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Duarte pelo ajuda dada na revisão da escrita da dissertação e por todas as conversas
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A B S T R A C T

The security of most digital systems is under serious threats due to major technology break-
throughs we are experienced in nowadays. Lattice-based cryptosystems are one of the most
promising post-quantum types of cryptography, since it is believed to be secure against
quantum computer attacks. Their security is based on the hardness of the Shortest Vector
Problem and Closest Vector Problem.

Lattice basis reduction algorithms are used in several fields, such as lattice-based cryp-
tography and signal processing. They aim to make the problem easier to solve by obtaining
shorter and more orthogonal basis. Some case studies work with numbers with hundreds
of digits to ensure harder problems, which require Multiple Precision (MP) arithmetic. This
dissertation presents a novel integer representation for MP arithmetic and the algorithms
for the associated operations, MpIM. It also compares these implementations with other li-
braries, such as GNU Multiple Precision Arithmetic Library, where our experimental results
display a similar performance and for some operations better performances.

This dissertation also describes a novel lattice basis reduction module, LattBRed, which
included a novel efficient implementation of the Qiao’s Jacobi method, a Lenstra-Lenstra-
Lovász (LLL) algorithm and associated parallel implementations, a parallel variant of the
Block Korkine-Zolotarev (BKZ) algorithm and its implementation and MP versions of the
the Qiao’s Jacobi method, the LLL and BKZ algorithms.

Experimental performances measurements with the set of implemented modifications of
the Qiao’s Jacobi method show some performance improvements and some degradations
but speedups greater than 100 in Ajtai-type bases.
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R E S U M O

Atualmente existe um grande avanço tecnológico que poderá colocar em causa a segurança
da maioria dos sistemas informáticos. Sistemas criptográficos baseados em reticulados
são um dos mais promissores tipos de criptografia pós-quântica, uma vez que se acredita
que estes sistemas são seguros contra possı́veis ataques de computadores quânticos. A
segurança destes sistemas está baseada na dificuldade de resolver o problema do vetor
mais curto e o problema do vetor mais próximo.

Algoritmos de redução de bases de reticulados são usados em muitos campos cientı́ficos,
tais como criptografia baseada em reticulados. O seu principal objetivo é tornar o prob-
lema mais fácil de resolver, tornando a base do reticulado mais curta e ortogonal. Al-
guns casos de estudo requerem o uso de números com centenas de dı́gitos para garantir
problemas mais difı́ceis. Portanto, é importante o uso de módulos de precisão múltipla.
Esta dissertação apresenta uma nova representação de inteiros para aritmética de precisão
múltipla e todas as respetivas funções de um módulo, ‘MpIM’. Também comparamos as
nossas implementações com outras bibliotecas de precisão múltipla, tais como ‘GNU Multi-
ple Precision Arithmetic Library’, em que obtivemos desempenhos semelhantes e em alguns
casos melhores.

A dissertação também apresenta um novo módulo para a redução de bases de reticulados,
‘MpIM’, que inclui uma nova e eficiente implementação do ‘Qiao’s Jacobi method’, o algoritmo
‘Lenstra-Lenstra-Lovász’ (LLL) e respectiva implementação paralela, uma variante paralela do
algoritmo ‘Block Korkine-Zolotarev’ (BKZ) e a sua versão sequencial e versões the precisão
múltipla do ‘Qiao’s Jacobi method’, LLL e BKZ.

Trabalhos experimentais mostraram que a versão do ‘Qiao’s Jacobi method’ que implementa
todas as modificações sugeridas mostra ganhos e degradações de desempenho, contudo
com aumentos de desempenho superiores a 100 vezes em bases ‘Ajtai-type’.

iii



C O N T E N T S

1 introduction 2

1.1 Motivation 4

1.2 Contribution 4

1.3 Roadmap 4

2 background and setup 6

2.1 Multiple precision 7

2.1.1 Current libraries 7

2.1.2 Integer Representation 9

2.1.3 Addition and Subtraction 11

2.1.4 Multiplication 12

2.1.5 Division 17

2.1.6 Newton’s method 19

2.1.7 Hensel’s division 20

2.2 Lattice basis reduction 21

2.2.1 Basic Concepts 22

2.2.2 Lenstra–Lenstra–Lovász 24

2.2.3 Hermite-Korkine-Zolotarev 26

2.2.4 Block-Korkine-Zolotarev 26

2.2.5 Qiao’s Jacobi method 28

2.2.6 Measuring Basis Quality 30

2.3 Experimental environment 31

2.3.1 Non-Uniform Memory Access 31

2.3.2 Vectorization 33

2.3.3 Methodologies 33

3 the multiple precision integer module 35

3.1 Addition and Subtraction 35

3.1.1 Addition Vectorization 36

3.1.2 Increment and Decrement 36

3.2 Multiplication 37

3.2.1 Long multiplication 37

3.2.2 Karatsuba 38

3.3 Division 39

3.4 Other Functions 39

3.4.1 Logical Shifts 39

iv



Contents v

3.4.2 And/Or/Xor 42

3.4.3 Pseudo-Random Number Generator 42

3.4.4 Compare 42

3.5 Evaluation Results 43

4 the qiao’s jacobi method 48

4.0.1 Vectorization 50

4.0.2 Evaluation Results 51

4.1 Parallel Version 54

4.1.1 Evaluation Results 56

4.2 Basis Quality Assessment 57

5 bkz , lll and qiao’s jacobi method 60

5.1 Towards parallel approaches 60

5.1.1 Parallel LLL algorithm 60

5.1.2 Parallel BKZ algorithm 62

5.2 BKZ w/ Qiao’s Jacobi method 63

5.3 Reducing L-reduced bases 63

6 conclusions & future work 66



L I S T O F F I G U R E S

Figure 1 SVP panorama in three layers 6

Figure 2 Binary representation of a large number with 3 limbs. 10

Figure 3 Addition with a carry digit in a large number with 2 limbs. 11

Figure 4 The best algorithm to multiply two numbers of x and y limbs. bc is
long multiplication, 22 is Karatsuba’s algorithm and 33, 32, 44 and
42 are Toom variants (from [Brent and Zimmermann (2010)]). 13

Figure 5 Long multiplication algorithm (from Intel documentation). 14

Figure 6 Multiplication step (from Intel documentation). 14

Figure 7 Lattice reduction in two dimensions: the black vectors are the given
basis for the lattice, the red vectors are the reduced basis (from
Wikipedia). 21

Figure 8 The first two steps of the Gram–Schmidt orthogonalization (from
Wikipedia). 23

Figure 9 Examples of GM matrices. 24

Figure 10 Chess tournament with n = 8 (from [Jeremic and Qiao (2014)]). 29

Figure 11 Shared memory system (from Google Images). 32

Figure 12 One possible architecture of a NUMA system (from Advanced Ar-
chitectures slides). 32

Figure 13 Scalar implementation vs vector implementation (from Google Im-
ages). 33

Figure 14 Simple logical right shift with the insertion of a zero on the left. 40

Figure 15 Simple logical left shift with the insertion of a zero on the right. 40

Figure 16 Right shift of 2 in a 3-limb large number. 40

Figure 17 Left shift of 2 in a 3-limb large number. 41

Figure 18 Comparison between the 5 addition implementations of the MpIM. 43

Figure 19 Comparison of MpIM’s addition to other libraries. 43

Figure 20 Comparison of MpIM’s subtraction to other libraries. 44

Figure 21 Comparison between the long multiplication and the Karatsuba im-
plementations of the MpIM. 44

Figure 22 Comparison of MpIM’s multiplication to other libraries. 44

Figure 23 Comparison of MpIM’s division to other libraries. 45

Figure 24 Comparison of MpIM’s right shift to other libraries. 46

Figure 25 Comparison of MpIM’s left shift to other libraries. 46

vi



List of Figures vii

Figure 26 Comparison of MpIM’s ’or’ function to other libraries. 46

Figure 27 Comparison of MpIM’s ’and’ function to other libraries. 46

Figure 28 Comparison of MpIM’s ’xor’ function to other libraries. 47

Figure 29 Execution times of sequential LLL XD and Qiao’s Jacobi method in
GM bases. 52

Figure 30 Execution times of sequential LLL FP and Qiao algorithm in Ajtai-
type bases. 53

Figure 31 Number of necessary sweeps to converge to a solution in Ajtai-type
bases. 53

Figure 32 Speedups comparison between sequential LLL and Qiao’s Jacobi method
implementations in Ajtai-type bases. 54

Figure 33 Number of necessary sweeps to converge to a solution in GM bases. 55

Figure 34 Execution times of first parallel approach in GM bases. 57

Figure 35 Execution times of second parallel approach in GM bases. 57

Figure 36 Hermite factor of output basis from LLL algorithm and Qiao’s Jacobi
method in Ajtai-type bases. 59

Figure 37 Average of the norms of the output basis from LLL algorithm and
Qiao’s Jacobi method in Ajtai-type bases. 59

Figure 38 Sequence of the GS norms from LLL algorithm and Qiao’s Jacobi
method in Ajtai-type bases. 59

Figure 39 Last GS norms from LLL algorithm and Qiao’s Jacobi method in
Ajtai-type bases. 59

Figure 40 Execution times of the Qiao’s Jacobi Method, the LLL and BKZ algo-
rithms. 63

Figure 41 Hermite factor of output basis from LLL and BKZ algorithms and
Qiao’s Jacobi method. 64

Figure 42 Average of the norms of output basis from LLL and BKZ algorithms
and Qiao’s Jacobi method. 64

Figure 43 Sequence of the GS norms of the output bases from the LLL and BKZ
algorithms and the Qiao’s Jacobi method. 65

Figure 44 Last GS norms of output basis from LLL and BKZ algorithms and
Qiao’s Jacobi method. 65



L I S T O F A L G O R I T H M S

2.1 Integer Addition, presented in [Brent and Zimmermann (2010)]. . . . . . . . 12

2.2 Long Multiplication, presented in [Brent and Zimmermann (2010)]. . . . . . 14

2.3 Karatsuba’s Algorithm, presented in [Brent and Zimmermann (2010)]. . . . . 15

2.4 Toom-Cook 3-Way Algorithm, presented in [Brent and Zimmermann (2010)]. 16

2.5 Long Division, presented in [Brent and Zimmermann (2010)]. . . . . . . . . . 18

2.6 Long division (binary version), from Wikipedia. . . . . . . . . . . . . . . . . . 19

2.7 Division By a Limb, presented in [Brent and Zimmermann (2010)]. . . . . . . 20

2.8 LLL algorithm, presented in [Nguyen and Stehlé (2006)]. . . . . . . . . . . . . 25

2.9 BKZ algorithm, presented in [Chen and Nguyen (2011)]. . . . . . . . . . . . . 27

2.10 Qiao’s Jacobi Method, presented in [Qiao (2012)]. . . . . . . . . . . . . . . . . 29

3.1 Integer Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Proposed Qiao’s Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Gram-Schmidt process for k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1



1

I N T R O D U C T I O N

For years the cryptography community has been searching for more resistant cryptosys-
tems. However, only in last decades there have been an intensive search for cryptosystems
that would be resistant against quantum computers attacks. This necessity is explained
by the vulnerability of the current popular cryptosystems, whose security relies on (i) the
integer factorization problem, (ii) the discrete logarithm problem or (iii) the elliptic-curve
discrete logarithm problem. Unfortunately, these three hard mathematical problems are no
longer hard to solve on a sufficiently large quantum computer running Shor’s algorithm
[Shor (1997), Bernstein (2009)].

Nowadays, lattice-based cryptosystems are one of the most promising post-quantum
types of cryptography, due to its inherent computational hardness and fully-homomorphic
properties. Lattices are rich algebraic structures that have many applications in computer
science, namely integer programming [Kannan (1983)], communication theory [Agrell et al.
(2002), Nguyen (2010)] and number theory [Cassels (2012), Siegel (2013)].

The security of these cryptographic techniques is based on very strong security proofs
based on the hardness of worst-case problems. Thus, breaking a cryptographic construction
is probably at least as hard as solving several lattice problems in the worst-case.

Most current computer architectures support operations between numbers with up to 64

bits of precision. However, there are cases in cryptography where numbers with hundreds
of digits (that cannot be represented as primitive data types) are required to ensure harder
problems. Therefore, it is important to resort to Multiple Precision (MP) arithmetic to solve
this kind of problems.

The bold face is used to represent vectors and matrices in this dissertation, where vectors
are in lower-case and matrices are in upper-case, e.g., vector v and matrix M. The transpose
of a matrix is given by MT and the dot product of two vectors v and p is denoted by 〈v, p〉.
Finally, dac rounds the value a to the nearest integer number and |a| gives the absolute
value of a.

Lattices are simple algebraic structures based on familiar concepts to any user with basic
training in algebra. The conceptual simplicity of these cryptographic techniques is associ-
ated with simple matrix computations. A lattice L in Rn is generated for all possible linear
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3

combinations with integer coefficients of any basis in Rn, where a basis B is a set of linear
independent vectors (b1, ..., bn) and Z are all possible linear combinations, given by:

L = BZ =
n

∑
i=0

bizi, zi ∈ Z (1)

Take a lattice L embedded in a metric vector space A. Since L is contained in A, there is
the notion of size ‖x‖ and the notion of distance ‖x− z‖, where x, z ∈ L. These notions are
enough to define two basic problems in lattices.

The Shortest Vector Problem (SVP) [Hanrot et al. (2011b)] can be informally defined as
the search for the shortest vector of a given lattice L and formally defined as follows: given
a basis B for a lattice L = L(B), find a vector v ∈ L such that ‖v‖ = λ1(L), where the
norm of the shortest vector of the lattice L is given by λ1(L). In its approximated version
(α-SVP), the goal is to search for that vector, this time multiplied by a small α factor12. On
the other hand, the Closest Vector Problem (CVP) is defined as follows: given a basis B for
a lattice L = L(B) and a vector x ∈ Rn, find a vector v ∈ L such that ‖x− v‖ is minimal.
The CVP and SVP problems are closely related.

The efficiency of several classes of algorithms that solve the SVP, such as enumeration,
sieving and random sampling algorithms, is inherently connected with the quality of the
input basis. Therefore, the development of new algorithms and the proposal of implemen-
tations that improve the quality of a basis is imperative.

Nowadays, lattice enumeration algorithms are one of the main techniques to solve hard
lattice problems such as SVP. A basic enumeration consists on an exhaustive search for the
best combination of basis vectors among all others, leading to a run in exponential time
executions.

In order to have a polynomial complexity algorithm we have to limit the algorithm spec-
ification to do not necessarily require the shortest vector of the lattice but only a reduced
basis. It is here that lattice basis reduction algorithms play an important role, where its
goal is to transform a given basis B of a lattice L into a close to orthogonal and shorter
basis such that L remain the same. Since the reduced basis is shorter and more orthogonal,
the SVP-solvers are capable of solve the SVP in less time, which compensate in most of the
cases.

Lattice basis reduction algorithms are used in several applications, not only in the SVP.
They have also been used in signal processing applications, such as Global Positioning Sys-
tem (GPS), color space estimation in JPEG pictures, frequency estimation, and particularly
data detection and precoding in wireless communications [Wbben et al. (2011), Tian and
Qiao (2013)].

1 Lattice challenge - https://www.latticechallenge.org
2 SVP challenge - https://www.latticechallenge.org/svp-challenge/

https://www.latticechallenge.org
https://www.latticechallenge.org/svp-challenge/


1.1. Motivation 4

1.1 motivation

Lattice-based cryptography has been a hot topic in the past 10 years, because systems based
on lattices are believed to be secure against quantum computer attacks. These systems are
based on the hardness of the SVP in theory, and of α-SVP in practice. While the SVP has
been formulated more than a century ago, the algorithmic study of lattices started only in
the early eighties, and the development of parallel algorithms for the SVP is even more
recent, with developments in the last five years.

Despite the theoretical and practical hardness of the SVP, it is important to keep searching
for new more efficient implementations or algorithms to prove that a particular problem
may be easier to solve than the expected. The constant scrutiny of these problems is cru-
cial to the scientific community, where a particular problem may be considered reliable or
not. Thus, this dissertation focuses on lattice basis reduction algorithms and one of its key
requirement, MP arithmetic.

1.2 contribution

The work developed during this dissertation targeted performance improvements on lattice
basis reduction techniques that lead to scientific contributions. These include:

• Development of an efficient ’Multiple precision Integer Module’ (MpIM)3 with mathe-
matical operations, namely addition, increment, subtraction, decrement, multiplica-
tion, division, left and right shifts, and several logical operations;

• Development of a ’Lattice Basis Reduction’ (LattBRed)3 module. These include:

– A novel efficient implementation of the Qiao’s Jacobi method;

– Parallel and MP versions of the Qiao’s Jacobi method;

– MP implementations of the LLL and BKZ algorithms.

• A basis quality assessment of the LLL algorithm and Qiao’s Jacobi method for Ajtai-
type and Goldstein and Mayer lattice basis.

1.3 roadmap

This dissertation is structured in six chapters. The first chapter introduces the reader the
theme of this dissertation, and briefly explains the relevance of this topic for the scientific
community.

3 Module available at https://github.com/heldergoncalves92

https://github.com/heldergoncalves92


1.3. Roadmap 5

The next chapter describes the necessary background to quickly understand the main
subjects related to lattice basis reduction and describes the computational environment
for the experimental work. The current approaches for MP and lattice basis reduction
algorithms are presented in this chapter.

Chapter 3 presents the implemented MP operations and compares the module perfor-
mance with existing libraries.

Chapter 4 is dedicated to the Qiao’s Jacobi method. It discusses the performance results
achieved with the sequential and parallel versions of the algorithm and assesses a lattice
basis quality of the Qiao’s Jacobi method.

Chapter 5 describes proposed parallel approaches of the LLL and BKZ algorithms and
assesses the quality of the output basis of combining the LLL and the BKZ algorithm with
the Qiao’s Jacobi method.

Finally, chapter 6 concludes the dissertation taking into account the obtained results, and
leave guidelines for future work that could not be finished or covered.
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B A C K G R O U N D A N D S E T U P

An SVP-solver searches the shortest non-zero vector of a lattice L. However, they used to
be high complexity algorithms and they may run in exponential execution times. Some
lattice basis reduction algorithms produce reduced basis in polynomial time [Lenstra et al.
(1982a)], but they do not solve the problem. The community have been doing a great effort
in the last years in SVP-solvers and lattice basis reduction algorithms, in order to get more
efficient solutions. SVP-solvers are a class of techniques that solve the SVP. Enumeration,
sieving and random sampling algorithms are three of the main techniques in SVP-solvers.

Figure 1: SVP panorama in three layers

Figure 1 illustrates a SVP panorama that this dissertation addresses. It splits the SVP into
three different layers.

SVP-solvers and lattice basis reduction algorithms can be used as stand alone algorithms,
however they perform better together. The ’SVP-solvers’ layer is on the top because these
algorithms always return the shortest non-zero vector of the lattice. Although the lattice
basis reduction algorithms can solve the SVP for small basis dimensions, usually they only
get a reduced basis which can then be used by a SVP-solver. Thus, they are below the layer
’SVP-solvers’. Finally, Multiple precision algorithms are in the bottom layer because they are
used in both upper layers to represent and perform computations on large numbers that
are inherit to the problem. Thus, this layer can be consider as support of the others. The
dissertation is focused on the two lower layers.

6



2.1. Multiple precision 7

2.1 multiple precision

Most current computer architectures support operations between integer scalars with up
to 64 bits of precision. However, lattices in cryptography require numbers with a larger
precision to ensure a better security in some applications. MP arithmetic requires the rep-
resentation and computation of numbers that do not fit into primitive data types. With this
approach it is possible to store and perform calculations on numbers whose precision digits
are only limited by the available system memory.

Operations with primitive data types, whose numbers fit into processor registers, are
considerably faster than the MP arithmetic. While primitive data types are implemented by
hardware, MP arithmetic has to be implemented by software.

The MP history starts with a commercial IBM computer in the 50s1. Unlike the current
MP, implemented by software, the IBM 702 implemented a integer arithmetic entirely in
hardware on digit strings up to 511 digits. Later in the 60s appear the first widespread
software MP implementation in MACLISP (a dialect of the Lisp programming language).
Already in the 80s, the VAX/VMS and VM/CMS were the first operating systems to offer
MP functionalities.

This dissertation is focused in MP integer arithmetic, thus the algorithms here presented
are intended to handle large integer numbers.

2.1.1 Current libraries

Current MP libraries are available for many programming languages. Languages such as
Ruby and Haskell offer built-in support, but its performance decreases. In C and C++, one
of the most used libraries is the GNU Multiple Precision Arithmetic Library (GMP)2.

GMP is a free library for MP arithmetic that was first released in 1991, and it has been
updated since then. This library aims to have better implementations than any other MP
library, mainly because it (i) uses full words to represent a large number, (ii) uses differ-
ent algorithms for different operand sizes since the algorithm efficiency depends on the
operand, (iii) is specialized for different processor architectures with highly optimized as-
sembly code, and (iv) is continuously updated by the worldwide community.

The Number Theory Library (NTL) is other widely used MP library3. Unlike GMP that
only implements MP modules, NTL has a strong component in number theory providing
data structures and algorithms (e.g. routines for lattice basis reduction, Gaussian elimina-
tion). It makes it way more attractive than GMP when the the research target goes beyond
performance. The NTL author considers it a high-performance library and to increase its

1 Arbitrary precision arithmetic - https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
2 GMP - https://gmplib.org
3 NTL - http://shoup.net/ntl/

https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://gmplib.org
http://shoup.net/ntl/


2.1. Multiple precision 8

performance when using MP integer arithmetic, the author recommends to compile NTL
with GMP. It also compares the relative performance of NTL against a similar library [Shoup
(2016)].

Class Library for Numbers (CLN) is a MP library for efficient computations4. It stands
out of the two previously libraries with a rich set of number classes, e.g., rational and com-
plex numbers. As most high-performance libraries, it is implemented with C++ which
brings efficiency, algebraic syntax and type safety. The CLN’s author claims that it is
very efficient in MP integer arithmetic with the use of the Karatsuba algorithm [Karatsuba
and Ofman (1962), Karatsuba (1995), Knuth (1997)] and the Fast Fourier Transform (FFT)
method [Schönhage and Strassen (1971)]. As most MP libraries, CLN is also dependent of
the GMP.

The previous MP libraries were consider for further experimental work to this disserta-
tion due to its performance and MP number type. However, some well rated libraries were
not considered for further experimental work, namely Multiple-Precision FP computations
with correct Rounding library (MPFR)5 [Fousse et al. (2007)], Modular-positional Floating-
point format (MF-format) [Isupov and Knyazkov (2015)], Multiple Precision Integers and
Rationals library (MPIR)6, Boost7, Multiple Precision Floating-point Interval library (MPFI)8

[Revol and Rouillier (2005)], MPFUN2015
9, ARPREC10 , GNU Multiple Precision Complex

library (MPC)11, GNU Multi-Precision Rational Interval Arithmetic library (MPRIA)12 and
Computer Algebra System (PARI/GP)13. The exclusion of these libraries had several rea-
sons: (i) their main functionalities are not relevant in the case study (e.g floating-point
arithmetic, complex numbers, interval arithmetic and others), and (ii) several problems
occurred when used (e.g. setup or segmentation fault problems and only beta releases).

In addition to these libraries others were also excluded because (i) we could not find rel-
evant information about them, (ii) we assumed that their performance was lagging behind
since they were not updated for several years or benchmarks showed that there are more ef-
ficient libraries, and (iii) the target programming language is not C/C++. The list include
Fast LIbrary for Number Theory (FLINT)14, TTMath Bignum Library (TTMath)15, Arbitrary

4 CLN - http://www.ginac.de/CLN/
5 MPFR - http://www.mpfr.org
6 MPIR - http://mpir.org
7 Boost - http://www.boost.org
8 MPFI - http://mpfi.gforge.inria.fr
9 MPFUN2015 - http://www.davidhbailey.com/dhbsoftware

10 ARPREC - http://crd-legacy.lbl.gov/~dhbailey/mpdist/
11 MPC - http://www.multiprecision.org
12 MPRIA - https://www.gnu.org/software/mpria/
13 PARI/GP - http://pari.math.u-bordeaux.fr
14 FLINT - http://www.flintlib.org
15 TTMath - http://www.ttmath.org

http://www.ginac.de/CLN/
http://www.mpfr.org
http://mpir.org
http://www.boost.org
http://mpfi.gforge.inria.fr
http://www.davidhbailey.com/dhbsoftware
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://www.multiprecision.org
https://www.gnu.org/software/mpria/
http://pari.math.u-bordeaux.fr
http://www.flintlib.org


2.1. Multiple precision 9

precision library (ApFloat)16, LibTomMath17, CORE Library (CORE)18 [Du et al. (2002)], eX-
act Reals in C (XRC)19, Multiple-precision Math (MpMath)20, Software Carry-Save multiple-
precision Library (SCSLib) [Defour et al. (2002), Defour and de Dinechin (2003)], Floating-
point Arithmetic Library (FpALib)21, Supporting High Precision on Graphics Processors
(GARPREC)22, CudA Multiple Precision ARithmetic librarY (CAMPARY)23, General Dec-
imal Arithmetic Specification (MPDecimal)24, a Multi-precision Number Theory package
(MpNT) [Hritcu et al. (2014), Tiplea et al. (2003)], Piologie25 , BigDigits multiple-precision
arithmetic (BigDigits)26, C for eXtended Scientific Computing (C-XSC) [Hofschuster and
Krämer (2004)], Multiple precision Integer and Rational Arithmetic C Library (MIRACL)27

[Scott (2016)], My Arbitrary Precision Math library (MAPM)28 [Ring (2001)]and simple and
complete bignum C library (bigz)29.

2.1.2 Integer Representation

To represent MP numbers, it is necessary to create a structure that supports all computa-
tions. The structure must allow efficient computations over the data.

The Residue Number System (RNS) was created by Sun Tsu Suan-Ching in the 4th century.
The RNS is based in the Chinese remainder theorem for its operations. It uses a set of small
numbers that fit in the primitive data types to represent a large MP number. As a large
MP number is composed of a set of smaller numbers, a MP operation can be performed by
compute in parallel and independently each small number.

However, RNS have some limitations, such as the division operation and the compari-
son of numbers in order to improve the RNS performance several works have been done
[Kaltofen and Hitz (1995), Chren (1990), Isupov and Knyazkov (2015)]. RNS cannot effi-
ciently compare two numbers: it has to convert those numbers to other representation to
know, for example, which one is greater. To know more about this representational system
see [Omondi and Premkumar (2007)].

16 ApFloat - http://www.apfloat.org
17 LibTomMath - http://www.libtom.net
18 CORE - http://cs.nyu.edu/exact/core_pages/intro.html
19 XRC - http://keithbriggs.info/xrc.html
20 MpMath - http://mpmath.org/
21 FpALib - https://sourceforge.net/projects/precisefloating/
22 GARPREC - https://code.google.com/archive/p/gpuprec/
23 CAMPARY - http://homepages.laas.fr/mmjoldes/campary/
24 MPDecimal - http://www.bytereef.org/mpdecimal/
25 Piologie - http://think-automobility.org/geek-stuff/piologie
26 BigDigits - http://www.di-mgt.com.au/bigdigits.html
27 MIRACL - https://www.miracl.com/
28 MAPM - http://www.tc.umn.edu/~ringx004/mapm-main.html
29 Bigz - https://sourceforge.net/projects/bigz/

http://www.apfloat.org
http://www.libtom.net
http://cs.nyu.edu/exact/core_pages/intro.html
http://keithbriggs.info/xrc.html
http://mpmath.org/
https://sourceforge.net/projects/precisefloating/
https://code.google.com/archive/p/gpuprec/
http://homepages.laas.fr/mmjoldes/campary/
http://www.bytereef.org/mpdecimal/
http://think-automobility.org/geek-stuff/piologie
http://www.di-mgt.com.au/bigdigits.html
https://www.miracl.com/
http://www.tc.umn.edu/~ringx004/mapm-main.html
https://sourceforge.net/projects/bigz/
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There are several formats to represent a MP number, but usually it is used an array
of integer numbers, where we call limb to each position of the array. This dissertation
represents each limb (usually with 32 or 64 bits) with β. A possible integer representation
contains the following fields:

• Number;

• Size;

• Allocated Size;

• Sign.

The field ’Number’ is an array of integer numbers. Each array position (limb) represents
one part of the large number. The large number is always represented in magnitude for an
easier and efficient algorithm implementation without sign verifications. The magnitude
of any number is usually called its absolute value or module. In field ’Number’, one of
the most critical choices is related to the primitive data type to be used at each position.
A susceptible approach is to sel1ect the ’unsigned long’ data type, in C, for each position,
which is represented with 64 bits in a 64-bit processor architecture. Libraries such as GMP
use the ’unsigned long’ data type, while other libraries, such as NTL use the ’long’ data type.

Figure 2: Binary representation of a large number with 3 limbs.

Figure 2 illustrates how a large number is represented in an array of integer numbers. It
represents a number in binary and its respective positions in ’Number’. The little-endian
format is followed where the least significant limb (LSL) is in the beginning of the array,
and the most significant limb (MSL) is at the last position. Note that the LSL is in the lower
memory position. This representation may be considered a reversed list. MP algorithms
usually start to compute the LSL. Thus, the representation helps the processor on data
prefetching, avoiding several cache misses and hiding memory latency.

The field ’Size’ stores the number of limbs used to represent the large number. In Figure
2, this variable would have three as value. To represent the zero number, it sets the variable
’Size’ to zero, avoiding the access to the array where it is represented the number.
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The field ’Allocated Size’ contains memory size allocated in bytes for the array ’Number’.
This value is always greater than or equal to the variable ’Size’. If there is not enough
memory allocated, a procedure will do it automatically.

The last field is the ’Sign’. This variable is a boolean and if it is false the number is
positive or zero and if its value is true the number is negative.

There are many ways to represent the number’s sign. A simple format is the representa-
tion on the GMP. Contrary to our representation the GMP does not use a field to the sign
because in its representation, the large number’s sign is included in its size variable. A sign
and magnitude representation is internally used, and the sign bit is used to know the large
number’s sign. This representation saves some memory, but to determine which is the sign
or size of the large number, it requires a bit more computation than our representation, i.e.,
abs and xor functions and some nested-ifs.

Currently, this approach is implemented in the MP module presented in Chapter 3.

2.1.3 Addition and Subtraction

In MP, the simplest algorithms are the addition and subtraction algorithms, which have
a cost of O(n) to a n-limb number. Despite the research of more efficient addition and
subtraction implementations, this approach continues until this day, since new efficient
algorithms have not yet appeared.

The cost of a multiplication is higher than an addition, so fast multiplication algorithms,
such as Karatsuba algorithm, are obtained by replacing multiplications by additions.

In MP arithmetic a carry is a digit that is transferred from one column of digits to another
column of more significant digits. The carry is part of the addition algorithm where it starts
to compute the LSL and finishes in the MSL.

Figure 3: Addition with a carry digit in a large number with 2 limbs.

Figure 3 illustrates the addition of one to a limb that cannot represent the next integer
number. In this case study, a carry is generated and the limb is reset to zero. The overflow
is detected if the second operand is greater than the result. In this case we add the carry
result to the next more significative limb, and so on and so forth.



2.1. Multiple precision 12

The MP module implements the addition algorithm (Algorithm 2.1). In line 3, an over-
flow may occur, which in turn may generate a carry. Thus, the addition result cannot fit in
the variable s. In this case there are three possibilities to overcome this situation:

• Use a machine instruction that gives the possible carry;

• Compute the module T, t = ai + bi − T. Then, to verify if the carry occurs, do the
comparison t ≤ ai;

• Reserve a bit to check the carry occurrence, taking β ≤ T/2.

Algorithm 2.1 Integer Addition, presented in [Brent and Zimmermann (2010)].

Require: A = ∑n−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i, carry 0 ≤ din ≤ 1
Ensure: C = ∑n−1

i=0 ciβ
i, 0 ≤ d ≤ 1

1: d = din
2: for i = 0; i < n− 1 do
3: s = ai + bi + d
4: d = s div β
5: ci = s mod β
6: end for
7: return C, d

The subtraction algorithm is very similar to Algorithm 2.1. The only difference is in line
3, that is stated as ’s = ai − bi + d’.

2.1.4 Multiplication

It is common to use algorithms that exchange some multiplications for additions, even if it
brings some overhead associated.

In the multiplication, the choice of a particular algorithm is dependent on the input
sizes and how fast a particular implementation is. Therefore, we implemented thresholds
to determine which algorithm should be used to a certain situation. The thresholds are
defined according to the performance of each algorithm. Several factors have an effect
in the thresholds, i.e, the addition performance, where the the thresholds are as small as
additions are faster. Figure 4 illustrates which is the best algorithm to multiply two numbers
of x and y limbs. This technique is called of squaring.

Most of the proposed algorithms work with operands of the same input-size. However,
the multiplications are unbalanced in most real problems. There are two main strategies to
face this problem:

• to split the operands into different numbers of limbs;



2.1. Multiple precision 13

• to split the operands into an equal number of limbs of unequal sizes.

Figure 4: The best algorithm to multiply two numbers of x and y limbs. bc is long multiplication,
22 is Karatsuba’s algorithm and 33, 32, 44 and 42 are Toom variants (from [Brent and
Zimmermann (2010)]).

Long multiplication

Several multiplication algorithms have been studied for decades. The long multiplication
algorithm is the most used way to multiply two numbers by hand. It is the same algorithm
taught in the elementary school. It is also known as schoolbook or basecase. Currently, it
is the most efficient MP algorithm to multiply two operands with a small input size.

In line 3, the multiplication by βj is simple, because it only needs to shift the result by j
limbs on the direction of the most significant bit. In this algorithm, the major work is done
on the computation of A · bj, and on its accumulation to C. There are many techniques
to optimize this step, but the basic one is to save all the multiplication results to an array.
The accumulation of results on the array is very heavy to the pipeline, so to decrease its
impact, the size of operand A has to be greater than the size of the operand B. For a graphic
description of the algorithm, see Figures 5 and 6.
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Algorithm 2.2 Long Multiplication, presented in [Brent and Zimmermann (2010)].

Require: A = ∑m−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i

Ensure: C = ∑m+n−1
i=0 ciβ

i, 0 ≤ d ≤ 1
1: A = A · b0
2: for j = 0; j < n− 1 do
3: C = C + βj(A · bj)
4: end for
5: return C

Grid method multiplication

Grid method multiplication, also known as box method, is other algorithm taught at ele-
mentary school. It breaks the addition and multiplication of the long multiplication in two
steps, which makes it less efficient than the long multiplication.

Booth’s multiplication

In 1950, Andrew Donald Booth invented a new multiplication algorithm [Booth (1951)].
Booth’s multiplication algorithm improves the multiplication performance, where the shift-
ing operations are faster than adding operations. There is no gain of performance in mod-
ern computers once shifting and adding operations take the same amount of time.

Figure 5: Long multiplication algorithm (from In-
tel documentation).

Figure 6: Multiplication step (from Intel docu-
mentation).

Gauss’ complex multiplication

The first fast multiplication algorithm was discovered in 1805 by Carl Friedrich Gauss
[Knuth (1997)]. Gauss’s complex multiplication algorithm uses three multiplications and
five additions instead of four multiplications and two additions. It is used to complex mul-
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tiplications, which is not relevant for this dissertation. However, it was the beginning of the
fast multiplication algorithms.

Karatsuba

The Divide and Conquer Algorithms (DCA) have a considerable value in MP arithmetic,
i.e., Karatsuba and Toom-Cook algorithms [Knuth (1997), Mel (2007), Bodrato (2007)]. DCA
are algorithms based on multi-branched recursion. These algorithms work by recursively
breaking down a problem into two or more sub-problems of the same type, until these
become simple enough so no more breakdowns make sense. The solution of the original
problem is given by the combination of the solution of all the sub-problems generated.

Algorithm 2.3 Karatsuba’s Algorithm, presented in [Brent and Zimmermann (2010)].

Require: A = ∑m−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i

Ensure: C = ∑m+n−1
i=0 ciβ

i, 0 ≤ d ≤ 1
1: if n < n0 then return BaseCaseMultiply(A, B)
2: end if
3: k = dn/2e
4: A0 = A mod βk

5: B0 = B mod βk

6: A1 = A div βk

7: B1 = B div βk

8: sA = sign(A0 − A1)
9: sB = sign(B0 − B1)

10: C0 = Karatsuba(A0, B0)
11: C1 = Karatsuba(A1, B1)
12: C2 = Karatsuba(|A0 − A1|, |B0 − B1|)
13: return C = C0 + (C0 + C1 − sAsBC2)βk + C2k

1

Karatsuba algorithm is one of the most important fast multiplication algorithms. Not
only because of its good performance for small input sizes but because it opened the door to
several algorithms and implementations. This algorithm is a divide and conquer algorithm
for multiplication of integers discovered in 1960 by Anatoly Karatsuba. Since its publication
several works have been done, such as parallel implementations [Kuechlin et al. (1991),
Char et al. (1994)] and its analysis in distributed memory architectures [Cesari and Maeder
(1996)], generalizations [Weimerskirch and Paar (2006), Nursalman et al. (2014)] and FPGAs
[von zur Gathen and Shokrollahi (2006)]. Its goal is to reduce the number of multiplications
on a multiplication of two n-digit numbers to at most Θ(nlog2 3) ≈ Θ(n1.585) single-digit
multiplications. In practice, it reduces a multiplication of length n to three multiplications
of length n/2, plus some overhead. Depending on the processor’s architecture, its optimal
threshold can vary from 10 to 100 limbs.
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There are many versions of the Karatsuba algorithm, where the addictive and subtractive
versions are the most known. Despite the small difference between them, the subtractive
version is more attractive since it avoids possible carries. Thus, it is not necessary to have
carry verification step, which makes the subtractive version more efficient.

Algorithm 2.3 illustrates the subtractive Karatsuba version. The different between both
versions is stated as |A0 − A1| and |B0 − B1| instead of A0 + A1 and B0 + B1, at line 12. In
lines 4-7, the operations mod and div are not executed in the implementation. It is only a
mathematical way to indicate where the large number is split. Here, A0 and B0 have always
the same number of limbs, but A1 and B1 can deal with different sizes.

Toom-Cook k-way

Toom-Cook k-way algorithms also follow the divide and conquer strategy. Its general idea is
to split the problem in k sub-problems in each iteration. This new low complexity algorithm
was proposed by Andrei Toom in 1963 [Toom (1963)], and later Stephen Cook cleaned the
description [Stephen A. Cook (1969)]. The most known version is 3-way, also known as
’Toom-3’. In practice, it reduces a multiplication of length n to five multiplications of length
n/3, plus some overhead. In the end it has a complexity of Θ(nlog3 5) ≈ Θ(n1.465). In general,
Toom-Cook k-way goal is to reduce the number of multiplications on a multiplication of two
n-digit numbers to 2k− 1 products of about n/k limbs, thus it complexity is Θ(nυ) where
υ = log(2k−1)

log(k) . An interesting fact is that the 2-way version is known as the Karatsuba
algorithm, where the Toom-Cook is its generalization. Toom-Cook algorithm is typically
used for intermediate input-size multiplications, because of the overhead associated that
makes it slower than Karatsuba and long multiplication algorithms.

Algorithm 2.4 Toom-Cook 3-Way Algorithm, presented in [Brent and Zimmermann (2010)].

Require: A = ∑m−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i, n1 ≥ 3
Ensure: C = ∑m+n−1

i=0 ciβ
i

1: if n < n0 then return Karatsuba(A, B)
2: end if
3: write A = a0 + a1x + a2x2, B = b0 + b1x + b2x2 with x = βk

4: υ0 = ToomCook3(a0, b0)
5: υ1 = ToomCook3(a0 + a1 + a2, b0 + b1 + b2)
6: υ−1 = ToomCook3(a0 + a2 − a1, b0 + b2 − b1)
7: υ2 = ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)
8: υ∞ = ToomCook3(a2, b2)
9: t1 = (3υ0 + 2υ−1 + υ2)/6− 2υ∞

10: t2 = (υ1 + υ−1)
11: c0 = υ0, c1 = υ1 − t1, c2 = t2 − υ0 − υ∞, c3 = t1 − t2, c4 = υ∞
12: return C = c0 + c1βk + c2β2k + c3β3k + c4β4k, where k = dn/3e



2.1. Multiple precision 17

Algorithm 2.4 uses 5 evaluation points (0, 1,−1, 2, ∞) and tries to optimize the evaluation
and interpolation expression. The division in line 9 and 10 needs to be exact. The division
operation is a heavy operation, but as the dividend is a 6 it is possible to do the division by
shifting the number, followed by a division by three.

FFT-based

Despite Karatsuba and Toom-Cook algorithms have a good performance in its sequential
version, Fagin claimed that they are not good candidates for parallel implementations due
to its divide and conquer strategy, which requires a lot of interprocess communication
[Fagin (1992)]. He also claims that the FFT-based algorithms are more suitable in parallel
implementations, where several studies have been done [Jamieson et al. (1986), Johnsson
et al. (1988)]. In addition to the inherit parallel properties, FFT-based algorithms are the
more suitable algorithms for input-sizes with thousands of digits. Currently, there are two
main FFT-based algorithms used in MP integer arithmetic.

Schönhage–Strassen algorithm is a FFT-based algorithm that was developed in 1971 by
Arnold Schönhage and Volker Strassen [Schönhage and Strassen (1971)]. Currently, it is
the most used FFT-based algorithm for large MP numbers, because of its low asymptotic
complexity Θ(n · log(n) · log(log(n))). In practice, it uses recursive FFTs in rings with 2n + 1
elements. Until 2007, when the Fürer’s algorithm was published [Fürer (2007), Covanov
and Thomé (2015)], the Schönhage–Strassen was the algorithm with the lowest asymptotic
complexity. Anindya De was the first to purpose a similar approach that relies on modular
arithmetic [De et al. (2008)]. In 2014, the asymptotic complexity of O(n · log(n) · 22log∗(n))

was achieved by David Harvey with a modification to Fürer’s algorithm [Harvey et al.
(2016)]. However, it only gets an advantage for considerable large MP numbers, which
makes it unpractical.

2.1.5 Division

The division is one of the most important algorithms to be optimized, because it uses to be
one of the most heavy operations. A good strategy is to replace divisions by multiplications
(e.g. precomputing the divisor’s inverse). Usually, MP division algorithms perform more
multiplications than divisions. Thus, the multiplication algorithms, such as Karatsuba,
have an important role in the division algorithms, since its performance has a direct impact.
Therefore, it is important to optimize well the multiplication.

As multiplication, there are two types of division algorithms. Slow division algorithms
obtain a limb of the final result at each iteration. On other hand, fast division algorithms
start with an approximation of the final number and compute a more accurate number after
each iteration, i.e., Newton–Raphson and Goldschmidt algorithms.
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In all division algorithms the divisor must be normalized. A number is normalized when
its most significant limb satisfies bn−1 ≥ β/2.

Algorithm 2.5 Long Division, presented in [Brent and Zimmermann (2010)].

Require: A = ∑n+m−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i, B normalized, m ≥ 0
Ensure: Q = ∑m−1

i=0 qiβ
i, 0 ≤ R < β

1: if A ≥ βmB then qm = 1 , A = A− βmB
2: else qm = 0
3: end if
4: for i = m− 1; i ≥ 0 do
5: q∗i = b(an+iβ + an+i−1/bn−1)c
6: qi = min(q∗i , β− 1)
7: A = A + qiβ

iB
8: while A < 0 do
9: qi = qi − 1

10: A = A + βiB
11: end while
12: end for
13: return Q, R = A

Long division

The long division algorithm [Knuth (1997)], also known as schoolbook division, is the stan-
dard division algorithm taught in the elementary school. As the DCA, it breaks a large di-
vision in a set of smaller problems, allowing the computation of large MP numbers. There
are several variants of the long division such as the short division (used when the divisor
is 1 limb size), and chunking method that is less efficient than the current long division al-
gorithm introduced in 1600 by Henry Briggs. This algorithm has an asymptotic complexity
of O(n2).

Division by a limb

The single limb division is used when the divisor is represented with only one limb. It allows
further optimizations. It can be both implemented with hardware division instructions or a
multiplication by inverse [Moller and Granlund (2011)]. The choice of the method depends
on the hardware. For example, CPUs with low latency multipliers can perform the main
operation much faster than a hardware divide instructions. However, due to the cost of
calculating the inverse, it compensates for input-sizes larger than 4-5 limbs.
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Exact division

The exact division algorithm is used when it is known that the remainder of certain division
is zero. This knowledge allowed Jebelean to do some significant optimizations [Jebelean
(1993), Krandick and Jebelean (1996)]. This algorithm can be used within fast multiplication
algorithms, such as Karatsuba algorithm and Toom-Cook generalizations [Jebelean (1996)].

Algorithm 2.6 Long division (binary version), from Wikipedia.

Require: A = ∑n+m−1
i=0 aiβ

i, B = ∑n−1
i=0 biβ

i, B normalized, m ≥ 0
Ensure: Q = ∑m−1

i=0 qiβ
i, 0 ≤ R < β

1: Q = 0
2: R = 0
3: b =getNumberOfBits(A)
4: for i = b− 1; i ≥ 0 do
5: R = R << 1
6: R(0) = N(i)
7: if R ≥ B then
8: R = R− B
9: Q(i) = 1

10: end if
11: end for
12: return Q, R

Usually, if the divisor is larger than a certain threshold the division is done with a divide
and conquer algorithm [Burnikel et al. (1998), Moenck and Borodin (1972), Jebelean (1997),
Hart (2015)]. Unlike the long division that determines a limb of the final result at each
iteration, the divide and conquer division tries to get several limbs at once. It divides the
original MP number in smaller MP numbers. Thus, it is possible to speedup the main
division by using fast multiplication algorithms in smaller operands.

2.1.6 Newton’s method

Newton’s method, also known as Newton–Raphson method, is a fast division algorithm
with the best asymptotic complexity [Schulte et al. (1994)]. It was created by Isac Newton
and Joseph Raphson. Newton’s method is widely used in number theory to solve several
problems, such as the computation of roots. This method finds a reciprocal of the divisor
and multiply it by the dividend. This, it successively finds better approximations of the
final quotient.
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Barret’s division

Barret’s division is a reduction algorithm created by Paul Barrett in 1986 [Barrett (1987)]
to speedup the RSA encryption algorithm on an ’off-the-shelf’ digital signal processing
chip. It is designed to replace division by multiplications. Its first version just uses a single
limb. However, this version is not able to perform MP divisions. Therefore, Barret propose
a second version of his algorithm that approximates to the single limb implementation
[Menezes et al. (1996)].

2.1.7 Hensel’s division

Classical division algorithms usually cancel the most significant part of the MP number.
However, Hensel’s division algorithm cancels the least significant part of the number. The
big difference of this strategy is that it is not necessary a correction step, since carries go in
the opposite direction of the classical algorithms. There are cases, where only the remainder
is desirable. In that cases this algorithm is known as Montgomery reduction [Knezevic et al.
(2010)].

With so many algorithms available it is hard to select which one is the best for certain
operation. In 2003, Karl Hasselström compared some of the most prominent MP division
algorithms for several input-sizes [Hasselström (2003)].

Algorithm 2.7 Division By a Limb, presented in [Brent and Zimmermann (2010)].

Require: A = ∑m−1
i=0 aiβ

i, 0 ≤ c < β

Ensure: Q = ∑m−1
i=0 qiβ

i, 0 ≤ b < 1
1: d = 1/c mod β
2: b = 0
3: for i = 0; i < n− 1 do
4: if b ≤ ai then
5: x = ai − b
6: b

′
= 0

7: else
8: x = ai − b + β
9: b

′
= 1

10: end if
11: qi = dx mod β
12: b

′′
= (qic− x)/β

13: b = b
′
+ b

′′

14: end for
15: return ∑n−1

0 qiβ
i, b
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2.2 lattice basis reduction

Lattice basis reduction is a subgroup of problems in lattices. As mentioned before, the
lattice basis reduction goal is to transform a given basis B of a lattice L into a closer to
orthogonal and shorter basis such that L remains the same. The quality of a basis depends
on the shortness and orthogonality of the basis vectors and other factores [Xu (2013)]. In
order to reach that, it is possible to use the following operations:

• Swap two vectors of the basis. The swapping changes only the order of vectors in the
basis it is trivial because L is not changed;

• Replace bj by −bj. It is trivial because L remains the same;

• Subtracting or adding to a vector bj a combination of other vectors of the basis B. The
lattice is not changed because when it is used an arbitrary vector that belongs to the
lattice L, it is achieved another vector that belongs to L. Mathematically, if a vector is
replaced by bj ← bj + ∑i 6=j zibi, a new basis is obtained that will generate the same
lattice L.

Figure 7: Lattice reduction in two dimensions: the black vectors are the given basis for the lattice,
the red vectors are the reduced basis (from Wikipedia).

Lattice basis reduction is used to achieve the shortest vector of a basis when its rank is
small. To higher ranks there is not known any algorithm to solve the SVP in polynomial
time, but some lattice reduction algorithms can find a nearly short vector in polynomial
time [Lenstra et al. (1982a)], which is enough to some applications. The figure 7 shows a
basis reduction example, where vi is the vector of a basis B, and ui are the resultant vectors
of the lattice basis reduction.
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Finding a good reduced basis has proved helpful in many fields of computer science
and mathematics, particularly in cryptology. A good example is the execution time of the
SVP-solvers, where they took less time to finish in good quality basis.

2.2.1 Basic Concepts

This section contains some concepts that are important to easily understand about lattices
and its inherit problems.

Determinant of a lattice

An interesting feature of a lattice L is its determinant (det L), a relevant numerical invariant.
Thus, two different basis with the same lattice L will have the same determinant because it
does not depend on the choice of a basis B. Geometrically, the determinant is the volume
of the parallelepiped spanned by the basis.

In a full rank basis, where the number of basis vector is equal to the spanned dimen-
sion, the determinant of basis B is the volume of the parallelepiped spanned by its vectors.
Besides, if the number of vectors is less than the dimension of the underlying space, then

volume is
√

det(BTB). In resume for a full rank lattice, we have:

det(L) = det(B) =
√

det(BTB) (2)

Gram Matrix

The Gram Matrix of a set of vectors B is a square matrix composed of all possible inner
product entries (Equation 3). This matrix is symmetric which means that G = GT. It has
important applications, such as the computation of linear independences, where a set of
vectors is linearly independent if its determinant is different from zero. It will be widely
used in a lattice reduction algorithm that will be presented ahead.

Gij = 〈Bi, Bj〉 (3)

Gram-Schmidt coefficients

Gram-Schmidt (GS) orthogonalization is a process to orthogonalize a set of vectors, i.e., a
lattice basis. It computes an orthogonal basis B∗ for the same vector space, where all vectors
are orthogonal to all previous basis vectors. During the GS process the GS coefficients
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and norms are computed. For advantage of some lattice reduction algorithms, the GS
orthogonalization is computed iteratively by:

b∗i = bi −
j<i

∑
j=0

µi,jb∗j , where µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

(4)

The GS coefficients (µ) and its norm vectors are widely used in some lattice reduction
algorithms, since it helps to get a more orthogonal basis. Notice that the orthogonal basis
cannot belong to the lattice L. Figure 8 illustrates an example of the first two steps of the
GS orthogonalization, where ei are normalized vectors.

Figure 8: The first two steps of the Gram–Schmidt orthogonalization (from Wikipedia).

Lattice basis type

Lattice reduction algorithms can have different behaviours depending on the type of input
basis. Therefore, it is important to study the behaviour of different algorithms in different
types of basis.

There are ways to generate lattices that converge to an uniform distribution, accordingly
to the Haar measure30, when the integer parameters grow to infinity. Goldstein and Mayer
(GM) are an example of a basis that converge to an uniform distribution [Goldstein and
Mayer (2003)]. This type of bases follows the next steps to generate a basis of dimension
n (i) choose a large prime integer p, (ii) choose randomly n− 1 numbers (xi) where xi are
integers in the range 0 ≤ xi < p. Figure 9 illustrates some examples of GM matrices.

We also performed tests in Ajtai-type bases [Ajtai (1996)]. Ajtai introduces similar bases
[Ajtai (2003)] to prove a lower-bound on the quality of Schnorr’s block-type algorithms
[Schnorr (1987)]. These bases are upper-triangular matrices where (i) it is chosen a random
parameter a, (ii) bi,i = b2(2n−i+1)ae, (iii) the b′i,js where i > j are independent, randomly and

uniformly selected in Z ∩ [− bj,j
2 , bj,j

2 ]. The advantage of chose bi,i = b2(2n−i+1)ae is that the
‖b∗i ‖’s decrease quickly, thus the basis is far from being reduced.

30 Haar measure - https://en.wikipedia.org/wiki/Haar_measure

https://en.wikipedia.org/wiki/Haar_measure
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GM bases have to use MP arithmetic. Besides, Ajtai-type bases can be represented in
primitive data types.

Figure 9: Examples of GM matrices.

2.2.2 Lenstra–Lenstra–Lovász

The Lenstra–Lenstra–Lovász (LLL) was the first prominent lattice basis reduction algorithm
to be introduced. The LLL is a polynomial time algorithm invented by Arjen Lenstra,
Hendrik Lenstra and László Lovász in 1982 [Lenstra et al. (1982b)]. Currently, the LLL
algorithm has been successfully implemented, due to the Lovász condition that controls
swapping operation between basis vectors. Therefore, all of the following works are mainly
focused on (i) understanding statistical mean running behaviour and average complexity of
the LLL algorithm [Nguyen and Stehlé (2006)] and (ii) improving the efficiency and stability
of the LLL algorithm [Artur Mariano and Bischof (2016)]. An interesting fact is that many
simulations and theoretical analysis confirm that the LLL algorithm performs much better
in practice than the worst case bound of complexity.

LLL algorithm

The LLL algorithm is split into two main components. The first one aims to make the
basis more orthogonal as possible with the Gram-Schmidt coefficients by computing a size-
reduction of the vector bk. It is a size-reduced basis when |µij| ≤ 1

2 , where (1 ≤ j < i ≤ n)
in Rn. Usually the basis is size-reduced, but when |µij| > 1

2 it replaces bi with (bi − dµijcbj).
The size-reduction component is described in Algorithm 2.8 between lines 4 and 9.

In the second component, it implements the Lovász swapping condition to make the
reduced vectors as short as possible. The Lovász condition is denoted by:

δ‖b∗i ‖2 ≤ ‖b∗i+1 + µ(i+1)ib
∗
i ‖2 (5)

where δ = 3/4. A robust swapping condition implies using a larger value for the control
parameter δ in the condition, which can be between 0.95 and 0.999. If the swapping is
necessary, the vectors bi and bi+1 will exchange themselves and then set the current stage
of (i + 1) back to i.
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Since LLL algorithm was proposed, several works have been done. However, only two
major improvements were done. First, a very efficient floating-point version was proposed
by Schnorr [Schnorr and Euchner (1994)], allowing to solve some exact problems more
efficiently. Avoiding MP arithmetic and using primitive floating-point data types results in
faster computations and in a minor number of swaps. Later, other floating-point versions
appear with further optimizations [Nguên and Stehlé (2005)] that reduced the asymptotic
complexity. Despite this optimization speeds up the LLL algorithm, it needs to be used
with caution since it introduces floating-point errors.

Algorithm 2.8 LLL algorithm, presented in [Nguyen and Stehlé (2006)].

Require: A basis (b1, ..., bn) and δ ∈ ( 1
4 , 1)

Ensure: A LLL− reduced basis
1: Compute Gram-Schmidt coefficients and norms
2: k = 2
3: while k ≤ n do
4: for i = k− 1 to i = 1 do
5: bk = bk − dµk,icbi
6: for j = 1 to i do
7: µk,j = µk,j − dµk,icµi,j
8: end for
9: end for

10: k′ = k
11: while k > 2 and δck−1 > ck′ + ∑k′−1

i=k−1 µ2
k′,ici do

12: k = k− 1
13: end while
14: Insert bk′ right be f ore bk
15: k = k + 1
16: end while
17: return B

The original LLL algorithm runs in polynomial time but it is just capable of generates
a basis with medium quality. It led Schnorr and Euchner to propose the second major
improvement. They introduced a LLL algorithm with a deep insertion technique. [Schnorr
and Euchner (1994)], which allows to find shorter basis vectors, resulting in better reduced
bases. In practice, it replaces the swapping step by a deep insertion. As well as the original
LLL algorithm, this implementation make use of the Gram-Schmidt coefficients to make the
basis as orthogonal as possible, but the Lovász condition is overwritten by a ’deep insertion’
to achieve a basis with shorter vectors. Thus, the algorithm computes the following stronger
condition:

δ‖b∗i ‖2 ≤ ‖b∗k +
k−1

∑
j=i

µl jb
∗
j ‖2 (6)
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where δ = 3/4, until it is true or i < k. If the condition is true the algorithm will insert
bk right before bi. Schnorr and Euchner also proposed using a bigger value of δ = 0.99.

At first, the complexity of the LLL algorithm with deep insertions was super polynomial,
with examples showing that its practical running time is longer by a few times than the
original LLL algorithm, but Gama and Nguyen [Gama and Nguyen (2008)] reported that
the Schnorr version has super exponential complexity.

2.2.3 Hermite-Korkine-Zolotarev

The Hermite-Korkine-Zolotarev (HKZ) is a lattice-reduction algorithm that achieves re-
duced basis with better quality. Its vectors are more orthogonal and shorter than the previ-
ous LLL algorithms, but it requires more computation time to converge [Hanrot and Stehlé
(2008)].

A basis B of a lattice L, is HKZ-reduced if its first vector reaches the minimum of L and
if orthogonally projected to b1 the other vectors bi’s are themselves HKZ-reduced.

2.2.4 Block-Korkine-Zolotarev

Schnorr proposed several works during its career. In 1994, he introduces a new lattice ba-
sis reduction algorithm [Schnorr and Euchner (1994)]. The Block-Korkine-Zolotarev (BKZ)
combines the quality basis output of the HKZ with the good execution times of LLL. It
combines a lattice basis reduction algorithm with an SVP-solver, the LLL algorithm and an
enumeration algorithm respectively. In BKZ, the lattice reduction algorithm and the enu-
meration algorithm are dependents on each other, and the enumeration algorithm operates
as a function of the main algorithm.

The BKZ have an extra entry parameter ω that defines the window size. The window
corresponds to the block of basis vectors where the enumeration algorithm executes. A
bigger block size results in a more reduced basis. However, it is necessary some caution
on choosing the window size since the running time increase significantly. It happens
because the enumeration algorithm is super-exponential, (2O(ω2)). The BKZ with ω = 20
is very practical, but when the block size increases to ω ≥ 25, its running time increases
significantly, which makes any high block size impracticable. This was the Achilles heel of
the original BKZ, denying the possibility to operate with bigger blocks size.

The BKZ algorithm starts by calling the LLL algorithm to obtain a LLL-reduced basis
and then it behaves like a sliding window over the basis, that will call successively an
enumeration function, that returns the shortest vector found in the projected basis. Then,
if a shorter vector is found, it is added to the current basis and the LLL algorithm is called
again to remove the generated dependency.
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Algorithm 2.9 BKZ algorithm, presented in [Chen and Nguyen (2011)].

Require: A basis (b1, ..., bn), its GramSchmidt orthogonalization, i.e., µ and ci, a block size ω ≥
2, and δ ∈ ( 1

4 , 1)
Ensure: A BKZ ω− reduced basis

1: z = j = 0
2: LLL(B, δ)
3: while z < n− 1 do
4: j = (j mod(n− 1)) + 1
5: k = min(j + ω− 1, n)
6: h = min(k + 1, n)
7: v = ENUM(µ, c)
8: if v 6= (1, 0, ..., 0) then
9: z = 0

10: LLL((b1, ..., ∑k
i=j vibi, bj, ..., bh), δ)

11: else
12: z = z + 1
13: LLL((b1, ..., bh), δ)
14: end if
15: end while
16: return B

BKZ 2.0

Lately the BKZ 2.0 was presented by Chen and Nguyen [Chen and Nguyen (2011)], that
made the first experiments in higher blocks size, ω ≥ 40. The BKZ 2.0 can be considered
an updated BKZ which came with four improvements:

• An early-abort;

• A sound pruning enumeration;

• Preprocessing of local blocks;

• Optimizing the enumeration radius.

The first improvement is simply an early-abort and was based on a theoretical result of
Harrot [Hanrot et al. (2011a)]. This improvement results on the addition of a parameter
that specifies how many iterations should be performed. The improvement delivers an
exponential speed up over BKZ over call with higher blocks size.

The other three improvements are related with the enumeration subroutine. The main
modification consists in the incorporation of the sound pruning technique developed by
Gama, Nguyen and Regev [Gama et al. (2010)]. The sound pruning uses specific bounding
functions to discard some branches where the probability of to find a shorter vector is too
small.
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The cost of the enumeration subroutine is correlated with the quality of the reduced basis.
Unfortunately, the BKZ only guarantees an LLL-reduced basis, which can be too expensive
with higher blocks size. Thus, the BKZ 2.0 guarantee a stronger lattice reduction algorithm
by preprocessing local blocks.

When the enumeration subroutine starts, the initial radius R used to be initialized as
R = ‖b∗j ‖. Unfortunately, this radius could be far from the norm of the shortest vector,
what will take more computation than if a nearby radius was defined. However, there is no
theoretical proof of which size must be the initial radius. Thus, the radius approximation
is based in the Gaussian Heuristic (GH), that provides a good estimate for the norm of the
shortest vector of the lattice L. The GH is denoted by:

GH(L) = F(
n

2 + 1
)

1
n × det(L) 1

n (7)

where det(L) is the determinant of the lattice L, and:

F(n) = (n− 1)! (8)

2.2.5 Qiao’s Jacobi method

The Jacobi method proposed by Sanheng Qiao in 2012 is a recent algorithm for lattice basis
reduction that claims to reduce a lattice basis with better orthogonality in less time than
LLL algorithm [Qiao (2012)].

The Jacobi method is a very attractive algorithm because it is inherently parallel, due to
matrix computations [Golub and Van Loan (1996)] that are the majority of the algorithm.
Thus, there is a great chance to exploit parallel microarchitectures and improve its perfor-
mance.

Lagrange’s algorithm computes a reduced basis in a two-dimensional lattice, where S.
Qiao found an algorithm that uses this principle, and given a lattice basis A, it gets an
unimodular matrix Z of the same size, where AZ forms a reduced basis. The algorithm
consists in applying the two-dimensional Lagrange’s algorithm to all possible pair of vec-
tors in original basis A. For a detailed description see the original paper [Qiao (2012)].

The Jacobi method output is said to be Lagrange-reduced (L-reduced). Thus, the basis A
is conspired L-reduced if:

‖ai‖ ≤ ‖aj‖ (9)

|aT
i aj| ≤

‖ai‖2

2
(10)

where i < j.
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Algorithm 2.10 Qiao’s Jacobi Method, presented in [Qiao (2012)].

Require: An, where n is the lattice dimension
Ensure: Cn = AZ

1: Z = In
2: G = ATA
3: while !isLagrangeReduced(G) do
4: for i = 1 to n− 1 do
5: for j = i + 1 to n do
6: Z′ =Lagrange(G, i, j)
7: Z = ZZ’
8: end for
9: end for

10: end while
11: return C, d

12: function Lagrange(G, i, j)
13: Z′ = In
14: if Gii < Gjj then
15: swap the ith and jth rows of G
16: swap the ith and jth column of G
17: swap the ith and jth column of Z′

18: end if
19: q = bGij/Gjje
20: Z = In
21: Zii = 0, Zjj = −q, Zij = Zji = 1
22: G = ZTGZ
23: return Z′Z
24: end function

Two years later a parallel version and a GPU implementation of the Qiao’s algorithm was
introduced [Jeremic and Qiao (2014)]. Filip Jeremic and Sanzheng Qiao proposed a parallel
version of the Qiao’s Jacobi method, where the algorithm is parallelized by carrying out
Lagrange’s algorithm on two-dimensional sublattices simultaneously. However, there are
some limitations that should be taken into account to avoid data hazards and to maintain
the algorithm properties.

Figure 10: Chess tournament with n = 8 (from [Jeremic and Qiao (2014)]).

At each cycle of the Algorithm 2.10, the pair combination (i, j) is reduced, where the
the two for-loop are generating all possible pair combinations between i and j. Thus, the
parallel version should aim at the maximum of parallel reductions at once. Unfortunately,
all the pair combinations cannot be reduced simultaneously.

It cannot reduce the pair combinations (i, j) and (j, k) at once, where i < j < k.
This approach may generate a data hazard because some elements of the vector j can
be reduce by i before this reduces the vector k. In other hand, we also cannot reduce
(i, i + 1), (i, i + 2), ..., (i, n) in parallel, due to data hazards created by swaps. For a more
detailed description see [Jeremic and Qiao (2014)].
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Jeremic suggests the chess tournament ordering [Wang and Qiao (2002)]. It maximizes
concurrency while avoids data hazards and race conditions, and aims to parallelize n/2 pair
combinations at once, wherein a column or row only belongs to a pair combination. This
ordering will perform all pair combinations in n− 1 permutations. The first initialization
and the first permutation of the chess tournament ordering are illustrated in Figure 10.

The Algorithm 2.10 reduces i against i + 1, i against i + 2, and so on and so forth. Thus,
the chess tournament vectors do not follow the same ordering, which may lead to a different
output from the original one. Therefore, the algorithm can also take a different number of
sweeps to converge to a solution. One sweep is a double for-loop.

2.2.6 Measuring Basis Quality

The same lattice can be represented by different basis, but it is also crucial to guarantee only
good basis quality. Besides having a good parallel implementation, it is also important to
have a good basis since these can significantly speedup some applications, namely the SVP.

A lattice basis reduction aims to make the vectors of the reduced basis as short as possible
and as orthogonal as possible. Thus, the basis quality measurements should be related
with the lattice reduction goals. It is hard to have a direct evaluation of the output of two
different lattice reduction algorithms. To measure the basis quality, we use the following
parameters [Mariano (2016)]:

1. HF of a basis;

2. Sequence of the GS norms;

3. Norm of the last GS vector;

4. Average of the norms of a basis;

5. The product of the norms of a basis;

6. The orthogonal defect of a basis;

7. Execution time of a SVP solver on a lattice.

The basis quality is better for lower values in all mentioned criteria, except for the norm
of the last GS vector that is best for greater values and the sequence of the GS norms where
it decreases slowly for better basis.

The Hermite Factor (HF) is widely used to measure the quality of different basis. The HF
of a basis B of rank n can be defined as:

H(B) =
‖b1‖2

vol(L) (11)
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where vol(L) is the volume of a lattice and it is equal to (det(L)) 1
n = (det(BTB))

1
n . The

volume of lattice is always 1, therefore is directly linked to the square norm of the first
reduced vector. The HF can be interpreted to evaluate the mean and the improvements of
the length of the shortest reduced vector against the lattice L.

The orthogonal defect, also known as the Hadamard’s inequality, is defined as:

δ(B) =
∏n

j=0 ‖bj‖√
det(BTB)

(12)

2.3 experimental environment

There are many parallel programming models and a wide variety of implementations,
where the purpose of a programming model is to easily adapt a software to multiple plat-
forms. The adaptation to the right architecture and technology for a given problem must
be the first big step of anyone that works in computer science.

Parallel programming is not so easy as it seems, because there is an inherent set of
difficulties. The biggest disadvantage of parallel programming, but not the hardest to
address in most cases, is the created computation, overhead, that aims the synchronization
of the running threads. Data races used to be the most common difficulty and sometimes
the most complex to solve. Another common problem is the load balance that can have
certain running patterns, where certain yarns obtain more work, and ultimately have a
severe impact on the performance.

To choose the right computing environment it was necessary a thorough study about the
type of algorithms that are presented in this dissertation. Due to several related works, we
explored this case study only on shared memory environments.

2.3.1 Non-Uniform Memory Access

The concept of shared memory allows that several programs access the same memory po-
sitions simultaneously. The shared memory allows programs to efficiently communicate
or passing data between them. It can avoids redundant copies if data between several
applications.

The hardware to a shared memory system is usually referent to a block of memory. There
are three main types of memory organization to use in a shared memory system:

• Cache-Only Memory Architecture (COMA) - The local memories for the processors
at each node are used as cache instead of actual main memory;
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Figure 11: Shared memory system (from Google Images).

• Non-Uniform Memory Access (NUMA) - Memory access time depends on the mem-
ory location relative to a processor;

• Uniform Memory Access (UMA) - All the processors share the physical memory uni-
formly, and the access time does not depends of which processor makes the request;

Although three types of memory organization were presented, only NUMA organization
will be described in greater detail.

Just one CPU can access to a shared memory system at time, which results in many
race conditions to the possibility of simultaneous memory accesses. Therefore, in attempt
to solve this problem it was created a type of memory organization dedicated to shared
memory systems called NUMA, that provides separate memory blocks for each CPU, which
allows several memory accesses at each moment.

Figure 12: One possible architecture of a NUMA system (from Advanced Architectures slides).

The NUMA concept gives a global space address to each CPU node, then if a processor
needs to access a memory block in another node, a copy is made to its own local cache.
This is the opposite of a COMA memory organization, where the memory block would be
moved instead. Migrate the memory block could bring a better use of memory resources
and reduce the number of redundant copies, but it can raise the maintenance routines to
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know where is a random memory block at a certain moment. Under a NUMA organization
a certain processor can access its own memory much faster than a memory block in another
node, where the access time will depend on the distance between both nodes.

2.3.2 Vectorization

Early processors had an Arithmetic Logic Unit (ALU) that only could compute one instruc-
tion on a pair of operands at once, which makes the processing of huge amounts of data
impracticable.

Modern architectures can compute one instruction through n pair of operands simulta-
neously, depending on the processor architecture. This computer architecture is known by
’Single Instruction, Multiple Data’ (SIMD). For a better comprehension look to Figure 13.

Figure 13: Scalar implementation vs vector implementation (from Google Images).

Unfortunately, vectorize is not always achievable in practice, because it is necessary that
certain conditions were met, such as aligned memory.

2.3.3 Methodologies

Throughout this dissertation, there are several graphs and tables that convey crucial infor-
mation to the discussion and conclusions of this dissertation. Depending on the problem
and information we want to illustrate, various methodologies to measure the execution
times were adopted.

To measure the execution times, we executed several times the same function and saved
the best result. However, to guarantee that any evaluation benefits of the data locality, we
performed several random operations between each repetition in order to fill all the CPU
cache.

Chapter 3 presents several graphs with the MP’s execution time of each operation. To do
the experimental evaluations it is necessary to measure the time each operation takes. For
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example, the addition operation have a brief execution time, about 0.2 ms in some cases.
Short execution times are likely to contain measurement errors. To reduce the measurement
errors the same operation is repeated several times in a for-loop, always with different
inputs. In the experimental evaluation of the chapter 3, we repeated this process 6 times
for each operation, with 400 different inputs, and registered the best execution time.

The problem faced in Chapter 4 and 5, with the Qiao’s Jacobi method and the LLL
algorithm is slightly different from the previous one. Since these algorithms are more
complex than a simple MP addition and take long to perform, they are susceptible to
contain less measurement errors. Thus, the obtained execution times consist in repeating
the same test 10 times and record the best value.

To study the scalability of the Qiao’s Jacobi method we used the previous guideline to
measure the respective execution times by performing the same tests with different number
of threads, in order to obtain the runtime evolution with the increasing number of threads.

The tests to assess the quality of the bases were perform just once, since the result is
always the same for a particular case.

The algorithms were tested on a node of the Institute for Scientific Computing at the
Darmstadt University of Technology. No other user processes were running on the node.
The specification for this node is in Table 1.

Subject Description
CPU Device(s) 2 Intel Xeon CPU E5-2698v3
Instruction Set 64 bits with 256 bits

Number of cores 2 × 16

SMT Hyper-threading
Clock base frequency 2.3 GHz
Max turbo frequency 3.6 GHz

L1(I/D) Cache 32KB / 32KB
L2 Cache 256 KB

Shared L3 Cache 40 MB

Table 1: Node specifications.

The code was compiled with Intel’s C++ compiler, version 15.0.5.223, with the -O2 opti-
mization flag.
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T H E M U LT I P L E P R E C I S I O N I N T E G E R M O D U L E

This chapter describes the main steps to implement an efficient MP module, referred as the
’Multiple precision Integer Module’ (MpIM) in the runtime evaluations of section 3.5. Despite
the several number of MP algorithms presented in the section 2.1, we will take a closer look
at the implemented algorithms.

Every algorithm of the MpIM was subjected to a test validation: to run a given operation
with all possible combinations, with 400 different numbers. This test was repeated for
different input-sizes.

3.1 addition and subtraction

In order to get a more efficient implementation, it is always necessary to perform the cal-
culations with the absolute number. Thus, the MP addition algorithm implements both
addiction and subtraction algorithms. Take as example the addition of -8 to 5. Since it is
necessary to guarantee the absolute value, it will perform 8− 5 and then corrects the sign
of the number.

From the three possibilities reffered in the section 2.1.3 to solve the overflow problem,
it is not possible to use the third resolution, since the proposed representation uses the
’unsigned long’ as primitive data type. We implemented five versions of the Algorithm 2.1:

1. An implementation with comparisons to detect overflows;

2. An implementation with dedicated Intel intrinsics to MP arithmetic, where the same
instruction sum the two operands and the carry if there is an overflow on last addition;

3. An assembly implementation;

4. An assembly version that does two additions sequentially avoiding one overflow test
per cycle;

5. Vectorized version with AVX 2.0.

35
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Both assembly implementations use an add-with-carry instruction (ADC), and the addition
is always done within the CPU registers. Unfortunately, the function inline was not possible
in these versions because of register coherence problems.

We implemented three versions of the subtraction algorithm: (i) an implementation with
comparisons to detect the borrow, (ii) an implementation with dedicated Intel instructions
to MP arithmetic, where the same instruction subtracts the two operands and sum the
borrow of the last operation, returning the borrow if it exists in the last subtraction, and (iii)
an assembly implementation. The borrow is the subtraction special case for the overflow in
the addition.

The second implementation of the addition algorithm uses the ’ addcarry u64’ Intel intrin-
sic, and the subtraction algorithm uses the ’ subborrow u64’ Intel intrinsic.

3.1.1 Addition Vectorization

The result of the limb i rely on the result of the limb i− 1 due to overflow problems. There
is a chance to vectorize this algorithm, but it could take some overhead.

It is not possible to vectorize the Algorithm 2.1 and keep the cost of O(n) to a n-limb
number. With AVX 2.0, it is possible to get a good theoretical speedup (four times faster), by
vectorizing four additions. If there are no carries on the comparison test, the best scenario
is achieved. However, the worst scenario gets more computation and could be slower than
the basic algorithm. It happens if a carry is identified in every comparison tests.

AVX and AVX 2.0 do not support comparisons of unsigned numbers, which makes it
impossible to implement this strategy. The best chance to implement it, it is with Broadwell
microarchitecture that supports AVX-512.

The implemented version does four additions at once. Then it compares the result to the
operand, limb by limb and adds the carry on next limb more significant. The intrinsics used
were:

• mm256 load si256;

• mm256 store si256;

• mm256 add epi64.

3.1.2 Increment and Decrement

The increment/decrement algorithm is similar to the addition/subtraction algorithm. The
increment and decrement operators are unary operators that add or subtract one from their
operand, respectively. The main difference is that the algorithm only does one addition or
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subtraction on the less significant limb. If there is no carry on the increment or decrement,
the algorithm stops. Since, it just performs one operation the vectorization is not feasible.

Algorithm 3.1 Integer Increment

Require: A = ∑n−1
i=0 aiβ

i, carry 0 ≤ din ≤ 1
Ensure: C = ∑n−1

i=0 ciβ
i, 0 ≤ d ≤ 1

1: d = din
2: s = a0 + 1 + d
3: d = s div β
4: c0 = s mod β
5: for i = 1; d == 1 do
6: s = ai + d
7: d = s div β
8: ci = s mod β
9: end for

10: return C, d

The decrement algorithm is very similar to Algorithm 3.1. The difference is in lines 2 and
6, which become ‘s = a0 − 1 + d’ and ‘s = ai − d’, respectively.

Since these algorithms rely on a single operation, a vectorization approach is not feasible.

3.2 multiplication

The performance obtained on the multiplication depends on the chosen algorithm that
executes a particular pair of operands. The MP module implements two different mul-
tiplication algorithms. The long multiplication that used to obtain the best performance
results for small input-sizes, and the Karatsuba algorithm used to perform well for larger
input-sizes. To define the threshold that choses which algorithm we perform a runtime
comparison in Figure 21. Other algorithms like the Toom-Cook k-way and FFT-based algo-
rithm were not implemented because (i) the input-sizes of the tested bases are not suitable
in these algorithms and (ii) due to time constraints.

3.2.1 Long multiplication

We implemented the long multiplication algorithm (Algorithm 2.2), which is also known by
’schoolbook multiplication’ as it mimics the multiplication learned at elementary school.

To ensure that no computation is lost, the result has to be stored on a datatype that is
equal to the sum of the input size of the two operands, i.e., if the operand A is length five
and B is length four, then C needs to be at least length nine. That does not mean that C
cannot be smaller, i.e (15× 1 = 15). The same happens when a 64 bit multiplication is done.
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Thus, the implementation uses the ’unsigned int128’ data type, in C++, that has 128 bits
of precision. This data type is a C++ extension. In reality, it is a struct of two ’unsigned
long’, where simple operations like addition and multiplication are optimized at compiler
level.

We implement the long multiplication algorithm in two ways: (i) an implementation that
uses the ’unsigned int128’ data type to save the multiplication result and then accumulate
the two halves of the result, and (ii) an implementation with a late Intel instruction, available
on the Haswell microarchitecture and folling ones, which aims to increase the performance
of MP multiplications. The Intel intrinsic is the ’ mulx u64’. This instruction is an extension
of the existing multiplication instruction but has two main advantages:

• Greater flexibility in register usage. The default multiply instruction have the destina-
tion registers implicity defined. With MULX, the destination registers may be distinct
from the source operands, so that the source operands are not overwritten;

• Since no flags are modified, MULX instructions can be mixed with add-carry instruc-
tions without corrupting the carry chain;

To optimize even further the long multiplication, it is recommend to allocate a block of
memory to store the multiplication result. It allows the loop-unroll of several multiplica-
tions in order to maximize multiplication throughput. Unfortunately, this technique was
not implemented due to time constraints.

There are two more new instructions to support large integer arithmetic. The ADCX and
the ADOX instructions are extension of the existing ADC but these two instructions are
designed to support two different carry-chains concurrently. Since these instructions are
available from Broadwell microarchitecture, the required hardware is not available.

Currently, it is impossible to vectorize this algorithm with the current unsigned long data
type because there are any vector instructions that multiply two unsigned 64 bit length
numbers and return an unsigned 128 bit length limb.

3.2.2 Karatsuba

A good implementation of the Karatsuba algorithm must rely on a good use of allocated
memory. Thus, a good improvement is to avoid allocating memory for the intermediate
results C0, C1, C2, |A0 − A1| and |B0 − B1|, where a possible solution is to allocate a large
amount of memory on the first call of the algorithm. Our implementation computes how
much memory will be necessary in the beginning and allocates memory just once.

Algorithm 2.3 represents a multiplication where both operands have the same input-size.
However, it does not work in most real cases where the operands have different input-sizes.
To handle with this problem the line 1 is a bit different. It handles a second condition that
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checks how much unbalanced are the input-sizes of the operands. Here, the Karatsuba
algorithm is executed if the condition ’4× Asize < 5× Bsize’ holds true, where Asize > Bsize.
Otherwise, the long multiplication algorithm is executed.

Since the Karatsuba algorithm always executes the long multiplication algorithm, the
performance of both algorithms is linked, which makes imperative to have a good imple-
mentation of the long multiplication algorithm.

3.3 division

The division is one of the most important algorithms to be optimized, because it used to
be one of the heaviest and complex operations. The MpIM implements two versions of the
long division algorithm. The implemented versions are based in the Algorithms 2.6 and
2.5, respectively. The first version is not the most efficient but is important to understand
how a division algorithm works. The second version is more efficient since it performs less
operations, however it was not finished due to time constraints.

The MpIM’s division execution times stated in the section 3.5 correspond to the binary
division version.

3.4 other functions

3.4.1 Logical Shifts

A logical shift is a bitwise operation that shifts all the bits of its operand by n bits. In
this case study, the described implementations are the logical left shift and the logical right
shift. However, keep in mind that this is a different operation, and not an arithmetic or
rotate shift.

Logical shifts are capable of perform an efficient multiplication or division of unsigned
integers by powers of two. Shifting left by n bits on a signed or unsigned binary number
has the effect of multiplying it by 2n. Shifting right by n bits on an unsigned binary number
has the effect of dividing it by 2n.

Figures 14 and 15 illustrate two logical shifts where the new bits value of the shift are
always a zero.

The MP implementation is more complicated than these logical shifts, where they are
used as a procedure. Our implementation starts to create a mask that depends on the
shift’s value. It will be useful to filter the bits that have to be transferred between different
limbs. In the mask, the bits that have to be transferred to the next/previous limb are set to
one. However, if the shift value is a 64 multiple, both implementations do a memory move
instead. These shifts are explained in greater detail below.
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Figure 14: Simple logical right shift with the in-
sertion of a zero on the left.

Figure 15: Simple logical left shift with the inser-
tion of a zero on the right.

Right Shift

The right shift algorithm is illustrated in the Figure 16. The algorithm does not have to deal
with memory allocations since the output number is always smaller than the input. The
same does not happen in the left shift.

Due to data dependencies, the computation starts in the LSL and goes on until the most
significant. Before it starts computing each position, the algorithm creates a mask that
depends on the shift’s value. The mask filters the least significant bits of each limb. For
each position the algorithm have three main steps: (i) it starts to do the bitwise operation
’and’ between the limb p + 1 and the mask, to store the bits that need to be shifted into a
temporary variable, (ii) it does a right shift in the limb p, and (iii) it performs the bitwise
operation ’or’ between the limb p and the temporary variable to store the bits that need to
be shifted to limb p. The algorithm discards the least significant bits in the LSL.

Figure 16: Right shift of 2 in a 3-limb large number.

Left Shift

The left shift algorithm is illustrated in the Figure 17. It is a bit more complicated than
the right shift because it has to ensure that enough memory is allocated to handle with the
shift’s output.

Both logical shifts have similar algorithms. Due to data dependencies, the left shift al-
gorithm starts to compute the MSL and go on until the least significant. Before it starts
computing each position, the algorithm creates a mask that depends on the shift’s value.
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The mask gets the most significant bits of each limb. The algorithm starts by test and set
the limb Size + 1 if it is needed. For each position the algorithm have three main steps: (i) it
does a left shift in the limb p, (ii) it do the bitwise operation ’and’ between the limb p− 1 and
the mask to store the bits that need to be shifted into a temporary variable, and (iii) it saves
its values in a temporary variable. Finally, it performs the bitwise operation ’or’ between
the limb p and the temporary variable to store in the limb p the bits that need to be shifted.

This implementation can generate a set of cache misses due to start computing the last
position of the array Number. To reduce this negative impact in the performance, it is
possible to use prefetch instructions to get the data into the cache before it is needed. Due
to time constraints this strategy was not implemented.

Figure 17: Left shift of 2 in a 3-limb large number.

Vectorization

After a detailed analysis is detected an opportunity to vectorize the two previous ap-
proaches in order to achieve better performance runtimes. There is only one data depen-
dency in the right and left shifts, in the previously or in the following limb, depending
on the shift operation. It is possible to mitigate this dependency with a special temporary
variable. It was used the m256i data type, which allows to store the bits that need to be
shifted.

The approach uses AVX instructions to broadcast the mask, to load and to store data, and
AVX 2.0 instructions to shift and bitwise operations. Due to the dependency p + 1 or p− 1,
the AVX 2.0 instructions vectorize four limbs at once, and the large number have to be at
least length five. The Intel intrinsics used are:

• mm256 load si256;

• mm256 loadu si256;

• mm256 store si256;

• mm256 set1 epi64x;

• mm256 and si256;
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• mm256 or si256;

• mm256 slli epi64;

• mm256 srli epi64.

3.4.2 And/Or/Xor

The logical functions have an important role in many cases. The algorithm is the same in
all of them, just switching the logical operator. All of the three functions are vectorized
with AVX 2.0. The function return a number with the size of the smallest argument, where
it always computes the least significant limbs. The used intrinsics are:

• mm256 and si256;

• mm256 or si256;

• mm256 xor si256;

• mm256 load si256;

• mm256 store si256.

3.4.3 Pseudo-Random Number Generator

This function generates a pseudo-random number with n limbs, where n is a function’s
argument. This function is implemented in two versions: (i) a simple loop with a rand and
(ii) a vectorized loop with AVX 2.0 instructions. To compile the second implementation it is
necessary the Short Vector Random Number Generator Library (SVRNGL). Unfortunately,
it just compile on ICC 16.0 or newer. The used intrinsics are:

• svrng new mt19937 engine;

• svrng generate4 ulong;

• mm256 store si256.

3.4.4 Compare

The MpIM implements two compare functions. The first is a standard comparison of two
numbers that returns 1 or -1 if the first operand is greater or smaller, respectively. The
second compares the absolute value of the number. Both function return 0 if the operands
are equal.

It were not yet vectorized due to priority judgement.
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3.5 evaluation results

Addition

Figure 18 compares the five implemented additions, where the second assembly version get
the best results. It succeeds because this version does two additions sequentially avoiding
one overflow test per cycle.

Figure 19 compares the MpIM with other libraries, and the assembly-v2 version obtains
the best results for the smallest input-sizes and in the last two. The CLN get the bets results
for medium input-sizes. The tested libraries have similar execution times for all different
input-sizes, except the NTL that obtain the worst execution times for greater input-sizes.

Despite the efficient assembly implementation of the MpIM, our addition is not the best
in all scenarios. It happens because libraries like GMP have several implementations in as-
sembly language optimized for several microarchitectures. Contrary to GMP, our addition
just implements the main for-loop in assembly language.

Figure 18: Comparison between the 5 addition
implementations of the MpIM.

Figure 19: Comparison of MpIM’s addition to
other libraries.

Subtraction

Figure 20 compares the second implementation of the MpIM to other libraries. The sub-
traction is almost at the level of NTL and GMP, but it becomes worst on greater numbers
(greater than 3000 digits). Surprisingly, CLN get the best results for medium and greater
input-sizes.

Due to time constraints, we only implement two versions of the subtraction algorithm.
However, it is possible to obtain better execution times with the same strategy used in the
addition algorithm (assembly-v2), by avoiding one borrow test per cycle.
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Figure 20: Comparison of MpIM’s subtraction to other libraries.

Multiplication

Figure 21 compares the execution times of the long multiplication and the Karatsuba algo-
rithm of the MpIM. As was expected the long multiplication obtains the best result for the
smallest test (120 digits).

Figure 22 compares the MpIM’s multiplication with other libraries. The presented ex-
ecution times of the MpIM combine the execution time of both long multiplication and
the Karatsuba algorithm. Our multiplication obtains better results than NTL until medium
input-sizes (lower than 2000 digits). The bad results of the MpIM from 3000 input-sizes
is explained by the use of more efficient algorithms for bigger input-sizes, i.e, Toom-Cook
n-way. The figure shows that CLN and GMP have the best implementations of the multipli-
cation algorithm.

The test with the input-size 120 shows that it is imperative to improve the MpIM’s long
multiplication to obtain an overall speedup for all input-sizes.

Figure 21: Comparison between the long mul-
tiplication and the Karatsuba imple-
mentations of the MpIM.

Figure 22: Comparison of MpIM’s multiplication
to other libraries.
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Division

The MpIM’s division is not compared to CLN library because it does not implement it.
Due to time constraints, it was not invested much time in the division algorithm and

because of that the best results were not obtained. The MpIM’s division have to be revised
to obtain similar execution times such as GMP and NTL libraries.

Figure 23: Comparison of MpIM’s division to other libraries.

Shifts

The right and left shift functions are not compared to GMP library because it does not
implement them.

Figures 24 compares the MpIM’s right shift with other libraries. Our vectorized imple-
mentation get the best execution times with a reasonable margin for every input-sizes.

Figures 25 compares the MpIM’s right shift with other libraries. The left shift stats the
best results for smaller input-sizes (≤ 500). Then, it stats between CNL and NTL for the
remaining input-sizes. It happens because the MpIm’s left shift starts by accessing higher
memory locations and then accesses lower memory positions. Since larger input-sizes do
not fit entirely in the L1 cache, it generates cache misses every time that the algorithm tries
to access a particular memory position.

The right shift approach is the same that the left shift. However, they do not have similar
execution times. It happens because the compiler is optimized, by default, to pre-fetch
higher memory positions. Thus, cache misses will be generated in the left shift. Perchance,
pre-fetch instructions could solve this problem.
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Figure 24: Comparison of MpIM’s right shift to
other libraries.

Figure 25: Comparison of MpIM’s left shift to
other libraries.

Others

All three logical functions are not compared to the NTL library because it does not imple-
ment them.

Figures 26, 27 and 28 compare the logical functions ’or’, ’and’, and ’xor’ of the MpIM to
other libraries, respectively. The three MpIM’s functions achieve the best execution times
for almost every input-sizes. For lower input-sizes they are at the same level than GMP,
however they increase their advantage on larger input-sizes. Figures 28 obtains almost
twice better execution time for the biggest input-size, when compared to CLN library.

Figure 26: Comparison of MpIM’s ’or’ function
to other libraries.

Figure 27: Comparison of MpIM’s ’and’ function
to other libraries.
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Figure 28: Comparison of MpIM’s ’xor’ function to other libraries.



4

T H E Q I A O ’ S J A C O B I M E T H O D

In this chapter we identify several bottlenecks of the Qiao’s Jacobi method and propose ef-
ficient solutions to minimize them. Our final implementation is described in the Algorithm
4.1. While we identify a particular bottleneck we indicate the correspondent lines in the
proposed version. All the proposed implementations of this chapter are included in the
LattBRed module.

We start to inline the function Lagrange in the main algorithm. It allows to make changes
directly in the matrix Z of the main function. To inline the Lagrange function we assume
that Z′ of the Lagrange function and Z of the main function are the same. With it, the matrix
initialization in the line 13 is removed and the matrix multiplication in the line 7 is avoided,
since the same result is produced in the line 23.

The Qiao’s Jacobi method is highly parallel due to the majority of matrix computations,
which makes it an opportunity to exploit it in parallel systems. We will see in this chapter
that this statement may be risky. With a closer look to the Algorithm 2.10 we identified
opportunities to avoid unnecessary computation on integral matrix multiplications. This
opportunity appears in the Lagrange function when we analysis the output of a multiplica-
tion of any square matrix M by Z or ZT. We noticed that the multiplication MZ outcomes
with almost the same result as matrix M, where it subtracts the column i by the multipli-
cation of q by the column j. The same happens in the matrix multiplication ZTM, which
computes rows instead of columns. Thus, it is possible to substitute heavy integral matrix
multiplication by a row and column computations. Therefore, the matrix Z of the Lagrange
function is not needed because the computations are done directly in matrices G and Z′.
To implement this improvement the line 11 is substituted by G(i:) = G(i:)− q×G(j:) and
G(:i) = G(:i)− q ×G(:j) plus the column and row swaps, and the line 12 is substituted
by Z(i:) = Z(i:)− q× Z(j:) plus a row swap. The functions Row Column Computations
and Row Computations of the Algorithm 4.1 intent to represent these computations on a
matrix. If q is 0, these function have no effect. For comparison purposes, we consider the
Qiao’s Jacobi method with this improvement as the base version.

After performing the functions Row Column Computations and Row Computations, it
needs to perform swap of the row and column i and j in order to maintain the algorithm

48
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properties. These swaps are equivalent to the swaps that are in lines 15 to 17 of the Lagrange
function. Thus, we avoid these swaps when Gii < Gjj, because they cancel each other out.

Algorithm 4.1 Proposed Qiao’s Jacobi method

Require: An, where n is the lattice dimension
1: Z = In
2: G = AAT

3: for i = 1 to n do
4: permuti = i
5: end for
6: while !isLagrangeReduced(G) do
7: for iP = 0 to n− 1 do
8: for jP = iP + 1 to n do
9: i = permutiP

10: j = permutjP
11: if Gii < Gjj then
12: q = bGij/Giie
13: if q 6= 0 then
14: Row Column Computations(G, q, j, i)
15: Row Computations(Z, q, j, i)
16: end if
17: else
18: q = bGij/Gjje
19: if q 6= 0 then
20: Row Column Computations(G, q, i, j)
21: Row Computations(Z, q, i, j)
22: end if
23: swap(permutiP, permutjP)
24: end if
25: end for
26: end for
27: end while
28: G = ZA
29: return Get Ordered Basis(G, permut)

The matrix G is the gram-matrix of the matrix A (see line 2 of the main function). G is
a symmetric matrix, which leads the Lagrange function to do the same computation twice
when it computes the function Row Column Computations. Therefore, we assign the two
elements at once, where G(: i) = G(i :) = G(i :)− q×G(j :). The improvement has one
exception regarding the previous state. The exception occurs in the element Gii, which has
to be subtracted twice, first by q× Gij and then by q× Gji.

By profiling our implementation, we notice that a large portion of the execution time was
consumed by the swaps, around 70% in some cases. To avoid expensive row and column
swaps, we add a vector of permutations permut with n positions, where permuti = i. Each
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position indicates the index of a particular vector in the matrices G and Z. Thus, we just
need to swap the values of the vector of permutations to maintain the algorithm properties.
To implement it, we add the lines 3 and 4 to initialize the vector, the lines 9 and 10 to get
the correspondent vector indexes and the swap of line 23.

The S. Qiao represents the basis vectors in the different columns of the matrix. Due
to better data access patterns in C++, we represent the basis vectors in rows instead of
columns.

After all these improvements, we were capable to achieve performances way more attrac-
tive than the original algorithm. We implemented two versions of the Algorithm 4.1, (i)
a MP version to reduce GM bases, and (ii) a version with primitive data types to reduce
Ajtai-type bases.

4.0.1 Vectorization

The second version uses primitive data types. Thus, we were able to exploit some features
of current processor architectures, such as SIMD extensions. The following parts of the
algorithm were improved:

• Gram-matrix computation (AAT);

• Row Computations function;

• Matrix multiplication (AZ).

The Gram-matrix computation was improved in several ways. Since the Gram-matrix
is symmetric it only computes the inner products of the upper-triangular matrix and the
lower-triangular is assigned with the previous results. Then, to allow the use of SIMD
instructions we add padding in the end of each vector to guarantee the data alignment and
the memory accesses are always made in contiguous memory, except in the lower-triangular
assignments.

The function Row Computations computes operations through the vector elements. Since
the vector’s data was aligned in the previous optimization, we just add Intel intrinsics.

It is impossible to efficiently vectorize the standard matrix multiplication algorithm due
to the memory access patterns. There is vector instructions that gather the data, however
the Intel warning about huge time penalties. To efficiently vectorize it, the matrix multi-
plication’s cycles were reordered in a cache-friendly access pattern, allowing contiguous
memory accesses (stride-1).

Speedup =
Original Execution Time
Expected Execution Time

=
100%

(100%− 30.34%) + ( 30.34%
8 )

(13)
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Although vectorization may lead to significative speedups, it is crucial to measure the
theoretical speedup before initiating the implementation. The identified parts in the code
consume 9.5%, 0.84% and 20% of the execution time, respectively, making a total of 30.34%.
Taking in account that each SIMD instruction operates on 8 integer elements at once (in
this case study), it is expected a theoretical speedup of 1.36. Equation 13 shows how the
speedup was computed, where we inserted the bold face numbers on the equation. The
used Intel intrinsics are:

• mm256 load si256;

• mm256 store si256;

• mm256 set1 epi32;

• mm256 mullo epi32;

• mm256 add epi32;

• mm256 sub epi32;

4.0.2 Evaluation Results

This section measures the impact of most important improvements proposed to the Algo-
rithm 2.10. We analysed the two implemented versions and compared them with the LLL
algorithm.

It is not possible to compare the execution time of our implementations and the an-
nounced times in Qiao (2012) due to several reasons. First, some of our implementations
use integer MP arithmetic, and S. Qiao does not indicate which data type is using in his
experiment. However, floating-point arithmetic is referred in [Jeremic and Qiao (2014)].
Secondly, S. Qiao generates random lattice bases but did not indicate which type of lattice
basis he performed the experiments. S. Qiao obtained a maximal number of 8 sweeps, how-
ever GM bases require more sweeps than the expected. The number of sweeps is illustrated
in Figure 33. The reason why it performs so many sweeps is because GM bases are very
ill-conditioned.

Figure 29 compares the LLL algorithm with the ’extended doubles’ data type from the
NTL and three MP implementations of the Qiao’s Jacobi method. The ’MP Qiao Base’ is
the base version of the Algorithm 2.10, where we removed almost every matrix multiplica-
tions. The ’MP Qiao w/ Swaps’ does not implement the proposed improvement that avoids
integral matrix swaps, and the ’MP Qiao’ implements all the proposed improvements for
MP arithmetic. The experiment shows that after all the improvements, the ’MP Qiao’ imple-
mentation is about 3 times faster than the base version, and the last improvement speed up
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Figure 29: Execution times of sequential LLL XD and Qiao’s Jacobi method in GM bases.

the ’MP Qiao w/ Swaps’ is 1.25 times faster which we consider good because the MP version
just swaps the pointers that point to the struct that handles the MP number. Figure 29 also
shows that LLL algorithm gets better execution times in all tested dimensions, which makes
it the best algorithm to execute with GM bases. This result was not the expected, and the
bad results of the Qiao’s Jacobi method are explained by the large amount of sweeps taken.

Figure 30 illustrates the execution times of the LLL algorithm and four incremental im-
plementations of the Qiao’s Jacobi method in Ajtai-type bases. The ’Qiao Base’ corresponds
to the base version of the Qiao’s Jacobi method with primitive data types. The other three
implementations aims to measure the impact of some proposed improvements in the ’Qiao
Base’ implementation, where the ’Qiao-Vec’ and ’Qiao-noVec’ implement almost every pro-
posed improvements, but the first one takes advantage of vector instruction in ISA. Finally,
the ’Qiao’ version implements all the proposed improvements.

Unlike Figure 29, the ’Qiao Base’ version gets similar results to the fastest LLL version
of NTL (LLL FP), where it is worse in lower dimensions and gets faster than LLL as the
dimension increases. The Qiao’s Jacobi method performs better in Ajtai-type bases than GM
bases because it takes less sweeps to converge to a solution. Figure 31 shows the number of
sweeps taken to converge a L-reduced basis. The Qiao’s Jacobi method achieves a similar
number of sweeps in Ajtai-type basis (6 sweeps), while testing a 500 dimension basis. Thus,
we conclude that the good execution times depend on the input basis.

Figures 30 and 31 illustrate data from the same experiment. Therefore, the execution time
is linked to the number of sweeps, i.e., in both graphs it increases for dimensions 325 and
450, and decreases for dimensions 350 and 475.

The ’Qiao-noVec’ version achieves the maximal speedup of 28 times faster than the ’Qiao
Base’ for the dimension 325 and the minimal speedup of 3.8 times for the dimension 875.
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Thus, we can say that the speedup is linked to the number of sweeps. In proposed improve-
ments, the ’Qiao-noVec’ version already implements better memory access patterns and it is
ready to support vector instructions.

Figure 30: Execution times of sequential LLL FP
and Qiao algorithm in Ajtai-type
bases.

Figure 31: Number of necessary sweeps to con-
verge to a solution in Ajtai-type bases.

Previously we computed a max theoretical speedup of 1.36 times faster by implementing
the same code with SIMD instructions. Afterwards, the ’Qiao-Vec’ version got a speedup of
1.30 for the dimension 400, when compared with the ’Qiao-noVec’ version. It means that 5%
of the execution time is the overhead.

Currently, the bottleneck of the ’Qiao-Vec’ version is in the column’s swap, where, de-
pending of the basis dimension, it consumes about 70% of the execution time. To avoid
the swaps we implemented the proposed improvement that avoids column and row swaps,
and obtained the execution times of the ’Qiao’ version. As expected the speedup depends of
the number of swaps for a particular basis input. Comparing ’Qiao’ and ’Qiao-Vec’ versions,
the first one obtained the average speedup of 3.64 times, where the maximal and minimal
were 4.84 and 2.78 respectively.

Figure 32 shows the obtained speedups of the implemented Qiao’s Jacobi method version
and the LLL algorithm. After all the proposed improvements we obtained an average
speedup of 42.84 times comparing ’Qiao’ and ’Qiao-Vec’ versions, and it was greater than
100 times for some dimensions. We also notice that the speedup of LLL and ’Qiao’ increases
with higher dimensions, where ’Qiao’ is 265 times faster than LLL algorithm for dimension
950.



4.1. Parallel Version 54

Figure 32: Speedups comparison between sequential LLL and Qiao’s Jacobi method implementa-
tions in Ajtai-type bases.

4.1 parallel version

After identifying the most important optimizations, the Algorithm 2.10 lost a major part of
its parallel properties based on matrix multiplications.

As previous mentioned, it is possible parallelize the Qiao’s Jacobi method by reducing
several sub-lattices at once with some limitations. In [Jeremic and Qiao (2014)], the order
in which the vectors are reduced is changed to allow their parallel approach. However, it
changes the output lattice and the flow of the algorithm. Section 4.2 will show how the
order in which the vectors are reduced affects the quality of the reduced basis.

To analyze the impact of the chess tournament ordering, that was referred in section 2.2.5,
we count the required number of sweeps for the algorithm to converge to a solution. Figure
33 illustrates the average number of sweeps out of 50 different GM lattices of the same
dimension, where it illustrates the original algorithm as ’Qiao’, and the algorithm with the
chess tournament ordering as ’Qiao-Chess’. We tried to perform the same test in Ajtai-type
bases but the ’Qiao-Chess’ version did not terminate in reasonable time.

Figure 33 shows a significant increase of sweeps in the ’Qiao-Chess’ version, which will
affect negatively the performance of the algorithm, since the number of sweeps is directly
linked to the algorithm’s performance.

The Chess tournament ordering seams to be the best strategy to maximize the number the
vector reductions at a time and to avoid data hazards. Due to these, we used this ordering
in the proposed parallel approaches.

Currently, the implementation in [Jeremic and Qiao (2014)] parallelizes n/2 vector reduc-
tions by creating n/2 threads. However, the creation of a fixed number of threads cannot be
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Figure 33: Number of necessary sweeps to converge to a solution in GM bases.

the best strategy to solve problems where the number of threads is substantially larger than
the number of available Processor Units (PUs), i.e, a 800 dimension basis in a device with
32 PUs. The parallel strategies that we will describe below target an implementation that
adapts the problem for a limited number of available PUs. Currently, the user can choose
the number of threads that better adapt to a particular hardware or basis dimension.

To avoid data hazards, we need to create synchronization points and remove one of the
previous proposed improvements. These are in the inner zone of the parallel implemen-
tation, which make it happen several times. Depending on the number of threads, these
synchronization points are susceptible to create overhead. We reduced the number of syn-
chronization points from 4 to 2 by switching between the column- or row-major less times.
Therefore, we first compute all row-major computations and just then the column-major
computations.

Other issue of the algorithm is the unbalanced workload, since some threads may have
to do row and column swaps and others not. Unfortunately, there is no way to predict
which threads have to do the swaps. We substantially reduced the unbalance with our last
improvement since we avoided the integral matrix swaps. However, the evaluation tests of
the subsection 4.1.1 do not include this improvement and perform integral matrix swaps.

Our parallel approach was not designed to have great scalability, since it only scales until
n/2 threads. It is possible to use more threads but it will probably get worse results since
it has to synchronize more threads in each synchronization point. As it was previously
mentioned, they aim to execute large lattice basis in environments with a limited number
of PUs.

It is possible to adopt a strategy that enhances the scalability by parallelizing each oper-
ation of each row or column. However, it creates too fine grain computations where the
created overhead will not compensate the parallelization.

We created two parallel approaches that underline the previous discussion. The chess
tournament ordering is used in both implementations, and they just differ in the order that
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all n/2 vector reductions are done. The first approach is divided in two parts, where
it performs all row-major order computations in first place, and just then it performs all
column-major order computations. Each part is within a for-cycle that performs all n/2
pair combinations. To not compute the value of the variable q of each pair combination
in each for-cycle, we cache its value in the first for-cycle into an array and reuse it in the
second one.

The second approach parallelizes x of the n/2 pair combinations at once, by performing
all row and column computations. To avoid data hazards, we implement synchronization
points between the row and column computation and in the end of the column computa-
tion.

We used OpenMP to parallelize both implementations. In the first approach the syn-
chronization points were implemented with the inherit properties of the directive ’#pragma
omp for’, which already implements a barrier. In the second approach the synchronization
points are implemented with the directive ’#pragma omp barrier’.

The first approach has the advantage of computing all row- or column-major order com-
putations without synchronization points what could lead to better performances. However,
it has time penalties to access the stored data on the second for-cycle. This approach leads
to a higher memory consumption.

Unlike the first approach, the second one has a lower memory consumption, since it does
not have to memoize data. However it may have to deal with more synchronization points,
i.e., if the number of threads is lower than n/2, it has to do all the iteration more than once.

4.1.1 Evaluation Results

Figures 34 and 35 illustrate how the execution time changed with the increase of the number
of threads. It uses GM lattice bases with the dimension between 10 and 60 and shows the
average value out of 50 different bases. Depending in the lattice dimension, both figures
do not illustrate the value for greater number of threads, i.e., dimension 10 with 16 threads.
It happens because the execution times got worse because the number of threads is greater
than n/2.

In every dimension of both figures, the test with 1 thread gets the best execution time. It
means that overhead created to parallelize the algorithm takes a large portion of the final
execution time, which means that the parallelization does not compensate for GM bases
where it is used MP.

Note that these approaches may have different results in implementations with primitive
data types, where it deals with different memory access patterns.
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Figure 34: Execution times of first parallel ap-
proach in GM bases.

Figure 35: Execution times of second parallel ap-
proach in GM bases.

Figure 34 shows that every tests with 4 threads get better execution times than the same
test with 2 threads, except for the dimension 10. Depending of the dimension of the basis
the result get worse with more threads.

Figure 35 shows that the second approach scales better than the first one. However, we
noticed that the overhead created from the execution of 1 to 2 threads is greater in the
second approach. In general, the second approach get better results than the first one.

We did a small change in the first approach and create more fine grain tasks in order to
get a better scalability, but the results got worse.

4.2 basis quality assessment

Goldstein and Mayer Matrices

We tested basis dimensions between 10 and 60 for GM bases. We present the average
value out of 50 different bases for each dimension. The results are displayed in the Table 2.
Depending on the algorithm, it gets very different results, which makes it hard to read in
graphs. The enumerated metrics presented in the Table 2 were introduced in the subsection
2.2.6. These are the HF of a basis, the sequence of the GS norms, the norm of the last GS
vector, the average of the norms of a basis, the product of the norms of a basis and the
orthogonal defect of a basis, respectivately.

In general the LLL algorithm got the best results for every tests, with some exceptions,
where the HF, the average and product of the norms and the orthogonal defect were always
the best in all dimensions. In the Gram-Schmidt sequence, LLL gets worst in the dimension
10 but it is better in all other dimensions. ’Qiao-Chess’ got better results for the norm of the
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Dimension Algorithm 1. 2. 3. 4. 5. 6.
LLL 0,9E+00 9,6E+00 1,1E+03 1,2E+03 4,8E+30 1,3E-26

10 Qiao 2,4E+04 -8,6E+03 1,4E+00 9,0E+04 3,7E+58 9,8E-25

Qiao-Chess 1,6E+04 -8,3E+03 3,6E-04 9,2E+04 4,9E+56 9,8E-25

LLL 1,5E+00 -2,8E+01 8,2E+02 1,5E+03 2,6E+63 2,5E-56

20 Qiao 5,3E+21 -1,9E+12 7,1E-05 3,2E+13 1,7E+294 5,3E-46

Qiao-Chess 6,1E+25 -1,2E+14 3,3E-02 2,1E+15 1,0E+335 3,6E-44

LLL 2,5E+00 -3,7E+01 6,6E+02 1,8E+03 1,1E+98 3,7E-86

30 Qiao 3,7E+45 -1,1E+24 4,9E+08 2,8E+25 4,9E+801 5,7E-64

Qiao-Chess 2,1E+57 -2,6E+29 2,3E+14 6,9E+30 5,2E+971 1,3E-58

LLL 3,9E+00 -4,1E+01 5,3E+02 2,3E+03 3,6E+134 4,9E-116

40 Qiao 5,5E+71 -8,8E+36 3,1E+23 3,3E+38 1,6E+1937 7,1E-81

Qiao-Chess 1,3E+89 -4,7E+45 3,7E+31 1,8E+47 8,3E+3317 3,9E-72

LLL 6,0E+00 -4,5E+01 4,4E+02 2,8E+03 1,4E+173 6,0E-146

50 Qiao 4,9E+99 -4,5E+50 2,6E+49 3,4E+66 2,2E+2683 4,3E-97

Qiao-Chess 4,8E+124 -1,2E+63 2,3E+49 6,3E+64 8,3E+3317 1,6E-84

LLL 9,4E+00 -4,8+01 3,5E+02 3,5E+03 1,7E+214 6,9E-176

60 Qiao 1,9E+128 -5,4E+64 9,6E+34 2,3E+52 1,0E4+087 7,4E-113

Qiao-Chess 3,8E+161 -2,4E+81 8,9E+67 1,6E+83 8,5E+5086 3,0E-96

Table 2: Basis quality results for basis dimensions between 10 and 60 (GM bases).

last Gram-Schmidt vector, except for the dimension 10 and 20. ’Qiao’ algorithm always got
results between LLL and ’Qiao-Chess’ algorithms but closer to ’Qiao-Chess’ algorithm.

The ’Qiao-Chess’ just differ from ’Qiao’ in the order of which vectors are reduced first.
However it results in different lattice bases with worse quality. Therefore, the order in
which the vectors are reduced is important, and it takes an important role in the quality of
the reduced basis.

It is important to notice that the LLL results are very different from the ’Qiao’ and ’Qiao-
Chess’ algorithms, which means that LLL algorithm is better for GM bases.

Ajtai-type Matrices

We tested basis dimensions between 200 and 950 for Ajtai-type bases. We just tested one
sample of each dimension, because we were not able to get a basis generator of this type of
basis. The results are illustrated in the next figures.

Figures 36, 37 and 38 show that Qiao’s Jacobi method gets worse bases in lower dimen-
sions. However, the same does not verify in higher dimensions, where Qiao’s Jacobi method
gets results better than LLL in all tests. In some tests Qiao’s Jacobi method gets much better
results than LLL, i.e., the HF for dimension 950 is more than 4.3 times better.
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Figure 36: Hermite factor of output basis from
LLL algorithm and Qiao’s Jacobi
method in Ajtai-type bases.

Figure 37: Average of the norms of the output ba-
sis from LLL algorithm and Qiao’s Ja-
cobi method in Ajtai-type bases.

Figure 39 shows that for most dimensions, the LLL algorithm and the Qiao’s Jacobi
method get the same result, but for some dimensions the Qiao’s Jacobi method displays
disappointing results.

The figures of the product of the norms and the orthogonal defect are not shown due to
its high scale (> 10300). However, both metrics have the same behaviour of the other graphs,
where LLL results start better but end up worse.

Figure 38: Sequence of the GS norms from LLL
algorithm and Qiao’s Jacobi method
in Ajtai-type bases.

Figure 39: Last GS norms from LLL algorithm
and Qiao’s Jacobi method in Ajtai-
type bases.
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B K Z , L L L A N D Q I A O ’ S J A C O B I M E T H O D

This chapter explores possible parallel approaches of well known lattice basis reduction
algorithms such as LLL and BKZ. In addition, a variant of the BKZ algorithm in which
the LLL algorithm was replaced by the Qiao’s Jacobi method was implemented, and it was
assessed the basis quality output of combining the Qiao’s Jacobi method with LLL and BKZ
algorithms. All the proposed implementations of this chapter are included in the LattBRed
module.

5.1 towards parallel approaches

5.1.1 Parallel LLL algorithm

We implemented a floating-point version of the Algorithm 2.8 to do experiments in GM
bases. To ensure the correctness of the implementation we compared its basis output and
the output of the ’LLL XD’ function of the NTL. However it did not work as expected, and
to obtain the same output we had to compute the GS coefficients and norm after the size-
reduction. The computation of the GS coefficients with the size-reduced vector minimize
precision errors.

The first LLL implementation uses the NTL to handle with MP arithmetic. However, it
took more time than expected in the conversion of the MP number to the double datatype,
where the GMP’s conversion is more efficient. This led to a second implementation where
we used the GMP to handle with MP arithmetic.

By profiling our implementation, we noticed that 35% of the execution time is consumed
by the computation of the GS coefficients and norms and 62% by the size-reduction. There-
fore, it is imperative to parallelize these parts of the algorithm in order to get more perfor-
mance.

After look into the GS algorithm we found an opportunity to parallelize this procedure
by computing the inner products in parallel. This procedure is called several times during
the algorithm execution, thus it is not a good approach to create and destroy a new parallel
zone every time that the procedure is called, since it is one of the heaviest calls in paral-
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lel programming. Therefore, we created a pool of POSIX threads, with pthreads, that are
waiting for work, where the communication is handled with signals and mutexes.

Algorithm 5.1 Gram-Schmidt process for k

1: function Proposed GS Bk(B, M, c, k)
2: s = 0
3: for j = 0 to k do
4: Mk,j = InnerProduct(Bk, Bj)
5: end for
6: for j = 0 to k− 1 do
7: tmp = Mk,j
8: for i = 0 to j− 1 do
9: tmp = tmp−Mj,i × bufi

10: end for
11: bufj = tmp
12: Mk,j = tmp/cj
13: s = s + Mk,j × tmp
14: end for
15: ck = Mk,k − s
16: end function

17: function GS Bk(B, M, c, k)
18: s = 0
19: for j = 0 to k− 1 do
20: tmp = InnerProduct(Bk, Bj)
21: for i = 0 to j− 1 do
22: tmp = tmp−Mj,i × bufi
23: end for
24: bufj = tmp
25: Mk,j = tmp/cj
26: s = s + Mk,j × tmp
27: end for
28: ck = InnerProduct(Bk, Bk) − s
29: end function
30:
31:

To minimize the number of synchronization points we performed the computation of all
inner products at once. The Algorithm 5.1 shows both original algorithm and the proposed
one, where B is the lattice basis, M is the matrix that handles the GS coefficients, c is the
vector that stores the GS norms, k indicates the index of the vector that will be computed,
and buf is a vector to store the previous results of tmp.

Table 3 shows the execution times of the sequential and parallel versions.The execution
times of the parallel version show that the parallelization does not have a good scalability.
The execution times increase a lot as the number of threads also increases because of huge
amount of calls of the function ’Proposed GS Bk’, where the synchronization points are heav-
ier than the parallelized work. In addition, the new GS process reduces the execution time
of the parallel version with just 1 thread, due to better memory accesses.

Number of threads 1 2 4 8

Sequential version 2.16

Parallel version 1.86 4.50 6.89 10.62

Table 3: Execution times in seconds of the sequential and the parallel version up to 8 threads in a
GM basis of dimension 50.

As the GS process, the size-redution is also executed several times. Thus, we followed
the same strategy adopted for the GS parallelization, where it uses a pool of threads and
resorts to signals and mutexes to communicate. However, we had an undesirable problem
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during the parallelization, where the GMP reveals to have bug and it is not fully thread-
safe1. This bug led our implementation to launch an error and consequently a segmentation
fault during the GMP’s computations.

5.1.2 Parallel BKZ algorithm

In order to better understand the BKZ algorithm, we started by implementing a sequential
version of the Algorithm 2.9 where the ENUM function is based in the version presented by
[Gama et al. (2010)], without the pruning component. The BKZ was implemented without
MP arithmetic, and only the first LLL call handles with MP arithmetic.

Most parallel implementations of the BKZ algorithm, parallelize the ENUM function or
the LLL algorithm. However, we propose a different approach, that consists in executing
more than one ENUM at a time, where each one is searching in different projected basis.

The implementation starts by calling the LLL algorithm that handles with MP arithmetic,
then it creates a set of threads defined by the user, where each thread executes a worker. Each
worker allocates memory to handle with the standalone execution of the ENUM function,
in which they just share the memory positions that store the main lattice basis and its GS
coefficients and norms.

The shared memory can be accessed just by one thread, in order to avoid data hazards.
Thus, we use mutexes to guarantee that only one thread accesses the shared memory at a
time.

After the ENUM function returns a vector, the thread gets the lock and verifies if it
can insert it in the basis. If the vector is inserted, it creates a linear dependency that is
removed by performing the LLL algorithm. Afterwards, it copies the lattice basis and the
GS coefficients and norms, release the lock and repeats the cycle.

This strategy allows two levels of parallelization, and allows parallelization in distributed
systems. The first is achieved with our parallel approach where we can use several devices,
resorting of MPI for example. Secondly, we have the usual parallel approaches in shared
memory, e.g., ENUM function and LLL algorithm.

Unfortunately, we were not capable to perform the experiments of this approach, because
the LLL algorithm went in infinite loop. We found the problem lately in our LLL imple-
mentation, which does not relax the GS coefficient condition. Usually this functionality is
not implemented and is not referred in the found papers.

1 GMP Reentrancy - https://gmplib.org/manual/Reentrancy.html

https://gmplib.org/manual/Reentrancy.html
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5.2 bkz w/ qiao’s jacobi method

After the good results of the Qiao’s Jacobi method in comparison to the LLL algorithm for
Ajtai-type bases in the Chapter 4, the idea of replacing the LLL algorithm by the Qiao’s
Jacobi method emerged.

We started by replacing the first LLL call by the Qiao’s Jacobi method. The replacement
occurred without any problem, however we found out some barriers that are mainly related
with the GS coefficients and norms. As it can be noticed, the Qiao’s Jacobi method order
the basis vectores by its euclidean norm but both the BKZ and the LLL algorithm order the
basis vectores by the GS norm. Therefore, they create overhead to order the basis by the GS
norms after the execution of the Qiao’s Jacoby method.

The ENUM also needs the GS norms and coefficients to find the vector with the smallest
GS norm. It leads the ENUM function to insert in the basis vectors with smaller GS norm
but with greater euclidean norm, which leads the algorithm to search in two different
directions. To minimize the fact of these two algorithms search in two different ways, we
kept the LLL execution after the Qiao’s Jacobi method. However, both implementations did
not terminate in useful time and we finished their execution.

Figure 40: Execution times of the Qiao’s Jacobi Method, the LLL and BKZ algorithms.

5.3 reducing l-reduced bases

During some unofficial experiments in the section 5.2 we noticed that the LLL algorithm
obtained shorter vectors by reducing a L-reduced basis instead of the original one. Thus, we
performd experiments in Ajtai-type bases to compare the basis quality output of reducing
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a L-reduced basis and its original with the LLL and BKZ algorithms. The BKZ algorithms
uses the block size 20 in every experiments.

Figure 40 illustrates the execution time of 3 lattice basis reduction algorithms, where
the ’LLL-qiao’, ’BKZ-qiao’ reduce a L-reduce basis and the others reduce the correspondent
original basis.

We introduced a set of metrics to measure the quality of the basis in the subsection 2.2.6.
However, we just present some of them in the following figures, since the other metrics
reflected similar results. The metric that measures the execution time of the SVP was not
tested since the experiments were performed in large basis dimensions, and the current
SVP-solvers do not terminate in useful time.

Every below experiments were performed in Ajtai-type bases, in which the ’BKZ-qiao’
and ’LLL-qiao’ reduce a L-reduced basis that was obtained by the Qiao’s Jacobi method.

Figure 41: Hermite factor of output basis from
LLL and BKZ algorithms and Qiao’s
Jacobi method.

Figure 42: Average of the norms of output ba-
sis from LLL and BKZ algorithms and
Qiao’s Jacobi method.

Figure 41 shows that the LLL algorithm gets the worst HF for bases larger than dimension
300, however the BKZ algorithm obtains the best HF until the dimension 350, and get similar
results to ’BKZ-qiao’ until the basis dimension 600. Above that dimension, ’BKZ-qiao’, ’LLL-
qiao’ and ’Qiao’ are overlapped. It also shows that ’LLL-qiao’ does not get better HF for any
basis dimension, where both ’LLL-qiao’ and ’Qiao’ are overlapped.

As expected the Figure 42 shows that the BKZ algorithm get the best average norms,
and the ’BKZ-qiao’ version obtain the best results from the dimension 375. However, the
’BKZ’ version starts to degrade the average of the norms from the dimension 475, and gets
worse than the ’LLL-qiao’ and ’Qiao’ versions from the dimensions 675 and 725 respectively.
Unlike the Figure 41, the ’LLL-qiao’ obtain better results than the ’Qiao’. Once more, the
worst results for large bases dimensions were obtained when using the LLL version.
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Figure 43 shows similar results to the previous figures, where the BKZ algorithm gets
the best results and the LLL gets the worst results for large basis dimensions. The ’LLL-
qiao’ and ’LLL’ versions have disparate results by performing the same algorithm, where
’LLL-qiao’ obtains better results.

Figure 43: Sequence of the GS norms of the out-
put bases from the LLL and BKZ algo-
rithms and the Qiao’s Jacobi method.

Figure 44: Last GS norms of output basis from
LLL and BKZ algorithms and Qiao’s
Jacobi method.

Figure 44 is not conclusive, since most versions are overlapped, except the ’Qiao’ version
for some basis dimensions.

Taking in account the execution times of the Figure 40 it is possible to conclude that the
best output basis was obtained, in less time, by combining the Qiao’s Jacobi method and the
LLL or BKZ algorithms for large basis dimensions. However this was not always observed
since the BKZ algorithm gets the best results for smaller dimensions.

Figure 40 shows that ’LLL-qiao’ always obtains better execution times than the ’LLL’. Thus,
it can be concluded that the combination of the Qiao’s Jacobi method and the LLL algorithm
outcomes in better basis outputs in less time, except for small dimensions.
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C O N C L U S I O N S & F U T U R E W O R K

The dissertation is focused on lattice basis reduction algorithms and MP arithmetic, that
is in some case studies one of its key requirements. Therefore, it is expected that the
developed material creates value to the scientific community by proposing more efficient
implementations or algorithms, and scrutinizing related issues.

An efficient integer MP module was developed that took advantage of the late microar-
chitectures for logical and shifts operations by using vector instructions. These operations
obtained better execution times than the correspondent operation of the most known MP
libraries.

Although the addition is one of the simplest operations, it plays a key role and deserved
an investment to study several approaches. A vectorized version of this function in AVX-2
was implemented, without obtaining good performances. The poor execution time follows
from the dependencies in the MP addition. To obtain better performances we implemented
an assembly version that does two additions sequentially avoiding one overflow test per
cycle. This last version obtained similar execution times compared to the other libraries,
and in some cases it got the best execution time.

Less time was invested in the subtraction algorithm, which resulted in execution times
not so good as expected. However, it is possible to implement the same assembly approach
taken for the addition algorithm, which will result in more appealing execution times.

The MpIM’s multiplication obtained better execution times than the NTL library until
a certain number of digits. It happened because NTL library implements algorithms rec-
ommended for very large MP numbers, and we just implemented the long multiplication
and the Karatsuba algorithms. However, the execution times of our implementations were
worse than the execution times of the GMP and CLN libraries. Therefore, further research
can be done to improve the MpIM’s multiplication. The long multiplication can be im-
proved by loop-unrolling several primitive multiplications in its intermediate steps, and
by keeping good memory access patterns. By improving the long multiplication, it will
automatically reflect in better execution times of the Karatsuba algorithm.

Due to time constraints, the MpIM’s division had execution times that were not the
expected, and it needs to be improved in follow researches.
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Note that is hard to get better execution times than libraries such as GMP, where functions
like addition, subtraction and the multiplication basecase have assembly versions for certain
CPU that give significant speedups, mainly through avoiding function call overheads1.

S. Qiao claimed that its Jacobi method has inherit parallel properties due to the required
matrix computations. However, a good implementation of its algorithm must rely its com-
putations in the Gram-Matrix. It removes most matrix multiplications of the algorithm,
and its inherit parallel properties fade out. The dissertation presents a novel sequential
implementation of the Qiao’s Jacobi method that gets better results than the original imple-
mentation presented in [Qiao (2012)]. To accomplish good performances we avoided several
computations and memory swaps and we developed two versions of this implementation:
a MP version to handle GM bases and a version with primitive data types to handle Ajtai-
type bases. Both versions have good have good speedups, but the version with primitive
data types stands out with maximal speedups of 114 times and it reached speedups of 20

times with large basis dimensions.
The Qiao’s Jacobi method does not performs well in GM bases, since these bases are

very ill-conditioned, which leads the algorithm to make many sweeps, degrading its overall
performance. Comparing its performance with the LLL algorithm, it takes longer to execute
and its basis output is worse than the LLL algorithm for GM bases.

Unlike the previous version, the version with primitive data types performs well in Ajtai-
type bases, and takes less time to execute than the LLL algorithm and the basis outputs
are better than the LLL algorithm. The good execution times are related to the number of
sweeps that the algorithm takes to get a L-reduced basis.

We also proposed two MP parallel approaches of the Qiao’s Jacobi method that is best
suited to different CPU and basis dimensions, allowing the choice of the number of threads.
Despite it had better execution times than the parallel version proposed in [Jeremic and
Qiao (2014)], it does not scale well. We implement a parallel MP version, but a version with
primitive data type may have different results. It requires further research.

The parallel LLL algorithm does not achieved good execution times. It succeed because
the overhead created in the synchronization points is greater than the parallelized work.
However, we identified a more efficient GS process. Due to an bug in the GMP library we
were not capable to test our parallel approach in a section of the LLL algorithm. It requires
further research.

We suggest a parallel approach to a variant of the BKZ algorithm that parallelizes the
search in the projected basis in two levels. The first level parallelizes by performing several
searches in different projected bases. The second parallelization level is the most known
and currently have several works developed. This first level should allows parallelizations
in distributed environments, while the second level is recommended to parallelize in shared

1 GMP assembly basics - https://gmplib.org/manual/Assembly-Basics.html

https://gmplib.org/manual/Assembly-Basics.html


68

memory systems. Unfortunately, we could not test this approach since our LLL implemen-
tation is not prepared to handle with particular special cases that succeed in this parallel
approach.

Due to the good results of the Qiao’s Jacobi method, we unsuccessfully tried to replace
the LLL algorithm by the Qiao’s Jacobi method in the BKZ algorithm. Unlike the LLL and
BKZ algorithms, the Qiao’s Jacobi method does not compute or order the basis by the GS
coefficients and norms. Thus, The BKZ tries to get a completely different basis from the
Qiao’s Jacobi method. Due to this, our implementation did not terminate in useful time
and it was terminated.

We studied if the combination of the Qiao’s Jacobi method with the LLL and BKZ algo-
rithms results in better output basis. We conclude that the combination of the Qiao’s Jacobi
method and the LLL algorithm outcomes with better output basis in less time, except for
small basis dimensions, where the LLL algorithm get better output basis. In relation to the
BKZ algorithm, it is just worth the combination of both algorithm for large basis dimen-
sions.
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rithms using dynamical systems. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 447–464. Springer

http://dx.doi.org/10.1016/S1571-0661(04)80378-5
http://dx.doi.org/10.1016/S1571-0661(04)80378-5
http://dx.doi.org/10.1016/0743-7315(92)90080-7
http://doi.acm.org/10.1145/1236463.1236468
http://doi.acm.org/10.1145/1250790.1250800
http://doi.acm.org/10.1145/1250790.1250800
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://link.springer.com/10.1007/978-3-642-13190-5_13
http://link.springer.com/10.1007/978-3-642-13190-5_13
http://arxiv.org/abs/0801.3331


Bibliography 72

Berlin Heidelberg, 2011a. ISBN 978-3-642-22791-2. doi: 10.1007/978-3-642-22792-9 25.
URL http://dx.doi.org/10.1007/978-3-642-22792-9_25.

Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the shortest and
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