Environ Sci Pollut Res (2017) 24:15148-15156
DOI 10.1007/511356-017-9132-0

@ CrossMark

RESEARCH ARTICLE

Quantitative image analysis of polyhydroxyalkanoates inclusions
from microbial mixed cultures under different SBR

operation strategies

Anténio L. Amaral'? . Hugo Abreu' - Cristiano Leal” - Daniela P. Mesquita” «

Luis M. Castro'” - Eugénio C. Ferreira’

Received: 30 August 2016 / Accepted: 27 April 2017 /Published online: 12 May 2017

© Springer-Verlag Berlin Heidelberg 2017

Abstract Polyhydroxyalkanoates (PHAs) produced from
mixed microbial cultures (MMC), regarded as potential sub-
stitutes of petrochemical plastics, can be found as intracellular
granules in various microorganisms under limited nutrient
conditions and excess of carbon source. PHA is traditionally
quantified by laborious and time-consuming chromatography
analysis, and a simpler and faster method to assess PHA con-
tents from MMC, such as quantitative image analysis (QIA),
is of great interest. The main purpose of the present work was
to upgrade a previously developed QIA methodology (as re-
ported by Mesquita et al. (Anal Chim Acta 770:36-44, 2013a,
Anal Chim Acta 865:8—15, 2015)) for MMC intracellular
PHA contents quantification, increase the studied intracellular
PHA concentration range, and extend to different sequencing
batch reactor (SBR) operation strategies. Therefore, the oper-
ation of a new aerobic dynamic feeding (ADF) SBR allowed
further extending the studied operating conditions, dataset,
and range of the MMC intracellular PHA contents from the
previously reported anaerobic/aerobic cycle SBR. Nile Blue A
(NBA) staining was employed for epifluorescence micro-
scope visualization and image acquisition, further fed to a
custom developed QIA. Data from each of the feast and fam-
ine cycles of both SBR were individually processed using
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chemometrics analysis, obtaining the correspondent partial
least squares (PLS) models. The PHA concentrations deter-
mined from PLS models were further plotted against the re-
sults obtained in the standard chromatographic method. For
both SBR, the predicted ability was higher at the end of the
feast stage than for the famine stage. Indeed, an independent
feast and famine QIA data treatment was found to be funda-
mental to obtain the best prediction abilities. Furthermore, a
promising overall correlation (R? of 0.83) could be found
combining the overall QIA data regarding the PHA prediction
up to a concentration of 1785.1 mg L' (37.3 wt%). Thus, the
results confirm that the presented QIA methodology can be
seen as promising for estimating higher intracellular PHA
concentrations for a larger reactors operation systems and fur-
ther extending the prediction range of previous studies.

Keywords Sequencing batch reactors (SBR) - Mixed
microbial cultures (MMC) - Polyhydroxyalkanoates (PHA) -
Nile Blue A (NBA) staining - Quantitative image analysis
(QIA) - Partial least squares (PLS)

Introduction

Regarding wastewater treatment systems (WWT), the bio-
mass usually found consists of mixed microbial cultures
(MMQO), including organisms able to store nutrient and energy
sources intracellularly in granules or inclusions. This fact al-
lows these organisms to use these sources when needed, con-
ferring a competitive advantage over non-storing organisms
(van Loosdrecht et al. 1997) in systems such as enhanced
biological phosphorous removal (EBPR), among others. As
such, under limited nutrient conditions and surplus of carbon
sources, MMC are able to take up carbon sources like volatile
fatty acids (VFA) and store them intracellularly as
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polyhydroxyalkanoates (PHAs), whereas, when needed, the
stored PHAs are used as carbon and energy sources for bio-
mass growth (Oehmen et al. 2007).

Moreover, PHA production has also an economic drive
since they are regarded as potential substitutes of
petrochemical-based plastics, furthermore presenting the ad-
vantage of being biodegradable. Although, traditionally, PHA
production has been performed by pure cultures, MMC are
now regarded as an alternative way to produce them, further
presenting the advantages of using renewable resources while
not requiring sterile conditions (Pandiana et al. 2009; Reis
et al. 2003; Carvalho et al. 2014; Duque et al. 2014; Chen
et al. 2015a, 2015b; Samori et al. 2015).

Nowadays, PHA is usually quantified by gas chroma-
tography (GC) analysis, with prior digestion, which is
both labor-intensive and time-consuming and, therefore,
not suitable for fast determinations (Smolders et al.
1994; Oehmen et al. 2005). Thus, an alternative simpler
and faster monitoring procedure for PHA quantification is
considered of the utmost interest. In this sense, quantita-
tive image analysis (QIA) procedures can provide timely
and valuable information for WWT processes, and
coupled to microscopy techniques procedures have al-
ready been used to detect intracellular storage com-
pounds, such as PHA, in pure cultures (Volova et al.
2013) and in MMC, by staining procedures, as previously
reported by Serafim et al. (2002), Pandolfi et al. (2007),
and Mesquita et al. (2013b, 2013c, 2015). Regarding
PHA inclusions, Sudan Black B (SBB), Nile Blue A
(NBA), and Nile Red dyes are commonly used for its
selective staining (Ostle and Holt 1982; Redzwan et al.
1997; Alias and Tan 2005), as illustrated by the works of
Mesquita et al. (2013a, 2013b, 2015) for PHA quantifica-
tion by QIA.

Other techniques employed to accurately determine the in-
tracellular PHA contents, in a fast way, encompass the use of
Fourier transform infrared (FTIR) spectroscopy, both for pure
PHA-producing cultures (Porras et al. 2016) and for MMC
cultures (Arcos-Hernandez et al. 2010; Cha et al. 2016; Isak
etal. 2016). However, when compared to such methodologies,
the QIA methodology has the potential, not only to estimate
the PHA contents of a given MMC but also to describe the
aggregated biomass structure (by simultaneous bright-field
acquisition), which is quite valuable for any WWT system
operation (Mesquita et al. 2013c).

Thus, with the purpose of developing an alternative simpler
and faster monitoring procedure for PHA quantification, the
current work expanded the previous studies of Mesquita et al.
(2013a, 2015) of a QIA-based monitoring approach, using
NBA to quantify the intracellular PHA produced from
MMC, by studying a second SBR cycle strategy. Indeed, with
the introduction of an ADF (aerobic feast/famine cycles) SBR
in this work, it is intended to go beyond the previous findings,

by upgrading the developed QIA methodology and data treat-
ment techniques, while expanding both the type of studied
SBR cycle strategies (including aerobic feast/famine cycles
to the existing studies of anaerobic feast/aerobic famine cy-
cles), dataset (67% increase), and range (more than doubled)
of PHA concentrations to be predicted. It should be stressed
that in both studies, the biomass inoculum was provided by an
EBPR system.

Furthermore, chemometric techniques, and namely princi-
pal components analysis (PCA), cross-correlation (CC) and
partial least square (PLS) regression models, were further used
to enlighten the relationships between the obtained QIA pa-
rameters, the operating strategies, and the feast/famine stages.
Moreover, the estimated intracellular PHA concentrations
were plotted against the PHA concentrations determined by
the standard analytical method in order to determine the pre-
diction ability of the proposed methodology. Finally, the PHA
prediction ability at the end of the feast and famine cycles, for
both studied SBR, was also compared.

Materials and methods
Experimental setup and synthetic medium

The aerobic feast/famine cycles SBR (system I) was com-
posed by a 3.8 L reactor with a heating jacket and operated
at constant 22 °C, in four consecutive periods attaining a
12-h cycle: feeding (15 min), aerobiosis (630 min), settling
(60 min), and withdrawal (15 min). Compressed air was
used to ensure the aerobic conditions, and the hydraulic
retention time (HRT) was set at 22.8 h. Two liters of a
synthetic medium containing mainly acetate (solution 1)
and a trace metals solution was added in the first 15 min
of the cycle. Solution 1 contained (per liter) 4.00 g
C,H;0,Na-3H,0, 0.092 g K,HPO,, 0.045 g KH,POy,,
0.16 g NH,4Cl, 0.60 g MgSO47H,0, 0.07 g CaCl,-2H,0,
0.01 g allyl-N thiourea (inhibiting nitrification), 0.10 g
EDTA, and 2 mL (per L) of a trace metals solution, de-
scribed in detail in Mesquita et al. (2013a, 2015).
Regarding the anaerobic feast/acrobic famine cycles SBR
(system II), described in detail in Mesquita et al. (2013a,
2015), consisted of a 4 L SBR operated at around 20 °C, in
four consecutive periods attaining a 6 h cycle: anaerobiosis
(120 min), aerobiosis (180 min), settling (55 min), and with-
drawal (5 min). Two liters of a synthetic medium (Mesquita
et al. 2013a, 2015) containing volatile fatty acids (VFA),
3.16 mL (per L) of a trace metals solution (similar to the
SBR I) and a phosphate solution was added in the first
5 min of the anaerobic stage. Nitrogen was used to ensure
anaerobic conditions and compressed air for aerobic condi-
tions. The hydraulic retention time (HRT) was set at 12 h.
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Analytical procedures

The SBR I system was monitored for a period of 188 days,
and mixed liquor samples were collected at approximately
20 min into the aerobiosis stage (corresponding to the feast
stage given that the feed was immediately prior to the aero-
biosis stage) and at the end of the aerobiosis stage (corre-
sponding to the end of the famine stage). A volume of
15 mL of a 2% (v/v) aqueous solution of formaldehyde
was added to 35 mL of the sample and then centrifuged
for 15 min at 4000 rpm. Finally, the supernatant was re-
moved and the pellet kept on a freezer at —20 °C before
further analysis for cell preservation purposes (Wallner
et al. 1993). GC analysis allowed determining the
polyhydroxyvalerate (PHV) and polyhydroxybutyrate
(PHB) contents using the method developed by Smolders
et al. (1994). Prior to the digestion, the samples were
dehydrated for 48 h at 60 °C until constant weight.
Dehydrated sludge samples were further transferred to glass
vials, esterified with HCI/1-propanol (25:75 v/v) and the
polymers extracted with dichloromethane with benzoic acid
(1 mg mL™") as the internal standard. This procedure was
also performed for blank samples (without the dehydrated
sludge). Suitable contact between the two phases was as-
sured by stirring the vials, which were further digested at
100 °C for 3.5 h. After the digestion, the vial content was
transferred by using 10 mL of ultra-pure water to additional
vials, covered with a rubber seal, and contact between the
two phases was promoted by placing the vials in an inverted
position for 30 min. A volume of 1 mL of the organic phase
was then collected, and Na,SO, was added until a white
precipitate was formed, ensuring the complete dehydration
of the organic phase.

PHA quantification was then performed through a Clarus
480 GC system (PerkinElmer, Waltham, USA) outfitted with a
flame ionization detector. PHB and PHV were separated using
an Elite Wax capillary column (PerkinElmer, Waltham, USA),
with helium as carrier gas. The split injection and detector
temperatures were of 220 and 250 °C, respectively, whereas
the oven temperature profile was of 50 °C for the first 2 min,
witha 15 °C min! ramp to 225 °C (from 2 to 13.67 min) and
then maintained until 20.67 min. Calibration curves were also
obtained for PHB and PHV with the same internal standard
and the TotalChrom software (PerkinElmer, Waltham, USA)
allowed for the GC data analysis. PHA was then determined as
the sum of PHB and PHV.

Regarding the SBR 11 system, it was monitored for a period
of 87 days and mixed liquor samples were taken at the end of
the anaerobic feast and aerobic famine stages. The procedure
for sampling, fixation, and storage was quite similar to the
SBR 1, with the exception that the samples were lyophilized
instead of dehydrated. The detailed procedure for the SBR 11
system can be found in Mesquita et al. (2013a, 2015).
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Staining procedure

As for the analytical procedure for PHA quantification, bio-
mass samples were collected at the end of the feast and famine
stages also for the NBA staining procedure. Regarding the
SBR I system, 15 mL of the samples were centrifuged for
15 min at 4000 rpm and the pellet (after the removal of the
supernatant) was re-suspended in 7.5 mL of phosphate buffer
saline solution (PBS). This procedure was repeated twice with
2-min centrifugations. Finally, 2.5 mL of PBS solution and
7.5 mL of a 4% (v/v) aqueous solution of formaldehyde were
added to the pellet and incubated at 4 °C for 2 h. The first
centrifugation procedure was, once again, employed and the
resulting pellet was stored in 7.5 mL of a 50% PBS-50%
ethanol (96%) solution at =20 °C before further analysis for
cell preservation purposes (Wallner et al. 1993). The staining
procedure was performed according to Mesquita et al. (2013a,
2015). Regarding the staining procedure for the SBR II sys-
tem, the procedure was quite similar to the SBR I and can be
found in Mesquita et al. (2013a, 2015).

Image visualization, acquisition, and QIA procedure

For both the SBR I and SBR II systems, the image visualiza-
tion and acquisition procedure was similar and is described in
detail in Mesquita et al. (2013a, 2015).

The QIA methodology focused on the quantification of
PHA inclusions regions using a purposely developed program
in MATLAB 7.8.0 (The MathWorks, Natick, MA),
encompassing four main steps: image preprocessing, back-
ground correction, two-way segmentation, and post-process-
ing. A detailed description of the QIA procedure is presented
in Mesquita et al. (2013a, 2015), and a schematic representa-
tion is shown in Fig. 1 displaying also the original and final
binary images. The subsequent morphological parameters de-
termined are shown in Table 1. The overall QIA methodology
was also upgraded, and in addition to the use of the raw QIA
data, an exponential transformation (fExp_ = x*’?) was
employed for the PHA inclusion total area and total intensities
in order to correct the acquired images two-dimensional rep-
resentation of the three-dimensional inclusions. Also, a linear
transformation (fLin = x — 0.015) of the PHA inclusions av-
erage intensities was now employed to account for the limit
threshold value used to determine these inclusions.

Chemometrics analysis

Cross-correlation (CC) analysis allows determining the corre-
lation factor between each variables pair in a given set of
variables. In the present case, the obtained image analysis
variables dataset for each SBR (I and II) and each stage (fam-
ine and feast) was processed in order to determine the
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Fig. 1 Schematic representation of the QIA procedure for PHA
inclusions determination (a original image; b final binary image)

correlation set for all variables. Microsoft Office Excel 2007
(Microsoft, Redmond, WA) was used to that intent.

Principal components analysis (PCA) is a technique that
allows the transformation of a given dataset of correlated var-
iables to a new set of uncorrelated (orthogonal) variables,
called principal components (PC), in order to reduce the data
dimensionality. The principal components (PC1, PC2, ...,
PCn) are obtained in order of their importance in explaining
the input data, that is, decreasing in their ability to explain the
original dataset. In the case of PCY, a given parameter is
considered as the output (Y) data, whereas the remaining pa-
rameters are considered the input (X) data, allowing to explain
(predict) the output parameter. In the present case, the

intracellular PHA concentration was used as the Y parameter,
whereas the obtained image analysis variables dataset, for
each SBR (I and II), was used as the input (X) data. Simca-P
8.0 (Umetrics AB, Umea, Sweden) was used to perform the
PCY analysis.

In PLS regression, the decomposition of the variables (X)
data matrix and response (Y) data array is performed iterative-
ly. In each step, the information exchange between the two
blocks allows for the rotation of the latent variables (LVs) of
the X matrix improving the predictive power regarding the ¥
array. A more detailed explanation of the PLS algorithm can
be found in Einax et al. (1997).

In the present study, the variables (X) data matrix, listed in
Table 1, was preprocessed using the standard normal variate
method to remove undesirable variations and further used to
estimate the response (Y) data array. It is known that, in PLS,
the number of LVs is of critical importance and, therefore, the
methodology presented in Mesquita et al. (2015) was
employed. Accordingly, the data was randomly divided into
a training set (67% of the observations) to train the model and
a validation set (33 % of the observations) to validate the mod-
el. Furthermore, this procedure was repeated 20,000 times,
obtaining 20,000 different, and randomly selected, datasets
to select the optimal number of LVs. The studied number of
LVs ranged from one to half the number of X variables in the
model in order to prevent over fitting problems. Then, the
coefficient of determination (Rz) between the observed and
model-generated (predicted) Y values was determined for the
training, validation, and overall (comprehending both training
and validation) datasets. This later was used as the selection
criteria for the best model selection.

MATLAB™ 7.8.0 (The MathWorks, Natick, MA) was
used to perform the PLS analysis, regarding the PHA predic-
tion, using 122 combined samples from SBR I and SBR II.
From these, 49 samples (23 feast (FST) and 26 famine
(FMN)) were from the SBR I dataset and the remaining 73
samples (36 FST and 37 FMN) from the SBR 1I dataset. The
obtained QIA results were used in four studies, using different
datasets, for each SBR dataset. In all cases, a first PLS model
was performed using the merged (further designated as global)
feast and famine QIA results, a second PLS model used solely
the feast (FST) data, and a third PLS model used solely the
famine (FMN) data. Finally, a fourth study was undertaken
(further designated as FST + FMN), where the independent
FST and FMN data PLS analyses were combined together.

Results and discussion
In this work, a second set of experiments was added to the
previous experiments used in Mesquita et al. (2013a, 2015)

extending the range of intracellular storage PHA prediction
ability by using QIA data from NBA staining and PLS
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Table 1  Image analysis variables used for the PLS analysis

Parameter Description

Predictor (X)

Tlorg — Total intensity of the original image

Tlgkg — Total intensity of the background corrected image

TA — PHA inclusions total area per image
fExp (TA) — fExp (PHA inclusions total area per image)

TIPHAorG — PHA inclusions total intensity calculated from the original image
fExp (TIPHAoRrG) — fExp (PHA inclusions total intensity calculated from the original image)

AVIPHArG — PHA inclusions average intensity calculated from the original image
fLin (AvIPHAQRG) — fLin (PHA inclusions average intensity calculated from the original image)

TIPHAgkG — PHA inclusions total intensity calculated from the background corrected image
fExp (TIPHAgkG) — fExp (PHA inclusions total intensity calculated from the background corrected image)

AvVIPHAgkG — PHA inclusions average intensity calculated from the background corrected image
fLin (AvIPHAgkG) — fLin (PHA inclusions average intensity calculated from the background corrected image)

Response (V)

Polyhydroxyalkanoates concentration (mg PHA L")

fExp represents the exponential function x>, and fLin represents the linear function x — 0.015

analysis. In fact, as shown in Table 2, while the previous
studies allowed predicting PHA concentrations up to
754.4 mg L' (and 35.4 in wt% mg PHA mg' dry weight),
the new data expands the predicted range up to 1785.1 mg L™
(and 37.3 in wt%). Thus, two datasets, using the QIA infor-
mation listed in Table 1, were used, respectively, from SBR 1
regarding the aerobic FST/FMN cycles and from SBR 1I re-
garding the (anaerobic FST)/(aerobic FMN) cycles.
Furthermore, the intracellular PHA concentration (referred as
observed PHA) was also determined by a standard analytical
methodology, as previously reported in “Analytical proce-
dures” section. For both SBR, the samples were obtained at
the end of the FST and FMN stages.

As in Mesquita et al. (2013a, 2015) studies, the first PLS
models employed the global (merged) FST and FMN QIA
datasets. The PLS analysis results (coefficients of determina-
tion and linear regression equations) for the PHA prediction in
each SBR, as well as for the ensemble SBR I + II, regarding
the training, validation, and overall (training + validation)
datasets are depicted in Table 3. Each coefficient of determi-
nation (R”) and regression equation corresponds to the linear

Table2 Minimum and maximum values for the PHA concentration (in
mg PHA L-1 and in wt% mg PHA mg ' dry weight) in the feast and
famine cycles of SBR I and SBR 11

[PHA] (mg L") [PHA] (Wt%)

Min. Max. Min. Max.

SBR I Feast 54.8 1676.7 1.2 35.0
Famine 86.4 1785.1 2.5 373

SBR II Feast 17.6 754.4 2.0 322
Famine 11.6 751.1 0.9 354
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correlation found by the least squares method. Analyzing
Table 3, it could be retrieved that the prediction results from
SBR II where somewhat better than SBR 1, possibly due to the
narrower range of PHA concentrations (maximum
754.4 mg L™ in comparison with a maximum of
1785.1 mg L' for SBR D). In fact, it could be expected that,
for quite larger PHA concentrations, the acquired images
could suffer from some bleaching, thus leading to the need
of modifying the fluorescence intensity or the image acquisi-
tion time. This is in accordance with the results obtained from
the CC analysis, which showed a higher correlation, between
the PHA concentration and the PHA inclusions total intensity
parameters, for SBR IT (0.65 and 0.67 correlation factors) than
for SBR I (0.16 and 0.22 correlation factors). As expected,
analyzing Table 4, it is also evident that the variable impor-
tance (VIP) of the PHA inclusions total intensity parameters in
SBR I is much smaller than the average intensity parameters,
regarding the PHA concentration prediction. Such difference
infers that a fluorescence bleaching problem could be affect-
ing the results on the higher PHA concentrations obtained on
SBR L.

Furthermore, when the PLS analysis was conducted with
the ensemble SBR I + II, the obtained prediction results were
slightly better (taking into account the R and slope values)
than for any of the individual SBR. However, these results
remained somewhat distant from 1 (coefficient of determina-
tion—R> of 0.69 for the training + validation sets) with an
average error of 172.7 mg L' (9.7% of the studied range),
and thus, the prediction ability could be considered as
questionable.

In order to improve the intracellular PHA concentration
prediction ability, the FST and FMN cycles were modeled
independently by the PLS analysis, and the obtained results
were further merged to obtain the combined (FST + FMN)
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Table 3 PHA concentrations

prediction results for SBR I, SBR SBR 1 SBR I SBRI+II

II, and the ensemble SBR I + II .

using the global (merged) feast R” training set 053 0.73 0.72

and famine QIA data and PLS Linear regression (training set) y=095x y=0.94x y=094x
R validation set 0.49 0.66 0.66
Linear regression (validation set) y=1.06x y=1.01x y=1.04x
R? overall (training + validation) set 0.51 0.70 0.69
Linear regression (training + validation set) y=099% y=0.96x y =098

PHA concentration predictions. Again, this procedure is in
line with the one implemented in Mesquita et al. (2013a,
2015) studies (anaerobic feast and aecrobic famine).
Accordingly, the PLS analysis results (coefficients of determi-
nation and linear regression equations) for the PHA prediction
in each SBR, as well as for the ensemble SBR I + II, regarding
the training, validation, and overall (training + validation)
datasets are depicted in Table 5. Again, each coefficient of
determination and regression equation corresponds to the lin-
ear correlation found by the least squares method.
Comparing the PHA prediction ability from the FST and
FMN stages calculated independently, the PLS results demon-
strated that it was possible to predict with greater accuracy the
PHA concentration at the end of the FST stage (R? of 0.85)
with respect to the end of the FMN stage (R of 0.81), possibly
due to the different PhaP protein levels in these stages.
Furthermore, the results obtained from the CC analysis
showed a much higher correlation, at the end of the FST stage,
between the PHA concentration and both the PHA inclusions
total intensity parameters (0.47 and 0.51 correlation factors for
the end of the FST stage and 0.17 and 0.21 for the end of the
FMN stage) and the PHA inclusions average intensity param-
eters (0.73 and 0.74 correlation factors for the end of the FST

Table 4 Variable
importance (VIP) for the VIP
image analysis variables

for SBR I and SBR II SBR I SBR II

PHA concentration

prediction using the Tlora 0.98 0.98

global (merged) feast and Tlgkg 0.97 0.92

;agne QIA data and TA 0.88 0.89
fExp (TA) 0.92 0.90
TIPHAoRrG 0.74 1.09
fExp (TIPHAorg) ~ 0.77 1.03
AVIPHAGRrG 1.21 1.01
fLin (AVIPHAGrG) 1.21 1.01
TIPHAgkG 0.85 1.07
fExp (TIPHAgkG) 0.86 1.09
AvIPHAgkG 1.22 0.99

fLin (AVIPHAgkg)  1.22 0.99

stage and 0.64 and 0.67 for the end of the FMN stage). It was
also noticed that this effect was slightly more prominent in
SBR I than in SBR II, both in terms of the coefficient of
determination (R* of 0.79 and 0.81 at the end of the FST stage
against 0.62 and 0.78 at the end of the FMN stage for SBR I
and SBR 11, respectively) and on the CC analysis. With respect
to the later, a clear distinction could be found in the correlation
factors of SBR I, at the end of the FST and FMN stages,
between the PHA concentration and both the PHA inclusions
total intensity parameters (0.62 and 0.64 correlation factors for
the end of the FST stage and 0.20 and 0.19 for the end of the
FMN stage) and the PHA inclusions average intensity param-
eters (0.69 and 0.71 correlation factors for the end of the FST
stage and 0.40 and 0.41 for the end of the FMN stage).

A PCY analysis further corroborated these findings, with a
slightly clearer distinction between the end of the FMN stage
and the end of the FST stage, for the two first principal com-
ponents (PC) in SBR I, as shown in Fig. 2. In effect, the results
ofthe PCY analysis clearly demonstrate the clear difference in
the data collected at the end of each stage, but only a slight
difference between SBR I and II, with 62 out of 73 (83.6%)
data points in SBR II and 42 out of 49 (85.7%) data points in
SBR I, able to be separated.

It is known that PhaP proteins have regulatory functions
regarding the granules number and size, and its expression can
be induced by PHA accumulation (York et al. 2001). It could
be expected that, in the FST stage, higher intracellular PHA
concentrations result in larger PhaP concentrations and large
numbers of smaller PHA granules, whereas in the FMN stage,
lower intracellular PHA concentrations result in smaller PhaP
levels and bigger PHA granules. Further enlightenment of
whether or not this is the cause for the observed differences
should also be sought on future studies.

These results highlight the importance of performing inde-
pendent analyses on the data collected from the FST and FMN
stages, corroborating the findings of the previous (Mesquita
et al. (2013a, 2015) studies. Furthermore, the results for the
overall (training + validation) coefficient of determination
(R?) for all cases (SBR I, SBR II and SBR I + II) improved
markedly regarding the prior global analysis (from 0.51 to
0.72, from 0.70 to 0.80, and from 0.69 to 0.83, respectively).
It should also be stressed that the previous works allowed
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Table5 PHA concentrations prediction results for SBR I, SBR II, and the ensemble SBR I + II using independent feast (FST) and famine (FMN) QIA

data and PLS

SBR 1 SBR II SBRI+1I

FST FMN FST FMN FST FMN
R? training set 0.80 0.73 0.79 0.80 0.86 0.87
Linear regression (training set) y=0.95x y=0.99x y=0.94x y=097x y=0.95x y=0.99x
R? validation set 0.86 0.46 0.84 0.75 0.87 0.71
Linear regression (validation set) y=121x y=1.12x y=1.03x y=0.98x y=1.15x y=1.06x
R? overall (training + validation) set 0.79 0.62 0.81 0.78 0.85 0.81
Linear regression (training + validation set) y=102x y=1.03x y=097x y=097x y=101x y=101x
(FST + FMN) R? (training + validation set) 0.72 0.80 0.83
Linear regression (FST + FMN) y=1.02x y=097x y=101x

inferring that independent aerobic and anaerobic QIA data
treatment should be undertaken for greater accuracy regarding
the PHA concentration prediction. However, it was not clear if
the aerobic/anaerobic conditions were responsible for the
found differences or were rather the feast/famine conditions.
With this work, it could be concluded that, even with aerobic

Fig. 2 Plot of the first two
components (PC1 and PC2) ofthe
PCY analysis regarding a SBR 1
and b SBR 11. Filled circles (*)
correspond to the end of the
famine stage and open circles (-)
to the end of the feast stage
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cycles (ADF), the differences remain when comparing the end
of the feast and famine stages. As such, the independent feast
and famine QIA data treatment, rather than a plain aerobic and
anaerobic QIA data treatment, was found to be fundamental to
obtain the best prediction abilities regarding the intracellular
PHA quantification.
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Fig. 3 Correlations between the 2000

observed and predicted
intracellular PHA concentrations

combining the two independent 1500 -
analyses (FST + FMN) for both
SBR systems. Filled circles (*) ‘g
correspond to training data, open £ 1000
circles () to validation data, and &
crosses (X) to discarded data ;
£
= 500
T
=]

-500 -

Again, better results were obtained for SBR II in compar-
ison with SBR I, due to the reasons previously stated.
Furthermore, when the PLS analysis was conducted with the
ensemble SBR I + 11, the obtained prediction results, presented
in Table 5 and Fig. 3, were better than for any of the individual
SBR. Given the obtained results and the fact that combining
both SBR results allowed for an increased PHA prediction, it
could be inferred that it was possible to assess the intracellular
PHA inclusions, by the proposed QIA procedure, for two
different SBR operating strategies even taking into consider-
ation the resulting physiological differences, as long as the
feast and famine stages are individually addressed.
Therefore, it seems licit to conclude that the proposed QIA
methodology was successfully proven to be relatively robust
regarding different SBR operating strategies. And, although
still somewhat far from perfect, the obtained prediction ability
(coefficient of determination—R? of 0.83 for the training +
validation sets), with an average error of 132.9 mg L'
(7.4% of the studied range), can be seen as promising, within
the studied intracellular PHA concentration range, taking into
consideration the greater simplicity and speediness of the pro-
posed method with respect to the standard analytical
techniques.

Conclusions

In this work, a QIA methodology was used and upgraded, to
quantify MMC intracellular PHA contents of two different SBR
cycle strategies. The operation of an ADF SBR allowed further
extending the studied SBR operating conditions, dataset, and
intracellular PHA range from the previous anaerobic/aerobic
cycle SBR studies (Mesquita et al. 2013a, 2015). Besides the
standard analytical methodologies to determine the intracellular
PHA concentrations, NBA staining and QIA methodologies
were also employed. The performed PCA and CC analyses
allowed to enlighten the relationships between the obtained

y=1.007x

2000

500 1000
[PHA] (mgL?) (obs)

1500

QIA parameters, operating strategies, and feast/famine stages.
The QIA data was further processed using PLS analysis to
allow for a promising estimation (coefficient of determina-
tion—R? of 0.83 and average error of 132.9 mg L', i.c.,
7.4% of the studied range) of the PHA concentrations in a wider
range (up to a concentration of 1785.1 mg L") than the previ-
ous studies. The obtained results also pointed to a greater accu-
racy regarding the PHA concentration prediction at the end of
the feast stage in comparison to the end of the famine stage.
Moreover, the independent feast and famine QIA data treatment
was found to be fundamental to obtain the best prediction abil-
ities. The underlying reason for these differences should also be
sought on future studies.
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