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RESUMO 

Ao longo dos anos, a indústria dos plásticos tem vindo a evoluir de forma gradual, sendo que a presença 

dos mesmos já faz parte do nosso dia-a-dia. Os polímeros sintéticos, devido às suas propriedades (baixo 

custo, versatilidade, peso, entre outras), têm sido cada vez mais aplicados numa vasta gama de sectores, 

principalmente na produção de embalagens. Apesar da utilização de polímeros sintéticos ser benéfica, a 

acumulação deste tipo de materiais no meio ambiente tem vindo a causar sérios problemas ambientais, 

visto serem extremamente resistentes a degradação. Uma das alternativas para a resolução deste 

problema passa pelo uso de polímeros biodegradáveis de origem natural, visando substituir os polímeros 

sintéticos, em particular na produção de embalagens com um ciclo de vida curto. Simultaneamente, o 

aumento da população e a constante exigência por produtos alimentares com qualidade, segurança e 

saudáveis tem contribuído para o desenvolvimento de novos sistemas por parte da indústria. O 

desperdício alimentar ao longo da cadeia de produção motivou, também, o desenvolvimento destes novos 

sistemas. Assim, foram desenvolvidas novas abordagens na fabricação de embalagens, entre as quais a 

embalagem ativa. Esta embalagem é capaz de interagir com o meio envolvente, contribuindo para a 

preservação das propriedades do alimento e aumentar o seu tempo de preservação. 

Esta dissertação foca-se no desenvolvimento de um material para embalagem alimentar ativa, baseada 

em ácido poliláctico (PLA), um polímero biodegradável, ao qual foi adicionado extrato de chá verde (ECV), 

de modo a conferir propriedades antioxidantes. A compatibilidade entre PLA e o ECV foi avaliada através 

da produção de misturas de ambos no fundido. Após o estudo de compatibilidade, foram produzidos 

filmes por extrusão de filme tubular. Adicionaram-se diferentes quantidades de ECV ao PLA de modo a 

avaliar a sua influência na capacidade antioxidante dos filmes. Os materiais produzidos foram analisados 

por análise termo gravimétrica (TGA), calorimetria diferencial de varrimento (DSC) e espectroscopia de 

infravermelhos (FTIR). Foram também realizados ensaios mecânicos e ensaios para avaliar a capacidade 

antioxidante e determinar as propriedades de barreira ao vapor de água. Os resultados mostraram que 

a adição do extrato de chá verde confere capacidade antioxidante aos filmes, estando esta dependente 

da quantidade de ECV adicionado. Verificou-se que os filmes que contêm ECV apresentam estabilidade 

térmica e propriedades mecânicas inferiores às dos filmes sem ECV. No entanto, possuem melhores 

propriedades de barreira ao vapor de água. Estes filmes mostram-se eficientes na preservação de vários 

alimentos, incluindo maçã, batata e salmão fumado, retardando processos oxidativos que levam à sua 

degradação. 

 

Palavras-chave: Embalagem ativa, PLA, extrato de chá verde, antioxidante, biodegradável.
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ABSTRACT 

Over the years, plastic industry has been growing, and plastics are present in our daily basis. Synthetic 

polymers, due to their excellent properties (low cost, versatility, weight, among others), have been 

extensively used in a wide range of applications, especially in packaging production. Although the use of 

synthetic polymers has proven to be benefic, their accumulation in the environment has been one of the 

main causes of environmental issues, since they are extremely resistant to degradation. One of the 

alternatives for this problem has been the incorporation of biodegradable polymers of natural origin to 

replace synthetic polymers, in particular in the production of packages with a short life-cycle. At the same 

time, population growth and constant demand for quality, safety and healthy food products contributed 

to the development of new food packaging systems. The amount of food waste generated along the supply 

chain also played an important role in the development of these new systems. Thus, new approaches 

were developed in the manufacture of packaging, being active packaging one of these newer systems. 

This type of package interacts with the surrounding environment contributing to the preservation of foods’ 

properties and increasing their shelf-life. 

This dissertation was focused on the development of a material with application as active food packaging, 

based on polylactic acid (PLA), a biodegradable polymer, to which was added green tea extract (GTE), in 

order to confer antioxidant properties. The compatibility between PLA and GTE was evaluated by 

producing mixtures of both materials in the melt. After this compatibility study, films of the mixture were 

produced by using blown film extrusion. Different amounts of GTE were added to PLA to evaluate its 

influence on the films’ antioxidant capacity. The produced materials were analyzed by thermogravimetric 

analysis (TGA), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy 

(FTIR). The films’ mechanical properties were evaluated, as well as their antioxidant capacity and water-

vapor barrier properties. The results showed that the addition of green tea extract confers antioxidant 

capacity to the films, which is dependent on the quantity of GTE added. It was observed that films 

containing GTE have lower thermal stability and mechanical properties when compared with films without 

GTE. Nevertheless, they showed improved water-vapor barrier properties. These films proved to be 

efficient in the preservation of food, including apple, potatoes and smoked salmon, inhibiting oxidative 

phenomena that result in their spoilage. 

 

Keywords: Active packaging, PLA, green tea extract, antioxidant, biodegradable. 
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1. INTRODUCTION 

 

 Motivation 

Over the years, the consumption rate of synthetic polymers has grown in an astonishing fashion and it 

has become one of the most attractive materials in the industry, especially for packaging applications. 

These materials possess optimal characteristics, such as excellent mechanical and optical properties, 

ease to process, low cost of the raw materials and good aesthetic qualities. However, the massive increase 

of plastics production and consumption has been associated to environmental issues, especially due to 

their inappropriate disposal. For that reason, the packaging industry is investing in the development of 

new packaging systems, focused in the implementation and use of natural and biodegradable materials. 

The use of biodegradable materials, especially biopolymers, for packaging represents a viable solution to 

the growing environmental issues, since they possess similar properties to synthetic polymers and are 

biodegradable. 

Active packaging, one of the newer packaging systems, has attracted high interest in recent years. This 

type of packaging consists in the incorporation of active agents, which can possess antioxidant or 

antimicrobial properties, for instance, into a polymer matrix to increase the products’ shelf-life. Although 

this represents a viable approach to guarantee food preservation and a solution to environmental issues, 

the incorporation of this technology in the European packaging market is a slow process, due to the 

existence of a strict regulation. 

The present work is focused on the development of a material with application as an active packaging 

system based on the incorporation of green tea extract (GTE), known for its antioxidant properties, into 

polylactic acid (PLA), a biodegradable polymer. 
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2. STATE OF THE ART 

 

 European consumption of plastics 

Plastics’ consumption has been growing at a continuous rate, and it quickly became one of the most used 

materials worldwide, especially by the packaging industry, that looked at plastics as a viable option to 

replace traditional packaging materials, including cellulose-based materials (paper), glass and metal [1–

3]. This increase in consumption can be associated with populational growth, life-style changes (less time 

spent shopping for fresh products and cooking) and market globalization (products are distributed to 

longer distances, thus increasing the need for longer storage times, due to the nature of the existence of 

a wide variety of products), resulting in higher consumption of disposable products, including packed and 

ready-to-eat foods [4–7]. Figure 1 depicts the major applications of synthetic polymers in industry and its 

evolution over the years. It is possible to conclude that the packaging sector plays a fundamental role 

when it comes to polymer consumption. Also, it is an ever-growing sector due to the increase of the 

consumption of packed products, as already mentioned. 

 

 

Figure 1: Major applications of synthetic polymers in the European industry in 2006 (A) and in 2015 (B). Adapted from [8,9]. 

 

Generally, packaging is an element used to, not only assure mechanical support, preservation, protection, 

and containment to all types of products, but also include related information, representing an essential 

market that can be found in every industry [4,10]. In terms of food packaging, its main purpose is to 

ensure the protection of foodstuffs against external deteriorative effects, such as oxygen (O2), heat, 

microorganisms, light, presence or absence of moisture, among others, thus preserving food quality and 

extending products’ shelf-life [4,11]. It is important to assure that there are minimal interactions between 
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the packaging material and the food, in order to prevent the migration of substances that could 

compromise food quality and safety [11,12]. 

 

2.1.1 Packaging Materials 

As it is demonstrated in Figure 2, there is a wide variety of petroleum based polymers that are used in a 

wide variety of applications. Polymers such as polyethylene terephthalate (PET), polypropylene (PP), 

polyethylene (PE), low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), 

polyvinyl chloride (PVC) and polyurethane (PUR) are the most commonly used materials for packaging 

applications [2,13–15]. Their extensive use in the packaging industry is mainly due to their properties, 

such as low cost of raw materials, light weight, good gas barrier properties to O2, water (H2O), carbon 

dioxide (CO2), transparency, heat seal ability, chemical resistance, good mechanical properties and easy 

to process [2,4,10,13–17]. 

 

 

Figure 2: Plastics demand in Europe in 2006 (A) and 2015 (B). Adapted from [8,9]. 

 

However, these materials have disadvantages, including non-biodegradability, fossil fuels derived, use of 

high amounts of energy in their production, among others [2,18]. Due to these aspects and their longevity 

and widespread use in disposable packaging, they are associated to severe environmental issues [3,12–

14,19–21]. Depending on the applications, plastic materials can be recycled [13]. However, there are 

situations that their recycling is not a viable option, due to the presence of other materials (mixtures), 

additives (plasticizers) and contamination of the package by foodstuffs, for instance [3,13,17]. Usually, 

contaminated end-of-life products are disposed in landfills, however, when done inappropriately, lead to 

several environmental problems [3,14].                    

Thus, attempting to counteract and reduce the environmental impact caused by synthetic packaging, 
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biodegradable materials are being look at as an potential replacement of these materials in packaging 

applications [4,13]. The main objective of using biodegradable materials is associated to their capacity to 

mimic the biomass’s lifecycle. Therefore, these materials should be renewable and able to biodegrade 

into natural non-harmful products, including H2O, CO2 and methane (CH4), contributing to conservation of 

fossil resources [10,19,22,23]. 

So, a wide variety of biopolymers, which can be obtained from renewable and biodegradable resources, 

such as PLA, chitosan, thermoplastic starch, polyhydroxyalkanoates (PHA), among others, have been 

employed in packaging [4,14,24]. Figure 3 summarizes the existing natural biopolymers according to 

their origin. 

 

Figure 3: Natural biopolymers and their sources. Adapted from [10,25]. 

 

The use of these materials has several advantages, especially when it comes to be applied in packaging, 

since they are biodegradable, contribute to the conservation of fossil fuels, possess similar mechanical 

performance as synthetic polymers, among others [15,26]. 

However, the use of biopolymers in the production of packaging materials has several disadvantages, 

including their higher cost compared with the petroleum-based polymers, the use of land and resources 

to produce raw materials (agricultural crops) and lower performances in terms of thermal stability, melt 

strength and higher permeability to H2O and O2 [3,23,27].  
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2.1.2 Development of new packaging systems 

In order to keep up with population growth and changes in society, the packaging industry need to develop 

new systems able to preserve and maintain food safety and quality during all stages of the supply chain, 

until it reaches its final destination [4,6,7,13]. This resulted in the development of the concepts of active 

and intelligent packaging [4]. While active packaging is focused on the interactions between package, 

food and environment, in order to extend the shelf-life of a product, intelligent packaging “monitors the 

condition of the packaged food and the environment surrounding it” [4,13,28]. 

Based on these concepts, it is possible to produce a wide diversity of active and intelligent mechanisms 

that provide the packaging industry with the opportunity to develop a specific package for a specific food 

product [4]. They can promote ideal packaging conditions to extend shelf-life, but for that it is essential to 

understand how food’s unique spoilage mechanisms work and how they can be controlled [4]. 

However, there are some issues regarding the acceptance of these technologies, especially in Europe 

[13]. The existence of strict regulations (European Regulation 450/2009/EC [28]) on the materials that 

can be in contact with food, difficulty on the diffusion and implementation of active and intelligent 

packaging on the market, and lack of knowledge on their potential benefits in food preservation contribute 

to its slower penetration in the European market [4,12]. Also, the higher costs associated with them and 

the lack of acceptance also contribute to the slow implementation on the market [4].  

Although, there are possible solutions for this type of restraints. For example, the cost of the technology 

can be greatly reduced by expanding the range of applications in packaging, if consumers are willing to 

pay for the added benefits, and guarantee that consumers get the necessary information regarding the 

benefits of active and intelligent materials in food preservation [4,7,12]. 
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 Active packaging 

Active packaging can be defined as an innovative packaging strategy that was developed in order to fulfill 

the demands of an ever-growing society [6]. It is a system based in the interactions between package, 

product and environment, in order to extend the food products’ shelf-life or to enhance its sensory 

properties, while assuring product quality and safety [6,29]. However, due to market globalization, the 

packaging industry has been forced to develop an considerable amount of packaging systems that are 

capable to preserve and protect food products from external influences, maintaining food quality until it 

reaches its final destination [6,29]. Also, the implementation of this technology can have a positive impact 

on the cost-effectiveness of a product, by reducing food waste caused by food spoilage [4,17]. 

As a result of this, a wide variety of different active packaging systems for the food industry, including O2 

scavengers, CO2 absorbers, ethylene (C2H4) scavengers, antimicrobial, antioxidant, among others, were 

developed to enhance the shelf-life of a wide range of food products [6,29]. Extensive knowledge related 

to this system and mechanisms of actions can be found in the literature [11,30]. 

Regarding this technology, the current focus is to potentiate the incorporation of biopolymers in the 

production of active packaging systems [13,31]. This focus corresponds to the popular demand for a 

more extensive use of materials obtained from natural resources and the growing concerns about the 

environmental impact caused by the over usage of synthetic polymers. Furthermore, due to their 

properties, they can be used as a potential replacement for synthetic polymers for packaging applications 

[31]. Although there is a wide variety of biopolymers available in nature (Figure 3), only a few can be used 

in packaging applications [13], including PLA [5,16,32–34], protein films [31], chitosan [35,36], among 

others [37,38]. 

The demand for minimally processed food and the raising health concerns about the use of synthetic 

additives for food preservation [30,31] lead the packaging industry to replace such additives, by natural 

ones (obtained from plant extracts, herbs or spices) [39,40]. The incorporation of natural preservation 

agents in food packaging became a viable due to the fact that they can prevent microbial proliferation 

and oxidative activity, and by doing so, extend the shelf-life of food products [39]. Plant extracts or 

essential oils (EO’s) are the most used natural products in the packaging industry, since they are rich in 

phenolic compounds, known for their high antioxidant and antimicrobial properties [31,39]. 

The selection of the natural additive should be based on several aspects, including activity, availability, 

cost effectiveness, consumer awareness and effect on the sensory properties that it may have on the final 

product [39,40]. Also, the compatibility between the natural extract and the polymer matrix is of extreme 
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importance to assure a homogeneous distribution of the extract that can potentiate the efficiency of its 

antioxidant and/or antimicrobial effect [39,40]. 

Several additives rich in phenolic compounds have been incorporated into synthetic or biodegradable 

polymers to produce materials with antioxidant and antimicrobial capacity. Extracts of rosemary 

[1,41,42], grapefruit [43], green tea [31,35,37,44,45] and black tea [31,46] are some examples of 

natural additives tested in the production of active packaging systems. 

 

2.2.1 Antioxidant activity 

Antioxidant activity can be defined “as the delay or inhibition of oxidative reactions with lipids or other 

molecules by inhibiting the initiation and propagation step of lipid oxidation by forming stable radicals A•, 

which are non-reactive or form non-radical products” [39]. 

It is known that lipids play a critical role in food quality, especially when it comes to nutrition (essential 

fatty acids), health promotion (omega-3 fatty acids), among others [47]. Their oxidation is one of the main 

degradation phenomena, and represents one of the main concerns in the food industry [40,48]. It occurs 

when oxygen free radicals attack foodstuffs with high lipid content, especially unsaturated fatty acids, 

leading to loss of quality and safety during the stages of production, transport, processing or storage, 

reducing drastically the shelf-life and quality of packed products [37,40,43,47,48]. This results in the loss 

of nutritional value, due to degradation of essential nutrients, production of off-flavors and odors, and 

color changes, which turns food products inadequate for human consumption, causing economic impact 

to the food industry and leading to environmental issues [43,49]. 

Briefly, lipids’ oxidation can be described as “a free radical chain reaction between unsaturated fatty acids 

and reactive oxygen species” [48]. This process is dependent on the food type and it can be accelerated 

by the presence of reactive species and physicochemical environment [48,50]. It can be divided into three 

stages [47,48]: initiation; propagation; and termination. Equations 1 to 6 represent the mechanism of 

lipid oxidation [39,48]. 

 

RH
Initiator
→     R• + H•  (1) 

R• + O2  →  ROO
•  (2) 

ROO• + RH → ROOH + R•  (3) 

ROO• + ROO•  → ROOH + O2 (4) 

ROO• + R•  → ROOR  (5) 

R• + R•  → RR  (6) 
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The initiation step corresponds to the formation of a fatty acid radical, known as an alkyl radical (R•). This 

radical is formed by abstraction of a hydrogen in the presence of an initiator, such as heat, light, among 

others (Eq. 1) [48]. 

The propagation step corresponds to the reaction between O2 and the alkyl radical, resulting in the 

production of a peroxyl radical (ROO•) (Eq. 2). This peroxyl radical can abstract a hydrogen from another 

unsaturated fatty acid (RH) and form a stable lipid hydroperoxide (ROOH) and an alkyl radical (Eq. 2) 

[48]. The decomposition of the hydroperoxides (homolytic cleavage) into alkoxyl radicals (RO•) and 

hydroxyl radicals (•OH) can lead to the formation of secondary lipid oxidation products, such as aldehydes, 

ketones, alcohols, among others, responsible for the appearance of off-flavors and off-odors in foodstuffs 

[48]. 

The termination step corresponds to the interaction of two free radicals, which can be two peroxyl radicals 

(Eq. 4), a peroxyl radical and an alkyl radical (Eq. 5) and two alkyl radicals (Eq. 6) [48]. Generally, 

depending on the food product, this step does not have a significant importance, since food already 

suffered from severe rancidity before terminal reactions can occur [48]. 

An antioxidant (A) can prevent the propagation stage by reacting with the ROO• radicals forming stable 

ROOH and A• radicals, which are non-reactive species. 

Also, there are other oxidation mechanisms that can be inhibited by antioxidant compounds. In the case 

of fruits and vegetables, the oxidative degradation is related to the presence of polyphenol oxidases 

(PPOs), enzymes able to catalyze the oxidation of phenolic compounds into quinones in the presence of 

oxygen, producing the characteristic brown or black pigments in the wounded tissues [51,52]. Figure 4 

represents the enzymatic oxidation of a phenolic compound. 

 

 

Figure 4: Scheme of the enzymatic oxidation of a phenolic compound. Adapted from [52]. 
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 Biodegradation 

Biodegradation can be defined as the chemical process that converts organic materials into CO2, H2O and 

biomass, which can result from microorganisms intervention [15]. This process depends on the presence 

of three indispensable factors: conditions (temperature, humidity, presence of microorganisms, etc.); 

environment (industrial, compositing plant, garden, etc.) and the material [53]. The phenomenon of 

biodegradation of polymers occurs in two different stages. In a first stage occurs a primary degradation, 

where polymer chains are fragmented by hydrolysis, or other type of oxidative reactions, into smaller 

chains. This step can be initiated by different factors, including heat, microbial enzymes, etc. In a second 

stage, the smaller chains are assimilated by microorganisms and converted into H2O, biomass, CO2, and 

CH4 (if biodegradation occurs in anaerobic conditions) [15,53]. Figure 5 represents the general 

degradation process of polymers. 

 

Figure 5: Scheme of the general degradation process of a polymer [21]. 
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 Polylactic acid 

PLA is a highly versatile, biodegradable and bio-based aliphatic polyester that can be produced during the 

fermentation of agricultural products rich in starch, such as maize, wheat, corn, tapioca, among others 

[5,24,27,32,42,53,54]. At an industrial scale, PLA can be produced by direct polymerization of lactic acid 

or by ring-opening polymerization of lactide dimers, being the last one the most widely used production 

process in the industry [23,53,55]. The production of lactic acid is a process that involves the starch 

hydrolysis to dextrose, which, in its turn, is converted into lactic acid by fermentation [3,23,27,56]. 

In Figure 6 is depicted the chemical conversion of lactic acid into PLA through ring-opening polymerization. 

 

 

Figure 6: Conversion of lactic acid into PLA through ring-opening polymerization. Adapted from [56]. 

 

PLA can be used for packaging applications due to its good mechanical properties (high tensile strength, 

Young’s modulus and good flexural strength), biocompatibility, good processability, biodegradability and 

monomer renewability [20,24,55,57]. 

However, it has several drawbacks, such as inherent brittleness, poor barrier properties to H2O and O2, 

low thermal resistance, low-flexibility, low resistance to hydrolysis and slow crystallization rate, which can 

affect the performance of this material in certain packaging applications (hot packaging) 

[15,20,24,34,58].  

Currently, PLA is considered one of the most attractive biopolymers on the market, especially due to its 

relevance in the production of short-term or disposable goods, such as throwaway cutlery (plates, cups, 

drinking straws, etc.), bags, film packaging and biomedical applications [20,24]. Additionally, it can be 

used to produce rigid and flexible food packaging and “durable” products for the automotive and 

electronics industry [24,34]. 
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2.4.1 Biodegradability of PLA 

Biodegradability is a process where a material is chemically converted into CO2, O2, among others. PLA 

in particular, first suffers hydrolysis of ester [C(O)-O-C] bonds in the main polymer chain by reaction with 

H2O (Figure 7) [15,59]. This results in the production of compounds with lower molecular weight (Mw), 

such as lactic acid oligomers [59], which are assimilated by microorganisms and further converted into 

H2O, CO2 and biomass [60].  

 

 

Figure 7: Hydrolysis of PLA. Adapted from [61]. 

 

2.4.2 Studies related with the use of PLA in active packaging 

Among the biopolymers used in the packaging industry, PLA is considered one of the most important 

[24]. Several reports can be found in the literature investigating the influence of natural compounds, such 

as plant extracts and EO’s on its properties. 

Arrieta et al. [34] demonstrated that the addition of limonene influenced the mechanical properties of 

PLA, such as increasing the elongation at break and decreasing the elastic modulus. They also observed 

that the incorporation of limonene reduces the barrier properties of PLA, due to an increase of the 

molecular mobility. Ruiz-Cabello et al. [5] studied the incorporation of Allium spp. on PLA films to produce 

a material for packaging of ready-to-eat salads. The active substance did not affect the optical and 

mechanical properties of the material. However, it was observed that the active substance can reduce 

significantly the microbial activity, extending the salads’ shelf-life. Qin et al. [42] studied the incorporation 

of bergamot, lemongrass, rosemary or clove essential oils in PLA. The mechanical and antimicrobial 

properties of PLA/EO’s were superior to those of pristine PLA. They also reported that the water-vapor 

permeability (WVP) of PLA/EO films was higher when compared to the film of pure PLA. Samsudin et al. 

[33] studied the incorporation of marigold flower extract into PLA for the production of films to be used in 

the packaging of fatty-food. The marigold extract decreased the WVP by 21%, when compared to pristine 

PLA. They also report that the extract did not influence the PLA’s thermal properties and O2 permeability. 
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 Green tea extract 

Tea, derived from Camellia sinesis (L.), is considered to be one of the most consumed beverages in the 

world [39]. This is mainly due to the benefits that they have to human health, such as antioxidant, 

antimicrobial, anti-inflammatory, anticarcinogenic activity, among others [39]. 

Different varieties of tea are obtained by fermentation and heating of tea leaves. This promotes the 

polymerization of catechins and conformational changes, which have a direct impact on the tea’s 

properties [39,50]. Depending on the degree of fermentation, tea can be classified in three principal 

types, non-fermented-green tea, which possesses the higher concentration of phenolic compounds, semi-

fermented-oolong tea and fermented-black tea, which possess the lowest concentration of phenolic 

compounds [39,50]. 

Tea’s chemical composition is rather complex, consisting of polyphenols (flavonoids and catechins), 

alkaloids (caffeine, theobromine, theophylline, etc.), volatile oils, polysaccharides, amino acids, lipids, 

uncharacterized compounds, among others [31,39,50,62]. Of all components, catechins are the most 

important natural compounds present in tea, especially due to their antioxidant activity. In the recent 

years, there was an emerging interest in polyphenolic compounds, due to their numerous benefits for 

human health [63]. 

Figure 8 depicts the chemical structures of the different catechins that can be found in green tea. 

 

 

Figure 8: Chemical structures of catechins that can be found in green tea extract. Epicatechin (A), epicatechin-3-gallate (B), 

epigallocatechin (C) and epigallocatechin-3-gallate (D). Adapted from [50]. 
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Polyphenols have the ability to scavenge free radicals, terminating the radical chain reactions that occur 

during lipids’ oxidation [36,50,62,64]. This radical scavenging activity is directly dependent of the 

molecular structure and pattern of the hydroxyl groups of polyphenols [64]. These substances play an 

extremely important role in the control or delay of rancidity, discoloration and deterioration of foodstuffs 

[50]. 

 

2.5.1 Developed work using GTE in active packaging 

Several studies were conducted evaluating the effect of GTE on packaging materials, including the 

products’ properties, and antioxidant and/or antimicrobial capacity. Peng et al. [22] studied the influence 

of tea extracts (green tea extract and black tea extract) in chitosan-based films. The authors observed a 

decrease of WVP and an enhancement of the antioxidant capacity, especially when GTE was added. Colon 

et al. [43] studied the role of catechins in the antioxidant capacity of a film layer containing green tea, 

green coffee and grapefruit extract. The authors observed that GTE showed the strongest antioxidant 

activity, which was associated to the higher content of catechins in GTE. Yang et al. [31] studied the 

incorporation of tea extracts, including GTE into protein films to produce films with antioxidant capacity. 

The authors reported that the addition of GTE did not affect the mechanical properties of the film. In terms 

of radical scavenging activity, they reported that the protein film containing GTE showed a higher 

antioxidant activity. Medina-Jaramillo et al. [38] studied the influence of green tea extract and basil in 

cassava starch and glycerol films. The authors observed that the film containing GTE showed significant 

antioxidant activity, which was associated to a higher content of phenolic compounds. The addition of 

GTE and basil to the thermoplastic starch reduced the material’s water vapor permeability. Siripatrawan 

et al. [35] studied the influence of GTE on the physical properties of a chitosan-based film and evaluated 

the antioxidant activity. The authors reported that the incorporation of GTE into chitosan resulted in an 

improvement of its mechanical and water vapor barrier properties and enhanced its antioxidant activity. 

Giménez et al. [65] reported the influence of GTE on the physical properties of agar and agar-fish gelatin 

films. The authors observed that the addition of GTE reduced the tensile strength and elongation at break 

of both films. The water vapor permeability and water resistance of both films were not affected, but the 

GTE promoted higher water solubility. 
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 Objectives 

This thesis is focused on the development of a material based on PLA, a biodegradable polymer, with 

antioxidant capacity, for potential use as active packaging. GTE was expected to have a good compatibility 

with the PLA matrix and was used to endow the polymer with antioxidant capacity. 

One of the objectives of the work was to produce films of the prepared material by blown film extrusion. 

It was also expected to evaluate the films performance in the preservation of sliced apples and potatoes 

as a well as smoked salmon.



 

 

  



Active packaging based on PLA/Green tea extract 

17 

3. EXPERIMENTAL 

 

 Materials 

PLA pellets (Ingeo 4032D, Natureworks™), green tea extract (MyProtein, Batch L704906709), potassium 

bromide (99%+, Arcos organics) and calcium chloride hexahydrate (CaCl2.6H2O, extra pure, Riel de Haën) 

were dried before use. Red apples (royal gala), red potatoes (désirée) and smoked salmon were bought 

at a local market. 

  

 Internal mixing 

PLA and GTE mixtures were prepared in a Haake™ Reomix Lab Mixer and the experimental data was 

acquired with the Haake™ PolyLab™ OS System. 

Before processing, PLA and GTE were dried at 60 ºC in a vacuum oven overnight, to minimize the 

presence of humidity, due to the hygroscopic behavior of both materials. The mixtures were processed 

using the following conditions: 175 ºC, counter rotating double screws at 100 rpm, total sample weight 

of 48 grams (g) (Table 1) and 5 minutes of residence time. In a first stage, PLA pellets were loaded on 

the batch mixer and melted for 4 minutes. Then, different amounts of GTE (1 wt.%, 2 wt.%, and 4 wt.%) 

were added to PLA and mixed for 1 minute, to minimize the GTE thermal degradation. 

 

Table 1: Mixtures composition. The samples were identified according to the percentage of GTE added. 

Sample PLA (g) GTE (g) 

PLA 1% GTE 47.5 0.483 

PLA 2% GTE 47.0 0.965 

PLA 4% GTE 46.1 1.934 

 

 Preparation of a PLA and GTE masterbatch mixture 

A masterbatch mixture with approximately 8 wt.% of GTE was produced in a Leistritz AG LSM 34 6L co-

rotating twin screw extruder with 8 heating zones, at 190 ºC, with a screw speed of 100 rpm, a throughput 

of 1.5 kg/h and 5 minutes of residence time. Before processing, PLA and GTE were dried at 80 ºC for 4 

hours in a vacuum oven. To minimize GTE degradation, the powder was added on a forward part of the 

extruder by a secondary feed system. The mixture was extruded as filaments, cooled in water, dried and 

granulated. 
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 Blown film extrusion 

Films of the PLA and GTE mixtures were produced with a Periplast blown extruder, with a single screw 

and the following conditions: 50 rpm, 170 ºC on the first heating zone and 175 ºC on the remaining 

zones. Both materials (PLA and masterbatch) were dried before the extrusion at 60 ºC in a vacuum oven 

overnight. Different amounts of the masterbatch mixture with 8 wt.% GTE were added to PLA to produce 

films containing 1 wt.% and 2 wt.% of GTE (Table 2). 

 

Table 2: Mass of PLA and PLA masterbatch added to produce films with 1 wt.% and 2 wt.% of GTE. 

Sample PLA (g) Masterbatch (g) 

PLA 1% GTE film 867 131 

PLA 2% GTE film 737 263 

 

 Thermogravimetric analysis (TGA) 

Thermogravimetric measurements were performed on a TA Q500 thermobalance. Pristine PLA was 

heated from 40 ºC to 550 ºC at 10 ºC.min-1, while the rest of the samples were heated from 40 ºC to 900 

ºC at 10 ºC.min-1 under a nitrogen atmosphere (60 mL.min-1). 

 

 Differential scanning calorimetry (DSC) 

The thermal behaviour of PLA and GTE was determined using a NETZSCH DSC 200 F3 under inert 

atmosphere (nitrogen). The samples were sealed in aluminium pans and placed in the equipment. GTE 

sample was heated from 30 ºC to 150 ºC at a heating rate of 10 ºC.min -1 and then cooled to 30 ºC with 

at 20 ºC.min-1. PLA sample was heated from 30 ºC to 250 ºC at 10 ºC.min -1, cooled to 30 ºC with at 20 

ºC.min-1 and reheated to 250 ºC. Samples of the films were analysed using the same parameters used to 

pristine PLA. 

 

 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra were acquired using a 4100 Jasco spectrometer in the range of 4500-400 cm-1-, by averaging 

32 scans and using a resolution of 8 cm-1. Translucent thin films, prepared by compression molding in a 

hot press at 170 ºC under a pressure of 10 tons, of pristine PLA, Haake™ samples, masterbatch mixture 

and extruded films were used in the analysis. A translucent sample disc of GTE (10 wt.% in KBr) was used 

to acquire the FTIR spectrum. 
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 Mechanical properties 

The tensile properties of the films were determined at room temperature using a Zwick/Roell Z005 

equipment, following the ASTM D 882 – 02 standard [66]. 

The mechanical properties were determined using longitudinal specimen. Five specimens of each sample 

were prepared with 310 x 20 mm and tested using an initial grip separation of 250 mm and an elongation 

rate of 25 mm.min-1. Stress/strain curves were used to determine yield stress (stress), yield strain (strain), 

tensile strength (strength), strain at break (break) and Young’s modulus (EYoung). 

 

 Water vapor transmission assays 

The water vapor barrier properties of the extruded films were determined based on the ASTM E 96/E 

96M – 05 standard [67]. The desiccant method was used to determine the value of water vapor 

transmission (WVT). The films were placed in test dishes, with a surface diameter of 69.5 mm, filled with 

approximately 25 g of CaCl2.6H2O, previously dried at 150 ºC in a vacuum oven. The assay was conducted 

at room temperature in triplicate. The weight was measure along the assay and until a relative humidity 

(RH) of 10% has been achieved. 

 

 Evaluation of food’s preservation 

3.10.1 Sliced apples and sliced potatoes 

To evaluate the films’ capacity to preserve food’s quality, samples (red apple, red potato) were packed in 

small bags (70 mm x 50 mm), sealed, refrigerated at 4 ºC, and monitored for 3 days. Unpacked samples 

were also included. The assay was performed in triplicate. Samples were collected at controlled time 

periods and photographed to visually compare the spoilage evolution. 

 

3.10.2 Smoked salmon 

This assay was carried out by Cristiana Martins as part of her master’s thesis. 

Smoked salmon slices (acquired in a local market), with approximately 40 g were packed with PLA films 

without GTE (control) and with 1 wt.% and 2 wt.% of GTE. The packages were vacuum sealed to promote 

an optimal contact of the films with the salmon. The samples, refrigerated at 5 ºC, were monitored for 

60 days and evaluated in different time periods (0, 15, 30, 45 and 60 days). 

The sample’s preservation was evaluated by studying the lipid’s oxidation, based on the determination of 

the p-anisidine value, according to the British Standard Method BS 684-2.24-1998 [68]. 
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 Characterization of GTE 

This characterization was performed by Cristiana Martins as part of her master’s thesis. 

 

3.11.1 Antioxidant Capacity 

The 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, adapted from the method reported by Moure 

et. al [69], was used in the evaluation of the antioxidant capacity of GTE. 

50 µl of a methanolic solution of GTE (0.1 mg/mL) were added to 2 mL of a methanolic solution of DPPH• 

(14.2 µg/mL), protected from the light. After 30 minutes, the absorbance of DPPH• was measured at 

515 nm. 

The inhibition percentage (IP%) of the DPPH radical was determined based on the reduction of the initial 

absorbance, according to equation 7, where IP (%) is the inhibition percentage of DPPH radical, Ac stands 

for the control absorbance, and AA30 corresponds to the sample’s absorbance after 30 minutes. 

 

IP (%) =  
Ac−AA30

Ac
× 100 (7) 

 

The antioxidant activity was evaluated by comparison to 6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid (Trolox) activity, known as Trolox Equivalent Antioxidant Activity (TEAC), and it was 

measured in µg ET/mL [70]. 

 

3.11.2 Quantification of phenolic compounds 

The quantification of total phenolic compounds was performed according to the method reported by Erkan 

et al. [71]. 

7.5 mL of an aqueous solution of Folin-Cioucalteu reagent (1:10 v/v) was added to 1 mL of a GTE solution 

and the mixture was left to rest at room temperature for 5 minutes. Then, 7.5 mL of an aqueous solution 

of sodium carbonate (Na2CO3, 60 mg/ml) were added to the mixture. After 120 minutes in the dark, the 

mixture’s absorbance was measured at 725 nm. The assay was performed in triplicate, using solutions 

with 0.1 mg/mL, and the results expressed in gallic acid equivalents (GAE). 
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3.11.3 Quantification of flavonoids 

The quantification of the total flavonoid content was performed based on the method reported by Yoo et 

al. [72]. 

In a test tube, 1 mL of the GTE sample was diluted to 5 mL by addition of 4 mL of ultrapure water. 0.3 

mL of sodium nitrite (5% w/v) were added to the solution. 0.6 mL of aluminium chloride (10% w/v) were 

added 5 minutes after. Upon 6 minutes, 2 mL of 1 M sodium hydroxide and 2.1 mL of distilled water 

were added to the mixture. The mixture’s absorbance was measured at 510 nm. The assay was 

performed in triplicate, using solutions with 0.5 mg/mL, and the results expressed in epicatechin 

equivalents per g of sample (mg of ECE/g of sample). 

 

 



 

 



Active packaging based on PLA/Green tea extract 

23 

4. RESULTS AND DISCUSSION 

 

 Characterization of the raw materials 

The compatibility of PLA and GTE is a crucial aspect to produce functional materials. This condition was 

investigated by producing mixtures of both materials, containing different amounts of GTE. These mixtures 

were produced by internal mixing, using processing conditions that would minimize the GTE’s 

degradation. 

PLA is a biodegradable polymer, with a thermal degradation that can be classified as complex, dependent 

on several conditions, such as moisture, oxygen, among others [61,73]. As it was reported in several 

studies, PLA’s thermal degradation can occur by several mechanisms, such as hydrolysis by trace 

amounts of water or by random oxidative chain scission, among others, which target the ester groups 

present in PLA, resulting in a molecular weight reduction and formation of lactide monomers and 

oligomers [61,73–75]. Observing the PLA’s thermogram (Figure 9), it is possible to observe a profile with 

a single degradation step, occurring at 321.36 ºC, resulting in a weight loss of 98.59%. This behaviour is 

similar to that reported by other authors [61,74,76]. 

GTE is a natural extract, very sensitive to high temperatures, as it can be seen on its thermogram (Figure 

9), meaning that it can easily lose antioxidant activity due to the degradation of its active compounds. In 

its thermogram is possible to identify a more complex degradation profile. From 145 ºC to 442 ºC, GTE’s 

degradation profile is related with to the glycosylation of catechins and of other components, resulting in 

a weight loss of 46.8%. Catechins, due to heating, start to suffer a “caramelization” process, causing the 

weight loss that is observed in Figure 9. This region, since corresponds to a temperature range in which 

PLA is thermally stable, can be used to evaluate the GTE presence in the mixtures. The steady decrease 

of weight that is verified between 442 ºC and 900 ºC can be related to the degradation of aromatic 

structures. It is also possible to observe that at 900 ºC, the percentage of weight residue is 32.44%. These 

results are in accordance with the literature [77–79]. 
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Figure 9: TGA thermograms of pristine PLA (black) and GTE (grey). 

 

Another method that was used to characterize the raw materials was FTIR spectroscopy (Figure 10). In 

this test, the main objective was to identify each of the materials’ characteristic chemical bonds that are 

present in their chemical structure of PLA or of the components in the extract mixture. 

In the PLA’s spectrum, three peaks at 2994 cm-1, 2944 cm-1 and 2881 cm-1 were attributed to the C-H 

stretching. The peak located at 1760 cm-1 was associated to the C=O stretching. The peak at 1465 cm-1 

was assigned to C-H bending. The stretching band located at 1176 cm-1 indicated the presence of the C-

O-C bond, which can be associated with the ester groups. It is also possible to identify the presence of C-

CH3 stretching at the peak of 1045 cm-1. The results are in accordance with those reported in the literature 

[80]. 

Regarding the GTE’s spectrum, the broad band centered at 3347 cm-1 was attributed to the O-H stretching. 

The peak at 2927 cm-1 was assigned to the C-H stretching. The peak at 1697 cm-1 was associated with 

C=O stretching. It was also identified a C=C stretching band centered at 1629 cm-1, which is characteristic 

of cyclic alkenes (benzene rings). The peak at 1367 cm-1 can be identified as the O-H bending. The peaks 

at 1238 cm-1 and 1039 cm-1 were associated to the presence of C-O stretching, which can be related to 

the presence of aromatic ether groups in. Due to the complexity of components that are present in GTE, 

it is difficult to associate a certain chemical bond to a certain component, since most of the components 
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have similar chemical bonds on their structure. Similar analysis of the GTE’s spectrum can be found in 

the literature [79,81]. 

 

 

Figure 10: FTIR spectra of pristine PLA (A) and GTE (B). 
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The GTE antioxidant activity, based on the DPPH• method [69,70], the amount of phenolic compounds 

[71] and flavonoids [72] were determined by Cristiana Martins as part of her master’s thesis. It was found 

that GTE has a DPPH radical inhibition of 917 ± 8.7 µg TE/g extract. The total phenolic compounds in 

GTE was quantified as 416 ± 9.95 mg GAE/g of extract. An amount of 148 ± 0.21 mg ECE/g of extract 

was determined as the total content of flavonoids in GTE.  

 

 Characterization of the obtained mixtures 

The thermograms of the mixtures (Figure 11) show a single degradation step for PLA 1% GTE, occurring 

at 310.18 ºC, resulting in a weight loss of 97.69%. A single degradation step is also observed for PLA 2% 

GTE and for PLA 4% GTE, occurring at 295.04 ºC and 292.16 ºC with a weight loss of 97.06% and 

94.24%, respectively. Thus, increasing the amount of GTE reduces the thermal stability of the mixture, 

making the material more susceptible to thermal degradation. 

Another aspect observed was related to the residual material at 900 ºC, which increases with the amount 

of GTE, as expected. As it was observed for the GTE, it is not completely degraded at this temperature, 

while PLA does (Figure 9). 

 

 

Figure 11: TGA thermograms of the mixtures produced by internal mixing. PLA 1% GTE (light blue), PLA 2% GTE (orange) 

and PLA 4% GTE (grey). 
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The mixtures were also characterized by FTIR (Figure 12). This analysis was performed to confirm the 

presence of GTE, which can provide some data on the miscibility between PLA and GTE. Based on the 

FTIR analysis of both raw materials (Figure 10), the presence of GTE can also be confirmed by the 

appearance of characteristic O-H and C=C stretching band in the mixtures’ spectra. As it is expected, the 

addition of higher amounts of GTE resulted in the appearance of more pronounced vibrational bands 

related to the extract [22].  

 

 

Figure 12: FTIR spectra of the PLA 1% GTE (A), PLA 2% GTE (B) and PLA 4% GTE (C) mixtures. The insets were acquired 

with a resolution of 2 cm-1 to allow a more detailed perspective of the GTE’s characteristic vibrational bands. 
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Based on the mixtures characterization and on their visual aspect, it was decided that the sample 

containing 4 wt.% of GTE would not be used in the production films, since this amount of GTE darken the 

PLA in such a way that it became almost opaque. This is not an ideal property for the production of an 

active package for food products. Thus, it was decided to produce films containing only 1 wt.% and 2 wt.% 

of GTE. 

 

 Production of PLA-based films 

4.3.1 Production of a PLA/GTE masterbatch 

A PLA/GTE masterbatch mixture was produced to allow the preparation of more homogeneous mixtures 

that would promote a better dispersion of GTE within the PLA matrix during the extrusion. The thermal 

stability of this masterbatch was studied by TGA (Figure 13). Its thermogram exhibits a degradation profile 

similar to that observed for the mixtures prepared in the Haake (Figure 11). The most pronounced 

degradation occurs at 295.36, resulting in weight loss of 97.4%. Nonetheless, there is a small initial 

weight loss and, at 900 ºC, it still remains 2.33% of the initial sample weight, both related to the GTE. 

The weight loss at 900 ºC, since it is only related to GTE, allowed to estimate a GTE content in the mixture 

of 7.41%. 

 

 

Figure 13: Thermogram of PLA Masterbatch. 
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In the FTIR spectrum of the PLA/GTE masterbatch (Figure 14), it is possible to identify PLA’s characteristic 

vibrational bands, such as the C-H stretching, located at 2994 cm-1, 2944 cm-1 and 2881 cm-1, C=O 

stretching at 1760 cm-1 and the [C(O)-O-C] stretching at 1176 cm-1. We can also identify GTE’s 

characteristic vibrational bands, such as O-H stretching centered at 3347 cm-1, C=C stretching at 1666 

cm-1, O-H bending at 1367 cm-1 and the C-O stretching at 1238 cm-1 and 1039 cm1.  

 

 

Figure 14: FTIR spectrum of PLA/GTE masterbatch. The inset was acquired with a resolution of 2 cm -1 to allow a more 

detailed observation of the GTE’s characteristic vibrational bands. 

 

 Characterization of the films 

Figure 15 depicts the PLA-based films produced. As expected, films containing GTE have a brownish color 

and are less transparent, which are aspects dependent on the amount of GTE added. 

 

 

 

 

 

C=C 

O-H 
C=C 
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Figure 15: Visual appearance of the films of PLA (A), PLA 1% GTE film (B) and PLA 2% GTE film (C). 

 

The films showed a slight different thermal stability (Figure 16) than the mixtures prepared in the Haake 

(Figure 11). In this case, the major degradation step occurs at higher temperatures, 304.4 ºC, resulting 

in a weight loss of 98.76% and 97.57%, respectively for PLA 1% GTE film and PLA 2% GTE film. In what 

concerns the amount the residue at 900 ºC, it is not proportional to the amount of GTE, in contrast to 

what was observed for the mixtures prepared in the Haake mixer. In this case, the GTE was exposed to 

high temperatures for a second time, which results in a different thermal behavior. Nevertheless, at lower 

temperatures, the film with 2 wt.% GTE shows a higher weight loss, which is in agreement with the higher 

content of extract. 

 

 

Figure 16: Thermogram of PLA 1% GTE film (blue) and PLA 2% GTE film (brown). 

  

A C B 
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Figure 17 depicts the thermograms obtained for pristine PLA, GTE and the two extruded films, and in 

Table 3 are indicated the glass transition temperature (Tg), melting temperature (Tm) and cold 

crystallization temperature (Tcc) determined for each material. 

In the GTE’s thermogram, since it is a mixture of low Mw compounds, it only presents a Tm peak at 112.5 

ºC. In the cooling cycle, the appearance of a crystallization peak at 136.2 ºC was attributed to the 

crystallization of GTE components. 

In the first heating cycle, the PLA’s thermogram shows a slight Tg peak at 76.5 ºC and a Tm peak at 

171.7 ºC. This is consistent with the behavior of a semi-crystalline PLA. In the cooling cycle, PLA does 

not show any crystallization, since the rapid cooling rate (20 ºC/min) inhibits the rearrangement of the 

PLA chains into crystalline regions, thus the material became amorphous. In the second heating cycle, 

PLA’s thermogram exhibits a well-defined Tg peak at 67.5 ºC. The non-existence of a Tm peak confirms 

that the sample is amorphous. This type of behavior on PLA is reported in literature by Signori et al. [76]. 

On the thermogram of the extruded films’ first heating cycle, it was possible to observe Tg peaks around 

68 ºC for both samples, which corresponds to reduction of the Tg when compared to pristine PLA. This 

shows that GTE enhances the molecular mobility. This type of behavior is in accordance with other studies 

where natural compounds reduced the PLA’s Tg [5,34]. It was also possible to observe the occurrence of 

cold crystallization with at 111 ºC and 109.5 ºC (Tcc), respectively for PLA 1% GTE film and PLA 2% GTE 

film. This phenomenon occurs at temperatures close to the GTE’s Tm (112.5 ºC). This could mean that 

upon its melt, the GTE promotes a higher molecular mobility that result in the rearrangement of 

amorphous regions into crystalline domains [76]. Regarding the Tm of the extruded films, for PLA 1% GTE 

film the melting occurred at 174.9 ºC while for PLA 2% GTE film occurred at 172 ºC, which is superior to 

the Tm of pristine PLA. This could be related to the effect of GTE on the PLA’s crystalline structure. As 

observed for pristine PLA, the rapid cooling of the samples does not promote the formation of crystalline 

regions. 

In the second heating cycle, it was observed lower Tg, 64.3 ºC for PLA 1% GTE film and 62.3 ºC for PLA 

2% GTE film. Regarding the cold crystallization, it is noticeable that the Tcc peaks are slightly sharper and 

appear at higher temperatures. The PLA’s melting is highly affected in the second heating. Not only it 

occurs at lower temperatures, but it is also related to the melting of two crystalline structures.  

Badia et al. [82] observed a similar behavior when studying the effect of reprocessing PLA on its thermal 

properties. 
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Figure 17: DSC thermograms of pristine PLA (green), GTE (red), PLA 1% GTE film (blue) and PLA 2% GTE film (brown). First 

heating cycle (solid lines) and cooling cycle (dash lines) (A) and second heating cycle (B). 

 

Table 3: Temperatures of the events observed in the DSC thermograms. 

Sample 
First heating cycle Second heating cycle 

Tg (ºC) Tcc (ºC) Tm (ºC) Tg (ºC) Tcc (ºC) Tm (ºC) 

PLA 76.5 - 171.7 67.5 - - 

GTE - - 112.5 - - - 

PLA 1% GTE film 68.0 111 174.9 64.3 119.4 154.2 and 158.8 

PLA 2% GTE film 68.0 109.5 172.6 62.3 122.1 149.0 and 154.1 

 

A FTIR analysis was performed to confirm the films’ composition (Figure 18). The FTIR spectra of the 

extruded films are similar to those obtained with the mixtures with the same amount of GTE prepared in 

the Hakke (Figure 12). The characteristic peaks of GTE related to O-H stretching, centered at 3347 cm-1 

are not noticeable on the FTIR spectra of the extruded films. However, it is noticeable the C=C stretching 

vibrational band at 1666 cm-1. Once again, the low GTE content in the films does not have a high impact 

on the FTIR spectra. 
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Figure 18: FTIR spectra of PLA 1% GTE film (A) and PLA 2% GTE film (B). The insets were acquired with a resolution of 2 cm-

1 to allow a more detailed observation of the GTE’s characteristic vibrational bands. 
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The mechanical performance, and the effect of GTE content of the extruded films were evaluated by 

tensile assays (Figure 19 and Table 4). 

In terms of the GTE’s influence on the mechanical properties of PLA, it was observed that its incorporation 

resulted in the reduction of the yield stress. The addition of 1 wt.% of GTE caused a reduction of 8.2%, 

while 2 wt.% GTE reduced the yield stress by 0.3%. The addition of GTE also had an impact on the PLA’s 

tensile strength. It was observed that 1 wt.% of GTE caused a reduction of 11.9%, while 2 wt.% reduced 

12.0%. Regarding the yield strain, it is possible to conclude that it is enhanced by the GTE. The addition 

of 1 wt.% GTE caused an increase of 0.3%, while 2 wt.% GTE increased the yield strain by 0.1%. Also, the 

addition of GTE increased the strain at break of PLA, 9.6% due to 1 wt.% GTE and 36% due to 2 wt.% GTE. 

The increase of both yield strain and strain at break is correlated with the increase of molecular mobility 

caused by the addition of GTE. Regarding the effect of GTE on the Young’s modulus of PLA, it was 

observed that the addition of 1 wt.% of GTE caused a reduction of 5.3%, while 2 wt.% GTE caused an 

increase of 2.9%. Despite the differences observed, the addition of GTE only had a significant impact in 

the strain at break of the PLA 2% GTE film. 
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Figure 19: Mechanical properties of the extruded films: A) yield stress, B) tensile strength, C) yield strain, D) strain at break 

and E) Young’s modulus. 

 

Table 4: Mechanical properties of the extruded films and their standard deviation (SD). 

Sample 
stress 

± SD (MPa) 

strength 

± SD (MPa) 

strain 

± SD (%) 

break 

± SD (%) 

EYoung 

± SD (MPa) 

PLA 
44.55 

± 7.042 

40.21 

± 8.100 

2.42 

± 0.214 

3.63 

± 0.62 

2274.6 

± 210.75 

PLA 1% GTE film 
40.91 

± 2.438 

35.42 

± 1.945 

2.49 

± 0.226 

3.98 

± 0.43 

2152.2 

± 249.84 

PLA 2% GTE film 
44.39 

± 3.686 

35.37 

± 4.061 

2.44 

± 0.123 

4.94 

± 0.34 

2340.1 

± 209.62 
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As it is well documented in the literature, biopolymers, such as PLA possess low barrier properties, which 

limits their applications for packaging, especially on food products that are highly susceptible to O2 or H2O 

[45]. 

The water-vapor transmission (WVT) of PLA films was evaluated to understand the influence of GTE on 

the PLA’s barrier properties. The assays were performed following the desiccant method (ASTM E 96/E 

96M – 05) [67], monitoring the desiccant weight until a relative humidity (RH) minimum of 10% was 

achieved. In Figure 20 is depicted the amount of water absorbed by the desiccant over time. The samples’ 

conditions and the WVT rates determined are summarized in Table 5. 

From the results, it is possible to conclude that the addition of GTE improves the PLA’s water-vapor barrier 

properties, decreasing 21.5% and 34.9% the water vapor transmission when 1 wt.% of GTE and 2 wt.% of 

GTE, respectively, were added. 

 

 

Figure 20: Evolution of the amount of water absorbed by the desiccant over time: PLA (circle), PLA 1% GTE film (square) and 

PLA 2% GTE film (triangle). 
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Table 5: Contact area, films’ thickness, WVT rates calculated and their standard deviation (SD). Their results are the mean 

of three independent replicas. 

Sample 
Contact 

area (m2) 

Film thickness 

± SD (mm) 

WVT ± SD 

(g.h-1.m-2) 

PLA 

0.039 

0.05 ± 0.01 3.35 ± 0.68 

PLA 1% GTE film 0.05 ± 0.01 2.63 ± 0.48 

PLA 2% GTE film 0.08 ± 0.02 2.18 ± 0.40 

 

 Food preservation assays 

The PLA/GTE films were produced aiming the development of a material with antioxidant properties that 

could be used as an active packaging system, inhibiting food’s oxidative degradation. To evaluate its 

potential to serve this purpose, several assays of food preservation were conducted, evaluating the 

spoilage of sliced apples, sliced potatoes and smoked salmon. These products were selected since they 

are very common in people’s diet, whose lifestyle demands for ready to eat or ready to cook food. 

 

4.5.1 Preservation of sliced apple 

Apples, upon being sliced are immediately subjected to oxidative degradation due to polyphenol oxidases 

(PPOs), which are enzymes that catalyze the oxidation of phenolic compounds (i.e. chlorogenic acid, 

catechin and epicatechin) into quinones, in the presence of oxygen, producing the characteristic brown 

pigments in the wounded tissues [51,83]. This phenomenon results in the loss of nutritional quality and 

appearance during the food supply chain, reducing consumer’s acceptability and causing implications on 

the economy of food producers and food industry [51]. 

It was expected that the presence of GTE in the PLA films would prevent this oxidative degradation. To 

evaluate its food preservation capacity, the efficiency of two films containing GTE was tested against PLA 

films without GTE. The spoilage evolution of all samples was compared to that of an unpacked specimen 

preserved under the same conditions. The assay was conducted during 48h (Figure 21). After 1h, it 

appears that there are no significant changes to be reported on the sliced apple’s surface. After 5h, the 

sample exposed to atmospheric conditions shows some oxidative spoilage while the packed samples 

show less spoilage. 

After 24h, the packed sample, with higher impact for that packed with PLA 2% GTE film, revealed a lower 

degree of oxidation than the unpacked sample. After 48h, the unpacked sample is extensively oxidized. 

The sample packed with pristine PLA shows an oxidation degree lower than the control sample, 
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nevertheless higher than the remaining samples. The results showed that higher amounts of GTE have 

the ability to delay the oxidative spoilage of sliced apples.  

 

 

Figure 21: Evolution of the oxidative spoilage of sliced apples, stored in different conditions, over 48h. 
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4.5.2 Sliced red potatoes 

Potatoes, like apples, have PPOs that promote their oxidative degradation. The general mechanism of 

enzymatic browning is represented in Figure 4, where plants with high quantities of oxidable o-diphenols 

are transformed into reddish/brown o-quinones, which are the main responsible for the browning [84]. 

As it was performed for sliced apples, the PLA/GTE films were tested for the preservation of sliced 

potatoes. Once more, the assay was conducted with samples packed with pristine PLA, PLA/GTE mixtures 

and unpacked (Figure 22). 

After 1h, the sample placed on atmospheric conditions reveals signs of oxidation near the peel. For the 

packed samples, the oxidation has not started. The unpacked samples degraded rapidly and after 24 h 

showed an advanced degradation. The packed samples, at the same time, showed evidences of oxidative 

degradation, however in a lower extent. After 48 h, the unpacked sample is completely degraded.  

Once more, the packed sample in PLA 2% GTE film, despite of being oxidized, was the one with the lower 

degree of degradation. 
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Figure 22: Evolution of the oxidative spoilage of sliced potatoes, stored in different conditions, over 48h. 
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4.5.3 Salmon 

The evaluation of smoked salmon preservation was carried out by Cristiana Martins as part of her master’s 

thesis. 

Smoked salmon slices were packed with PLA films without GTE (control) and with 1 wt.% and 2 wt.% of 

GTE. 

It was found that the presence of GTE in the PLA films inhibits the lipids’ oxidation when compared to 

pristine PLA, with expectation of the sample packed with PLA 2% GTE film for which was observed a 

higher p-anisidine value after 60 days (Figure 23). 

These results showed that the films with GTE can inhibit lipids’ oxidation, thus evidence the potential of 

the developed films to be used as an active packaging material. 

 

 

Figure 23: p-anisidine value, determined at different time points, in smoked salmon samples packed with PLA film (green), 

PLA 1% GTE film (blue) and PLA 2% GTE film (brown). 
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5. CONCLUSIONS 

This thesis aimed to develop films of PLA containing different amounts of GTE, which was expected to 

endow the films with antioxidant capacity that could be used to produce active packaging. Mixtures of 

PLA with different amounts of GTE (1 wt.%, 2 wt.% and 4 wt.%) were produced using a Haake™ batch 

mixer. These mixtures were important to prove the compatibility of both materials. The prepared materials 

revealed that the GTE reduces the thermal stability of PLA. Additionally, they allowed us to understand 

how the color of the materials was affected by the GTE. 4 wt.% of GTE darken the PLA in such a way that 

it became almost opaque. Thus, it was decided to produce films containing only 1 wt.% and 2 wt.% of 

GTE. 

Films of the PLA and GTE were produced by blown film extrusion. To facilitate the mixture and promote 

a better dispersion of GTE within the PLA matrix, GTE was added as a masterbatch with approximately 8 

wt.% of extract. 

The addition of GTE influences the mechanical properties of PLA. 1 wt.% of GTE decreased 8.2% of the 

PLA’s yield stress, while 2% of GTE only induced a slight reduction (0.3%). In what concerns the tensile 

strength, the impact was similar, 1 wt.% of GTE reduced 11.9% and 2 wt.% GTE reduced this property by 

12.0%. Young’s modulus suffered opposite impacts. 1 wt.% of GTE reduced its value by 5.3% while 2 wt.% 

GTE enhanced it by 2.9%. The two films containing GTE had their yield strain and strain at break increased, 

with special emphasis to a 36% enhancement of the latter due to the 2 wt.% of extract. 

Regarding the films’ barrier properties, in particular the water-vapor transmission, it was observed that 

the addition of higher amounts of GTE decreased the WVT rate, thus improving the PLA’s barrier efficiency 

to H2O. 

The films’ capacity to act as an active packaging was evaluated studying the spoilage of sliced apples, 

red potatoes, and smoked salmon, packed with the extruded films. The results showed that it was possible 

to slow down the food oxidation when GTE was added to PLA, specially using 2 wt.% of GTE. 

The results obtained during this work showed that PLA and GTE can be used to produce a material with 

antioxidant capacity with potential application to produce active food packaging. 
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6. FUTURE PERSPECTIVES 

The work presented during this thesis shows that is possible to incorporate GTE into PLA and produce an 

active package. 

However, it is important to develop additional efforts to optimize the production of the films. The assays 

of food preservation with the sliced apples and sliced potatoes gave only preliminary insights about the 

material efficiency. It is important to perform assays that allow to better understand the PLA/GTE films 

potential. 

Additional assays to characterize the barrier properties should be performed.
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