand-canonical ensemble. This 
remains though an interesting open problem that deserves further studies.

Last but not least, our method uses a representation in terms of configurations of the L phys-
ical spins 1/2 that is more controllable than most numerical studies on the occurrence or lack 
of ballistic spin transport in the spin-1/2 XXX chain. Moreover, such a representation provides 
useful physical information on the microscopic processes involving the elementary currents car-
ried by spin/n = 1 band holes and n-pair configurations with n > 1 spin–singlet pairs bound 
within them that control the very complex problem under investigation. That information may 
play a valuable role in future studies of the present problem for the whole nonzero temperature 
range, T > 0.
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Appendix A. Spin-band and n-band elementary currents

The main aim of this Appendix is to derive the elementary current jn(qj ) expressions, 
Eqs. (38) and (39), and to justify the validity of the inequality, Eq. (60). To achieve such goals, 
expressions for the elementary currents jn(qj ), Eq. (36), of classes of LWSs that include those 

whose absolute values of the current 〈Ĵ z(lr, S)〉 = ∑∞
n=1

∑Mb
n

j=1 Mn(qj ) jn(qj ), Eq. (35), is 
larger are derived. In the case of LWS fixed-S real-rapidity reduced subspaces considered in 
Sec. 7, this refers to the elementary currents jS(qj ), Eq. (32), in the current expression, Eq. (33).

A.1. n-band elementary currents for classes of LWSs described by groups of real and complex 
rapidities

The goal of this Appendix section is to justify the validity of the elementary current jn(qj )

expressions, Eqs. (38) and (39). It is straightforward to confirm from manipulations of the TBA 
equations, Eq. (20), LWS spin current expression, Eq. (35), and corresponding n-band elemen-
tary current expression, Eq. (36), that the class of LWSs that reach the largest current absolute 
values have asymmetrical compact hole or pseudoparticle n-band distributions. Here we consider 
the larger class of LWSs with compact hole or pseudoparticle n-band distributions in the TL of 
the general form:
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M0
n(qj ) = 
(qj + πmb

n)
(q−
h n − qj )

+ 
(qj − q+
h n)
(πmb

n − qj ) , for mh
n ≤ mn ,

q−
h n ∈ [0,π(mn − mh

n)] ,
q+
h n = q−

h n + 2πmh
n , where n = 1, ...,∞ , (A.1)

and

M0
n(qj ) = 
(q+

p n − qj )
(qj − q−
p n) , for mh

n ≥ mn ,

q−
p n ∈ [0,−π(mn − mh

n)] ,
q+
p n = q−

p n + 2πmn , where n = 1, ...,∞ , (A.2)

respectively. The distribution 
(x) in these equations is given by 
(x) = 1 for x ≥ 0 and 

(x) = 0 for x < 0. For each LWS the n-band hole numbers Mh

n appearing here are given in 
Eq. (24). In each LWS fixed-S reduced subspace the set {Mn} of numbers Mn obey the two 
exact sum rules, Eqs. (18) and (27), respectively. As given in Eqs. (A.1) and (A.2), these hole-
like and pseudoparticle-like general distributions refer to occupied n-bands of the LWSs under 
consideration for which mh

n ≤ mn and mh
n ≥ mn, respectively.

LWSs for which M0
n(qj ) = 0 for n > 1, q+

p 1 = −q−
p 1 = πm1, and mh

1 = mS = m are ground 
states of the spin-1/2 XXX chain Hamiltonian at finite magnetic field h > 0, Eq. (1). In that case 
their n = 1 band momentum distribution, M0

1 (qj ) = MGS
1 (qj ), refers to a compact pseudoparti-

cle symmetrical distribution. Specifically, in the TL it reads MGS
1 (qj ) = 1 for qj ∈ [−πm1, πm1]

and thus is unoccupied, MGS
1 (qj ) = 0, for |qj | ∈ [πm1, πmb

1]. As for all LWSs with symmetrical 
n-band distributions, ground states carry in the TL zero spin current.

The large class of LWSs with compact n-band distributions, Eqs. (A.1) and (A.2), carry 
currents whose absolute value ranges from zero, for symmetrical compact distributions, to the 
corresponding LWS fixed-S reduced subspace largest such values, Eq. (45), for well-defined 
asymmetrical compact distributions in the n-bands with finite occupancy.

It is useful to consider the subspaces spanned by a given S > 0 reference LWS with n-band 
compact distribution of the general form, Eqs. (A.1) and (A.2), and the set of LWSs gen-
erated from it by processes involving pseudoparticle number overall deviations δMps for all 
n = 1, ..., ∞ bands such that δmps = δMps/L → 0 as L → ∞. Here δMps = ∑∞

n=1 δMn and 
thus δmps = ∑∞

n=1 δmn.
A functional expression for the energy deviation δE = Ef − E0, where E0 stands for the 

energy of the reference LWS and Ef that of the LWSs generated from it, is derived from the use 
of the TBA energy spectrum,

E = −
∞∑

n=1

Mb
n∑

j=1

Mn(qj )
J

n

(
1 + coskn(qj )

) − 2μB hSz . (A.3)

This is achieved upon expanding the excited states n = 1, ..., ∞ band momentum distributions 
Mn(qj ) = M0

n(qj ) +δMn(qj ) around M0
n(qj ). Here the deviations δMn(qj ) = Mn(qj ) −M0

n(qj )

and 
∑∞

n=1
∑Mb

n

j=1 δMn(qj ) = δMps are as given above such that δmps = δMps/L → 0 as L → ∞. 
Up to O(1/L) order one then finds

δE =
∞∑ Mb

n∑
εn(qj )δMn(qj ) + 1

L

∞∑
′

Mb
n∑

′

1

2
fn n′(qj , qj ′)δMn(qj )δMn′(qj ′) . (A.4)
n=1 j=1 n,n =1 j,j =1
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The n-pseudoparticle dispersion εn(qj ) in this expression reads,

εn(qj ) = 2nμB h − J

n

(
1 + coskn

0 (qj ) −
∞∑

n′=1

π∫
−π

dk M̄0
n′(k) sin k �̄n′ n(k, kn

0 (qj ))
)

. (A.5)

Here kn
0 (qj ) denotes the reference LWS momentum rapidities kn(qj ). Those are the solution of 

the TBA equations, Eq. (20), for the compact n-band distributions, Mn(qj ) = M0
n(qj ), Eqs. (A.1)

and (A.2), of the reference state under consideration. The rapidity-variable distribution M̄0
n′(k)

in Eq. (A.5) is defined by the relation M̄0
n′(kn′

0 (qj )) = M0
n′(qj ).

The f functions in Eq. (A.4) are given by

fn n′(qj , qj ′) = vn(qj )2π �n n′(qj , qj ′) + vn′(qj ′)2π �n′ n(qj ′ , qj )

+ 1

2π

∞∑
n′′=1

∑
ι=±

|vn′′(qι
a n′′)|2π �n′′ n(q

ι
a n′′ , qj )2π �n′′ n′(qι

a n′′ , qj ′),

for a = p,h . (A.6)

The quantities q±
a n′′ where a = p, h are here the compact distributions limiting momentum values 

in Eqs. (A.1) and (A.2). Within the TL the n-band group velocity in the f functions expression 
reads,

vn(qj ) = vn(q)|q=qj
; vn(q) = ∂εn(q)

∂q
. (A.7)

Moreover, the rapidity dressed phase shifts �̄n n′(k, k′) and related momentum dressed phase 
shifts �n n′(qj , qj ′) in units of 2π appearing both in the εn(qj ) and fn n′(qj , qj ′) expressions are 
defined by the following integral equations and relations,

�̄n n′(k, k′) = 1

2π

n n′

(
n tan(k/2) − n′ tan(k′/2)

)

−
∞∑

n′′=1

n′′

4π

π∫
−π

dk′′ M̄0
n′′(k′′)



[1]
n n′′

(
n tan(k/2) − n′′ tan(k′′/2)

)
cos2(k′′/2)

�̄n′′ n′(k′′, k′) ,

�n n′(qj , qj ′) = �̄n n′(kn
0 (qj ), k

n′
0 (qj ′)) , (A.8)

respectively. Here 
n n′(x) = −
n n′(−x) is the function given in Eq. (22) and 
[1]
n n′(x) =



[1]
n n′(−x) is its derivative,



[1]
n n′(x) = δn,n′

{ 1

n (1 + ( x
2n

)2)
+

n−1∑
l=1

2

l(1 + ( x
2l

)2)

}

+ (1 − δn,n′)
{ 2

|n − n′|(1 + ( x
|n−n′| )2)

+
n+n′−|n−n′|−2

2∑
l=1

4

(|n − n′| + 2l)(1 + ( x
|n−n′|+2l

)2)

+ 2

(n + n′)(1 + ( x )2)

}
. (A.9)
n+n′
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The two methods used in Ref. [46] for the 1D Hubbard model and in Ref. [47] for the related 
t − J model to calculate the elementary spin current jn(qj ), Eq. (36), for reference LWSs with 
ground-state compact distributions by means of conservation laws and under twisting bound-
ary conditions, respectively, apply as well to the present more general compact distributions, 
Eqs. (A.1) and (A.2). For the spin-1/2 XXX Heisenberg chain both such methods lead to ex-
actly the same expression,

jn(qj ) = −2nvn(qj ) −
∞∑

n′=1

ιa n′

π

∑
ι=±

(ι)fn n′(qj , q
ι
a n′) , (A.10)

where a = p, h and,

ιp = 1 ; ιh = −1 . (A.11)

There are two limits in which the classes of LWSs considered here correspond to all existing 
such states: (i) (1 − mh

1) � 1 when (mh
1 − mS) � 1 and (ii) mh

1 � 1, respectively. In these two 
limiting cases the use of elementary current, Eq. (A.10), gives for the n = 1 and n > 1 bands,

j1(qj ) = −v1(qj ) , for mh
1 � 1

= −2v1(qj ) , for (1 − mh
1) � 1 ,

jn(qj ) = −2(n − 1) vn(qj ) , for mh
1 � 1

= −2nvn(qj ) , for (1 − mh
1) � 1 , (A.12)

respectively. The n-band group velocities, Eq. (A.7), in these expressions have the following 
exact behaviors,

v1(qj ) = J
π

2
sin(qj ) , for mh

1 � 1 ,

vn(qj ) = J
2(πmh

1)2

3n
sin

(
qj

mb
n

)
, for n > 1 , mS � 1 ,

vn(qj ) = J sin(qj ) , for (1 − mh
1) � 1 . (A.13)

By combining the relations, Eq. (A.12), with the limiting group-velocity expressions provided in 
Eq. (A.13) one arrives to the elementary current jn(qj ) expressions, Eqs. (38) and (39), which is 
one of the goals of this Appendix.

A.2. Elementary currents for LWSs described only by groups of real rapidities

The goal of this Appendix section is to justify the validity of the inequality, Eq. (60). It refers 
to the model in the LWS fixed-S real-rapidity reduced subspaces considered in Secs. 5 and 7.

For the class of LWSs described only by groups of real rapidities and generated from reference 
states with compact particle or hole n = 1 band distributions, Eqs. (A.1) and (A.2), the general 
elementary current expression, Eq. (A.10), simplifies for n = 1 to

jS
1 (qj ) = −2v1(qj ) − ιa

π

∑
ι=±

(ι)f1 1(qj , q
ι
a 1) . (A.14)

Here a = p, h and the compact distribution limiting n = 1 band momentum values belong to the 
following intervals q− ∈ [0, π(3mS − 1)/2] and q+ = q− + π(1 − mS) ∈ [π(1 − mS), π(1 +
p 1 p 1 p 1
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mS)/2] for a = p and q−
h 1 ∈ [0, π(1 − 3mS)/2] and q+

h 1 = q−
h 1 + 2πmS ∈ [2πmS, π(1 +mS)/2]

for a = h. This applies to the elementary current jS
1 (qj ) in the current operator expectation value 

〈Ĵ z(lS, S)〉 = ∑Mb
S

j=1 M
p
S (qj ) jS

1 (qj ), Eq. (59).
An interesting property refers to LWSs belonging to the fixed-S real-rapidity reduced sub-

spaces with symmetrical compact n = 1 band distributions. For the present real-rapidity reduced 
subspaces, such LWSs are actually S > 0 ground states. They are a subclass of the LWSs with 
compact n = 1 band distributions, Eqs. (A.1) and (A.2) for n = 1. These ground states carry 
in the TL zero spin current. This follows from their elementary current being an odd func-
tion, jS

1 (qj ) = −jS
1 (−qj ). However, their elementary current absolute values reach the largest 

values. The latter property renders the ground-state elementary currents important for our analy-
sis.

One finds the following expressions for the corresponding ground-state n = 1 group velocity 
for the whole range mS = m ∈ [0, 1],

v1(qj ) ≈ γ S
1 J

sin
(

π
2 mS

)
mS

sin(qj ) , (A.15)

where

γ S
1 = √

1 − mS(1 − mS) . (A.16)

The v1(qj ) expression given here is exact both for mS � 1 and (1 − mS) � 1 and an excellent 
quantitative approximation for mS ≈ 1/2.

For such S > 0 ground states the corresponding n = 1 band elementary current reads,

jS
1 (qj ) = −2(ξ1)2 v1(qj ) ≈ −2γ1J (ξ1)2 sin

(
π
2 mS

)
mS

sin(qj ) . (A.17)

In the TL the relation jS
1 (qj ) = 2(ξ1)2 v1(qj ) is exact. The jS

1 (qj ) expression given here is exact 
both for mS � 1 and (1 −mS) � 1. For intermediate mS ≈ 1/2 densities it has an absolute value 
|jS

1 (qj )| slightly larger than the corresponding exact value. Hence it is a very good approximation 
for the whole mS ∈ [0, 1] range.

The parameter ξ1 in Eq. (A.17) can be expressed in terms of phase shifts �1 1(qj , qj ′) (in 
units of 2π ) defined by Eq. (A.8) for n = n′ = 1 as follows,

ξ1 = 1 + �1 1(πm1,πm−
1 ) − �1 1(πm1,−πm1) . (A.18)

Here m1 = (1 − mS)/2 and πm−
1 = πm1 − 2π/L. The parameter ξ1 smoothly changes from 

ξ1 = 1/
√

2 for mS → 0 to ξ1 = 1 as mS → 1.
Since the present symmetrical compact LWSs are ground states, one finds that the dressed 

phase-shift parameter ξ1, Eq. (A.18), is directly related to the model zero-temperature spin stiff-
ness, D = D(0). Indeed, the elementary current absolute value |jS

1 (πm1)| = 2(ξ1)2 v1(πm1) at 
qj = πm1 = π(1 − mS)/2 = π(1 − m)/2 fully controls such a zero-temperature stiffness for 
m = mS ∈ [0, 1] as follows [48],

πD(0) = 2(ξ1)2 vS
1 (πm1) = |jS

1 (πm1)| . (A.19)

The dependence on m = mS of the zero-temperature spin stiffness, Eq. (A.19), has been investi-
gated in previous studies [48]. It is plotted in Fig. 2.
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Fig. 2. The zero-temperature spin stiffness D = D(0), Eq. (A.19), plotted in units of J = 1 as a function of the spin 
density m = mS ∈ [0, 1].

The elementary currents jS
1 (qj ) of all fixed-S LWSs described only by groups of real rapidi-

ties can be written as

jS
1 (qj ) = jS

1 sS
1 (qj ) ; |sS

1 (qj )| ≤ 1 , (A.20)

where jS
1 > 0 is the largest elementary current absolute value.

As mentioned above, although the class of LWSs with symmetrical compact distributions, 
Eqs. (A.1) and (A.2), carry zero current, their elementary currents absolute values reach the 
largest values of each S-fixed subspace. The largest absolute value jS

1 = |jS
1 (qw)| of the 

symmetrical compact distribution ground-state elementary current, Eq. (A.17), is reached at 
qj = qw ≈ ±π/2 and reads πD(0)v1(qw)/v1(πm1) ≈ πD(0)/ cos (πmS/2). It is a continuous 
increasing function of mS that smoothly varies from its minimum value Jπ/2 for mS → 0 to its 
maximum value 2J as mS → 1. Moreover, for all fixed-S LWSs described only by groups of real 
rapidities the following two universal limiting behaviors hold:

lim
mS→0

jS
1 = J

π

2
; lim

mS→1
jS

1 = 2J . (A.21)

Manipulations for intermediate mS ∈ [0, 1] values of the BA equations, Eq. (12) and Eq. (20)
for n = 1, and spin/n = 1 band elementary current expressions, Eq. (33), Eq. (36) for n = 1, and 
Eq. (A.20), confirms that, as for the ground state, the largest elementary current absolute value 
jS

1 of all the LWSs described only by groups of real rapidities is for mS < 1 smaller than 2J . 
Hence,

πD(0) v1(qw)

v1(πm1)
< 2J , for mS < 1 ,

jS
1 < 2J , for mS < 1 . (A.22)

The first inequality refers to the largest elementary current absolute value jS
1 = πD(0)v1(qw)/

v1(πm1) ≈ πD(0)/ cos
(

π
2 mS

)
reached for S > 0 ground states. It has been expressed in terms 

of the zero-temperature spin stiffness for m = mS . The second inequality in Eq. (A.22) applies to 
the largest elementary current absolute value jS

1 of all LWSs with fixed spin S that are described 
only by groups of real rapidities.

The limiting behaviors, Eq. (A.21), and inequalities, Eq. (A.22), justify the largest elementary 
current absolute value jS

1 = 2J of the elementary current j (qj ) = −2J sinqj , Eq. (61), used in 
our T → ∞ spin stiffness upper bound scheme of Sec. 7. Next, we briefly describe the main 



J.M.P. Carmelo, T. Prosen / Nuclear Physics B 914 (2017) 62–98 93
mechanism that justifies the use of the function sS
1 (qj ) = − sinqj . First we discuss the suitable 

use of a odd function, sS
1 (qj ) = −sS

1 (−qj ), for that elementary current. We then justify the 
specific choice, sS

1 (qj ) = − sinqj .
On the one hand, that we use a odd function for sS

1 (qj ) is all right for LWSs with symmet-
rical compact and symmetrical non-compact distributions such that Mp

S (qj ) = M
p
S (−qj ). On 

the other hand, analysis of the BA equation reveals that the exact function sS
1 (qj ) in Eq. (A.20)

such that |sS
1 (qj )| ≤ 1 is not a odd function of qj for general LWSs with asymmetrical compact 

and asymmetrical non-compact distributions such that Mp
S (qj ) �= M

p
S (−qj ). Nonetheless, the 

use of a odd function sS
1 (qj ) for these states enhances in general their current absolute values, 

| ∑Mb
S

j=1 M
p
S (qj ) jS

1 (qj )|.
Our following analysis applies to general LWSs described only by groups of real rapidities. 

Those do not necessarily have compact Mp
S (qj ) occupancies. Hence rather than the elementary 

current jS
1 (qj ) given in Eq. (A.14), which is specific to such occupancies, here we use the more 

general elementary current jS
1 (qj ) = − 2J sin k1(qj )

2πσ1(k
1(qj ))

. It is that given in Eq. (36) for n = 1 and 

LWSs described only by groups of real rapidities.
For all such LWSs the BA equation is of the same form, Eq. (12) and Eq. (20) for n = 1, for 

large finite L and the TBA, respectively. It can be written as

qj = k1(qj ) − 2

L

Mb
S∑

j ′=1

M
p
S (qj ′) arctan

(
tan(k1(qj )/2) − tan(k1(qj ′)/2)

2

)
, (A.23)

where j = 1, ..., Mb
S . If the momentum distribution is an even function, Mp

S (qj ′) = M
p
S (−qj ′), 

one finds that k1(0) = 0 at qj = 0. The elementary current, jS
1 (qj ) = − 2J sin k1(qj )

2πσ1(k
1(qj ))

, is then 

a odd function. This follows from the distribution 2πσ1(k) turning out to be an even func-
tion in that case. The latter distribution can be written as 2πσb

1 (k) M̄p
S (k) and equivalently as 

2πσb(k) M̄p
S (k). Here 2πσb

1 (k) is the distribution, Eq. (37) for n = 1, and 2πσb(kj ) is the solu-
tion of Eq. (34). For the present case of real rapidities they are the same distributions. Moreover, 
M̄

p
S (kj ) = M

p
S (qj ).

In the general case of LWSs for which the momentum distribution Mp
S (qj ) is not an even 

function, Mp
S (qj ) �= M

p
S (−qj ), the corresponding elementary current jS

1 (qj ) is not a odd func-
tion. Consistently, the n = 1 band momentum qj = 0 then corresponds to a finite momentum 
rapidity k1(0) given by

k1(0) = 2

L

Mb
S∑

j=1

M
p
S (qj ) arctan

(
tan(k1(qj )/2) + tan(k1(0)/2)

2

)
, (A.24)

such that k1(0) < π(1 − mS)/2.
This implies that there is a positive or negative qj interval:

qj ∈ [0, q0] → k1
j ∈ [−k1(0), k1(0)] for q0 > 0

qj ∈ [q0,0] → k1 ∈ [−k1(0), k1(0)] for q0 < 0 , (A.25)
j
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where

q0 = 2

L

∑
ι=±1

Mb
S∑

j=1

M
p
S (qj ) arctan

(
tan(k1(qj )/2) + (ι) tan(k1(0)/2)

2

)
, (A.26)

in which the elementary current, jS
1 (qj ) = − 2J sin k1(qj )

2πσ1(k
1(qj ))

, has opposite signs for the two subinter-

vals k1
j ∈ [−k1(0), 0] and k1

j ∈ [0, k1(0)], respectively. This refers to the corresponding momen-

tum rapidity interval k1
j ∈ [−k1(0), k1(0)]. Indeed the distribution 2πσ1(k

1(qj )) = 2πσ1(k
1
j ) is 

for all LWSs such that 2πσ1(k
1
j ) ≥ 0. And this applies to its whole range k1

j ∈ [−π, π] and thus 
corresponding qj range qj ∈ [−π(1 − mS)/2,π(1 − mS)/2

]
.

In the qj interval qj ∈ [0, q0] for q0 > 0 and qj ∈ [q0, 0] for q0 < 0 the band momentum qj

has the same sign. However, the elementary current jS
1 (qj ) has opposite signs in two momentum 

qj subintervals of these intervals. For example, for q0 > 0 such subintervals read qj ∈ [0, q(0)]
and qj ∈ [q(0), q0], respectively. Here,

q(0) = 2

L

Mb
S∑

j=1

M
p
S (qj ) arctan

(
tan(k1(qj )/2)

2

)
, (A.27)

is the qj value at which the momentum rapidity vanishes, k1(q(0)) = 0.
The function sS

1 (qj ) in Eq. (A.20) such that |sS
1 (qj )| ≤ 1 has the same signs as k1

j . It follows 

that the current contributions from occupancies in such q0 > 0 subintervals, qj ∈ [0, q(0)] and 
qj ∈ [q(0), q0], tend to cancel. This would not be so if sS

1 (qj ) was a odd function. Moreover, 
the canceling momentum rapidity interval k1

j ∈ [−k1(0), k1(0)] corresponds to qj alternative 

positive qj ∈ [0, q0] and negative qj ∈ [q0, 0] intervals if the asymmetric distribution Mp
S (qj )

has integrated larger values for qj > 0 and qj < 0, respectively. Hence the use of a suitably 

chosen odd function sS
1 (qj ) enhances indeed the current absolute values | ∑Mb

S

j=1 M
p
S (qj ) jS

1 (qj )|
of most LWSs.

Finally, we justify the choice of the specific odd function, sS
1 (qj ) = − sinqj . As follows from 

Eq. (38) for mh
1 = mS , one finds for all LWSs described only by groups of real rapidities that in 

the limits mS � 1 and (1 − mS) � 1 their elementary currents jS
1 (qj ) are exactly given by

jS
1 (qj ) = −J

π

2
sin(qj ) , for mS � 1

= −2J sin(qj ) , for (1 − mS) � 1 , (A.28)

respectively. The simplest odd function sS
1 (qj ) = −sS

1 (−qj ) that in these two limits reaches 
the exact behavior of the elementary currents carried by such LWSs is indeed sS

1 (qj ) =
− sinqj . Additionally, we have confirmed that this choice enhances the current absolute values 

| ∑Mb
S

j=1 M
p
S (qj ) jS

1 (qj )| of most LWSs. Importantly, it enhances in all LWS fixed-S subspaces 

under consideration the quantity 
∑

lrS
|〈Ĵ z(lrS , S)〉|2/(2S)2 on the right-hand side of Eq. (58).

Combining the above arguments and properties justifies why the replacement of the exact 
elementary functions jS

1 (qj ) by j (qj ) = −2J sinqj , Eq. (61), in the current absolute values 

| ∑Mb
S

j=1 M
p
S (qj ) jS

1 (qj )| of all LWSs described only by groups of real rapidities leads to the in-
equality, Eq. (60).
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Appendix B. Derivation of the second stiffness upper bound

Here the sum 
∑

lr1
in Eq. (58) is performed by the use of the upper-bound elementary spin cur-

rent j (qj ) = −2J sinqj , Eq. (61). To reach this goal we first consider the Mp
S -dependent sums, 

for fixed Mb
S . Those give a upper bound on corresponding sums over lS in Eq. (58), namely,

1

4J 2

∑
lS

|〈Ĵ z(lS, S)〉|2 ≤ I (M
p
S ) . (B.1)

Here

I (M
p
s ) =

∑
b1,b2...bMb

S
∈{0,1}

δM
p
S ,

∑
l bl

∣∣∣∣∣∣
Mb

S∑
k=1

bk sinqk

∣∣∣∣∣∣
2

, (B.2)

and bj ≡ M(qj ) are binary occupation numbers, which we sum over.
The δ-constrain can be analytically treated by means of a counting field parameter λ. This is 

done by defining

Ĩ (λ) =
Mb

S∑
MS=0

eλM
p
S I (M

p
S ) . (B.3)

We then find immediately that

Ĩ (λ) =
Mb

S∑
k=1

Mb
S∑

l=1

sinqk sinql

∑
b1,b2...bMb

S

bkbl

∏
j

eλbj

=
∑

k

sin2 qk eλ(1 + eλ)M
b
S−1

+
∑
k �=l

sinqk sinql e
2λ(1 + eλ)M

b
S−2

=
∑

k

sin2 qk (eλ(1 + eλ)M
b
S−1 − e2λ(1 + eλ)M

b
S−2)

=
∑

k

sin2 qk eλ(1 + eλ)M
b
S−2

=
(∑

k

sin2 qk

) Mb
S−1∑

M
p
S =1

(
Mb

S − 2

M
p
S − 1

)
eM

p
S λ . (B.4)

Indeed, due to δ-constraint one has that eλM
p
S = ∏Mb

S

k=1 eλbk .
We have been using the property that 0 = (

∑
bk sinqk)

2 = ∑
k sin2 qk + ∑

k �=l sinqk sinql . 
From it we find I (M

p
s ),

I (0) = I (Mb) = 0, (B.5)
S
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I (M
p
S ) =

⎛
⎝ Mb

S∑
k=1

sin2 qk

⎞
⎠(

Mb
S − 2

M
p
S − 1

)
for 1 ≤ M

p
S ≤ Mb

S − 1 . (B.6)

Furthermore, we can explicitly calculate the sum over sin2 qk . This gives

∑
k

sin2 qk =
Mb

S∑
k=1

sin2
(π

L
(2k − Mb

S − 1)
)

= 1

2

(
Mb

S − sin(2πMb
S/L)

sin(2π/L)

)

= L

4
+ S

2
+ 1

2

sin(2πS/L)

sin(2π/L)
. (B.7)

From the use of the estimates in Eq. (B.1) with Eqs. (B.6) and (B.7) in the expression for the 
stiffness, Eq. (31), we finally arrive at the simple bound given in Eq. (62), where a single sum 
over S remains.

Next we confirm the behaviors reported in Eq. (63), which are reached by the stiffness upper 
bound, Eq. (62), in the m → 0 and m → 1 limits as L → ∞. Concerning the m → 0 limit, within 
the TL one may replace 

(
L/2+S−2
L/2−S−1

)
on the right-hand side of Eq. (62) by a simpler expression, (

L/2+S
L/2−S

)
. Hence the following identity can be used,

L/2∑
S=0

(
L/2 + S

L/2 − S

)
= fL+1 ,

lim
L→∞

(∑L/2−1
S=1 ϕ(S/L)

(
L/2+S
L/2−S

))
(∑L/2

S=0

(
L/2+S
L/2−S

)) = ϕ(1/3) . (B.8)

Here fj is the j -th Fibonacci number, defined by f0 = f1 = 1, fj+1 = fj + fj−1, and ϕ(x) is 
an arbitrary smooth function on (0, 1), possibly with poles at 0 or 1. In our case,

ϕ(x) = 1

x2

(
1

2
+ x + 1

2π
sin(2πx)

)
. (B.9)

The replacement of 
(
L/2+S−2
L/2−S−1

)
by 

(
L/2+S
L/2−S

)
on the right-hand side of Eq. (62) amounts though by 

multiplying it by an additional factor,

lim
L→∞

∑
S

(
L/2+S−2
L/2−S−1

)
∑

S

(
L/2+S
L/2−S

) = lim
L→∞

fL−2

fL+1
= √

5 − 2 . (B.10)

From the combination of such procedures, we arrive at the following final compact upper 
bound valid for m = −2Sz/L → 0 in the TL,

D(T ) ≤ 9

2
(
√

5 − 2)

(
5

3
+

√
3

2π

)
J 2

T

(
Sz

L

)2

. (B.11)

This is the expression given in Eq. (63) for m � 1.
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Note that the lower limit of the sum in Eq. (B.8) can in the TL be pulled up to the S = |Sz|
for any |Sz| ≤ L/3. This is so that the sum still starts before the maximum of the binomial 
symbol, which in the TL can be approximated with a Gaussian. This yields the same asymptotic 
inequality, Eq. (54).

Finally, we evaluate the behavior of the stiffness upper bound, Eq. (62), in the regime m → 1, 
i.e., −Sz = L/2 − δ, where δ � L. This is a simple task fulfilled by using the leading order 
asymptotic in δ/L = 1 − m, which gives

Du2(T ) � J 2(Sz)2

LT

∑L/2−1
S=|Sz|

4
L

(
L/2+S−2
L/2−S−1

)
∑L/2

S=|Sz|
(
L/2+S
L/2−S

)
= J 2(Sz)2

LT

4

L

∑δ
k=1

(
L−k−2

k−1

)
∑δ

k=0

(
L−k

k

)
� J 2(Sz)2

LT

4

L

∑δ−1
k=0 Lk/k!∑δ
k=0 Lk/k!

� 4J 2

T

(
Sz

L

)2
δ

L
= J 2

2T
(1 − m) . (B.12)

This is the behavior reported in Eq. (63) for (1 − m) � 1.
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