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Efficient adaptive query processing on large database systems available in the cloud environment 
 

 

Abstract 

Nowadays, many companies are migrating their applications and data to cloud service 
providers, mainly because of their ability to answer quickly to business requirements. 
Thereby, the performance is an important requirement for most customers when they 
wish to migrate their applications to the cloud. 

Therefore, in cloud environments, resources should be acquired and released 
automatically and quickly at runtime. Moreover, the users and service providers expect 
to get answers in time to ensure the service SLA (Service Level Agreement). 
Consequently, ensuring the QoS (Quality of Service) is a great challenge and it 
increases when we have large amounts of data to be manipulated in this environment.  

To resolve this kind of problems, several researches have been focused on shorter 
execution time using adaptive query processing and/or prediction of resources based 
on current system status. However, they present important limitations. For example, 
most of these works does not use monitoring during query execution and/or presents 
intrusive solutions, i.e. applied to the particular context.  

The aim of this thesis is the development of new solutions/strategies to efficient 
adaptive query processing on large databases available in a cloud environment. It must 
integrate adaptive re-optimization at query runtime and their costs are based on the 
SRT (Service Response Time – SLA QoS performance parameter). Finally, the proposed 
solution will be evaluated on large scale with large volume of data, machines and 
queries in a cloud computing infrastructure.  

Finally, this work also proposes a new model to estimate the SRT for different request 
types (database access requests). This model will allow the cloud service provider and 
its customers to establish an appropriate SLA relative to the expected performance of 
the services available in the cloud. 

Keywords: cloud computing; service level agreement; performance; service response time 
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Processamento eficiente adaptativo de consultas em grandes bases de dados disponíveis em 
ambiente de nuvem 

 

Resumo 

Atualmente, muitas companhias têm migrado suas aplicações e dados para 
fornecedores de serviços em nuvem, pois um dos principais benefícios dessa 
tecnologia é a capacidade de responder rapidamente às necessidades do negócio. 
Assim, o desempenho é um dos mais importantes requisitos para a maioria dos 
clientes que desejam migrar suas aplicações para a nuvem.  

Em ambiente de nuvem, os recursos devem ser adquiridos e libertados 
automaticamente e rapidamente em tempo de execução. Além disso, os utilizadores e 
fornecedores de serviços esperam sempre garantir o contrato SLA (Acordo de Nível de 
Serviço). Consequentemente, garantir o QoS (Qualidade de Serviço) é um grande 
desafio, que se torna mais complexo quando existe uma grande quantidade de dados a 
serem manipulados neste ambiente. 

Para resolver estes tipos de problemas, diversas pesquisas têm sido realizadas 
focando o menor tempo de execução dos pedidos do utilizador na nuvem usando 
técnicas de processamento adaptativo de consultas e/ou utilizando técnicas de 
predição de recursos baseados no estado atual do sistema. Contudo, esses trabalhos 
apresentam limitações importantes. Por exemplo, a maioria desses trabalhos não 
utiliza monitorazação durante a execução da consulta e/ou apresenta soluções 
intrusivas, isto é, aplicadas a um contexto particular. 

Portanto, o objetivo desta tese consiste no desenvolvimento de uma nova 
solução/estratégia para o processamento eficiente (adaptativo) de consultas sobre 
grandes bases de dados disponíveis em ambiente de nuvem. Ela irá integrar técnicas 
de otimização adaptativas em tempo de execução da consulta e seus custos são 
baseados no SRT (Tempo de Resposta do Serviço – parâmetro QoS de desempenho do 
SLA). A solução proposta será avaliada em larga escala utilizando uma grande base de 
dados, máquinas e consultas em um ambiente real de computação na nuvem. 

Finalmente, este trabalho também propõe um novo modelo para estimar o SRT para 
diferentes tipos de pedidos (pedidos de acesso a banco de dados). Este modelo 
permitirá que um fornecedor de serviços em nuvem e seus clientes possam 
estabelecer um contrato SLA adequado, relativo ao desempenho esperado dos serviços 
disponíveis em nuvem.  

Palavras-chave: computação em nuvem; acordo de nível de serviço; desempenho; tempo de resposta do 
serviço. 
 

http://code-industry.net/


http://code-industry.net/


 

xiii 

Index 
 
Acknowledgments ...................................................................................................................... vii	
Abstract ...................................................................................................................................... ix	
Resumo ...................................................................................................................................... xi	
List of acronyms ......................................................................................................................... xvi	
List of figures ............................................................................................................................. xvi	
List of tables ............................................................................................................................ xviii	
Chapter 1 – Introduction ........................................................................................................... 19	

1.1	 Contextualization ........................................................................................................... 21	
1.2	 Motivation ..................................................................................................................... 22	
1.3	 Research objectives ...................................................................................................... 24	
1.4	 Contributions ................................................................................................................ 25	
1.5	 List of publications from this work ................................................................................. 26	
1.6	 Thesis outline ............................................................................................................... 27	

Chapter 2 – State of art ............................................................................................................. 29	
2.1	 Introduction .................................................................................................................. 31	
2.2	 Data warehouse and OLAP ............................................................................................ 31	

2.2.1	 Multidimensional modeling of data warehouses ................................................. 34	
2.2.2	 OLAP applications ............................................................................................. 35	

2.3	 SLA in cloud computing ................................................................................................ 37	
2.3.1	 Definition and lifecycle of a SLA ........................................................................ 37	
2.3.2	 QoS parameters of a SLA .................................................................................. 39	
2.3.3	 QoS performance parameters of a SLA ............................................................. 43	

2.4	 Data processing ............................................................................................................ 46	
2.4.1	 Query processing in database ........................................................................... 46	
2.4.2	 Adaptive query processing ................................................................................ 48	
2.4.3	 Query processing in cloud ................................................................................. 50	

2.5	 Related works ............................................................................................................... 51	
2.6	 Conclusion .................................................................................................................... 56	

Chapter 3 – Service response time measurement model of service level agreements ................. 57	
3.1	 Introduction .................................................................................................................. 59	
3.2	 Request definition ......................................................................................................... 59	

3.2.1	 Type 1 requests: select-range and select-aggregation ......................................... 61	
3.2.2	 Type 2 requests: select-joins ............................................................................. 61	
3.2.3	 Type 3 requests: select-sets-grouping-nesting-ordering ....................................... 62	

http://code-industry.net/


 

 xiv 

3.3	 Service response time measurement model of service level agreements ........................ 63	
3.3.1	 Recommended SRT definition ........................................................................... 64	
3.3.2	 SRT measurement model ................................................................................. 65	

3.4	 Case study – validation and results ............................................................................... 69	
3.4.1	 Experimental environment ................................................................................ 69	
3.4.2	 Methodology ..................................................................................................... 69	
3.4.3	 Used requests .................................................................................................. 71	
3.4.4	 Results ............................................................................................................. 74	
3.4.5	 Analysis of results ............................................................................................. 78	

3.5	 Conclusion .................................................................................................................... 80	
Chapter 4 –  Efficient adaptive query processing on large database systems available in the 

cloud environment ............................................................................................................ 81	
4.1	 Introduction .................................................................................................................. 83	
4.2	 Estimated cost model .................................................................................................... 83	
4.3	 Architecture .................................................................................................................. 86	
4.4	 SiclopDB framework – components ............................................................................... 88	

4.4.1	 MetaData and performance .............................................................................. 88	
4.4.2	 Dynamic query optimizer (DQO) ........................................................................ 90	
4.4.3	 Dynamic query scheduler (DQS) ....................................................................... 92	
4.4.4	 Dynamic query monitoring (DQM) ................................................................... 103	

4.5	 Conclusion .................................................................................................................. 105	
Chapter 5 – Experimental evaluation: validation and results ..................................................... 107	

5.1	 Introduction ................................................................................................................ 109	
5.2	 Experimental environment ........................................................................................... 109	
5.3	 Methodology ............................................................................................................... 109	
5.4	 Used requests ............................................................................................................ 111	
5.5	 Results and analysis ................................................................................................... 114	

5.5.1	 Type 1 requests .............................................................................................. 114	
5.5.2	 Type 2 requests .............................................................................................. 120	
5.5.3	 Type 3 requests .............................................................................................. 122	
5.5.4	 All type of requests ......................................................................................... 125	

5.6	 Conclusion .................................................................................................................. 126	
Chapter 6 – Conclusion ........................................................................................................... 127	

6.1	 Final considerations .................................................................................................... 129	
6.2	 Future work ................................................................................................................ 130	

References .............................................................................................................................. 133	

http://code-industry.net/


 

xv 

Annex ..................................................................................................................................... 141	
Annex A1 – Type 1 requests ............................................................................................... 143	
Annex A2 – Type 2 requests ............................................................................................... 151	
Annex A3 – Type 3 requests ............................................................................................... 155	
Annex A4 – paper 1 – (2013) ............................................................................................. 163	
Annex A5 – paper 2 – (2015) ............................................................................................. 165	
Annex A6 – paper 3 – (2016) ............................................................................................. 171	

 

http://code-industry.net/


 

 xvi 

List of acronyms 
 
AMI – Amazon Machine Image 

COS – CPU Overload Simulator 

CSMIC – Cloud Service Measurement Index Consortium  

DBMS – Database Management System 

DOS – Disk I/O Overload Simulator 

DP – Disk Performance  

DQM – Dynamic Query Monitoring 

DQO – Dynamic Query Optimizer  

DQS – Dynamic Query Scheduler  

DW – Data Warehouse  

EBS – Elastic Block Store 

ETL – Extract-Transform-Load  

IAAS – Infrastructure as a Service  

KPI – Key Performance Indicator  

OLAP – On-Line Analytical Processing 

OpenMP – Open Multi-Processing  

PP – Processor Performance 

QoS – Quality of Service  

RSRT – Recommended Service Response Time 

SLA – Service Level Agreement 

SMI – Service Measurement Index  

SQL – Structured Query Language  

SRT – Service Response Time 

TTP – trusted third party 

VM – Virtual Machine 

 
 List of figures 
 

Figure 2-1. Data Warehouse Architecture. ............................................................................... 32	

Figure 2-2. Database of a Company: (a) Relational Scheme of Human Resources Sector and 
(b) Relation Scheme of Sales Sector. ................................................................... 33	

Figure 2-3. Example of Materialized View in Data Warehouse. ................................................. 33	

http://code-industry.net/


 

 xvii 

Figure 2-4. Star Model of Materialized_View Fact. ................................................................... 34	

Figure 2-5. Fact: Profit Employee. .......................................................................................... 35	

Figure 2-6. Fact: Top Selling Products. ................................................................................... 35	

Figure 2-7. Example of Drill-down and Roll-up Operation using OLAP Applications. .................. 36	

Figure 2-8. SLA Lifecycle. ....................................................................................................... 37	

Figure 2-9. Parameters and Sub-parameters defined in the SMI (Siegel & Perdue, 2012). ....... 43	

Figure 2-10. Query Processing in the Cloud. ........................................................................... 51	

Figure 3-1. Request-response communication of the client-server computing model. ............... 60 

Figure 3-2. Steps to obtain the Recommended SRT. ............................................................... 66	

Figure 3-3. SRT Calculator – GUI Interface. ............................................................................ 68	

Figure 3-4. Methodology of experiments to obtain the Recommended SRT. ............................. 70	

Figure 3-5. Processor Status through sysstat tool. ................................................................... 70	

Figure 3-6. Disk Read/Write Status through dstat tool. ............................................................ 71	

Figure 3-7. SRT averages on all VMs for type 1 requests. ........................................................ 75	

Figure 3-8. SRT averages on all VMs for type 2 requests. ........................................................ 76	

Figure 3-9. SRT averages on all VMs for type 3 requests. ........................................................ 77	

Figure 3-10. Recommended SRT Result. ................................................................................ 79	

Figure 4-1. Ideal Computational Cost: Computation Cost (x10) vs Time (seconds). .................. 86 

Figure 4-2. SiclopDB Framework Architecture. ........................................................................ 88	

Figure 4-3. Flowchart of query processing in SiclopDB framework. .......................................... 92	

Figure 5-1. Methodology of experiments of SiclopDB framework. ........................................... 110 

Figure 5-2. Type 1 Requests (Select-Range): average virtual machines used for workloads 
uniformly arriving every 30 seconds for the Recommended SRTs: 80, 100 and 
120 seconds. .................................................................................................... 115	

Figure 5-3. Type 1 Requests (Select-Range): average virtual machines used for workloads 
randomly arriving between 10 and 60 seconds for the Recommended SRTs: 80, 
100 and 120 seconds. ...................................................................................... 116	

Figure 5-4. Type 1 Requests (Select-Aggregation): average virtual machines used for 
workloads uniformly arriving every 30 seconds for the Recommended SRTs: 80, 
100 and 120 seconds. ...................................................................................... 118	

Figure 5-5. Type 1 Requests (Select-Aggregation): average virtual machines used for 
workloads randomly arriving between 10 and 60 seconds for the Recommended 
SRTs: 80, 100 and 120 seconds. ...................................................................... 119	

Figure 5-6. Type 2 Requests: average virtual machines used with workloads uniformly arriving 
every 30 seconds for the Recommended SRTs: 130, 150 and 180 seconds. ...... 121	

Figure 5-7. Type 2 Requests: average virtual machines used with workloads randomly arriving 
between 10 and 60 seconds for the Recommended SRTs: 130, 150 and 180 

http://code-industry.net/


 

 xviii 

seconds. ........................................................................................................... 122	

Figure 5-8. Type 3 Requests: average virtual machines used with workloads uniformly arriving 
every 30 seconds for the Recommended SRTs: 800, 1000 and 1200 seconds. . 124	

Figure 5-9. Type 3 Requests: average virtual machines used with workloads randomly arriving 
between 10 and 60 seconds for the Recommended SRTs: 800, 100 and 1200 
seconds. ........................................................................................................... 125	

Figure 5-10. All Type Requests: average virtual machines used with workloads uniformly 
arriving every 30 seconds and randomly arriving between 10 and 60 seconds. .. 126	

 
List of tables 
 

Table 2-1. Characteristics of related work. .............................................................................. 55	

Table 3-1. Recommended SRT Result. .................................................................................... 78 

 
 

http://code-industry.net/


 

 

 

 

Chapter 1 – Introduction 

 
 

http://code-industry.net/


http://code-industry.net/


Chapter 1 – Introduction 
 

 21 

 

he amounts of data generated by new technologies is increasing every day. 

With this growth, also increases the challenge to manage, manipulate, store 

and query these data. To address these challenges, a solution is to provide 

computing as a service, currently known as “Cloud Computing”. In this way, this 

chapter presents a contextualization of the problem, motivation, objectives, 

contributions and list of publication of this thesis. 

1.1 Contextualization 

The cloud computing facilitates access to services and computer resources, independently of 

platform and architecture. Moreover, it provides users with the idea of infinite computing resources 

and data storage. However, as well as utility computing, all its architectural structure is on-demand 

and pay based on usage, i.e. pay only when it matters. 

In the cloud environment, the infrastructure, the platform and the application services are available 

on demand and they should be available, whenever requested, for access anywhere in the world 

(Coutinho, de Carvalho Sousa, Rego, Gomes, & de Souza, 2015). Whereas the dimension and 

heterogeneity of data stored, in general, are very large. Thus, the systems efficiency and scalability 

become necessary to ensure the availability or release of resources for each request from users. 

Given the rapid growth of the amount of data due to technological advances, to manage such 

massive amount of information becomes a challenging problem. The use of cloud computing 

platforms allows new conceptions of management and manipulation of data, because in a cloud 

environment, resources can be acquired and released automatically, quickly and elastic at runtime 

(Das, Agarwal, Agrawal, & El Abbadi, 2013). 

In the cloud computing model, the service providers’ objective is to optimize their profit while 

servicing several customers. This is obtained recurring to some level of abstraction (virtualization) 

according to the type of service, such as: storage, processing, bandwidth and active user accounts. 

To ensure the QoS (Quality of Service) there is a SLA (Service Level Agreement) associated to the 

service delivery. The SLA is a formal contract defined between a cloud service provider and its 

customers that define the level of service expected from the service provider. They are output-based 

and their purpose is specifically to define what the customer will receive. Therefore, it provides QoS 

parameters on the levels of availability, functionality, performance, penalties, billing etc (Emeakaroha 

et al., 2012; Garg, Versteeg, & Buyya, 2013). 

T 
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To ensure the QoS parameters new challenges arise due to high heterogeneity and dynamicity of 

clouds. For example, new QoS parameters need to be measured and the provisioning of resources, 

service delivery and monitoring need to be automated and the dynamic reallocation of resources 

must be decentralized and global (Wu & Buyya, 2010; Wu, Garg, & Buyya, 2011). Furthermore, the 

same QoS parameter can have different definitions between service providers.  

Considering that, the performance is an important requirement for most customers when they 

migrate their applications to the cloud. The SRT (Service Response Time) QoS parameter measures 

the total time between the time that a request arrives at the cloud provider and the time that it 

completes its execution. It is one of the best execution efficiency indicators of a request, allowing to 

know how fast a service can execute, and is the main QoS parameter used in this thesis. 

The measuring of SRT parameter in the cloud is a very complex task because it depends on many 

system variables, such as request type, database model and current system performance (Schad, 

Dittrich, & Quiané-Ruiz, 2010). Furthermore, it is common in a cloud environment that the requests 

rate is highly unpredictable. Therefore, guaranteeing a specific response time for any level of request 

rate is regarded as a significant challenge to the paradigm of cloud computing. Moreover, the growth 

of data stored in the cloud makes this challenge ever harder. 

1.2 Motivation 

Nowadays, many companies have migrated their applications and data to the cloud due to the 

benefits of this technology (Zhou et al., 2014). For example, the applications and data stored in the 

cloud can be accessed anywhere. Another important benefit is the significant reduction of costs and 

time of experimentation and development when compared with local infrastructures because it 

eliminates the need of one or more physical servers in company premises, thus minimizing the 

electricity cost and the necessity of specialists for repairs. 

Moreover, the cloud platforms are substantially scalable, which is highly beneficial for the ever-

fluctuating storage needs of the IT environment. Before the cloud era, companies were struggling 

with their storage needs and wasting time upgrading servers. But with the advent of cloud 

computing, expanding storage needs are no more an issue as every change is managed on the spot. 

This ability to answer quickly to business requirements is one of the major motivations for 

companies to migrate their applications and data to the cloud. According to CDW’s Cloud Computing 

Tracking Poll (Ray, 2012), 84% of organizations are using at least one cloud application and 76% of 
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small business cloud users say they have reduced the cost of applications moved to the cloud, 

saving an average of 24% annually. Furthermore, according to (Larkin & Rose, 2015), companies 

around the world must increase their investments in cloud computing projects about 40% over the 

previous year. 

According to (Mangard & Poschmann, 2015), cloud computing and virtualization is popular more 

than ever. Companies like Microsoft, Google, Amazon, IBM, Oracle, Rackspace and many others are 

investing billions of dollars trying to get a foothold in this new area of lucrative business. This rapid 

increase in the number of cloud service providers is directly related to the emergence of server-less 

companies like Netflix, Instagram, Pinterest, Snapchat and many others that are using commercial 

cloud infrastructure. 

Given this context, consider, for example, an institution/company/authority that wishes to migrate 

their OLAP applications to a cloud service provider, with the objective of allocate computing 

resources on-demand and ensure the Service Response Time (SRT QoS Parameter). Moreover, in 

the migration process it is not interesting for the company to change the data structure. In this case, 

an elastic solution becomes necessary to ensure the quality of services offered. 

A solution is to use adaptive query processing. It has the ability to dynamically and automatically 

allocate or release resources (elasticity of resources) at query runtime. This technique is very 

important when statistical information about the services available may be minimal and the 

availability of physical resources may change. This is a typical scenario of cloud environments. 

However, traditional and adaptive query optimzers' main objective is to reduce response time. 

Moreover, in the context of cloud computing, users and providers of services expect to get answers 

in time to ensure the service SLA.  

According to (Iqbal, Dailey, & Carrera, 2009), from the user’s point of view, this SRT parameter is 

considered one of the mains QoS parameters. However, nowadays, the major cloud providers like 

Amazon (“AWS EC2 Service Level Agreement,” 2015, “AWS S3 Service Level Agreement,” 2015) 

and Google (Sanderson, 2012) only emphasize on CPU availability and cost measure. Therefore, the 

SRT parameter is not handled in SLA due to its complexity. 

In the literature, several works have been focused in development of techniques and algorithms for 

efficient query processing to ensure the SRT parameter (Alves, Bizarro, & Marques, 2011; Amazon 

Web Services, 2015; Cervino, Kalyvianaki, Salvachua, & Pietzuch, 2012; Chi, Moon, Hacigümüş, & 

Tatemura, 2011; Coelho da Silva, Nascimento, de Macêdo, Sousa, & Machado, 2012, 2013; 
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Curino, Jones, Madden, & Balakrishnan, 2011; Dean & Ghemawat, 2008a, 2008b; Guitart, Carrera, 

Beltran, Torres, & Ayguadé, 2008; Kllapi, Sitaridi, Tsangaris, & Ioannidis, 2011; Mian, Martin, & 

Vazquez-Poletti, 2013; Rogers, Papaemmanouil, & Cetintemel, 2010; Sharma, Shenoy, Sahu, & 

Shaikh, 2010, 2011; Vigfusson, Silberstein, Cooper, & Fonseca, 2009)  

However, as presented in Chapter 2, these works present elasticity and/or scalability limitations in 

their algorithms. Moreover, many solutions are not adaptive, intrusive and/or they do not use formal 

definition of their services. Therefore, it is necessary to develop new methods, techniques and tools 

that allow a service to ensure suitably to the SRT parameter, which is one of the main aims of this 

work. 

1.3 Research objectives 

The objective of this thesis consists in development of a new solution to efficient query processing 

on large databases available in a cloud environment. It integrates adaptive re-optimization at query 

runtime using costs based on the SRT QoS parameter. This work focuses on OLAP applications 

because in this kind of environment the adaptive processing produces positive effects on query 

runtime. Based on these premises, the following specific aims and goals need to be achieved: 

(i) Objective 1: Analyze the methods, techniques and tools for efficient query 

processing in the cloud. In this way, it is required to understand the methods and 

techniques of traditional and adaptive queries processing on databases systems in 

centralized, parallel and distributed environments. Moreover, it is necessary to 

understand the techniques of query processing in data warehouse and OLAP 

applications and the techniques for query processing and optimization in the 

cloud. Finally, it is necessary to research in papers, tutorials, technical reports and 

technologies for comprehension of the state of the art and related works of this 

thesis. 

(ii) Objective 2: Development of a model to estimate the Recommended SRT. For this, 

it is necessary to understand the requirements for good performance of queries in 

a cloud environment. The query processing in the cloud comprises a series of 

challenges to be overcome, including, scalability, performance and availability of 

services, self-management, data security and the quality assurance of the data 

service (SLA agreement). As result, it should develop a new model to estimate the 

SRT for different types of database access requests in cloud environment. 
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(iii) Objective 3: Development of a new solution for efficient query 

processing/optimization on large database systems available in the cloud 

environment. The new solution should be based on traditional and adaptive query 

processing techniques and its efficiency based on the SRT QoS parameter. It 

should integrate dynamic re-optimization techniques and the queries/subqueries 

are executed into several steps, where each step concurrently executes a dynamic 

execution strategy at query runtime. The dynamic execution costs of queries are 

based on the model proposed in Objective 2 and the proposed strategies will be 

deployed in the Amazon EC2 cloud infrastructure. In this thesis, the solution was 

evaluated on structured data, considering that some cloud computing platforms 

support SQL queries directly or indirectly. This makes the proposed solution 

relevant for these kind of problems. 

1.4 Contributions 

This thesis proposes a new solution to efficient query processing on large databases available in a 

cloud environment. It uses adaptive query processing based on heuristic rules and the cost of failing 

the SLA. Furthermore, it proposes a model for measuring the SRT estimated for different types of 

database access requests in this environment. The specific contributions of this thesis are: 

(i) State of the art of traditional and adaptive queries processing techniques on 

databases systems in centralized, parallel and distributed environments. 

Moreover, the state of the art of techniques for query processing and 

optimization in the cloud;  

(ii) A new model to estimate the SRT for different types of requests in cloud 

environment. It is very relevant when companies wish to migrate their 

applications, OLAP or not, to cloud service providers, with the goal to allocate 

computational resources on demand, to guarantee the quality of service in terms 

of service response time;  

(iii) New algorithms and strategies based on traditional and adaptive query 

processing techniques (heuristic rules). Its efficiency is based on the model 

proposed to ensure the SRT QoS performance parameter; 
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(iv) Implementation of the SICLOPDB Framework based on the proposed strategies 

and evaluated on large scale with large volume of data, machines and queries in 

a real scenario of cloud computing. 

1.5 List of publications from this work 

The following papers were published during the development of this work: 

 (1) (Costa & Sousa, 2013) :: [Annex A4] COSTA, C.M., SOUSA, A.L. Adaptive Query Processing 

in Cloud Database Systems. In 3rd International Conference on Cloud and Green Computing (CGC 

2013), Karlsruhe, Germany, 2013. 

This paper shows the initial idea and main contribution of this work. Moreover, its architecture is 

presented. This short paper does not present any experiments, it presents only related works, 

architecture and contributions. It was published of work in progress Section. 

 (2)  (Costa, Leite, & Sousa, 2015) :: [Annex A5] COSTA, C.M., LEITE, C.R.M., SOUSA, A.L. 

Service Response Time Measurement Model of Service Level Agreements in Cloud Environment. In 

5th International Symposium on Cloud and Service Computing (SC2 2015), Chengdu, China, 2015.  

In this paper, we propose a model to estimate the Recommended SRT for different types of requests 

on large databases available in the cloud environment. The proposed model is a non-intrusive 

solution and it the model was evaluated utilizing Amazon EC2 cloud infrastructure small instances 

type and the TPC-DS (Tpc BenchmarkTM Ds, 2012) like benchmark was used only for generating an 

OLAP database.  

 (3)  (Costa, Leite, & Sousa, 2016) :: [Annex A6] COSTA, C.M., LEITE, C.R.M., SOUSA, A.L. 

Efficient SQL Adaptive Query Processing in Cloud Databases Systems. In 2016 IEEE Conference on 

Evolving and Adaptive Intelligent Systems (IEEE EAIS 2016), Natal, Brazil, 2016. 

This paper presents a main contribution of this thesis. It presents the partitioning and monitoring 

strategies for adaptive processing of different types of queries (database access requests), a 

dynamic provisioning strategy and their algorithms. Moreover, it presents an implementation of the 

proposed solution and its architecture. Finally, it shows the experiments using Amazon EC2 cloud 

infrastructure small instances type and the TPC-DS like benchmark was used only for generating an 

OLAP database of structured data. 
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1.6 Thesis outline 

To improve the understanding of the reader, we provide here a brief description of each chapter with 

its aim. 

Chapter 2: State of the Art and Related Works: presents researches, concepts and technologies 

related to the object of study of this doctoral thesis. Firstly, we present an overview of Data 

Warehouse and OLAP (On-Line Analytical Processing) applications. Then, we discuss the SLA 

contract in cloud environment as well as specification of QoS parameters to this kind of SLA. After 

we discuss traditional and adaptive query processing of databases and query processing in the 

cloud. Finally, we present related works to query processing/optimization in cloud environments. 

Chapter 3: Service Response Time Measurement Model of Service Level Agreements: In this 

chapter, we present a model for measuring a Service Response Time estimated for different request 

types on large databases available in a cloud environment. Firstly, we present the formal definition of 

a request used in this work. After, we present the SRT measurement model, its definition and tools. 

Finally, we discuss the experiments of the proposed model utilizing Amazon EC2 cloud infrastructure 

and the TPC-DS like benchmark and, finally their results. 

Chapter 4: Efficient Adaptive Query Processing on Large Database Systems Available in the Cloud 

Environment: In this chapter, we present a new solution to efficient query processing on large 

databases available in a cloud environment and the SiclopDB Framework, which implements the 

proposed solution for this problem and its architecture. Firstly, we present the SLA violation cost and 

the total computational cost of a request used in this work. After, we discuss the SiclopDB 

framework architecture and its components. Then, we present a new partitioning and monitoring 

strategies for adaptive processing of different types of queries in the cloud, the dynamic provisioning 

strategy and finally their algorithms. 

Chapter 5: Experimental Evaluation - Validation and Results: In this chapter we present the 

experiments of a case study using the strategies of query processing presented in Chapter 4. 

Therefore, firstly, we present the environment where the experiments were executed. Then, we 

present the methodology of the experiments. After, we show the requests used in the experiments. 

Finally, we present the results obtained as well as its analysis. 

Chapter 6: Conclusions: In this chapter we conclude our work by describing the objectives achieved 

and we present some ideas that would be interesting for future research in this area. 
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2.1 Introduction 

In this chapter, we present researches, concepts and technologies, which provides the support to 

this doctoral thesis. Hence, for better understanding, this chapter is organized as follows: 

2.2 Data warehouse and OLAP: presents an overview of Data Warehouse and OLAP (On-Line 

Analytical Processing) applications. 

2.3 SLA in cloud computing: discusses the SLA contract in cloud environment as well as 

specification of QoS parameters to this kind of SLA. 

2.4 Data processing: discusses traditional and adaptive query processing of databases and 

query processing in the cloud. 

2.5 Related works: presents related works to query processing/optimization in cloud 

environment. 

2.6 Conclusion: presents the final considerations of this chapter. 

2.2 Data warehouse and OLAP 

A DW (Data Warehouse) is a computational system used to facilitate reporting and analysis of large 

volumes of data. Hence, a DW's main objective is to provide data to business analysts to support 

decision-making. In practice, as shown in Figure 2-1, a DW integrates multiple databases to provide 

a consolidated view (materialized view) of them, focusing on the business analysis goals. 

Strategic information for decision-making using Data Warehouse have aroused great interest in 

organizations (Kimball & Ross, 2013), as this is a technology that when integrated with appropriate 

applications has many benefits, including: the speed of decision-making, optimized resource 

management and the discovery of new business opportunities. 

As shown in Figure 2-1, for the construction and manipulation of a DW, applications for data 

extraction and processing are required. They are called ETL (Extract-Transform-Load) tools, and are 

used to build a materialized view from heterogeneous data sources. To access, manage and analyze 

data in a DW, OLAP (Online Analytical Processing) tools are used, and the results used to support 

decision-making. 
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Figure 2-1. Data Warehouse Architecture. 

Consider, for example, two relational schemes shown in Figure 2-2. These schemes simulate 

heterogeneous data sources, and they need to be designed and integrated in order to provide a 

materialized view. The schemes represent different sectors of a company, human resources (Figure 

2-2 (a)) and sales sector (Figure 2-2 (b)). 
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Figure 2-2. Database of a Company: (a) Relational Scheme of Human Resources Sector and (b) Relation Scheme of 
Sales Sector. 

Using ETL tools, after the extraction process of data sources, the transformation process constructs 

the syntactic and semantic mappings between relational schemes, respecting the integrity 

constraints. Finally, in the loading process, a materialized view is generated in accordance with its 

mappings. 

A possible materialized view is shown in Figure 2-3. It presents characteristics of both relational 

schemes of Figure 2-2. It is worth noting that the materialized view in DW must be created according 

to the goal to be achieved. 

 

Figure 2-3. Example of Materialized View in Data Warehouse. 

In a DW, the views are represented by multidimensional models, as will be seen in Section 2.2.1, 
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and the data is represented in data cubes, as will be seen in Section 2.2.2. 

2.2.1 Multidimensional modeling of data warehouses 

In DW, a scheme model widely used is the multidimensional model. It allows users to do operations 

on data simply. In this model, there is the relationship of facts and dimensions, in which facts are 

performance measures and dimensions are contexts of a fact. 

In relational databases, a table, an attribute or a set of attributes of a table represents a dimension 

and a fact represents joins between two or more dimensions. For example, in Figure 2-3, the fact is 

the Materialized_View and its dimensions are Function_name, Employee_name, Customer_Name, 

Sale_date_sale and Product_name. 

The star or snowflake models can represent multidimensional schemes. The most widely used 

model is the star model, in which a fact and its dimensions are shown explicitly. For example, Figure 

2-4 shows the materialized view of Figure 2-3 in this model, there is a fact in the center of the star 

and its dimensions in tips. However, it is not necessary to have five dimensions in order to be called 

a star model. 

 

Figure 2-4. Star Model of Materialized_View Fact. 

Considering the relational schemes in Figure 2-2 and the materialized view in Figure 2-3 a few facts 

can be represented, for example: 

• A user wants to know in DW about functions and salaries of employees who best 

sold between 2013 and 2015. This query would be represented by the following 

model: 
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Figure 2-5. Fact: Profit Employee. 

• A user wishes to know the top selling products between 2010 and 2015. Hence, 

the following model represents such query: 

 

Figure 2-6. Fact: Top Selling Products. 

2.2.2 OLAP applications 

In a DW, data can be represented in different ways, but the most used is the data cubes, i.e. the 

data is in a cube in which each side represents a dimension. Currently, the cube modeling is the 

mostly used because there are many powerful tools using such approach. They are called OLAP 

applications 

OLAP applications are used for analysis of DW’s complex data. It allows that analysts, managers and 

executives have fast, consistent and interactive access to a wide variety of views of information 

(Kimball & Ross, 2013). Currently there is a great need to provide information at the right level of 

detail to support the decision-making activity. Thus, OLAP techniques provide this functionality 

(Elmasri & Navathe, 2010). 
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OLAP functionality is characterized by the dynamic multidimensional analysis of consolidated data. 

Thus, OLAP applications offer users several interfaces to make any operations (queries and 

manipulation) on the data in a DW. For example, operations such as drill-down and roll-up, which 

are the mostly used. 

The drill-down operation consists of drilling a slice of the data cube, i.e. decomposing part of a cube 

to form a new cube, which therefore will be in greater level of detail. The roll-up operation consists of 

generating a data cube in a more generalized level, i.e. this operation is the opposite of the drill-

down operation, creating a more general cube compared to the original one. These operations are 

exemplified in Figure 2-7, in which each data cube is a fact with three dimensions: Customer, Sale 

and Date_Sale. 

 

Figure 2-7. Example of Drill-down and Roll-up Operation using OLAP Applications. 

In fact, OLAP applications can handle large amounts of complex data and the speed at which 

executives obtain information and make decisions determines the competitiveness of a company 

and its long-term success (Kimball & Ross, 2013). Therefore, considering that nowadays many 

companies are migrating their applications and data to the cloud, a great challenge to cloud 

computing providers is to ensure the quality of service, and performance for these types of 

applications deployed in this environment. This is the scenario of this work: OLAP services that 

manipulate large amounts of data in the cloud. 
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2.3 SLA in cloud computing 

2.3.1 Definition and lifecycle of a SLA 

The SLA (Service Level Agreement) is a formal service contract between a cloud service provider and 

its customers (Patel, Ranabahu, & Sheth, 2009; Wu & Buyya, 2010), usually a document that 

defines the levels of availability, functionality, performance, penalties and billing expected from the 

provider to its customers. 

The Figure 2-8 presents the SLA lifecycle in three high level stages. The first stage is the SLA 

Contract Definition, which corresponds to the discovery of the service provider, model specification, 

negotiation and optimization of the SLA and as result, a SLA template is obtained. The second stage, 

called SLA Operation consists in the implementation, monitoring, evaluation, renegotiation and 

accounting services of SLA. Finally, the SLA Closing/Breaking, which involves the end/breach of 

contract between the parties. It is important to identify the causes to breach of contract: 

irrecoverable loss of data, provider's lack of performance, etc. In the following, we detail each stage 

of the SLA lifecycle. 

 

Figure 2-8. SLA Lifecycle. 
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STAGE I – SLA Contract Definition: Discovery of the service provider, model specification, negotiation 

and optimization of the SLA 

In a cloud environment, it is important to locate resources that can efficiently satisfy the customer 

requirements/demands, because it is possible to find environments with different kinds of 

resources, standards, technologies and administrative policies. In addition, similar objects in 

different cloud environments may have different meanings. 

In the process of discovering a service provider, the ideal for users is to have the largest possible 

amount of information of the cloud services environment. Primarily, this information must include 

the resources capacity, its availability and to know if they are accessible to a wide public. Thus, 

users can quickly find the services that best suit their objectives. 

After choosing the provider, the terms of the contract between the parties is negotiated and defined 

from an existing SLA template. Among the terms we can highlight the following QoS parameters: (i) 

the provider ability to deliver the services, (ii) the desired performance of the provider from the 

workload of the user, (iii) the guarantees of availability and performance, (iv) the accounting 

parameters, (v) measurement/reporting mechanisms, and finally, (vi) the service costs and 

parameters of penalties in case of SLA violation. Furthermore, it is important that the parties have 

not ambiguous parameters, even if the parties use different protocols. Therefore languages like 

WSLA (Keller & Ludwig, 2003) and WS-Agreement (Andrieux et al., 2005) can be used to minimize 

this problem. 

Finally, with the contract established between the parties, the responsibilities of each party should 

be detailed, as well as the consequences resulting from the breach of standards, software failures 

and other events that may influence the system behavior. This part of the process can consume a 

lot of time, and effort. 

STAGE II – SLA Operation: execution and monitoring SLA violations 

In this stage starts the execution and monitoring of provisioned resources to the costumer’s 

requests. The real-time monitoring checks the execution of an instance of a service according to the 

settings of SLA, in order to detect whether the contract is being ensured or not. 

The instance of a service is parameterized and compared to the SLA QoS parameters. When it is 

approaching or reaching a limit value, the environment must react to avoid a SLA violation. For 

example, (re)allocating or releasing resources to effectively optimize a task. Therefore, the provider 
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must consider how to optimize the use of resources and how to preserve the Quality of Service 

according to the priorities established on the SLA contract. 

According to (Wu & Buyya, 2010), there are three types of infrastructures for SLA monitoring: (i) 

Trust module on the provider’s side; (ii) Trust module on the customer side; and (iii) TTP (trusted 

third party), a trust module using third party. To avoid any suspect, the TTP monitoring is the 

preferred approach to manage this process. 

When a breach of contract happens, the renegotiating of the SLA is a difficult task because no one 

wants to lose and therefore, tolerances should be part of the renegotiation. Moreover, flexibility in 

contract is also important because changes can be necessary to answer some external demand. 

Other information such as global statistics are also relevant to check SLA and to account and 

establish the costs of the used resources. Thus resources usage should generate a list describing 

which services/resources were used, the measurement used and for how long, as well as relating 

the values agreed by the use of each of them in accordance to the definitions established by SLA 

(Wu & Buyya, 2010; Wu et al., 2011). 

STAGE III – SLA Closing: closure or breach of contract and penalties for SLA violations  

At this stage, the SLA and its settings are excluded from the service provider and the contract is 

finished. It is important to identify the causes that led the parties to the breach the contract, in case 

it has indeed been violated. Many penalty clauses of SLAs are linear and they do not present a good 

performance and best models can be extended to these clauses (Lee, Wang, Zomaya, & Zhou, 

2010). Therefore, due to different types of violations, the penalty clauses need to be extensive. 

The SLA cost parameters should provide information such as the price for the use of resources and 

instance of a service, the country's currency and the period for which the price is valid. The SLA 

model design should be flexible enough to allow different types of charges. In addition, the use of a 

service or resources above the agreed limit may cause additional costs to be charged. 

2.3.2 QoS parameters of a SLA 

Cloud computing has become an important paradigm for outsourcing IT resources. Currently there 

are many cloud providers offering different services with different prices, parameters and 

performance levels, even when those providers offer similar services. For example, Amazon EC2 

offers IAAS (Infrastructure as a Service) services with the same computing power with different 

prices for different regions. In addition, several companies, including small and medium enterprises, 
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have started using the cloud infrastructure (Emeakaroha et al., 2012; Garg et al., 2013). Thereby, 

there is a wide range of different contracts with different SLA requirements. Thus, it becomes 

difficult for a customer to choose the most suitable provider to co-locate their applications. 

A major challenge from the customer’s point of view is to find the best cloud service, which can 

ensure/satisfy their QoS parameters agreed in contract. Therefore, it is important to consider which 

is the cloud service best suited for a particular customer profile. Afterwords, the customers need to 

have a way to identify and measure key performance criteria that are important to their applications. 

For example, financial organizations usually require security and privacy QoS requirements, but the 

availability QoS requirement, although important, is not a priority of these organizations (Chi et al., 

2011). 

Therefore, how to select a feasible service to meet the demands of different users has become a 

popular research area. In order to improve the customer’s satisfaction, many studies (Alrifai & Risse, 

2009; Canfora, di Penta, Esposito, & Villani, 2005; Liang, Zou, Guo, Yang, & Lin, 2013; Siegel & 

Perdue, 2012; Zeng et al., 2004; Zeng, Benatallah, Dumas, Kalagnanam, & Sheng, 2003; Zheng, 

Ma, Lyu, & King, 2009; Zheng, Zhang, & Lyu, 2010) focused on the QoS optimization. 

The CSMIC (Cloud Service Measurement Index Consortium) consortium is widely used and aims to 

define the QoS parameters to be used by most cloud provider and to provide a methodology for 

calculating a relative index to compare the services of different cloud providers. 

The CSMIC started in 2010 by the members of CA Technologies, a software company 

headquartered in New York, and by researchers at Carnegie Mellon University, located in 

Pennsylvania in the United States. Currently, many others members are part of this consortium, 

such as: Accenture, a global company for consulting, technology services and outsourcing serving 

customers in more than 120 countries; Cask LLC, a telecommunications company located in San 

Diego, California; DSCI (Data Security Council) of India, an organization of technological innovations 

on the protection and technological development of security and data privacy; IAOP (International 

Association of Outsourcing Professionals), a global organization of standards and defense of 

outsourcing in the business world; Mycroft, an innovative IT company located in England; TM Forum, 

a global nonprofit company for service providers and their suppliers in telecommunications and 

entertainment industries; TPI, a consulting company in outsourcing in the United States; researchers 

at the Public University of London; researchers at Stony Brook University, located in New York; and 

finally, researchers at the University of Melbourne in Australia. 
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The major product of this consortium is the SMI (Service Measurement Index) (Garg, Versteeg, & 

Buyya, 2011; Garg et al., 2013; Siegel & Perdue, 2012), a framework that aims to measure the 

services commonly offered in cloud environments. Specifically, the SMI consists of a set of KPIs (Key 

Performance Indicators), providing a global view of QoS parameters and their metrics used by cloud 

service providers. With SMI, the customers can make a better selection of a cloud service provider 

(Emeakaroha et al., 2012; Garg et al., 2013; Siegel & Perdue, 2012; Vaulx, Simmon, & Bohn, 

2015). A KPI is a key QoS parameter, in which has one or more QoS sub-parameters. The following 

are the main QoS parameters defined in the SMI: 

(i) Accountability: this group includes QoS parameters that define a relationship of 

trust between customer and service provider. It is a fact that no organization would 

like to install their applications and store their critical data in a cloud environment, 

in which there is no good ethics and/or responsibility, especially when it comes to 

data safety and reliability. Among the sub-parameters considered important to 

measure ethics and responsibilities of a cloud services provider, we can highlight 

auditability, compliance, data ownership, ethicality and sustainability. 

(ii) Agility: this group includes QoS parameters in order to measure the evolutionary 

flexibility of the provider capacity, identifying how fast new capabilities can be 

integrated into the IT according to business needs. This QoS parameter is quite 

interesting for organizations because the expansion and faster change of IT 

resources represent fewer costs for organizations. Parameters considered as agility 

of cloud services are elasticity, portability, adaptability and flexibility. 

(iii) Cost: one of the first questions arising in organizations before migrating data to a 

cloud environment is whether it is profitable or not. Cost is clearly one of the main 

QoS parameters for IT and the business, and sometimes it takes many hours or 

weeks of discussion to reach an agreement. However, in the SMI, the cost is the 

simplest quantifier and has the following sub-parameters: acquisition & transition 

cost, on-going cost and profit or cost sharing. 

(iv) Performance: this group includes QoS parameters for the performance of cloud 

services. There are different solutions offered by cloud providers in face of the need 

for different IT organizations. Among the sub-parameters that measure the 

performance of cloud services, we can highlight accuracy, interoperability, service 

response time, throughput and efficiency. This set is one of the most important 
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group of SLA QoS parameters because it is the main aim for most customers using 

cloud computing. Therefore, for the cloud services to ensure customer expectations 

in terms of performance, it is necessary to understand how these sub-parameters 

are measured. 

(v) Assurance: this group includes QoS parameters that measure the probability of a 

cloud service to perform as expected or agreed in the SLA agreement. It is essential 

for every organization to expand its business and provide better services to their 

customers. Therefore, reliability, resiliency and service stability are important factors 

when contracting a cloud service. 

(vi) Security and Privacy: data security and privacy are important to the majority of 

organizations. Data hosting under the responsibility of another organization is 

always a critical issue and requires strict security policies of cloud providers. For 

example, financial organizations require high level of security of their data. They 

require their data to be safe and private from any tampering or unauthorized 

access. Finally, this set includes sub-parameters such as confidentiality, privacy, 

integrity and availability of data. 

(vii) Usability: Usability represents one of the main quality parameters. It represents the 

ease of benefiting from the service and from the information it provides (Corradini, 

Polzonetti, Re, & Tesei, 2008). The easier it is, more organizations will migrate its 

applications to the cloud. Usability can depend on multiple factors such as 

accessibility, installability, learnability and operability. 

As shown in Figure 2-9, Currently, SMI has over 50 parameters and sub-parameters, each one can 

be measured and evaluated by a customer for an appropriate choice of a cloud service provider. 

Thus, the SMI provides a global view of QoS parameters needed for a cloud service provider. In 

addition, it assists customers in understanding and measuring the parameters that will be used in 

stage of template specification, negotiation and optimization of the SLA as shown in Section 2.3.1. 

One can still note that SMI indirectly helps controlling the monitoring of SLA violations, because a 

service provider when properly selected increases the probability that SLA requirements are 

guaranteed. 
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Figure 2-9. Parameters and Sub-parameters defined in the SMI (Siegel & Perdue, 2012). 

2.3.3 QoS performance parameters of a SLA 

The QoS performance parameters are among the most important clauses in a SLA, because it is of 

great interest to customer to know clearly their expectations when executing a request in a service of 

a cloud provider (Emeakaroha et al., 2012). To measure them, the SMI defined four sub-

parameters: service response time, accuracy, throughput, efficiency, elasticity and scalability. In the 

following, we present these parameters in detail. 

Service Response Time: the execution efficiency of a service can be measured in terms of response 

time; i.e. how fast the service is ready for use. For example, if a user indirectly requests a virtual 

machine on a cloud provider, then the service response time is the time given for the provider to 

begin serving the request. In this example, it includes the virtual machine provision, start, IP address 

allocation and application(s) start. 

According to the SMI, the service response time depends on various factors such as average 

response time, maximum response time assured by the service provider and the percentage in 

which the response time exceeds the maximum time promised by the provider:  
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• The average response time of a service (T_ms) is given by: 

𝑻𝒎𝒔 = 𝑻𝒓𝒔𝒊/𝒏
𝒊

 (2.1) 

in which 𝑇*+,	is the time between the moment that a user i requests a service and the service is 

ready to process the i request. n number of times a service was requested. Therefore, T_ms  the 

sum of the service response times divided by the number of times the service was requested. 

• The Maximum Response Time (𝑇./0) corresponds to the maximum promised time 

a cloud service is ready to execute a request. 

• The Violations of Maximum Response Time of a Service (𝑇./0) is given by the 

quotient between the number of times that the response time was higher than the 

maximum promised response time and the number of requests, expressed in 

percentage. 

𝑽𝑻𝒎𝒂𝒙 = 	 (𝒏5/𝒏)×𝟏𝟎𝟎 (2.2) 

in which 𝑛5 is the number of service requests that the cloud service provider was not able to ensure 

the contract and n is the total number of service requests. 

Accuracy: the performance accuracy of a service is measured by the degree of closeness of 

requirements met when compared to the expected requirements. For computing resources, such as 

virtual machines, the accuracy can be equated by the number of times the service provider 

breached the SLA contract. Hence, if 𝑓, is the number of times the cloud service provider does not 

met the requirements for a user i, and n the number of users who accessed the service, then the 

accuracy rate is defined as: 

𝒇𝒊
𝒏𝒊

 (2.3) 

Throughput and efficiency: Throughput and efficiency are important measures to evaluate the 

performance of services in cloud providers. The throughput corresponds to the number of activities 

performed by the cloud service per time unit. The throughput depends on several factors that can 

affect the performance of a task. For example, consider a user application that has n tasks, which 

are subjected to run on m machines of a service provider. Let Let 𝑇=(𝑛,𝑚) be the execution time 

of n tasks in m machines. Let 𝑇@ be the overhead time due to factors such as delays in the startup 
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of infrastructure and delays in communication between tasks. Thus, the total throughput of a cloud 

service is given by: 

𝜶	 = 	
𝒏

𝑻𝒆 𝒏,𝒎 + 𝑻𝟎
 (2.4) 

The efficiency of a cloud application indicates the effective use of leased resources. Therefore, the 

larger the efficiency value, the lower the overhead. Thus, system efficiency is given by: 

𝑻𝒆(𝒏,𝒎)
𝑻𝒆 𝒏,𝒎 + 𝑻𝟎

 (2.5) 

Besides the presented QoS parameters, other parameters related indirectly to the performance of 

cloud services are elasticity, scalability and availability. Availability corresponds to the percentage of 

time a customer can access the service. Let 𝑇D be the time the service was available and 𝑇DE the 

time the service was not available; the availability is given by: 

𝑻𝒅
𝑻𝒅 + 𝑻𝒅𝒏

×𝟏𝟎𝟎 (2.6) 

Elasticity is defined in terms of how much a cloud service can be scaled, even during a service 

overload. Elasticity is defined by two parameters: the average time needed to expand or contract the 

capacity of the service, and the maximum capacity of the service. The capacity is the maximum 

number of compute units that can be provided at peak times. 

Scalability is determined by the capacity of a system to handle a large number of requests from 

simultaneous applications. The ability to scale resources is an essential part of the elasticity 

provided by cloud computing. However, this measure is more applied to the performance 

perspective of user applications. 

There are two types of scalability: horizontal, which means the increase of cloud resources of the 

same type. For example, the booting of more virtual machines of the same type during overloads. 

The vertical scalability is defined as the ability to increase the capacity of a cloud service, such as a 

virtual machine by adding physical memory resources, CPU speed and/or network bandwidth. The 

horizontal scalability is given by the elasticity and the vertical scalability can be calculated according 

to the maximum increase in the available resources of a cloud service.  

http://code-industry.net/


Chapter 2 – State of the art 

 

 46 

2.4 Data processing 

The QoS performance parameters presented can be used to resolve the new challenges of data 

management in cloud environment. Mainly, the challenges related to query optimization ensuring 

the response time. In the literature, there are several works related to query processing and 

optimization in traditional DBMSs (Deshpande, Ives, & Raman, 2007; Gounaris, Paton, Fernandes, 

& Sakellariou, 2002; Zhao, Hu, & Meng, 2010). These works provide the basis for the current 

requirements, such as, data management in the cloud. Thus, this section presents the state of the 

art in query processing in databases. 

2.4.1 Query processing in database 

DBMSs (Database Management Systems) implement various techniques to execute efficiently a 

query in their database(s). These techniques are based on the data model managed by the DBMS. 

In this section, we will address the relational DBMS optimization techniques, which are the basis for 

most other models.  

In relational DBMS, a SQL (Structured Query Language) query first goes through a lexical analyzer 

and, then, a syntactic analyzer for correctness and query validation. Then, the validated query is 

rewritten in a tree data structure, called the query tree. In the literature, many authors use graphs to 

represent the query tree. Then the DBMS optimizer chooses an effective strategy, also known as 

efficient execution plan, to execute the query tree. A query plan (or query execution plan) is an 

ordered set of steps used to access data in a SQL relational database management system. 

The main goal of the optimizer is to find an appropriate query plan, among others, to process a 

query that gives the lowest response time to the user. Finally, the optimized execution plan is 

executed and the result of the query is returned to the user. 

Therefore, the query optimizer is an indispensable component in a relational DBMS engine. To 

improve the performance of a query, traditional optimizers use two techniques, not necessarily in 

the following order: 

(i) Optimizing the query plan based on heuristic rules, which modify the internal 

representation of the query tree. The heuristics rules use equivalence expressions to 

transform an initial query tree in a final optimized query tree. An example of a 

classic heuristic rule is to apply SELECT and PROJECT operations before applying 

JOIN or any other binary query operation. DBMSs can achieve a good optimization 
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with a set of algorithms that use several heuristics rules in order to reach maximum 

query performance (Deshpande et al., 2007; Elmasri & Navathe, 2010; Gounaris et 

al., 2002). 

(ii) Optimizing the query plan based on costs, since the publication of the System-R 

paper (Selinger et al., 1979), cost-based optimizers have been widely adopted. 

Usually the costs are quite complex to calculate, because they depend on 

estimates, properties of execution plans and specific cost formulas for each query 

plan operator (Bruno, Chaudhuri, & Ramamurthy, 2009). According to (Elmasri & 

Navathe, 2010), the cost of running a query includes the following components: (i) 

I/O Cost to access the hard disk: search operations, reading and writing of data 

blocks on hard disk; (ii) Storage Cost: temporary files generated during query 

execution; (iii) Computing Cost: processing of query operations in main memory 

and CPU, such as read-write on records and/or buffers; (iv) Memory Usage Cost: 

related to the number of necessary memory buffers during query execution; (v) 

Communication Cost: related to the cost of transport of the query and its results 

from a database site to the site or terminal where the query originated. The 

calculation of this cost is quite important because it is most expensive cost in 

distributed database systems (Abadi, 2010; Elmasri & Navathe, 2010). 

The cost-based optimization presents some inferences. For example, for large databases it is more 

important to minimize the I/O cost of access to the hard drive. In small and parallel databases, it is 

interesting to reduce the computational cost. In distributed databases, it is interesting to lower the 

communication cost. In native XML databases, in addition to observing the computational cost, it is 

interesting to follow some guidelines, such as avoiding standardization, employing unique element 

names, pre-calculating values and transforming data with their queries. 

For decades, different techniques were developed, such as, Query Hiting and Semantic Query 

Optimization (Bruno et al., 2009; Elmasri & Navathe, 2010). The Query Hiting technique, quite 

common in current databases, instructs the optimizer to restrict its search space to a certain subset 

of query plans (for example, imposing a choice of plans that use a particular type index, or 

determining the order and/or join method) (Florescu & Kossmann, 2009). The semantic 

optimization techniques use restrictions of the database scheme, as CHECK, TRIGGER and STORE 

PROCEDURE to improve query performance. Consider, for example, that in a STUDENT table, its 
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NAME column has a NOT NULL restriction. Therefore, the following query, SELECT * FROM 

STUDENT WHERE NAME IS NULL, would be executed quickly because the semantic optimizer would 

notice before executing the query, via restriction, that there is not any student with null names. 

We observe a complex universe of rules, algorithms, formulas and guidelines that compose the 

traditional query optimization, whose main objective is to improve the performance of queries to the 

database (faster response time for users). However, in the context of cloud databases, as shown in 

Section 2.4.3, it is not a priority to improve query performance, but to achieve service quality, i.e. a 

suitable performance according to the SLA contract. Therefore, we understand that this universe 

must be readapted for cloud computing technologies. 

2.4.2 Adaptive query processing 

In DBMSs, the optimizer improves the performance of compile-time queries. Thus, optimization is 

just one-step before the effective execution of the query. However, in parallel and distributed 

environments in which statistical information about the availability of databases can be minimal and 

the availability or loading of physical and virtual resources are subject to change, query optimization 

can have a poor perform, especially when queries move and/or return large amounts of data, since 

it is not possible to have precise cost estimate and a good selectivity, for the environment is highly 

unpredictable and volatile (Deshpande et al., 2007; Gounaris et al., 2002). 

In this context, a solution to produce a good query execution plan is to use adaptive query 

processing techniques, which interacts with environmental changes modifying the query execution 

plan at runtime. The adaptive processing aims to improve query performance by modifying its query 

plan in accordance with environmental changes (infrastructure, workload, etc.) at runtime of the 

query (Deshpande et al., 2007). 

Two important tasks in adaptive query processing is to modify and build, when necessary, new 

operators in query plan at runtime. The modification of the query plan may occur in the physical 

and/or logical query plans. Changes in logical query plan consist in modify the SELECT, PROJECT 

and ORDER operations, and the query plan format. For example, a change in the execution site of 

the SELECT operator may occur if during query execution, a data replica of the remote site becomes 

available in the query site itself. Changes in the physical query plan consist of modifying operations 

indexes and joins algorithms. For example, a hash join can be replaced by an index join, if an index 

attribute of the junction becomes available during the query execution. 
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In general, the adaptive query processing techniques emphasize the following problem areas 

(Deshpande et al., 2007; Gounaris et al., 2002): 

(i) Fluctuations in the main memory: correspond to techniques that try to adapt the 

shortage of memory and memory availability in excess. In this case, the query 

execution plans may be forced to release/acquire some or all of the resources they 

have during query execution; 

(ii) Users preferences: cases in which techniques are built for users who are interested 

in quickly obtaining partial results of a query  

(iii) Data input rates: correspond to techniques that adapt to data input rates because 

the quality of a query execution plan depends greatly on the estimation accuracy of 

input parameter values (Yin, Hameurlain, & Morvan, 2015). They are generally 

applied in parallel and distributed systems, in which the response times of the 

remote data sources are quite unpredictable; 

(iv) Current statistics: correspond to techniques to acquire statistical information at 

runtime of the query, ensuring that the information is valid for the current conditions 

and consequently adapting best query execution plan. Therefore, the optimizer may 

be recalled repeatedly; 

(v) Performance fluctuations: problem that often occurs in parallel systems. In this 

case, the techniques are adapted to the site performance fluctuations trying to find 

data replicas in sites with lower load for processing the query; 

(vi) Any change in the environment: combines the previous techniques. Some are 

widespread and can adapt to various types of environmental changes, that is, 

computer resources, availability of processor and memory, data characteristics, 

operator costs, selectivity and data input rates. 

Therefore, the adaptive query processing is mainly useful in highly dynamic, unpredictable and 

volatile environments, especially if databases are integrated in a cluster (Foster & Kesselman, 

2003), being this the common infrastructure of computing clouds (Zhang & Ardagna, 2004). 

Adaptive query processing has the ability to dynamically and automatically allocate or release 

resources (elasticity of resources) during the query runtime and hence, it has a good performance in 

query response. However, this technique needs to be readapted to the cloud environment, since, 

along with traditional optimizers; it does not ensure all requirement for query processing in cloud. 
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2.4.3 Query processing in cloud 

The infrastructure of a computing cloud consists of a cluster with hundreds or thousands of 

computers, which are used for storage and data management. In the cluster, computers are 

networked and their communication takes place through the system as if they were a single large 

machine. These Computers are called master or slave nodes. Master nodes are responsible for the 

metadata management of the entire cluster, scheduling the execution of tasks on slave nodes. Slave 

nodes are responsible for storing data. 

Figure 2-10 shows the query processing in a cloud. First, the query is scheduled, and then 

partitioned into sub-queries, which go to the slave nodes that store the relevant data to process 

them. Then each sub-query is performed on the slave nodes and one single result is presented to 

the user. According to (Zhao et al., 2010), the query on the cloud platform is different from central 

or parallel database. In the cloud platform, client query is often presented against the master nodes. 

After that, the master nodes decide which slave nodes are relevant to the query and then the query 

is passed to the slave nodes to do the query processing directly. 

Hence, there are two important differences between query processing in the cloud and query 

processing in traditional, parallel and distributed environment (Kllapi et al., 2011; Padhy, Patra, & 

Satapathy, 2012): 

(i) Interest in Data Environment: the processing and technology in parallel/distributed 

environment employ system-level measures, such as, database throughput rate, 

average length of query response, and so on. In the cloud environment, the interest 

is linked to profit optimization in business level as in SLA contracts. 

(ii) Scalability and Workload: The great scalability and dynamic workload required in 

cluster makes query processing in cloud environment a different problem when 

compared to parallel/distributed processing. In the cloud, these problems must be 

solved by “contractual elasticity” i.e. providing use of resources to avoid SLA 

contract violations. 
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Figure 2-10. Query Processing in the Cloud. 

2.5 Related works 

Currently, several studies have been focused in search of techniques for efficient query processing 

in the cloud (Alves et al., 2011; Amazon Web Services, 2015; Cervino et al., 2012; Chi et al., 2011; 

Coelho da Silva et al., 2012, 2013; Curino et al., 2011; Dean & Ghemawat, 2008a, 2008b; Guitart 

et al., 2008; Kllapi et al., 2011; Mian et al., 2013; Naskos et al., 2015; Rogers et al., 2010; Sharma 

et al., 2010, 2011; Vigfusson et al., 2009). Among these, we can cite the ESQP (Efficient SQL Query 

Processing) (Kllapi et al., 2011; Zhao et al., 2010), which is a SQL query processing framework that 

uses replicas stored in the cloud. It aims to minimize the time of query execution, exploring 

replicated data. It adopts the MapReduce framework strategy (Dean & Ghemawat, 2008a, 2008b) to 

decompose an SQL query into several subqueries in accordance with the corresponding data 

replicas. The ESQP employs techniques including index and pipeline, to improve the processing 

efficiency of the subquery. However, the ESQP does not perform adaptive query processing, acting 

proactively, which may not be suitable in highly unpredictable environments on the availability of 

resources. 

Another important work is the development of the SLA-Tree framework (Chi et al., 2011), which 

provides a new data structure to efficiently ensure the SLA agreement. SLA-Tree uses the response 

time of queries according to the SLA contract. The response time in this work is the difference 
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between the time that the query is submitted to the system and the moment the query execution is 

concluded in the provider. SLA-Tree considers that there is only one buffer for each cluster node 

and, as in (Zhao et al., 2010) the workload is known before query execution. That way, the query is 

not monitored during its execution. 

(Vigfusson et al., 2009) present an adaptive algorithm to optimize the response time of queries in 

distributed databases. The algorithm partitions and adaptively identifies the best level of parallelism 

for each query. The authors propose an adaptive provisioning algorithm for only select-range queries 

and consider variations in performance of VMs (Virtual Machines). On the other hand, this work does 

not observe an SLA and does not specify the frequency of the monitoring algorithm during queries 

execution. 

(Iqbal et al., 2009) present an SLA-oriented resource manager focused on cloud computing and 

based on open source technology. It provides adaptive resource allocation and dynamic load 

balancing for Web applications in order to ensure a SLA. One of the limitations of this work is that it 

uses resource increase not providing the mechanisms for resource shrink. In addition, the work 

does not check DBMS variables for database access requests, addressing only the level of the 

application server layer. Thus, monitoring is given using only system variables. 

(Rogers et al., 2010) present a framework for the provisioning of resources that identifies a set of 

minimum cost of resources (i.e. a set of potentially heterogeneous virtual machines) that can 

collectively satisfy a variable workload on time within the quality expectations of the service. The 

authors describe two solutions for the resource-provisioning problem. The black box provisioning, 

which considers profiles of performance and cost of different types of VMs under the variation rates 

of queries that are given previously (it uses execution samples). The goal is to capture the input rate 

that each VM supports without violating the service quality associated with the queries executed by 

the system. The white box provisioning, which estimates how much computational resources are 

required to execute the workload using the database optimizer statistics to predict the consumption 

of physical resources (I/O, memory, CPU) for each query. Despite the fact, the work presents a 

solution that involves minimizing costs in the use of resources to customer requests and worries 

about latency of these consultations of a given SLA, it does not use a monitoring strategy during 

requests execution, which may not be suitable in highly unpredictable environments on the 

availability of resources. 
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(Alves et al., 2011) propose the FloodDQ system, a MapReduce system that uses deadlines for 

running queries without discarding data or reducing results accuracy. The FloodDQ uses adaptive 

processing providing the increase or decrease of resources during query execution. If during query 

execution it is determined that it passed a margin of query execution safety (progress monitoring 

estimate and computing resources), the system requests more computational nodes to execute the 

query. The safety margin is calculated by using the estimated query execution progress using 

algorithms (Morton, Balazinska, & Grossman, 2010; Morton, Friesen, Balazinska, & Grossman, 

2010). This work restricts its scope to pipeline single queries (queries without joins). The calculation 

of the number of nodes to be added or removed is based on the data processing rate and the work 

assumes that all nodes have the same data processing capability. Moreover, this work uses the 

strategy of regular intervals monitoring, which requires that VMs have the same performance. 

(Sharma et al., 2010, 2011) propose the Kingfisher, a provisioning framework based on applications 

cost in a cloud environment. It aims at minimizing the customer cost. That is, the provisioning is 

based on the best use of resources while minimizing the cost of the customer according to 

resources usage. This work uses integer linear programming to calculate the costs and decision-

making in elasticity. The variables used for the calculations involve performance characteristics of 

different types of servers and their costs for core, provisioning mechanisms supported in the cloud 

and a model to estimate the cost/overhead of each mechanism. Kingfisher uses a proactive method 

to know when provisioning and assumes an ideal workload predictor that uses recovered statistics of 

a monitoring system. This predictor is able to obtain estimates of future workloads. Finally, the 

Kingfisher does not perform adaptive processing queries. 

(Curino et al., 2011) propose the Kairos system, which uses nonlinear programming in order to 

minimize the number of servers and make load balancing for running queries. The Kairos uses 

techniques to measure the hardware requirements for workload on the database, thereby achieving 

to predict resources that will be used for query. This work also does not use adaptive query 

processing. 

(Cervino et al., 2012) propose an adaptive algorithm of VM provisioning. It uses a stream processing 

system distributed in the cloud. The provisioning of VMs to be allocated for a given query is based 

on streams rate of the current workload. The methodology consists of periodically calling the 

algorithm and calculating the number of VMs that are required to process the demand. It scales the 
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number of VMs based only on input stream rate. In addition, there is the dynamic resources 

provisioning during query processing. 

(Coelho da Silva et al., 2012, 2013) present a non-intrusive framework for adaptive query 

processing in databases implanted in a cloud environment. This work observes query response time 

of the SLA contract; makes adaptive monitoring considering the heterogeneous environment, and 

therefore, it considers that the VMs may have different performances. One limitation of this work is 

that it limits the scope to only select-range queries. 

(Mian et al., 2013) propose a resource-provisioning framework in a public cloud to execute requests 

in large amounts of data. This work proposes an SLA cost model and presents a provisioning 

method based on SLA time, predicting the best value to execute requests at any given time. For 

validation, the framework was evaluated using Amazon EC2. This work does not use monitoring 

strategy during requests execution, which might not be suitable in highly unpredictable environments 

on the availability of resources. 

(Naskos et al., 2015) propose a probabilistic model checking-based approach to resizing an 

application cluster of VMs so that elasticity decisions are amenable to quantitative analysis. 

Experiments using real datasets were conducted, and the results shown a significantly decrease on 

the frequency of user-defined threshold violations. However, this work does not perform adaptive 

query processing and does not use monitoring during requests execution. There is only the 

monitoring of the incoming workload and the current system state. 

Another important work is the Amazon Auto Scaling (Amazon Web Services, 2015), which allows 

scaling requests following criteria, for example, the average CPU utilization. The automatic scheduler 

is based on analysis of requests traffic in execution and this solution works with Axis2 Web services 

running on Amazon EC2. Finally, (Goiri, Julià, Fitó, Macías, & Guitart, 2012; Guitart et al., 2008) 

uses admission control and dynamic resource provisioning. This work is responsible for allocating 

resources and tries to ensure the desired QoS during system overload. The server machines of their 

systems are able to adapt automatically to changes in workload. However, these works do not use 

monitoring during requests execution. 

Finally, Table 2-1 summarizes the related works. As shown in the table(Amazon Web Services, 

2015; Cervino et al., 2012; Chi et al., 2011; Curino et al., 2011; Guitart et al., 2008; Kllapi et al., 

2011; Mian et al., 2013; Naskos et al., 2015; Rogers et al., 2010; Sharma et al., 2011; Zhao et al., 

2010) do not use the strategy of monitoring during requests execution. In (Vigfusson et al., 2009) 
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the algorithm is adaptive optimizing the response time of queries. However, it does not observe the 

SLA agreement and does not specify the frequency of the monitoring algorithm during query 

execution. (Iqbal et al., 2009) presents an adaptive SLA-oriented resource manager. However, it only 

predicts the provisioning of resources and does not check DBMS variables for database access 

requests, addressing only the level of the application server layer. (Alves et al., 2011) uses the 

strategy of regular monitoring intervals during requests execution and therefore does not consider 

that VMs may have different performance. In addition, it limits its scope to single pipeline queries 

(queries without joints). (Coelho da Silva et al., 2012, 2013) consider that VMs may have different 

performances and there is the adaptive monitoring query execution. However, the scope is limited 

only to select-range queries. 

Table 2-1. Characteristics of related work. 

Researches 
Adaptive 
Query 

Processing 

Based on 
SRT on the 

SLA contract 

Type of 
Environment it is 

Applied 

Query 
Restriction 

Scaling: 
provisioning or 

release of 
resources 

(Goiri et al., 2012; 
Guitart et al., 

2008) 
No Yes Heterogeneous 

Not 
restricted 

Provisioning of 
Resources 

(Vigfusson et al., 
2009) 

Yes No Heterogeneous Select-range 
Provisioning of 

Resources 

(Iqbal et al., 2009) No Yes Heterogeneous 
Not 

restricted 
Provisioning of 

Resources 
(Rogers et al., 

2010) 
No Yes Heterogeneous 

Not 
restricted 

Provisioning of 
Resources 

(Alves et al., 2011) Yes Yes Homogeneous Select-range 
Provisioning and 

Release of 
Resources 

(Curino et al., 
2011) 

No Yes Heterogeneous 
Not 

restricted 
Not applied 

(Kllapi et al., 
2011; Zhao et al., 

2010) 
No Yes Heterogeneous 

Not 
restricted 

Provisioning of 
Resources 

(Sharma et al., 
2010, 2011) 

No No Heterogeneous 
Not 

restricted 
Provisioning of 

Resources 

(Chi et al., 2011) No Yes Heterogeneous 
Not 

restricted 
Provisioning of 

Resources 
(Cervino et al., 

2012) 
No No Heterogeneous 

Not 
restricted 

Provisioning of 
Resources 

(Coelho da Silva et 
al., 2012, 2013) 

Yes Yes Heterogeneous Select-range 
Provisioning and 

Release of 
Resources 

(Mian et al., 2013) No Yes Heterogeneous 
Not 

restricted 
Provisioning of 

Resources 
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Researches 
Adaptive 
Query 

Processing 

Based on 
SRT on the 

SLA contract 

Type of 
Environment it is 

Applied 

Query 
Restriction 

Scaling: 
provisioning or 

release of 
resources 

(Naskos et al., 
2015) 

No No Heterogeneous 
Not 

restricted 
Provisioning of 

Resources 
(Amazon Web 

Services, 2015) 
No No Heterogeneous 

Not 
restricted 

Provisioning of 
Resources 

 

2.6 Conclusion 

This chapter presented the concepts of data warehouse and OLAP applications, SLA contract, data 

processing in databases and related works. Nowadays, many companies have migrated their 

applications and data to the cloud due to the benefits of this technology. Therefore, it is very 

important for users to choose “the best” cloud service provider, i.e. the provider most suitable for 

their needs. For this, it is important to know the QoS parameters of the SLA agreement. 

From the user’s point of view, the SRT (Service Response Time) parameter is considered one of the 

main QoS parameters. However, the major cloud providers have ignored or inappropriately treated 

the SRT parameter in SLA due to its complexity. Therefore, one of contributions of this work, 

presented in Chapter 3, is to propose a model for obtaining the SRT, so it can be treated adequately 

in SLA contracts. 

In turn, we can observe that most works in the literature focus on queries with short execution time 

and on the prediction of the resources to be used for query processing through the current system 

context. These works may not be suitable in highly unpredictable environments on the availability of 

resources. Other related works focus on adaptive query processing. However, they present 

limitations of elasticity and/or scalability in their algorithms: (i) the absence of adaptive monitoring 

query processing; (ii) use of intrusive solutions and/or proprietary technology; and (iii) lack of 

formalism in the definition of the QoS parameters in their solutions. As a result, the same service 

may have different understanding among cloud service providers. Therefore, the main contribution 

of this thesis, to be presented in Chapter 4, is a new solution to efficient query processing on large 

databases available in a cloud environment. This solution must overcome some of the above 

limitations. 
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3.1 Introduction 

This chapter proposes a model for measuring a Service Response Time estimated for different 

request types on large databases available in a cloud environment. Therefore, to better 

understanding, this chapter is organized as follows: 

3.2 Request definition: presents the formal definition of a request used in this work. 

3.3 Service response time measurement model of service level agreements: presents the 

SRT measurement model, its definition and tools. 

3.4 Case study - validation and results: presents the experiments of the proposed model 

using the Amazon EC2 cloud infrastructure, a TPC-DS like benchmark and finally, their 

results. 

3.5 Conclusion: presents the final considerations of this chapter. 

3.2 Request definition 

In computational context, a request corresponds a task to be executed by a Web Service sent by a 

customer who has access to the service. The model request-response is the base of data 

communication on the Internet. Browsing a Web page is an example of request–response 

communication. For example, as shown in Figure 3-1, a customer submits a request message to a 

service of a Web server. The server provides the resources, it executes tasks and it returns a 

response message to the customer. 

This work focuses on database access requests of OLAP applications in a cloud environment. This 

problem presents a lot of data processing. A request message is a SQL (Structured Query Language) 

query composed by one or more tables and it can be of different types. For example, select-range, 

select-aggregation, select-joins and select-sets-grouping-nesting-ordering. Therefore, in this work a 

request can be formally defined as follows: 
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Figure 3-1. Request-response communication of the client-server computing model. 

[WITH AS table] 
SELECT [DISTINCT | ALL] | [OPER] < list of attributes> | <nested SQL query> 
FROM <list of tables> | <nested SQL query> 
[WHERE <predicate> | <nested SQL query> | [OPERCON]]  
[UNION] | [INTERSECT] | [EXCEPT] 
[GROUP BY <attributes>] 
[HAVING <predicative>] 
[ORDER BY attribute [ ASC | DESC ]]; 
[FECTH…] 

 

[OPER] is an aggregation operator (AVG, for example), [OPERCON] is a set operator (UNION, 

INTERSECT OR EXCEPT, for example), [FETCH] is the operator to control the pagination of quantity 

of tuples returned and [WITH] is the operator responsible for generating a virtual view. 

The most basic request of this work presents at least two SQL clauses: SELECT and FROM. This 

request is generic enough to accommodate the requests presented in the TPC-DS Benchmark (Tpc 

BenchmarkTM Ds, 2012), which are used in the experiments of the proposed model. The TPC-DS is a 

decision support benchmark standard, it illustrates decision support systems that (i) examine large 

volumes of data; (ii) give answers to real-world business questions; (iii) execute queries of various 

operational requirements and complexities (e.g., ad-hoc, reporting, iterative OLAP, data mining); (iv) 

they are characterized by high CPU and IO load. Finally, (v) they are periodically synchronized with 

source OLTP databases through database maintenance functions. 
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To better understanding the proposed model described in next section, the requests were classified 

between three types, according to level of complexity. Therefore, the following subsections define 

each one of them. 

3.2.1 Type 1 requests: select-range and select-aggregation 

Type 1 requests represent the select-range and/or select-aggregation requests. Select-range are the 

database access requests that will return only tuples that are in a given range of a table. An index 

can be used to select the tuples. The range is used when a column, key or not, is compared with a 

constant using: =, <>, >, > =, <, <=, IS NULL, <=>, BETWEEN or IN. For example: 

SELECT * FROM table WHERE key_column = 10; 
SELECT * FROM table WHERE key_column BETWEEN 10 and 20; 
SELECT * FROM table WHERE key_column IN (10,20,30); 
SELECT * FROM table WHERE key_part1= 10 and key_part2 IN (10,20,30); 
SELECT * FROM table WHERE date_column BETWEEN '2015-08-10' and '2015-09-10'; 

The select-aggregation requests are the database access requests that use aggregate operators for 

arithmetic expressions. For example, COUNT, SUM, AVG, MAX and MIN. They are applied to a set or 

multi-set of values and it returns the result of operation to the user. These operators can also be 

used in the HAVING clause (as shown in section 3.2.3). Examples of requests with aggregate 

operators: 

SELECT MAX(column) FROM table WHERE key_column = 10; 
SELECT column, AVG(column) FROM table WHERE column > 10; 
SELECT MIN(key_column) FROM table; 
SELECT COUNT(*) FROM table; 
SELECT SUM(column), COUNT(column) FROM table; 

3.2.2 Type 2 requests: select-joins 

Type 2 requests represent the database access requests that uses one or more of the following 

operators: cross join, inner join, left outer join, right outer join or full outer join. A SQL join clause 

combines records from two or more tables in a relational database. It creates a set that can be 

saved as a table or used as it is (Elmasri & Navathe, 2010). These are examples of requests with 

joins: 

SELECT * FROM table1, table2; 
SELECT column1, column2 FROM table1 CROSS JOIN table2; 
SELECT * FROM table1, table2 where table1.key_column = table2. key_column; 
SELECT column1 

FROM table1 INNER JOIN table2 ON (table1.key_column =table2.key_column); 
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SELECT * 
FROM table1 LEFT OUTER JOIN table2 ON (table1.key_column = table2.key_column); 

SELECT column1, column2 
FROM table1 RIGHT OUTER JOIN table2 ON (table1.key_column = table2.key_column); 

SELECT * 
FROM table1 FULL OUTER JOIN table2 ON (table1.key_column = table2.key_column); 

3.2.3 Type 3 requests: select-sets-grouping-nesting-ordering 

Type 3 requests represent the database access requests that uses aggregation, joins, union, 

grouping and/or nesting operators. They can be UNION, INTERSECTION, EXCEPT, ANY, IN, 

UNIQUE, EXISTS, NOT EXISTS, GROUP BY, HAVING, ORDER BY or FETCH WITH. For example: 

SELECT * FROM table1 UNION SELECT * FROM table2; 
 
((SELECT * FROM table1 UNION ALL SELECT * FROM table2) UNION SELECT * FROM table3); 
 
SELECT column FROM table1 INTERSECT SELECT column FROM table2; 
 
SELECT column FROM table1 EXCEPT SELECT column FROM table2; 
 
SELECT * FROM table1 WHERE column = 'WA' AND 
EXISTS (SELECT column FROM table2 WHERE table2.key_column = table1.key_column); 
 
SELECT column FROM table1 WHERE 
NOT EXISTS (SELECT *  
        FROM table2 
                        WHERE key_column = table1.key_column AND column = 'Name'); 
 
WITH Query_View (column1, column2, column3) 
AS ( 
    SELECT column1, column2, column3 FROM table1 WHERE column1 IS NOT NULL 
) 
SELECT column1, column2, column3 FROM Query_View  
GROUP BY column1, column2 ORDER BY column1; 
 
SELECT column1, column2, column3 
FROM table1 
    INNER JOIN table2 
        ON table1.key_column = table2.key_column 
    INNER JOIN table3 
        ON table2.key_column = table3.key_column  
    INNER JOIN table4 
        ON table3.key_column = table4.key_column 
WHERE table1.column = 'Europe' 
    AND table2.column IN(N'DE', N'FR') 
    AND table3.column IN(287, 290, 288) 
    AND SUBSTRING(table2.Name,1,4) IN (N'Vers', N'Spa') 
GROUP BY table1.column1, table2.column 
ORDER BY table1.column2, table1.column3; 
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SELECT COUNT(*) 
FROM table1, table2, table3, table4 
WHERE table1.key_column = table2.key_column and 
 table2.key_column = table3.key_column and 
 table3.key_column = table4.key_column and 
 table4.column = 8 and 
 table3.column >= 30 and 
 table2.column = 5 and 
 table1.column1 = ‘ese’ 
ORDER BY COUNT(*); 

3.3 Service response time measurement model of service level agreements 

The CSMIC consortium (Garg et al., 2013; Siegel & Perdue, 2012) emphasizes only a SRT (Service 

Response Time) parameter among QoS performance parameters. Its definition corresponds the time 

between the instant the request arrives at the provider and the instant it starts executing, i.e. the 

time that the service takes to start the execution of a request. However, other parameters should be 

considered. 

Let TSRTJ be total execution time of a request	R	, i.e. the total time that a request takes to be 

executed in provider and its results to be presented to the user. Thus, TSRTJ	of a request is 

composed by the sum of the times: 

𝑻𝑺𝑹𝑻𝑹 = 𝑺𝑹𝑻𝑹5 + 𝑺𝑹𝑻𝑹55 + 𝑺𝑹𝑻𝑹555 (3.1) 

where 𝑆𝑅𝑇O5  is the service response time, i.e. the time that the service takes to start the execution 

of a request (CSMIC consortium definition), 𝑆𝑅𝑇O55	is the time of execution effectively of a request 

and 𝑆𝑅𝑇O555	is the time that the result takes to be presented to user. 

Ensuring the	𝑇𝑆𝑅𝑇O parameter is a very difficult task because it depends on many factors. 

Moreover, due to the unpredictability of data traffic on the Internet, it becomes almost impossible to 

solve this challenge. In the literature, most researches focus on ensuring 𝑆𝑅𝑇O55	parameter, which is 

also the objective of this thesis. Thus, in this work, to better understanding the 𝑆𝑅𝑇O55	is called only 

SRT. 

Therefore, in this work, the SRT corresponds to the time that a service takes to execute 

effectively a request. This way, the SRT of a service starts when a customer request is ready to 

execute and it finishes when the request executes effectively. Including, for example, startup time of 

virtual machine or wait of a fragment request, etc.  
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3.3.1 Recommended SRT definition 

Nowadays, many companies have migrated their applications and data to the cloud due to the 

benefits of this technology. However, we can see that major cloud providers like Amazon (“AWS EC2 

Service Level Agreement,” 2015, “AWS S3 Service Level Agreement,” 2015) and Google APP 

Engine (Sanderson, 2012) emphasizing availability, CPU instance and cost measure. Therefore, the 

SRT parameter is not completely handled or inappropriately treated in SLA. In order to ensure 

customer expectations relative to performance, cloud service providers have to understand how to 

incorporate suitably the SRT parameter in their SLA. 

A contribution of this thesis is the proposal of a model for obtaining the SRT, so it can be treated 

adequately in SLA contracts. Thereby, it is necessary to define what a Recommended SRT is. 

Let 𝑅,	be a database access request in a cloud, where 𝑖	represents one of the following request 

types: (i) select-range and/or select-aggregation, (ii) select-joins or (iii) select-sets-grouping-nesting. 

The Average Service Response Time of a request 𝑅,	(𝐴𝑆𝑅𝑇O,) executed by 𝑛	physical/virtual 

machines is given by: 

𝑨𝑺𝑹𝑻𝑹𝒊 = 𝑺𝑹𝑻𝑹𝒊/𝒏
𝑹𝒊

 (3.2) 

in which 𝑆𝑅𝑇O,	is the time between the moment a request 𝑅,	is ready to run and the service 

executes the request effectively. 

Let 𝐴O,	be a set of average service response times for all type 𝑖	requests, i.e. 𝐴O, = {	𝐴𝑆𝑅𝑇O,T ,

𝐴𝑆𝑅𝑇O,U , 𝐴𝑆𝑅𝑇O,V , … , 𝐴𝑆𝑅𝑇O,X 	, where 𝑘	is the number of type 𝑖	requests. Let 𝐴O,^ 		be a set of half 

the size of 𝐴O,  (𝑘/2) with the highest averages of 𝐴O,. 

Thus, the Recommended SRT (𝑅𝑆𝑅𝑇O,) for a set of type 𝑖	requests deployed in the cloud is given 

by median of	𝐴O,^ 		: 

𝑹𝑺𝑹𝑻𝑹𝒊 =	↑ 𝑨𝑹𝒊^ 𝒌
𝟐_𝟎.𝟓

							𝒇𝒐𝒓	𝒐𝒅𝒅	𝒌 (3.3.1) 

Or 

𝑹𝑺𝑹𝑻𝑹𝒊 = 	
↑ 𝑨𝑹𝒊^ 𝒌

𝟐
+↑ 𝑨𝑹𝒊^ 𝒌

𝟐_𝟏
	

𝟐 					𝒇𝒐𝒓	𝒆𝒗𝒆𝒏	𝒌 (3.3.2) 
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It is worth noting that Recommended SRT presents a pessimistic estimate of response time, 

because it is based on requests that require more time to process, i.e. on median of the upper half 

that represents the highest requests response time. 

The discussion of Recommended SRT occurs in SLA construction phase (SLA Contract Definition), 

which evaluates several tasks of customer applications on the cloud service provider. The complex 

applications most used by a curtomer are defined and selected. In this work, the complex 

applications are those which use high load of system (large use of CPU and disk read/write). 

3.3.2 SRT measurement model 

A cloud computing platform is a cluster with hundreds or thousands of Computers (nodes) for data 

computing and storage. There are two types of nodes in the cluster: master nodes and slave nodes. 

Master nodes store metadata and manage all cluster slave nodes. The slave nodes store the data 

and their replicas for security. 

In this context, Figure 3-2 shows the steps to obtain the Recommended SRT of a cloud computing 

platform: (1) acquisition of customer applications; (2) selection and classification of applications 

according to the request types: (i) select-range and/or select-aggregation, (ii) select-joins or (iii) 

select-sets-grouping-nesting; (3) experiments of customer applications deployed on master nodes 

and slave nodes of cloud provider; and finally, (4) analysis of results, which should define a 

Recommended SRT for each request type and system load. 

It is worth noting that in contract level, the confidence and validation of the results will depend 

mainly on good practice in step 2, because good selectivity of customer applications will reduce SLA 

violation.  

In step 3, to assist the tests, three tools were implemented and deployed in the cloud provider, they 

are COS (CPU Overload Simulator), DOS (Disk I/O Overload Simulator) and SRT Calculator. 

Following we detail each of them and their functions. 
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Figure 3-2. Steps to obtain the Recommended SRT. 

COS: CPU Overload Simulator 

The COS tool was deployed in slave nodes of a cloud service provider and is used to simulate partial 

and total CPU overload, i.e. the overload can also be by the processor core. 

The COS tool generates an overload of threads of similar execution priority of the processes running 

in the operating system. Although the set of threads are running in the same process, if the COS tool 

executes itself more than once it will generate a set of threads in different processes causing large 

number of processes of equal priority competing for the processor. Thus, to overload the processor, 

the tool executes itself generating a large amount of processes, each having a large number of 

threads. 

The tool allows serial execution by processor core, i.e. each core will be overloading by time. Thus, it 

allows configuring how many cores are overloaded. To analyze the CPU, the user can use the 

sysstat tool, which checks the processor usage in real time. The sysstat tool is a package with a 

collection of performance monitoring tools for major Linux distributions. 
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DOS: Disk I/O Overload Simulator 

The DOS tool was deployed in slave nodes of provider and it serves to simulate disk read/write 

overload. Reading and writing is quantified in bytes read and written from/to disk. 

The DOS tool generates an overload of threads of database access requests with similar execution 

priority of the processes running in operating system. Unlike COS tool, DOS simply run once, 

generating a very large set of threads of equal priority in the same process, overloading the system 

and competing with any another database access request that arrives at the processor. 

The tool allows also defining the quantity of threads to be generated, in which each one simulates a 

database access request in the machine. This way, the tool allows a wide variation in quantity of 

bytes to read and write from/to disk. 

The overloading in gigabytes is allowed as long as (i) the machine has enough main memory and (ii) 

the secondary disk has storage in terabytes, because temporary data can be written to disk in 

runtime of request. To analyze the disk read/write, the user can use the dstat tool, which allows to 

monitor the server resources in real-time. It is supported by most major Linux distributions such as 

RedHat, CentOS and Debian. 

SRT Calculator 

The SRT Calculator tool was deployed in master nodes of the cloud service provider and was used to 

execute the tests in the specified slave nodes. The SRT Calculator computes a set the 

Recommended SRT as defined in section 3.3.1 and generates a parameterized report to be 

analyzed and discussed between the cloud service provider and its customers. 

The report presents the Recommended SRT for each request type and overload variation in slave 

nodes, through the COS and DOS tools. Beyond, for each request type, statistical parameters are 

generated from the set of the requests response times (usually values in nanoseconds), such as 

arithmetic average, sample variance, standard deviation, mode and coefficient of variation. 

Therefore, these parameters can be evaluated to validate the results. For the better understanding, 

the summary of SRT Calculator algorithm is shown below: 

- Config_VM; //Configuration File of Physique/Virtual Machine (Slave Nodes). 
- REQUEST-TYPE[i]; //Requests Type, i equals 1, 2 or 3. 
1. BEGIN 
2.      SLAVE-NODE[i..n] = Config_VM; 
3.      FOR EACH SLAVE-NODE DO 
4.             FOR EACH REQUEST-TYPE DO 
5.                    ExecuteRequest(SLAVE-NODE[i], REQUEST-TYPE [i]); 
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6.             ENDFOR 
7.             REPORT(REQUEST-TYPE); 
8.       ENDFOR 
9.       REPORT(ALL-REQUEST); 
10.  
11.       VOID REPORT(REQUEST) 
12.            BEGIN 
13.               Avegare(); //(ns) -- (ms) -- (s) -- (min) 
14.               Sample Variance(); //(ns) -- (ms) -- (s) -- (min) 
15.               Standard Deviation(); //(ns) -- (ms) -- (s) -- (min)  
16.               Mode; //(ns) -- (ms) -- (s) -- (min) 
17.               Coefficient of Variation(); //(ns) -- (ms) -- (s) -- (min) 
18.               Recommended SRT (); //(ns) -- (ms) -- (s) -- (min) 
19.            END 
20. END 

 

To use the SRT Calculator it is necessary to classify the customer applications in one of three 

requests types. In addition, a set of physical/virtual machines of the cloud must be selected to store 

customer applications. This way it is necessary to configure the following files: (1) network 

configuration file and database connection of slave nodes; (2) configuration file for requests with 

select-range and/or aggregating functions requests; (3) configuration file for requests with one or 

more joins; and finally, (4) configuration file for requests with set of operations, grouping and/or 

nesting. 

Figure 3-3 shows the main GUI of SRT Calculator at the instant an experiment terminates. Next 

Section presents a case study of the proposed model using Amazon EC2 cloud infrastructure and 

TCP-DS, which was used to generate an OLAP database and some requests. 

 

Figure 3-3. SRT Calculator – GUI Interface. 
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3.4 Case study – validation and results 

This Section presents a case study of the proposed model to obtain the Recommended SRT utilizing 

small instances of Amazon EC2 cloud infrastructure. First, we present the environment and the 

experiments methodology. Then, we show the requests used and finally, we present the results 

obtained as well as its analysis. 

3.4.1 Experimental environment 

The tools (COS, DOS and SRT Calculator) were implemented in Java language using concurrent 

programming with threads and a Java API based on OpenMP - Open Multi-Processing (Bull & 

Kambites, 2000). They were deployed in the Amazon EC2 cloud infrastructure in small instances 

(homogeneous environment). Due to the limitations of Amazon, it was used 20 VMs (Virtual 

Machines), each one with an Intel Xeon Processor with turbo up to 3.3GHz, 1.7 GB of main memory 

and 160 GB of disk storage. 

It was created an AMI (Amazon Machine Image) of VM with the database. This image allows startup 

a new VM quickly. The Amazon EBS (Elastic Block Store) was used to store the AMI. Therefore, VM 

startup and instantiation times were not considered. However, the time of network authentication 

and database connection were considered in experiments.  

Each VM runs the Ubuntu 12.04 operating system and PostgreSQL 9.3 DBMS. This work focuses on 

OLAP applications with very large and complex database. Thus, the TPC-DS was used to generate a 

database of approximately 13 GB, fully replicated in each VM. Furthermore, 150 requests of several 

complexities were selected. Therefore, we consider the database and the generated requests as 

representative of customer applications. 

3.4.2 Methodology 

Figure 3-4 presents the methodology of the experiments. As shown, SRT Calculator tool was 

deployed in a master node chosen arbitrarily and it communicates with other VMs (slave nodes). 

Furthermore, the 150 requests were classified according to level of complexity between three types. 

Thus, the SRT Calculator executes all requests of each type in all VMs, varying the overload on the 

slave nodes through using the COS and DOS tool (they were deployed in slave nodes). The PP 

(Processor Performance) represents the CPU overload levels. The DP (Disk Performance) verifies the 

overload of reading and/or writing on disk.  
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Figure 3-4. Methodology of experiments to obtain the Recommended SRT. 

To view the rate of CPU and disk usage, the sysstat and dstat tools were used. Figure 3-5 shows a 

screenshot of the sysstat tool when three CPU cores are overloaded. Figure 3-6 shows a screenshot 

of dstat tool when approximately 20 Megabytes of data for reading and some Kilobytes of data for 

writing on disk are being used. 

 

Figure 3-5. Processor Status through sysstat tool. 
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Figure 3-6. Disk Read/Write Status through dstat tool. 

3.4.3 Used requests 

This Section presents some of the requests used in the case study. The TPC-DS offers many 

database requests for experiments. For this case study, many requests from the TPC-DS were 

selected. The classification of each request was based on results of explain analyze command of the 

PostgreSQL DBMS. 

Type 1 requests are select-range and/or select-aggregation requests. They have approximately 

140,000 tuples of selectivity using the catalog_sales table of TPC-DS. In the following, some 

examples of type 1 requests used in the experiments are presented: 

select * from catalog_sales where cs_item_sk between 1 and 1000; 
select * from catalog_sales where cs_item_sk between 1001 and 2000; 
select * from catalog_sales where cs_item_sk between 2001 and 3000; 
select * from catalog_sales where cs_item_sk between 3001 and 4000; 
select * from catalog_sales where cs_item_sk between 4001 and 5000; 

 
Type 2 requests are select-joins requests and optional select-aggregation functions. The selectivity of 

these requests varied between 1000 and 60,000 tuples using at least 20 different tables of TPC-DS. 

In the following, some examples of type 2 requests used in the experiments are presented: 

select  count(*)  
from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    
    and ss_hdemo_sk = household_demographics.hd_demo_sk  
    and ss_store_sk = s_store_sk 
    and time_dim.t_hour = 8 
    and time_dim.t_minute >= 30 
    and household_demographics.hd_dep_count = 5 
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    and store.s_store_name = 'ese' 
order by count(*); 
 
select  i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, 
        avg(ss_sales_price) agg4  
 from store_sales, customer_demographics, date_dim, item, promotion 
 where ss_sold_date_sk = d_date_sk and 
       ss_item_sk = i_item_sk and 
       ss_cdemo_sk = cd_demo_sk and 
       ss_promo_sk = p_promo_sk and 
       cd_gender = 'M' and  
       cd_marital_status = 'M' and 
       cd_education_status = '4 yr Degree' and 
       (p_channel_email = 'N' or p_channel_event = 'N') and 
       d_year = 2001  
 group by i_item_id 
 order by i_item_id; 
 
 
select  sum(cs_ext_discount_amt)  as "excess discount amount"  
from  
   catalog_sales,item,date_dim 
where i_manufact_id = 577 
and i_item_sk = cs_item_sk  
and d_date between '1998-03-18' and  
        (cast('1998-03-18' as date) + 90) 
and d_date_sk = cs_sold_date_sk  
and cs_ext_discount_amt   
     > (  
         select 1.3 * avg(cs_ext_discount_amt)  
         from catalog_sales,date_dim 
         where cs_item_sk = i_item_sk  
          and d_date between '1998-03-18' and 
                             (cast('1998-03-18' as date) + 90) 
          and d_date_sk = cs_sold_date_sk  
      ) ; 
 

Type 3 requests are select-sets-grouping-nesting requests and, optional select-aggregation and 

select-joins. They present very complex query plans and its selectivity is between 100,000 and 

200,000 tuples. It uses at least 20 different tables of TPC-DS. In the following, some examples of 

type 3 requests used in the experiments are presented: 

WITH all_sales AS ( 
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
       ,SUM(sales_cnt) AS sales_cnt 
       ,SUM(sales_amt) AS sales_amt 
 FROM (SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,cs_quantity - COALESCE(cr_return_quantity,0) AS sales_cnt 
             ,cs_ext_sales_price - COALESCE(cr_return_amount,0.0) AS sales_amt 
       FROM catalog_sales JOIN item ON i_item_sk=cs_item_sk 
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                          JOIN date_dim ON d_date_sk=cs_sold_date_sk 
                          LEFT JOIN catalog_returns ON (cs_order_number=cr_order_number  
                                                    AND cs_item_sk=cr_item_sk) 
       WHERE i_category='Shoes' 
       UNION 
       SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,ss_quantity - COALESCE(sr_return_quantity,0) AS sales_cnt 
             ,ss_ext_sales_price - COALESCE(sr_return_amt,0.0) AS sales_amt 
       FROM store_sales JOIN item ON i_item_sk=ss_item_sk 
                        JOIN date_dim ON d_date_sk=ss_sold_date_sk 
                        LEFT JOIN store_returns ON (ss_ticket_number=sr_ticket_number  
                                                AND ss_item_sk=sr_item_sk) 
       WHERE i_category='Shoes' 
       UNION 
       SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,ws_quantity - COALESCE(wr_return_quantity,0) AS sales_cnt 
             ,ws_ext_sales_price - COALESCE(wr_return_amt,0.0) AS sales_amt 
       FROM web_sales JOIN item ON i_item_sk=ws_item_sk 
                      JOIN date_dim ON d_date_sk=ws_sold_date_sk 
                      LEFT JOIN web_returns ON (ws_order_number=wr_order_number  
                                            AND ws_item_sk=wr_item_sk) 
       WHERE i_category='Shoes') sales_detail 
 GROUP BY d_year, i_brand_id, i_class_id, i_category_id, i_manufact_id) 
 SELECT  prev_yr.d_year AS prev_year,curr_yr.d_year AS year,curr_yr.i_brand_id 
                          ,curr_yr.i_class_id,curr_yr.i_category_id,curr_yr.i_manufact_id 
                          ,prev_yr.sales_cnt AS prev_yr_cnt,curr_yr.sales_cnt AS curr_yr_cnt 
                          ,curr_yr.sales_cnt-prev_yr.sales_cnt AS sales_cnt_diff 
                          ,curr_yr.sales_amt-prev_yr.sales_amt AS sales_amt_diff 
 FROM all_sales curr_yr, all_sales prev_yr 
 WHERE curr_yr.i_brand_id=prev_yr.i_brand_id  AND curr_yr.i_class_id=prev_yr.i_class_id 
   AND curr_yr.i_category_id=prev_yr.i_category_id AND curr_yr.i_manufact_id=prev_yr.i_manufact_id 
   AND curr_yr.d_year=2000 AND prev_yr.d_year=2000-1 
   AND CAST(curr_yr.sales_cnt AS DECIMAL(17,2))/CAST(prev_yr.sales_cnt AS DECIMAL(17,2))<0.9 
 ORDER BY sales_cnt_diff; 
 
with wss as  
 (select d_week_seq, 
        ss_store_sk, 
        sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales, 
        sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales, 
        sum(case when (d_day_name='Tuesday') then ss_sales_price else  null end) tue_sales, 
        sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales, 
        sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales, 
        sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales, 
        sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales 
 from store_sales,date_dim 
 where d_date_sk = ss_sold_date_sk 
 group by d_week_seq,ss_store_sk 
 ) 
  select  s_store_name1,s_store_id1,d_week_seq1 
       ,sun_sales1/sun_sales2,mon_sales1/mon_sales2 
       ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2 
       ,fri_sales1/fri_sales2,sat_sales1/sat_sales2 
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 from 
 (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1 
        ,s_store_id s_store_id1,sun_sales sun_sales1 
        ,mon_sales mon_sales1,tue_sales tue_sales1 
        ,wed_sales wed_sales1,thu_sales thu_sales1 
        ,fri_sales fri_sales1,sat_sales sat_sales1 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and 
        ss_store_sk = s_store_sk and  
        d_month_seq between 1200 and 1200 + 11) y, 
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2 
        ,s_store_id s_store_id2,sun_sales sun_sales2 
        ,mon_sales mon_sales2,tue_sales tue_sales2 
        ,wed_sales wed_sales2,thu_sales thu_sales2 
        ,fri_sales fri_sales2,sat_sales sat_sales2 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and 
        ss_store_sk = s_store_sk and  
        d_month_seq between 1200+ 12 and 1200 + 23) x 
 where s_store_id1=s_store_id2 
   and d_week_seq1=d_week_seq2-52 
 order by s_store_name1,s_store_id1,d_week_seq1; 

3.4.4 Results 

Following methodology presented in section 3.4.2, firsty, 50 requests of the same type are executed 

sequentially on all VMs. After, the experiments were repeated 5 times, erasing the DBMS cache for 

each repetition. Following, the same experiments were executed considering the overloaded CPU 

and finally considering the overloaded disk. Finally, the experiments were executed similarly for each 

request type. 

Therefore, the results were grouped by type of request and overload variation in slave nodes. So, to 

type 1 Requests, the result of experiments on all VMs are presented in Figure 3-7. It shows the SRT 

averages to 50 requests executed on all VMs (all slave nodes) as well as when they are not 

overloaded (current) and when they are with CPU and Disk Overloaded. As discussed in the section 

3.3, this work used the 𝑺𝑹𝑻𝑹55	parameter, which is called only SRT. 
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Figure 3-7. SRT averages on all VMs for type 1 requests. 

Therefore, based on definition of Recommended SRT and considering that the processor and disk 

not overloaded (Current Status in Figure 3-7) we have the following result: 

::TYPE 1 REQUESTS:: 
 Average: 34,46(s) 
 Sample Variance: 71,02897959 
 Standard Deviation: 8,42786922 
 Mode: 35 
 Coefficient of Variation: 24,45696233 
 Recommended SRT: 42(s)   

 
Overload with COS tool (CPU Overload in Figure 3-7), the result is as follows: 

::TYPE 1 REQUESTS:: 
 Average: 741,3(s) 
 Sample Variance: 32053,03061 
 Standard Deviation: 179,0336019 
 Mode: 620 
 Coefficient of Variation: 24,15130202 
 Recommended SRT: 865(s)  
 
Overload with DOS tool (Disk R/W Overload in Figure 3-7), the following values were found: 

::TYPE 1 REQUESTS:: 
 Average: 1402,16(s) 
 Sample Variance: 134948,0555 
 Standard Deviation: 367,3527671 
 Mode: 1450 
 Coefficient of Variation: 26,19906196 
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 Recommended SRT: 1718(s)  

To type 2 requests, the result of experiments in all VMs are presented in Figure 3-8. It shows the 

SRT averages to 50 requests executed on all VMs (all slave nodes) when they are not overloaded 

(current) and when they are with CPU and Disk Overloaded. 

 

Figure 3-8. SRT averages on all VMs for type 2 requests. 

Therefore, based on definition of Recommended SRT and considering the processor and disk not 

overloaded (Current Status in Figure 3-8) we have the following result: 

::TYPE 2 REQUESTS:: 
 Average: 187,6(s) 
 Sample Variance: 5059,755102 
 Standard Deviation: 71,13195556 
 Mode: 288 
 Coefficient of Variation: 37,91682066 
 Recommended SRT: 242(s) 

 
Overload with COS tool (CPU Overload in Figure 3-8), the result is as follows: 

::TYPE 2 REQUESTS:: 
 Average: 567,86(s) 
 Sample Variance: 76106,16367 
 Standard Deviation: 275,8734559 
 Mode: 127 
 Coefficient of Variation: 48,58124466 
 Recommended SRT: 783(s)  
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Overload with DOS tool (Disk R/W Overload in Figure 3-8), the following values were found: 

::TYPE 2 REQUESTS:: 
 Average: 2514,8(s) 
 Sample Variance: 977864,7347 
 Standard Deviation: 988,8704337 
 Mode: 2618 
 Coefficient of Variation: 39,32203093 
 Recommended SRT: 3455(s)   
 
To type 3 requests, the result of experiments on all VMs are presented in Figure 3.9. It shows the 

SRT averages to 50 requests executed on all VMs (all slave nodes) when they are not overloaded 

(current) and when they are with CPU and Disk Overloaded. 

 

Figure 3-9. SRT averages on all VMs for type 3 requests. 

Therefore, based on definition of Recommended SRT and considering that the processor and disk 

not overloaded (Current Status in Figure 3-9) we have the following result: 

::TYPE 3 REQUESTS:: 
 Average: 981,52(s) 
 Sample Variance: 106462,9486 
 Standard Deviation: 326,286605 
 Mode: 1001 
 Coefficient of Variation: 33,24299097 
 Recommended SRT: 1283(s) 
 
Overload with COS tool (CPU Overload in Figure 3-9), the result is as follows: 
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::TYPE 3 REQUESTS:: 
 Average: 3044,6(s) 
 Sample Variance: 2667600,653 
 Standard Deviation: 1633,279111 
 Mode: 2960 
 Coefficient of Variation: 53,64511301 
 Recommended SRT: 4431(s)   
 
Overload with DOS tool (Disk R/W Overload in Figure 3-9), the following values were found: 

::TYPE 3 REQUESTS:: 
 Average: 8284,32(s) 
 Sample Variance: 16121155,85 
 Standard Deviation: 4015,11592 
 Mode: 8200 
 Coefficient of Variation: 48,46645133 
 Recommended SRT: 11391(s)    

3.4.5 Analysis of results 

Table 3-1 and Figure 3-10 summarizes the results of Recommended SRT. According to results, the 

SRT was higher when CPU or disk were overloaded, mainly the disk, which caused also overload in 

CPU. 

Table 3-1. Recommended SRT Result. 

Request Type 
Recommended SRT 

Current CPU Overload 
Disk R/W 
Overload 

1 42(s) 865(s) 1718(s) 

2 242(s) 783(s) 3455(s) 

3 1283(s) 4431(s) 11391(s) 
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Figure 3-10. Recommended SRT Result. 

It is worth noting that the number of rows and columns returned from a request (query selectivity) 

increases significantly the total time of its execution. For example, type 3 requests have very high 

selectivity and therefore, they have higher Recommended SRT. Other example, even with overloaded 

CPU, type 2 requests have Recommended SRT smaller than type 3 requests with current CPU 

utilization. 

In general, type 1 and type 2 requests have smaller Recommended SRTs than type 3 requests. 

However, type 1 requests when overloaded CPU, its Recommended SRT is bigger than type 2 

requests because the selectivity of type 1 requests is greater than type 2 requests. 

The results obtained provide the basis for negotiation between the cloud service provider and its 

customers in order to establish an expected Service Response Time of their services. Furthermore, 

these values can be used by monitoring tools, when a limit value is achieved, the environment can 

react recovering or minimizing the consequences of SLA violation. For example, allocating, 

reallocating and/or releasing resources at run-time. 

Therefore, an appropriately defined SRT brings benefits to both sides: the customers will have 

accurate information about the performance of their applications running in cloud and the provider 

will reduce penalties, since it knows the expected behavior of customer applications.  
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3.5 Conclusion 

This chapter presented a measurement model that allows the cloud service provider and its 

customers to establish an appropriate SLA relative to SRT performance of its applications available 

in the cloud.  

The proposed model is a non-intrusive solution and can be applied when companies wish to migrate 

their applications, OLAP or not, to cloud service providers, with the goal to allocate computational 

resources on demand, to ensure the quality of service in terms of Service Response Time. Finally, 

our proposed model focuses on OLAP applications with very large and complex databases. The 

model was evaluated using structured data of TPC-DS like Benchmark, considering that many cloud 

computing platforms support SQL requests directly or indirectly, this makes the proposed solution 

relevant for these kind of problems. 
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4.1 Introduction 

This chapter presents a new solution to efficient query processing on large databases available in 

the cloud environment. We present partitioning and monitoring strategies for adaptive processing of 

different types of queries (database access requests), a dynamic provisioning strategy and their 

algorithms. Furthermore, we present the SiclopDB framework, an implementation of the proposed 

solution and its architecture. Therefore, to better understanding, this chapter is organized as follows: 

4.2 Estimated cost model: presents the SLA violation cost and the total computational cost 

of a request used in this work. 

4.3 Architecture: presents the SiclopDB framework architecture and its components. 

4.4 SiclopDB framework - components: presents a new partitioning and monitoring 

strategies for adaptive processing of different types of requests in the cloud. Moreover, it 

shows the new dynamic provisioning strategy and their algorithms. 

4.5 Conclusion: presents the final considerations of this chapter. 

4.2 Estimated cost model 

To measure whether the SRT parameter is being violated or not, it is necessary to define the SLA 

violation cost per unit of time as well as the computational cost used for the provider to execute a 

user’s request. 

As defined in Chapter 3, in this work uses the 𝑺𝑹𝑻𝑹55	parameter, called only 𝑺𝑹𝑻𝑹. Therefore, let 

𝑻𝒔 be the start time of a request that arrives on cloud service provider. Thus, one of two situations 

may occur: (1) the request is ready to execute or (2) the request is waiting for a service to start its 

execution. When the request is ready to execute, 𝑻𝒔 will be 𝟎. Therefore, in this work the start time 

of a request corresponds to the time that it starts its execution effectively. 

After its complete execution, the finish time 𝑻𝒇	is obtained. Considering that the request can be 

partitioned, the complete execution is given when the last fragment arrives at the master node and 

the complete response is sent to the user. 

Let 𝑺𝑹𝑻𝑹𝒊 be the total execution time of a request 𝑹𝒊, i.e. 𝑺𝑹𝑻𝑹𝒊 = 	𝑻𝒇 − 𝑻𝒔. Let 𝑹𝑺𝑹𝑻𝒊	the 

Recommended SRT for requests of type 𝒊, i.e. the maximum time promised in which the service 

provider must execute a type 𝒊 request. If 𝑺𝑹𝑻𝑹𝒊	is bigger than		𝑹𝑺𝑹𝑻𝒊, the SLA has been violated. 

Therefore: 
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𝑺𝑹𝑻𝑹𝒊 > 𝑹𝑺𝑹𝑻𝒊 → 𝑽𝒊 (4.1) 

Let 𝑻𝑽𝒊 be the number of times that the request of type 𝒊 violated the Recommended SRT and 

𝑻𝑺𝑹𝑻𝒊	the quantity of type 𝒊 requests executed by a service. Therefore, as shown below, violations 

of recommended SRT is given by the percentage of times that response time was bigger than the 

maximum time promised. As will be shown in Section 4.4, this parameter is used to define the 

optimistic or pessimistic approach of complex requests execution. 

𝑷𝑽𝑹𝒊 =
𝑻𝑽𝒊
𝑻𝑺𝑹𝑻𝒊

×𝟏𝟎𝟎 (4.2) 

Let 𝑪 be the SLA violation cost per unit of time. If 𝑽𝒊 > 𝟎, the penalties of the provider are 

computed by cost per unit of time, multiplied by the time elapsed minus the maximum time 

promised. 

𝑽𝑹𝑺𝑹𝑻𝒊 = 𝒎𝒂𝒙{ 𝑺𝑹𝑻𝑹𝒊 − 𝑹𝑺𝑹𝑻𝒊 ×𝑪, 𝟎} (4.3) 

in which 𝑽𝑹𝑺𝑹𝑻𝑹𝒊	 represents the penalties of provider. The 𝐦𝐚𝐱 function returns the maximum 

value between a set of values. 

It is worth noting that SLA violation cost per unit of time 𝑪 and the estimated costs must be 

presented at the construction step of a SLA. In addition, the result of SLA violations need to be 

discussed between the service provider and its customers. 

The total computational cost for the provider to execute a user request is important to identify the 

lowest computational cost required by provider to execute a request in SRT time. Let 𝑪𝑴𝑷𝑹𝒊 be the 

cost of main memory given by quantity in bytes of memory used per unit of time. Let 𝑪𝑪𝑷𝑼𝑹𝒊 be the 

cost of CPU given by percentage of CPU core used per unit of time. Finally, let 𝑪𝑫𝑩𝑹𝒊 be the cost of 

database given by quantity in bytes of data disk pages retrieved per unit of time. 

Considering that, each machine of slave node in cloud infrastructure has different costs. Therefore, 

the total cost of a machine 𝑴	to execute a request 𝑹𝒊 or to execute subpart of request 𝑹𝒊	is given 

by: 

𝑪𝑴𝑹𝒊 = 𝑪𝑴𝑴𝑷𝑹𝒊
+ 𝑪𝑴𝑪𝑷𝑼𝑹𝒊

+ 𝑪𝑴𝑫𝑩𝑹𝒊
 

(4.4) 
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A request 𝑹𝒊 can use 𝒌	slave nodes to complete its execution. Thus, the total computational cost 

(𝑻𝑪𝑪𝑹𝒊) is given by sum of costs of all slave nodes effectively used to execute 𝑹𝒊: 

𝑻𝑪𝑪𝑹𝒊 = 𝑪𝑴𝑹𝒊
𝟏 + 𝑪𝑴𝑹𝒊

𝟐 + 𝑪𝑴𝑹𝒊
𝟑 + ⋯+ 𝑪𝑴𝑹𝒊

𝒌  
(4.5) 

Therefore, the total computational cost to execute effectively a request 𝑹𝒊	is given by: 

𝑻𝑪𝑪𝑹𝒊 = 	 𝑪𝑴𝑹𝒊
𝒌

𝒌
 

(4.6) 

This work considers an environment with several machines having different performances. 

Consequently, each machines may have different costs and as the purpose of this work is to use the 

adaptive algorithm, the costs can change in query run-time depending on the necessity of 

provisioning or releasing of resources. As operations in this work are read-only, there are no costs 

associated in data updates and the data traffic between nodes in the cloud infrastructure. 

It is worth noting that having many machines allocated minimizes the penalties of the provider, but 

can increase the computational cost. However, having a smaller amount of machines allocated 

reduces the computational costs, but can increase the penalty costs. 

Therefore, a big challenge is to use the optimal number of machines to execute all requests in SRT 

time using lowest computational cost. The minimum cost for each request is the lowest 

computational cost to ensure the SRT. Considering a request with Recommended SRT of 100 

seconds and after some previous analyses, it was obtained the minimum cost of 10. Then, the 

machines will execute the request in exactly 100 seconds, using suitable computing resources. The 

example is shown in Figure 4-1, which presents this approximation of the minimum cost and 

Recommended SRT corresponds to the ideal computational cost. 
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Figure 4-1. Ideal Computational Cost: Computation Cost (x10) vs Time (seconds). 

4.3 Architecture 

Based on the cloud computing infrastructure described in Figure 2-10 (query processing in the 

cloud), to obtain the elasticity in query processing, it is necessary an adaptive optimization 

algorithm. It must be implemented in the master nodes to manage the most appropriate allocation, 

reallocation or release of slave nodes resources in runtime of requests, according to the 

Recommended SRT and costs model already shown. This will maximize the SLA success probability. 

Figure 4-2 presents the SiclopDB framework architecture as a new solution to efficient query 

processing on large databases available in the cloud environment. It integrates adaptive/dynamic re-

optimization techniques by performing distributed queries in several steps, where each step 

concurrently executes a dynamic execution strategy at runtime of the queries, which will be 

presented in the next section.  

Each component of the framework uses adaptive strategies during request runtime. Their costs are 

based on the 𝑷𝑽𝑹𝒊, 𝑽𝑹𝑺𝑹𝑻𝒊 and 𝑻𝑪𝑪𝑹𝒊 parameters defined in previous section and the SRT time 

is the 𝑹𝑺𝑹𝑻𝑹𝒊 presented in Chapter 3. The following presents the main components of the 

SiclopDB framework. 

Dynamic Query Optimizer (DQO): It is used to construct an optimized query plan with objective of 

minimizing costs and maximizing the probability of success. The main difference for traditional 

optimizers is the construction of the query plan considering the SRT time restriction. For this 

purpose, that RSRT times agreed must be sufficient to execute the user's requests, observing the 

technological limits of the service provider. 
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Dynamic Query Scheduler (DQS): It is used to schedule the execution of distributed query plans. 

This component optimizes dynamically the queries at runtime, which is based on Service Response 

Time and the variation of resources utilized to process the query (for instance, average CPU 

utilization, available memory and estimated rates to processing of each slave node). Indeed, the 

queries submitted to DQS will be executed in the "best slave nodes". In this work, the definition of a 

"best nodes group" corresponds the group of slave nodes that possibly meets the Recommended 

SRT for a given request. 

Dynamic Query Monitoring (DQM): Given an optimized and scheduled query plan, the aim of this 

component is to monitor the query execution. The monitoring verifies, periodically, the probability of 

a query to be executed in SRT time restriction. Therefore, the DQM reevaluates periodically all 

subqueries execution plans at runtime to check the possibility of SRT violation, whether the 

possibility is low, the query continues its execution, otherwise, the query will be re-optimized. The 

probability is estimated according to DBMS costs of slave nodes, slave nodes configurations, the 

query plan and a statistical table of metadata with Recommended SRT. The metadata serves as a 

cache, it stores information of previously executed queries on the provider (for instance, 

𝑺𝑹𝑻𝑹𝒊,	𝑻𝑪𝑪𝑹𝒊	and 𝑽𝒊). The metadata aids to reduce the computing overhead to calculate an 

estimated time to execute a query. Furthermore, the metadata will be automatically populated by the 

framework according to its use. 

In the case that the request can not be executed before SRT time, the framework must calculate the 

execution time nearer to SRT time and the cloud provider must inform the penalties to be paid to 

customers. In this case, the traditional adaptive optimization algorithm will be executed because at 

this moment the fastest response time becomes more important than the SRT time. The next 

section presents in detail the partitioning and monitoring adaptive strategies, dynamic provisioning 

and the algorithms implemented in each of these components. 
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Figure 4-2. SiclopDB Framework Architecture. 

4.4 SiclopDB framework – components 

4.4.1 MetaData and performance 

It is worth noting that before the effective execution of a request, it is replicated to the metadata 

server. The metadata main objective is to extract process and store information about the request 

that will be useful to its execution. Furthermore, the metadata monitors the real-time performance of 

each slave node with the aim to estimate query execution time.  The following presents the main 

information of metadata: 

(i) Request Costs: To estimate the cost of a request, this work uses the EXPLAIN 
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command that shows the query plan chosen by the DBMS optimizer. The query plan or 

query execution plan is the sequence of operations DBMS performs to run a request. 

The values obtained does not represent the correct estimated cost if the query is too 

complex, but it serves as a basis for estimating the request performance (PostgreSQL 

9.3.9 Documentation, 2015; Riggs, Ciolli, Krosing, & Bartolini, 2015). This command 

returns the variables: cost, rows and width. The cost estimates are measured in units 

of disk I/O. An operator that reads a single block of 8.192 bytes (8K) from the disk has 

a cost of one unit. CPU time is also measured in disk I/O units, but usually as a 

fraction. For example, the amount of CPU time required to process a single tuple is 

assumed to be 1/100th (0,01) of a single disk I/O. Finally, the rows variable 

corresponds the number of tuples to be returned of a request and the width variable 

corresponds the quantity of bytes of each returned tuple. Therefore, the total cost is the 

sum of the quantity of disk pages to access the data plus the quantity of returned rows 

times 0,01, i.e. 𝒄𝒐𝒔𝒕 = 𝒅𝒊𝒔𝒌_𝒑𝒂𝒈𝒆𝒔	 + 𝒓𝒐𝒘𝒔	×	𝟎, 𝟎𝟏. 

(ii) Request Types (Range, Aggregation, Joins, Union, Grouping and Nesting Operators): As 

defined in Chapter 3, the requests executed in SiclopDB are classified between three 

types, according to complexity level: (1) type 1 requests represent the select-range 

and/or select-aggregation requests; (2) type 2 requests represent the database access 

requests that uses one or more of the following operators: equi join, cross join, inner 

join, left outer join, right outer join or full outer join; and finally, (3) type 3 requests that 

uses aggregation, joins, union, grouping and/or nesting operators. The result of 

classification is used to trace a request-profile that will be used by other requests in 

search of similar characteristics. Therefore, the explain command of DBMS can be 

used to obtain this information. 

(iii) Probability of SRT Violation: Based on the requests of the similar characteristics that 

executed on the provider, it is calculated the probability of Recommended SRT 

violation. Let 𝑷𝑽𝑹𝒊	be the percentage of times that the response time of similar 

requests was bigger than Recommended SRT. If 𝑷𝑽𝑹𝒊		exceeds 50%, the query plan 

will take on a pessimistic approach, which consists to use more computational cost to 

decrease the probability of SRT violation. If 𝑷𝑽𝑹𝒊		does not exceeds 50%, the query 

plan of 𝑹𝒊	will take an optimistic approach, which consists to use enough 
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computational cost to execute	𝑹𝒊. Section 4.4.3 explains the use of these approaches. 

(iv) Performance Monitoring: To get the current performance of a slave node the iostat 

(Layton, 2015; System Analysis and Tuning Guide, 2015) and mpstat tools (Russell & 

Cohn, 2012; System Analysis and Tuning Guide, 2015) were used. The iostat tool was 

used to check the disk saturation (Input/Output requests) and mpstat tool writes to 

standard output activities for each available processor core. These tools have many 

variables for monitoring the system performance (CPU utilization and device utilization 

report). However, this work used the variables util, iowait and idle. They are very 

important to identify problems of CPU and device saturation. util variable shows 

percentage of CPU time during which I/O requests were issued to the device 

(bandwidth utilization for the device). Device saturation occurs when this value is close 

to 100%. iowait variable shows the percentage of time that the CPU or CPUs were idle 

during which the system had an outstanding disk I/O request. idle variable shows the 

percentage of time that the CPU or CPUs were idle and the system did not have an 

outstanding disk I/O request. In metadata these values for each slave node are 

updated and stored at regular intervals. In SiclopDB, a slave node can be available or 

unavailable to execute a request. Therefore, the metadata analyzes the use of primary 

device bandwidth of each slave node through the util variable. Whether this percentage 

is above 80%, the slave node is unavailable for executing requests, because there is a 

high risk of not meet the expectations of query response. Following, the idle and iowait 

variables verify the average idle time and iowait for each CPU core. In the case, 

whether all CPU cores are below 10% (idle) and above 80% (iowait), the slave node is 

unavailable. Otherwise, the slave node is available to execute requests. The iowait 

depends on the number of CPU cores. A high iowait is an indicator of storage 

bottlenecks but not an indicator of storage saturation. This way, it was also used the 

idle variable. Finally, the information of availability or unavailability of a slave node is 

important to reduce the search overhead by slave nodes to execute a request, since 

that search overhead can be costly in infrastructures with many slave nodes. 

4.4.2 Dynamic query optimizer (DQO) 

This component is responsible to manage requests execution plan, based on the Recommended 

SRT and its type. In summary, Figure 4-3 shows the flowchart of possible execution plans to perform 
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a request.  

For type 1 requests, in the initial provisioning, the request is partitioned and its subqueries are 

distributed according to the current performance of each slave node in order to have an execution 

plan that ensures the Recommended SRT. For this, it will use the metadata variables presented in 

previous section and partitioning strategies presented in Section 4.4.3. 

During the execution of each partition, the monitoring checks the elapsed time and take one of two 

ways: (1) Estimating non SRT violation: the execution of other subqueries continues because the 

Recommended SRT is equal or greater than the elapsed time plus the remaining time (sum of 

estimated times of subqueries obtained from the initial provisioning. (2) Estimate SRT violation: the 

elapsed time plus the remaining time is greater than the Recommended SRT. Then, SiclopDB 

merges the remaining subqueries and executes a new provisioning. The Recommended SRT 

becomes the Recommended SRT minus elapsed time. 

For type 2 requests, it is initially executed the partitioning of the request according to its simple 

nested loops (equi joins partitioning in SiclopDB) and if exists, its predicates. Then, each subquery is 

executed according to the type 1 requests. After processing all sub-queries, the result is unified in 

accordance with its joins. 

Type 3 requests can be executed using a pessimistic or optimistic approach. The pessimistic 

approach is used when the 𝑷𝑽𝑹𝒊	of similar requests is greater than 50% and the optimistic 

approach when the 𝑷𝑽𝑹𝒊		is less than or equal to 50%. 

Type 3 requests do not use monitoring nor adaptive partitioning during query execution. In the 

optimistic approach a greedy strategy is used, which choses only a slave node with sufficient 

capacity to execute the request in SRT time. In the pessimistic approach, the request is replicated to 

a set of slave nodes that can execute the request in SRT Time. The first slave node to execute the 

request signals the other nodes to abort their execution. 
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Figure 4-3. Flowchart of query processing in SiclopDB framework. 

4.4.3 Dynamic query scheduler (DQS)  

The DQS component is used to schedule the execution of distributed query plans. Thus, it distributes 

the partitions of a request to each slave node available based on its performance. This becomes a 

complex task in dynamic cloud environments where the performance of each machine can be 

different in time. This way, with the performance of slave nodes and database costs it is possible to 

estimate the expected performance of a slave node executing a partition. Consequently, it is possible 

to determine the appropriate number of partitions to split the request. 

Let 𝑻𝟐𝑹𝑺𝑵		the Tuple Read Rate, the estimated time in seconds for a slave node to process a 

quantity of tuples: 
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𝑻𝟐𝑹𝑺𝑵 =
𝒓𝒐𝒘𝒔×𝟎, 𝟏
𝒄𝒐𝒔𝒕×𝑺𝒗𝒄𝒕𝒎 (4.7) 

where 𝒓𝒐𝒘𝒔		corresponds the number of tuples to be returned of a request, 𝒄𝒐𝒔𝒕		is estimated in 

units of disk I/O and 𝑺𝒗𝒄𝒕𝒎		the average service time (in seconds) for I/O requests that were 

issued to the device of a slave node. This last parameter can be obtained through the iostat tool. 

To better understanding, consider a request R with Recommended SRT received by a cloud provider: 

Select * // ß R 
From Table T; 

Consider that Recommended SRT is 100 seconds and through the explain command we have the 

cost = 368 and rows = 12.000. Moreover, consider that SN1 is an available slave node and it has 

svctm = 13 milliseconds. Thus, 𝑻𝟐𝑹𝑺𝑵𝟏		of SN1 presents read rate of 250 tuples/second. Thus, 

SN1 meets the Recommended SRT because it was estimated that SN1 in 100 seconds could 

process 25.000 tuples. 

It is worth noting that the equation does not considers CPU overhead as well as the use of DBMS 

cache. However, it presents an estimate used only in the initial provisioning. Thus, at query 

processing, the 𝑻𝟐𝑹𝑺𝑵		is calculated by dividing the number of rows retrieved (𝑹𝑻) by the time to 

retrieve them (𝑻𝑹𝑻). 

𝑻𝟐𝑹𝑺𝑵 =
𝑹𝑻
𝑻𝑹𝑻 (4.8) 

For complex queries, the strategy is similar to select-range queries. However, the rows variable is 

obtained by summing the number of accessed tuples by each query plan operator. Even if more 

than one operator uses these tuples and/or if these tuples are not part of the result. As well as 

select-range queries, this work considers that all access to a tuple block (on disk or temporary data 

pagination) is an I/O cost. 

It is worth noting that this estimate does not consider the CPU overhead. However, the overhead of 

temporary data pagination is considered, since it does not distinguish the repetition of tuples during 

each step of the query execution plan. 

Therefore, if we have the current speed of tuples read rate per second of a slave node, it is possible 

to partition a request in accordance with the estimated time to execute the request on each node. In 
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order to not violate the SRT, the sum of the times for each partition to execute a subquery, 

according to the times of each Slave Node (SN), it has to be less than the Recommended SRT. 

𝑹𝑺𝑹𝑻𝑹𝒊 ≥ 	𝑻𝟐𝑹𝑺𝑵𝟏 +	𝑻𝟐𝑹𝑺𝑵𝟐 + ⋯+	𝑻𝟐𝑹𝑺𝑵𝒌 
(4.9) 

In this work, the partitioning strategy depends on the type of request and we consider that all tables 

are clustered by primary key. Following, it will be presented the strategies implemented in the DQS 

component for each request type. 

Type 1 Request: Assume that a cloud provider receives the following select-range request R with 

Recommended SRT: 

SELECT * // ß R 
FROM table T 
WHERE T.pk >= 1000 and T.pk < 5000; 
such that pk is the primary key of table T. 

Considering that primary key values of T are sequential, without gaps between values, then we can 

extract rows = 4.000 tuples. Besides, consider that Recommended SRT is 100 seconds and that 

initial provisioning is a single slave node (SN1) such that the current moment 𝑻𝟐𝑹𝑺𝑵𝟏		= 20 

tuples/sec. 

Consequently, the initial provisioning using only SN1 will bring a penalty to be paid by the provider 

because it was estimated that SN1 in 100 seconds will process in 2.000 tuples. In this case, it is 

necessary to allocate a new slave node (SN2) to help out. Assume that 𝑻𝟐𝑹𝑺𝑵𝟐		= 10 tuples/sec 

then only 1.000 tuples can be processed in 100 seconds. Then, a new slave node (SN3) is required 

to process the request. Then, consider 𝑻𝟐𝑹𝑺𝑵𝟑		= 10 tuples/sec. 

At this point, it is possible that three slave nodes are sufficient to process R and ensure the 

Recommended SRT. R is rewritten in three subqueries: R1, R2 and R3, the first one is executed in 

SN1, the second one in SN2 and the third one in SN3, respectively. Note that in this case a virtual 

partitioning is used (i.e. we partition using the predicate of the primary key) to divide R in R1, R2 and 

R3. 

SELECT * // ß R1 
FROM table T 
WHERE T.pk >= 1000 and T.pk < 3000; 

SELECT * // ß R2 
FROM table T 
WHERE T.pk >= 3000 and T.pk < 4000; 
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SELECT * // ß R3 
FROM table T 
WHERE T.pk >= 4000 and T.pk < 5000; 

Using only three slave nodes does not guarantee that the quality defined in SRT will be met, because 

the cloud environment is unstable and the performance of the nodes can change during the queries 

execution. Therefore, it is indispensable to use a proactive approach based on statistical data in 

metadata. For this, the DQM component is used. DQM partitions the queries, in such a way that the 

performance of the nodes can be monitored at a frequency that allows other nodes to be added 

when necessary in order to ensure the Recommended SRT. 

An important issue is the monitoring frequency. If too frequent, the original query would have to be 

partitioned into many subqueries. Thus, the overload added could prejudice more than help. If 

monitoring is infrequent, it may be difficult to make corrections in a timely manner and avoid 

possible penalties. 

The partitioning process in DQM uses historical data about the request containing information about 

how long it was necessary to process similar requests (same type of request), including the number 

of partitions used. From this information, it is possible to efficiently monitor the request execution. 

The next section presents the strategies of monitoring. 

Consider that, for example, for similar requests 2 partitions were used for each partition of the initial 

provisioning. Then, R1 is partitioned in two requests: 

SELECT * // ß R1,1 
FROM table T 
WHERE T.pk >= 1000 and T.pk < 2000; 

SELECT * // ß R1;2 
FROM table T 
WHERE T.pk >= 2000 and T.pk < 3000; 

When R1,1 is done, we have the first opportunity to monitor the query execution performance in a 

non-intrusive way. Consider that 70 seconds were spent to execute R1;1. This means that the 

performance 𝑻𝟐𝑹𝑺𝑵𝟏		was below of predicted, which leads to a completion time with the expected 

processing of the next subquery of 140 seconds. However, this value is above the Recommended 

SRT. Thus, it starts a revision of the initial provisioning that allows for the SRT to be satisfied. Before 

reviewing, the remaining partitions will be merged in a single query. 
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In this case, a solution is to relocate the remaining subquery to another slave node. Consider a slave 

node (SN4) such that 𝑻𝟐𝑹𝑺𝑵𝟒		= 30. Thus, all the 1.000 remaining tuples can be read by SN4 in 30 

seconds in the best-case scenario, and that does not lead to a violation of Recommended SRT. To 

monitor the request execution, the query is partitioned in two, each of the following way. This 

partitioning strategy is presented in section 4.4.4: 

SELECT * // ß R1,2,1 
FROM table T 
WHERE T.pk >= 2000 and T.pk < 2500; 

SELECT * // ß R1,2,2 
FROM table T 
WHERE T.pk >= 2500 and T.pk < 3000; 

Consider that the performance is stable and it is able to finish its workload on schedule. Thus, the 

same strategy can be applied in the processing of R2 in SN2 and R3 in SN3. This partitioning method 

using the primary key as the partitioning attribute is the same for similar select-range requests and 

similar requests with aggregation. 

Consider a new scenario, now with the increased performance of the slave node. For example, 

suppose R2 request was partitioned into, for example, 2 subqueries. Imagine that after the first 

subquery ends and the monitoring starts, it is discovered it has executed in a shorter time than 

expected, possibly because of some other processes in the slave node that finished, and then SN2 

can finish processing R2 before planned. Thus, this time off can be used to process some requests 

that SN1 can not run. These queries can be allocated to SN2 in order to satisfy the Recommended 

SRT. Although this is a simple example and with some assumptions, the solution given by this work 

deals with scenarios of reduced and increased performance of slave nodes. 

It is important to note that all monitoring and setting is made in a non-intrusive way, i.e. our solution 

does not depend on technology used by the provider. For example, database version, operating 

system etc. Therefore, the slave nodes and their respective DBMSs do not require any changes to be 

used by framework.  

Now consider that a cloud provider receives the following request R with Recommended SRT: 

SELECT * // ß R 
FROM table T; 

Also considering that values of the primary key of T are sequential, without gaps between the values, 

then we extract rows = 8.000 tuples. Also, consider that Recommended SRT is 100 seconds and 

that the initial provisioning is a single slave node (SN1) such that now 𝑻𝟐𝑹𝑺𝑵𝟏		= 20 tuples/sec. 
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Consequently, as in the previous example, it will bring a penalty to be paid by the provider. Thus, a 

new slave node (SN2) is allocated to help. Consider that 𝑻𝟐𝑹𝑺𝑵𝟐		= 20 tuples/sec then, as in SN1, 

2.000 tuples can be processed in 100 seconds. Then a new slave node (SN3) is required to process 

the query. Then, consider 𝑻𝟐𝑹𝑺𝑵𝟑		= 40 tuples/sec. 

Thus, it is possible that those three slave nodes are sufficient to process R and ensure the 

Recommended SRT. R is rewritten into three subqueries: R1, R2 and R3, the first one is executed in 

the first SN1, the second one in SN2 and the third one in SN3, respectively. As in the previous 

example, a virtual partition is created. However, the request is rewritten adding a range predicate on 

the table’s primary key (Vmin and Vmax primary key) as shown below: 

SELECT * // ß R1 
FROM table T 
WHERE T.pk >= Vmin and T.pk < Vmin + 2000; 

SELECT * // ß R2 
FROM table T 
WHERE T.pk >= Vmin + 2000 and T.pk < Vmin + 4000; 

SELECT * // ß R3 
FROM table T 
WHERE T.pk >= Vmin + 4000 and T.pk < Vmax + 1; 
such that Vmin and Vmax is the minimum and the maximum value of the primary key of Table T, 
respectively. 

After the query is rewritten, we use the partitioning methodology described previously. The 

monitoring and provisioning of slave nodes to process the rewritten query is made the same way. 

Now consider that a cloud provider receives the following request R1 or R2 with Recommended SRT: 

SELECT * // ß R1 
FROM table T 
WHERE T.pk > <<value>>; 
such that pk is the primary key of table T. 

or 

SELECT * // ß R2 
FROM table T 
WHERE T.pk < <<value>>; 
such that pk is the primary key of table T. 

For this example, the request is rewritten adding a range predicate on the table’s primary key 

obtaining the queries below: 

SELECT * // ß R1 
FROM table T 
WHERE T.pk > <<value>> and T.pk < Vmax + 1; 

http://code-industry.net/


Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment 

 

 98 

or 
 
SELECT * // ß R2 
FROM table T 
WHERE T.pk >= Vmin and T.pk < <<value>> + 1; 

Therefore, after the query is rewritten, partitioning strategies described previously are used. The 

monitoring and provisioning of slave nodes to process the rewritten query is made the same way. 

Now consider that a cloud provider receives the following request R with Recommended SRT: 

SELECT * // ß R 
FROM table T 
WHERE T.attr > <<value>> and T.attr < <<value>>; 
such that attr is not a primary key of table T. 

Different from the previous cases in which an index can be trivially used in execution of each 

partition, in this case the query plan of each partition is a linear scan on the table. Creating an index 

for each attribute present in the request predicate is not viable. Therefore, the proposed solution is 

to rewrite the request the same way to the previous solutions, however, using the primary key for 

partitioning, as shown below: 

SELECT * // ß R 
FROM table T 
WHERE T.attr > <<value>> and T.attr < <<value>> and T.pk >= Vmin and T.pk < Vmax+1; 

After the request is rewritten, the partitioning methodology in the primary key is used the same way 

as well as the monitoring and provisioning to process the rewritten query. It is worth noting that if all 

previous cases did not use the primary key, they would be rewritten in a similar way to this strategy. 

Now consider that a cloud provider receives the following request R with Recommended SRT: 

SELECT * // ß R 
FROM table T 
WHERE T.attr = <<value>>; 
such that attr is not the primary key of table T. 

In this case is worth noting that R is not a select-range request. However, it is not as complex as 

type 3 requests. Hence, R is an exception and the strategy is different from the previous ones. The 

strategy is, in the initial provisioning, to seek the set of slave node with 𝑻𝟐𝑹	enough to process the 

request that ensures the Recommended SRT. Besides, consider that Recommended SRT is 100 

seconds and total rows in a linear scan on the table is 8.000 tuples. If the attr attribute was a 

primary key and there was no composite primary key in table T, rows assume the value 1.  
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Now consider three slave nodes, SN1, SN2 and SN3, with 𝑻𝟐𝑹𝑺𝑵𝟏		= 400 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		= 

20 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟑= 100 tuples/sec, respectively. Following the optimistic approach, the 

algorithm does a search in the slave nodes and executes the query in first slave node sufficient in 

such a way to execute R within the Recommended SRT. Thus, in this case, 𝑻𝟐𝑹𝑺𝑵𝟏		is chosen. If 

the pessimistic approach of the algorithm is active, R will be executed in half of slave nodes with the 

highest 𝑻𝟐𝑹	that ensures the SRT. The first slave node that finishes the request execution throws a 

signal to others slave nodes to abort their execution. Consequently, it reduces the risk of penalty to 

be paid by the provider. These strategies are also used for Type 3 requests. 

Monitoring the slave node to process this type of request is made after its processing and then the 

metadata is updated with success or failure of request execution. Thus, as in type 3 requests, this 

exception of type 1 request does not use monitoring nor adaptive partitioning during query 

execution.  

For requests with aggregation operators, it is added a predicate on the table’s primary key, being 

used as a partitioning attribute. If the operation is distributive such as SUM, COUNT, MIN or MAX, it 

can be easily rewritten analogously to the previous examples (i.e. a linear scan predicate of the table 

is added).  

Consider for example that a cloud provider receives the following request R with Recommended 

SRT: 

SELECT Dist_Oper(*) // ß R 
FROM table T; 
 
Then the request is rewritten as follows: 

SELECT Dist_Oper(*) // ß R 
FROM table T 
WHERE T.pk >= Vmin and T.pk <Vmax + 1; 
such that pk is the primary key of table T. 

Considering that, values of the primary key of T are sequential, without gaps between the values. 

After the query is rewritten, we use the partitioning strategies described previously. The monitoring 

and provisioning of slave nodes to process the rewritten query is made the same way. 

Whether the request presents an algebraic aggregation operator, such as AVG, the result of the 

original query can not be easily obtained by means of partitions. With that, we transform the 

algebraic function into distributive functions, as for instance AVG, it is possible to transform into 
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SUM and COUNT, so that the result of the original request. Consider for example that a cloud 

provider receives the following request R with Recommended SRT: 

SELECT AVG(T.attr) // ß R 
FROM table T; 

Then the request is rewritten as follows queries: 

SELECT SUM(T.attr) into VSum // ß R1 
FROM table T; 

SELECT COUNT(T.attr) into VCou // ß R2 
FROM table T; 

Then R1 and R2 are rewritten again as the previous example. Like this: 

SELECT SUM(*) // ß R1 
FROM table T 
WHERE T.pk >= Vmin and T.pk <Vmax + 1; 
such that pk is the primary key of table T. 

SELECT COUNT(*) // ß R2 
FROM table T 
WHERE T.pk >= Vmin and T.pk <Vmax + 1; 
such that pk is the primary key of table T. 

Therefore, after the query is rewritten, it is used the partitioning strategies already described. The 

monitoring and provisioning of slave nodes to process the rewritten query is made the same way.  

Type 2 Request: For requests with joins, DQS rewrites the query, separating all tables of FROM 

clause. Currently, the component allows only equi joins requests. Consider that a cloud provider 

receives the following trivial select-join request R with Recommended SRT: 

SELECT * // ß R 
FROM table T1, table T2 
WHERE T1.fk = T2.pk; 
such that T1.fk the foreign key referenced by the primary key T2.pk.  

The request R is rewritten in two subqueries, R1 and R2: 

SELECT * // ß R1 
FROM table T1; 
SELECT * // ß R2 
FROM table T2; 

In this case, R1 and R2 will be executed utilizing strategies of type 1 requests. Thus, R1 and R2 are 

rewritten as follows: 

SELECT * // ß R1 
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FROM table T1 
WHERE T1.pk >= Vmin and T1.pk <Vmax+1; 

SELECT * // ß R2 
FROM table T2 
WHERE T2.pk>=Vmin and T2.pk<Vmax+1; 

Thus, it uses the partitioning methodology described for type 1 requests, as well as the monitoring 

and provisioning of slave nodes to process the rewritten queries. After the execution of all partitions, 

the slave node that executed R1 makes the join to present the result. Therefore, it uses a similar 

algorithm to nested loops join algorithm. The R1 is chosen as the outer table, or the driving table. 

The other table is called the inner table. For each row in the outer table, the algorithm finds all rows 

in the inner table that satisfy the join condition. Finally, it combines the data in each pair of rows that 

satisfy the join condition and returns the resulting rows. 

Now consider that a cloud provider receives the following select-join request R with Recommended 

SRT: 

SELECT * // ß R 
FROM table T1, table T2 
WHERE T1.fk = T2.pk and T1.pk = <<value>>; 
such that T1.fk the foreign key referenced by the primary key T2.pk,  

The request R is rewritten in two subqueries, R1 and R2 as follows: 

SELECT * // ß R1 
FROM table T1 
WHERE T1.pk = <<value>>; 

SELECT * // ß R2 
FROM table T2; 

One more time, R1 and R2 will be executed using strategies of type 1 requests. Thus, R2 is rewritten 

as follows: 

SELECT * // ß R2 
FROM table T2 
WHERE T2.pk>=Vmin and T1.pk<Vmax+1; 

Thus, we use the partitioning methodology described previously and the monitoring and provisioning 

of slave nodes to process the rewritten query. Finally, after the execution of all partitions the slave 

node that executed R1 makes the join to present the result.  

Type 3 Request: For complex requests and others not shown here, SiclopDB adopts the strategy of 

seeking the set of available slave nodes with 𝑻𝟐𝑹	enough to process the request that ensures the 
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Recommended SRT. Therefore, this type of request does not use monitoring nor adaptive 

partitioning during query execution. 

Consider the following request R with Recommended SRT is 100 seconds and rows = 200.000 

tuples. 

SELECT column1, column2, column3 // ß R 
FROM table1 
    INNER JOIN table2 
        ON table1.key_column = table2.key_column 
    INNER JOIN table3 
        ON table2.key_column = table3.key_column  
    INNER JOIN table4 
        ON table3.key_column = table4.key_column 
WHERE table1.column = <<value1>> 
    AND table2.column IN(<<value2>>, <<value3>>) 
    AND table3.column IN(<<value4>>, <<value5>>, <<value6>>) 
    AND SUBSTRING(table2.Name,1,4) IN (<<value7>>, <<value8>>) 
GROUP BY table1.column1, table2.column 
ORDER BY table1.column2, table1.column3; 

In the optimistic approach, the greedy strategy is adopted, in which only one slave node executes 

the request and it is expected that ensures the Recommended SRT. Now consider three slave 

nodes, SN1, SN2 and SN3, with 𝑻𝟐𝑹𝑺𝑵𝟏		= 4.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		= 2.000 tuples/sec, 

𝑻𝟐𝑹𝑺𝑵𝟑		= 1.000 tuples/sec, respectively. In this case, the algorithm using greedy strategy 

chooses SN1 because it was the first and enough in such a way to execute R within the 

Recommended SRT. 

In pessimistic approach, the algorithm strategy is to choose half the number of slave nodes available 

with the highest 𝑻𝟐𝑹	to execute request R. Consider four available slave nodes, SN1, SN2, SN3, SN4, 

with 𝑻𝟐𝑹𝑺𝑵𝟏		= 4.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		= 2.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟑		= 1.000 tuples/sec 

and 𝑻𝟐𝑹𝑺𝑵𝟒		= 1.500 tuples/sec, respectively. Then, the algorithm replicates the request R for SN1 

and SN2, in such a way that least one can ensure the Recommended SRT. 

In the worst-case scenario, if there are no slave nodes that meets the Recommended SRT, the 

closest node to meet the Recommended SRT in terms of 𝑻𝟐𝑹	is selected. Monitoring the slave 

node to process this type of request is made after its processing, when it is checked for violation or 

not of Recommended SRT and metadata updates its information.  

Finally, the summary of DQS component algorithm is shown below. As presented, for each type of 

request is used a strategy of partitioning and execution. After its execution, the request result is 

presented to the customer and to the provider it is presented the request information, such as SRT 
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violation, elapsed time of request etc. The information of SRT violation is important for the provider 

to understand the reasons of the violation and to make decisions to reduce the problem. 

 
DQS ALGORITHM (R, TR, ET): RETURN RESULT 

- ET; //Elapsed Time = RSRT - ET. 
- R; //Request 
- TR; //Type of Request 
- METADATA; //Metadata Class 
- SLAVE_NODE[0..i]; //Available Slave Nodes 
21. BEGIN 
22.      SWITCH(TR) 
23.      CASE 1: //Type 1 Request 
24.                 IF (R.hasPredicate(“WHERE T.pk = <<value>>;”)) //Exception 
25.                     DQS(R,3,ET); 
26.                 ELSE 
27.                     Partition[0..i] = METADATA.getSelectedSlaveNode(R, SLAVE_NODE[0..i]); 
28.                     FOR EACH Partition DO 
29.                            RESULT += DQM(Partition, ET, 1, SLAVE_NODE[j]);                        
30.                     ENDFOR 
31.                     RETURN RESULT; 
32.                 ENDIF 
33.                 BREAK; 
34.        CASE 2: //Type 2 Request 
35.                 Partition[0..i] = PartitionEquiJoin(R);   
36.                 FOR EACH Partition DO 
37.                        SubResult [0..i] = DQS (Partition,1,ET); 
38.                 ENDFOR 
39.                 RETURN JOIN(SubResult); 
40.                 BREAK; 
41.        CASE 3: //Type 3 Request 
42.                 SelectedSlaveNodes[0..i]=METADATA.getSelectedSlaveNodes(R,SLAVE_NODE);//all 

nodes > ET  
43.                 IF (METADATA.getProbability(R) == OPTIMISTIC) 
44.                      RESULT = DQM(R,ET,3,SelectedSlaveNodes[i]);  
45.                 ELSE //All slave nodes satisfy the ET 
46.                      RESULT = DQM(R,ET,3,SelectedSlaveNodes[0..i/2]);  
47.                 ENDIF 
48.                 RETURN RESULT;                 
49.                 BREAK; 
50.        ENDSWITCH 
51.        IF (ET > RSRT) 
52.                 METADATA.setViolation(TRUE); 
53.        ENDIF                          
54. END 

4.4.4 Dynamic query monitoring (DQM) 

Given an optimized and scheduled query plan, the aim of this component is to monitor the query 

execution. As shown in Figure 4-3, the monitoring verifies, periodically, the possibility of a query to 
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be executed before a Recommended SRT. Therefore, the DQM component reevaluates each 

subquery at runtime and checks the possibility of SRT violation, whether it is low, the query 

continues its execution, otherwise, the query will be re-optimized in DQS component. 

The monitoring will check the request execution progress. Whether the performance of slave node 

decreases, the system can try recovering and meeting the recommended SRT or if the performance 

of slave node increases, the system can use that to its advantage. Therefore, monitoring is adaptive 

with non-regular intervals, because the framework uses a strategy is based on following variables: 

CPU, memory and processing and reading percentage in DBMS of each slave node used by request. 

Thus, this work considers that slave nodes can have different performance. 

The challenge of the monitoring algorithm is to define the best period to monitor, i.e., the time 

between consecutive probes. It should not be too small, since original queries would be partitioned 

into many subqueries. Thus, the overload added can prejudice more than help. Moreover, it should 

not be too large, because if that happens, it may be difficult to make corrections in a timely manner 

and avoid possible penalties. 

DQM uses historical data of similar requests to establish the most efficient number of partitions for 

monitoring. Thus, the algorithm checks the request selectivity and the current performance of the 

first slave node in the initial provisioning. When there is no statistical data, by default, if the request 

selectivity is less than 10.000 tuples, the DQM will fragment the request within 2 partitions. If it is 

between 10.000 and 100.000 tuples, the DQM will fragment the request up to 4 partitions. If the 

selectivity is greater than 100.000 tuples, the DQM will fragment the request up to 8 partitions. 

When there is statistical data, the number of partitions and the Recommended SRT used in the 

execution of similar requests is checked in metadata. Thus, the number of partitions for monitoring 

is chosen based on the similarity of the request (selectivity) and Recommended SRT. It is important 

to note that the operations will be realized in the metadata and will be available at the moment that 

is required by the request.  

The summary of DQM component algorithm is shown below. As presented, type 1 and 3 requests 

use different strategies. For type 1 requests, the DQM uses monitoring and adaptive query 

processing and for type 3 requests, it does not use adaptive query processing, it uses a greedy 

algorithm in optimistic approach and the fastest execution in set of slave nodes in pessimistic 

approach. 
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DQM ALGORITHM (R, ET, TR, SLAVENODES): RETURN RESULT 

- R; //Request. 
- ET; //Elapsed Time: RSRT - ET 
- TR; //Type of Request. 
- SLAVENODES; //Slave Node to execute R. 
1. BEGIN 
2.      SWITCH(TR) 
3.      CASE 1: //Type 1 Request 
4.               Partition[0..i] = Metadata.Partitioning(R); 
5.               FOR EACH Partition DO 
6.               IF((RESULT+=EXECUTE(Partition,SLAVENODES[0])).getElapsedTime()>T2R)                          
7.                    DQS (MERGE(Partition[j..i]),1, ET); 
8.               ENDIF 
9.               ENDFOR                 
10.               BREAK; 
11.      CASE 3: //Type 3 Request 
12.               //optimistic approach: SLAVENODES.getLength() returns 1. 
13.               RESULT=EXECUTE(R,SLAVENODES[0..i]));  
14.               BREAK; 
15.      ENDSWITCH                          
16. RETURN RESULT; 
17. END 

 

4.5 Conclusion 

This chapter presented solutions to efficient query processing of different types: select-range and 

select-aggregation queries (type 1 requests), select-equi-join queries (type 2 requests) and complex 

queries (type 3 requests). The strategies for adaptive processing were implemented and discussed 

in each component of SiclopDB framework.  

It is important to note that all solutions (partitioning, monitoring and settings) are made in a non-

intrusive way, i.e. slave nodes and their respective DBMSs do not require any changes to be used. 

Furthermore, these solutions are based on the costs of SLA violation and the computational cost 

model proposed in this work. To validate our solution, the next chapter presents the experimental 

results of these strategies with a large volume of data, machines and queries in the cloud. 
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5.1 Introduction 

This chapter presents the experiments of a case study using the strategies of query processing 

presented in Chapter 4. To better understanding, this chapter is organized as follows: 

5.2 Experimental rnvironment: presents the environment where the experiments were 

executed. 

5.3 Methodology: presents the methodology of the experiments. 

5.4 Requests used: shows the requests used to the experiments. 

5.5 Results and analysis: presents the results obtained as well as its analysis. 

5.6 Conclusion: presents the final considerations of this chapter. 

5.2 Experimental environment 

The strategies presented in Chapter 4 were implemented in the SiclopDB framework using the Java 

language and concurrent programming with threads and an API based on OpenMP - Open Multi-

Processing (Bull & Kambites, 2000). It was deployed in the Amazon EC2 cloud infrastructure using 

small instances (homogeneous environment). However, the performance of each VM (Virtual 

Machine) may vary over time. Due to the limitations of Amazon, 20 VMs were used, each with an 

Intel Xeon Processor with turbo up to 3.3GHz, 1.7 GB of main memory and 160 GB of disk storage. 

It was created an AMI (Amazon Machine Image) of a VM with the database. This image allows to 

startup new VMs quickly. The Amazon EBS (Elastic Block Store) was used to store the AMI. 

Therefore, the startup time and instantiation of VM as well as the time of network authentication and 

database connection were not considered in experiments.  

Each VM runs the Ubuntu 12.04 operating system and PostgreSQL 9.3 DBMS. This work focuses on 

OLAP applications with very large and complex database. Thus, a TPC-DS like benchmark was used 

to generate a database of approximately 13 GB, fully replicated in all VMs. Therefore, the database 

generated represents the customer data. 

5.3 Methodology 

The experiments aim at showing the efficiency of the query processing strategies proposed in this 

work. This way, it will check the ability to avoid penalties associated with SRT violation and the 

elasticity of the algorithm, according to the number of VMs allocated when processing queries. 
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Figure 5-1 shows step-by-step the methodology of the experiments. The first step consists in the 

definition and classification of the queries that will be used in the experiments. So, the queries are 

classified into one of three types of requests as defined in Chapter 3. Then, for each type of request, 

a set of queries workloads will be executed on SiclopDB framework. Finally, results will be analyzed 

checking the penalties, workloads statistics and metadata. 

 

Figure 5-1. Methodology of experiments of SiclopDB framework. 

For type 1 and type 2 requests, the experiments consisted in stressing the system using 10 

workloads, each workload having 10 queries of the same type. For type 3 requests, as the strategy 

is predictive and queries are complex, 5 workloads were used, each workload having 5 queries of 

the same type. Finally, the experiments were performed using 10 workloads and each workload 

having 10 queries of several types of requests. 

To know the minimum amount of required machines is a complex task. Therefore, previous tests 

were performed using a fixed number of VMs according to the strategy presented in Chapter 3. 

Thus, the minimum number of machines was found for the workload of the experiments. However, if 

new workloads arrive to the system, it will be necessary to perform extensive experiments again (as 

shown in Chapter 3) to obtain a new configuration of the service provider. 

The arrival time of the queries workloads was disposed in two ways: (i) uniform distribution: each 

workload arriving at intervals of 30 seconds and (ii) uniformly varied distribution (non-uniform 

distribution): each workload arriving at random time intervals between 10 and 60 seconds. This 
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distribution is closer to real environments, since the unpredictability of workloads arriving to the 

system and performance variation are characteristics of cloud environments. 

In this work, different values of Recommended SRT were used, from the most restricted to the most 

relaxed. After definition and classification of the queries to be used in the experiments, the values of 

Recommended SRT were obtained from tests following the methodology presented in Chapter 3. In 

order to find more restricted as well as more relaxed values of Recommended SRT, it was adapted 

according to SRT value. Therefore, minus 20% of SRT value corresponds the most restricted value of 

Recommended SRT and more 20% of SRT value corresponds the most relaxed value of 

Recommended SRT. For example, if the Recommended SRT is 100 seconds, experiments were 

performed also considering Recommended SRT of 80 seconds, and finally considering 

Recommended SRT of 120 seconds. 

Seeking for more accurate results for each type of request, experiments were repeated 10 times. 

Finally, to eliminate any possible interference between successive experiments, in particular, effects 

of other queries already executed, the OS cache was deleted and the DBMS has been restarted 

before executing the queries workloads again. 

For each experiment, the number of virtual machines used are observed in accordance with time. To 

calculate the computational cost, it is enough to observe the number of virtual machines used by 

each query. Finally, the query runtime is measured according to the strategies described in Chapter 

4. 

5.4 Used requests 

This section presents some requests used in the case study. Type 1 requests are select-range 

and/or select-aggregation requests. They have approximately 300,000 tuples of selectivity and uses 

the catalog_sales table of TPC-DS. For the select-range queries whose predicate is on non-key 

attribute, it was used the cs_bill_hdemo_sk attribute and to queries whose predicate is on the key 

attribute, it was used cs_item_sk attribute of the same table. 

The experiments involving the select-aggregation queries use the same select-range queries. 

However, the SELECT clause was modified. Finally, values interval for cs_item_sk and 

cs_bill_hdemo_sk attributes of each query was generated randomly from the values stored in the 

database. Following are examples of type 1 requests used in the experiments. All type 1 requests 

used in the experiments are listed in Annex A1. 
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select * from catalog_sales where cs_item_sk >= 1 and cs_item_sk < 300000; 
select * from catalog_sales where cs_bill_hdemo_sk > 150000; 
select * from catalog_sales where cs_item_sk > 600000; 
select SUM(cs_bill_hdemo_sk) from catalog_sales; 
select COUNT(cs_bill_hdemo_sk) from catalog_sales; 
 
Type 2 requests are select-joins requests. The selectivity of these requests varied between 1,000 

and 30,000 tuples and it uses different tables of TPC-DS benchmark. Besides, equi-joins predicates 

are represented according to the number of tables in the FROM clause. Following some examples of 

type 2 requests used in the experiments. The mostly used type 2 requests in the experiments are 

listed in Annex A2. 

select  *  
from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    
           and ss_hdemo_sk = household_demographics.hd_demo_sk  
           and ss_store_sk = s_store_sk; 
 
select  ss_item_sk  
from store_sales, time_dim 
where ss_sold_time_sk = t_time_sk; 
 
select  store_sales.* 
from store_sales, customer_demographics, date_dim, item, promotion 
where ss_sold_date_sk = d_date_sk and 
            ss_item_sk = i_item_sk and 
            ss_cdemo_sk = cd_demo_sk and 
            ss_promo_sk = p_promo_sk and 
            cd_gender = 'M';  
 
Type 3 requests are select-sets-grouping-nesting requests and, optional select-aggregation and 

select-joins. They present very complex queries plans and its selectivity is between 150,000 and 

200,000 tuples. It uses at least 10 different tables of TPC-DS. Following some examples of type 3 

requests used in the experiments. The most type 3 requests used in the experiments are listed in 

Annex A3. 

select  i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact, sum(ss_ext_sales_price) 
ext_price 
from date_dim, store_sales, item,customer,customer_address,store 
where d_date_sk = ss_sold_date_sk   and ss_item_sk = i_item_sk 
            and i_manager_id=13   and d_moy=11 
            and d_year=2001   and ss_customer_sk = c_customer_sk  
            and c_current_addr_sk = ca_address_sk   and substr(ca_zip,1,5) <> substr(s_zip,1,5)  
            and ss_store_sk = s_store_sk  
 group by i_brand,i_brand_id,i_manufact_id,i_manufact 
 order by ext_price desc,i_brand,i_brand_id,i_manufact_id,i_manufact; 
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select  i_item_id,  
        avg(ss_quantity) agg1, 
        avg(ss_list_price) agg2, 
        avg(ss_coupon_amt) agg3, 
        avg(ss_sales_price) agg4  
 from store_sales, customer_demographics, date_dim, item, promotion 
 where ss_sold_date_sk = d_date_sk and 
       ss_item_sk = i_item_sk and 
       ss_cdemo_sk = cd_demo_sk and 
       ss_promo_sk = p_promo_sk and 
       cd_gender = 'M' and  
       cd_marital_status = 'M' and 
       cd_education_status = '4 yr Degree' and 
       (p_channel_email = 'N' or p_channel_event = 'N') and 
       d_year = 2001  
 group by i_item_id 
 order by i_item_id 
 
 
with wss as  
 (select d_week_seq, 
        ss_store_sk, 
        sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales, 
        sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales, 
        sum(case when (d_day_name='Tuesday') then ss_sales_price else  null end) tue_sales, 
        sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales, 
        sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales, 
        sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales, 
        sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales 
 from store_sales,date_dim 
 where d_date_sk = ss_sold_date_sk 
 group by d_week_seq,ss_store_sk 
 ) 
  select  s_store_name1,s_store_id1,d_week_seq1 
       ,sun_sales1/sun_sales2,mon_sales1/mon_sales2 
       ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2 
       ,fri_sales1/fri_sales2,sat_sales1/sat_sales2 
 from 
 (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1 
        ,s_store_id s_store_id1,sun_sales sun_sales1 
        ,mon_sales mon_sales1,tue_sales tue_sales1 
        ,wed_sales wed_sales1,thu_sales thu_sales1 
        ,fri_sales fri_sales1,sat_sales sat_sales1 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and 
        ss_store_sk = s_store_sk and  
        d_month_seq between 1200 and 1200 + 11) y, 
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2 
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        ,s_store_id s_store_id2,sun_sales sun_sales2 
        ,mon_sales mon_sales2,tue_sales tue_sales2 
        ,wed_sales wed_sales2,thu_sales thu_sales2 
        ,fri_sales fri_sales2,sat_sales sat_sales2 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and 
        ss_store_sk = s_store_sk and  
        d_month_seq between 1200+ 12 and 1200 + 23) x 
 where s_store_id1=s_store_id2 
   and d_week_seq1=d_week_seq2-52 
 order by s_store_name1,s_store_id1,d_week_seq1; 
 

5.5 Results and analysis 

To execute the experiments, a VM was chosen arbitrarily to be the master node and consequently 

the other nodes become slave nodes. SiclopDB framework was deployed in the master node and the 

others were deployed with the TPC-DS benchmark database. Following are presented the results of 

experiments for each type of request. 

5.5.1 Type 1 requests 

For type 1 requests, experiments were divided into select-range queries and select-aggregation 

queries. Figures 5.2 and 5.3 show, respectively, experiments of select-range queries with the arrival 

of workloads following the uniform distribution and with the arrival of workloads following the non-

uniform distribution. The graphs present the number of VMs used by time in seconds and the 

Recommended SRTs used were 80, 100 and 120 seconds. These values were obtained according 

to experiments realized following the methodology in Chapter 3. Finally, the queries predicate may 

be on a non-key attribute or on a key attribute. 

It is important to emphasize at this point that when the attribute is not a primary key, our strategy 

scans all tuples of the table, i.e. all tuples are checked to verify whether they satisfy the predicate. 

Thus, this type of queries requires more processing time than the select-range that have a predicate 

on key attribute. Consequently, this causes the increase of VM computational cost, since the 

response time is higher. 
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Figure 5-2. Type 1 Requests (Select-Range): average virtual machines used for workloads uniformly arriving every 30 
seconds for the Recommended SRTs: 80, 100 and 120 seconds. 
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Figure 5-3. Type 1 Requests (Select-Range): average virtual machines used for workloads randomly arriving between 10 
and 60 seconds for the Recommended SRTs: 80, 100 and 120 seconds. 
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According to the results, it can be seen the increase and decrease of the workloads on the system 

and the elasticity on the number of virtual machines allocated to execute the queries. We can also 

see that in Figure 5.2 and 5.3 the SiclopDB used almost all VMs available in the most restricted 

Recommended SRT, whose limit was almost reached in ninth and tenth workload. If the limit was 

reached, to reduce the provider penalties, this problem could be solved recommending the 

customer to acquire more VMs and/or to making new experiments to update the Recommended 

SRT. 

When the SRT is more restricted, the computational cost is higher or equal to the computational cost 

of the most relaxed SRT, this happens to avoid penalties. Moreover, the computational cost is higher 

when the workloads arrive at random times (non-uniform distribution) if compared to uniform 

distribution. We believe that the system may not recover quickly when there is an unexpected 

overload of the resources, and seeking quick reaction to execute the queries, the algorithm allocates 

more VMs to execute the workload in SRT time. Consequently, the computational cost increases. 

The results of experiments utilizing only select-aggregation queries are shown in Figures 5.4 and 

5.5. Figure 5.4 presents experiments with uniform distribution of workloads and Figure 5.5 shows 

the experiments with non-uniform distribution. As for the select-range queries, the Recommended 

SRT was varied, the most restricted SRT was 80 seconds and the most relaxed SRT was 120 

seconds. 
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Figure 5-4. Type 1 Requests (Select-Aggregation): average virtual machines used for workloads uniformly arriving every 
30 seconds for the Recommended SRTs: 80, 100 and 120 seconds. 
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Figure 5-5. Type 1 Requests (Select-Aggregation): average virtual machines used for workloads randomly arriving 
between 10 and 60 seconds for the Recommended SRTs: 80, 100 and 120 seconds. 

We can see that results show a similar behavior with the select-range queries. This is due to the 

strategy used to perform this type of query, which is similar to select-range queries. Moreover, for all 

experiments, the workloads are of the same type. However, several factors that are out of control, 

for example, other processes running on the physical machine hosting the VM can contribute to 

performance variation.  

Comparing both experiments (select-range and select-aggregation queries) it can be noticed that 

select-aggregation queries present faster response time than the select-range queries. This is due to 

the amount of data to be retrieved by the SELECT clause. The select-range queries used in the 

experiments recover all attributes of a table (SELECT *), i.e. a large volume of data and according to 

(Elmasri & Navathe, 2010) more I/O operations are performed. Finally, select-aggregation queries 

need to retrieve only the aggregated value of an attribute. 
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5.5.2 Type 2 requests 

For type 2 requests, experiments were realized in queries with or without predicate as shown in 

section 5.4. As shown in the previous subsection, the following graphs show the number of VMs 

used by the time in seconds. According to the proposed strategy in this work, it has obtained similar 

results to type 1 requests, because each fragment of a query is executed using the same strategy. 

Therefore, the primary difference between these types (type 1 and type 2 requests) is the query 

partitioning and merge of their results. 

Figures 5.6 and 5.7 show, respectively, the experiments with the arrival of workloads following the 

uniform distribution and with the arrival of workloads following the non-uniform distribution. As in 

previous experiments, the Recommended SRT was varied, the most restricted SRT was 130 seconds 

and the most relaxed SRT was 180 seconds 
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Figure 5-6. Type 2 Requests: average virtual machines used with workloads uniformly arriving every 30 seconds for the 
Recommended SRTs: 130, 150 and 180 seconds. 
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Figure 5-7. Type 2 Requests: average virtual machines used with workloads randomly arriving between 10 and 60 
seconds for the Recommended SRTs: 130, 150 and 180 seconds. 

In this work, the partitioning and merge of a query occurs in the VM Leader, which is a VM 

responsible for partitioning the query, processing joins and applying merge of their results. The VM 

Leader was chosen automatically and corresponds to the VM that receives the first fragment of a 

query. 

Each fragment of a query receives a FID (Fragment Identifier) that is used to control and correctly 

merge the results. The partitioning time of queries was not considered because the reduced 

complexity of the queries used in the experiments. However, it was observed that the merging of the 

results causes a higher time to execute queries, approximately 10% more than the select-range 

requests. Finally, it is important to observe that in the most restricted SRT, the ninth workload 

reached the limit of the infrastructure service provider. 

5.5.3 Type 3 requests 

For type 3 requests, the experiments were realized with complex queries obtained from the TPC-DS 

Benchmark. As shown in previous sessions, the following graphs show the number of VMs allocated 

by time in seconds and the Recommended SRT was varied, the most restricted SRT was 800 

seconds and the most relaxed SRT was 1200 seconds. However, due to the complexity of these 

queries and the limit of VMs available in the service provider, only 5 workloads were used, each 

having 5 complex queries. 

According to proposed strategy of this work, the experiments stressed the system searching a VM 

that could execute successfully a query in SRT time (optimistic approach) or executing a query over 
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a set of VMs that one VM could execute successfully the query in SRT time (pessimistic approach). 

Therefore, it is not used monitoring nor adaptive partitioning during query execution. 

Figures 5.8 and 5.9 show, respectively, the results of experiments following the uniform distribution 

and non-uniform distribution of workloads. We can observe that due to the strategy used in this work 

a large number of VMs are used since the first query workload. In addition, in accordance to the 

strategy presented in Chapter 4, the algorithm chooses through the metadata the optimistic or 

pessimistic strategy for executing a query and after its execution the metadata are updated.  

However, we believe that the decrease in the use of virtual machines after the third workload 

happened due to the algorithm starting to use more often the optimistic approach. Consequently, 

the queries were being executed successfully. Moreover, it can be observed that due to the 

complexity and selectivity of the queries, there is a greater overhead for the ending its results. 
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Figure 5-8. Type 3 Requests: average virtual machines used with workloads uniformly arriving every 30 seconds for the 
Recommended SRTs: 800, 1000 and 1200 seconds. 
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Figure 5-9. Type 3 Requests: average virtual machines used with workloads randomly arriving between 10 and 60 
seconds for the Recommended SRTs: 800, 100 and 1200 seconds. 

5.5.4 All type of requests 

Finally, experiments were realized using all requests types over the same queries workload. 

According to the strategies proposed in this thesis, similar results to the previous ones were 

obtained. The main overhead is the algorithm having to classify each query to be executed (type 1, 2 

or 3 of request). After classifying the query, the query is executed according to the already 

mentioned strategies. 

Figure 5.10 shows, respectively, the experiments with the arrival of workloads following uniform 

distribution and non-uniform distribution. The graphs show the number of VMs used by the time in 

seconds. However, unlike previous experiments, each query after classification has a different 

Recommended SRT, according to their type of request. 
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Figure 5-10. All Type Requests: average virtual machines used with workloads uniformly arriving every 30 seconds and 
randomly arriving between 10 and 60 seconds. 

For several moments, it can be seen that the limit of the provider’s infrastructure is reached; 

however, it has not been exceeded. Thus, it can be seen the increase and decrease in workloads 

due to elasticity in the number of allocated virtual machines to execute all queries. It is important to 

observe that no penalty occurred with all queries. However, if new workloads arrive to the system, it 

will be necessary to perform extensive experiments again (as shown in Chapter 3) to obtain a new 

configuration of service provider. 

5.6 Conclusion 

This chapter presented the experiments of the proposed strategies in Chapter 4. Given the increase 

and decrease of the workloads, it can be seen the elasticity in the number of virtual machines 

allocated by the methods proposed in this thesis to execute queries.  

Furthermore, results show that the solution reacts to the resources variation of the environment and 

to different sizes of workloads. The solution ensures that the Recommended SRT is satisfied in a 

non-intrusive and automatic way. Finally, our proposal was effective to avoid the penalties in the 

execution of queries and the Recommended SRT was satisfied in all experiments without incurring 

penalties. 
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6.1 Final considerations 

This chapter presents the main conclusions of this thesis.  They are closely related to the objectives, 

contributions and solutions that have been presented along this work. Part of this thesis has been 

evaluated by the community in (Costa et al., 2015, 2016; Costa & Sousa, 2013). 

This work presented a new solution to efficient query processing on large databases available in a 

cloud environment. It integrated adaptive re-optimization at runtime of the query and their costs are 

based on the SRT (Service Response Time) QoS parameter. For this, it was firstly proposed a model 

that allows the cloud service provider and its customers to establish an appropriate SLA relative to 

SRT performance of their applications available in the cloud. After, it was presented a new 

partitioning and monitoring strategies for adaptive processing of different types of queries (database 

access requests). Moreover, a dynamic provisioning strategy and its algorithm were presented. 

Finally, to validate this work, the strategies were implemented in the SiclopDB framework and the 

experiments were evaluated in Amazon EC2 cloud infrastructure. 

Chapter 2 presented researches, concepts and technologies related to the object of study of this 

doctoral thesis (Objective 1 of the thesis). From the user’s point of view, the SRT parameter is 

considered one of the main QoS performance parameters. However, major cloud providers have 

ignored or inappropriately treated the SRT parameter in SLA due to its complexity. 

Furthermore, we can observe that most works in the literature focus on shorter query execution time 

and in the prediction of resources that will used by a query through the system current context. 

These works may not be suitable in unpredictable environments related to the availability of 

resources. Other related works focus on adaptive query processing. However, they present 

limitations of elasticity and/or scalability in their algorithms, the absence of adaptive monitoring 

query processing and/or use of intrusive solutions. 

Chapter 3 presented one of the main contributions of this thesis (Objective 2 of the thesis). We 

propose a model that allows the cloud service provider and its customers to establish an appropriate 

SLA relative to SRT performance of their applications running in the cloud. The proposed model is a 

non-intrusive solution and can be applied when companies plan to migrate their applications, OLAP 

or not, to cloud services providers, with the goal to allocate computational resources on demand, to 

ensure the quality of service in terms of SRT. 

Finally, the proposed model was evaluated in the Amazon EC2 cloud infrastructure using small 

instances and a TPC-DS (Tpc BenchmarkTM Ds, 2012) like benchmark. It was used for generating an 
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OLAP database, considering that some cloud computing platforms support SQL queries directly or 

indirectly, this makes the proposed solution suitable for these kind of problems. 

Chapter 4 presented the main contribution of this work (Objective 3 of the thesis), a new solution to 

efficient query processing on large databases available in a cloud environment. It is restricted to 

relational database requests. This way, it presented solutions to efficient processing of different 

queries: select-range and select-aggregation queries (type 1 requests), select-equi-join queries (type 

2 requests) and complex queries (type 3 requests). Finally, the partitioning and monitoring strategies 

and a dynamic provisioning strategy were discussed and implemented for each component of the 

SiclopDB framework.  

It is important to emphasize that this work focuses on OLAP applications because in this kind of 

environment, adaptive processing produces positive effects at query runtime. Furthermore, it is 

important to note that all solutions (partitioning, monitoring and settings) are made in a non-intrusive 

way, i.e. slave nodes and their respective DBMSs do not require any changes to be used. Finally, 

these solutions were based on the costs of SLA violation and the computational cost model 

proposed in this work. 

To validate our solution, chapter 5 presented the experiments of the proposed strategies of Chapter 

4. For this, the SiclopDB framework was evaluated in Amazon EC2 cloud infrastructure using small 

instances and the TPC-DS like benchmark was used for generating the OLAP database. 

Given the increase and decrease of the workloads, it could be seen the elasticity in the number of 

virtual machines allocated to execute queries. Furthermore, results shown that the solution reacts to 

the variation of the environment with different of workloads. Finally, our proposal was effective to 

avoid the penalties in the execution of queries and the Recommended SRT was satisfied in all 

experiments without incurring penalties. 

6.2 Future work 

As future work, we will deploy our proposed model, beyond Amazon, in an Azure and Google Cloud 

Platform, using similar VMs. After, we will compare the response time between the different public 

cloud providers. Moreover, other future work consists to use specialized systems for the automatic 

classification of applications according to the request types as well as to the automatic analysis of 

results. Other work comprises to replace DOS and COS tools by others benchmark tools, for 

example, pgbench tool that allows a greater variation of performance parameters. 
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Furthermore, we intend to improve adaptive strategies to incorporate/allow different query types. For 

example, allowing SQL predicates more complex and reduction network data traffic. Consequently, 

we expect to carry out more experiments and modify the presented cost models. Finally, we intend 

to improve the cost model involving other SLA parameters, such as resiliency, throughput and 

efficiency, since they are important measures to evaluate the performance of services in cloud 

infrastructures.  
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Annex A1 – Type 1 requests 

 

1. select * from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 300000; 

2. select * from catalog_sales where cs_bill_hdemo_sk > 150000; 

3. select * from catalog_sales where cs_item_sk  >= 300001 and cs_item_sk < 600000; 

4. select * from catalog_sales where cs_item_sk > 600000; 

5. select * from catalog_sales where cs_item_sk  >= 600001 and cs_item_sk < 900000; 

6. select * from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk < 1200000; 

7. select * from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 1500000; 

8. select * from catalog_sales where cs_item_sk = 900000; 

9. select * from catalog_sales where cs_item_sk  >= 1500001 and cs_item_sk < 1800000; 

10. select cs_bill_hdemo_sk from catalog_sales; 

11. select * from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 2100000; 

12. select * from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and cs_bill_hdemo_sk < 

2100000; 

13. select * from catalog_sales where cs_item_sk  >= 2100000 and cs_item_sk < 2400000; 

14. select * from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and cs_bill_hdemo_sk < 

2400000; 

15. select * from catalog_sales where cs_item_sk  >= 2400001 and cs_item_sk < 2700000; 

16. select * from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and cs_bill_hdemo_sk < 

2700000; 

17. select * from catalog_sales where cs_item_sk  >= 2700001 and cs_item_sk < 3000000; 

18. select * from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and cs_bill_hdemo_sk < 

3000000; 

19. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 
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300000; 

20. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000; 

21. select  SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 300001 and 

cs_item_sk < 600000; 

22. select SUM(cs_item_sk) from catalog_sales where cs_item_sk > 600000; 

23. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 600001 and cs_item_sk 

< 900000; 

24. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk 

< 1200000; 

25. select SUM(cs_item_sk) from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 

1500000; 

26. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000; 

27. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1500001 and 

cs_item_sk < 1800000; 

28. select SUM(cs_bill_hdemo_sk) from catalog_sales; 

29. select SUM(cs_item_sk) from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 

2100000; 

30. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and 

cs_bill_hdemo_sk < 2100000; 

31. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2100000 and 

cs_item_sk < 2400000; 

32. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and 

cs_bill_hdemo_sk < 2400000; 

33. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2400001 and 

cs_item_sk < 2700000; 

34. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and 

cs_bill_hdemo_sk < 2700000; 

35. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2700001 and 
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cs_item_sk < 3000000; 

36. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and 

cs_bill_hdemo_sk < 3000000; 

37. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 

300000; 

38. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000; 

39. select  AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 300001 and cs_item_sk 

< 600000; 

40. select AVG(cs_item_sk) from catalog_sales where cs_item_sk > 600000; 

41. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 600001 and cs_item_sk 

< 900000; 

42. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk 

< 1200000; 

43. select AVG(cs_item_sk) from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 

1500000; 

44. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000; 

45. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1500001 and 

cs_item_sk < 1800000; 

46. select AVG(cs_bill_hdemo_sk) from catalog_sales; 

47. select AVG(cs_item_sk) from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 

2100000; 

48. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and 

cs_bill_hdemo_sk < 2100000; 

49. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2100000 and 

cs_item_sk < 2400000; 

50. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and 

cs_bill_hdemo_sk < 2400000; 

51. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2400001 and 
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cs_item_sk < 2700000; 

52. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and 

cs_bill_hdemo_sk < 2700000; 

53. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2700001 and 

cs_item_sk < 3000000; 

54. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and 

cs_bill_hdemo_sk < 3000000; 

55. select COUNT(*) from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 300000; 

56. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000; 

57. select  COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 300001 and 

cs_item_sk < 600000; 

58. select COUNT(*) from catalog_sales where cs_item_sk > 600000; 

59. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 600001 and 

cs_item_sk < 900000; 

60. select COUNT(*) from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk < 1200000; 

61. select COUNT(cs_item_sk) from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 

1500000; 

62. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000; 

63. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1500001 and 

cs_item_sk < 1800000; 

64. select COUNT(cs_bill_hdemo_sk) from catalog_sales; 

65. select COUNT(cs_item_sk) from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 

2100000; 

66. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and 

cs_bill_hdemo_sk < 2100000; 

67. select COUNT(*) from catalog_sales where cs_item_sk  >= 2100000 and cs_item_sk < 2400000; 

68. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and 
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cs_bill_hdemo_sk < 2400000; 

69. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2400001 and 

cs_item_sk < 2700000; 

70. select COUNT(*) from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and cs_bill_hdemo_sk 

< 2700000; 

71. select COUNT(*) from catalog_sales where cs_item_sk  >= 2700001 and cs_item_sk < 3000000; 

72. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and 

cs_bill_hdemo_sk < 3000000; 

73. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 

300000; 

74. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000; 

75. select  MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 300001 and cs_item_sk 

< 600000; 

76. select MIN(cs_item_sk) from catalog_sales where cs_item_sk > 600000; 

77. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 600001 and cs_item_sk 

< 900000; 

78. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk 

< 1200000; 

79. select MIN(cs_item_sk) from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 

1500000; 

80. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000; 

81. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1500001 and 

cs_item_sk < 1800000; 

82. select MIN(cs_bill_hdemo_sk) from catalog_sales; 

83. select MIN(cs_item_sk) from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 

2100000; 

84. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and 

cs_bill_hdemo_sk < 2100000; 
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85. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2100000 and 

cs_item_sk < 2400000; 

86. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and 

cs_bill_hdemo_sk < 2400000; 

87. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2400001 and 

cs_item_sk < 2700000; 

88. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and 

cs_bill_hdemo_sk < 2700000; 

89. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2700001 and 

cs_item_sk < 3000000; 

90. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and 

cs_bill_hdemo_sk < 3000000; 

91. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1 and cs_item_sk < 

300000; 

92. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000; 

93. select  MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 300001 and cs_item_sk 

< 600000; 

94. select MAX(cs_item_sk) from catalog_sales where cs_item_sk > 600000; 

95. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 600001 and cs_item_sk 

< 900000; 

96. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 900001 and cs_item_sk 

< 1200000; 

97. select MAX(cs_item_sk) from catalog_sales where cs_item_sk  >= 1200001 and cs_item_sk < 

1500000; 

98. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000; 

99. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 1500001 and 

cs_item_sk < 1800000; 

100. select MAX(cs_bill_hdemo_sk) from catalog_sales; 
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101. select MAX(cs_item_sk) from catalog_sales where cs_item_sk  >= 1800001 and cs_item_sk < 

2100000; 

102. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 1800001 and 

cs_bill_hdemo_sk < 2100000; 

103. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2100000 and 

cs_item_sk < 2400000; 

104. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2100001 and 

cs_bill_hdemo_sk < 2400000; 

105. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2400001 and 

cs_item_sk < 2700000; 

106. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2400001 and 

cs_bill_hdemo_sk < 2700000; 

107. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk  >= 2700001 and 

cs_item_sk < 3000000; 

108. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk  >= 2700001 and 

cs_bill_hdemo_sk < 3000000; 
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Annex A2 – Type 2 requests 

 
 
1. select  *  

from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    
and ss_hdemo_sk = household_demographics.hd_demo_sk  
and ss_store_sk = s_store_sk; 

 

2. select  ss_item_sk  
from store_sales, time_dim 
where ss_sold_time_sk = t_time_sk; 

 

3. select  store_sales.* 
from store_sales, customer_demographics, date_dim, item, promotion 
where ss_sold_date_sk = d_date_sk and 

ss_item_sk = i_item_sk and 
ss_cdemo_sk = cd_demo_sk and 
ss_promo_sk = p_promo_sk and 
cd_gender = 'M'; 
 

4. select  *  
from store_sales,household_demographics,time_dim 
where ss_sold_time_sk = time_dim.t_time_sk    
and ss_hdemo_sk = household_demographics.hd_demo_sk; 

 

5. select  ss_item_sk  
from store_sales, time_dim 
where ss_sold_time_sk = t_time_sk and ss_item_sk > 100000; 

 

6. select  store_sales.* 
from store_sales, customer_demographics, date_dim, item, promotion 
where ss_sold_date_sk = d_date_sk and 

ss_item_sk = i_item_sk and 
ss_cdemo_sk = cd_demo_sk and 
ss_promo_sk = p_promo_sk and 
cd_gender = 'F'; 
 

7. select  count(store.s_store_name)  
from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    

and ss_hdemo_sk = household_demographics.hd_demo_sk  
and ss_store_sk = s_store_sk 
and time_dim.t_hour = 8 
and time_dim.t_minute >= 30 
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and household_demographics.hd_dep_count = 5 
     
8. select  i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, 

avg(ss_sales_price) agg4  
from store_sales, customer_demographics, date_dim, item, promotion 
where ss_sold_date_sk = d_date_sk and 

ss_item_sk = i_item_sk and 
ss_cdemo_sk = cd_demo_sk and 
ss_promo_sk = p_promo_sk; 

 
9. select  i_item_id, avg(ss_quantity)  

from store_sales, customer_demographics, date_dim, item, promotion 
where ss_sold_date_sk = d_date_sk and 

ss_item_sk = i_item_sk and 
ss_cdemo_sk = cd_demo_sk and 
ss_promo_sk = p_promo_sk and 
cd_gender = 'M' and  
cd_marital_status = 'M' and 
cd_education_status = '4 yr Degree' and 
(p_channel_email = 'N' or p_channel_event = 'N') and 
d_year = 2001; 

 
 

10. select  sum(cs_ext_discount_amt)  as "excess discount amount"  
from catalog_sales,item,date_dim 
where i_manufact_id = 577 

and i_item_sk = cs_item_sk  
and d_date between '1998-03-18' and  
(cast('1998-03-18' as date) + 90) 
and d_date_sk = cs_sold_date_sk; 

 
11. select 1.3 * avg(cs_ext_discount_amt)  

from catalog_sales,date_dim 
where cs_item_sk = i_item_sk  

and d_date between '1998-03-18' and 
(cast('1998-03-18' as date) + 90) 
and d_date_sk = cs_sold_date_sk  

 
12. select * 

from store_sales,date_dim 
where c.c_customer_sk = ss_customer_sk and 

ss_sold_date_sk = d_date_sk and 
d_year = 2001 

 
13. select  cd_gender, cd_marital_status, cd_education_status, count(*) cnt1, cd_purchase_estimate, 

count(*) cnt2, cd_credit_rating, count(*) cnt3 
from  customer c,customer_address ca,customer_demographics 
where  c.c_current_addr_sk = ca.ca_address_sk and 
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cd_demo_sk = c.c_current_cdemo_sk; 
 
 
14. select * 

from web_sales,date_dim 
where c.c_customer_sk = ws_bill_customer_sk and 

ws_sold_date_sk = d_date_sk and 
d_year = 2001 and 
d_moy between 2 and 2+2; 

 
15. select *  

from catalog_sales,date_dim 
where c.c_customer_sk = cs_ship_customer_sk and 

cs_sold_date_sk = d_date_sk and 
d_year = 2001 and 
d_moy between 2 and 2+2; 

 
16. select  count(*)  

from  customer c,customer_address ca,customer_demographics 
where  c.c_current_addr_sk = ca.ca_address_sk and 

cd_demo_sk = c.c_current_cdemo_sk; 
 
 
17. select  ss_item_sk  

from store_sales, time_dim 
where ss_sold_time_sk = t_time_sk and ss_item_sk >= 100000 and ss_item_sk < 400000; 

 
18. select  ss_item_sk  

from store_sales, time_dim 
where ss_sold_time_sk = t_time_sk and ss_item_sk < 900000; 

 
 
19. select  count(*)  

from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    

and ss_hdemo_sk = household_demographics.hd_demo_sk  
and ss_store_sk = s_store_sk 
and time_dim.t_minute >= 30 
and store.s_store_name = 'ese'; 
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Annex A3 – Type 3 requests 

 
1. select  count(*)  
from store_sales,household_demographics,time_dim, store 
where ss_sold_time_sk = time_dim.t_time_sk    
    and ss_hdemo_sk = household_demographics.hd_demo_sk  
    and ss_store_sk = s_store_sk 
    and time_dim.t_hour = 8 
    and time_dim.t_minute >= 30 
    and household_demographics.hd_dep_count = 5 
    and store.s_store_name = 'ese' 
order by count(*); 
 
2. select  i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, 
        avg(ss_sales_price) agg4  
 from store_sales, customer_demographics, date_dim, item, promotion 
 where ss_sold_date_sk = d_date_sk and 
       ss_item_sk = i_item_sk and 
       ss_cdemo_sk = cd_demo_sk and 
       ss_promo_sk = p_promo_sk and 
       cd_gender = 'M' and  
       cd_marital_status = 'M' and 
       cd_education_status = '4 yr Degree' and 
       (p_channel_email = 'N' or p_channel_event = 'N') and 
       d_year = 2001  
 group by i_item_id 
 order by i_item_id; 
 
 
3. select  asceding.rnk, i1.i_product_name best_performing, i2.i_product_name worst_performing 
from(select * 
     from (select item_sk,rank() over (order by rank_col asc) rnk 
           from (select ss_item_sk item_sk,avg(ss_net_profit) rank_col  
                 from store_sales ss1 
                 where ss_store_sk = 30 
                 group by ss_item_sk 
                 having avg(ss_net_profit) > 0.9*(select avg(ss_net_profit) rank_col 
                                                  from store_sales 
                                                  where ss_store_sk = 30 
                                                    and ss_hdemo_sk is null 
                                                  group by ss_store_sk))V1)V11 
     where rnk  < 11) asceding, 
    (select * 
     from (select item_sk,rank() over (order by rank_col desc) rnk 
           from (select ss_item_sk item_sk,avg(ss_net_profit) rank_col 
                 from store_sales ss1 
                 where ss_store_sk = 30 
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                 group by ss_item_sk 
                 having avg(ss_net_profit) > 0.9*(select avg(ss_net_profit) rank_col 
                                                  from store_sales 
                                                  where ss_store_sk = 30 
                                                    and ss_hdemo_sk is null 
                                                  group by ss_store_sk))V2)V21 
     where rnk  < 11) descending, 
item i1, 
item i2 
where asceding.rnk = descending.rnk  
  and i1.i_item_sk=asceding.item_sk 
  and i2.i_item_sk=descending.item_sk 
order by asceding.rnk; 
 
 
4. select  sum(cs_ext_discount_amt)  as "excess discount amount"  
from  
   catalog_sales,item,date_dim 
where i_manufact_id = 577 
and i_item_sk = cs_item_sk  
and d_date between '1998-03-18' and  
        (cast('1998-03-18' as date) + 90) 
and d_date_sk = cs_sold_date_sk  
and cs_ext_discount_amt   
     > (  
         select 1.3 * avg(cs_ext_discount_amt)  
         from catalog_sales,date_dim 
         where cs_item_sk = i_item_sk  
          and d_date between '1998-03-18' and 
                             (cast('1998-03-18' as date) + 90) 
          and d_date_sk = cs_sold_date_sk  
      ); 
 
 
5. select  cd_gender, cd_marital_status, cd_education_status, count(*) cnt1, cd_purchase_estimate, 
  count(*) cnt2, cd_credit_rating, count(*) cnt3 
 from  customer c,customer_address ca,customer_demographics 
 where  c.c_current_addr_sk = ca.ca_address_sk and 
  ca_state in ('KS','ND','WV') and 
  cd_demo_sk = c.c_current_cdemo_sk and  
  exists (select * 
          from store_sales,date_dim 
          where c.c_customer_sk = ss_customer_sk and 
                ss_sold_date_sk = d_date_sk and 
                d_year = 2001 and 
                d_moy between 2 and 2+2) and 
   (not exists (select * 
            from web_sales,date_dim 

http://code-industry.net/


Annex A3 – Type 3 requests  
 

 157 

            where c.c_customer_sk = ws_bill_customer_sk and 
                  ws_sold_date_sk = d_date_sk and 
                  d_year = 2001 and 
                  d_moy between 2 and 2+2) and 
    not exists (select *  
            from catalog_sales,date_dim 
            where c.c_customer_sk = cs_ship_customer_sk and 
                  cs_sold_date_sk = d_date_sk and 
                  d_year = 2001 and 
                  d_moy between 2 and 2+2)) 
 group by cd_gender, cd_marital_status, cd_education_status, cd_purchase_estimate, 
          cd_credit_rating 
 order by cd_gender, cd_marital_status, cd_education_status, cd_purchase_estimate, 
          cd_credit_rating; 
 
6. WITH all_sales AS ( 
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
       ,SUM(sales_cnt) AS sales_cnt 
       ,SUM(sales_amt) AS sales_amt 
 FROM (SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,cs_quantity - COALESCE(cr_return_quantity,0) AS sales_cnt 
             ,cs_ext_sales_price - COALESCE(cr_return_amount,0.0) AS sales_amt 
       FROM catalog_sales JOIN item ON i_item_sk=cs_item_sk 
                          JOIN date_dim ON d_date_sk=cs_sold_date_sk 
                          LEFT JOIN catalog_returns ON (cs_order_number=cr_order_number  
                                                    AND cs_item_sk=cr_item_sk) 
       WHERE i_category='Shoes' 
       UNION 
       SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,ss_quantity - COALESCE(sr_return_quantity,0) AS sales_cnt 
             ,ss_ext_sales_price - COALESCE(sr_return_amt,0.0) AS sales_amt 
       FROM store_sales JOIN item ON i_item_sk=ss_item_sk 
                        JOIN date_dim ON d_date_sk=ss_sold_date_sk 
                        LEFT JOIN store_returns ON (ss_ticket_number=sr_ticket_number  
                                                AND ss_item_sk=sr_item_sk) 
       WHERE i_category='Shoes' 
       UNION 
       SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id 
             ,ws_quantity - COALESCE(wr_return_quantity,0) AS sales_cnt 
             ,ws_ext_sales_price - COALESCE(wr_return_amt,0.0) AS sales_amt 
       FROM web_sales JOIN item ON i_item_sk=ws_item_sk 
                      JOIN date_dim ON d_date_sk=ws_sold_date_sk 
                      LEFT JOIN web_returns ON (ws_order_number=wr_order_number  
                                            AND ws_item_sk=wr_item_sk) 
       WHERE i_category='Shoes') sales_detail 
 GROUP BY d_year, i_brand_id, i_class_id, i_category_id, i_manufact_id) 
 SELECT  prev_yr.d_year AS prev_year,curr_yr.d_year AS year,curr_yr.i_brand_id 
                          ,curr_yr.i_class_id,curr_yr.i_category_id,curr_yr.i_manufact_id 
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                          ,prev_yr.sales_cnt AS prev_yr_cnt,curr_yr.sales_cnt AS curr_yr_cnt 
                          ,curr_yr.sales_cnt-prev_yr.sales_cnt AS sales_cnt_diff 
                          ,curr_yr.sales_amt-prev_yr.sales_amt AS sales_amt_diff 
 FROM all_sales curr_yr, all_sales prev_yr 
 WHERE curr_yr.i_brand_id=prev_yr.i_brand_id  AND curr_yr.i_class_id=prev_yr.i_class_id 
   AND curr_yr.i_category_id=prev_yr.i_category_id AND curr_yr.i_manufact_id=prev_yr.i_manufact_id 
   AND curr_yr.d_year=2000 AND prev_yr.d_year=2000-1 
   AND CAST(curr_yr.sales_cnt AS DECIMAL(17,2))/CAST(prev_yr.sales_cnt AS DECIMAL(17,2))<0.9 
 ORDER BY sales_cnt_diff; 
 
 
7. with ssr as 
 (select  s_store_id as store_id, 
          sum(ss_ext_sales_price) as sales, 
          sum(coalesce(sr_return_amt, 0)) as returns, 
          sum(ss_net_profit - coalesce(sr_net_loss, 0)) as profit 
  from store_sales left outer join store_returns on 
         (ss_item_sk = sr_item_sk and ss_ticket_number = sr_ticket_number), 
     date_dim, store, item,promotion 
 where ss_sold_date_sk = d_date_sk 
       and d_date between cast('2000-08-10' as date)  
                  and (cast('2000-08-10' as date) +  30) 
       and ss_store_sk = s_store_sk 
       and ss_item_sk = i_item_sk 
       and i_current_price > 50 
       and ss_promo_sk = p_promo_sk 
       and p_channel_tv = 'N' 
 group by s_store_id) 
 , 
 csr as 
 (select  cp_catalog_page_id as catalog_page_id, 
          sum(cs_ext_sales_price) as sales, 
          sum(coalesce(cr_return_amount, 0)) as returns, 
          sum(cs_net_profit - coalesce(cr_net_loss, 0)) as profit 
  from catalog_sales left outer join catalog_returns on 
         (cs_item_sk = cr_item_sk and cs_order_number = cr_order_number), 
     date_dim, catalog_page, item, promotion 
 where cs_sold_date_sk = d_date_sk 
       and d_date between cast('2000-08-10' as date) 
                  and (cast('2000-08-10' as date) +  30) 
        and cs_catalog_page_sk = cp_catalog_page_sk 
       and cs_item_sk = i_item_sk 
       and i_current_price > 50 
       and cs_promo_sk = p_promo_sk 
       and p_channel_tv = 'N' 
group by cp_catalog_page_id) 
 , 
 wsr as 
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 (select  web_site_id, 
          sum(ws_ext_sales_price) as sales, 
          sum(coalesce(wr_return_amt, 0)) as returns, 
          sum(ws_net_profit - coalesce(wr_net_loss, 0)) as profit 
  from web_sales left outer join web_returns on 
         (ws_item_sk = wr_item_sk and ws_order_number = wr_order_number), 
     date_dim, web_site, item, promotion 
 where ws_sold_date_sk = d_date_sk 
       and d_date between cast('2000-08-10' as date) 
                  and (cast('2000-08-10' as date) +  30) 
        and ws_web_site_sk = web_site_sk 
       and ws_item_sk = i_item_sk 
       and i_current_price > 50 
       and ws_promo_sk = p_promo_sk 
       and p_channel_tv = 'N' 
group by web_site_id) 
  select  channel, id, sum(sales) as sales, sum(returns) as returns, sum(profit) as profit 
 from  (select 'store channel' as channel, 'store' || store_id as id, sales, returns, profit 
 from   ssr 
 union all 
 select 'catalog channel' as channel, 'catalog_page' || catalog_page_id as id, sales, returns, profit 
 from  csr 
 union all 
 select 'web channel' as channel, 'web_site' || web_site_id as id, sales, returns, profit 
 from   wsr 
 ) x 
 group by channel, id 
 order by channel,id; 
 
 
 
8. select  i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact, 
  sum(ss_ext_sales_price) ext_price 
 from date_dim, store_sales, item,customer,customer_address,store 
 where d_date_sk = ss_sold_date_sk   and ss_item_sk = i_item_sk 
   and i_manager_id=13   and d_moy=11 
   and d_year=2001   and ss_customer_sk = c_customer_sk  
   and c_current_addr_sk = ca_address_sk   and substr(ca_zip,1,5) <> substr(s_zip,1,5)  
   and ss_store_sk = s_store_sk  
 group by i_brand,i_brand_id,i_manufact_id,i_manufact 
 order by ext_price desc,i_brand,i_brand_id,i_manufact_id,i_manufact; 
 
 
9. with ws as 
  (select d_year AS ws_sold_year, ws_item_sk, 
    ws_bill_customer_sk ws_customer_sk, 
    sum(ws_quantity) ws_qty, 
    sum(ws_wholesale_cost) ws_wc, 
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    sum(ws_sales_price) ws_sp 
   from web_sales 
   left join web_returns on wr_order_number=ws_order_number and ws_item_sk=wr_item_sk 
   join date_dim on ws_sold_date_sk = d_date_sk 
   where wr_order_number is null 
   group by d_year, ws_item_sk, ws_bill_customer_sk 
   ), 
cs as 
  (select d_year AS cs_sold_year, cs_item_sk, 
    cs_bill_customer_sk cs_customer_sk, 
    sum(cs_quantity) cs_qty, 
    sum(cs_wholesale_cost) cs_wc, 
    sum(cs_sales_price) cs_sp 
   from catalog_sales 
   left join catalog_returns on cr_order_number=cs_order_number and cs_item_sk=cr_item_sk 
   join date_dim on cs_sold_date_sk = d_date_sk 
   where cr_order_number is null 
   group by d_year, cs_item_sk, cs_bill_customer_sk 
   ), 
ss as 
  (select d_year AS ss_sold_year, ss_item_sk, 
    ss_customer_sk, 
    sum(ss_quantity) ss_qty, 
    sum(ss_wholesale_cost) ss_wc, 
    sum(ss_sales_price) ss_sp 
   from store_sales 
   left join store_returns on sr_ticket_number=ss_ticket_number and ss_item_sk=sr_item_sk 
   join date_dim on ss_sold_date_sk = d_date_sk 
   where sr_ticket_number is null 
   group by d_year, ss_item_sk, ss_customer_sk 
   ) 
 select  
ss_sold_year, ss_item_sk, ss_customer_sk, 
round(ss_qty/(coalesce(ws_qty+cs_qty,1)),2) ratio, 
ss_qty store_qty, ss_wc store_wholesale_cost, ss_sp store_sales_price, 
coalesce(ws_qty,0)+coalesce(cs_qty,0) other_chan_qty, 
coalesce(ws_wc,0)+coalesce(cs_wc,0) other_chan_wholesale_cost, 
coalesce(ws_sp,0)+coalesce(cs_sp,0) other_chan_sales_price 
from ss 
left join ws on (ws_sold_year=ss_sold_year and ws_item_sk=ss_item_sk and 
ws_customer_sk=ss_customer_sk) 
left join cs on (cs_sold_year=ss_sold_year and cs_item_sk=cs_item_sk and 
cs_customer_sk=ss_customer_sk) 
where coalesce(ws_qty,0)>0 and coalesce(cs_qty, 0)>0 and ss_sold_year=1999 
order by  
  ss_sold_year, ss_item_sk, ss_customer_sk, 
  ss_qty desc, ss_wc desc, ss_sp desc, 
  other_chan_qty, 
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  other_chan_wholesale_cost, 
  other_chan_sales_price, 
  round(ss_qty/(coalesce(ws_qty+cs_qty,1)),2); 
 
 
10. with wss as  
 (select d_week_seq, 
        ss_store_sk, 
        sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales, 
        sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales, 
        sum(case when (d_day_name='Tuesday') then ss_sales_price else  null end) tue_sales, 
        sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales, 
        sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales, 
        sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales, 
        sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales 
 from store_sales,date_dim 
 where d_date_sk = ss_sold_date_sk 
 group by d_week_seq,ss_store_sk 
 )  select  s_store_name1,s_store_id1,d_week_seq1 
       ,sun_sales1/sun_sales2,mon_sales1/mon_sales2 
       ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2 
       ,fri_sales1/fri_sales2,sat_sales1/sat_sales2 
 from (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1 
        ,s_store_id s_store_id1,sun_sales sun_sales1 
        ,mon_sales mon_sales1,tue_sales tue_sales1 
        ,wed_sales wed_sales1,thu_sales thu_sales1 
        ,fri_sales fri_sales1,sat_sales sat_sales1 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and 
        ss_store_sk = s_store_sk and  
        d_month_seq between 1200 and 1200 + 11) y, 
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2 
        ,s_store_id s_store_id2,sun_sales sun_sales2 
        ,mon_sales mon_sales2,tue_sales tue_sales2 
        ,wed_sales wed_sales2,thu_sales thu_sales2 
        ,fri_sales fri_sales2,sat_sales sat_sales2 
  from wss,store,date_dim d 
  where d.d_week_seq = wss.d_week_seq and  ss_store_sk = s_store_sk and  
        d_month_seq between 1200+ 12 and 1200 + 23) x 
 where s_store_id1=s_store_id2 
   and d_week_seq1=d_week_seq2-52 
 order by s_store_name1,s_store_id1,d_week_seq1; 
 
 

http://code-industry.net/


http://code-industry.net/


Annex A4 – paper 1 – (2013)  
 

 163 

Annex A4 – paper 1 – (2013) 

 
 

Adaptive Query Processing in Cloud Database 
Systems 

 

Clayton Maciel Costa 
HASLab / INESC TEC 

Instituto Federal do Rio Grande do Norte / Univ. do Minho 
Ipanguaçu, Brasil / Braga, Portugal 

clayton.maciel@ifrn.edu.br 

 

António Luís Sousa 
 HASLab / INESC TEC 

       Universidade do Minho 
Braga, Portugal 

als@di.uminho.pt
 
 

Abstract – In cloud environments, resources should be acquired 
and released automatically and quickly at runtime. Thereby, the 
implementation of traditional query optimization strategies in 
cloud platforms can have a poor performance, because they cannot 
predict future availability and/or release of resources. In such 
scenarios, adaptive query processing can adapt itself to the 
available resources to run queries and, consequently, present an 
acceptable performance in response to a query. However, 
traditional and adaptive query optimizers main objective is to 
reduce response time. Moreover, in the context of cloud 
computing, users and providers of services expect to get answers 
in time to guarantee the SLA. Therefore, we propose a framework 
that uses adaptive query processing based on heuristic rules and 
cost of failing the SLA. It will be implemented on structured data, 
considering that some cloud computing platforms support SQL 
queries directly or indirectly, which makes this problem relevant. 

Keywords—cloud computing; database systems; adaptive query 
processing 

I.  INTRODUCTION 
In the cloud computing model, the cloud providers have to 

optimize their profits while servicing several clients. This is 
obtained recurring to some level of abstraction (virtualization) 
according to the type of service, such as: storage, processing, 
bandwidth and active user accounts. To guarantee the quality of 
service (QoS - Quality of Service) there are SLA (Service Level 
Agreement) associated to the service delivery. The SLA is a 
contract formalized between a cloud service provider and its 
customers that define the level of service expected from the 
service provider. SLAs are output-based in that their purpose is 
specifically to define what the customer will receive. The SLA 
provides several metrics on the levels of availability, 
functionality, performance, penalties, billing etc [1, 2, 3]. In this 
work, we use the Service Response Time SLA metric, which is 
the total time between the instance the query is presented to the 
system and the time it completes its execution in the system. 

Following this context, adaptive query processing has the 
ability to dynamically and automatically allocate or release 
resources (elasticity of resources) during the query runtime. This 
technique is very important when statistical information about 
the services available may be minimal and the availability of 
physical resources may change. This is a typical scenario of 
cloud environments. However, traditional and adaptive query 

optimzers' main objective is to reduce response time. Moreover, 
in the context of cloud computing, users and providers of 
services expect to get answers in time to guarantee the service 
SLA. Therefore, we propose a framework that uses adaptive 
query processing based on heuristic rules and the cost of failing 
the SLA. Figure 1 presents the Framework Architecture which 
uses dynamic re-optimization techniques. The Section II 
presents briefly related works and the Section III we explain in 
detail each component of Framework. Finally, Section IV shows 
the conclusions. 
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Fig. 1. Framework Architecture 

II. RELATED WORK 
There are several works related to efficient query processing 

in cloud database systems [3, 4, 5]. Most of these works provide 
the basis for new technologies of query 
processing/optimization. For instance, ESQP, an efficient SQL 
query processing algorithm using data replicas in cloud storage, 
it is based on traditional techniques of parallel/distributed 
DBMS, such as use of index and pipeline [4]. SLA-Tree 
improves the efficiency using scheduling (environment of 
multiple queries with different profiles to be executed), 

http://code-industry.net/


Annex A4 – paper 1 – (2013)   
 

 164 

 
 

. 

[4]. SLA-Tree improves the efficiency using scheduling 
(environment of multiple queries with different profiles to be 
executed), dispatching (environment of several servers for one 
query to be execute), and capacity planning (current dynamic 
workload) [5]. These problems are very important to cloud 
database systems and they are based on classic techniques.  

I. FRAMEWORK 
 Our framework integrates adaptive/dynamic re-optimization 
techniques by performing distributed queries in several steps. 
Each component of the Framework (Figure 1) utilizes adaptive 
strategies applied at runtime of the query and their costs are 
based on the Service Response Time QoS parameter, defined by 
SMI-CSMIC consortium [1, 2]. The components are specified 
below: 

Dynamic Query Optimizer (DQO): It is used to construct an 
optimized query plan based on Service Response Time. The 
main difference of traditional optimizers is to construct query 
plans considering the SLA time restriction. For this purpose, it 
is important to consider that the initial SLA time agreed must be 
sufficient, observing the technological limits of the service 
provider.  

Dynamic Query Scheduler (DQS): It is used to schedule the 
execution of distributed query plans. This component optimizes 
dynamically the queries at runtime, which is based on Service 
Response Time and the variation of resources utilized to process 
the query (for instance, average CPU utilization, available 
memory and estimated rates to processing of each slave node). 
Indeed, the queries submitted to DQS will be processed in the 
"best hosts" among all available slave nodes. In this work, the 
definition of a "best hosts group" depends on system variables, 
such as: available resources, resources needed to meet SLA 
requirements and optimization objectives, which can relate 
directly with SLA requirements, for instance, minimizing costs 
and maximizing the probability of success, or can relate 
indirectly, for example, the better workload balancing. 

SLA Metric and Query Fragment Evaluator (SLAMQFE): 
Given an optimized and scheduled query plan, the aim of this 
component is to monitor the query execution. In case of being 
necessary to make a re-optimizing, the component loads the 
query to DQS component. The monitoring verifies, periodically, 
the probability of a query to be executed before a SLA time 
restriction. Therefore, the SLAMQFE reevaluates periodically 
all queries execution plans at runtime to check the probability of 
violate the SLA, whether the probability is low, the query 
continues its execution, otherwise, the query will be re-
optimized. The probability is estimated according to DBMS 
metadata of slave nodes, slave nodes configurations, the query 
plans and a statistical table with specific maximum service 
response time. The statistical table serves as a cache, as it is 
storing successful probabilities (queries that did not violate the 
SLA time) of previously executed queries. The table aids to 
reduce the computing overhead to calculate an estimated time to 
execute a query. Furthermore, it will be automatically populated 
by the Framework according to its use. The Table I presents the 
SLAMQFE component algorithm. 

TABLE I.  SLAMQFE COMPONENT ALGORITHM 

SLAMQFE ALGORITHM (Q, TLSLA): RETURN Tr 
 TLSLA; //SLA Time. 
 Tr = 0; //Query Processing Total Time. Default = 0. 
 Tini; //Query Processing Start Time. 
 Tprop; //Average Time Estimated to Process Completely the Query Q. 
 TabProp; //Statistical Table. 
 SlaveNode[]; // Slave Nodes Available. 
 Q; //Query Plan. 
1. BEGIN 
2.      Tini = getCurrentTime(); 
3.      Tprop = SlaveNode[i..i+1].getSRT().comparedTo(execute(Q)); 
4.      IF (Tprop > TLSA) THEN 
5.            SlaveNode[i..i+1] = new SlaveNode();  //New Slave Node Instances 
6.            Schedule SubQueryPlan[j..j+1] for SlaveNode[i..i+1]; 
7.            Tr = Tr + (getCurrentTime() - Tini); 
8.            Tr += (SLAMQFE(SubQueryPlan[j..j+1],(TLSA-Tr))); 
9.      ELSE 
10.            SlaveNode[i..i+1] = execute(Q); //Query Processing on Slave Node 
11.            Tr = Tr + (getCurrentTime() - Tini); 
12.            TabProp[k..k+1] = Q and Tr; //Statistical Table 
13.      ENDIF 
14. RETURN Tr; 
15. END 
 

 In the case that the query cannot be executed before time 
SLA, the Framework must calculate the execution time nearer 
to SLA time and the cloud provider must inform to the customer, 
discussing the penalties. In this case, the adaptive optimization 
traditional algorithm will execute because at this moment the 
fastest response time becomes more important than the SLA 
time. 

II. CONCLUSION 
In this work, we present a Framework using adaptive 

techniques to efficient processing of queries in cloud database 
systems. Our solution is restricted to requests of database access 
and it based on the QoS parameters, formalized by SMI-CSMIC 
consortium [1, 2]. Furthermore, our approach has not restriction 
of elasticity and/or scalability of their algorithms and it is non-
intrusive. In future work, we intend to realize experiments on 
large scale with large volume of data and queries in the cloud. 
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Abstract – In cloud environments, resources should be acquired 

and released automatically and quickly at runtime. Therefore, 
ensuring the desired QoS is a great challenge for the cloud service 
provider. Moreover, it increases when we have large amount of 
data to be manipulated in this environment. Considering that, 
performance is an important requirement for most customers 
when they migrate their applications to the cloud. In this paper, 
we propose a model for measuring a Service Response Time 
estimated for different request types on large databases available 
in a cloud environment. This work allows the cloud service 
provider and its customers establish an appropriate SLA relative 
to performance expected of services available in the cloud. Finally, 
the model was evaluated in Amazon EC2 cloud infrastructure and 
the TPC-DS like benchmark was used for generating a database 
of structured data, considering that some cloud computing 
platforms support SQL queries directly or indirectly. This makes 
the proposed solution relevant for these kind of problems. 

Keywords-cloud computing; service level agreement; 
performance; service response time 

I.  INTRODUCTION 
In the cloud computing model, the cloud providers have to 

optimize their profits while servicing several customers. This is 
obtained recurring to some level of abstraction (virtualization) 
according to the type of service, such as: storage, processing, 
bandwidth and active user accounts [1]. To ensure QoS (Quality 
of Service), there are SLA (Service Level Agreements) 
associated to the service delivery. The SLA is a formal contract 
defined between a cloud service provider and its customers that 
describe the level of service expected from provider. SLAs are 
output-based in that their purpose is specifically to define what 
the customers expect to receive. The SLA is composed of 
several metrics on the levels of availability, functionality, 
performance, penalties, billing, etc [1, 2, 9]. In this work, our 
focus is the SRT (Service Response Time) performance 
parameter of SLA, which corresponds to the total time between 
time that the request/query arrives to the provider and at the time 
it completes its execution in the system. 

The performance metrics in the SLA, including SRT, is one 
of the most important requirements for most of customers when 
they migrate their applications to the cloud, as it relates to 
expectations of their applications in the cloud performance. 
From the user’s point of view, this parameter is considered one 
of the main QoS parameters [4]. However, nowadays one can 
see that the major cloud providers like Amazon [5, 6] and 

Google [7] emphasizing guaranteeing of availability, CPU 
instance and cost measure. Therefore, the SRT parameter is not 
completely handled or inappropriately treated in SLA. 
Therefore, in order to ensure customer expectations relative to 
performance, cloud service providers have to understand how to 
incorporate suitably the SRT parameter in their SLA. 

The measuring of SRT parameter in SLA is a very complex 
task because it depends on many system variables, such as 
request type, database model and current rate system 
performance. Furthermore, it is common in a cloud environment 
that the requests rate is highly unpredictable. Therefore, 
guaranteeing a specific response time for any level of request 
rate is regarded as a significant challenge to the paradigm of 
cloud computing. Moreover, the growth of data stored in the 
cloud makes this challenge ever harder. 

Thereby, in this paper, we propose a model for estimating 
the SRT for different types of requests on large databases 
available in the cloud environment. Our propose is to allow the 
cloud service provider and its clients to establish an appropriate 
SLA relative to SRT performance of services available in the 
cloud. The proposed model is a non-intrusive solution and it can 
be applied when companies wish to migrate their applications, 
OLAP or not, to cloud services providers, with the goal to 
allocate computational resources on demand, to ensure the 
quality of service in terms of service response time. Finally, the 
model was evaluated utilizing Amazon EC2 cloud infrastructure 
small instances type and the TPC-DS [8] like benchmark was 
used only for generating an OLAP database of structured data, 
considering that some cloud computing platforms support SQL 
queries directly or indirectly, this makes the proposed solution 
suitable for these kind of problems. 

This paper is organized as follows. Section II presents related 
works. Section III presents the SRT definition, its measurement 
model, and finally, their tools. Section IV shows the experiments 
of proposed model. Finally, Section V shows the conclusions 
and future works. 

II. RELATED WORKS 
In the context of SLA agreements, it is possible to identify 

two important research areas: 
(i) QoS Parameters Definition: currently we have many 
cloud providers offering different prices, parameters and 

performance levels, even different services with when those 
providers offer similar services. In addition, several 
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infrastructure [2, 9]. Thereby, there is a wide range of different 
contracts with different SLA requirements. Thus, it becomes 
difficult for a customer to choose the most suitable provider to 
migrate their applications. For example, in [1, 2, 9] the authors 
are focused on the definition and measurement of SLA 
parameters in general. Then, they have main objective to define 
a global view of QoS parameters and their metrics used by 
cloud service providers. In context of this paper, the authors 
define the SRT how fast the service is ready for use. Moreover, 
they do not define the time of effective execution of any request. 
(ii) QoS Parameters Ensure: The provider must consider how 
to optimize the use of resources and how to preserve the QoS 
parameters that it must be guaranteed according to SLA. In this 
scenario, it is very important to consider the possibility of new 
requests and their priorities; even when running other tasks, the 
provider must use efficiently the resources to guarantee the 
requirements. For example, financial organizations usually 
require security and privacy QoS requirements, but for 
example, the availability QoS requirement, although important, 
it is not a priority of these organizations [9]. For example, in [3] 
proposes a resource-provisioning framework in a public cloud 
to execute requests in large amounts of data. This work 
proposes an SLA cost model and presents a provisioning 
method based on SLA time, predicting the best value to execute 
requests at any given time. In [4] presents an SLA-oriented 
resource manager focused on cloud computing and based on 
open source technology. It provides adaptive resource 
allocation and dynamic load balancing for Web applications in 
order to ensure a SLA. However, these works define the Service 
Response Time arbitrarily. 

I. SERVICE RESPONSE TIME MEASUREMENT MODEL 
To try to resolve the above challenges, it is necessary to 

define and to standardize the QoS parameters used by most 
cloud provider and finally, to provide a methodology to 
compare services of different cloud. Consequently, the 
customers can make a better selection of a cloud service 
provider [2, 9]; because, an appropriately selected service 
provider increases the probability that SLA requirements are 
guaranteed. 

In this context, nowadays, many companies have migrated 
their applications and data to the cloud due to the benefits of 
this technology. From the user’s point of view, the SRT metric 
is considered one of the main QoS parameters. However, the 
major cloud providers have ignored or inappropriately treated 
the SRT parameter in SLA due to its complexity. 

This way, our proposal is an estimation of SRT parameter 
for customers who wish to migrate their applications to the 
cloud but have no idea of the performance offered by the cloud 
provider for its applications. Therefore, the main contribution 
of this work is to propose a model for obtaining the SRT, so it 
can be treated adequately in SLA contracts. Thereby, it is 
necessary to define formally, what is a Recommended SRT. 

A. Definition 
In this work, the SRT (Service Response Time) corresponds 

to the time that a service takes to execute effectively a request 
[2]. This way, the SRT of a service starts when a customer 
request is ready to execute and it finishes when the request 

executes effectively. Including, for example, startup time of 
virtual machine or wait of a fragment request, etc.  

Let Ri a database access request in a cloud, where i represents 
one of the following request types: (i) select-range and/or select-
aggregation, (ii) select-joins or (iii) select-sets-grouping-
nesting. The Average Service Response Time of a request Ri 
(ASRTRi) executed by n physical/virtual machines is given by: 

𝐴𝑆𝑅𝑇𝑅𝑖 =' 𝑆𝑅𝑇𝑅𝑖/𝑛
𝑅𝑖

 (1) 

where SRTRi is the time between the moment a request Ri is ready 
to run and the service executes the request effectively. 

Let ARi be a set of averages service response time for all type 
i requests, i.e. ARi = { ASRTRi1, ASRTRi2, ASRTRi3,… ASRTRiK}, 
where k is the quantity of type i requests. Let A ARi be a set of 
half the size of ARi (k/2) with the highest averages of ARi. 

Thus, the Recommended SRT (RSRTRi) for a set of Type i 
Requests deployed in the cloud is given by median of A ARi: 

𝑅𝑆𝑅𝑇𝑅𝑖 =	↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘
4+0.5

							𝑓𝑜𝑟	𝑜𝑑𝑑	𝑘 (2) 

or 

𝑅𝑆𝑅𝑇𝑅𝑖 = 	
6↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘

4
+↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘

4+1
8	

2
					𝑓𝑜𝑟	𝑒𝑣𝑒𝑛	𝑘 

(3) 

It is worth noting that Recommended SRT presents a 
pessimistic estimate of response time, because it is based on 
requests that require more time to process, i.e. on median of the 
upper half that represents the highest requests response time. 

The discussion of Recommended SRT occurs in SLA 
contract definition phase, in which evaluate several tasks of 
customers applications on the cloud service provider. The 
applications most used and complex are defined and selected. In 
this work, complex applications represent applications that use 
high load of system (large use of CPU and disk read/write). 

B. SRT Measurement Model 
According [11], a cloud computing platform is a cluster with 

hundreds or thousands of PCs (nodes) for data computing and 
storage. There are two types of nodes in the cluster: master nodes 
and slave nodes. Master nodes store metadata and they manage 
the all cluster slave nodes. The slave nodes store the data and 
their replicas for security. 

In this context,  the Figure 1 shows the steps to obtain the 
Recommended SRT of a cloud computing platform: (1) 
acquisition of customer applications; (2) selection and 
classification of applications according to the request types: (i) 
select-range and/or select-aggregation, (ii) select-joins or (iii) 
select-sets-grouping-nesting; (3) experiments of customer 
applications deployed on master nodes and slave nodes of cloud 
provider; and finally, (4) analysis of results, which is a 
Recommended SRT for each request type and system load. 

It is worth noting that in contract level, the trust and 
validation of the results will depend mainly on good practice in 
step 2, because good selectivity of customer applications will 
reduce SLA violation. 
In step 3, to assist the tests were implemented three tools and 

deployed in cloud provider, they are COS (CPU Overload  
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Simulator), DOS (Disk I/O Overload Simulator) and SRT 
Calculator. Following we detail each of them and their functions. 

 

 
Figure. 1. Steps to obtain the Recommended SRT. 

A. COS and DOS: Overload Simulator 
The tools were deployed in slave nodes of cloud service 

provider and it serves, respectively, to simulate partial and total 
CPU overload, i.e. the overload can also be by the processor 
core and serves to simulate disk read/write overload.  

The COS tool generates an overload of threads of similar 
execution priority of the processes running in operating system. 
Although the set of threads are running in the same process, if 
the COS tool executes itself more than once it will generate a set 
of threads in different processes causing large number of 
processes of equal priority competing for the processor. Thus, to 
overload the processor, the tool executes itself generating a large 
amount of processes, each having a large number of threads. 

This tool allows serial execution by processor core, i.e. each 
core will be overloading by time. Thus, it allows configuring 
how many cores are overloaded. To analyze the CPU, the user 
can use the sysstat tool, in which checks the processor in real 
time. The sysstat tool is package with a collection of 
performance monitoring tools for major Linux distribution. 

The DOS tool generates an overload of threads of database 
access requests with similar execution priority of the processes 
running in operating system. Unlike COS tool, DOS simply run 
once, generating a very large set of threads of equal priority in 
the same process, overloading the system and competing with 
any another database access request that arrives at the 
processor. 

This tool allows also defining the quantity of threads to be 
generate, in which each one simulates a database access request 
in the machine. This way, the tool allows a wide variation in 
quantity of bytes of reading and writing from/to disk. 

B. SRT Calculator 
The SRT Calculator tool was deployed in master nodes of 

provider and it serves to execute the tests in the specified slave 
nodes. 

The SRT Calculator computes a set the Recommended SRT 
as defined in Section III – A and it generates a parameterized 

report to be analyzed and discussed between the cloud service 
provider and it customer. 

The report presents the Recommended SRT for each request 
type and overload variation in slave nodes, through the COS 
and DOS tools. Beyond, for each of request type, statistical 
parameters are generated from the set of the requests response 
times (seconds), such as arithmetic average, sample variance, 
standard deviation, mode and coefficient of variation. 
Therefore, a specialist can evaluate these parameters to validate 
the results. For example, a high standard deviation indicates that 
the data points are spread out over a wider range of values. 
Then, the result can not be reliable. For the better 
understanding, the summary of SRT Calculator algorithm is 
shown below: 

 
 Config_VM; //Configuration File of Physique/Virtual Machine (Slave Nodes). 
 REQUEST-TYPE[i]; //Requests Type File, i equals 1, 2 or 3. 
1. BEGIN 
2.      SLAVE-NODE[i..n] = Config_VM; 
3.      FOR EACH SLAVE-NODE DO 
4.             FOR EACH REQUEST-TYPE DO 
5.                    ExecuteRequest(SLAVE-NODE[i], REQUEST-TYPE [i]) ; 
6.             ENDFOR 
7.             REPORT(REQUEST-TYPE); 
8.       ENDFOR 
9.       REPORT(ALL-REQUEST); 
10.  
11.       VOID REPORT(REQUEST) 
12.            BEGIN 
13.                    Avegare(); //(nanosseg) -- (milisseg) -- (seg) -- (min) 
14.                    Sample Variance(); //(seg) 
15.                    Mode; //(seg) 
16.                    Coefficient of Variation(); //(seg) 
17.                    Recommended SRT ();//(nanosseg) -- (milisseg) -- (seg) -- (min) 
18.            END 
19. END 
 

To use the SRT Calculator is necessary to classify the 
customer applications in one of three requests type. In addition, 
a set of physical/virtual machines of the cloud must be selected 
to store customer applications. This way it is necessary to 
configure the following files: (1) network configuration file and 
database connection of slave nodes; (2) configuration file for 
requests with select-range and/or aggregating functions 
requests; (3) configuration file for requests with one or more 
joins; and finally, (4) configuration file for requests with set of 
operations, grouping and/or nesting. Next Section presents a 
case study of the proposed model using Amazon EC2 cloud 
infrastructure and TCP-DS to generate an OLAP database and 
requests. 

II. EXPERIMENTAL EVALUATION 
This Section presents a case study of the proposed model to 

obtain the Recommended SRT utilizing small instances of 
Amazon EC2 cloud infrastructure. First, we present the 
environment and the experiments methodology. Then, we show 
the requests used and finally, we present the results obtained as 
well as its analysis. 

A. Experimental Environment 
The tools (COS, DOS and SRT Calculator) were implemented 
in Java language using concurrent programming with threads 

and API based on OpenMP (Open Multi- 
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Processing) [10]. They were deployed in the Amazon EC2 
cloud infrastructure in small instances (homogeneous 
environment). Due to the limitations of Amazon, it was used 16 
VMs (Virtual Machines), each one with an Intel Xeon 
Processor with turbo up to 3.3GHz, 1.7 GB of main memory 
and 160 GB of disk storage. 

It was created an AMI (Amazon Machine Image) of VM 
with the database. This image allows startup a new VM quickly. 
The Amazon EBS (Elastic Block Store) was used to storage the 
AMI. Therefore, the startup time and instantiation of VM, the 
time of network authentication and database connection were 
considers in experiments.  

Each VM runs the Ubuntu 12.04 operating system and 
PostgreSQL 9.3 DBMS. This work focuses on OLAP 
applications with very large and complex database. Thus, the 
TPC-DS was used to generate a database of approximately 13 
GB, fully replicated in each VM. Furthermore, 50 requests of 
several complexities were selected. Therefore, the database and 
the requests generated represents the customer applications. 

A. Methodology 
Figure 2 presents the methodology of experiments. As 

shown, in a VM, chosen arbitrarily, it was deployed the SRT 
Calculator tool (master node). It communicates with others 
VMs (slave nodes). Furthermore, the 50 requests obtained of 
TPC-DS were classified according to level of complexity 
between three types. 

Thus, the SRT Calculator executes all request of each type 
in all VMs, varying the overload on the slave nodes through of 
COS and DOS tool (they were deployed in slave nodes). 

The PP (Processor Performance) represents levels of 
overload of CPU. The DP (Disk Performance) consists of 
percentage level of overload in Megabytes of reading and/or 
writing on disk. To view the rate of CPU and disk usage, the 
sysstat and dstat tools were used.  

 
 

 
Figure. 1. Methodology of experiments to obtain the Recommended SRT. 

B. Requests 
The TPC-DS offers many database requests for 

experiments, which for this case study were selected 50 
requests. The classification of each request was based on results 
of explain analyze command of the PostgreSQL DBMS. 

Type 1 Requests are select-range and/or select-aggregation 
requests. They have approximately 140,000 tuples of selectivity 
and it uses the catalog_sales table of TPC-DS. Type 2 Requests 
are select-joins requests and optional select-aggregation 
functions. The selectivity of these requests varied between 1000 
and 60,000 tuples and it uses at least 20 different tables of TPC-
DS. Finally, Type 3 Requests are select-sets-grouping-nesting 
requests and, optional select-aggregation and select-joins. They 
present very complex query plan and its selectivity is between 
100,000 and 200,000 tuples. It uses at least 20 different tables 
of database generated by TPC-DS Benchmark. 

C. Results 
The results were grouped by type of request and overload 

variation in slave nodes. So, to Type 1 Requests, the result of 
experiments on all VMs are presented in Figure 3. It shows the 
SRT averages to 50 requests executed on all VMs (all slave 
nodes) when they are not overloaded (current) and when they 
are with CPU and Disk Overloaded. 

 

 
Figure. 2. SRT averages on all VMs for Type 1 Requests. 

Therefore, based on definition of Recommended SRT and 
considering that the processor and disk not overloaded (Current 
Status in Figure 3) we have the following result: 
 
::TYPE 1 REQUESTS:: 
 Average: 34,46(s) 
 Sample Variance: 71,02897959 
 Standard Deviation: 8,42786922 
 Mode: 35 
 Coefficient of Variation: 24,45696233 
 Recommended SRT: 42(s)  

Overload with COS tool (CPU Overload in Figure 3), the 
result is as follows: 
 
::TYPE 1 REQUESTS:: 
 Average: 741,3(s) 
 Sample Variance: 32053,03061 
 Standard Deviation: 179,0336019 
 Mode: 620 
 Coefficient of Variation: 24,15130202 
 Recommended SRT: 865(s)  
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Overload with DOS tool (Disk R/W Overload in Figure 3), 
the following values were found: 
 
::TYPE 1 REQUESTS:: 
 Average: 1402,16(s) 
 Sample Variance: 134948,0555 
 Standard Deviation: 367,3527671 
 Mode: 1450 
 Coefficient of Variation: 26,19906196 
 Recommended SRT: 1718(s)  

To Type 2 Requests, the result of experiments in all VMs 
are presented in Figure 4. It shows the SRT averages to 50 
requests executed on all VMs (all slave nodes) when they are 
not overloaded (current) and when they are with CPU and Disk 
Overloaded. 

 

 
Figure. 1. SRT averages on all VMs for Type 2 Requests. 

Therefore, based on definition of Recommended SRT and 
considering the processor and disk not overloaded (Current 
Status in Figure 4) we have the following result: 
 
::TYPE 2 REQUESTS:: 
 Average: 187,6(s) 
 Sample Variance: 5059,755102 
 Standard Deviation: 71,13195556 
 Mode: 288 
 Coefficient of Variation: 37,91682066 
 Recommended SRT: 242(s) 

Overload with COS tool (CPU Overload in Figure 4), the 
result is as follows: 
 
::TYPE 2 REQUESTS:: 
 Average: 567,86(s) 
 Sample Variance: 76106,16367 
 Standard Deviation: 275,8734559 
 Mode: 127 
 Coefficient of Variation: 48,58124466 
 Recommended SRT: 783(s)  

Overload with DOS tool (Disk R/W Overload in Figure 4), 
the following values were found: 
 
::TYPE 2 REQUESTS:: 
 Average: 2514,8(s) 
 Sample Variance: 977864,7347 
 Standard Deviation: 988,8704337 
 Mode: 2618 

 Coefficient of Variation: 39,32203093 
 Recommended SRT: 3455(s)  

To Type 3 Requests, the result of experiments on all VMs 
are presented in Figure 5. It shows the SRT averages to 50 
requests executed on all VMs (all slave nodes) when they are 
not overloaded (current) and when they are with CPU and Disk 
Overloaded. 

 

 
Figure. 2. SRT averages on all VMs for Type 3 Requests. 

Therefore, based on definition of Recommended SRT and 
considering that processor and disk not overloaded (Current 
Status in Figure 5) we have the following result: 
 
::TYPE 3 REQUESTS:: 
 Average: 981,52(s) 
 Sample Variance: 106462,9486 
 Standard Deviation: 326,286605 
 Mode: 1001 
 Coefficient of Variation: 33,24299097 
 Recommended SRT: 1283(s)  

Overload with COS tool (CPU Overload in Figure 5), the 
result is as follows: 
 
::TYPE 3 REQUESTS:: 
 Average: 3044,6(s) 
 Sample Variance: 2667600,653 
 Standard Deviation: 1633,279111 
 Mode: 2960 
 Coefficient of Variation: 53,64511301 
 Recommended SRT: 4431(s)  

Overload with DOS tool (Disk R/W Overload in Figure 5), 
the following values were found: 
 
::TYPE 3 REQUESTS:: 
 Average: 8284,32(s) 
 Sample Variance: 16121155,85 
 Standard Deviation: 4015,11592 
 Mode: 8200 
 Coefficient of Variation: 48,46645133 
 Recommended SRT: 11391(s)  

A. Analysis of Results 
Figure 6 and Table I summarizes the results of 

Recommended SRT. According to results, the SRT was higher 
when CPU or disk were overwhelmed, mainly the disk, which 
caused also overload in CPU. 
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TABLE I.  RECOMMENDED SRT RESULT 

Request 
Type 

Recommended SRT 

Current CPU Overload Disk R/W 
Overload 

1 42(s) 865(s) 1718(s) 

2 242(s) 783(s) 3455(s) 

3 1283(s) 4431(s) 11391(s) 

 

 
Figure. 1. Recommended SRT Result. 

It is worth noting that the number of rows and columns 
returned from a request (query selectivity) increases 
significantly the total time of its execution. For example, Type 
3 Requests have very high selectivity and therefore, they have 
higher Recommended SRT. Other example, even with 
overloaded CPU, Type 2 Requests have Recommended SRT 
smaller than Type 3 Requests with current CPU utilization. 

In general, Type 1 and Type 2 Requests have smaller 
Recommended SRTs than Type 3 requests. However, Type 1 
requests when overloaded CPU, its Recommended SRT is 
bigger than Type 2 Request because the selectivity of Type 1 
Requests is greater than Type 2 Requests. 

The results obtained provide the basis for negotiation 
between the cloud service provider and its customers establish 
an expected Service Response Time of their services. 
Furthermore, these values can be used by monitoring tools, 
when a limit value is achieved, the environment can react 
recovering or minimizing the consequences of SLA violation. 
For example, allocating, reallocating and/or releasing resources 
at run-time. 

Therefore, a well-chosen provider brings benefits to both 
sides: the customer will have accurate information about the 
performance of their applications when they are performed in 
the cloud and the provider will reduce future penalties, as it has 
the provider's expected behavior after the tests. 

I. CONCLUSION 
In this paper, we presented a model that allows the cloud 

service provider and its customers establish an appropriate SLA 
relative to SRT performance of its applications available in the 
cloud.  

The proposed model is a non-intrusive solution and can be 
applied when companies wish to migrate their applications, 
OLAP or not, to cloud services providers, with the goal to 
allocate computational resources on demand, to ensure the 
quality of service in terms of Service Response Time. 

Finally, this work focuses on OLAP applications with very 
large and complex database, it was evaluated utilizing structured 
data of TPC-DS like Benchmark, considering that many cloud 
computing platforms support SQL requests directly or 
indirectly, this makes the proposed solution relevant for these 
kind of problems. 

As future work, we will deploy our propose, beyond 
Amazon, in an Azure and Google Cloud Platform, using similar 
VM flavors, and then compare the response time between the 
different public cloud providers. Furthermore, other future work 
consists to use specialist systems to the automatic classification 
of applications according to the request types, as well as, to the 
automatic analysis of results. Other work comprises to replace 
DOS and COS tools by others benchmark tools for example, 
pgbench tool that allows a greater variation of performance 
parameters. 
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