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optimization problems. We prove that the general constrained optimization

problem is equivalent to a bound constrained problem in the sense that they

have the same global solutions. The global minimizer of the penalty function

subject to a set of bound constraints may be obtained by a population-based

meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with

a local intensification search, is designed and its convergence analysis is estab-

lished. The numerical experiments and a comparison with other penalty-based

approaches show the effectiveness of the new self-adaptive penalty algorithm

in solving constrained global optimization problems.

Keywords Global optimization · Self-adaptive penalty · Firefly algorithm

Mathematics Subject Classification (2000) 90C30 · 90C26 · 90C59

1 Introduction

A penalty technique transforms the constrained optimization problem into a

sequence of unconstrained subproblems, in a way that the sequence of solutions

of the unconstrained subproblems converges to the optimal solution of the orig-

inal constrained problem [1]. The technique is simple to implement and takes

advantage of existing and powerful unconstrained optimization methods. How-

ever, defining a strategy to initialize and update the penalty parameter is not

an easy task. To address the concerning issue related to setting the penalty pa-

rameter values within a penalty-based algorithm, a new self-adaptive penalty

function is derived.
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This paper illustrates the behavior of a penalty technique, that relies on a

self-adaptive penalty function, to solve constrained global optimization (CGO)

problems. To promote convergence to a global optimal solution, the result-

ing bound constrained global optimization (BCGO) problems are solved by

well-known population-based meta-heuristics. Although they have been imple-

mented with different constraint handling techniques for solving CGO prob-

lems, mainly penalty-based methods [2–6], this study shows that the proposed

self-adaptive penalty technique, when combined with the meta-heuristics, is

also very effective in solving CGO problems. In particular, we analyze the

performance of the firefly algorithm (FA) [7] when combined with the self-

adaptive penalty technique. FA is a swarm intelligence based algorithm that

became very popular over the last decade. Several variants of the FA [8–11],

including hybrid approaches [12, 13], and applications have been recently re-

ported in the literature [14–16]. The effect of the control parameters on the

performance of the FA has been studied in [17–19]. The main motivation for

using the FA, besides being one of the most recent meta-heuristics, is related

to its success when solving practical and complex problems [2, 20–25]. Al-

though other adaptive penalty based functions have been recently combined

with stochastic population-based global optimizers [3, 4, 26–28], our proposal

is simpler to implement and the convergence of the algorithm is supported by

the theoretical results. The authors in [3] construct a parameter-free penalty

function. The therein proposed adaptive penalty gives the objective function

value alone if the point is feasible, and combines the sum of constraint viola-
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tion with either the objective value or an upper bound of the global minimum

if the point is infeasible. They prove that the CGO and the BCGO problems,

based on their adaptive penalty function, have the same global minimizers, and

present further theoretical results based on the structure of the population-

based differential evolution (DE) algorithm [29]. In [4], the adaptive penalty

method (APM) investigated in [26] is extended and applied with the DE. The

authors in [26] use information from the population, such as the average of

the objective function values and the level of violation of each constraint, at

each iteration, to define the penalty parameter. In [27,28], the normalized ob-

jective function value and a sum of the normalized constraint violations are

combined to define a modified fitness value. In both papers, a real coded ge-

netic algorithm (GA) is used in the adaptive penalty algorithm. No theoretical

convergence results are supplied in the last mentioned papers [4, 26–28].

Our contribution goes beyond the self-adaptive penalty function proposal.

First, we prove that the CGO and the BCGO problems, based on the pro-

posed self-adaptive penalty function, are equivalent in the sense that they

have the same global minimizers. A selected set of meta-heuristics, the FA,

a DE strategy with self-adaptive control parameters (jDE) [30], the particle

swarm optimization (PSO) algorithm [31, 32], an evolution strategy with co-

variance matrix adaptation (CMA-ES) [33] and the artificial bee colony (ABC)

algorithm [34] are used to solve the BCGO problem. The issue related to the

adequacy of the computation of the parameters required to construct the self-

adaptive penalty function in a population environment is addressed. Second,
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in the context of the FA, we provide a hybrid variant by using a local in-

tensification procedure. The convergence analysis of the algorithm, that takes

into consideration the structure of the FA and the properties of the proposed

self-adaptive penalty function, is established.

The paper is organized as follows. Sect. 2 presents the new self-adaptive

penalty function, Sect. 3 elaborates on the computation of the penalty in a

population-based environment and Sect. 4 details the new hybrid self-adaptive

penalty FA. Then, the numerical experiments are shown in Sect. 5 and we

conclude the paper in Sect. 6.

2 Self-adaptive Penalty Function

This study aims to propose a self-adaptive penalty framework for solving a

CGO problem in the following form

min
x∈X⊂Rn

f(x) subject to g(x) ≤ 0, (1)

where f : Rn → R and g : Rn → Rp are continuous possibly nonlinear func-

tions in X := {x ∈ Rn : −∞ < ls ≤ xs ≤ us < ∞, s = 1, . . . , n} (a compact

set) and the feasible set is defined by S := {x ∈ X : gj(x) ≤ 0, j = 1, . . . , p}.

Let x∗ be a global minimizer to the problem (1) and let f∗ = f(x∗) be the

global minimum. The feasible set S ⊆ X is assumed to be non-empty with a

positive measure. Problems with equality constraints h(x) = 0 can be refor-

mulated into the above form using h(x) − δ ≤ 0 and −h(x) − δ ≤ 0, where

δ is a small positive tolerance. Since we do not assume that the functions
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f, gj , j = 1, . . . , p are differentiable, a derivative-free technique that does not

assume convexity and differentiability is required for solving the problem (1).

The CGO problem (1) can be formulated as a BCGO problem with an ob-

jective penalty function, that is related to both f and the constraint violation.

Thus, the problem (1) is equivalent to

min
x∈X⊂Rn

φ(x) (2)

in the sense that they have the same solutions, provided that the objective

penalty function φ satisfies some properties [3].

In this study, the main goal is to derive a penalty function, that is self-

adaptive, in the sense that the constraint violation weights, also considered as

penalty parameter values, are not provided by the user but rather they are

computed using information gathered from the violated constraints at the cur-

rent point. Furthermore, the objective function and the constraint violation

values are normalized taking into consideration reference values of the objec-

tive function and constraints achieved in the search space of the problem. The

description of the self-adaptive penalty function follows. The objective func-

tion value f at each point x is normalized making use of the two parameters

fmin := min
x∈X

f(x) and fmax := max
x∈X

f(x) in a way that the new fitness F is

computed by:

F (x) =
f(x)− fmin

fmax − fmin
. (3)
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The violation of each constraint j, at each point x of the search space X, is

given by max{gj(x), 0} and the total violation is the sum of the p violations:

Σ(x) =

p∑
j=1

max{gj(x), 0}, (4)

which is zero if x ∈ S (a feasible point) and positive if x /∈ S. However, to scale

the constraint violation to the same order of magnitude as the new fitness F ,

each constraint violation is normalized using the following expression:

Vj(x) =
max{gj(x), 0}

gmax
j

, where gmax
j := max

x∈X\S
{max{gj(x), 0}} (5)

is the largest value for the violation of the constraint j for all x ∈ X \ S,

being the subset X \S the relative complement of S in X. Finally, the penalty

function to be minimized is as follows:

φ(x) =



F (x), if x ∈ S,

F (z) +
1

p

p∑
j=1

Vj(x)rj , if x ∈ X \ S and f(x) ≤ f(z),

F (x) +
1

p

p∑
j=1

Vj(x)rj , if x ∈ X \ S and f(x) > f(z),

(6)

where z ∈ S is a fixed point such that f(z) ≥ f∗, and each weight rj is defined

by the proportion of the search space X that violates the constraint gj :

rj :=
|x ∈ X : gj(x) > 0|

|X|
, j = 1, . . . , p. (7)

The next results show that problems (1) and (2) are equivalent, i.e., they

have the same global minimizers.

Theorem 2.1 Let x∗ ∈ S be a global solution to the problem (1) and let z ∈ S

be such that f(z) ≥ f(x∗). Then, x∗ is a global solution to the problem (2),

where φ is the penalty function defined in (6).
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Proof Let x∗ ∈ S be a global solution to the problem (1). By definition, we

have f(x∗) ≤ f(x) for all x ∈ S. Hence, for all x ∈ S we get:

φ(x∗) =
f(x∗)− fmin

fmax − fmin
≤ f(x)− fmin

fmax − fmin
= φ(x).

We now consider the case when x ∈ X \ S. Assuming that (a) f(x) ≤ f(z),

we have φ(x∗) = F (x∗) ≤ F (z) < F (z)+
1

p

∑p
j=1 Vj(x)rj = φ(x), since Vj and

rj are positive, f(x∗) ≤ f(z) and using the definition (6). Now, assuming that

(b) f(x) > f(z), we get

φ(x∗) = F (x∗) ≤ F (z) < F (x) < F (x) +
1

p

p∑
j=1

Vj(x)rj = φ(x),

and therefore φ(x∗) ≤ φ(x) for all x ∈ X, i.e., x∗ is a global solution to the

problem (2). ut

Lemma 2.1 If x∗ is a global solution to the problem (2), where φ is the penalty

function defined in (6), then x∗ is a feasible point for the problem (1).

Proof By contradiction, we assume that x∗ ∈ X \ S. When f(x∗) ≤ f(z)

and z ∈ S we get, from (6), φ(x∗) = F (z) +
1

p

∑p
j=1 Vj(x

∗)rj > F (z) = φ(z);

on the other hand, when f(x∗) > f(z) we obtain the relation (using (6))

φ(x∗) = F (x∗) +
1

p

∑p
j=1 Vj(x

∗)rj > F (x∗) > F (z) = φ(z), which contradict

the definition of a global solution to the problem (2). Therefore, x∗ ∈ S. ut

We are now able to establish the reciprocal of Theorem 2.1.

Theorem 2.2 Let x∗ ∈ X be a global solution to the problem (2), where φ

is the penalty function defined by (6). Then, x∗ is a global solution to the

problem (1).
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Proof By Lemma 2.1 x∗ ∈ S ⊂ X. We have F (x∗) = φ(x∗) ≤ φ(x) for all

x ∈ X, and in particular for all x ∈ S we have F (x∗) ≤ F (x), which implies

f(x∗) ≤ f(x). Therefore x∗ is a global solution to the problem (1). ut

3 Solving the BCGO Problem

The present penalty method aims to penalize the inequality constraints vi-

olation of the problem (1) while the bound constraints are always satisfied

when solving (2). According to the Theorems 2.1 and 2.2 it is sufficient to

find a global solution to the problem (2), that is, a global minimizer of φ(x)

in X. To solve the BCGO problem, the meta-heuristics FA [7,9,15], jDE [30],

PSO [31, 32], CMA-ES [33] and ABC [34] have been selected. Since they are

population-based algorithms, we now show how to adequate the computation

of parameters fmin, fmax, f(z), gmax
j and rj , j = 1, . . . , p, shown in (3), (5),

(6) and (7), to a technique that handles a population of solutions at each

iteration.

Let Xk := {x1
k, . . . , x

m
k } represent the population of the m < +∞ current

points at iteration k, where xik ∈ Rn, i = 1, . . . ,m. To compute the normalized

fitness F , as defined in (3), at each point x of the population, the parameters

fmin := min
x∈Xk

f(x) and fmax := max
x∈Xk

f(x) are required, where we note that the

point with the lowest function value will have F (x) = 0 and the point with

largest objective function value will have F (x) = 1. To compute the normalized

violation of the constraint j, the parameter gmax
j := max

x∈Xk

{max{gj(x), 0}} is

defined as the largest value for the violation of the constraint j attained at
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all points in Xk. The reference point z is the feasible point with the lowest

objective function value found so far. If the population has no feasible points,

f(z) is initially and temporarily set to fmax, so that f(x) ≤ f(z) for all

x ∈ Xk and F (z) = 1. The value of f(z) is updated only when the first feasible

point is encountered. Noting that, at each iteration k, the set of m generated

trial points is represented by Tk := {t1k, . . . , tmk }, if the generated Tk contains

feasible points, the one with least function value, say f(tlk), is compared with

f(z) and we set f(z) = f(tlk) if f(tlk) < f(z); otherwise f(z) is not updated.

Similarly, f(z) is maintained to the next iteration if there is no feasible points

in the trial population. Finally each weight/penalty parameter rj is iteratively

computed as rj := (|x ∈ Xk : gj(x) > 0|) /m (j = 1, . . . , p) and represents the

proportion of points in the population that violate the constraint gj . Thus, a

constraint that is violated by a larger set of points of the population than any

other will have a larger weight.

4 Hybrid Self-adaptive Penalty FA for CGO

This section details the algorithm, that implements the self-adaptive penalty

concept, while using the meta-heuristic FA to compute the solution of the

BCGO problem (2) (see Algorithm 1). This is a hybrid FA in the sense that a

local intensification procedure based on a typical DE mutation operator [29] is

implemented aiming to exploit the region around the points of the population.

The intensification procedure starts by applying a mutation strategy to the po-

sition of the best firefly, x1, where φ(x1) < φ(xi), i = 2, . . . ,m, componentwise
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with probability pm, to create the mutant best point, v1 = x1 +Fb
(
xi1 − xi2

)
,

where i1 and i2 are two different indices randomly selected from the set

{2, . . . ,m} and Fb > 0 is a real parameter. A projection onto X is carried

out if necessary, v1 and x1 are compared and the preferred point is selected

as new x1. Here, the preferred point is the one that has the smallest f value

if both are feasible; otherwise is the point that has the smallest violation. The

DE/best/1 mutation is then applied to the remaining points of the popula-

tion, vi = x1 + Fo
(
xi1 − xi2

)
, i = 2, . . . ,m, componentwise with probability

pm, where Fo > 0 is a real parameter, and i1 and i2 are two different indices

randomly chosen from the set {1, . . . , i− 1, i+ 1, . . . ,m}. The mutant vi and

xi are compared and the preferred point is maintained to the next iteration.

For the convergence analysis of the Algorithm 1, we follow the methodology

presented in [3]. Attending to the properties of the FA, and the way the penalty

function φ is defined we can establish the following results.

Theorem 4.1 Let Xk be the current population of m points at iteration k,

Tk be the set of trial points at iteration k, and Xk+1 be the population with

the points selected for the next iteration k + 1. Then f(zk) ≥ f(zk+1), where

zk is the feasible point with the lowest function value in the set Xk and zk+1

is the feasible point with the lowest function value found in Tk. Furthermore,

φ(zk) ≤ φ(tik), for all infeasible tik ∈ Tk.

Proof Let zk be the best feasible solution of Xk. Obviously zk will never be

replaced by any infeasible point of Tk. We assume now that there exists a

feasible point tik ∈ Tk such that φ(tik) < φ(zk). Then,



12 M. Fernanda P. Costa et al.

Algorithm 1: Hybrid self-adaptive penalty FA
Data: kmax, ε, η, m, f∗

Set k = 1. Randomly generate xik ∈ X, i = 1, . . . ,m, evaluate φ and rank fireflies

(from lowest to largest φ);

while (|f∗ − f(x1k)| > ε or Σ(x1k) > η) and k ≤ kmax do

forall the xik such that i = 2, . . . ,m do

forall the xjk such that j = 1, . . . , i− 1 do

Move firefly i towards firefly j;

Set tik = Project xik onto X;

Based on Xk ∪ Tk evaluate φ;

forall the i = 1, . . . ,m do

if φ(tik) < φ(xik) then

Set xik+1 = tik;

else

Set xik+1 = xik;

Based on Xk+1 evaluate φ and rank fireflies;

Invoke the local intensification procedure, evaluate φ and rank fireflies;

Set k = k + 1;

φ(tik) = F (tik) < F (zk) = φ(zk) implies f(tik) < f(zk), where fmin and fmax

(for the definition of fitness F ) are selected from the set Xk ∪ Tk. We con-

clude that f(zk) > f(tik) ≥ f(zk+1). However, if the feasible point tik ∈ Tk

does not satisfy φ(tik) < φ(zk), then φ(tik) = F (tik) ≥ F (zk) = φ(zk) which

implies f(tik) ≥ f(zk) and f(zk+1) = f(zk). In both cases f(zk) ≥ f(zk+1). We

consider now the case where tik ∈ Tk is infeasible. We analyze both cases: (a)

f(tik) ≤ f(zk) and (b) f(tik) > f(zk). In case (a), assume that φ(tik) < φ(zk)
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which implies

F (zk) +
1

p

p∑
j=1

Vj(t
i
k)rj < F (zk) (8)

since tik is infeasible and f(tik) ≤ f(zk) (see (6)). However, the last condition

in (8) is a contradiction because the second term on the left hand side of the

equation is positive. When in case (b) we assume that φ(tik) < φ(zk), we get

F (tik) +
1

p

∑p
j=1 Vj(t

i
k)rj < F (zk) and therefore

1

p

p∑
j=1

Vj(t
i
k)rj < F (zk)− F (tik) =

f(zk)− f(tik)

fmax − fmin
< 0

which is a contradiction. Hence, we must have φ(zk) ≤ φ(tik) for all infeasible

points tik ∈ Tk. ut

In the next theorem, we prove that the sequence {f(zk)} converges and

the limit is the greatest lower bound, or infimum, f∗.

Theorem 4.2 Let zk be the feasible point with the lowest objective function

value obtained at iteration k. Then, lim
k→∞

f(zk) = f∗.

Proof By Theorem 4.1, {f(zk)} is a monotonically decreasing sequence. Since

f∗ is the infimum of the sequence, then for all δ > 0, f∗+ δ is not an infimum

of the sequence. Hence, there exists K = K(δ) ∈ N, such that

f∗ − δ < f∗ ≤ f(zk) ≤ f(zK) < f∗ + δ

for all k ≥ K, meaning that f(zk)→ f∗ as k →∞. ut

In the Algorithm 1, to select between the current and the trial positions,

both penalty function values φ(xik) and φ(tik) are compared. When both xik and

tik are feasible, the point with the lowest f wins (recall (6) and that parameters
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fmin and fmax are computed based on the set Xk ∪ Tk). On the other hand,

when xik and tik are infeasible, the selection is determined by their constraint

violation and F values combined in the penalty φ. However, when xik is feasible

and tik is infeasible, the probability that the trial tik is selected over xik as the

current point for the next iteration k + 1 could be determined.

Theorem 4.3 Let xik ∈ Xk, where Xk is the current population at iteration

k, and tik ∈ Tk, where Tk is the set of trial points at iteration k, be such that

xik is feasible and tik is infeasible. Assume that there exists 0 < r̄ ≤ 1 such that

eventually rj ≥ r̄ for j = 1, . . . , p. Then, the probability of selecting tik over xik

is zero, i.e., Pr

[
1

p

∑p
j=1 Vj(t

i
k)rj < F (xik)− F (zk)

]
= 0 for rj , j = 1, . . . , p,

that satisfy rj ≥ r̄.

Proof Assume that tik ∈ Tk is almost always selected when compared with a

feasible xik ∈ Xk, i.e., φ(tik) < φ(xik). Hence, (a) if f(tik) ≤ f(zk), we have

φ(tik) = F (zk) +Σn(tik) < φ(xik) = F (xik) which implies

0 < Σn(tik) < F (xik)− F (zk) ≤ 1, (9)

where for simplicity Σn(tik) =
1

p

∑p
j=1 Vj(t

i
k)rj > 0. On the other hand, (b) if

f(tik) > f(zk), we get φ(tik) = F (tik) +Σn(tik) < φ(xik) = F (xik) yielding

0 < Σn(tik) < F (xik)− F (tik) < F (xik)− F (zk) ≤ 1. (10)

We note that in both (9) and (10), f(xik)− f(zk) > 0, provided that xik 6= zk.

We now study the probability of Σn(tik) < F (xik) − F (zk) being held. We

assume that the trial point T ik is a random variable with realizations tik and that
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Σn(T ik) increases uniformly away from the feasibility. Since F (xik)−F (zk) is a

fixed number in the range (0, 1], Pr
[
Σn(T ik) < F (xik)− F (zk)

]
> 0 holds for

(9) and (10). The larger F (xik)−F (zk), the larger the probability is. However,

this probability also depends on Σn(T ik). By contradiction, we assume that

there exists 0 < r̄ ≤ 1 such that Pr

[
1

p

∑p
j=1 Vj(T

i
k)rj < F (xik)− F (zk)

]
> 0,

when rj , j = 1, . . . , p satisfy rj ≥ r̄. This means that

1

p

p∑
j=1

Vj(t
i
k)rj < F (xik)− F (zk) for rj ≥ r̄, j = 1, . . . , p. (11)

However, there certainly exists a value T ik = tik, such that for rj , j = 1, . . . , p

satisfying rj ≥ r̄,
1

p

p∑
j=1

Vj(t
i
k)rj ≥ F (xik)− F (zk), which contradicts (11). ut

We now consider the situation when xik is infeasible and the trial tik is

feasible and analyze the probability that the current xik is selected over tik as

the current point for the next iteration k + 1.

Theorem 4.4 Let xik ∈ Xk, where Xk is the current population of m points

at iteration k, and tik ∈ Tk, where Tk is the set of trial points at itera-

tion k, be such that xik is infeasible and tik is feasible. Then, there exists

0 < r̄ ≤ 1 such that the probability of selecting xik over tik is zero, i.e.,

Pr

[
1

p

∑p
j=1 Vj(x

i
k)rj < F (tik)− F (zk)

]
= 0 when rj , j = 1, . . . , p satisfy rj ≥ r̄.

Proof Assume that xik ∈ Xk is almost always selected when compared with a

feasible tik ∈ Tk, which means that φ(xik) < φ(tik). When (a) f(xik) ≤ f(zk),

φ(xik) = F (zk) + Σn(xik) < φ(tik) = F (tik) and Σn(xik) < F (tik) − F (zk) is

obtained. When (b) f(xik) > f(zk), φ(xik) = F (xik) +Σn(xik) < φ(tik) = F (tik)

implies Σn(xik) < F (tik)− F (xik) or Σn(xik) < F (tik)− F (zk).
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Assuming that the trial point T ik and f(T ik) are random variables with

realizations tik and f(tik) respectively, we have that F (T ik)−F (zk) is bounded

(since tik is feasible, f(tik) is bounded and f(z) is fixed). Thus, there exists a set

of values T ik = tik such that Σn(xik) < F (tik)− F (zk) holds, which means that

Pr
[
Σn(xik) < F (T ik)− F (zk)

]
> 0. However, there certainly exists 0 < r̄ ≤ 1

such that
1

p

p∑
j=1

Vj(x
i
k)rj > F (tik) − F (zk) holds for rj , j = 1, . . . , p, that

satisfy rj ≥ r̄, implying that Pr

[
1

p

∑p
j=1 Vj(x

i
k)rj < F (T ik)− F (zk)

]
= 0 for

rj ≥ r̄, j = 1, . . . , p. ut

5 Numerical Experiments

In this section, the performance of the self-adaptive penalty technique when

solving a benchmark set of CGO problems is investigated. Unless otherwise

stated, we set m = 50. In the context of defining the reference point z, and

the value of the penalty in (6), a point x is considered feasible if Σ(x) ≤ 1e-8.

First, we aim to analyze the effectiveness of the technique when using a

meta-heuristic to compute a global minimizer of the penalty φ(x) in X, as

defined by the BCGO problem (2). The FA, jDE, PSO, CMA-ES and ABC

meta-heuristics are tested, using the parameter values as suggested in the

papers [21,30,32–34]. For this experiment, the set g01–g13 of the g-collection1

is used, noting that problems g03, g05, g11 and g13 have equality constraints

1 J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A. Coello

Coello, C. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special

Session on Constrained Real-Parameter Optimization. TR, Nanyang T.U., Sept. 18, 2006.
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Table 1 ‘Average’ and ‘St.dev.’ produced by the self-adaptive penalty algorithm.

P FA jDE PSO CMA-ES ABC

average St.dev. average St.dev. average St.dev. average St.dev. average St.dev.

g01 -14.99994 5.6e-05 -14.99700 5.6e-03 -14.88459 4.5e-02 -14.99999 1.1e-05 -14.99971 3.1e-04

g02 -0.50753 2.6e-02 -0.16931 1.5e-02 -0.40400 3.1e-02 -0.47232 1.4e-01 -0.17057 1.3e-02

g03 -0.99685 4.7e-03 -0.12897 2.9e-01 -0.31185 1.3e-01 -0.88107 1.9e-01 -0.18967 1.6e-01

g04 -30623.06 3.6e+01 -30662.87 3.8e+00 -30665.27 2.0e-01 -30665.39 2.0e-01 -30614.97 1.1e+02

g05 5176.680 7.6e+01 5198.139 1.3e+02 5323.849 2.7e+02 5564.546 4.5e+02 5144.948 1.8e+01

g06 -6961.46 1.5e-01 -6444.56 3.4e+02 -6483.57 3.3e+02 -6422.51 4.9e+02 -6871.53 1.6e+02

g07 32.10136 3.1e+00 37.37962 6.7e+00 36.54181 4.4e+00 24.81349 3.7e-01 29.76146 1.2e+01

g08 -0.09583 2.8e-17 -0.09500 1.4e-03 -0.09583 2.8e-17 -0.09583 2.8e-17 -0.09568 3.2e-04

g09 680.694 1.9e-02 798.558 7.5e+01 686.498 4.8e+00 681.031 1.0e-01 848.862 9.9e+01

g10 7119.26 1.7e+01 7184.60 2.2e+02 8542.70 3.6e+02 7670.40 5.3e+02 7594.84 2.3e+02

g11 0.74990 1.9e-06 0.95614 9.2e-02 0.83089 7.4e-02 0.74995 9.2e-02 0.74991 4.0e-06

g12 -1.00000 8.1e-11 -0.99896 2.2e-03 -0.99985 1.5e-04 -1.00000 0.0e+00 -0.99975 1.7e-04

g13 0.61042 1.6e-01 0.84229 2.0e-01 0.65304 2.4e-01 0.75379 2.1e-01 0.99988 2.5e-04

and the tolerance δ=1e-4 is used. In these comparisons, we stop the algorithms

after 200000 function evaluations. The results are summarized in Table 1,

where ‘average’ and ‘St.dev.’ represent the average and the standard deviation

of the function values obtained by the algorithms after 20 runs. The best known

optimal solutions, ‘f∗’, are displayed in Table 2. Best results (the wins) are

‘underlined’ and ties are in the ‘italic’ style. From the table it is possible to

see that the FA has a larger number of wins than the others in both criteria.

Overall, the self-adaptive penalty technique, with simple and easy to code

meta-heuristics for solving the BCGO problem, is effective in finding global

optimal solutions to CGO problems.
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Table 2 Results from our study and from [3].

our study results in [3]

P f∗ Fb Fo bestE worstE St.dev.E bestE worstE St.dev.E

g01 -15.0000000 1 1 3.000e-11 5.100e-10 1.255e-10 1.358e-06 9.166e-06 2.178e-06

g02 -0.803619 2.5 0.8 1.080e-03 4.285e-02 1.021e-02 3.836e-05 3.909e-02 1.117e-02

g03 -1.000000 0.1 1.5 2.822e-04 1.000e+00 1.970e-01 4.354e-09 7.854e-01 1.537e-01

g04 -30665.539 2.5 0.8 3.285e-04 3.491e-04 5.875e-06 1.035e-08 3.250e-06 7.105e-07

g05 5126.49810 1.5 0.8 1.352e-02 6.832e+01 2.045e+01 1.018e-10 3.468e+02 9.842e+01

g06 -6961.81388 1.2 0.8 5.688e-05 6.493e-04 1.727e-04 1.373e-10 1.291e-10 3.129e-12

g07 24.306209 2.5 0.8 3.260e-02 2.521e-01 6.163e-02 1.846e-05 1.467e-04 3.029e-05

g08 -0.095825 1 1 4.142e-08 4.142e-08 0 5.008e-11 5.008e-11 0

g09 680.630057 0.01 0.8 5.657e-03 4.292e-02 9.889e-03 2.16e-12 2.16e-12 0

g10 7049.33070 2.5 0.8 5.449e+01 6.484e+02 1.770e+02 7.900e+00 3.731e+01 8.385e+00

g11 0.7500000 1.5 0.8 7.642e-05 7.642e-05 4.850e-06 0 0 0

g12 -1.0000000 1 1 0 0 0 0 0 0

g13 0.0539498 0.01 0.8 3.947e-02 8.575e-01 1.796e-01 3.851e-01 9.107e-01 1.433e-01

For this set of problems pm = 1 is used, except with problem g03 where pm = 0.4.

Second, we aim to compare the hybrid self-adaptive penalty FA with other

algorithms available in the literature. Three recently proposed adaptive penalty-

based stochastic global optimizers [3, 4, 27] are used. When invoking the local

intensification search in the FA, some parameters have been chosen to be

problem dependent, namely pm, Fb and Fo, with the goal of giving the best

performances. To compare our results with those reported in [3] (an adap-

tive penalty-based DE algorithm), we stop the algorithm after 50000 function

evaluations (as indicated in [3]). The results are summarized in Table 2, where

‘bestE ’, ‘worstE ’ and ‘St.dev.E ’ represent the best error value, fbest − f∗, the

worst error, and the standard deviation of the error values, based on 100 runs,
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respectively. Although the results produced by our algorithm are satisfactory,

they are not superior to those reported in [3] except for problems g01 and g13,

being g12 a tie. A larger number of function evaluations would certainly be

required for some problems. While the local search has provided good quality

solutions, it has raised the computational effort.

Table 3 Results from our study and from [4].

our study results in [4]

P best average St.dev. best average St.dev.

g01 -15.000000 -15.000000 0.000e+00 -15 -12.5 2.37254e+00

g02 -0.803603 -0.787892 1.379e-02 -0.8036 -0.7688 3.568e-02

g03 -0.980341 -0.962513 8.508e-03 -1.0 -0.2015 3.4508e-01

g04 -30665.538672 -30665.538672 1.866e-11 -30665.5 -30665.5 0

g05 5125.273729 5125.105038 6.083e-02 5126.4981 5126.4981 0

g06 -6961.813876 -6961.813876 9.331e-13 -6961.8 -6961.8 0

g07 24.312256 24.376587 5.044e-02 24.306 30.404 2.156839e+01

g08 -0.095825 -0.095825 2.848e-17 -0.09582 -0.09582 0

g09 680.630123 680.630848 4.258e-04 680.63 680.63 3e-05

g10 7103.509964 7279.735151 1.375e+02 7049.25 7351.17 5.2562430e+02

g11 0.749900 0.749900 8.050e-13 0.75 0.98749 5.590e-02

The results for g03 were obtained with pm = 0.1, Fb = 0.01 and Fo = 0.8. For the other

problems, the values are as previously defined.

When comparing our results with those produced by DUVDE+APM in

[4] (the APM with dynamic use of DE variants), the subset g01–g11 is used.

The results are summarized in Table 3, where the ‘best’, the ‘average’, and

the ‘St.dev.’ of the solutions obtained in 20 independent runs, are shown. The

algorithms terminate after 350000 function evaluations. The conclusions are
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Table 4 Results from our study and from [27].

our study results in [27]

P best average St.dev. best average St.dev.

g01 -15.000000 -15.000000 0.000e+00 -15.000 -14.552 7.0e-01

g02 -0.803585 -0.797191 4.850e-03 -0.803202 -0.755798 1.33210e-01

g03 -0.976735 -0.940689 1.024e-02 -1.000 -0.964 3.01e-01

g04 -30665.538672 -30665.538672 7.371e-12 -30665.401 -30659.221 2.043e+00

g05 5125.031908 5125.103381 3.639e-02 5126.907 5214.232 2.47476e+02

g06 -6961.813876 -6961.813876 9.214e-13 -6961.046 -6953.061 5.876e+00

g07 24.309466 24.347169 1.478e-02 24.838 27.328 2.172e+00

g08 -0.095825 -0.095825 5.624e-17 -0.095825 -0.095635 1.055e-03

g09 680.630196 680.631087 3.438e-04 680.773 681.246 3.22e-01

g10 7050.095847 7149.949024 4.839e+01 7069.981 7238.964 1.37773e+02

g11 0.749900 0.749900 1.125e-16 0.749 0.751 2e-03

g12 -1.000000 -1.000000 0.000e+00 -1.000000 -0.999940 1.41e-04

g13 0.353983 0.628807 1.136e-01 0.053941 0.286270 2.75463e-01

These results were obtained with the values of pm, Fb and Fo defined for Table 2.

that our algorithm is able to produce comparative and high quality solutions

when a larger number of evaluations is allowed.

Table 4 shows the results obtained after 50 runs, produced by our algorithm

when solving the set g01–g13 with m = 100 and a maximum of 500000 function

evaluations (as in [27], where a self-adaptive penalty-based GA, is used). The

results of our study are in general superior to those reported in [27] and we

reiterate the previous conclusions.

Now, we compare our algorithm with a modified ABC algorithm, that uses

Deb’s rules consisting of three simple heuristic rules for constraint handling

[35]. The following conditions are considered: m = 40, 30 runs and a maxi-
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Table 5 Results from our study and from [35].

our study results in [35]

P best average St.dev. best average St.dev.

g01 -15.000000 -15.000000 0.00e+00 -15.000 -15.000 0.000

g02 -0.803470 -0.778942 1.348e-02 -0.803598 -0.792412 1.2e-02

g03 -1.000278 -0.999522 3.645e-04 -1.000 -1.000 0.000

g04 -30665.538673 -30665.538672 2.220e-11 -30665.539 -30665.539 0.000

g05 5153.670975 5451.215691 2.490e+02 5126.484 5185.714 7.5358e+01

g06 -6961.813876 -6961.813876 1.850e-12 -6961.814 -6961.813 2e-03

g07 24.320519 24.757232 5.157e-01 24.330 24.473 1.86e-01

g08 -0.095825 -0.095825 2.823e-17 -0.095825 -0.095825 0.000

g09 680.631787 680.641211 1.142e-02 680.634 680.640 4e-03

g10 7072.574892 7221.442900 9.565e+01 7053.904 7224.407 1.33870e+02

g11 0.749900 0.749900 1.129e-16 0.750 0.750 0.000

g12 -1.000000 -1.000000 0.000e+00 -1.000 -1.000 0.000

g13 0.056841 0.659425 1.764e-01 0.760 0.968 5.5e-02

These results were obtained with the values of pm, Fb and Fo defined for Table 2.

mum of 240000 function evaluations (like in [35]). From the results in Table 5,

it is possible to conclude that the hybrid self-adaptive penalty FA performs

similarly to the modified ABC on nine problems, is better on g06 and g13 and

is worse on g05 and g10.

Finally, a set of 20 problems available in http://www.ime.usp.br/~egbirgin/
2

is used. We aim to compare the herein proposed hybrid self-adaptive penalty

FA with other penalty-type approaches. The comparison involves the results

presented in [36], where an augmented Lagrangian framework is combined

2 E.G. Birgin, C.A. Floudas, J.M. Mart́ınez, Global minimization using an augmented

Lagrangian method with variable lower-level constraints, TR MCDO121206, Jan. 22, 2007.
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Table 6 Comparing our results with those in [36] and [37].

our study results in [36] results in [37]

P f∗ best median n.f.e.(b) best median n.f.e.(b) sol. n.f.e.

1 0.0293 0.0690 12.0945 59405 0.0342 0.1204 9608 0.0625 39575

2a -400.00 -400.000 -380.7241 59420 -380.674 -369.111 15813 -134.1127 115107

2b -600.00 -400.000 -366.330 59411 -385.051 -360.786 15808 -768.4569 120057

2c -750.00 -749.999 -749.770 52238 -743.416 -693.743 15612 -82.9774 102015

2d -400.00 -400.000 -399.980 26005 -399.910 -399.492 15394 -385.1704 229773

3a -0.3888 -0.3882 -0.3837 62306 -0.3880 -0.3849 18928 -0.3861 48647

3b -0.3888 -0.3888 -0.3881 2741 -0.3888 -0.3888 2589 -0.3888 3449

4 -6.6666 -6.6667 -6.6667 20825 -6.6667 -6.6667 2242 -6.6666 3547

5 201.1600 201.1593 201.1593 20824 201.159 201.159 2926 201.1593 14087

6 376.2919 376.2921 376.2939 20874 376.292 376.293 5617 0.4701 1523

7 -2.8284 -2.8284 -2.8283 20836 -2.8284 -2.8284 3434 -2.8058 13187

8 -118.700 -118.7049 -118.7048 20791 -118.705 -118.705 2884 -118.7044 7621

9 -13.4020 -13.4019 -13.4019 31068 -13.4018 -13.4017 5732 -13.4026 68177

10 0.74178 0.74179 0.74181 19551 0.7418 0.7418 6342 0.7420 6739

11 -0.5000 -0.5000 -0.5000 6141 -0.5000 -0.5000 3313 -0.5000 3579

12 -16.739 -16.7393 -16.6103 20765 -16.7389 -16.7389 98 -16.7389 3499

13 189.350 189.347 226.017 23514 189.345 189.347 9230 195.9553 8085

14 -4.5142 -4.5142 -4.5142 27267 -4.5142 -4.5142 6344 -4.3460 19685

15 0.0000 0.0000 0.0000 5696 0.0000 0.0000 2546 0.0000 1645

16 0.70492 0.7049 0.7049 1017 0.7049 0.7049 1850 0.7181 22593

For this set of problems we set pm = 0.5, Fb = 1 and Fo = 1, except for problem 1 where pm = 1,

Fb = 2.5 and Fo = 0.8 and problem 13 where pm = 1, Fb = 0.2 and Fo = 0.8.

For this experiment, we use m = min{5n, 50}, ε=1e-5, η=1e-6 and kmax = 600 (similarly to [36]).

with a meta-heuristic, known as artificial fish swarm algorithm, and those

reported in [37], where a non-differentiable exact penalty function framework

is implemented with the deterministic DIRECT algorithm. The results are

summarized in Table 6, where ‘best’ is the best solution found among the 30
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runs, ‘median’ is the median of the 30 solutions, and ‘n.f.e.(b)’ is the number of

function evaluations to reach the value ‘best’. The solution, ‘sol.’, the number

of function evaluations, ‘n.f.e.’, reported in [37], and the best-known solution

available in the literature, ‘f∗’, are also shown in the table. When we compare

our results with those in [36], we conclude that the quality of the obtained

solutions is comparable although a larger number of function evaluations are

needed to reach those solutions. On the other hand, the quality of our solutions

is superior to the one displayed by the penalty-based DIRECT algorithm [37].

6 Conclusions

We present a new self-adaptive penalty function that aims to penalize solu-

tions, that violate the constraints of the problem, and is user-independent in

the sense that penalty parameter values are set automatically by the informa-

tion gathered from the violated constraints at each iteration. We establish the

existence of an equivalence between the CGO problem and the BCGO problem

with the self-adaptive penalty objective. The paper also shows the practical

performance of a set of well-known meta-heuristics when solving the BCGO

problem by demonstrating that they are effective in converging to the global

solutions. Due to the superior performance of the recent FA meta-heuristic,

the paper proposes a hybrid FA aiming to enhance the quality of the solutions.

The convergence analysis of the algorithm has also been established. With the

numerical experiments carried out with two sets of benchmark problems we

demonstrate that the proposed self-adaptive penalty method is effective in
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solving CGO problems. Future developments will be focused on solving higher

dimensional optimization problems and reducing the computational effort in

terms of function evaluations.
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