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ABSTRACT

Recombination rate is an essential parameter for most studies on human variation. Linkage
disequilibrium (LD) measures the association between two variants in the same chromo-
some. When a new variant arises by mutation in a germinal line, that variant will be in
complete linkage with the variants in the chromosomic background where it arises. Recom-
bination through time (occurring during meiosis) will decrease the association decreasing
the LD. Understanding how recombination occurs throughout the genome is the basis to
interpret various association studies (search from causal variants for a given disease) and
characterization of selective events. In this project the aim is to establish a novel method-
ology to estimate rate of recombination along a chromosome using a phylogenetic method.
For this to be done, each chromosome will be divided into small overlapping windows of
variation containing 20/30 variants. For each of these windows a phylogenetic network will
be calculated using the reduced-median algorithm. Highly recombining regions will show
a higher rate of cycles or reticulations in the network. A linkage map will be constructed for
each chromosome using this novel methodology, compare the results with methods already
available, locate region of low recombination of possible use for phylogenetic analysis and
also explore some properties of the method for evaluation of selection.

Keywords: Linkage disequilibrium, single-nucleotide polymorphism, recombination, phy-

logenetics
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RESUMO

A proporgdo de recombinacdo é um parametro essencial para os estudos baseados na
variacdo encontrada nos humanos. O linkage disequilibrium (LD) mede a associagdo entre
duas variantes no mesmo cromossoma. Quando uma nova variante aparece devido a uma
mutacdo na linha germinativa, esta mesma variante ird estar em linkage completo com as
outras variantes presentes no cromossoma onde esta apareceu. Com o passar do tempo,
a recombinacdo genética (ocorre durante a meiose) ird diminuir a associacdo dos alelos,
diminuindo o LD. A compreensdo da recombinagdo ao longo do genoma humano é a base
para a interpretacdo de vérios estudos de associagdo (procura de variantes para uma doenca
especifica) e caracterizagdo de eventos de selegdo. O objetivo deste projeto é estabelecer uma
nova metodologia para estimar a proporcdo de recombina¢do no decurso do cromossoma
utilizando um método filogenético. Para isto ser realizado, cada cromossoma serd dividido
em janelas sobrepostas contendo 20/30 variantes. Para cada janela de sobreposi¢do uma
rede filogenética ira ser construida usando o reduced-median algorithm. Regides com elevada
recombinagdo irdo mostrar um maior ntimero de ciclos ou reticula¢des na rede. Um mapa
de linkage sera construido para cada cromossoma usando esta nova metodologia, compara-
ndo resultados com outros métodos ja existentes, regides de baixa recombinacao irdo ser
localizadas para uma futura andlise filogenética e explorar algumas propriedades desta
metodologia de modo a avaliar a selegdo.
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1

INTRODUCTION

DNA (deoxyribonucleic acid) molecules are composed by four nucleotides (bases): Ade-
nine (A), Thymine (T), Cytosine (C) and Guanine (G). In Eukaryotic organism, including
animals, DNA is organized into chromosomes and most are diploid at the somatic level,
meaning that with the exception of the germ line (the egg and sperm cells) all cells pos-
sess two copies of a given chromosome inherited respectively from the maternal and the
paternal line of descent. The human genome contains 23 chromosome pairs, totaling 46
chromosomes from which 22 pairs are autosomes and a single pair, the X and Y sex chro-
mosomes, which are different in females (two X chromosomes) and males (one X and one
Y chromosome). Haploid cells in the germ line have only one chromosome from each pair

and during the fecundation, a diploid egg is formed [4].

Although the genome of two unrelated individuals is almost 100% similar, a small set
of differences (0.5%) is observable. These differences are responsible for many phenotypic
differences between individuals but most are likely to be silent differences only observed
at the DNA sequence level. This dissimilarity is explained due to sequence variations,
which includes small insertions and deletions (indels) of one or more nucleotides, specific
nucleotide substitution, which are the more common genetic variation, known as single-
nucleotide polymorphism (SNP) [5], and copy-number variation (CNV), when abnormal
copies of a chromosomal sections arise due to deletions and duplications (structural vari-
ants) [6]. New mutations that arise through time may increase or decrease the risk to have
a certain disease, yet the majority of them are likely to have a minimal impact.

When there is a SNP present on a sequence, both alternative nucleotides are denomi-
nated alleles. The position with the variation is called a locus (and loci for various variable
positions). Given this, the combination of several alleles within the loci of a region within
a chromosome is called a haplotype. For instance, consider two SNPs from a region with
six known SNPs (Figure 1); the former has alleles A and C; the latter has alleles T and G.
The four possible haplotypes considering these two SNPs are AT, AG, CT and CG; however,

only AT and CG are common [1].
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LDALCLALT.GLT.. 40%
LWALLCLCLGL.CLT... 30%
.Gl T..C..G..G...A... 20%
others 10%

Figure 1.: Two common haplotypes from six SNPs. Retrieved from [1]

Considering that in diploid organisms (like humans) two copies of each chromosome
exist in each individual it is not direct to extract haplotypic information. Seeing the case
above one individual with the two most common alleles would appear as A/C in the third
locus and G/T without a researcher knowing if the haplotypes were A-G and C-T or A-T
and G-C. Although it is difficult to know individually haplotypes, on a grand scale of pop-
ulation units it is possible to statistically estimate what are the most probable haplotypes,
in a process called phasing [7].

When present in the exome (in the protein-coding regions) SNPs may be classified as
two types, nonsynonymous and synonymous. A change in the DNA alters the codon (set
of three nucleotides that code for a given amino-acid). Nonsynonymous SNPs encode dif-
ferent amino acids due to the codon change, forming a different protein product. On the
other hand, synonymous SNPs encode the same amino acid, and thus protein product, de-
spite the allele difference (since different codons can code for the same amino-acid) [5].

1.1 LINKAGE DISEQUILIBRIUM

Recombination rate is an essential parameter for most studies on human variation. Link-
age disequilibrium (LD) is the association between two or more alleles that are more likely
to occur simultaneously at different loci on the same chromosome, meaning that some
specific haplotypes are more common than expected from the frequency of the individual
alleles. When a new variant arises by mutation in a germinal line, that variant will be in
complete linkage with the variants in the chromosomic background (or the alleles in the
haplotype) where it arises. This mutation is passed into descendants if the mutant sex cell
takes part in fertilization (germinal line) [8], becoming part of the population gene pool. If

no recombination occurs the variant would maintain the chromosomic background where

2



1.1. Linkage disequilibrium

it initially emerged and the variant would be in complete LD with the variants in that back-
ground. But recombination through time (occurring during meiosis due to crossing-over
events between homologous chromosomes) will decrease the association between alleles,
decreasing the LD in this process. Nevertheless, recombination events occurring during
mejosis in each generation in a population has a cumulative effect on patterns of LD, de-
spite being relatively rare over small regions and negligible on a small temporal scale [9].
Furthermore, patterns of LD are powerful tools in leading to the identification of demo-
graphic events such as bottlenecks’, admixture*> and population growth [10] and to the
identification of events of positive selection [11]. For instance, in case of admixture be-
tween two populations taking place, the descendant might have distinct segments within
his genome inherited from different set of ancestors, possessing different genetic ancestries,
which can be assessed through LD analysis [12]. Positive selection increases the frequency
of a beneficial allele in a population. Reducing genetic variation on the region with the fixed
advantageous variant on that population. This effect is known as the hitch-hiking effect, be-

cause it increases the frequency of an allele that is in LD with the allele under selection [13].

1.1.1 LD measurements

Several ways to measure LD were proposed. The two most commonly used are D’ and 72
(sometimes denoted /\?), both related to the coefficient of LD (D) that is given by (1) [14]:

D = pap — paps (1)

The frequency for allele A and for allele B are denoted by p4 and pp, respectively. The
haplotype frequency, considering allele A and B is denoted by p4;.

The first measure was proposed by Lewontin [15] for the normalized measure of D (D),

where Dmax is the smaller value of pa(1 — pg) and pp(1 — pa), meaning the higher possi-
ble value of D given the allele frequencies:

D =

Dmax (2)

1 A temporary reduction in population size that causes the loss of genetic variation.
2 The mixture of two or more genetically distinct populations.
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The second proposed measure is Pearson’s squared correlation coefficient (%) [16] and it

represents other way to quantify LD:

2= D° 3)
~ pa(l—pa)ps(1—ps) 3

Both measurements ((2) and (3)) are ranged between 1 (strong LD) and 0 (weak LD). If |D’|
equals to 1, two or three haplotypes are present; if it is significantly less than 1, all four
haplotypes are present indicating recombination events. In case of 7> being equal to 1, only
two haplotypes are present [10]. While the interpretation for maximum LD (1) and no LD
(0) is direct, any value in between is difficult to interpret in terms of how strong LD is, as
the values of |D'| and r? are highly dependent on allele frequencies and measurements are

not directly compared.

1.1.2 Patterns of LD

Although LD patterns are difficult to predict, there are regions in the human genome with
weak evidence of historical recombination (strong LD) composing a model known as hap-
lotype blocks (haploblocks) [17]. In addition, this model suggests the hypothesis to the
existence of sites where much of the recombination occurs (hotspots). Furthermore, some
studies were made to examine this theory and concluding on a ubiquitous existence of
hotspots within the human genome [18]. However, the human sex chromosomes in males
do not recombine in the same manner as autosomes or female sex chromosomes, but they
have two homologous regions in which the recombination occurs in a similar fashion as the
remaining 22 chromosome pairs. These short regions are called pseudoautosomal regions
(PAR1 and PAR?2); the first is the longest and has a physical length of 2.6 Mbp (2.6 mega
base pairs; 2.6x10° bp) located at the short arms’ tips of X and Y chromosomes; the latter,
the PAR2, has a physical length of 0.32 Mbp and it is located at the long arms’ tips [19].
PAR1 exhibits in males a much higher recombination rate than PAR2 or the genome aver-

age. PAR1 plays a key role in spermatogenesis and diseases [20, 21].

The traditional method to map recombination rates, and thus hotspots, is to compare
the physical map to the genetic map. Physical distance is the number of base pairs that
separates two loci which is obtained by genomic sequencing, while genetic distance is cal-

culated through recombination frequencies and indirectly by linkage. On that note, the
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measure for genetic distances is the centiMorgan (cM), defined by having a 1% chance of
crossover between two genes on the chromosome. The average frequency of recombination
in humans is 1cM per 1Mbp. Some regions near telomeres have generally much higher
recombination frequency for both sexes, being higher in males [22], opposed to the low
recombination (coldspots) found near the centromere for males, suggesting that recombina-

tion rate in general is higher near the tips of the chromosomes.

1.1.3 LD observed in populations

Shorter haploblocks, and thus generally less LD and more divergent patterns of LD3 were
observed on African populations that also display greater levels of diversity than non-
African populations, probably suggesting an origin of modern humans in Africa (Figure
2) and a longer time for the disruption of LD patterns. Due to the Out of Africa movement
migration of anatomically modern humans between 70 and 60 thousand years ago [23],
that caused a bottleneck on the overall variation, the number and diversity of haplotypes is
reduced when compared with Africa. This bottleneck consequently, increased severely LD

on non-African populations [10, 24, 25].

As mentioned before, Africa is thought to be the ancestral homeland of modern hu-
mans. Genetic studies on African human populations provide important information about
how genetic variations alter the phenotype and for fine-scale mapping of complex diseases
[26, 27]. Moreover, complex diseases like hypertension, diabetes, obesity and prostate can-
cer are progressively present in African populations, presumably as a result to and urban-
ized Western lifestyle. The possibility of existing population-specific alleles that predispose
to disease, is very alluring for mapping these particular variants [28].

3 Alleles that are in positive association in one population might be in negative association in another
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15

40-50

Figure 2.: Humans Out-of-Africa movement in thousand years. [2]

1.1.4 Genome-wide association study (GWAS)

Understanding how recombination occurs throughout the genome is the basis to interpret
various association studies (search from causal genetic variants for a given disease) and
characterization of selective events. Likewise, genome-wide association study (GWAS) is a

research approach that seeks to [29]:

e Detect variants associated with complex traits in populations, offering suspect re-

gions;

e Study patterns of LD between SNPs to map genomic loci that have an effect on ill-

nesses or other complex traits;

e Detect genetically causality for common complex diseases such as heart disease, dia-

betes, auto-immune diseases and psychiatric disorder.

This type of studies will allow the identification of genetic markers associated with cer-
tain diseases, making a statistical estimation for the increased risk of developing the dis-
order. In some occasions, some variants are imputed, which means that genotypes are
estimated for SNPs from the known LD patterns and haplotypes, using reference data. On
that note, samples with shared haplotypes are used to estimate their frequencies among the
genotyped SNPs. Association mapping studies look for LD between alleles that cause her-

itable diseases and other nearby alleles, even though only a few may affect the phenotype

[30, 31].

6
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1.1.5 Positive selection

Positive selection increases the frequency of a beneficial allele in a population. Selective
sweep takes place when genetic variation on the region is reduced caused by positive selec-
tion. This is because the fixed advantageous variant on that population increased dramati-
cally in frequency, and as its frequency increases at a fast rate, recombination was not able
to break down the haplotypic background where the beneficial variant arose increasing the
frequency of the complete haplotype, decreasing the overall haplotypic diversity [32]. This
effect is known as the hitch-hiking effect, because it increases the frequency of an allele that
is in LD with the allele under selection [33]. This process is the basis for selection tests,
more exactly haplotype-based tests, that will measure the haplotypic diversity in one allele,
in the allele under selection and the other allele. Such tests include the integrated haplotype
score (iHS) [34] and the cross population extended haplotype homozygosity (XP-EHH) [35].

Addressing two regions to be explored later on that are an example of positive selec-
tion that took place recently due to the presence of a new favorable allele. The lactase gene
(LCT) and the hemoglobin subunit beta gene (HBB) are responsible for the ability to digest

milk (lactase persistence) and resistance to some forms of malaria, respectively.

Lactase persistence (LP) is mostly common on European populations and less common
on Africans. It allows the synthesis of the lactase-phlorizin hydrolase (LPH) enzyme to di-
gest the lactose present on milk and other dairy products after weaning, possibly owing to
positive selection [36, 37]. Although the SNP that will be studied is from the MCM®6 gene,
it has a direct influence on the LCT gene that encodes LPH. For the European population
the rs4988235 is strongly associated with LP, specifically the LCT-13910*T allele. The poly-
morphism is characterized by a C/T transition, where the individuals that have the T allele

will carry the lactase persistence genetic trait [36, 37, 38].

The rs334 SNP located in the HBB gene, has an hemoglobin S (HbS) responsible for
sickle-cell anaemia only on homozygote individuals (T;T). Despite having a strong dele-
terious effect in heterozygous individuals (A;T), its presence provides a strong protective
effect against malaria infection. This mutation is characterized by an A/T transition and
is highly present on African populations, due to being a region with high prevalence of
Malaria [39, 40, 41, 42].
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1.2 VARIANT DATABASES

To discover sequence variations, next-generation sequencing (NGS) technologies were a
breakthrough on DNA sequencing (DNA-seq). While the first human genome draft was
accomplished during a period of nearly a decade and a half (using traditional Sanger se-
quencing) [43] nowadays next-generation sequencing is allowing genomic and exomic data
to be generated at an unprecedented level. As one example recently in a single Nature

journal issues, hundreds of genomic sequences were published and analyzed [44, 45, 46].

Several databases focus on storing variation obtained from these genomes. In order to
obtain a list of variants in a relatively user-friendly format the data needs to be processed
using algorithms that will transform the data from raw data, that consists of millions of
individual reads into, for example, a Variant Call Format (VCF) file, that will be widely
used throughout this work.

An example of a pipeline from raw data to VCF files will be provided, focusing specifi-
cally on the Illumina* DNA-seq pipeline chosen by the phase 3 of the 1000 Genomes Project
(1000genomes). This type of sequencing produces reads (raw data) that are more commonly
stored in FASTQ files along with the quality scores. Quality diagnostics are performed on
the raw data to determine if preprocessing is necessary. The next step is to align/map the
reads to a reference genome resulting in a SAM (Sequence Alignment/Map) file format
or BAM (binary version). The Burrows-Wheeler Aligner (BWAJ) is used for short reads
mapping to the large reference human genome. Moreover, a post alignment preprocessing
to remove bias is done before the final step of variant calling with an estimate on allele
frequency (AF) and storage in a VCF file [47, 48, 49, 50]. This will provide genotypes of an
individual. However, the 1000genomes currently provides VCEF files with haplotypic data
(meaning that the data is in the so-called phase). This is obtained by a statistical method
that uses complex algorithms to estimate the most probable combination of alleles given
the population patterns. Such phasing is performed in the case of the 1000genomes with
the software SHAPEIT? [51, 52], that performs this task on the full chromosome level.

Furthermore, we will describe some databases of interest that, although all results focus
on the 1000genomes, were used experimentally in the development of the work.

4 http://www.illumina.com/
5 http://bio-bwa.sourceforge.net/
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1.2. Variant Databases

1.2.1 1000 Genomes Project

The 1000 Genomes Project (1000genomes) purpose is to catalogue variations present in the
human genome from different genomics regions across 26 populations categorized in 5
super-populations, shown on Table 1 (with ancestry from Europe, East Asia, South Asia,
West Africa and Americas).The objective is to characterize, using high-throughput sequenc-
ing technologies, over 95% of variants with an AF of at least 1% and alleles present in
coding regions with a frequency as low as 0.1% [53]. This dataset contains 78 million SNPs
and was aligned using the GRCh37 reference genome assembly.

Throughout the 1000genomes, new variants were discovered and characterized, being
added to the public database of short genetic variations (dbSNP®) or to the database of
genomic structural variation (dbVar?).

Due to the advance of sequencing technologies it is now possible to sequence genomes
with a lesser cost. This NGS data provides a resource on human genetic variation. Each
dataset may have different assembly algorithms and different coverage [54, 55]. Genotyping
these variants will reveal the alleles at particular sites or regions. All genotyped variants
present in the 1000genomes data are phased, denoting the putative chromosome of the pair
where that specific allele belongs. Most of the project contains low coverage data from pop-
ulations suggesting that the individuals’ DNA was sequenced approximately 4 times (4x).

This dataset contains samples from 2504 individuals, 1233 males and 1271 females.

Furthermore, the project allows to document the genotype profiles of the 2504 individuals
from the last phase, phase 3, of the 1000genomes for further study, being accessible through
a public FIP (File Transfer Protocol) server in compressed files (GNU Zip extension, “.gz’)
[56]. Therefore, the fact that it is in a FTP server® means that it is possible to download,
upload, delete, rename or change permissions of files however one cannot access the files’
content remotely.

6 https://www.ncbi.nlm.nih.gov/projects/SNP/
7 https://www.ncbi.nlm.nih.gov/dbvar
8 ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/
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1.2. Variant Databases

Table 1.: Populations present on the 1000 Genomes Project, their Code and number of
samples. Information retrieved from the 1000genomes web page

Population Code Samples
Chinese Dai in Xishuangbanna, China CDX 93
Han Chinese in Bejing, China CHB 103
Japanese in Tokyo, Japan JPT 104
Kinh in Ho Chi Minh City, Vietnam KHV 99
Southern Han Chinese, China CHS 105
Total East Asian Ancestry EAS 504
Bengali in Bangladesh BEB 86
Gujarati Indian in Houston, TX GIH 103
Indian Telugu in the UK ITU 102
Punjabi in Lahore, Pakistan PJL 96
Sri Lankan Tamil in the UK STU 102
Total South Asian Ancestry SAS 489
African Ancestry in Southwest US ASW 61
African Caribbean in Barbados ACB 96
Esan in Nigeria ESN 99
Gambian in Western Division, The Gambia GWD 113
Luhya in Webuye, Kenya LWK 99
Mende in Sierra Leone MSL 85
Yoruba in Ibadan, Nigeria YRI 108
Total African Ancestry AFR 661
British in England and Scotland GBR 91
Finnish in Finland FIN 99
Iberian populations in Spain IBS 107
Toscani in Italia TSI 107
Utah residents with Northern and Western European ancestry = CEU 99
Total European Ancestry EUR 503
Colombian in Medellin, Colombia CLM 94
Mexican Ancestry in Los Angeles, California MXL 64
Peruvian in Lima, Peru PEL 85
Puerto Rican in Puerto Rico PUR 104
Total Americas Ancestry AMR 347

Total

2504
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1.2. Variant Databases
1.2.2  Exome Aggregation Consortium

The Exome Aggregation Consortium (ExAC) is an affiliation of investigators with the ob-
jective to compile exome (protein-coding regions) sequencing data from different projects
that range from disease-specific individuals to population-specific datasets. The dataset is
composed by 60706 samples, some representing individuals with severe diseases, of unre-
lated individuals from 7 different populations (Table 2). This merging of variant data from

different projects will provide a base for the discovery of disease-causing variants [57].

Table 2.: Populations on the ExAC data, their code and number of samples.
Information retrieved from the ExXAC web page

Population Code Samples
African/African American AFR 5203
Latino AMR 5789
East Asian EAS 4327
Finnish FIN 3307
Non-Finnish European NFE 33370
South Asian SAS 8256
Other OTH 454

Total 60706

1.2.3 Exome Sequencing Project

The National Heart, Lung, and Blood Institute created the Exome Sequencing Project (ESP)
with the intent of sequencing the exome of richly-phenotypes populations, achieving 6503
samples from two different ancestries (Table 3). Apart from a compressed dataset publicly
accessible, this project has, a web interface known as the Exome Variant Server (EVS) that
allows the visualization and extraction of filtered data to text files and Variant Call Format

files. The ESP contains a mean coverage data of 81x [58].

Table 3.: Populations on the ESP data, their code and number of samples.
Information retrieved from the EVS web page

Population Code Samples
African-Americans AA 2203
European-Americans  EA 4300

Total 6503
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1.3. Relevant File Formats

1.2.4 Simons Genome Diversity Project Dataset

This database aims to include a list of genomes that were sequenced with a coverage of
at least 30x using Illumina technology [45]. The database aims to display a wide range of
anthropological and cultural diversity in terms of individuals.

This newly developed database offers an ideal dataset for the work described here, how-
ever, it only provides the dataset in an unfriendly format for download (10 terabytes of
data) and requires a certificate. The download is through a software that allows fast and se-
cure (via encryption) data movement. The certificate needs to be approved and is required
for security reasons (privacy of the files), when accessing the FTP channel to download the
data [59].

1.3 RELEVANT FILE FORMATS

There are several file formats used in genomics and their features and levels of details

incorporated are direct consequences of their use in different software.

1.3.1  Variant Call Format

To store variants, plus annotations, a file format was proposed by the 1000genomes, the
Variant Call Format (VCF) file. Its adaptability and flexibility led to an increasing endorse-
ment of the VCF file. On a similar note, VCF files were established as standard files to
store DNA polymorphism data, such as SNPs, insertions, deletions and structural variants,

including rich annotations.
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1.3. Relevant File Formats

¢ #fileformat=VCFv4.1l

##TileDate=20110413
##source=VCFtools
##reference=file:///refs/human_NCBI36.fasta
##contig=<ID=1, length=249250621,md5=1b22b98cdeb4a9304ch5d48026a85128, species="Homo Sapiens">
##contig=<ID=X, length=155270560,md5=7e0e2e580297b7764e31dbc80c2540dd, species="Homo Sapiens">
] ##INFO=<ID=AA, Number=1,Type=String,Description="Ancestral Allele">
'§< ##INFO=<ID=H2,Number=0, Type=Flag,Description="HapMap2 membership">
£ ##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer,Description="Read Depth">
##ALT=<ID=DEL ,Description="Deletion">
##INFO=<ID=SVTYPE,Number=1, Type=String,Description="Type of structural variant">
##INFO=<ID=END,Number=1, Type=Integer,Description="End position of the variant">
\ #CHROM P0OS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMPLE2
-1 1 . ACG A,AT 40 PASS . GT:DP 1/1:13 2/2:29
g 1 2 . C T,CT . PASS H2; AA=T GT 0]1 2/2
(] 1 5 rsl2z A G 67 PASS . GT:DP 1]10:16  2/2:20
X 100 . T <DEL> . PASS SVTYPE=DEL;END=299  GT:GQ:DP  1:12:. 0/0:20:36

Figure 3.: VCF file format example. Retrieved directly from [3]

At the top, the VCF file contains several meta-information lines, each starting with “##'.
These lines describe the data stored, which includes the type of variable associated with
that data (integer, string, float, etc) and customized relevant information about the dataset.
Below meta-information lines the actual genomic data will be displayed, starting with ‘#’,
featuring 8 mandatory columns with specific fields, TAB-delimited. Particularly, this in-
formation includes the chromosome column (CHROM), the start position of the variant
according to the reference sequence (POS), unique identifiers of the variant (ID), the ref-
erence allele (REF), the list of alternate alleles (ALT), quality score (QUAL), site filtering
information (FILTER) and a list of additional annotation (INFO). Note that if samples are
present in the file, sample columns will be added (sample ID) and a column regarding

7

the information contained in the sample column (FORMAT). Genotypes separated by *
indicate the alleles are phased, if they are separated by ‘/” they are unphased alleles [3].

1.3.2 Input File Formats

The pedigree (ped) and map file formats are complementing type of files that are the most
commonly used type of format in GWASs and they can be implemented using the software
PLINK [60]. The ped file contains pedigree information and genotype calls and the map
file contains variant information to complement ped file regarding the genomic position of

the variants.

Some software tools use small variations in the file format in relation to PLINK. Such
an example is the Haploview software that uses the ped file in combination with a file with
extension info (similar to map) that provides information on the location of the SNPs along
the chromosome. Haploview calculates LD patterns within a region [61] which it will be
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1.3. Relevant File Formats

essential as a comparative tool in this work.

The Roehl data format (rdf) files are used by the Network software using a reduced
median algorithm [62]. For the purpose of performing phylogenetics on the 1000genomes
data the implementation of a software that builds networks makes more sense than into
one that reconstruct straightforward trees, considering that the data can be shuffled by the

so-called recombination between chromosomes.

The nexus (nex) file format is one of the most widely used formats in genetics. At its
most simple form it includes the DNA data and the name of the individual samples but it

can also include discriminated subsets.

The fasta file is considered the most basic DNA and protein sequence file format. It ba-
sically contains only information of the sample and the sequence (in nucleotides or amino-

acids) for a given region in text format.
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STATE OF THE ART

2.1 RELEVANT SOFTWARE
2.1.1  VCFDataExporter

The VCFDataExporter' (VDE) is a tool mostly developed over last year using Python func-
tions simultaneously with PyVCF that allowed the extraction of genomic data from the
1000genomes VCF files and transformation of that data into various formats useful in ex-
isting genetic analysis software, mentioned before. The tool is now on his second release
after further developments on the context of this project (v0.1.1) and provides the extrac-
tion of genomic data from the 1000genomes dataset, EXAC dataset, ESP dataset and a user
uploaded VCF file. From the user specified information imputed it is possible to extract the
data and transform it into map, rdf, fasta, nex, ped, info, VCF and excel files, and generate
some basic statistic regarding the data. After the requested files are created it will provide

links for download or pop-up.

The conversion tool developed allows a user-friendly manipulation for researchers not
used to deal with the large datasets established by NGS. On that note, a GUI on the form of
a web app was developed using a Python web framework, known as Django. For a faster
extraction of the region and his information a tab-delimited files indexer* (Tabix) is being
used to subset the VCF gzipped file with the completing indexed tab-delimited file (tbi).
The subsetted VCF file will allow a faster retrieval of the genomic data and subsequent

storage on different files.

2.1.2  Network Software

This software builds phylogenetic networks and trees, using several algorithms over a
graphical user interface (GUI). It constructs a network following a multiple alignment of

1 https://github.com/ragsilva/VcfDataExporter
2 http://sourceforge.net/projects/samtools/files/tabix/
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2.1. Relevant Software

sequences, in which each sequence is represented by a node and the edges, that connect one
node to the other, represents the difference between each other (variants). This difference
is seen if they differ exactly in one mutation. The network is constructed using the reduced
median algorithm [62]. This algorithm consists on median networks which are composed
by nodes connected by edges if there is a mutation between them. This type of method
only accepts binary sequences. The median sequence results from the median binary val-
ues of three sequences and is used to connect the nodes culminating on an unrooted and
undirected phylogenetic network (Figure 4). The median node could also be an existing se-
quence if it corresponds to the median of the three other sequences. Median networks are
mainly employed in the visualization of possible evolutionary pathways. On that note, the
network will probably have all maximum parsimony trees; in other words, it will possibly
have trees with the minimum number of nucleotide mutations [63].

The Network software will generate an output file (out file) for each rdf file used to
run the program and build the phylogenetic network. Out files contain information about
the data in rdf files and of the phylogenetic network. In this work, a modified version of the
software provided by the developer was used. This version allowed batch work on several
files to be performed while the downloadable version only allowed a single file to be run.

000

100

101 110

Figure 4.: Three haplotypes (grey) and the median node (white)

2.1.3 Haploview

Allows the visualization, from a GUI, of haplotype patterns within a region, calculates LD
statistics, population haplotype frequencies and haplotype association tests. The several
pairwise measures of LD calculated will be used to create a graphical representation of the
region. This representation uses the haploblock model, mentioned on the introduction, to
partition the region into segments of strong LD [61].
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2.2. Relevant Libraries

2.1.4 PLINK

Is a command line program that performs genome-wide association analyses from samples’
genotypes. It is one of the main used programs in human genomics as it is used to filter
data and merge datasets to be used in other software. Some of the main characteristics are

[64, 60]:
e Data management: recoding, reordering, merging and extracting subsets of data;

e Summary statistics: missing rates and allele frequencies;

Basic association analysis;

Population stratification;

Genotypic association models;

Extracting SNPs of interest;

Stratification analysis;

Association analysis, accounting for clusters.

2.2 RELEVANT LIBRARIES
2.2.1 PyVCF

In order to parse and extract specific data from compressed VCF files, the programming
language Python and an API called PyVCE3 (v0.6.7) are the main mechanisms [65]. There
is no need to decompress the compressed files before parsing, because the package comes
with that attribute. Due to this feature the compressed files are preferred over the decom-
pressed VCF files, since they are faster to transmit over the internet due to their reduced
size and require less space on the disk for storage, contrary to the decompressed VCF files
that have huge sizes (meaning it will be very difficult to handle them). Each VCF file has
several records depending on how many positions are represented. It will attempt to parse
the content of each record based on the data types specified in the meta-information lines,
specifically the #INFO and #FORMAT lines. On that note, it is possible to extract ge-
nomic data from compressed VCF files and transform that data into various formats useful

in existing genetic analysis software (map, rdf, fasta, nex, ped, info).

3 https://github.com/jamescasbon/PyVCF
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2.2. Relevant Libraries
2.2.2  NetworkX

In pursuance of building graphs and analyze their structure this Python library was used.
In addition, NetworkX# has several characteristics including the possibility to generate di-
rected or undirected graphs, apply algorithms and do measurements, draw networks and
add information to the network, edges or nodes. Furthermore, it allows to store networks
in different formats and improve the access speed to the network data. This characteristic
is very valuable to process data from large networks, like our phylogenetic networks, in a

considerable shorter time.

4 https://networkx.github.io/index.html
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OBJECTIVES

Herein, this project objective is to extract information from the VCF files corresponding
to the 1000genomes and analyze LD along a chromosome. This will be done through
windows of polymorphic diversity along a chromosome. This work will partially build
upon VDE, that was further developed also during this project. Due to their abundance,
their importance in genomic variation and their simplicity of treatment, most of the data
to be extracted and transformed in this work will be primarily SNPs. The objective is to
transform each window into a network whose cycles will be an indication of the possible
occurrences of recombination events. Such approach provides two advantages over tradi-
tional measures. The first is that cycles might be a direct estimation of recombination events
and consequently of recombination rate. The second is that the measure is not dependent
of frequencies of the alleles or haplotypes and the sample size.
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Genetic map based on a phylogeny-obtained method

Phased chromosomes
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Figure 5.: Steps to build a recombination frequency map using a phyloge-
netic based method

From the output of the network analysis, the main interest is in obtaining three measures:

a) Number of mutations in the network. If there is no recombination (or multiple occur-
rences of a given mutations which should be substantially rarer in autosomic DNA) in
the segment the number of SNPs in the segment will match the number of mutations
in the network. With recombination multiple mutations will appear in the network so
ratio between number of mutations in the network and number of SNPs will provide

a good relative measure for recombination frequency.

b) Each recombination event can generate a cycle (or reticulation) in the network. Count-
ing the number of possible cycles in each generated network is a direct estimate for

the recombination rate in the region.

c) Frequency increments (expansions) generate starlike figures in a phylogenetic context.
In a genomic context an expansion within a given region of the genome might repre-
sent a signal of positive selection. Phylogenetic starlikeness will be explored to see if

it is a useful measure for selection evaluation.

Using measures in a) and b) a linkage map will be built. These linkage maps will be

compared with maps based on traditional measures of linkage disequilibrium. VDE will be
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directly used to create the complete chromosome files to be used in PLINK and Haploview.
Additionally, in order to validate the approach, simulations will be used. A short evalua-
tion of the potential of the use of recombination detection will also be included.
Approaches for studying selection and the detection of selective sweeps will be employed,
namely recombination maps comparing the two alleles (the beneficial allele and the other),
based in well-documented cases of positive selection, but also across general chromosome
maps based on the starlikeness measure.

As a final analysis, if relatively long regions with no recombination are detected, network-
s/trees of those longer stretches will be built, first using Network to make a final test for

no recombination along the whole region.

D el S Phylogenetic tree for regions of no recombination

'
Outgroup

© Haplotypes

Mutations in network

Gx- Genotypes

Ratio SNPs in windows vs

Chromossome region

Figure 6.: Steps to build a phylogenetic tree of long regions with no recom-
bination

21



METHODS

4.0.1 Data filtering

Through the analysis of existing VCF and rdf files, the comprehension and study of the
structure of these files format was required. Parsing is done from a previously obtained
VCF file, which contains the necessary data that will be used to create the rdf file with
information to elaborate networks. First, it was considered multiallelic sites, however one
decided that it was more accurate and straightforward to analyze only biallelic loci corre-
sponding to binary data. To ensure that rdf files will only have polymorphic sites, SNPs are
filtered by AF. In instances where analyses were based on groups with a continent-specific
ancestry, the AF filtering for each population was performed based on the specific AF for
the population and considering only samples belonging to that ancestry. Allele frequencies
that are equal to 0 or 1 the SNP will not be included as it means that that locus is not
polymorphic in that given population. Notwithstanding, this will allow the presence of at
least the same number of mutations in the phylogenetic network as the number of SNPs in
the rdf file.

Analyses were performed based on overlapping windows of 20 SNPs overlapping at
10 SNPs or 30 SNPs overlapping at 15 SNPs. Overlapping windows are acquired by con-
sidering the first 20/30 SNPs, previously filtered, and then passing the last 10/15 SNPs to
the next window adding 10/15 new SNPs, appending these. As a result, for each window
20/30 SNPs are present for each chromosome. To divide the information for each chromo-
some each sample will be divided into two entries, corresponding to the two phased haplo-
types, originating, for instance, HG00102a and HG00102b regarding the sample HG00102.
However, concerning the case of the X chromosome in males there will be only one entry
for each sample on sites that do not belong to PAR and two entries (a and b) on PAR. These
regions were previously retrieved from the VCF file for future filtering by position, divid-
ing chromosome X in three regions. The first region that corresponds to PARI1, the middle
region and the last corresponding to PAR2.
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Windows were successfully obtained extracting data along the VCF files with 20 or 30
SNPs overlapping by 10 or 15 SNPs, respectively, into various files. Output files are in rdf
format for further use as input in the Network software and additionally a text informative

file with the mutation number, SNP IDs and its genomic position was formed.

Each rdf file generated along a chromosome will be used to calculate a phylogenetic
network, corresponding to the diversity in that window, and then produce an output file
(out file) using the reduced median algorithm available in the Network software. The most
effective way to use the algorithm for thousands of fragments was to contact the developers
of the Network software, which were able to reprogram the software adding an additional
feature capable of performing the algorithm on multiple files instead of requiring each file
to be selected individually. This characteristic allowed to generate all the thousands of out

tiles from all rdf files of windows along a from the chromosome.

Specific data from two interesting SNPs that have been firmly established as two ex-
amples of positive selection in the human genome will be analyzed. The SNPs chosen are
responsible for having a direct influence on the expression of the LCT gene (rs4988235)
and HBB gene (rs334) that respectively allows the digestion of lactose and offers protection
against Malaria. Moreover, a region surrounding the genes/SNPs of about 4 million base
pairs is chosen from the VCF file of chromosome 11 to include the HBB gene and from the
VCF file of chromosome 2 to include the SNP (located in MCM®6 gene) that has influence on
the LCT gene. Following this, these regions are outputted in a new VCF file for each gene.
In the 1000genomes data the transition of rs4988235 and rs334 is characterized by G/A (in-
stead of C/T like mentioned before) and T/A, respectively. For each gene, samples from
EUR or AFR were the only ones considered, and the haplotypic data was separated into
different folders based on the geography. Following this, the data was further separated
based on the presence of the SNP or not in the haplotype, where one folder will contain an
rdf file with the haplotypic information of the chromosomes that have the reference allele,
and the other folder will contain the haplotypic information in the chromosome that have

the alternate positively selected allele.

4.0.2  Data processing

Two files (out file and text informative file) are essential to extract required information on
phylogenetic networks. To ensure these steps Python scripts were written, including the
development of efficient methods to store, retrieve and process large amounts of data. The

out file contains the necessary data to build a graph with NetworkX and count existing
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mutations. This data consists in nodes and edges with the respective mutation number.
Moreover, it was possible to count all cycles (reticulations) obtained from the connection of
4 nodes (1 being equal; first and last node) by 4 edges that have the same 2 mutations; and
obtain the SNP IDs that are contained in those edges (Function B.1). The text file provides
the SNP ID and the genomic position of each SNP, which allows calculating the region
size by subtracting the genomic position of the last SNP with the first. This gathered infor-
mation is used to build a plot for the visualization of the measurements of recombination
frequency throughout the chromosome with matplotlib®. Recombination rate in the region
is measured by the ratio between cycles and region size; while a second linkage measure
was established by the ratio between mutations and region size. All the data was stored in
a tab-delimited text file.

VCF file
rdf files

Network Software

VCF Data Exporter
+
Python Scripts

text files

\ 4

@ Scripts
+

NetworkX

out files

Ny,
>

y

plot figure ‘ cycle file ]

Figure 7.: Pipeline of the process to generate required data. Light gray are the output files and dark
gray are software or scripts implemented during the workflow.

tab delimited file

1 http://matplotlib.org/
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Cycles in populations

The output from the reticulations accounted for each population are important to explore
the use of recombination as a clock, it will be explored assuming an African origin for
Modern Humans and the Out-of-Africa movement. In this regard, all cycles from each
of the five main population groups (Africa, Europe, South Asia, East Asia and America),
along the different windows of chromosome 22, were calculated and they were compared
with the cycles from the other 4 populations. For this to be possible, scripts were made
elaborating an algorithm to course through the entire network from each window finding
all reticulations (cycles) in the least time consuming way and considering the computing
resources available. The algorithm (Function B.1) will course only through the nodes that
are connected, owing to being those that aren’t leaf nodes and probably resolving into
cycles. It will select a node (n1) coursing through all neighbors and saving the SNP ID (el)
linking it with the neighbor (n2) and edge, then checking all neighbors from n2 (namely
node n3), not equal to nl, and saving the respective SNP ID (e2) of the edge. Then it will
search for the neighbors of n3 and compare el with the SNP ID of the edge that connects
n3 to the neighbor (n4). If the SNP IDs are equal it will continue the course if not, the
algorithm will try other neighbors. This n4 node will have to be connected to n1 and have
the same SNP ID as e2 to complete a cycle. All information related regarding edges and
neighbors is stored. The SNP IDs that define each cycle are in a list ([el, e3]) which will be
stored in a text file. The forthcoming analysis between comparing matches in the cycles of
each specific population against another simply corresponds to a search for a cycle in one
population or its inverse ([e3, el]) in the file of the other population.

——)

e2

@ e3 = el @

Figure 8.: Cycle example.

Starlikeness

Using our phylogenetic network, we built a phylogenetic tree based on the most probable
evolutionary path with the minimum number of evolutionary events established from the
maximum parsimony method, eliminating edges that are part of the reticulations (cycles)

[63, 66]. The graph will have to be weighted for the calculation of a Dijkstra path from the

25



central node (root) to all other nodes present in the network. The central node is the node
with higher degree, which is the node with more edges connected to it. Dijkstra algorithm
will find the minimum cost path (optimal path) between all nodes in the graph [67]. In this
case we will find the optimal path from the central node to all other nodes. The optimal
path is found because all edges have a weight attribute that was implemented specially for
the algorithm. The weight of each edge depends on the frequency of haplotypes on each
node that compose the edge. Moreover, nodes without samples (like median vectors) are
given an edge weight of 2 and all other nodes have an edge weight of 1 (Function B.4).
Furthermore, Dijkstra paths are computed and phylogenetic trees are built based on those

paths.

The tree root is considered the most recent common ancestor (MRCA) and the other
existing nodes are related to this central node by mutations that occurred on specific sites
connected by edges. Additionally, this tree demonstrates the mutational history. The coa-
lescence time is the time that has elapsed since the presence of the MRCA of several copies
of a locus [68, 69]. Given each node with n haplotypes in a tree with i edges and that edge
with m mutations, we estimated the variance (0?) of the coalescence time (o) that can be
calculated by [70]:

z n; X m;
p=—"—"— (4)

Niotal

Y 1?2 x m;

) i
0= —5— (5)
n
total

Where the theoretical value, which when equal to 1 corresponds to a perfect star phy-

logeny, is given by [70]:

- ()

Niotal

And the final calculation for the starlikeness of the network is:

o2
starlikeness = U—tz (7)

After calculating the variance, the theoretical variance and the starlikeness for each over-

lapping windows, a plot with those values was built to verify the starlikeness throughout
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the chromosome.

4.0.3 Data simulation

Simulations were performed using SFS_CODE (Selection on Finite Sites under COmplex De-
mographic Events), which is a software that generates population genetic simulations. It
has the capacity to generate populations of individuals and follow them generation by gen-
eration evolving by natural selection. Evolutionary algorithms are applied so that a given
number of individuals hypothetically evolve under different levels of variation, selection
and inheritance, including important recombination mechanisms like crossing-over and
gene conversion (unidirectional transfer of genetic material) that can be modulated by the
user. Demographic effects and migration can be included. Furthermore, DNA sequences
are generated for each individual in the simulations and aligned. Due to the simulation
of finite-sites mutations this alignment may contain several sites that could have being a
target of several mutations (homoplasy) which could cause false possible recombination
events [71, 72, 73]. Nevertheless this is also a strong possibility in real data which can allow

the simulations to mimic false positives that we could find in real data.

All simulations using one chain of iterations were only performed in a population con-
taining 1000 diploid individuals for a single locus of 50000 bp with a mutation rate of 0.01
per site. Outputs are given in VCEF files. To analyze how the novel measure performed, sev-
eral simulations were done on different regions with high/low recombination, like larger
regions with a stable rate of recombination, regions with 2 different rates, small regions
with high recombination (hotspots) to search for peaks and different peak sizes depend-
ing on the recombination rate. SFS_CODE takes a recombination map file which employs
crossing-over and gene conversion. This file contains the number of sequence intervals (re-
gions with different recombination probability), the base pair position and its cumulative
recombination probability until this site. Each simulation was performed three times with

the same recombination map file.

4.0.4 LD heatmap

Haploview has a limitation of 100kbp (100 kilo base pairs; 100x10° bp) for the graphical
representation of the region. This limit can be overcome with higher computing resources
and a specific command of haploview, but in this case the resources were far from sufficient.

As a result, the visualization of haploblocks from the measures of LD was not possible us-
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ing this software. A pipeline was developed to be able to visualize these LD patterns on
larger regions. To subset large regions, like a substantial part of a chromosome, the use of
bcftools® was needed in behalf of its fast subsetting and filtering command (view). This tool
allows to subset the VCEF file into smaller regions with a filtering option of keeping only the
SNPs that have an AF higher than a threshold value. The subsetting will require the tbi file
of the VCF file to retrieve the information faster. Then, vcftools? will get as input the VCF
file originated from bcftools and output the Pearson’s squared correlation coefficient (r?) in
a tab-delimited file containing the chromosome, the SNPs positions of the two SNPs com-
pared and the corresponding 2. With the outputted LD file, a Python script was written to
be able to read the file and extract the useful data. Additionally, the data is composed into a
matrix and then with the resources of plotly#, a heatmap was built. The heatmap contains a
color scheme, which the blue color represents lower values of 7> and red represents higher

values of 2. Seemingly, haploblocks are represented as triangular red regions.

2 https://samtools.github.io/bcftools/
3 http://vcftools.sourceforge.net/
4 https://plot.ly/
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RESULTS AND DISCUSSION

All the plots shown are the mean of 14 values (windows) for the measures of Cycles/Region
and Mutations/Region. From the original tab-delimited files all the values are retrieved
with an overlap of 7 values. This was done so that a tendency across a given portion of the
chromosome was obtained and so that individual single high values do not generate a dis-
proportionate peak that could actually be caused by sequencing faults (as the 1000genomes

data is low coverage data).

5.1 LINKAGE MAPS FROM THE STUDY ON CHROMOSOME 22

Chromosome 22 is the most recombinant chromosome on humans, having a recombination
frequency of 2.46cM per Mbp against the genome average of 1cM per Mbp [74]. This is
expected as it is the shortest chromosome, so if homologous chromosomes connect during
meiosis at least in one point and crossing over occurs, the rate of recombination will be
higher considering its size. Chromosome 22 due to its high recombination rate and the
smallest size (for computational reasons) is a good model to test the new approach.
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5.1. Linkage maps from the study on chromosome 22
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Figure 9.: Linkage map for chromosome 22 with 30 SNPs (blue) and 20 SNPs (red),
overlapping by 15 and 10, respectively.

Figure 9 shows that independently of the measure employed (cycles or number of mu-
tations divided by size) or the fact that measures are based on 20 or 30 SNPs the maps
are very similar. Also it becomes really explicit that along the chromosome it is possible to
identify regions with low levels of reticulation in the region, likely meaning very low recom-
bination, as well as regions displaying peaks that could represent recombination hotspots.
Throughout the thesis the maps of these measures will be generally referred as “linkage
maps” although the first map could better represent a recombination rate map and the sec-
ond, based on the excess of mutations in the phylogenetic reconstruction is more difficult

to define.

It becomes really explicit that along the chromosome it is possible to identify regions
with low levels of reticulation in the region, likely meaning very low recombination, as well
as regions displaying peaks that could represent recombination hotspots. At least four or
five regions with putatively high recombination rate are visible, corresponding to various
peaks on the same general area (namely around the positions, in bp, 2.2x107 to 2.6x10”
and just after 3.5 x 107).
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Figure 12.: Linkage map for chromosome 22 with 20 SNPs, overlapping by 10. South
Asian individuals (blue) and East Asian individuals (red).
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Figure 13.: Linkage map for chromosome 22 with 20 SNPs, overlapping by 10. East
Asian individuals (blue) and American individuals (red).

Another relevant analysis is the comparison of maps between networks established on
a single population. (Figures 10, 11, 12, 13). The objective is to observe if recombination
maps varied drastically depending on the dataset, especially considering that one of the
advantages of this methodology is that it should not be so dependent on allele frequencies.
The maps did not vary significantly between population. For example, all graphics show a
region between 20Mbp and 26Mbp (base region) that has a higher recombination frequency
than other regions on the plot independently of the population analyzed (Figures 10, 11, 12,

13).

A comparison between African (AFR) and European (EUR) populations shows that, as
expected, observed recombination is larger in African populations (Figure 10). Although
it is evident that the recombination rate on individuals with African ancestry on chromo-
some 22 is higher than European individuals, being especially clear on the region 22Mbp
and 26Mbp. The higher peak of recombination (hotspot) is almost 100 Cycles/Region for
AFR and 30 Cycles/Region for EUR populations. This observation is in line with the fact
that modern humans had an origin in Africa while outside Africa a bottleneck occurred
when starting the populating of the globe that would partially increase the linkage.
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5.2. Linkage maps compared to heatmaps

Apart from a few larger peaks, the recombination frequency is very similar between
South Asian (SAS) populations and European populations (Figure 11). The difference be-
tween SAS and East Asian (EAS) populations is narrow, which is expected considering that
even though South Asia was settled before East Asia, it was likely a very rapid migration
[75, 76] leaving little time for differentiation (Figure 12). The Americas were likely colo-
nized by modern humans from a Northeast Asian source [76]. It is clear that apart from a
few peaks, America has a lower base recombination rate than East Asia (Figure 13). With
the course of time and space between the possible movement of humans from Africa to
America, the observed recombination is thought to decrease which is caused by successive

bottlenecks. Nevertheless, maps are not extremely different between populations.

5.2 LINKAGE MAPS COMPARED TO HEATMAPS

In order to compare this new methodology with methodologies that have been established
for a long time in genetics, like traditional linkage disequilibrium measures, a comparison
of different regions will be established. It is impossible to compare the full chromosome
for 2 since software tools like Haploview would just allow 100kbp, that is a very small
size in a chromosomal context. The pipeline developed here allowed to build LD maps
for 20 times larger regions than haploview. The blue color represents lower values of 72
and red represents higher values of r>. Following we will compare different stretches of
chromosomic regions using the linkage map developed here and the heatmaps. For a
simplistic descriptive statistic of the region, an average of the Cycles/Region and linkage
measure for that portion will be presented. The examples aim to provide instances of
agreement and disagreement between the two methodologies.
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Figure 14.: Linkage map and heatmap for chromosome 22 on a region between 2.45x10”
bp and 2.75x107 bp.

The mean Cycles/Region for the linkage map (Figure 14) is 0.17. Comparatively, this is a
region with relatively high recombination rate considering this measure. Analogously, the
heatmap does not have any significant haploblocks, hypothetically due to the high recom-

bination rate.
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Figure 15.: Linkage map and heatmap for chromosome 22 on a region between 2.70x10”
bp to 2.95x107 bp.

On figure 15 the mean recombination frequency based on cycles is approximately 10
times lower than the region displayed in figure 14, but there are not relevant haploblocks
present. It could be explained by a not very accurate calculation of LD (using r?) or the
linkage map not being correct in that region (possibly due to a small number of SNP on the
overlapping windows). This is the region that shows lower correlation between the results
we obtained with 2 and the new methodology. It is not straightforward to explain and
deserves a detailed examination in the future in terms of frequency of the different alleles

along the region, since a first analysis does not reveal anything particular.
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Figure 16.: Linkage map and heatmap for chromosome 22 on a region between 3.80x10”
bp to 4.05x107 bp.

The region displayed in plot 16 has an average recombination frequency of 0.046, yet
this value is high due to a peak of approximately 14 Cycles/Region that is increasing the
overall recombination rate. When observing the heatmap it is possible to see that some
haploblocks are found, specially two stronger ones between 3.88 to 3.93 confirming the low
recombination rate in the region. However, right after these blocks 72 is low, corresponding

to the peak in the new methodology.
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Figure 17.: Linkage map and heatmap for chromosome 22 on a region between 4x10”
bp to 4.25x107 bp.

The final example corresponds to a region whose heatmap (Figure 17) suggests the pres-
ence of many haploblocks and specially a large triangular region of high LD. The mean
value of Cycles/Region for this linkage map is 0.0038, significantly lower than the first
plots correlating well with the heatmap.

Overall, the regions displaying low recombination in the Cycles/Region measure display

a higher rate of haploblocks.

5.3 SIMULATION RESULTS

A validation of the method was attempted using simulations. All plots (linkage maps
based on Cycles/Region and mutations/regions) of simulations are on the original format,
without displaying any averages. Each color represents a different run of the simulation; all
plots have 3 runs. The first run has the blue color, the second is red and the third is green.
Following, different conditions will be used in order to establish how measures like the
Cycles/Region measure are directly dependent of the recombination rate. A higher value
of Cycles/Region can translate on a greater recombination frequency on that region.
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5.3. Simulation results
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Figure 18.: Simulation for 2 hotspots.

In this simulation a VCF file was created with two hotspots, the first one as a region of
5kbp, from base 5k to 10k, with a low recombination probability of 0.10, the second one
with a region of 10bp (from base 25000 to 25010) with a recombination probability of 0.65
and a base static recombination probability of 0.05. The results (Figure 18) are not clear
considering each run individually, but overall the three plots considered together have two
peaks with different sizes, mostly when considering the Cycles/Region measure; the first
has a smaller height but wider due to a larger region of recombination and the second is

exactly the opposite (higher but less wider).
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5.3. Simulation results

In order to see how recombination and our measurement behaves on larger regions with a

constant recombination probability, two simulations were performed for these cases. Figure
19 shows the simulation for a region of 2500bp (from base 10000 to 12500), with a recombi-
nation probability of 0.6 (recombination hotspot) and a base recombination probability of
0.1 for the remaining wider region. The results clearly show the hotspot with the absence
of any peak within the wider region, that has a constant but much lower recombination
probability.
The second plot 20 with the same base recombination probability of 0.1 and 0.6 for the
higher recombinant region, but with a wider recombinant area of 12500bp (from base
10000 to 22500). Again, when taken together, the three runs clearly delineate the region
with higher recombination probability and show an absence of peaks outside that region.
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Figure 21.: Simulation for 2 hotspots.

41



0
0
0

on

Cycles/Reg

.014
.012
.010

0.008
0.006

o
o
<)
AN

0.002

0.000
0

Mutations/Region

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.00
0

0.030

0.025

on

cles/Reg

C

0.020
0.015
S 0.010

0.005

0.000
0

Mutations/Region

5.3. Simulation results

S’NP Position (bq)

SNP Position (bp)

Figure 22.: Simulation for 2 hotspots.

e —

%NP Position (bq)

SNP Position (bp)

Figure 23.: Simulation for 2 hotspots.

20000 30000 40000 50000

i L
10000 20000 30000 40000 50000

1 i
10000 20000 30000 40000 50000

i i i i
0 10000 20000 30000 40000 50000

42



5.4. Linkage maps from the study on the X chromosome

Finally, simulations displayed in figures 21 to 23 aimed at looking of the effect of consid-
ering very specific hotspots with a very small size. Simulation 21 has 2 hotspots with the
same length of 10bp, the first has a recombination probability of 0.3 located at 10000bp and
the second a probability of 0.55 located at 35000bp. Simulation 22 has 2 hotspots with the
same length, the first has a recombination probability of 0.2 and the second a probability of
0.55. The base recombination rate for the remaining regions in both simulations is 0.05. Sim-
ulation 23 has a lower base recombination rate of 0.01 and 2 hotspots with a recombination
probability of 0.49. While peaks are discernible in very few simulations, these simulations

with a very small region for the hotspot are not very informative.

Hotspots with larger regions are much more easily detected on the linkage map. For
this reason, hotspots with a length of 2500bp are always represented by a peak or several
peaks, instead of hotspots with a 10bp region that are more dependent of the base recom-
bination rate. Nevertheless, recombination hotspots are likely to be represented by regions
of the genome with considerable sizes. Therefore, more simulations with larger regions of
recombination needed to be performed. However, the first simulations were promising but
need to be improved. It is likely that resolution of most of the simulations was not enough,
which is reflected on the low number of points represented in each plot. Further simulations
need to be reproduced considering larger regions with more variation and individuals.

5.4 LINKAGE MAPS FROM THE STUDY ON THE X CHROMOSOME

Although we centered the analysis on chromosome 22, chromosome X was also analyzed
due to two important features in the context of this work. The first one is that we can
analyze the chromosome independently in males and females. This is important since
while X-chromosome in females is phased based on phasing algorithms like SHAPEIT2 (as
in the case of chromosome 22 and the other autosomes), in the case of the X-chromosome
in males, one can obtain directly the haplotype. This allows to show how reliable the
phasing estimate is, since the work highly depends on that. The second feature is that
X-chromosomes have Pseudoautosomal regions (PARs) that links with the Y-chromosome.
Mostly one, PARI, is probably the overall region of the genome with higher recombination
rate. The detection of this PAR region would also be a validation for the method.
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Figure 24.: Linkage map for the X chromosome of male individuals with 30 SNPs (blue)
and 20 SNPs (red), overlapping by 15 and 10, respectively.



5.5. Reticulations on different populations
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Figure 25.: Linkage map for the X chromosome of female individuals with 30 SNPs
(blue) and 20 SNPs (red), overlapping by 15 and 10, respectively.

Recombination frequency at the beginning of the X chromosome for both males and fe-
males, as seen on figure 24 and 25, is very high overall. This shows a clear representation
of PAR1. The tip of the long arm (PAR2) has a smaller recombination frequency than PAR1
and it does not display a recombination rate substantially higher than the remaining chro-

mosome, which is not unexpected from previous studies.

In terms of comparing the maps in both males and females there are some odd peaks
but most of the features are similar in both analysis, including a region displaying probable
high recombination starting at 1.4 x10® bp but also around 0.3x10® bp and 0.6x 108 bp. The
major differences are peaks just before 1.2x 108 bp in male data and at about 0.9 x10% bp in

females. Overall the maps are very similar.

5.5 RETICULATIONS ON DIFFERENT POPULATIONS

Recombination rate is an important force in shaping the genome. It is expected that recom-
bination occurs at a relative steady rate along time. In this section the aim is to explore the

possibility of using recombination as a molecular clock, meaning check how the amount of
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5.5. Reticulations on different populations 46

probable recombinants can help in understanding the divergence between populations.

All cycles for each population along chromosome 22 were counted, including duplicates.
Duplicates happen as a result of cycles forming a cube, repeating each cycle two times.
It was only considered cycles with 4 nodes, not passing through other nodes. The total
number of cycles in each population is displayed in Table 4.

Table 4.: Results for the number of cycles in each super-population

Cycles  Ancestry

11030525 AFR

7564062 EUR
5129539 SAS
8741894 EAS
3955390 AMR

As expected, African populations, the continent where modern humans emerged, dis-
played a much higher number of reticulations, which is expected as the evolution of the
human diversity is much deeper there than anywhere else worldwide. European and East
Asian populations have higher values than expected considering South Asia. Excluding the
duplicates, the number is substantially lower (Table 5) and the difference is minimum be-
tween Europe, South Asia and East Asia which makes sense considering that most probably

all these regions were colonized with a small time difference.

Table 5.: Number of cycles present on a population that are on another population,
without duplicates.

AFR EUR SAS EAS AMR
AFR 162782
EUR 27123 94633
SAS 27658 35649 99271
EAS 22750 28991 31828 91419
AMR 37166 36995 33778 28209 96996

If we consider that the founder population that migrated from Africa could have already
carried cycles in their genomes that did not occurred out-side Africa, we can exclude cycles
that are present between Africa and Europe, South Asia and East Asia. Individuals with Eu-
ropean or South Asian ancestry have similar values of cycles that are present in individuals



5.5. Reticulations on different populations

with African ancestry, meaning that 27k cycles from each population comes from African
populations. East Asian individuals have less cycles belonging to an African ancestry (22k),
but these individuals are already the result of a further migration that moved through
South Asia, where it is possible to see that they share over 30k cycles. The American sam-
ples have a higher number of cycles than expected, this could be explained by a biased
number of individuals in America that are African-American and European descendants;

and an inferior number of samples.

Table 6.: Results for the number of cycles in each super-population

Cycles  Ancestry

162782 AFR
67510 EUR
71613 SAS
51420 EAS
30336 AMR

We can establish a hypothetical time-frame based on the number of cycles where the
African count is direct (it is the ultimate source of original diversity), where common cycles
with Africa were excluded from European and South Asian populations, where common
cycles with Africa and South Asia were excluded from the number of cycles in East Asia
and finally where the private cycles in the American population were the only ones consid-
ered (Table 6).
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Figure 26.: time-depth.

It is possible to establish depth based on the amount of cycles. Following the establish-
ment of a model of human migrations, a depth in terms of cycles was obtained (Figure

26-A). If we assume a specific point of colonization, it is viable to transform this measure
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5.6. Linkage maps from the study of positive selection

based on cycles into time-depth, considering the sample size for each continent is not so
divergent. A hypothetical time of settlement of 55 thousand years was used for the col-
onization of South Asia following the Out-of-Africa migration [77]. Using this point of
calibration, we can establish a settlement of Europe at about 50 thousand years, a settle-
ment of East Asia at about 40 thousand years and a settlement of the Americas at about 20
thousand years (Figure 26-B). It is noticeable the similarity between these values and the
times of colonization appointed in figure 2 of the introduction.

Although the analysis is somewhat experimental and crude, it displays the possibility of
using recombination events and a recombination rate as a molecular clock to date events.

56 LINKAGE MAPS FROM THE STUDY OF POSITIVE SELECTION

Considering that the measure might be good in detecting level of recombination in the
genome, the next exploration is to test it against cases of natural selection, mostly positive
selection. If one positive allele arises and increases fast in frequency in the population, time
will be short for recombination to occur and most of the haplotypic background around
the allele will increase in frequency with it (hitchhiking effect). The loss of diversity caused
by this increment of an haplotypic background is called selective sweep. To test its per-
formance two examples from the bibliography of positive selection were used, one related
with lactose persistence in Europe and another related with resistance to Malaria in Africa.
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5.6. Linkage maps from the study of positive selection
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Figure 27.: Linkage map for AFR (blue) and EUR (red) with the SNP that has a direct
influence on the LCT gene (green).

Figure 27 shows the linkage map for chromosome 2 on the region that contains rs4988235
(position 136608646) for the African and European ancestry. On African populations a
higher recombination is seen on the adjacent region to the SNP as opposed to European
populations. Considering that on European populations the beneficial allele is found on
more individuals, the adjacent region will have lower recombination due to a selective
sweep. If one really aims to detect the effect of selection, it is required that the two alleles

(the beneficial one and the ancestor) are analyzed independently.
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5.6. Linkage maps from the study of positive selection
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Figure 28.: Linkage map for AFR (blue) and EUR (red) with the SNP that has a direct
influence on the LCT gene. Only individuals with the ancestral allele (G)
(green).

Figure 28 represents a linkage map for individuals from African and European popula-
tions with the ancestral allele (G). On the European ancestry an increase on recombination
rate is seen near the rs4988235. However, as a result of a selective sweep on the region
neighboring the beneficial allele (A), a low recombination rate is seen on figure 29. This
reflects a recent origin of the allele A, following a rapid increment in frequency in the pop-
ulation providing little opportunity for recombination. Again the new measures are based
on estimation of recombination and not frequency of the haplotypes which can be an ad-
vantage in cases where by chance an early recombination broke part of the recombination

background.
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In terms of the HBB gene, figure 30 shows a small peak of recombination for individuals

with African ancestry on the vicinity of rs334 (position 5248232).



5.6. Linkage maps from the study of positive selection 53

2 5 1 1 1 I 1 1 1

ol e T i ] T T ]

Cycles/Region

ol bl bl e
3000000 3500000400000045000005000000550000060000006500000 7000000
1.8 : : [SNP Posi’tion (bp) :

1.6k P P P B R
14 S (RPN P ST SRR N
12k T e S S B SR
1.0k ............ ............. .............. .............. ...........
0.8 : 3 3 S - b
0.4 S ) R I
0.2k T | S b 3 :

ALY

0035

Mutations/Region

000 6000000 6500000 7000000

0.0 k=
30000
SNP Position (bp)

Figure 31.: Linkage map for AFR (blue) and EUR (red) with the SNP that has a direct
influence on the HBB gene. Only individuals with the ancestral allele (T)

(green).

Figure 31 represents a linkage map for individuals from African and European popula-
tions with the ancestral allele (T). Not surprisingly the recombination is high in the region
around the SNP of interest, including peaks observed in the general map before.
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Figure 32.: Linkage map for AFR (blue) with the SNP that has a direct influence on the
HBB gene. Only individuals with the alternate allele (A) (green).

The alternative allele of the rs334 (the beneficial one in Africa) does not appear on Euro-
pean populations (0% frequency), having 100% of the ancestral allele. Outside a Malaria
endemic region, the SNP does not provide any beneficial advantage and it is deleterious.
On Africa, the genetic map near rs334 is very low comparing to other regions, due to a
selective sweep, and even the strong peaks around the allele that were observed around in

the general map failed to appear here. (Figure 32)

To compare the last plots on the occurrence of selective sweep to an SNP that was not
related before with positive selection,a new random SNP (rs2075984) from chromosome 22
was selected (Figure 33). The SNP was chosen based on the AF of the African and Euro-
pean populations that desirably needed to be as close as possible to the AF of the SNP that
has a direct influence on the LCT gene (rs4988235). For European populations the AF is
approximately 50% for both SNPs and for African populations the ancestral AF is 3% for
rs4988235 and 4% for rs2075984.
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alternate allele (green), for the rs2075984 SNP.
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5.7. Starlikeness
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Following the examination of the overall map of the region around the selected SNP and
the analysis in the ancestral and derived allele, it is possible to conclude that, although
the derived allele has lower linkage (Figure 34) which is an expected feature of a derived
allele that is by definition younger, the drop of linkage compared with the general map
(Figure 33) and ancestral allele (Figure 35) is not so drastic. This also suggests that a further
standardization on how strong the selective effect is might be required.

5.7 STARLIKENESS

In principle regions that are under positive selection will display signal of expansion which

is reflected phylogenetically on a starlike figure with short sub-structuring in the region.

Given this, a starlikeness measure was employed to test for possible detection of signals
of positive selection. The measure was tested on the networks of the windows after these
were processed into the short-spanning trees. The starlikness measure was scanned across

the entire chromosome 22 and again testing it against the two genes used above.
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Figure 36.: Plot showing the starlikeness through the region with the SNP that has a
direct influence on the LCT gene (green).
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5.8. Phylogeographic analysis of a haploblock region
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Figure 38.: Plot showing the starlikeness through chromosome 22 for 20 and 30 SNPs,
blue and red, respectively.

Overall, the phylogenetic starlikeness was not a good measurement for selection eval-
uation. The starlikeness is highly variable and provides little evidence of evolutionary
episodes. No specific signals was detected on chromosome 22 (Figure 38) and more impor-
tantly, no signal was detected around the two SNPs under selection (Figure 36 and figure
37)-

The network is based on a limited set of SNPs (20 or 30) which provides little possibility
for starlike figures to emerge.

58 PHYLOGEOGRAPHIC ANALYSIS OF A HAPLOBLOCK REGION

A fragment that displayed several windows with no cycles or a minimum amount of cycles
within several windows with zero cycles was selected. The corresponding region of chro-
mosome 22 is from 42988118bp to 42999883bp. This was one of various fragments detected,
and it is actually one of the smallest ones, however the phylogenetic reconstruction of the
larger ones was requiring a long time to properly present them in the context and time

frame of this thesis.
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5.8. Phylogeographic analysis of a haploblock region
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Figure 39.: Phylogenetic network outputted from the Network software GUI. Each cir-
cle corresponds to a node (haplotype).

Figure 39 shows the phylogenetic reconstruction of the fragment using the Network soft-
ware. Even for this large fragment the amount of reticulation (cycles) is minimal. Basically
the network displays a much deeper diversity in Africa. The Out-of-Africa diversity is cen-
tered in three main haplotypes (large circles with multiple colours) and their near deriva-
tives. One of them is present also in Africa, which could represent the main Out-of-Africa
founder for this segment of the genome, in a similar fashion as the mtDNA haplogroup L3

[23]. The two other haplotypes could have already emerged from that haplotype outside

Africa.
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DISCUSSION AND FUTURE WORK

In this thesis, an absolutely novel approach for the detection of haploblocks and recombi-
nation hotspots was created, implemented and tested. Such approach is a drastic change
in relation to previous measures of linkage as a phylogenetic approach, based on network
construction. Windows of variation across the genome corresponding to 20 or 30 SNPs were
established and a network of the window was established. Recombination can create cycles
in a phylogenetic reconstruction, which itself can be a direct measure of recombination rate
in a region. A second measure based on the number of mutations was developed so that
cycles with more mutations in the edges would have more weight (since they are more
securely real recombination signals). Nevertheless, both measures provided very similar

results.

The validation of the new methodology was performed by comparing the new genetic
maps with widely used heatmaps based on traditional measures of LD (r? in this case).
Broadly regions displaying high or low recombination with the new methodology also dis-
played high or low linkage in the corresponding heatmap. Although some exceptions were
found, further investigation is required on the reasons for those events. Nevertheless, the
objective is not to replicate the results from traditional LD as this methodology has very
different properties and it would be expected that they behave differently in different situ-
ations. The simulations showed how promising the methodology might be, but overall it is
required a higher level of complexity in the analysis in terms of variation in the region and
even number of individuals. The approach also allowed to recognize the PAR1 within the
X-chromosome region where a high rate of recombination takes place. The X-chromosome
analysis also showed that, although we are dependent on the previous phasing of the chro-
mosomes, this process is reliable and it does not affect the results in a significant way.

The network reconstruction on windows of diversity was also used to test a measure
of how star-like the reconstruction was, which could be used to scan the genome for selec-
tion. Such approach did not prove successful which is not unexpected considering that each
window was only based on 20 or 30 SNPs. However, in terms of detection of selection, the
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general approach can show powerful results when considering the separation of the data
and analysis in two alleles in a similar fashion as the extended haplotype homozygosity
(EHH) test. In many ways such approach can be more powerful than a homozygosity test
used in the detection of selective sweeps, since an early recombination close to the SNP of
interest can disrupt by chance part of the homozygosity, while in this case it would account
as a single event in the whole area. While some level of standardization might be required,

the approach could be highly relevant in genomic studies.

The project started as an approach to detect haploblock whose phylogenetic and phy-
logeographic approach could provide powerful insights into the history of human popu-
lations. Results were showed for a relatively short fragment where the main aspects of
human evolution were shown (modern human origins and Out-of-Africa migration), but
detailed aspects can be extracted from several stretches of the genome. For future work,
the combination with the chimpanzee homologous sequences will have the potential for
dating, but a further complex Bayesian approach needs to be developed in order to prop-
erly distribute private mutations between the two pairs of homologous chromosomes in an
individual, since that is a random process in the phasing algorithms.

This was a very ambitious Masters’ project that proved successfully in launching a new
approach that can be important in the future. It requires further refining and mostly extend
the approach to the remaining genome, that can be a challenge computationally-wise. This
first approach on the chromosome 22 and chromosome X generated data with over 1.5TB
in size. Another further development should be the testing of the methodology in genomes
with higher resolution, since the 1000genomes data is easily accessible but it mostly pro-
vides low-coverage sequencing. Access to another database, namely the Simons Diversity
Project [45] in the future will be required. Nevertheless, it is always a positive point that
the approach proved generally successful in a lower quality data anticipates further quality
in a high quality dataset.

This project was also important in establishing a series of tools for manipulating Human
Genomic data including a further development of the VDE, that was developed in the pre-
vious year. One of the novel features to be added is the capacity to build a heatmap based
on LD measurements, since the pipeline developed here is substantially more efficient than

the available tools in the literature.
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SUPPORT MATERIAL

Throughout this thesis several files were created. All the rdf, out, info, VCF and many
other files are in an external disk, due to being a large amount of data that requires a lot
of disk space. Scripts, figures and tables are in the dissertation_pg27668 folder. The
scripts folder contains all scripts created, complementary files, subsets of VCF files for
testing and a folder with text files that contain the cycles SNP ID of each population from
chromosome 22. The figures_and_tables folder contains several folders with the output
of the Cycles/Region measure and the starlikeness measure, namely the tab-delimited files

and the respective plots.
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21

PYTHON CODE

The remaining methods created throughout this work are not listed, but were equally im-
portant for the parsing and transformation of the files. Scripts containing those functions
are in the scripts folder.

The forthcoming 5 methods are some relevant methods created. The first method (cycle_numpy)
will retrieve all cycles and its” SNP ID (without duplicates) for each population in study.

# G its a unweighted graph object from network X
# B its a numpy matrix, which only considers connected nodes
def cycle.numpy (G, B):

list_cycle = []

nodos = G.nodes() # list with nodes

B_.1 = B[1]

B_o Blo]

for i in range(len(B-o)):

vi = B_o[i] # node 1

B_.1[i] # node 2

C = np.where(B_o == v2)[o] # neighbors of node 2

mut = G[nodos[vi]][nodos[v2]][ "mutation’][o] # SNP ID of edge vi — v2
for j in C: # course through all neighbors of node 2

v2

v3 = B.1[j] # node 3
if v3 != vi: # node 3 cannot be node 1
mut2 = G[nodos[v2]][nodos[v3]][ "mutation’][o]
# mut2 is the SNP ID of edge v2 — v3
D = np.where(B_.o == v3)[o] # neighbors of node 3
for k in D: # course through all neighbors of node 3
v4 = B_1[k] # node 4
mut3 = G[nodos[v3]][nodos[v4]][ 'mutation’][o]
# mut3 is the SNP ID of edge v3 — vg4
E = np.where(B_.o == v4)[0o] # neighbors of node 4
for 1 in E: # course through all neighbors of node 3
vs = B_1[1] # node 5
mut4 = G[nodos[v4]][nodos[v5]][ "mutation’][o]
# mutq is the SNP ID of edge v4 — v5
# Check if the first edge (SNP ID) is equal to the third;
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(build_starlikeness_path), that creates a “path” of the data that is needed to calculate

# and the second to the fourth
# Also node 5 must be equal to the first node (node 1)
# to complete the cycle
if mut == mut3 and mut2 == mut4 and vi == vj5:
# do not consider duplicates
# or passing through the same cycle again
if (mut, mut2) not in list_cycle:
if (mutz2, mut) not in list_cycle:
list_cycle .append ((mut, mut2))
return np.array (list_cycle)

Listing B.1: Python function cycle_numpy

The second method (create_tree_branch) will be needed for the fifth method

the starlikeness.

#
#
#
#
#
#
#
#
#

G its a weighted graph object from network X
From the parsed out file a dictionary (dic-taxa)
is retrieved with the node name (key)
and the corresponding samples (list)
nodos is the list with nodes
center_edges is a numpy matrix with the neighbors of the center node
This method creates dictionary with nodes as keys and a corresponding
list of tuples with the number of samples and the mutation number
between center node and its neighbors
def create_tree_branch (B, G, center_edges, dic_taxa, nodos):
phylo_dic = {}
arvore = []
B_.1 = B[1]
B_.o = B[o]

for i in center_edges[o]:
phylo_dic[nodos[B_1[i]]] = []
mutnum = G[nodos[B_o[i]]][nodos[B_1[i]]][ 'mutation”]
try:
numsamp = len(dic_-taxa[nodos[B_1[i]]])
if numsamp > 1:
num_samp += 1
except KeyError:
num-samp = 0
phylo_dic[nodos[B_1[i]]].append ((nodos[B_1[i]], len(mutnum), num_samp))
arvore .append(nodos[B_1[i]])
# arvore will be a list of neighbors of the center node
return arvore, phylo_dic
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Listing B.2: Python function to retrieve the information of only the neighbors of the center node
(root)

Method 3 (parse_out_file) does the parsing of the out file from the Network Software,

retrieving all the information from the graph created by this software.

> # This method parses the out file from the Network Sofware
# dic is a dictionary with each line as key and a list

4+ # with the information from the respective line
def parse_out_file (name, path):

6 dic = {}
num = o
8 map_char = []
dic_taxa = {}
10 list_taxon = []

with open(path + "/’ + str(name), “r”) as out:
12 lines = out.readlines ()
for j in lines:

14 if ”Link” in j:
num += 1
16 link = j.split(” )
dic[num] = []
18 for k in link:
if len(k) >= 1 and k != "\n’:
20 dic[num]. append (k. split(’,”)[o])
elif "Mapping of character’ in j:
22 mapping = j.splitlines ()
mapping = mapping[o].split(” ")
24 mapping = [x for x in mapping if x != "’]
map_char.append (mapping[3])
26 # map_char contains the mutation position
# when the window has 20 SNPs but cycles that form a cube
28 # the mutation position has another number higher than 20
# ex: 23;5
30 # the 23rd mutation position corresponds to the real 5th position
elif 'Tax.’” in j:
32 taxa = [x for x in j.split(” ") if x != "7]
try:
34 dic_taxa[taxa[1]].append(taxa[4].split('\n")[o])

except KeyError:
36 dic_taxa[taxa[z]] = [taxa[4].split('\n")[o]]
elif "Mapping of taxon’ in j and 'mv’ not in j:
38 taxon = [x for x in j.split(’” 7)) if x != 7"]
list_taxon .append(taxon[3].split(’;")[o])
40 for tax in list_taxon:
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for kt in dic_-taxa.keys():
if tax in dic_taxa[kt] or tax == kt:
bol = True
break
else:
bol = False
if not bol:
dic_taxa[tax] = [tax]

return dic, dic_taxa, map-_char

build_weighted_graph method builds a weighted graph for the calculation of the Dijk-

stra path.

Listing B.3: Python function to parse the out file

# This method builds a weighted graph from the output

;3 # of parse_out_file

19

def build_weighted_graph(dic, dic_-taxa, map_char):

num-mut

=0

G = nx.Graph ()

for key

in dic.keys():

ind_at = int(dic[key].index("at”))
mutations = len(dic[key][ind_at + 1:])

num_mut += mutations

if dic[key][2] == "a’ or dic[key][2] in [str(x) for x in range(10)]:

if dic[key][4] == 'mv’: # mv = median vector
G.add-node(dic[key][4] + dic[key][5])
noder = dic[key][4] + dic[key][5]
if dic[key][8] == 'mv’:
G.add.node(dic[key][8] + dic[key]l[9])
node2 = dic[key][8] + dic[key][9]
else:
G.add.node(dic[key][8])
nodez2 = dic[key][8]
else:
G.add.node(dic[key][4])
noder = dic[key][4]
if dic[key][y] == ‘mv’:
G.add-node(dic[key][7] + dic[key][8])
nodez2 = dic[key][7] + dic[key][8]
else:
G.add-node(dic[key][7])
nodez2 = dic[key][7]
muts = []
for value in dic[key][ind_at + z1:]: # ['67,
if int(value) > 2o0:

’

7’] or

['37]
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vals = map_char[int(value) — 1].split(’;") # ['23", "167]
23 —> 16
muts.append(str (vals[1]))
else:
muts . append (value)
try:
# number of samples of the haplotype
s1 = len(dic_taxa[node1])
except KeyError:
s1 = 0
try:
s2 = len(dic_taxa[nodez2])
except KeyError:
s2 = 0
if s1 == 0o or s2 == o:
# Nodes that do not have samples (median vectors)
# will have a higher edge weight
G.add_edge(node1, node2, mutation=muts, weight=2)

G.add_edge(node1, node2, mutation=muts, weight=1)
return G

Listing B.4: Python function to build a weighted graph object using NetworkX

Method to build the path were the coursing will have to be done to calculate the starlike-

ness of the graph.

#
#
#
#
#
#
#
#
#

G its a weighted graph object from network X

no is the center node of the network

B is a matrix with only connected nodes after the
calculation of the Dijkstra path

It accepts as input the phylo_dic from create_tree_branch
This method will append for each node his neighbors

(only the neighbors that are further from the center node)
and successive neighbors with the number of samples

and mutation position of the haplotype

def build_starlikeness_path (B, G, arvore, dic_.taxa, no, nodos, phylo_dic, k):

dic_neig = {}

B_.1 = B[1]

B_.o Blo]

for i in range(len(arvore)):

new_l = [arvore[i]]
while len(new_l) > o:
x = new_l.pop (o)
elem = nodos.index(x)
neig = np.where(B_o == elem)
for n in neiglo]:
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if nodos[B_1[n]] != no:
new_l.append (nodos[B_1[n]])
mutnum = G[nodos[B_o[n]]][nodos[B_1[n]]][ 'mutation ”]
try:
numsamp = len(dic_taxa[nodos[B-1[n]]])
if numsamp > 1:
num-samp += 1
except KeyError:
num._samp = 0
phylo_dic[arvore[i]].append((nodos[B_1[n]], len(mutnum),
num_samp) )
last_.l = [nodos[B_1[n]]]
dic_neig[(nodos[B_-1[n]], len(mutnum), numsamp)] = []
key.n = (nodos[B_1[n]], len(mutnum), num_samp)
while len(last_1) > o:
y = last_1.pop(o)
elem_y = nodos.index(y)
neig_y = np.where(B_o == elem_y)
for p in neig_y[o]:
if nodos[B_1[p]] != phylo_dic[arvore[i]][o][o] and
nodos[B_1[p]] != k \
and nodos[B_1[p]] != phylo_dic[arvore[i
10 —1100] \
and nodos[B_1[p]] not in [x[o] for x in
dic_neig[key-n]]:
last_1l.append(nodos[B_1[p]])
mutnum = G[nodos[B_o[p]]][nodos[B_1[p]]]["’
mutation ” ]
try:
numsamp = len(dic_taxa[nodos[B_1[p]]])
if numsamp > 1:
num_samp += 1
except KeyError:
num.-samp = 0
dic_neig[key._n].append((nodos[B_1[p]], len(
mutnum) , num-samp) )
phylo_dic[arvore[i]].append ((nodos[B_1[p]], len(

mutnum) , num_samp) )

new_l.pop (o)
except IndexError:
pass

return dic_neig

Listing B.5: Python function to find the path where the starlikeness calculation will course
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