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Abstract. Bivalve shells can potentially alter the structure of aquatic benthic communities. However, little is known
about the effect that different shell morphologies have on their associated fauna. This study aimed to understand how
empty shells, from four different freshwater bivalve species, affect macrozoobenthic communities, using the River Minho

(Iberian Peninsula) as a study area. Three native (Anodonta anatina, Potomida littoralis, Unio delphinus) and one
non-indigenous (Corbicula fluminea) species were used for this research. Comparisons among species and between
scenarios (i.e. before and after invasion by C. fluminea) were performed. Our results suggest that macrozoobenthic

community structure did not vary among treatments, with the exception of species richness, which was higher on shells of
native species. Furthermore, little difference was detected when comparing scenarios with and withoutC. fluminea shells,
despite dissimilarities in size and morphology between species. The empty shells of C. fluminea partially (in terms of
density and biomass, but not in species richness) replaced the role of empty shells of native species as a physical substratum

for the associated macrozoobenthic community.
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Introduction

Bivalves can significantly influence the community structure
and ecosystem processes and functions (e.g. primary and sec-

ondary production and the nutrient cycle) of freshwater habitats
(Vaughn and Hakenkamp 2001; Strayer 2009). This can result
from several mechanisms, including filter feeding, bioturbation
activities and shell production (Sousa et al. 2009, 2014). The

changes mediated by the presence of a new substratum provided
by their shells can lead to new interactions or process pathways
even after the death of the bivalve (Karatayev et al. 2007; Sousa

et al. 2009; Bódis et al. 2014). Bivalve shells influence the
ecology of a variety of aquatic organisms, including sponges,
cnidarians, ascidians, echinoderms, bryozoans, crustaceans, fish

and many others (Nyman 1953; Corriero and Pronzato 1987;
Buchman et al. 2007; Rabaoui et al. 2007). In most cases,
bivalve shells are used to avoid predators and competitors and to
decrease physical and physiological stress (Gutiérrez et al.

2003). The abundance, size and distribution range of bivalve
shells confer on them a high ecological importance as hard
substrata ready for colonisation (Palacios et al. 2000; Gutiérrez

et al. 2003; Erwin 2008).

Biological invasions have become a common and serious
concern, causing severe economic and ecological impacts, and
posing serious threats to native communities (Crooks 2002; Vilà

et al. 2010, Simberloff et al. 2013). Such invasions are consid-
ered one of the major threats to freshwater biodiversity
(Dudgeon et al. 2006; Strayer and Dudgeon 2010; Strayer
2010). Particularly important may be species that become

dominant or are able to introduce new ecological attributes
(Gutiérrez et al. 2014), such as invasive bivalve species
(reviewed in Sousa et al. 2014). The Asian clam Corbicula

fluminea is a successful invader of fresh and brackish waters,
and is consequently considered one of the most problematic
invasive species in Europe (DAISIE, European Invasive Alien

Species Gateway, see http://www.europe-aliens.org/species
TheWorst.do, accessed 4 January 2014). C. fluminea was first
reported in Europe in the late 1970s and is now widespread
throughout that continent, as well as in Africa, and North and

South America (reviewed in Ilarri and Sousa 2012). This species
is frequently described as a threat to several elements of
ecosystems, including submerged vegetation, phytoplankton,

zooplankton, macrozoobenthos and higher trophic levels,
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leading to important economic losses (McMahon 2000, 2002;
Sousa et al. 2008b, 2009).

Following the establishment of C. fluminea into the River

Minho (in the north-west of the Iberian Peninsula) in 1989
(Araujo et al. 1993), the density of native bivalve species (e.g.
Anodonta anatina, Potomida littoralis, Unio delphinus and

Pisidium amnicum) has declined (Sousa et al. 2005, 2008b,
2008c, 2011). C. fluminea is now the dominant species in the
final 70 km of the River Minho (Sousa et al. 2008b, 2008d,

2008e). In a recent study, Ilarri et al. (2012) suggested that the
engineering activities by C. fluminea individuals significantly
influenced the macrozoobenthic community with several spe-
cies being more abundant in areas where the density of

C. flumineawas also higher. In previous studies performed with
other bivalve species, the same effect has been observed
(Ricciardi et al. 1997; Spooner and Vaughn 2006; Borthagaray

and Carranza 2007). Nonetheless, other studies performed with
live Corbicula individuals in other freshwater systems have
found no significant effects on the macrozoobenthic community

(Hakenkamp et al. 2001; Karatayev et al. 2003; Werner and
Rothhaupt 2007). However, to date very little is known about the
associated fauna colonising empty bivalve shells in aquatic

ecosystems. Moreover, little is known about the effects of shells
with different morphologies and origins (e.g. invasive or native)
on the macrozoobenthic community.

In this context, the aims of the present study are: (1) to

examine whether different bivalve species, represented by their
empty shells, support a distinct associated fauna; and (2) to
compare the associated fauna of the most abundant native

bivalve species before invasion by C. fluminea (through
simulated scenarios) with the current associated fauna of the

bivalve species (predominantly dominated by the Asian clam
C. fluminea).

Material and methods

Study area

The experiment was conducted in the RiverMinho (in the north-
west of the Iberian Peninsula), ,40 km from the river mouth

(Fig. 1). The headwaters of the River Minho are located at the
Serra de Meira (Spain), with 95% of the Minho hydrological
basin situated in Spain, with the remaining 5% in Portugal. The
River Minho is 310 km long with a maximum width of 2 km

near the mouth, flowing north-north-east to south-south-west
into the Atlantic Ocean. The selected study area is very shallow
(only 1m deep during the summer) with permanent freshwater

conditions. The substratum consists of gravel, sand, macro-
phytes and C. fluminea shells (live and empty). The water cur-
rent varied from moderate to strong and these variations can be

approximately correlated with the operations of a dam located
30 km upstream from the study site. However, during the study
period the water current was always low. Over the 2 months
of the experiment (June and July 2012), the mean water

temperature ranged between 20.2 and 23.78C, conductivity
between 71 and 85ms cm�1, dissolved oxygen between 8.6 and
9.1mgL�1, pH between 7.6 and 7.8, and redox potential

between 80.1 and 94.6mV.

Experimental design and laboratory procedures

To study the effects of the bivalve shells on the associated

macrozoobenthic community, empty shells of three native
(A. anatina, P. littoralis and U. delphinus) and one non-native
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Fig. 1. Map of the study site showing where the treatments were located along the River Minho, in the north-west Iberian Peninsula.
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(C. fluminea) species were used (Fig. 2). The shells of the four

bivalve species were manually cleaned in order to remove any
traces of soft tissue, before placing the shells in individually
sealed nylon net bags. As a standard we used only shells that

were intact, usually belonging to an organism that recently died.
Six different treatments were assigned: four treatments with
shells of each individual species; one treatment with amixture of

native bivalve shells (one-third each of the three native species),
simulating the River Minho scenario before the invasion by
C. fluminea (‘Mix natives’); and lastly one treatment with 90%
of C. fluminea and 10% of native species evenly represented,

simulating the scenario encountered on the River Minho now
(‘Mix actual’). The shell sizes used for the experiments repre-
sented sizes available in the field for each species. Furthermore,

in order to avoid bias due to differences between species in the
outer surface areas, an identical sum of the shells’ outer surface
area (1200 cm2) was used in all treatments. Bags with a mesh

size of 10mm were used in order to allow colonisation of the
shells by macroinvertebrate species, while excluding larger
animals. Six net bags (one per treatment) were tied with a string

to a stake (a total of 10 stakes were used, n¼ 10 per treatment),
and placed under water (,70 cm deep) ,10m from the river
bank (at the lowest water level). The bags remained under water
for 2months (June and July 2012), the time necessary to observe

significant colonisation. At the end of the experiment, the
macrozoobenthos associatedwith the empty shells were initially
sieved using a 500-mm mesh, and then sorted and fixed in 70%

ethanol for later identification, using Tachet et al. (2003).
Whenever species identification was not possible, specimens
were identified to the lowest practical taxonomic level. After

identification, all individuals were dried in an oven at 608C for
24 h to determine their dry weight (DW).

Data analysis

Initially, a cluster analysis was performed to determine the
similarities and relationships between treatments regarding the
physical attributes of the shells (i.e. the size and the number of

shells used in each treatment). For better data visualisation, the
mean values of size and number of shells of each treatment were
used in the resemblance matrix based on the Euclidean

distances. Subsequently, Permutational Multivariate Analysis

of Variance (PERMANOVA) was performed to explore possi-
ble differences in the associated macrozoobenthic community.
This method analyzes the variance of multivariate data

explained by a set of explanatory factors, on the basis of any
chosen measure of distance or dissimilarity, thereby allowing
for a wide range of empirical data distributions (Anderson

2001). The overall associated macrozoobenthic density, bio-
mass and the density of the most representative faunal groups
(Platyhelminthes, Mollusca, Annelida, Crustacea and Insecta)
were statistically tested using a one-way PERMANOVA (Type

III), with treatment as a fixed factor (six levels: ‘Anodonta’,
‘Potomida’, ‘Unio’, ‘Corbicula’, ‘Mix natives’ and ‘Mix actual’).
Prior to the one-way PERMANOVA analyses, all variables

were normalised without data transformation and a resemble
matrix based on the Euclidean distances was calculated. Species
richness (S), the Shannon–Wiener index (H0) and Pielou’s

evenness index (J0) of the associated macrozoobenthic com-
munity were calculated using DIVERSE analysis. Afterward,
one-way PERMANOVA (Type III) tests, using the resemble

matrix based on the normalised Euclidean distances, were used
to test for differences in the ecological indexes among treat-
ments. In all PERMANOVA tests, the statistical significance of
variance (a¼ 0.05) was tested using 9999 permutations of

residuals within a reduced model. When the number of unique
permutations was lower than 150, the Monte Carlo P-value was
considered. One-way PERMANOVA pairwise comparisons

were also performed for all PERMANOVA tests.
In order to assess the relative contributions of the size and

number of shells to the associatedmacrozoobenthic community,

a distance-based linear modelling (DistLM) was also carried
out. DistLMmakes it possible to test the significance (a¼ 0.05)
of explanatory variables for a multivariate response variable in
the form of a resemblancematrix (Anderson et al. 2008). For the

DistLM, we selected the AIC (Akaike Information Criterion)
based on the analyses on the Euclidean distance resemblance
after normalisation of the data.

The observed mean density and richness of the single
treatments (i.e. the ones that contained only one species) were
used to make the comparison of the expected mean density and

(a) (b)

(c) (d )

1 cm

Fig. 2. Bivalve species used in the experiment: (a) Anodonta anatina, (b) Potomida littoralis,

(c) Unio delphinus, and (d) Corbicula fluminea.
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richness for the scenario treatments (i.e. before and after inva-
sion by C. fluminea). The expected mean density and richness

was always calculated taking into account the percentage of
shells by species used in each scenario.

PRIMER analytical software (ver. 6.1.6, PRIMER-E Ltd,

Plymouth, UK) with PERMANOVAþ1.0.1 add-on (Anderson
et al. 2008) was used for all statistical tests.

Results

Treatment characteristics: differences among species

The mean size and number of shells per bag varied among

treatments (mean size: Pseudo-F¼ 483.44, P, 0.05; mean
number: Pseudo-F¼ 1946.80, P, 0.05). Pairwise tests indi-
cated that most treatments were significantly different, with
respect to the mean number of shells per bag, whereas for mean

size of shells per bag only the ‘Potomida’ v. ‘Mix natives’ and
the ‘Corbicula’ v. ‘Mix actual’ were not significantly different.

The treatments that contained the largest shells were

‘Anodonta’ (80.7� 1.64mm), followed by ‘Potomida’ (66.1�
0.92mm), ‘Unio’ (58.7 � 0.75 mm), ‘Mix natives’ (65.3 �
1.08mm), ‘Corbicula’ (29.2� 0.45mm) and ‘Mix actual’

(28.3� 0.27mm). The treatments that contained the highest
number of shells per bag were those containing C. fluminea,
namely ‘Mix actual’ (62.2� 0.57 shells per bag) and ‘Corbicula’

(58.6� 0.88 shells per bag), followed by ‘Unio’ (27.4� 0.34
shells per bag), ‘Mix natives’ (20.5� 0.31 shells per bag),
‘Potomida’ (17.1� 0.23 shells per bag) and ‘Anodonta’ (13.5�
0.27 shells per bag). Considering the mean size and number of

shells per bag, the cluster analysis separated the treatments into
two groups, one containing treatments with only native species
and the other containing treatments with the invasive species

C. fluminea (Fig. 3).

Macrozoobenthic community

A total of 35 macrozoobenthic taxa (14 460 individuals),

representing four phyla (Platyhelminthes, Mollusca, Annelida
and Arthropoda) were associated with the empty bivalve shells.
The twomost diverse groupswere the insects andmolluscs, with

16 and 11 taxa respectively, accounting for 77.1% of the total
number of taxa observed. The five most abundant taxa were the
faucet snail Bithynia tentaculata (64.2%), the worms of the

subclass Oligochaeta (16.2%), the Asian clam C. fluminea

(6.7%), the waterlouse Asellus aquaticus (4.9%) and planarians
of the family Dugesiidae (1.6%), whereas the remaining 30 taxa
made up to only 6.5% (Tables 1, 2). The most abundant mac-

rozoobenthic groups were the molluscs, annelids and crusta-
ceans (Table 3), although no significant differences among the
different treatments were observed (Table 3).

The highest values of density, biomass, species richness and
diversity (Shannon–Wiener index) were observed in the treat-
ments containing native species, with the exception of evenness

(Pielou’s index), where the highest value was observed for the
treatment containing only C. fluminea shells (Fig. 4a–e). Never-
theless, significant differences in the ecological indices among

treatments were recorded only for species richness (Pseudo-
F¼ 2.79, P, 0.05) (Fig. 4b). Pairwise comparisons indicated
that ‘Anodonta’ v. ‘Corbicula’ (t¼ 2.26,P, 0.05), ‘Anodonta’ v.
‘Mix actual’ (t¼ 2.77, P, 0.05) and ‘Potomida’ v. ‘Mix actual’

(t¼ 2.24, P, 0.05) were significantly different (Fig. 4b).

The DistLM analysis indicated that the number and the
size of shells significantly influenced the macrozoobenthic
community (AIC¼ 83.29, SS-trace¼ 16.22, Pseudo-F¼ 4.28,

P, 0.05); however, these two variables explained only 6.76%
of the variance.

The observedmean density of macrozoobenthos between the
two scenarios, before invasion by C. fluminea (‘Mix natives’)

(2067.4� 473.0 individuals m�2) and after invasion by
C. fluminea (‘Mix actual’) (1533.3� 298.0 individuals m�2),
was higher than the expected mean density for each scenario

(‘Mix natives’: 1947.8� 445.0 individuals m�2; ‘Mix actual’:
1398.5� 272.0 individuals m�2). Furthermore, when consider-
ing the richness, the pattern was different, because the observed

mean richness before invasion byC. fluminea (11.1 species) and
after invasion by C. fluminea (8.8 species) was lower than
the expected mean values (‘Mix natives’: 11.4 species; ‘Mix

actual’: 9.7 species).

Discussion

Our results indicate that the associated macrozoobenthic com-
munity was even across treatments, and that only small differ-
ences were detected between the scenarios. The only exception

was species richness, with a richer associated fauna observed for
the treatments ‘Anodonta’, ‘Potomida’, ‘Unio’ and ‘Mix
natives’ as comparedwith the treatments containing the invasive

C. fluminea (i.e. ‘Mix actual’ and ‘Corbicula’). It is possible that
the observed differences were due to structural and morpho-
logical differences between native and non-native shells, which
could have accounted for a slightly different colonisation.

However, detailed studies regarding the influence of shell
thickness, roughness and shape (e.g. structural morphology,
edge morphology, adductor scar morphology) in attracting
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Table 2. Mean (±s.e.) biomass (mg DW m22) per treatment of the most representative macrozoobenthic-associated taxa

Taxonomic group Treatment

‘Anodonta’ ‘Potomida’ ‘Unio’ ‘Corbicula’ ‘Mix natives’ ‘Mix actual’

Platyhelminthes

Planariidae 2.8� 1.1 0.8� 0.6 4.6� 3.2 0.5� 0.4 2.7� 2.2 1.0� 0.9

Dugesiidae 13.3� 4.9 7.9� 3.4 8.3� 3.7 8.3� 4.4 9.8� 4.0 8.2� 5.5

Mollusca

Bithynia tentaculata 19166.0� 2183.3 13334.3� 3025.0 15838.8� 4091.7 9776.2� 1683.3 15671.2� 3575.0 11033.3� 2008.3

Corbicula fluminea 8699.0� 1775.0 15590.9� 3716.6 9578.3� 1983.3 10794.2� 2216.7 14477.0� 2250.0 14660.9� 3116.7

Potamopyrgus antipodarum 11.4� 5.0 20.3� 6.4 12.6� 5.2 18.9� 7.8 31.2� 9.3 18.9� 7.3

Valvata piscinalis 5.3� 3.3 34.2� 16.5 27.2� 9.2 3.9� 2.8 22.1� 10.7 16.6� 75.3

Annelida

Hirudinea

Glossiphoniidae 56.9� 12.8 44.6� 39.7 90.8� 20.4 133.5� 70.8 143.3� 57.3 28.4� 13.8

Erpobdellidae 26.5� 11.8 44.5� 18.8 50.9� 16.7 56.9� 17.7 22.6� 9.5 48.3� 27.4

Oligochaeta 60.0� 13.5 67.5� 16.8 25.9� 3.8 50.3� 14.0 51.1� 13.1 247.3� 195.8

Arthropoda

Crustacea

Asellus aquaticus 13.2� 2.6 24.3� 11.5 14.7� 4.3 7.3� 3.3 15.5� 6.1 5.5� 1.6

Insecta

Elmidae 3.8� 2.3 2.2� 1.2 1.5� 1.1 3.8� 3.1 1.4� 0.8 0.6� 0.3

Chironomidae 5.8� 2.9 3.1� 2.0 1.3� 0.4 0.5� 0.3 1.8� 1.2 2.9� 2.5

Sialidae 8.0� 4.6 12.7� 4.6 20.2� 9.2 9.8� 6.9 22.2� 9.4 7.0� 4.7

Limnephilidae 41.8� 40.8 0.0� 0.0 0.0� 0.0 11.1� 11.1 57.4� 32.8 22.0� 11.4

Hydropsychidae 5.3� 2.8 0.0� 0.0 2.0� 2.0 7.3� 3.8 0.2� 0. 2 0.0� 0.0

Leptoceridae 1.9� 1.4 2.8� 1.3 1.3� 0.7 4.3� 3.4 4.2� 2.5 0.9� 0.5

Leuctridae 4.7� 3.8 0.0� 0.0 0.0� 0.0 0.2� 0.2 2.7� 2.3 0.0� 0.0

Table 1. Mean (±s.e.) density (individuals m22) per treatment of the most representative macrozoobenthic-associated taxa

Taxonomic group Treatment

‘Anodonta’ ‘Potomida’ ‘Unio’ ‘Corbicula’ ‘Mix natives’ ‘Mix actual’

Platyhelminthes

Planariidae 15.8� 5.2 3.3� 1.8 7.5� 4.6 4.2� 2.9 9.1� 4.4 5.0� 3.6

Dugesiidae 38.3� 14.1 22.5� 9.4 30.0� 14.8 25.0� 14.1 31.8� 17.5 23.3� 15.2

Mollusca

Bithynia tentaculata 1398.3� 251.7 1319.2� 315.8 1100.1� 313.3 777.5� 135.0 1304.5� 399.2 1059.2� 267.5

Corbicula fluminea 85.8� 16.8 158.3� 36.8 100.8� 11.9 131.7� 23.0 128.0� 19.5 120.0� 18.7

Potamopyrgus antipodarum 10.8� 2.8 22.5� 9.2 11.7� 5.4 15.0� 6.9 25.0� 8.2 13.3� 5.9

Valvata piscinalis 6.7� 3.3 20.0� 8.3 10.8� 2.2 3.3� 2.6 9.1� 2.7 9.2� 4.9

Annelida

Hirudinea

Glossiphoniidae 33.3� 7.3 29.2� 6.8 38.3� 8.2 18.3� 3.2 32.6� 7.6 18.3� 7.1

Erpobdellidae 11.7� 4.7 17.5� 6.4 10.0� 3.7 17.5� 5.0 9.1� 3.5 15.8� 7.9

Oligochaeta 306.7� 65.8 436.7� 109.2 195.0� 35.8 260.0� 89.2 350.0� 85.0 203.3� 70.0

Arthropoda

Crustacea

Asellus aquaticus 112.5� 26.7 83.3� 24.2 109.2� 36.7 60.0� 25.8 122.0� 47.5 40.0� 15.0

Insecta

Elmidae 10.0� 5.7 18.3� 10.0 10.0� 7.3 5.8� 2.8 7.6� 2.8 5.0� 2.2

Chironomidae 10.8� 3.5 8.3� 3.7 12.5� 4.2 4.2� 2.6 12.1� 5.2 2.5� 1.3

Sialidae 2.5� 1.3 4.2� 1.4 5.8� 1.8 2.5� 1.8 6.1� 2.8 1.7� 1.1

Limnephilidae 3.3� 2.6 0.0� 0.0 0.0� 0.0 0.8� 0.8 3.0� 1.7 2.5� 1.3

Hydropsychidae 1.7� 1.1 0.0� 0.0 1.7� 1.7 3.3� 1.4 1.5� 1.0 0.0� 0.0

Leptoceridae 5.8� 4.2 5.8� 1.8 3.3� 1.3 3.3� 1.4 5.3� 2.3 5.0� 5.0

Leuctridae 4.2� 1.4 0.0� 0.0 0.0� 0.0 0.8� 0.8 1.5� 1.0 0.0� 0.0
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Table 3. Mean (±s.e.) density (individuals m22) of the most representative macrozoobenthic-associated groups and PERMANOVA results

Taxonomic

group

Treatment PERMANOVA

‘Anodonta’ ‘Potomida’ ‘Unio’ ‘Corbicula’ ‘Mix natives’ ‘Mix actual’

Total number of

individuals

2083.3� 307.0 2160.0� 380.0 1659.2� 359.0 1337.5� 236.0 2067.4� 473.0 1533.3� 298.0 Pseudo-F¼ 0.93, P¼ 0.47

Platyhelminthes 54.2� 18.6 25.8� 10.9 37.5� 19.2 29.2� 15.0 40.9� 20.2 28.3� 17.8 Pseudo-F¼ 0.37, P¼ 0.88

Mollusca 1522.5� 268.0 1526.7� 307.0 1234.2� 323.0 930.8� 141.0 1472.7� 398.0 1210.0� 270.0 Pseudo-F¼ 0.62, P¼ 0.71

Annelida 351.7� 72.6 483.3� 112.0 243.3� 40.3 295.8� 87.2 391.7� 86.2 237.5� 80.3 Pseudo-F¼ 1.30, P¼ 0.27

Crustacea 112.5� 26.7 83.3� 24.0 109.2� 36.9 60.0� 25.8 122.0� 47.2 40.0� 15.4 Pseudo-F¼ 1.06, P¼ 0.40

Insecta 2930.6� 605.0 4027.8� 937.0 2027.8� 336.0 2465.3� 727.0 3263.9� 719.0 1979.2� 669.0 Pseudo-F¼ 1.62, P¼ 0.17
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fauna should be conducted in order to provide more compre-
hensive and definitive conclusions.

The four bivalve species used in this study presented several
morphological differences, namely outer-shell surface rough-
ness, shell hardness, thickness and three-dimensional shape. The

C. fluminea shells are very different morphologically relative to
the shells of the native species, given that the outer-shell of the
Asian clams presents a rough sculpture with raised concentric

ribs, in contrast to the rather smooth and somewhat flat surface
of the shells of the native species. The hardnesses of the shells
are also remarkably different, with P. littoralis presenting a
robust, thick, hard shell, whereas C. fluminea had a slightly less

hard, thinner and 3-D-complex shell. Moreover, the shells of
U. delphinus and A. anatina are thin and somewhat delicate
(particularly that of A. anatina). Furthermore, possible chemical

differences between the shells are expected, and this aspect
could also have influenced the associated fauna; however, future
detailed studies should be performed considering the lack of

knowledge on this topic. These morphological and chemical
differences in the shells between species are likely to be of
importance when attracting fauna, although our experimental
design cannot give a definitive answer regarding this issue.

The average size of the particles in the substratum can also
influence the structure of the macrozoobenthic community
(Reice 1980; Erman and Erman 1984). Large shells, compared

to small ones, are normally associated with a fauna of high
density and richness (Beckett et al. 1996; Giacobbe 2002;
Gutiérrez et al. 2003). Despite the mean shell size of native

species being significantly larger than that of the non-native
species, shell-size had only a marginal influence on the associ-
ated macrozoobenthos. As such, shell size should not be

considered an important explanatory variable in this context,
at least at our study site. Nevertheless, the diversity of structural
elements in a habitat is important for the colonisation of the
macrozoobenthic community (Bell et al. 1991). Diverse bivalve

assemblages may support a denser and more diverse macro-
zoobenthic community than bivalve assemblages dominated by
a single species or by a cluster of morphologically similar

species. Indeed, heterogeneous and structurally complex habi-
tats provide myriad microhabitats where associated fauna flour-
ish (Allan 1975). Although distinct substratum preferences seem

to be linked to different macrozoobenthic species (Allan 1975),
this pattern was not recorded in the present study, with the
associated fauna being evenly represented in all treatments. The
only exception was species richness, which was significantly

different. These results indicate that the empty shells of invasive
species can partially play the same ecological function as the
native species on the invaded ecosystem, as far as macrozoo-

benthos colonisation is concerned.
Interestingly, in this study a synergism between species

could have occurred when they were available altogether, as

this was observed when comparing the observed with the
expected mean density values. The observed attracted
much higher density values (‘Mix natives’: 25.8% higher;

‘Mix actual’: 28.2% higher) of the associated fauna than was
expected. A different pattern was observed for the richness, with
lower richness values (‘Mix natives’: 2.7% lower; ‘Mix actual’:
10.1% lower) observed when compared to what was expected.

In this case, it is possible that the presence of C. fluminea could

have contributed to the lower values observed. Future detailed
studies should be performed in order to better understand

these results.
In this study we used empty shells. However, if we had

experimented with live individuals the results could have been

different. Previous studies performed with live Corbicula

observed no effects on the benthic invertebrates (Hakenkamp
and Palmer 1999;Hakenkamp et al. 2001;Karatayev et al. 2005;

Werner and Rothhaupt 2007). Nonetheless, Zaiko et al. (2009)
noted that the effect of live mussels on biodiversity was more
pronounced than the effect of shell deposits. Spooner and
Vaughn (2006) also observed an influence of live unionid

mussels on the distribution and abundance of periphyton and
invertebrates when compared with sham mussels (shells filled
with sand), suggesting that the biological activities of bivalves

offer ecological conditions to the benthic community beyond the
physical habitat provided by the shells alone.

Given that empty shells of native and invasive species

exerted a similar influence on the macrozoobenthic community,
it seems reasonable to assume that C. fluminea shells can
partially mimic the ecological role played by native bivalves,
at least for themacrozoobenthic community. The high density of

C. fluminea (represented by live individuals and empty shells) in
the RiverMinho (see Sousa et al. 2008b, 2008d, 2008e) suggests
that this species is probably influencing the whole system,

including the macrozoobenthos that respond to the overall
structural changes related mainly to the provision of a hard
substrate (represented by the presence of their shells). These

hard substrates can be used as a structural element for attach-
ment, refuges to avoid predators, competitors, physical and
physiological stress, and by affecting the transport of particles

and solutes in the benthic environment, which may in turn
influence different trophic levels (Vaughn et al. 2008; Ilarri
et al. 2012, 2014). C. fluminea can supply prey for the higher
trophic levels, and probably provide a different scenario to that

observed when the native species occurred at higher densities.
However, this discussion can only be speculative given the lack
of detailed data regarding the macrozoobenthos before the

invasion byC. fluminea in the River Minho, with further studies
necessary in order to better understand exactly how C. fluminea

influences different trophic levels in this system.

Recent, massive die-offs of freshwater bivalves have
occurred in the River Minho owing to extreme climatic condi-
tions (Sousa et al. 2008d, 2012; Ilarri et al. 2011), and according
to the Intergovernmental Panel on Climate change (IPCC) these

kinds of events will increase in frequency and intensity through-
out Europe (IPCC2007).Massive die-off events have resulted in
a large accumulation of empty shells in some areas of the River

Minho (Sousa et al. 2012). Following the die-off events, some
species experienced a rapid population growth, whereas others
were negatively affected (Sousa et al. 2008d). C. fluminea (e.g.

dead and live) is capable of sustaining a high density of
associated fauna (Ilarri et al. 2012, 2014 and present study). In
fact, Ilarri et al. (2012) observed that the macrozoobenthic

density, biomass and diversity positively responded to the
increasing density of C. fluminea. Regardless of the influence
of C. fluminea on some faunal groups (Ilarri et al. 2012), our
results indicate that the composition of the macrozoobenthic

community in the River Minho, taking into consideration only
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the availability of empty shells provided, probably did not
change due to the Asian clam invasion, and will likely remain

partially similar if native bivalves become locally extinct.
However, differences in the life cycle and density between
C. fluminea and the native bivalves means that the absolute

number of live and empty Asian clam shells on the river bed is
largely higher than that of native shells, thereby covering a large
area of the riverine soft bottom and providing a large amount of

hard substrata ready for colonisation.
To date, few studies comparing the associated fauna of

native and invasive bivalve species have been conducted (see
Kochmann et al. 2008; Markert et al. 2010;Wilkie et al. 2012),

with our study being the first to investigate the influence of
empty freshwater bivalve shells. Our results were similar only
to those ofWilkie et al. (2012), whereas other studies presented

conflicting evidence. Kochmann et al. (2008) and Markert
et al. (2010) observed differences in the macrofaunal commu-
nity associated with the invasive species Crassostrea gigas,

which has hard and extremely rough shells, as compared to the
native speciesMytilus edulis (which has smooth and unruffled
shells) in the Wadden Sea (Germany). The results of Markert
et al. (2010) show that the fauna associated with C. gigas had

higher density, biomass, richness and diversity, whereas Koch-
mann et al. (2008) only observed shifts in the abundance of
dominant associated species. Wilkie et al. (2012) suggested

that the similarities between the associated fauna of two
bivalve species (i.e. one invasive and the other native) are
due to the fact that both species are morphologically similar

ecosystem engineers, further suggesting that the degree of
morphological similarity between the invasive and native
species may be a good predictor of the possible impacts.

However, in the present study the selected species (e.g. native
and invasive species) have morphological differences in their
structure, mainly due to the size and roughness, although the
associated fauna was very similar.

Conclusions

The empty bivalve shells of the invasiveC. fluminea seem to be

functionally equivalent to the native species in the River
Minho, with almost no distinction being recorded on the
associated macrozoobenthos (with the exception that species
richness was higher in the native species compared to the

treatments containing the invasive C. fluminea). Furthermore,
small differences were detected between the scenarios with
respect to conditions before and after invasion. The empty

shells of the invasive species C. fluminea have been capable of
partially replacing the ecological functions of empty shells
from native species, at least for associated macrozoobenthic

community.

Acknowledgements

Martina Ilarri is supported by a Post-doc grant (SFRH/BPD/90088/2012)

from the Portuguese Foundation for Science and Technology – FCT through

POPH/FSE funds. This study was conducted within the scope of the project

ECO-IAS: Ecosystem-level impacts of an invasive alien species, supported

by FCT and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010)

and was also partially supported by the European Regional Development

Fund (ERDF) through COMPETE funds (PEst-C/MAR/LA0015/2011) and

by FCT/MEC through Portuguese funds (PIDDAC – PEst-OE/BIA/UI4050/

2014). Special thanks to Felipe Ribas for the drawing of the shells and to Dr

Ian Duggan and Rahel Zemoi for the English review. The authors also thank

the two anonymous referees, who greatly improved the quality of the

manuscript.

References

Allan, J. D. (1975). The distributional ecology and diversity of benthic

insects in Cement Creek, Colorado. Ecology 56, 1040–1053.

doi:10.2307/1936145

Anderson, M. J. (2001). A new method for non-parametric multivariate

analysis of variance. Austral Ecology 26, 32–46.

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVAþ
for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E:

Plymouth, UK.)

Araujo, R., Moreno, D., and Ramos, M. A. (1993). The Asiatic clam

Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe.

American Malacological Bulletin 10, 39–49.

Beckett, D. C., Green, B.W., and Thomas, S. A. (1996). Epizoic invertebrate

communities on upper Mississippi River unionid bivalves. The American

Midland Naturalist Journal 135, 102–114. doi:10.2307/2426876

Bell, S. S.,McCoy,E.D., andMushinsky,H.R. (1991). ‘Habitat Structure: the

PhysicalArrangement ofObjects inSpace.’ (ChapmanandHall:London.)
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