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A B S T R AC T

The goal of this dissertation is to explore techniques to improve the efficiency and perfor-

mance level of scientific applications on computing platforms that are equipped with multiple

multi-core devices and at least one many-core device, such as Intel MIC and/or NVidia GPU

devices. These platforms are known as heterogeneous servers, which are becoming increas-

ingly popular both in research environments as in our daily gadgets.

To fully exploit the performance capabilities of the heterogeneous servers, it is crucial to

have an efficient workload distribution among the available devices; however the heterogeneity

of the server and the workload irregularity dramatically increases the challenge.

Most state of the art schedulers efficiently balance regular workloads among heterogeneous

devices, although some lack adequate mechanisms for irregular workloads. Scheduling these

type of workloads is particularly complex due to their unpredictability, namely on their exe-

cution time. To overcome this issue, this dissertation presents an efficient dynamic adaptive

scheduler that efficiently balances irregular workloads among multiple devices in a heteroge-

neous environment.

To validate the scheduling mechanism, the case study used in this thesis is an irregular

scientific application that has a set of independent embarrassingly parallel tasks applied to a

very large number of input datasets, whose tasks durations have an unpredictable range larger

than 1:100. By dynamically adapting the size of the workloads that were distributed among

the multiple devices in run-time, the scheduler featured in this dissertation had an occupancy

rate of every computing resources over 97% of the application’s run-time while generating an

overhead well below 0.001%.
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R E S U M O

O objetivo desta dissertação é o de explorar técnicas que possam melhorar a eficiência e o ńıvel

de performance de aplicações cientificas em plataformas de computação que estão equipadas

com vários dispositivos multi-core e pelo menos um dispositivo many-core, como por exemplo

um Intel MIC e/ou um GPU da NVidia. Estas plataformas são conhecidas como servidores

heterogéneos e estão a se tornar cada vez mais populares, tanto em ambientes de investigação

como em nossos gadgets diários.

Para explorar completamente as capacidades de desempenho dos servidores heterogéneos,

é crucial ter uma distribuição eficiente da carga de trabalho entre os vários dispositivos

dispońıveis; no entanto a heterogeneidade do servidor e a irregularidade das cargas de tra-

balho aumentam drasticamente o desafio.

A maioria dos escalonadores mais avançados são capazes de equilibrar eficientemente car-

gas de trabalho regulares entre dispositivos heterogêneos, embora alguns deles não disponham

de mecanismos adequados para cargas de trabalho irregulares. O escalonamento desse tipo

de cargas de trabalho é particularmente complexo devido à sua imprevisibilidade, nomeada-

mente ao seu tempo de execução. Para superar este problema, esta dissertação apresenta

um escalonador dinâmico e adaptativo que equilibra de forma eficiente cargas de trabalho

irregulares entre vários dispositivos de uma plataforma heterogénea.

Para validar o escalonador, o caso de estudo utilizado nesta tese é uma aplicação cient́ıfica

irregular que possui um conjunto de tarefas independentes, que são embaraçosamente parale-

las, aplicadas a um grande número de conjuntos de dados, cujas tarefas têm durações com

um ńıvel de imprevisibilidade maior do que 1:100. Ao adaptar dinamicamente o tamanho das

cargas de trabalho, que são distribúıdas entre os vários dispositivos, em tempo de execução,

o escalonador apresentado nesta dissertação apresenta uma taxa de ocupação de cada disposi-

tivo acima de 97 % do tempo total de execução da aplicação e tem um peso que é bem abaixo

dos 0,001 %.
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I N T RO D U C T I O N

Most scientific and engineering software requires large amounts of computational resources

due to their high computational complexity. Research groups resort to computing clusters to

cope with the increasing demand of both computing power and memory bandwidth to run

scientific code in a reasonable time frame.

Most scientific code does not efficiently use the available resources in a cluster computing

node, as these applications are usually developed by non-computer scientists, which often

are self-taught programmers, without the expertise to efficiently exploit the performance of a

single CPU core (by exploring ILP1, SIMD2 instructions or the multi-level cache hierarchy) or

deal with the complexity of current multi-core systems. These issues are more obvious when

dealing with heterogeneous servers, where programming for hardware accelerators places more

challenges to fully exploit the potential performance from these devices. To maximize the sys-

tem computing throughput, the software needs to be properly parallelized and the workloads

have to be efficiently balanced across the multiple computing units of each device.

Developing efficient multithreaded applications that simultaneously use multi-core and

many-core resources is a complex task. The programmer needs to address not only algo-

rithmic issues, but also has to efficiently structure data in memory, and deal with data races

while implementing both shared and distributed memory parallelization strategies simultane-

ously. These are crucial concepts, not only for the efficient execution of the code but also to

ensure the correctness of the applications.

To aid the scientific community in dealing with the implicit challenges of developing appli-

cations that efficiently explore the performance of heterogeneous servers, this work addresses

the implementation of a higher layer of abstraction to deal with the inherent architecture

complexities of these platforms.

1 Instruction-Level Parallelism.
2 Single Instruction stream, Multiple Data stream.
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1.1. Context and Goals

1.1 context and goals

This thesis focuses in one of the most complex issues when coding for heterogeneous servers:

to schedule and balance irregular workloads among multiple devices (multi-core and many-

core devices).

To validate the efficiency of the scheduler, a real scientific application from the High Energy

Physics (HEP) field was selected, which analyses data collected from sensors during collisions

of proton beams in the ATLAS3 Experiment at the LHC4 (CERN5). The performance evalu-

ation was conducted in a cluster node with two 12 core Xeon devices and two many-core Intel

Xeon Phi devices, in four distinct heterogeneous configurations, to assess the adaptability

of the scheduler: (i) 1 multi-core + 1 many-core; (ii) 2 multi-cores + 1 many-core; (iii) 1

multi-core + 2 many-cores; and (iv) 2 multi-cores + 2 many-cores.

1.2 motivation and contribution

The innate curiosity of human beings has always led us to question the world around us. Our

ability to reason brought answers to an innumerable number of questions throughout many

centuries of progress that shaped the world as we know it today.

As new and more complex questions emerge demanding a higher reasoning power, re-

searchers resort to complex software to often deal with large amounts of data. Eventually, the

questions became more complex and computationally demanding, requiring the need of using

computing platforms that were equipped with one or multiple many-core devices capable of

accelerating the resolution. These computing platforms are known as heterogeneous platforms

and, to efficiently exploit these platforms, a high level of expertise in High Performance Com-

puting (HPC) is required. However, scientific applications are developed by computational

scientists, which often are self-taught programmers. This thesis aims to include HPC features

into current scientific code to efficiently use heterogeneous servers.

This thesis proposes a efficient lightweight scheduler that aims to balance irregular work-

loads among heterogeneous devices and that dynamically adapts the amount of work dis-

patched to each computing device according to their current performance, while maintaining

a low overhead.

3 A Toroidal LHC ApparatuS.
4 Large Hadron Collider.
5 Conseil Européen pour la Recherche Nucléaire.
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1.3. Dissertation structure

1.3 dissertation structure

This dissertation is structured into seven chapters, whose summary is presented below:

I Introduction: introduces the topic of this dissertation by briefly presenting the inherent

challenges of developing applications that efficiently explore the performance of het-

erogeneous servers, and introduces the main objective, which is to efficiently schedule

irregular workloads among heterogeneous devices. Section 1.2 presents the scientific

motivation and the contribution.

II Heterogeneous Servers: this chapter presents the concept of an heterogeneous server,

introduces the NUMA6 architecture in the cluster node and briefly introduces how the

accelerators operate in distributed memory. This chapter also presents the current multi-

core and many-core devices and describes their features.

III Scheduling Data and Workloads: this chapter describes the state of the art on the in-

herent complexity of scheduling data and workloads on heterogeneous platforms. This

chapter also presents a list of key frameworks to aid the scheduling in the homogeneous

and heterogeneous platforms.

IV Scientific Workloads: presents and describes the type of scientific workloads that this

work addresses and presents the selected scientific case study for this dissertation.

V An Adaptive Scheduler for an Heterogeneous Server: introduces and describes the im-

plemented dynamic adaptive heterogeneous scheduler and its key features to support

irregular workloads.

VI Experimental results and discussion: presents and describes the selected testbed to val-

idate the efficiency of the scheduler, and discusses the experimental performance results.

VII Conclusions: concludes the dissertation with suggestions for future work.

6 Non-Uniform Memory Access.
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2

H E T E RO G E N E O U S S E RV E R S

Current computer servers are becoming highly parallel due the mix of different computing de-

vices, such as multi-core devices and/or many-core devices (NVidia GPU1 and Intel MIC2). A

computing device is considered as a set of computing units that may share the same memory

address space. The terminology of heterogeneous devices relates to the different characteris-

tics of computing devices in the same computer server, in a distributed memory address space.

Heterogeneous platforms are a new type of computing platform and it is becoming increas-

ingly popular, largely because these systems gain performance not just by adding cores, but

also by incorporating specialized units with processing capabilities to handle particular com-

pute intensive tasks.

Taking advantage of the potential performance of current computer servers requires dealing

with several issues. The software needs to be properly parallelized to explore the performance

of each individual multi-core and many-core device to maximize its computing throughput,

the data needs to be efficiently structure in memory and the workloads need to be efficiently

balanced among the available devices.

Most of the state of the art schedulers are capable of balancing regular workloads among

multi-core and many-core devices, although some lack adequate mechanisms for irregular

workloads, since these type of workloads is particularly complex due to their unpredictability

and the differences on their execution time. A poor workload distribution can potentially

result in an undesired increase of the application run-time.

To ensure that all devices are used as much as possible, it is imperative to implement a

scheduling strategy that follows a heuristic that efficiently balances workloads among the mul-

tiple devices, reducing the percentage of the application run-time where a device remain in

an idle state, i.e. waiting for more work.

1 Graphics Processing Unit.
2 Many Integrated Core architecture.
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2.1. NUMA architecture in shared memory

2.1 numa architecture in shared memory

Multi-core devices memory share the same address space, allowing the multiple processing

elements to share their data. A single socket system has the memory bank connected to the

CPU through a high bandwidth interface. A system with multiple sockets has a memory

bank connected to each CPU device, where all devices share the same address space and this

memory architecture is known as NUMA. In this memory architecture, processors do not have

to be aware where data resides, except that there may be performance penalties related to

memory access time.

The memory access time depends on the memory location relative to the processor, i. e.

the time that it takes for one of the cores from one of the multi-core devices to read or write

data in the memory connected to another multi-core device is substantially greater than the

time that it takes to perform the same operation in its device local memory.

Figure 1: Representation of a NUMA shared memory system

Data locality is crucial when trying to get the most out of the performance capability of a

multi-core device. Data intensive applications should maximize the amount of memory access

to the closer memory bank. Some of the tools that aid the development of multithreaded ap-

plications already have implemented policies, such as the NUMA first-touch placement from

OpenMP[20] (Figure 2), which is able to predict and place the data close to physical core

from where the thread, responsible of computing the data, will execute.
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2.1. NUMA architecture in shared memory

Figure 2: Representation of NUMA first-touch placement from OpenMP

In figure 2 shows that with the first-touch data placement policy in that example, where

we have two multi-core devices, OpenMP splits the array a[] (workload) evenly among the

two devices, the threads that are executing within the cores of CPU0 will firstly access the

array elements, that are closer to physical core, which are those that are allocated between

the position 0 and 99 and threads from CPU1 will access the elements that are between 100

and 199. Non-uniform memory access, which in this figure represents the CPU0 consuming

elements that were assigned to CPU1, or vice versa, will only occur when one of the multi-core

devices depletes the elements from the region of the array that was allocated to it.

If one of the multi-core devices consumes all of the available data in its local memory and

starts to consume the elements that are allocated in a remote memory region, it is most likely

that by that time the amount of data still waiting to be processed, in the other multi-core

device memory, will be fairly small and therefore the number of NUMA accesses should also

be reduced.
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2.2. Accelerators in distributed memory

2.2 accelerators in distributed memory

Hardware accelerators (also known as many-core devices) have their own local memory.

Computational tasks can only operate on local data, and if remote data is required, the

software developer has to explicitly handle data transfers to the many-core device memory

through a high latency PCIe connection. This requires a deeper knowledge of the program

data requirements, since the software developer, to implement algorithms that minimise re-

mote data accesses. This memory architecture is know as distributed memory (Figure 3).

Figure 3: Representation of accelerators in distributed memory
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2.3. Hardware

2.3 hardware

2.3.1 CPU

For several years the manufactures focused only on increasing the CPU’s clock speed, which

led the code developers to pay little attention on optimizing their code as it would run faster

with each new hardware generation.

In 2005 the CPU’s clock speed reached around 4 GHz and since then it became more chal-

lenging to increase it, due to the cost in terms of power consumption and heat dissipation.

This forced the manufacturers to start exploring new forms to increase the throughput of their

CPUs, so they began to increase the number of processing units, known as cores, towards

multi-core and parallel computing.

Today’s Intel Xeon multi-core devices go up to 22 physical cores capable of executing 44

hardware threads simultaneously (Figure 4). This improved parallelization of computations

(doing multiple tasks at once).

Figure 4: Intel Xeon Processor E5 v3 diagram (from: [8])
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2.3. Hardware

This ended the “free lunch”[30] speedups that developers were accustomed to for many

years, forcing them to parallelize code to achieve performance improvements in multi-core

systems.

However, having a large number of cores does not necessarily result in an improvement in

performance, since it depends not only on the software algorithms and their implementation

but also on the percentage of concurrent data accesses. Possible gains are also limited by the

fraction of the software that can not run in parallel on multiple cores, as expressed by the

Amdahl’s law[15].

S(p) =
1

fs +
fp
p

(1)

The theoretical speedup limit can be predicted using Amdahl’s Law expression (1), where

fs represents the serial fraction of code, fp the parallel fraction of code and p the number of

processors. For example, if the parallel section of an application represents 90 percent of its

run-time, using a 44 core processor, the speedup will be 8.3x at best.

The following chart (Figure 5) provides an even better notion of the impact that the per-

centage of code that can be parallelized has in the possible speedup of an application when

we using multi-core processors.

Figure 5: Amdahl’s Law theoretical maximum speedup
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2.3. Hardware

In the best case, the so-called embarrassingly parallel problems, may reach speedup factors

near the number of cores, or even more if the problem is split up enough to fit within each

core’s cache(s), avoiding the use of a much slower layer of the memory hierarchy.

The Amdahl’s Law shows us that it is often impossible to make speedup scale linearly as

we use more cores, due to sections of code that can not be parallelized and that often can not

be worked around.

Gustafson’s law[13] gives a less pessimistic and more realistic assessment of parallel per-

formance and proposes that software developers tend to increase the size of problems (e.g.

compute more scientific data) as the resources improve. Therefore, if faster equipment is

available, larger problems can be solved.

2.3.2 Graphics Processing Unit

The GPUs are the most common accelerator devices since they are present on almost every

desktop. CUDA3[27] by Nvidia, which is a parallel computing platform and application pro-

gramming interface (API) model, allows the software developer to exploit the ability to solve

specific massively data parallel problems using the GPUs high computational power.

The Nvidia Tesla[18] products are devices that are meant specifically for high performance

computing, so they lack of ability to output images to a display unlike consumer level (e.g.

Geforce cards). These high performance computing devices are commonly used in simula-

tions, in large scale calculations (especially floating-point calculations) and in high-end image

generation for applications in professional and scientific fields.

The high performance computing GPUs do have some other characteristics that distin-

guishes them from general purpose GPUs, e.g they are designed to fit in cluster nodes, they

come with different cooling options, they come equipped with a larger memory and even the

chip itself is different, offering more processing units and larger memory caches.

Kepler[22] was Nvidia’s first microarchitecture to also focus on energy efficiency unlike the

previous architecture (Fermi) which was mainly focused on increasing performance. With

Kepler, Nvidia abandoned shader clock and implemented a unified GPU clock, this not only

simplified static scheduling of instruction but also resulted in a higher performance per Watt.

3 Compute Unified Device Architecture.
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2.3. Hardware

According to Nvidia, two Kepler cores use approximately 90% power of one Fermi core,

and the change to a unified GPU clock scheme delivered a reduction in power consumption

of almost 50% .

Figure 6: NVIDIA Tesla (GK110) block diagram (from: [22])

Figure 6 shows the Kepler architecture organisation in two main components the Streaming

Multiprocessors (SMX) and the internal memory hierarchy.

The SMX are complex processing units responsible for performing all computations on the

GPU, and there may be up to 15 in a single chip. Each of the Kepler GK110 SMX units

features 192 single-precision CUDA cores, each core has a fully pipelined floating-point and

integer arithmetic logic units and they are able to deliver 3x more performance per Watt com-

pared to the SM in Fermi. Kepler also added more single-precision/double-precision units per

SMX.

Some other innovations are the Hyper-Q that allows multiple CPU cores to simultaneously

launch different kernels on the same GPU, dynamic parallelism that allows to dynamically

generate new workloads to process without the CPU interference and GPUDirect which re-

duces the communication latency by creating a direct connection to solid state drives and

other similar devices, allowing multiple GPUs to share data without the interference of the

CPU.
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2.3. Hardware

Figure 7: The Pascal GP100 Streaming Multiprocessor (from: [23])

The Nvidia Pascal GP100[23] (Figure: 7) has 3840 CUDA cores, 16GB of VRAM delivered

in four HBM2 (High Bandwidth Memory) memory stacks, a 1 TB/s memory bandwidth and

a memory bus width of 4096 bits. The HBM2 is built with layers of DRAM chips stacked

into dense modules, with wide buses and it is located inside the same package with the GPU.

The GP100 increases performance not only by adding more SMs than previous GPUs, but

by making each SM more efficient. Each GP100 SM has 32 FP64 units, providing a 2:1 ratio

of single-precision/double-precision throughput. Compared to the 3:1 ratio in Kepler GK110

GPUs the Pascal GP100 is capable of processing FP64 workloads more efficiently.

Pascal is also the first Nvidia GPU to feature the company’s new NV-Link[12] technology

that Nvidia claims to be 5 to 12 times faster than PCIe 3.0, speeding up data transfers between

the CPU-host memory and the GPU memory, overcoming a key bottleneck for accelerated

computing today.
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2.3. Hardware

2.3.3 Intel Many Integrated Core Architecture

Intel has its own many integrated core line known as the Xeon Phi[8] that has key differences

from the NVidia GPUs. The Intel Xeon Phi is composed by multiple interconnected Pentium

Cores tha, thanks to the transistors size reduction, since the era of the Pentium, it is possible

today to have 60 or more cores on one slab of silicon.

The high end model, from the first generation of the Intel Many Integrated Core devices,

had 61 cores and 16 GB GDDR5 RAM and used Intel’s Knights Corner architecture (Figure

8).

Figure 8: Representation of Intel Many Integrated Core architecture (from: wiki.expertiza.ncsu.edu)

Intel claimed that applications could be easily ported to run on the device, since the cores

were based on a modified version of P54C design using the same instruction set as conventional

x86 CPUs. Although, the code ported to Xeon Phi was normally inefficient out-of-the-box,

requiring extra effort from the software developer to attempt to circumvent the inefficiencies.

Each core had the ability to run 4 threads simultaneously, and most of the massive paral-

lelism was obtained by using the vectorisation capabilities provided by the available 32 vector

registers 512-bit wide. However on Intel’s Knights Corner architecture, only a small set of

vector operations were implemented in the hardware and depended on the emulation, carried

by the compiler, for the most complex ones.
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2.3. Hardware

Figure 9: Intel Knights Landing Processor Die Map (from: [29])

Intel most recent version of Xeon Phi, also known as the Knights Landing[29], has a new

chip with a 72-core processor solution manufactured on a 14nm process (Figure 9) struc-

tured as a set of 36 interconnected tiles, where each tile has a dual core structure with share

L2 cache and each core has two vector processing units (512-bit wide, AVX-512). The new

Knights Landing chip double-precision performance exceeds 3 teraflops and over 8 teraflops

of single-precision performance. It also has 16GB of on-package MCDRAM4 with a memory

bandwidth of 500GB/s, which Intel claims to be five times more power efficient than GDDR5

and three times as dense.

Another big difference between the current and the previous version of Intel’s Xeon Phi is

that the the Knights Corner was a coprocessor, and it could not be used without a Xeon host,

while the Knights Landing is only sold as a processor and not a coprocessor.

Knights Landing also comes with a new instruction set, more similar to x86, allowing an

easier port of most C++ features, and will fully support Intel’s Advanced Vector Extensions

(Intel AVX-512).

4 MCDRAM is a high bandwidth (4̃x more than DDR4), low capacity memory, that can be configured as a third
level cache or as a distinct NUMA node.
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3

S C H E D U L I N G DATA A N D WO R K L OA D S

In a heterogeneous environment it is extremely complex to efficiently balance workloads among

multiple devices that have different computational throughput for different types of tasks.

Tasks that are highly parallelizable and/or memory intensive will in most cases perform bet-

ter on a GPU device while compute intensive tasks should perform better on a Xeon Phi.

The distribution of the most suitable tasks to each device would potentially increase the

computational throughput of the system, however in most cases it is impossible to anticipate

the complexity of the tasks to exclusively send those that are ideal to each device.

Computational intensive tasks can also have irregular levels of intensities which increases

the difficulty of efficiently distributing tasks among the the multiple devices due to their un-

predictability and the differences on their execution time.

A static scheduler is far from being the best scheduling solution given that the multiple

computing devices take different amounts of time to perform the same exact regular task, due

to their different computational capabilities, let alone if tasks are irregular.

To solve this complex problem, several solutions address this issue in multiple ways. The

simplest solution is by using dynamic a scheduler that distribute the same amount of work

to each device as soon as they are become idle (known as the demand-driven[28] scheduling).

This solution, despite being simple to implement, does not always lead to an optimal work-

load balancing, since it largely depends on the size of workload that is distributed among the

devices. This size is defined by the user, and it may take several attempts before reaching

the ideal workload size, and even after that, it may not be optimal for other work especially

if the workloads have irregular computational intensities.

Another method is the adaptive scheduling. This method is more complex than the previous

one and is also harder to implement, since the scheduler is capable to identify the performance

level of each device and decide how much work each device receives. The main factor that is

16



3.1. Frameworks to Address Homogeneous Platforms

usually taken to consideration, to identify the amount of work that each device receives, is

the throughput of the device, i.e. the amount of work that each device is able to process in a

certain time interval.

An example of a adaptive scheduler is the Qilin[19] scheduler. This scheduler requires

that the first time that the applications runs, for an specific dataset, the user has to run

it in sampling mode. In this first run, the scheduler tests the multiple devices performance

level with different workload sizes and, in the end, it stores in a data base the percentage of

workload that each device should receive the next time the application computes the same

exact dataset. The main disadvantage of the Qilin scheduler,is that it requires that whenever

the user changes the dataset, that he wishes to compute with the application, the first time

that it computes is not expected to perform in the most efficient way, since it has to sample it.

A solution for all the previous scheduling issues is to use a scheduler which does not require

that the user inputs any info regarding the size of the workload nor is it necessary to perform

a sampling run. Ideally, the scheduler is able to in run-time, compute the optimum workload

balance among multiple devices and is also able to react to possible performance breakage of

one of the devices by quickly rebalancing the workloads.

3.1 frameworks to address homogeneous platforms

3.1.1 POSIX Threads

Initially each CPU manufacturer had their own proprietary versions of threads, and as it was

expected, each version was quite different from one another making it virtually impossible for

developers to create portable multithreaded applications.

So to be possible to fully exploit the capabilities provided by threads, it was necessary to

develop a standard programming interface, which is known today as pThreads[21].

pThreads allows developers to spawn multiple threads that have different flows of work

that execute at the same time (in parallel). But even so, the developers still had to worry

about a few low-level details (e.g. as deadlocks), and therefore it was necessary to develop

new libraries that would allow developers to work at a higher level of abstraction where they

would not have to worry about such details.
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3.1. Frameworks to Address Homogeneous Platforms

3.1.2 OpenMP

One of the most popular high level libraries for parallel programming in homogeneous systems,

the OpenMP[7] is an API that supports multi-platform shared memory multiprocessing pro-

gramming in C, C++ and Fortran on most platforms processor architectures and operating

systems. It uses a scalable and a portable model that delivers to the developers a clean and

yet flexible interface to create parallel applications, even for most unskilled programmers.

Every OpenMP programs start as a single process known as the master thread. This thread

executes sequentially until it encounters the first parallel region. When this happens, the mas-

ter thread spawns a team of parallel threads and the program that is inside the parallel region

is executed by this team. When the work is complete, each thread from the team synchronize

and terminate, leaving only the master thread (Figure: 10).

Figure 10: Representation of OpenMP work sharing strategy

By default, OpenMP schedules parallel loops statically where an equal number of iterations

is given to each thread. OpenMP also has a built-in dynamic scheduler, which assigns one

iteration to each thread and, when the thread finishes, the scheduler assigns to it the next

iteration that hasn’t been executed yet. The dynamic scheduler implemented in OpenMP is

the best approach to follow, specially when dealing with iterations that might have irregular

computational intensities.
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The most recent versions of OpenMP offer the possibility to offload some work to GPU hard-

ware accelerators through dedicated directives that mark the target regions. This version of

OpenMP also controls data transfers between host and device memories (GPU) however; it

does not offer an efficient load balance among CPU and accelerator simultaneously.

3.1.3 Intel TBB

Intel Threading Building Blocks[17][25] is a C++ template library developed by Intel for

parallel programming on multi-core processors and it comes with a task scheduler that can ef-

ficiently balance workloads and also conduct some cache optimisations across multiple logical

and physical cores. It offers thread-safe containers like concurrent_vector and concur-

rent_queue and generic parallel algorithms, like parallel_for and parallel_reduce.

An off-the-shelf scheduler with a work stealing strategy is implemented, where it employs a

specified number of threads, called workers and each worker then maintains a local lock-free

queue to store the tasks that were assigned to it. If a task queue becomes empty, its respective

worker will attempt to steal a task from other busy workers at a synchronization point.

3.1.4 Chapel

Chapel1[31] is a parallel programming language that is still being developed as part of the

Cray Cascade project, a participant in DARPA’s2 High Productivity Computing Systems

program, which is considered as a modern-day Manhattan Project3.

This language follows a multithreaded parallel programming model at a high level by sup-

porting abstractions on data parallelism, task parallelism, and nested parallelism. It can

balance loads efficiently, and it also implements optimizations for data and computation lo-

cality.

Although Chapel may rival with OpenMP performance, it can be difficult to rival with MPI

since programmers can implement tricks in order to make a more efficient communication sys-

tem than the one that Chapel offers. On the other hand, Chapel has much better semantics

for expressing a parallel algorithm than OpenMP or MPI. So, for expressing shared memory

1 Cascade High Productivity Language.
2 Defense Advanced Research Projects Agency.
3 Manhattan Project was a research and development project that produced the first nuclear weapons during

World War II.
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programs, Chapel could be good solution but not such a good one for distributed memory.

A negative aspect of Chapel, besides the fact that programmers have to learn a new lan-

guage, it is that there are very few known libraries available (e.g. BLAS4) since these have

to be ported.

Chapel may one day be able to fully support accelerators, and this will be something very

interesting to analyze, but such a version is still under development.

3.2 frameworks to address heterogeneous platforms

3.2.1 Cilk

Cilk, Cilk++ and Cilk Plus[26] is a linguistic and run-time technology for multi-thread par-

allel C/C++ software development that provides both task and data parallelism constructs.

Cilk was originally developed by the MIT Laboratory for Computer Science and after a few

years it teamed up with Intel.

Intel Cilk provides three new keywords to the C/C++ syntax for reduction operations,

and data parallel extensions. The keyword cilk_spawn can be applied to a function call,

to indicate that it can be executed concurrentlye. The keyword cilk_sync indicates that

execution has to wait until all spawns from the function have returned.

Using the keyword cilk_for instead of the regular for transforms a loop (without inter-

loop dependencies) into a parallel loop indicating to the compiler that there is no ordering

among the iterations of the loop.

Cilk scheduler uses a work-stealing strategy to divide procedure execution efficiently among

multiple processors, and is applicable to multi-core and many-core programming.

4 Basic Linear Algebra Subprograms.
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3.2.2 OmpSs

Developed in Barcelona Supercomputing Center (BSC), OmpSs[11] aim is to extend OpenMP

with new directives to support asynchronous parallelism and heterogeneous platforms. Based

on a task-oriented programming model similar to OpenMP, but in this case, all threads are

created on start up and only one of them executes the main function. Every thread gets its

work from a task pool and every thread is able to generate new work.

Expressing data-dependencies between tasks is possible on OmpSs using in (input), out

(output) and inout (input/output) clauses. These clauses enables the ability for developers

to easily specify which data a task is waiting for, and with this information OmpSs is able to

generate a task dependency graph (Figure: 11) at run-time. Based on this graph, tasks are

scheduled for execution as soon as all their predecessor has finished.

Figure 11: Representation of a OmpSs task dependency graph

OpmSs offers a target clause that gives the developer the ability to specify that a given

element can be run in a set of devices (e.g. GPU). The target construct can be applied to

either a task construct or a function definition.

To avoid communication overhead when working with GPUs, OmpSs performs regular cud-

aFree calls to prevent the device from entering in lower-power mode (deep C-state). OmpSs
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also implements work stealing between GPUs, using cudaMemcpyPeer to copy data from their

memories.

3.2.3 Legion

Targeted for users with extensive programming experience for heterogeneous platforms, the

Legion[5] framework is a programming model that relies on an lengthy specification of the

data structure of an application to be able to provide a high performance and efficient load

balancing between the CPU and accelerators.

The framework uses logical regions to abstract the data handling from the users. This

way, the developer can slice a region in order to increase the granularity of the tasks, enforce

dependencies among tasks, and improve the scheduling and scalability of the algorithms.

During the execution, Legion adapts the workload of each computing device according to

preceding execution time of the tasks on each device. In order to be possible for Legion to

change the data chunk sizes, the developer needs to define a dicing function.

Legion can be used in a distributed memory, or in a shared memory environment. Currently

it only supports NVidia and AMD GPUs hardware accelerators.

3.2.4 StarPU

StarPU[4] is a task programming library for heterogeneous architectures that offers a unified

platform for task scheduling. The scheduler implements a Cilk like work stealing strategy

where if one queue is empty then it can steal the work from other queues. The StarPU archi-

tecture implements various different kind of scheduling strategies (e.g. greedy and cost model

guided scheduling model strategy).

The StarPU team claims that the architecture avoids unnecessary data transfers between

accelerators, between accelerators and main memory since it only transfers data when re-

quested. StarPU’s scheduler is mainly focused on minimizing the cost of transfers between

processing units and on using the data transfer cost prediction to improve the task scheduler

decisions.
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3.2.5 Qilin

Qilin[19] is a heterogeneous programming system that is capable of scheduling workloads

among multiple heterogeneous devices. The authors claim that the scheduler operates best

when it deals with regular workloads and, they admit that the scheduler will not have the

best performance when dealing with irregular workloads.

Qilin scheduler saves in a database the execution-time projections, for all programs and

datasets it has ever run, and when a program its run under Quilin for the first time, it runs

in training mode.

When running in training mode, Qilin divides the entire workload in equal parts among

the workers, each part is then divided into smaller parts with different sizes. Then the time

that each worker takes to compute each smaller part is stored in a database and when all

the devices finish processing their workloads, Qilin scheduler uses the stored run-times from

each device and generates a linear equation, using the method of curve fitting, for each device.

The next time that the same program runs with the same dataset under Qilin, the scheduler

will intersect the multiple linear equations (one from each device) and will obtain the ideal

workload size for each device.

The problems with this scheduler are that on the first run (training mode) will most cer-

tainly have a bad run-time. This scheduler will not work properly with irregular workloads (as

it was admitted by the authors) and balancing is done only once (in the beginning) meaning

that it cannot react to changes of performance of any worker during run-time.
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4

S C I E N T I F I C WO R K L OA D S

Scientific computing is a multidisciplinary field where non-computing scientists use advanced

computing capabilities to solve complex problems.

Scientific code usually relates to modeling and simulation (in biology, physics, etc), numer-

ical analysis, and quantitative data analysis. Due to the complex nature of these applications

the code needs to properly use the available computing resources to process more data in less

time using more complex algorithms in order to produce higher quality results.

Scientific workloads are typically irregular, mostly due to a filtering process that is usually

present in scientific applications to discard data that, for some reason, have no interest for

analysis. The data elements that are filtered and discarded, do not constitute a significant

burden in computation, while those that pass the filtering process are subject to an extensive

analysis which exponentially increases their computational weight. This usually is the main

reason why an efficient scientific workload balancing among multiple devices is such a complex

task.

4.1 the case study in high energy physics

High Energy Physics (HEP) scientists at CERN often develop quantitative data analyses code

to study and validate several HEP theories based on the analysis of the final state particles

resultant from a collision at the Large Hadron Collider (LHC).

One of the main studies conducted by both ATLAS[1] and CMS1[9] (the two largest re-

search groups at CERN, each with their own particle detector at the LHC) relates to the

research of the Higgs boson[2] in several decay channels.

1 Compact Muon Solenoid.
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One of the most important decay channels is the production of the Higgs boson coupled

to top quarks, known as tt̄H production. Two protons beans are accelerated in opposite

directions at the LHC and collide at the core of a given detector, such as the ATLAS detector

(Figure 12). A chain of decaying particles is created, from which only collisions that have the

topology represented in the figure 13 should be considered for tt̄H studies.

Figure 12: Computer generated cut-away view of the ATLAS detector (from: wikipedia)

The particle detector is only capable of measuring the bottom quarks, detected as a jet

of particles, and leptons (muon and electron). Particle physicists developed code to sepa-

rate collisions with different topologies and reconstruct both Higgs boson and the top quarks.

Note that reconstructions characteristics are inferred by software through the conservation of

momentum.

Figure 13: Representation of the tt̄H event (from: [24])
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As shown in figure 13, four jets and two leptons are required in a tt̄H collision (know as

event). Two of those jets, combined with two leptons are necessary to perform the reconstruc-

tion of the tt̄ system, and the remaining two jets are used for the Higgs boson reconstruction.

To analytically determine the characteristics of the neutrinos it is necessary to perform a

kinematical reconstruction, where every possible combination of jets and leptons has to be

tried and evaluated, and only the most accurate reconstruction of each event is considered.

In this first phase, a tt̄ system reconstruction is attempted. If it has a possible solution, the

Higgs boson is reconstructed from the jets of the two remaining bottom quarks. The overall

quality of the event processing depends on the quality of both reconstructions.

Particle detectors have an experimental resolution associated with every measurement of ap-

proximately ±1%, which will have an impact on the reconstruction of the event and will affect

the quality of the results. Physicists improved theirs reconstruction algorithms to perform an

extensive search within the detector experimental resolution. This amount of reconstructions

is performed for each event, where the input data is randomly varied within the resolution.

The resolution that best fits the theoretical model is considered for the event, thus improving

the result quality.

Figure 14: Representation of the ttH dilep application work flow
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One of the reconstruction software available is a scientific quantitative data analysis ap-

plication was developed by ATLAS physicists to automate the reconstruction of events with

the tt̄ topology, known as ttH dilep. This code, which structure is schematised in figure 14,

loads the information of a set of events in an input data file to a structure in memory. Each

event is submitted through a series of pipelined tasks, known as cuts in the particle physicists

terminology, which purpose is to evaluate certain event characteristics to filter out events of

different topologies. An event that passes all cuts is reconstructed in cut 17.

Each tt̄ event information may contain up to 20 different jets and leptons associated, due to

other decaying processes measured simultaneously by the detector. The reconstruction has to

test every possible combination of 2 jets + 2 leptons to reconstruct the neutrinos, top quarks

(kinematical reconstruction) and, if possible, the Higgs boson, from which only the best is

kept. This process is repeated 1000 times, varying slightly the measured data, to overcome

the detector experimental resolution.

Figure 15: ttH dillep callgraph (Zoomed in Cut17)

The ttH dilep applies the same tasks pipeline to the independent events in the dataset.

However, the execution time of each event pipeline is irregular due to the filtering cuts and

reconstructions that sometimes are not possible. The execution time of the pipeline can vary

up to 6 orders of magnitude, when compared to an event that is discarded by the first cut

with an event that goes through all the cuts an is reconstructed (with 20 possible jets/lep-

ton combinations). The cut 17 accounts for 99% of the overall application execution time (as

it shows in figure 15), considering that less than 40% of the events were fit to be reconstructed.

The ttH dilep has a simple parallelization scheme where the tasks pipeline is applied si-

multaneously to different events in the dataset, implemented using OpenMP. However, it was

shown in [24] that this implementation did not scale properly when using more than 16 com-
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puting units.

This may impact the speedup obtained by the proposed scheduler, since it does not balance

the workload among each individual computing unit. The scheduler relies on the programmer

to provide efficient parallelization strategies on each device, focusing on the workload balance

among the devices.

4.2 hep-frame - a framework for computational science

The HEP-Frame is a user-centered Highly Efficient Pipelined Framework which aims to aid

scientists, from any scientific field, in the development of sustainable parallel scientific appli-

cations with a flexible pipeline structure. The framework offers the computational scientist a

user friendly environment to develop parallel applications, while automatically dealing with

the parallelization complexities transparently to the user.

HEP-Frame provides a user-friendly interface that does not require any specific tuning for

each individual scientific code or computing platform. Optimization efforts focus on improv-

ing both the execution throughput of an input dataset and the execution time of each element

in the dataset, in offline quantitative analyses.

Figure 16: Structure of a typical flexible pipelined application (from: [24])
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Pipelined applications typically have the structure presented in figure 16. For the HEP-

Frame a proposition is a computational task, which is applied to a dataset element, and an

evaluation of a given dataset element characteristic that may restrict the execution of subse-

quent propositions. The tasks may be computationally simple or complex, and the criteria

may discard different amounts of dataset elements.

HEP-Frame scheduler parallelizes the execution of the pipeline to different dataset elements,

while implementing the ability to analyze the level of performance of each task at run-time

and explore new pipeline orders, seeking the one that has a higher level of computational ef-

ficiency, but always ensuring that the dependencies between tasks (defined by the developer)

are kept.

The ttH dilep, which is the case study used in this thesis, is actually the prototype used

by HEP-Frame to validate its functionality. The case study was implemented using the HEP-

Frame and so the scheduler featured in this thesis was implemented in HEP-Frame giving

the possibility to use the scheduler in other scientific applications that use this framework.

However, the ttH dilep code had to be manually ported to operate with Intel Xeon Phi, and

multiple auxiliary data-structures had to be implemented to be able to offload the tt̄H events

to the device, as they events were originally allocated in data-structures that were incompat-

ible with the Intel Xeon Phi offload mechanisms.
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A N A DA P T I V E S C H E D U L E R FO R A N H E T E RO G E N E O U S S E RV E R

To dynamically schedule embarrassingly parallel applications, among devices with different

architectures and performance level, developers tend to implement a scheduler that follows

a demand-driven approach. In this approach, when a worker (device) is free, or about to

finish its previously assigned workload, it requests a new workload from the task stack that

have not yet been processed. The workload size is set by the user and an ill-fitting size may

result in a loss of performance. If the user set a size too small, this will increase the number

of communications made between the various devices, which will increase the weight of the

scheduler. On the other hand, if the size is too large, this may cause a significant loss of

resource use, since it may occur the situation where a device receives the last workload from

the stack and immediately after one, or all the other devices, become free (finished their previ-

ously assigned workload) and are forced to wait for the other device to finish its large workload.

To overcome these limitations a refinement of the demand-driven approach is presented,

which is tuned for each device characteristics, with an adaptive time interval between con-

secutive workload requests. The goal is to maintain the devices busy as long as possible,

adapting each device workload to minimize the amount of idle time.

The scheduler parallelization strategy assigns a task to execute at each computing unit at

each given time, while the amount of allocated tasks to each device should be one order of

magnitude higher than the number of available logical cores of the device with the higher

number of cores. It considers each multi-core/many-core device as a distinct worker with its

own performance index, which is updated throughout the application execution time. The

inexistence of dependencies in the dataset allows the scheduler to be simpler and lightweight.

The amount of work assigned to each device (or worker) is iteratively refined based on their

performance. The scheduler starts with a subset of the workload (with a predefined size) and

allocates equal sized workloads for each of the workers. In the next iteration the workload size

is adapted according to the performance of each worker: workers with more computational
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throughput will be assigned larger workloads.

The scheduler measures the amount of time that each worker is idle waiting for others to

complete their portion of the load, and combines that with the size of the workload that

was given to each worker to compute their performance index (2). Figure 17 shows a load

balancing example of the scheduler.

The expression (2) computes the new workload size based on the idle time and the previous

workload size.

WrkLpn+1
i =

WrkLpn
i + (WrkW pn

i × WrkLpn
i )

∑d
p=0 WrkLpn

p + (WrkW pn
p × WrkLpn

p)
(2)

Where n is the number of the scheduling iteration, WrkLp represents the worker load per-

centage, WrkWp represents the percentage of time that the worker remained idle waiting for

others to complete their portion of the load, i and p represents the device ID and d is the

total number of devices.

Figure 17: The proposed scheduler balancing sets of 15 data elements among multi-core and many-core
devices in two checkpoints

When the workload size stabilizes between two iterations, where the difference between the

previous and new sizes is less than a given threshold (expression (3)), the scheduler doubles

the size of the subset of the data that is divided into chunks. This helps reduce the scheduler

overhead and the amount of memory transfers passing through the PCI-Express interface. If

the scheduler calculates a new workload size with a variation higher than the threshold, the

size of the next data subset to be distributed is halved, ensuring that the scheduler efficiently
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adapts to irregularities in the workload pattern.

∑
(∣∣∣WrkLpcpu
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n
∣∣∣ +
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n+1 − WrkLpmic

n
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The data subset to distribute into workloads can be increased/decreased by a factor of 2

for up to 4 times. Increasing its size more than 4 times is not beneficial to the performance,

as adapting the workload to spikes in the tasks irregularity would take longer. More complex

strategies could be used but the increased overhead would significantly impact the perfor-

mance for faster applications.

The current implementation of the scheduler relies on the parallel code developed by the

user for each device, while it performs a näıve parallelization in the Intel Xeon Phi, by process-

ing different tasks simultaneously. The memory transfers were implemented using the Intel

Compiler pragma directives.

The scientific application, used as case study to validate the scheduler, has a scalability

limitations that caused a significant performance break and prevented from achieving better

results when using two multi-core devices.

After profiling the scientific application with VTune[3], it was evident that the generation of

PRN1 represented a considerable part of the application’s run-time and that its weight nearly

doubled when going from one to two multi-core devices. As each thread was dedicating part

of its run-time to generate multiple PRN using its own seed, it was considered that it would

be more efficient to have a dedicated thread to generate a list of PRN.

This is a typical producer-consumer problem, so the solution for the PRN hotspot was to

create an observer thread that would generate multiple pools of PRN and then feed them to

the threads running ttDilepKinFit as soon as they need them to apply the variations in the

reconstruction of the event. The observer thread manages the pools of PRN (generate new

pools and free depleted ones).

1 Pseudorandom Number.

32



Figure 18: Visual representation of the PRN optimization

The access to the pool of PRN had to be performed simultaneously by the multiple threads

without having to use locks, otherwise we would be creating a new hotspot caused by the fact

that the threads would have to block themselves and wait for their turn to acquire the lock.

To solve this issue, a lock-free queue from Boost[10] C++ library2, allocates a list of tokens

that represent the positions from where each thread should start feeding (figure: 18). This

way a block of PRN from the pool are reserved to a certain thread, guaranteeing that no

other thread uses the same PRN.

2 Set of libraries for the C++ programming language that provide support for tasks and structures such as
linear algebra, pseudorandom number generation, multithreading, image processing, regular expressions, and
unit testing.

33



6

E X P E R I M E N TA L R E S U LT S A N D D I S C U S S I O N

6.1 the server and measurements configuration

The main goal of the new scheduler was to minimize the waiting time of the available devices,

while keeping the overhead as low as possible. The experimental measurements addressed

the execution times of the scientific application that is used as case study, while using the

scheduler to distribute workloads among the available devices, and the percentage of time

that each device (or set of devices in a shared memory environment) remains idle. With these

values we can compute how long the fastest device is waiting for the slowest, for each load

distribution, and consider that as the scheduler performance (lower idle time means better

scheduler performance).

A dual socket server was used with 12-core Intel Xeon 2695v2 CPU devices @2.4 GHz

(2-way simultaneous multithreading) coupled with two PCIe cards, each with a 61-core Intel

Xeon Phi 7120 @1.2 GHz (4-way simultaneous multithreading). Four different heterogeneous

server configurations were used as testbed, with the following computing devices: (i) 1 multi-

core + 1 many-core; (ii) 2 multi-cores + 1 many-core; (iii) 1 multi-core + 2 many-cores; and

(iv) 2 multi-cores + 2 many-cores. The application was always configured to use 2 threads

per CPU core and 4 threads per Xeon Phi core (1 thread per logical core). The granularity

of the initial workload to distribute was tuned so that there are 10 times more independent

tasks than threads on the Xeon Phi (the device with the most logical cores, as described in

chapter 5) so that it is easier to explore the performance potential of this device.

To measure the execution times of the selected application case study, the ttH dilep, a

k-best measurement heuristic was used to ensure that the best results can be replicated, with

k = 3 within a tolerance factor of 5% with a minimum of 6 measurements and a dataset with

±750, 000 events.
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We also present a table with speedups of hardware configurations with 1 or 2 Phi related

to the same code being executed in only 1 multi-core or 2 multi-core devices. Note that this

case study does not scale well when moving from 1 multi-core to 2 multi-core devices, nor the

Xeon phi devices were adequately parallelized. These performance limitations are solely due to

the inefficient parallel code running one each device, an issue out of the scope of this scheduler.

6.2 validation and discussion

A strong point of this scheduler is its very low overhead. In the worst case measured, the

scheduler had an overhead of about 1.68 milliseconds, which was approximately 0.000175%

of the total application run-time.

To ensure that the scheduler generates a low overhead, the chunk size is doubled amount,

when the difference between the workload sizes is less than a given threshold, reducing the

number of memory transfers passing through the PCI-Express interface. Each time the chunk

size is doubled, the duration of the next iteration also nearly doubles. Therefore, figure 19

should be seen carefully, since all iterations do not have the same execution time.

As for the key goal, to minimize the waiting times of the devices, figure 20 show the percent-

age of time that all workers were busy computing in parallel and the percentage of time that

at least one of workers stayed idle waiting for the others to finish computing their workload.

In other words, the idle time represents the percentage of time that the fastest worker spent

waiting for the slowest in each iteration.

Figure 19: Set of events chunk size Figure 20: Percentage of waiting time

As we can observe from figure 20 the waiting time of all the workers decreases rapidly in

the first iterations of the scheduler, stabilizing in around 3%. In other words both workers
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spend 97%, of the run-time, working concurrently. Full concurrent efficiency usage happens

when all workers are operating in parallel without any of them waiting for the others to finish

computing their workload.

Figure 21: Workload balance by iteration Figure 22: Workload balance by time

The figures 21 and 22 show how scheduler balances the workload throughout the multiple

iterations and time. Figure 22 evidences how fast the workloads are stabilized. The system

configuration that was used in these results was with 2 multi-core and 1 many-core.

The workload is virtually balanced in the first two iterations and these two iterations took

only 14 seconds, which represents 1.04% of the total run-time.

Figure 23: Percentage of waiting time of each device on every system configuration
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Figure 23 show the percentage of time that each device had to remain idle while waiting

for others to complete their portion of the load, on every system configuration. Additionally,

we can infer that in the worst case, the multiple devices had an occupancy rate of 97%.

However the scientific application contained a scalability limitations that caused a signifi-

cant performance break and prevented from achieving better results when using two multi-core

devices, as we can conclude by observing table 1.

Configuration multi-core Heterogenous Speedup

1XEON 22m 32s - 1 x

1XEON+1PHI - 19m 46s 1,14 x

1XEON+2PHI - 15m 59s 1,40 x

2XEON 33m 7s - 1 x

2XEON+1PHI - 24m 12s 1,37 x

2XEON+2PHI - 18m 6s 1,83 x

Table 1: Speedup achieved on the multiple system configurations

In an attempt to identify what was causing the drop in performance when using both multi-

core devices, a performance analysis was performed using the VTune.

Figure 24: VTune performance analysis while using a single multi-core device

Figure 25: VTune performance analysis while using two multi-core devices
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With the help from these results (figures 24 and 25), it was evident that the generation of

PRN represented a considerable part of the application’s run-time and that its weight nearly

doubled when going from one to two multi-core devices.

After implementing the PRN generation optimizations, the scientific application still had a

scalability limitations that prevented from achieving better results when using two multi-core

devices. In any case, an improvement in performance was obtained (Table: 2).

Configuration multi-core Heterogenous Speedup

1XEON 10m 46s - 2.01 x

1XEON+1PHI - 9m 35s 2,11 x

1XEON+2PHI - 8m 43s 1,83 x

2XEON 15m 18s - 2,16 x

2XEON+1PHI - 11m 30s 2,1 x

2XEON+2PHI - 11m 28s 1,57 x

Table 2: Speedups on the multiple system configurations after PRN optimization
Note: Speedups are related to the run-times shown in Table: 1

Unfortunately, this optimization did not remove the limitations of the parallel code version

for the multi-core device. We continue to observe a significant loss of performance when we

use two multi-cores. Nonetheless, a significant improvement in performance was achieved

across all test environments, managing to reduce the run-times to practically half from those

presented in Table 1.

By improving the performance of the parallel version of the code used in the multi-core

device, the scheduler ended up increasing the workload delivered to this device, reducing the

workload delivered to the many-core devices. For this reason, as we can observe in Table 2,

the use of one and two many-core devices generated a smaller increase in performance since

these devices processed a smaller amount of data.

If the parallel version of the code used in the many-core is optimized, and its throughput

of events increases, the execution time may potentially improve since the scheduler would

distribute a larger workload to these devices.
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7

C O N C L U S I O N S A N D F U T U R E WO R K

This dissertation presented a model and the respective implementation of a dynamic adaptive

scheduler capable of efficiently distributing irregular workloads on an heterogeneous server,

across multiple devices (multi-core and many-core) with a very low overhead. This new sched-

uler is generic to deal with any type of work or device, and any number of devices.

The scheduler was implemented in the HEP-Frame so that it could potentially be used to

aid scientists, from multiple scientific fields, and improve the performance of their applications

on heterogeneous platforms.

The current version of the scheduler implements an efficient load balancing of irregular

workloads with a very small overhead (less than 0.00018% of the total application run-time)

on a heterogeneous platform that uses as an accelerator, one or multiple Intel Xeon Phi. It

is also expected that the scheduler obtains such results in other heterogeneous server config-

urations.

The main reason why the scheduler produces such small overhead and that in its the worst

case the multiple devices had an occupancy rate of 97% is due to its new heuristic that is

lightweight and at the same time it is also very efficient, allowing the scheduler to make the

right decision and send to each device the amount of work that close to the ideal in practi-

cally all its iterations. This heuristic also allows workloads to converge to the optimal size

very early in the application execution, allowing a better exploitation of the computational

resources of an heterogeneous server.

This scheduler has not been tested with a GPU device, because till date there is still no

version of the ttH_dillep application compatible with this type of platforms. However, it is

expected that the scheduler deals efficiently with GPUs, given that it operates regardless of

the characteristics of the devices.
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The parallelization of the code used inside the multi-core and many-core devices is not

the responsibility of the scheduler, and it depends entirely on the code that the developer

produces to properly scale as the number of cores increases.

A possible optimization of the scheduler is to handle the multi-core devices (Xeon) as sep-

arate devices in order to specifically offload workload to each multi-core device and reduce

NUMA accesses where the memory access time depends on the memory location relative to

the device where the code is being executed.
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