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A B S T R A C T

Databases are a critical point for medical institutions since, without them, information sys-

tems can not work. In such way, the usage of a secure, easily scalable and highly available

database is crucial when dealing with medical data.

Nowadays, medical institutions use RDBMSs – or SQL databases – in their medical im-

ages’ information systems. However, this type of databases has drawbacks at various levels.

For instance, they show scalability issues in distributed environments or when dealing

with high numbers of users. Besides, their data schema is complex and difficult to create.

In terms of functionalities, this kind of databases show a huge set of features, which add

extra unnecessary complexity when dealing with large complex datasets.

An alternative to RDBMSs are NoSQL databases. These are databases design to deal with

large amounts of heterogeneous data without giving up high performance rates. However,

both SQL and NoSQL databases still present major concerns regarding security. In the

medical field, since there is sensitive and personal data being exchanged, their protection

is a crucial point when implementing a storage solution for medical purposes.

Having this said, this master thesis focuses on the development of a medical imaging

database with increased availability by the employment of a NoSQL HBase backend. In

order to protect the data being stored, a secure version of HBase protected with symmetric

cipher was also implemented. Both protected and unprotected versions were implemented,

tested, and compared with an open source toolkit.

From the results obtained by executing performance tests, it is possible to conclude that

the HBase backend shows a better overall performance in terms of latency and throughput

in comparison to the open source toolkit. However, the appliance of the encryption service

implies higher latency and lower throughput.
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R E S U M O

As bases de dados são um ponto crı́tico das instituições médicas, uma vez que sem elas

os sistemas de informação não podem funcionar. Desta forma, no que respeita a dados

médicos, a utilização de uma base de dados segura, facilmente escalável e com alta disponi-

bilidade é crucial.

Hoje em dia, as instituições médicas utilizam bases de dados relacionais – ou SQL –

nos sistemas de informação que lidam com imagens médicas. No entanto, este tipo de

bases de dados apresentam desvantagens a vários nı́veis. Por exemplo, estas demonstram

problemas a nı́vel de escalabilidade em ambiente distribuı́do, bem como no que respeita

à sua utilização por parte de um número elevado de utilizadores. Para além disto, o seu

modelo de dados é complexo e difı́cil de criar. Este tipo de bases de dados tem também um

elevado número de funcionalidades que, quando o volume de dados é elevado, adicionam

complexidade desnecessária ao sistema.

Uma alternativa a este tipo de bases de dados são as bases de dados NoSQL. Estas

foram desenhadas para lidar com grandes volumes de dados heterogéneos, mantendo uma

elevada performance. No entanto, tanto as bases de dados SQL como NoSQL, apresentam

problemas a nı́vel de segurança. Na área médica, uma vez que são manuseados dados

sensı́veis e de cariz pessoal, a implementação de uma base de dados segura é fundamental.

Desta forma, a presente dissertação de mestrado foca-se no desenvolvimento de uma base

de dados para imagens médicas com disbonibilidade aumentada através da implementação

de uma base de dados NoSQL – o HBase. De forma a proteger os dados sensı́veis que são

guardados, foi implementada uma versão de HBase protegida com cifra simétrica. Ambas

versões – protegida e não protegida – foram implementadas, testadas, e comparadas com

um tooltik open source.

Dos resultados obtidos a partir da execução de testes de performance é possı́vel concluir

que o HBase simples tem uma melhor performance em termos de latência e débito, em

comparação com o toolkit open source. No entanto, a aplicação de cifra simétrica implica

uma maior latência e um menor débito.
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1
I N T R O D U C T I O N

This chapter has the purpose of introducing this master thesis’ development. It will begin

with a short contextualization and motivation of the theme on Section 1.1, followed by what

are its main goals on Section 1.2. Also, all this study’s conclusions and steps taken towards

them are be described on Section 1.3. At last, a brief description of the present document’s

structure will be presented to make the reader’s job easier – Section 1.4.

1.1 context and motivation

Currently, to deal with medical images, health institutions have usually implemented Pic-

ture Archiving Communication System (PACS). This is comprised by a sophisticated set

of computers, peripherals and applications that can be connected to all image acquisition

and reading modalities, whose purpose is to store, recover, distribute, and display medi-

cal images. The major advantage that can be taken of this system’s usage is its low cost

in comparison to other more traditional systems based on tape technology [2]. Typically,

this system uses a Relational Database Management System (RDBMS) to support its ac-

tion [3, 4]. From the usage of this kind of databases there are many problems that can

emerge at several levels [5]:

• Scalability: it is not easily scalable in distributed environments or with a high number

of users;

• Relational complexity: complex data cannot be easily inserted in tables, generating

relational models with excessive complexity;

• Functionalities: in complex datasets, many features can add extra unnecessary com-

plexity.

With the evolution of imaging techniques, the medical images’ number and size have

notoriously been increasing. Moreover, people are increasingly feeling the need of storing

these images as the patient’s medical history may become essential in the diagnosis of

new pathologies [3, 6, 7]. In the hospital, because critical services are performed, it is
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1.2. Objectives

fundamental to ensure a correct and efficient work of medical images storage systems.

Therefore, many efforts have been made in order to find database solutions capable of

being scaled, fault tolerant, and rapidly accessed.

One of the existing solutions that allow us to achieve the above mentioned goals is the

usage of Not Only SQL (NoSQL) databases. As examples of this kind of databases it

is possible to mention: HBase [8], BigTable [9], CouchDB [10], MongoDB [11], OpenStack

Swift [12], etc. These technologies were developed with the purpose of being capable to deal

with great amounts of data that are not included in a specific schema while maintaining a

high performance [3]. These databases can be grouped in three mainstream data models [5,

13–16]:

• Key-value oriented stores;

• Column oriented stores;

• Document oriented stores;

HBase can be found among the column oriented group. This is an open source distributed

database, designed to deal with large amounts of data through several servers, with the

ability of being persistent, strictly consistent and have near-optimal write. This technology

is capable of dealing with heterogeneous datasets, meaning, textual or non-textual data [17–

20]. In HBase, data is stored in labelled tables, each row having a sorting key and an

arbitrary number of columns. To access tables’ data, searches are made by key. Due to

this, some people call HBase a key-value store or a hybrid between column and key-value

oriented stores. Since DICOM files are have textual and non-textual data and need to be

accessed rapidly with no faults, this can be a good solution for a medical image archive [3].

Although all these advantages that can be taken from the application of a NoSQL storage

system to medical images, cloud computing has still a huge drawback in what concerns

to security. When dealing with medical data there is always a great concern about who

should and should not see this information. Thus, it is important to apply a security layer

to a medical storage system in order to control the data’s access [21].

1.2 objectives

Having in mind the context and motivation that led to the development of this thesis –

mentioned in Section 1.1 – some objectives had to be established in order to guide the

work being produced. These comprise a compilation and assimilation of a great amount

of information from different and heterogeneous sources and the development of a new,

safe storage solution for medical images using a NoSQL database. Thus, this project’s main

goals are:

2



1.3. Study description

• Assess the adoption of new storage solutions for medical images:

– Collect and analyse bibliographic documents about medical images storage sys-

tems;

– Assessment of existing systems and types of files that are exchanged;

– Analysis of characteristics and functioning of cloud based storage systems such

as document oriented, key-value oriented and column oriented;

– Assessment of the security measures usually taken regarding medical images;

– Study on cryptographic techniques that can suit out purpose;

– Identification of the best solution for the proposed problem.

• Increase the availability of medical images:

– Design of a safe storage system for medical images based on the previously

obtained conclusions;

– Implementation of the designed system.

• Guarantee and assess the developed system’s performance:

– Performance tests execution;

– Evaluation of the obtained results and comparison between them and the ones

achieved with traditional storage systems.

1.3 study description

According to the defined objectives – Section 1.2 –, there are some main steps that need

to be taken in order to achieve those. In a generic way, each one of these steps represents

a chapter of this master thesis. To develop this project was followed the Design Science

Research (DSR) which is described on Chapter 3.

First of all, was conducted a study that comprised the main topics important to have in

mind before starting the development of a solution for the proposed problem. In this study

were addressed the medical standards regarding the storage and communication in medical

imaging – Section 2.3 – as well as the directives that are now being used in what concerns

to the personal data privacy – Section 2.7. Furthermore, in a more technical perspective,

a review of the existing storage and security solutions was made – Sections 2.4 and 2.6,

respectively. Also, a more specific study was performed over the HBase storage solution –

Section 2.5.

Having in mind the theoretical concepts in which the project is based, it was possible

to develop two prototype systems for storing medical images. To do so, an open-source

DICOM toolkit – dcm4che [22] – was used as basis – Section 4.2. The system consists on

3



1.4. Document structure

a version of the dcm4che with an unprotected HBase backend – Section 4.3. A second

dcm4che version uses as backend a HBase protected with symmetric cipher – Section 4.4.

These databases were used to store the image’s metadata and replace the existing database.

After the development of prototype systems, the assessment of their performance is cru-

cial. In such way, some benchmarking techniques were applied in order to acquire and

compare some performance metrics – Chapter 5. With the results obtained, some charts

were constructed in order to facilitate their analysis – Chapter 6.

From this project’s development it was possible to conclude – Section 7.1 – that the

dcm4che with the simple HBase backend, in comparison to the baseline dcm4che, shows

better results in terms of latency and throughput in the put and get operations. The scan

shows a slightly worse performance, however, the system’s query capabilities were im-

proved. The system with a protected HBase backend shows a worse latency and through-

put performance due to the encryption job in every operation, with exception for the get

which is equivalent to the system with a simple HBase backend.

Despite the good obtained results, there is some work that can be done in this field of

work – Section 7.2. For instance, it would be nice to implement a distributed filesystem such

as Hadoop Distributed File System (HDFS) to store the actual medical image. Furthermore,

the implementation of a more robust security technique, such as multi-party computation,

would be interesting. Since medical institutions sill make use of Structured Query Lan-

guage (SQL) databases, it would be interesting to implement a layer capable of translating

SQL to NoSQL, letting institutions make use of NoSQL databases without changing their

entire interfaces.

1.4 document structure

This master thesis is organized in six chapters. Besides this first introductory chapter which

contextualizes the reader on the subject in study, its motivations and objectives of the work,

five more chapters are written hereafter:

• Chapter 2: Literature review;

• Chapter 3: Research methodology;

• Chapter 4: System architecture;

• Chapter 5: Benchmarking;

• Chapter 6: Results;

• Chapter 7: Conclusions and future work.
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2
L I T E R AT U R E R E V I E W

This chapter will describe the fundamental theoretical and scientific concepts related with

this thesis’ theme, as well as the state of the art and literature review. Section 2.1 exposes

this chapter’s structure and each section’s importance for the present case study.

2.1 introduction

With the evolution of healthcare industry, the need of acquiring and storing medical images

has increased [4]. Thus, in order to implement an economical and convenient access to

medical images, a PACS was developed [23, 24]. Having this in mind, the need to create

a standard whose implementation would guarantee the interoperability and compatibility

between all medical imaging stations is understandable. Hence, the DICOM [25] standard

was created. Section 2.2 will describe how theses systems work and what are its main

elements, and in section 2.3 the DICOM standard will be addressed, describing what are

its main services and concepts.

With this in mind, one is ready to study the available NoSQL solutions fitting this work’s

purpose. Thus, to accomplish this, a comparison between traditional SQL – Section 2.4.1 –

and newer NoSQL – Section 2.4.2 – solutions will be made. Section 2.4.2 will be divided into

three subsections, with each one of these subsections addressing one of three main kinds

of NoSQL databases. A description on HBase NoSQL storage system functioning will be

made on Section 2.5. Its architecture and data model will be described as well. Furthermore,

NoSQL applications in the healthcare industry will be referenced in Section 2.5.4.

Besides the storage of the medical data it is also important to protect it from external

attacks. Hence, Section 2.6 focuses on briefly exposing symmetric-key encryption algorithm.

Afterwards, the security measures, which should be taken when dealing with health-related

information, are addressed – Section 2.7. In this section are exposed the most important

guidelines about security and privacy in healthcare that are implemented in the United

States of America and the European Union – Sections 2.7.1 and 2.7.2, respectively – as

well as some applications that already are concerned about safe storing medical images –

Section 2.7.3.
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2.2. Picture Archiving Communication System – PACS

2.2 picture archiving communication system – pacs

The Picture Archiving Communication System and its principals were firstly discussed

in radiologists’ meetings in 1982. Despite Duerinckx and Pisa [26], reportedly, first used

the term in 1981, the credits for introducing term went to Samuel Dwyer and Judith M.

Prewitt [27].

Initially, hospitals purchased film digitalizers in order to convert physical images – such

as X-Rays – into digital format [28]. To create a better alternative to this process, the

PACS [23] was developed as a way of creating a cheap storage solution with fast retrieval

and multiple and simultaneous access from different workstations. Thus, this system can

be defined as a healthcare technology focused on storage – long and short-term –, retrieval,

management, distribution and presentation of medical images, allowing the healthcare in-

stitution to view and share all types of images internally or externally [2].

When deploying a PACS, the environment in which it will work must be considered.

This means that there is no general PACS architecture since it depends on the requirements

of the departments where it is installed and the technological resources of the institution.

However, it is possible to identify the main components of this system [2, 23, 29, 30]:

• Acquisition Workstations: primary acquisition device (imaging acquisition systems);

• Secure network of transmission: it can be a local or wide area network for distribu-

tion and exchange of patient information;

• Reading stations: workstations or mobile devices for viewing, processing and inter-

preting images;

• Storages: short or long-term storages for storing and retrieving images and related

data;

• Data management system: specialized computer that manages data work-flow on the

network.

The above mentioned components are the most important and the ones that should be

present in all PACS. Although, there are other components that are frequently used in

this kind of systems and that can increase the efficiency of the system. An example of

these components is a database server. Such device is a robust central computer capable of

processing information in high speed. [28].

With the previously indicated components it is possible to establish many workflows

between them. As an example, the following can be described [31]:

1. Modalities workstations send objects to a gateway that assures that information in the

object are correct.
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2. After being checked and eventually corrected, objects are sent to an archive module;

3. The archive module sends the objects to reading workstations that request them.

Since the implementation of these systems has been massive, it is legitimate to assume

that the advantages that institutions can profit of are several. One important advantage for

healthcare institution’s managers is the decrease of storage costs by using digital storage

instead of film based. Besides this, the system allows a faster and more reliable image

retrieval along with remote access, saving much time to physicians. PACS is also a good

choice because it enables an easy integration of medical images in the hospital’s information

systems. Moreover, the digital transmission of medical images and reports, and an effective

workflow management permits a faster diagnosis. At last, PACS allows an easier security

implementation, which is a great advantage. In spite of the advantages of these systems’

implementation being major in comparison to the disadvantages, these are not null. For

instance, given that these systems are extremely complex, it is possible that their end users

will not be capable of efficiently use the system. Thus, it is important to continuously make

an effort to simplify and improve the user interface, in spite of the system’s complexity [30,

32].

2.3 dicom standard

When working with different imaging systems, to establish a connection and being capa-

ble of transferring data between them, the implementation of a common speech between

those systems is necessary. Thus, in what concerns to medical images, the development of

a standard that took care of communication protocols between stations and the files’ struc-

ture was need. In this context, in 1985 the National Electrical Manufacturers Association

(NEMA) published the ARC-NEMA, posteriorly renamed, in 1993, to Digital Imaging and

Communications in Medicine [33]. This is a structured multi-part document where each

part describes a single layer that can be used for different services and objects [34].

DICOM can be defined as the international standard for medical images and information

related with them, being a very commonly used standard in what concerns to storage,

transfer, and visualization of medical images [35]. In other words, DICOM is used as a

data transfer protocol about diagnosis, treatments, images, and any information related

with medical images. This standard enhances connectivity, compatibility, and workflow of

medical images, enabling data exchange with the quality needed for clinical use [25, 34, 36–

38].

In the following subsections, the basic concepts of the DICOM standard will be addressed.

Section 2.3.1 exposes the structure of the exchanged DICOM objects and the data syntax
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used in this standard. Then, in Section 2.3.2, are referred the main services implemented

by DICOM as well as the established Service-Object Pairs (SOPs).

2.3.1 Object structure

As said before, this standard is responsible for the definition of data structures for medi-

cal images and associated data. In what concerns to data structures implemented by the

DICOM standard, the central components are the Information Object Definitions (IODs).

These define a data model used to represent objects – e.g. DICOM images or DICOM Struc-

tured Reporting). IODs represent a class of objects and help the application entities having

an overview about the object that will be exchanged.

Every DICOM object has a “header” that contains a list of the attributes concerning to

the object. In this list, in what concerns to DICOM images, it is possible to find informa-

tion like patient related data, performed procedures, image’s dimensions, etc. Here, each

attribute has a well defined meaning. Sometimes, to avoid ambiguous information, Unique

Identifiers (UIDs) are used. These identifiers are appropriate in parameters such as case

study number or image series. An important characteristic of these attributes is that they

are organized into groups and each group refers to a kind of data. For instance, group 8

includes information about the examination and group 10 includes the patient’s data.

Attributes – or data elements – have a proper structure itself. These are composed of four

fields [39]:

• Tag: is the element identifier and is always represented in the format (GGGG,EEEE),

being “GGGG” the group and “EEEE” the element number;

• Value representation: is an optional field and depends on the transfer syntax that is

being used. Describes the data type and format of the attribute’s value;

• Value length: denotes the length of the attribute’s value;

• Value field: contains the actual data element value.

In Appendix A.1 is possible to find the data dictionary that was used to develop this

project. There, it is possible to identify some of the data elements an image can contain

and the values that each of the above mentioned fields can take. As a practical example,

Appendix A.2 exposes the content of a real medical image metadata.

2.3.2 DICOM services

Besides the objects’ structure, the DICOM standard also describes some services that should

be implemented and how they should be implemented. There are two main groups of
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services: composite services and normalized services. Generically, the first mentioned service

applies to composite objects and it is oriented to the image and data exchange. The second

one applies to normalized objects and it is oriented to information management [25, 38, 40].

When dealing with these services, some messages have to be exchanged. Messages that

refer to composite services are identified by a “C” in the beginning, for instance, C-STORE.

Messages that refer to normalized services are identified by an “N” in the beginning, for

example, N-DELETE.

The most used DICOM services are [34, 41]:

• Verification service;

• Storage service;

• Storage commitment service;

• Query/retrieve service;

• Modality Worklist;

• Modality Performed Procedure Step;

• Print service;

• Display Gray Scale Standard;

• Gray Scale Soft Copy Presentation State Storage.

Before explaining in a more extensive way the most important services of the DICOM

standard, it is important to understand the concept of SOP Class. When working with the

previously mentioned services two roles, that function as a pair, can be distinguished [34]:

• Service Class Provider (SCP): role of the service’s provider;

• Service Class User (SCU): role of that service’s user.

These roles are not steady. Meaning, workstations and archive can both be SCP and SCU

depending on which one is sending objects to which [34]. Hence, a SOP Class must be

defined. This is a function agreement defined by the combination of an object and a service

group that decides what can be transmitted between each pair of stations. This means that

the two stations in communication must support the same service and object besides the

different roles. This is an important part of the DICOM standard because not every station

supports every type of object and service [42].

Now one is able to start exploring the most important services for this case study.
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Storage service and Storage commitment service

In the DICOM standard is described a service that is responsible for the data’s safe commit-

ment in the storage. When a SCU requests (C-STORE) an object storage to an SCP, it confirms

the acceptance of the request by sending a message. However there is no guarantee that

the object was safely saved. It only assures that the request was accepted. After a SCP’s

acceptance of the storage and safekeeping request, the notification of storage commitment

will only be successful if the SCP safe-stores all objects.

If a physician wishes to delete an object from the internal storage of a modality’s equip-

ment, he sends a storage commitment request (N-ACTION) to assure himself that the files

that he is deleting from the internal storage of the equipment are safely stored and, ergo,

can complete the action [43].

Query/Retrieve service

The query/retrieve service is responsible for querying a content to a DICOM archive (usu-

ally PACS server) and eventually retrieve content to any DICOM node. This process com-

prises two phases [44]:

• Query phase: in this phase, a first DICOM node (SCU) queries (C-FIND) a second

node (SCP) for a specific data. This query can contain parameters that help the infor-

mation’s selection.

• Retrieve phase: The SCU node requests some DICOM data retrieval (C-MOVE/C-GET)

to the SCP. In this phase it is implied a data transfer from one component to another,

if matches are found.

2.4 storage solutions

Since the 80’s, all data was stored in RDBMS, meaning, SQL databases. Although, with the

appearance of web applications and big data, this solution faced some new challenges and

new users’ needs, especially when dealing with large scale systems where concurrency is a

keyword. This made Stonebraker et al. [45] declare “the end of an architectural era” [46]. In

this context, NoSQL databases have risen, keeping up the promise of high user satisfaction

along with a low management and operational cost [14].

In the following Sections – 2.4.1 and 2.4.2 –, both SQL and NoSQL solutions will, respec-

tively, be explored with the purpose of exposing what conducted to the choice of a NoSQL

solution over a mainstream SQL solution.
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2.4.1 SQL databases

In 1970 E. F. Codd [47] was already concerned about data’s organization in databases and

how these should be transparent to the user. He believed that the user did not need to be

aware of data’s organization on the database. Also, this investigator was convinced that

unstructured databases could lead to inconsistent and redundant information. Based on

these ideas and with the desire to create a simple structured data model that all developers

could have the same understanding about, he developed the relational model which gave

birth to the famous relational databases [48]. These are also known as SQL databases, named

after the Structured Query Language (SQL), which is the query and maintenance language

used on these systems.

A relational database is a collection of data organized in tables that can change along

with time and can be accessed and altered as if they were organized in non-hierarchic

relations. Using this model, data is addressed by values, not positions. This would boost

the productivity of programmers and users since items’ position is always subject to change

and, thus, it is difficult to keep track of it [48, 49]. The main characteristics of this data model

are [50]:

• Structural aspects;

• Rules to insert, update and delete data;

• Support for a sub-language at least as powerful as relational algebra.

In a simplistic way, relational databases can be defined as a set of tables containing data

that fits into categories – columns – previously defined. It is important to notice that each

row in the table is a unique data tuple. Besides, data on the database can be accessed and

altered by the user without having to restructure the data model [5].

An interesting and attractive set of features that are important to notice in a relational

database are the so called ACID transactions, where ACID stands for Atomicity, Consis-

tency, Isolation and Durability. Hereafter is described the meaning of each one of these

characteristics [16, 46, 51]:

• Atomicity: all operations of the transaction are executed or none of them (all or none);

• Consistency: at the begin and end of the transaction, the database will be consistent

(the resultant tables will be valid);

• Isolation: transactions are independent;

• Durability: the transaction will not be reversed at the end of the process (the database

can survive to system failures).
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The concept of relational database brought significant improvements in terms of produc-

tivity to programmers and end users because of data independence, structural simplicity

and relational processing. Besides, since the acceptance of the model was huge, it was nec-

essary to build a Relational Database Management System (RDBMS) to accomplish all the

previously mentioned objectives and gains [48]. Having set this evolution, IBM decided to

create the first prototype of a RDBMS in 1976, the System R [52]. Although, only in 1979

was created a fully commercially available RDBMS, by the giant Oracle [45, 53].

Over times, more and more companies developed their own RDBMS. Nowadays, accord-

ing to a study carried out by DB-Engines and released in January 2016 [54], the market

leaders on this field are:

1. Oracle;

2. MySQL;

3. Microsoft SQL server.

In spite of all the advantages that E. F. Codd found on relational databases, it seems

that with the market’s evolution, this solution was not enough for its storage needs . The

society’s demands for data storage are increasing as much as the data volume, sometimes

making the existing storage solutions inadequate or just too small. This is responsible for

the need of scaling up the storage systems. When it comes to RDBMS facing this problem

they do not perform so well. To scale a relational system it is necessary to replace the

existing machines by a more powerful (and expensive) one – vertical scaling – which is a

hold-back for companies. Besides, when this upgrade is not enough to support all data

volume the solution is the system’s distribution across multiple servers. At this point the

problem is not just financial. Relational databases are not easily adaptable to distributed

environments because the join between tables across multiple servers is not easy, since these

databases are not designed to deal with data partitioning. Furthermore, when data does

not easily fit into a table, it can add extra complexity to the data model, which should be

avoided. The long set of RDBMS’s features can also be a disadvantage because they add

unnecessary complexness to the database. Also, SQL, the query language used in these

systems, can be a problem since it only can deal with structured data [5, 46, 51].

Having all these issues in mind, researchers made an effort to find an alternative to SQL

databases. In such way, a panoply of NoSQL databases were developed. In the following

Section (2.4.2) are explained the fundamentals of these new databases and why they are a

good alternative to SQL ones.
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2.4.2 NoSQL databases

With the expansion of the internet, web applications have grown in popularity and services

that required big data/data-intensive products started to appear and changing the market’s

needs. With the web application’s adoption increase, the bottleneck of the service will rely

on the storage service [51]. This evolution started to unveil the weaknesses of traditional

Database Management System (DBMS) since scaling is a key-point of cloud computing [16].

Since the late 90’s the need of letting go the concept of relational databases and SQL started

to be felt [55]. Thus, in 1998 Carlo Strozzi [56] coined the first use of the NoSQL term.

However, at this time, he did not refer to it as a non-relational database as it is used nowa-

days. This concept concerned to an open-source relational database that did not offer a SQL

interface. About ten years later, in 2009, Eric Evans [57] reintroduced the term as a way of

deviating from the relational model.

The term NoSQL, in fact, works exactly as two words – “No” and “SQL”. However, this

has been interpreted by the community as Not Only SQL since NoSQL databases mostly

do not use SQL as query language, but some do. Probably, the creators of the term wanted

to refer themselves to NoSQL as a “No relational” or “No RDBMS” even making some

researchers use the term NonRel as a more intuitive alternative to NoSQL. Independently

of what the acronym means, the NoSQL database designation comprises all databases that

are not based on the RDBMS principals [14, 16, 58].

As scientists gained more experience on the development of distributed systems, where

partitions are inevitable, they started to realize that it was almost impossible to achieve both

consistency and availability at the same time [5, 59]. This “fight” between availability and

consistency was first described in 1997 [60] as a discussion ACID vs BASE, where BASE

stands for Basically Available, Soft state, Eventually consistent. As its acronym shows, this

concept is exactly the opposite of ACID, which is a characteristic of SQL databases. While

ACID forces consistency at the end of each operation, BASE accepts that the database can

be in a transitory state and, thus, only eventually consistent. This consistency state allows

the system to support some partial failures without crashing the whole platform. Yet,

not everything is perfect in this BASE approach. BASE requires a much more intensive

analysis of operations and temporary inconsistency cannot be hidden from the end user.

This requires a much more careful picking of inconsistency opportunities [51, 61].

The ACID vs BASE discussion was the first one to evolve at this level. Nevertheless, there

are more theories that have emerged from this availability vs consistency paradigm. In 1998

appeared the CAP theorem, however it only was published in 1999 by E. Brewer and A.

Fox [62]. CAP stands for Consistency, Availability and Partition Tolerance and it states that

it is impossible to achieve three of the three CAP characteristics in a distributed system. Still,
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systems can be improved towards the maximum proximity of the three characteristics [55,

61–64]. Hence, three states are possible [55, 62]:

• CA: databases can only provide consistency and availability at the same time if they

give up of the partition of data into multiple server peers;

• CP: when working with a partitioned database, it is only possible to achieve consis-

tency by giving up of temporary availability because, at some point, transactions will

be blocked until partitions heal in order to avoid inconsistency.

• AP: when working with partitioned data across multiple servers it is only possible to

achieve total availability when giving up of full consistency. Meaning, the system will

be eventually inconsistent during a certain amount of time.

Since NoSQL databases are not specifically designed to support ACID, they are, thus,

less rigid. This lets the database leave the relational model aside and create a bunch of new

data models. The most common NoSQL data models are: key-value, document based and

column oriented [5, 14–16].

In the following subsections each one of the above mentioned most common NoSQL data

models will be detailed.

Key-value stores

Key-value stores are the ones with the most simple data model since, as the name implies,

it is a database based on a model that indexes values by retrieval keys. This means that it

does not need tables or semi structured documents because data is organized as an array

of entries. This suggests that this model can handle both structured and unstructured data.

In these databases all actions are performed by key. Meaning, if each row has a unique

identifier key, it is possible to identify, alter, delete and insert rows uniquely by giving their

identifying key [5, 55].

Document stores

Document stores are able to store many kinds of documents. This is possible by encapsu-

lating documents in a specific document type – JSON or XML. These documents support

nested documents, lists, pointers and scalar values [14, 46, 65]. Additionally, these can con-

tain structured data such as a tree with nodes. Thus, each record – or document – can be an

autonomous set of data and can also describe a schema that is not necessarily dependent on

other documents [66]. It is also important to notice that the attribute names are dynamically

defined for each document in runtime [46].

Documents can be indexed, enabling requests by key and making this kind of store a

subclass of key-value stores [14, 65]. If these keys are not provided by the user, the system
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can generate its owns. Keys can also be used as a way to establish relations between

documents in a store [66]

As a way of knowing what does each document refer to, these stores group the docu-

ments in collections. In these collections can be included any documents about the same

“matter” in spite of their own schema. This feature helps the retrieving process when work-

ing with data requests of a specific collection. Another strategy that can be used to speed

the retrieving process is the inclusion of a “type” field to label the document. Besides this,

the inclusion of documents in collections is not a developer or user’s concern. The sys-

tem is able to identify documents and decide whether they should or not be included in a

collection [66].

Column stores

The first column oriented data stores appeared in 1969, being a system for information

retrieval in biology [67, 68]. In 1975 was developed the second column store and the first one

with application in healthcare, being a storage solution for clinical records [69]. However,

only in 1993 was developed the first commercially available column store solution, matured

by KDB. About 10 years later, the first open source solution rises as MonetDB [70].

In a generic way, column stores – also called Extensible Record Stores – store data in columns

instead of rows. It stores each column of each table separately, as sections of columns, where

values of the same column are store contiguously, compressed and densely packed. This

compression allows a fast execution of operations. In order to maintain together the data

referent to the same record, data is stored in a away that, for instance, the fifth entry of

column A matches the fifth entry of column B. This allows the access to data individually

by column as a group instead of individually row-by-row [65, 67, 71].

2.5 hadoop-based project - hbase

Hadoop-based Project (HBase) [72] is a distributed, persistent, strictly consistent and with

near-optimal write, column oriented database system built on top of HDFS to create an

highly scalable and high performance platform capable of dealing with large heterogeneous

datasets (BLOB, CLOB, etc.) [73]. However, as we will see bellow, all HBase operations’ ex-

ecution are based on a row-key. In such way, some investigators that consider this database

more of a key-value store or a hybrid architecture between key-value and column oriented

stores [17–20, 74].

HBase was started in 2006 by Chad Walters and Jim Kellerman at Powerset and it was

initially developed as a contributive part of Hadoop. Although, some time later, it gained

its own project and became Apache Software Foundation’s. This project is a middleware
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that runs on top of HDFS and is the application that Hadoop uses when real time data

access is required in large datasets [17, 19, 20].

The following sections address the HBase system architecture (Section 2.5.1), its data

schema (Section 2.5.2), and the basic operations that can be performed over an HTable (Sec-

tion 2.5.3). At last, Section 2.5.4 gives an overview about the usage of HBase in healthcare

applications.

2.5.1 System architecture

HBase’s architecture can be described as a set of three systems orchestrated to make use of

the existing systems on top of which it is built (HDFS and ZooKeeper [75]). These three

systems are:

• Client library (API);

• Master server;

• Region servers.

Hereafter is described the operation mode of each one of these three components as well

as HDFS and ZooKeeper.

The master server [19] is responsible for assigning regions to region servers and dealing

with the load balancing across them, maintaining the cluster’s state. In such way, it is

never involved in the storage or retrieval path and does not assign data services to region

servers. Furthermore, this component is also responsible for taking care of schema changes

and other metadata operations. It is important to notice that this server has the help of

ZooKeeper on the accomplishment of its tasks.

In what concerns to the region servers [19], these are responsible for all read and write

requests of the regions they serve. Region servers deal directly with the client application

and, thus, are responsible for handling data-related operations. These servers can be added

or removed during runtime to adjust the system’s workload changes. These hardware

alterations can be made without affecting the system.

The Client Application Programming Interface (API) [19] is the primary client interface to

HBase and is responsible for providing the user all the functionalities needed to store,

retrieve and delete data from the database.

HDFS is a distributed filesystem designed to tolerate faults and deploy on low-cost hard-

ware [20, 76]. It provides a high throughput access to applications, even when working

with large datasets. This is where files are stored and it guarantees that files are written

across multiple physical servers so they are never lost. The HDFS is responsible for storing

both metadata and application data, with each of them being stored on a different kind
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of server. NameNode is the master server and is responsible for the file system’s metadata.

DataNodes are servers dedicated to application data. These servers are fully connected us-

ing reliable protocols (TCP-based). The HDFS namespace is hierarchical and represents files

and directories. Files and directories are represented in the NameNode by inodes, which

are structures that store attributes like permissions, modifications and access times. File

contents are split into large blocks that are posteriorly replicated through a defined number

of DataNodes. Each one of these blocks is represented in the DataNode by two files: one

with the actual data and one with the metadata of the block. The namespace maintains the

mapping of file blocks to DataNodes. In a practical way, the NameNode receives a reading

request, localizes the DataNodes that have the requested data and assigns the job to the

one that is closer to the client. When working with writing, the NameNode chooses the

DataNodes that will carry the replicas. It is important to notice that the HDFS namespace

is always kept in RAM, speeding up the access to the database’s content. When starting up

the system, an handshake is perform between the NameNode and DataNodes. During this

process, namespace’s ID is checked as well as the software version. This prevents the join

to the namespace of DataNodes of other namespaces. The software version is important to

prevent data corruption and loss due to incompatibilities [19, 73, 77, 78].

The distributed coordination service of Hadoop is called ZooKeeper [17, 75, 79]. This

is a coordination service developed to manage client requests in a wait-free way – which

is important for fault tolerance and performance – with order guarantees. Furthermore,

this system can provide a set of tools that help the database dealing with partial failures.

ZooKeeper presents an hierarchic filesystem, providing an abstraction of a set of nodes (zn-

odes), where data is stored and from where clients can read and write data. This allows a

better organization of the system’s metadata for coordination reasons. There are two types

of znodes: regular and ephemeral. Ephemeral znodes are created by the client and can be

deleted by the system (when the session ends) and by the client itself. It is important to

notice that these nodes can not have children. Regular znodes are created and deleted ex-

plicitly by the client and, in contrary to ephemeral znodes, are able to have children. Each

client application has its own regular znode. Then, this znode can have as much ephemeral

znodes as the number of processes that it has running on the ZooKeeper. An important

characteristic of znodes is that they are labelled with timestamp and version, allowing the

client to execute conditional orders based on the znode label. ZooKeeper is also provided

with a set of configurable primitives allowing the developer to change the away the coordi-

nation is executed. An interesting and important feature of this coordination service is that

its namespace is kept in memory, allowing high throughput and low latency times, and

implements data replication through many servers, achieving high availability. However,

clients only link to a ZooKeeper service.
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2.5.2 Data model

HBase stores data into labelled tables composed of rows and columns, resulting in table

cells [17, 80]. These cells have a time-stamp associated, automatically defined by HBase,

that corresponds to the time of insertion of the corresponding data in the table. Each table

row is identified by a key and tables are sorted by these keys. By default, this sort is byte-

ordered so the related rows stick together. Since the table is sorted using these keys and

can be accessed through them, they can be seen as primary keys.

In HBase, a column is defined by a column family and a column qualifier separated by

a colon – e.g.: Patient:Name [8, 17, 80, 81]. Thus, every column family is composed by

columns with the same prefix. Table’s column families must be pre-specified at the defini-

tion of the database schema and have a set of storage properties that help the system decide

whether it must save values in memory, which ones are encoded or compressed, between

other characteristics. However, column qualifiers can vary greatly from row to row since

they can be added dynamically in runtime, as long as the column family that they belong

to already exists. Column qualifiers work as a kind of index to help the identification of

the data that can be found on that column. Knowing this, one is capable to understand

that a cell is identified by its table, row-key, timestamp and column. It is important to note

that columns can also have associated an attribute that can be used to take some kind of

annotation to the column, for example, if its value is protected or not.

An important aspect of HBase schema is that tables are organized into regions [8, 17, 80,

81]. Initially, tables can be included in only one region. However, when they start growing

and exceed a certain configurable limit, the table is split into more than one region. These

regions are characterised by the first (inclusive) and last (exclusive) row-keys. Regions are

units that are distributed across several nodes of the cluster.

2.5.3 Basic operations

HBase supports a group of basic operations, usually called CRUD operations which stands

for Create, Read, Update and Delete [19]. In HBase’s case, these operations are:

• Put;

• Get;

• Scan;

• Delete.

The put method allows the insertion of a certain column value for a given row key.

Hence, to insert it on the HTable, it is necessary to identify the row key, the column family,
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the column qualifier, and the value that the user wants to put. This method is also used to

update values. To do so, it is only necessary to perform a new put for the key and column

– or columns – that should be updated.

The get method is the one used to retrieve specific values of an HTable. To achieve that,

it is necessary to specify the key and the columns of the respective value that we want to

retrieve.

The scan method works like a get but it has the ability to retrieve multiple rows and

there is no need to give the key of the row – or rows – that the user wants to retrieve. To

do so, it is necessary to associate a filter to the scan with the value of the columns that we

want to use as search criteria. Moreover, these filters allow the implementation of different

compare operators, allowing the search of results that fit a range of values.

The delete method allows the deletion of data from the HTable. To do so, in first place, it

is necessary to specify the row key where we want to perform a deletion. Then the deletion

must be narrowed down. Meaning, the column family and/or the column qualifier must

be specified.

It is important to notice that all these operations are performed over byte array values. In

such away, all values must be converted to that data type before any action.

2.5.4 Applications in the healthcare industry

The healthcare industry is becoming increasingly concerned about the capability that their

storage systems have to tolerate data partition, since the amount of daily generated data

is becoming bigger and bigger [82]. Ergo, in a generic healthcare market, there are some

applications that use HBase as a storage system. Between these, it is possible to refer the

systems described by Jin et al. [83] and Sobhy et al. [84]. These are both systems that use the

advantages that HBase, Hadoop and HDFS provide to create a distributed, fault tolerant,

low cost, and highly scalable solution to store Electronic Health Record (EHR). However,

these aren’t already prepared to deal with medical images records.

Another application of Hadoop’s environment in the healthcare world is the storage for

medical image processing softwares. Between these software applications it is possible

to find Content Based Image Retrieval (CBIR) systems [85–87]. These use this kind of

databases to store a set of features that are extracted from the original images.

In what concerns to the actual storage of medical images or its metadata, there are studies

that propose, as a possible option, the implementation of the Hadoop’s panoply as back-

end [88–90]. However, there are already systems that actually describe a storage system for

medical images using these components. An application that is worth to reference is the

CloudDICOM [91]. This is an application layer constructed on top of Hadoop and HBase to

access and distribute medical images through a web-based system. This study is focused
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on the system’s architecture, workflow, and data schema and here, both metadata and DI-

COM objects are stored in HBase, without concerns about security. A flaw that is possible

to identify in this work is the lack of a description of the obtained results in terms of the

systems’ performance.

2.6 cryptographic techniques – symmetric key encryption

Cryptography can be defined as the science of writing in code [92]. This was, reportedly,

first used in 1900 B.C. in Egypt. This science has three main goals: protect from theft,

alteration, and authentication purposes.

When using unreliable means of communication, it is important to use the techniques

described by cryptography in order to protect the exchanged data. Nowadays, a particu-

lar unreliable channel of communication is the Internet. Since this is the communication

method used to transfer information in this project, it is important to study techniques to

provide protection of transferred data [92].

There are two main types of cryptographic techniques – symmetric and asymmetric key

encryption [93]. Let us consider a client that needs to exchange a message with a provider

without letting an attacker now which message is being exchanged. Briefly, symmetric key

encryption uses the same secret key to encrypt and decrypt. This key is kept by the and

cannot be revealed to other parties that are not supposed to have access to the original

information in the clear, i.e., the attacker [94, 95]. On the other hand, asymmetric key

encryption is based on the usage of two different keys for encryption and decryption. In this

case, a public key is used to encrypt data and a private key is used to decrypt it. However,

asymmetric key encryption is a relatively slow process in comparison to the symmetric

key encryption [93]. Symmetric algorithms have faster implementations in hardware and

software, which makes them more suitable to deal with large amounts of data [94]. In such

way, the symmetric key encryption is the most promising technique in this project’s context.

Symmetric key encryption algorithms can be subdivided in two main groups: stream

and block ciphers [96, 97]. In a generic way, stream ciphers encrypt a single bit at a time,

producing a random bit string. On the other and, block ciphers encrypt a specific number

of bits at the same time. Despite the high speed of transformation presented by stream

ciphers, these show a low diffusion – because a symbol of plaintext is represented by only

one ciphered symbol. Besides, these are more susceptible to insertions and modifications.

On the other hand, block ciphers are more powerful, more secure, and more easily imple-

mented than stream ciphers and, thus, can be used to protected the integrity of data and

authenticate at the same time, which is not possible using stream ciphers. Furthermore,

block ciphers are more useful when the data being encrypted is previously known. In such

way, this work will be focuses on symmetric key encryption using block ciphers.
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Symmetric key encryption algorithms are based on two concepts: block and key [94].

The block cipher is the metric defining the number of bits being encrypted at the same time.

The key defines the bits used to cipher the plaintext. In a generic way, a cipher is as secure

as its key’s number of bits.

There are several algorithms to perform symmetric key encryptions [93]: Data Encryp-

tion Standard (DES), 3DES, Advanced Encryption Standard (AES), RC4, RC6, BLOWFISH.

However, the most common ones are DES and AES.

The DES was the first symmetric key encryption standard created [93, 94]. It has a fixed

size for cipher blocks – 64 bits – and keys – 56 bits. Given the key’s number of bits, it

is possible to understand that there are 256 possible keys. Thus, a disadvantage of this

algorithm is that it is easily attacked using brute force.

The AES is an algorithm created to replace the DES [93]. This one needs a fixed block

size of 128 bits. However, the keys’ sizes can vary between three possible values – 128,

192, and 256 bits – which are bigger than the required sized on the DES. An advantage of

using the AES encryption method is that it is fast, flexible, easily implementable in different

platforms and in small devices. Since this algorithm’s keys are bigger than the ones used

in DES’s, it is a more secure method.

Despite all the referred characteristics of these encryption standards, when working with

databases, it is important to maintain their searchability [98, 99]. To do so, several tech-

niques can be applied. One of the most common is the deterministic encryption. This type

of encryption ensures the ciphered text will always be the same when given the same input.

The AES, when used with a constant initialization vector, is a fully deterministic algorithm

for the same given plaintext, block cipher and key [95]. The same applies for the DES.

2.7 personal data protection in healthcare

As referred along the previous sections, working with cloud storage solutions has many

advantages. However, these raise important issues in what concerns to data security and

privacy [21]. The healthcare business is one of the areas that requires a reinforced concern

about the security of stored data since it can contain sensitive information. As said before,

medical images’ metadata can contain information such as names, personal dates or even a

personal medical history. These can be sensitive due to several reasons. For instance, it can

reveal personal and business data that can become a competitive advantage or disadvantage

if it becomes public [100]. Actually, the individual’s privacy has been declared by Meglena

Kuneva, European Consumer Commissioner, as the “new oil of the Internet and the new

currency of the digital world” [101].

Therefore, some standards and guidelines have been structured to protect personal data.

For instance, the United States of America developed the Health Insurance Portability and
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Accountability Act (HIPAA) and the European Union has implemented the Data Protection

Directive (EU directive 95/46) [102] and the Directive on Privacy and Electronic Communi-

cations (EU Directive 2002/58) [103–105].

Sections 2.7.1 and 2.7.2 further address these privacy preserving guidelines, while Sec-

tion 2.7.3 exposes some of the applications that already comply with these guidelines.

2.7.1 Health Insurance Portability and Accountability Act – HIPAA

Since information violations were anticipated, in 1996, when the HIPAA standard [106] was

created, a privacy rule was integrated on it. This rule states that entities may only use or

disclose information that is de-identified. Besides, it implies that there are eighteen char-

acteristics that allow the identification of a subject and, thus, must be protected. Between

these characteristics the following can be found: names, addresses, dates related to the sub-

ject – e.g., birth dates –, contacts, or any other unique identifying numbers. This rule only

applies to covered entities, in which are included health plans, healthcare clearing houses,

and healthcare providers who transmit health information electronically. These entities can

be institutions, organizations or persons.

2.7.2 European directives

Regarding the European legislation, the data protection directive is the oldest active direc-

tive in what concerns to the protection of the individual’s data. According to the Article 2

of the EU Directive 95/46, personal data refers to any information relating to an identified

or identifiable person. On the other hand, an identifiable person is someone who is even-

tually identifiable directly or indirectly. Both directives, – EU Directive 95/46 [102] and

EU Directive 2002/58 [103] – state that “member states shall protect the fundamental rights

and freedoms of natural persons, and in particular their right to privacy with respect to the

processing of personal data”, and on free movement of such data. When working with elec-

tronic communications, the confidentiality of these communications must be guaranteed.

2.7.3 Personal data protection compliant applications

Having in mind all these concerns about secure access to medical images, there already are

some cloud storage solutions for medical images that take personal security in considera-

tion when storing them [107]. Between these solutions it is possible to identify two main

groups: solutions that protect the whole image and solutions that only protect sensitive

data – in this case, the image’s metadata.

22



2.7. Personal data protection in healthcare

Between the solutions that protect the whole image, there are many security approaches.

For instance, Cao et al. [108] uses Digital Envelope (DE) and Digital Signature (DS) al-

gorithms to protect the image, while Dzwonkowski et al. [109] uses a Cosine Number

Transformation (CNT) quarterian based encryption, and Castiglione et al. [110] uses a wa-

termarking method. About the solutions that only protect sensitive data, Xiang et al. [111]

applies a chaotic encryption technique, while Ribeiro et al. [112] uses a Posterior PlayFair

Searchable encryption. There is also another interesting approach, described by Silva et al.

[113], that relies on the implementation of a DICOM router which is responsible for the

encryption and decryption of all the exchanged messages.

In spite of the panoply of secure cloud storage solutions for medical images, there are not

yet solutions that comply with the personal privacy protection guidelines and use Hadoop’s

environment as backend to store these images which, as said before, can bring great advan-

tages at several levels.
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3
R E S E A R C H M E T H O D O L O G Y

This chapter will address the research technologies and methodologies followed during

the development of this master thesis, which allowed the achievement of the objectives

referred on Section 1.2. Section 3.1 briefly explains how this chapter is organized and its

main purpose.

3.1 introduction

A research methodology can be defined as a way of finding a solution for a proposed

problem or an investigation that leads to the understanding of a phenomenon [114]. In such

way, several directions can be followed in order to reach the problem’s solution. That being

said, some methodologies may be more effective than others and, thus, it is important to

follow a well established research methodology in order to achieve the best possible results.

In the specific case of the Information Technologies (IT), in which is included the com-

puter science’s branch, there is a famous and commonly used research methodology – the

DSR methodology [115–117]. This is a methodology that, in a simplistic way, is based on the

identification of a problem, the design of a solution and its validation. Since this fits in

this thesis’ work field and allows the accomplishment of the established objectives, it was

adopted as research methodology during the development of this project.

In this way, Section 3.2 explains in a more extensive way the DSR methodology’s assump-

tions and Section 3.3 shows the practical application of the DSR concepts in this thesis

context.

3.2 design science research – dsr

The DSR methodology can be defined as a paradigm of problem solving. According to

Von Alan et al. [117] “It seeks to create innovations that define the ideas, practices, tech-

nical capabilities, and products through which the analysis, design, implementation, man-

agement, and use of information systems can be effectively and efficiently accomplished”.
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In another words, DSR is the course of action that leads to the useful products’ design and

creation, and its effectiveness analysis using stringent methods [114].

This methodology is composed of two main activities [114]: building – creative process

that leads to new products – and evaluating – the assessment of its utility. In terms of

process, Vaishnavi and Kuechler [118] described five steps to be taken when following the

DSR methodology:

• Awareness of the problem: the researcher becomes conscientious about the problem’s

existence. He may become aware of it through many ways, including reading in

various areas or staying in touch with technology developments. In this stage, the

researcher formulates a proposal to solve the problem that was found and, thus, a new

investigation begins;

• Suggestion: the researcher must come up with a tentative design. This is when differ-

ent researchers – or the same one – can present different ideas to solve the problem,

i.e., different tentative designs;

• Development: the researcher presents at least one artefact. These artefacts can be

of different natures depending on the research field. These can be, for instance, al-

gorithms or software. The employed methods on the artefact’s development do not

necessarily need to be innovative. The uniqueness is in the design;

• Evaluation: the constructed artefact must be assessed using criteria that may or may

not be described on the proposal. The tests results must be in accordance with the

expectations about the product’s idealized behaviour during its design. If not, the

researcher must make an effort in order to describe any discrepancy.

• Conclusion: the results, either positive or less positive, must be consolidated and

written down. This way, acquired knowledge can be applied many times and/or be

further researched.

Having these concepts in mind, it was possible to apply them in a real-life context, during

the course of this master thesis investigation. The following Section (3.3) makes a connec-

tion between the above described theory and the practice by describing when each of the

aforementioned steps was present.

3.3 practical application

As said before, this project had, as conductive line, the DSR investigation methodology.

Hence, the methodology steps were identifiable in different phases of the project’s develop-

ment.
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At the beginning and after some research, it was possible to identify a shortcoming in

the medical imaging storage systems: the lack of a scalable, available, low-cost and secure

database for medical image’s storage. Hereupon, being aware of the problem, proceeded to

a new phase. A deeper exploration made one capable of making a suggestion to solve the

problem: a NoSQL database – HBase –, compliant with the DICOM standard that should

be able to safely store medical images by applying a cryptographic layer. Having an idea

of a possible solution, it was time to start its development. In this stage, the first step was

the choice of a versatile DICOM toolkit allowing its adaptation to the new backend and

still complying with the standard. Then, the HBase’s cluster was set up and the toolkit

was adapted to use it – both ciphered and deciphered versions. Having the prototype fully

constructed, it was time to test it and evaluate its behaviour comparatively to the default

version. In order to achieve that, performance tests were executed and, with their results,

charts were constructed. To conclude the project, the produced charts were analysed and all

the conclusions and middle steps were documented in this thesis.
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4
S Y S T E M A R C H I T E C T U R E A N D I M P L E M E N TAT I O N

This chapter exposes the overall architecture and implementation of the developed pro-

totypes. Here are explained the main decisions made during the project as well as the

grounds that led to those. Section 4.1 makes a brief contextualization of the chapter, and

describes its structure.

4.1 introduction

The DICOM standard is composed of several documents that regulates various aspects

concerning to medical imaging. Thus, searching for an open source implementation of

those rules became the best option. In this way, and after the analysis of several DICOM

software applications, the one that fitted best our needs was dcm4che [22]. The dcm4che is

an extremely complete and versatile open-source DICOM toolkit that, given its complexity,

deserves a special approach. Hence, Section 4.2 explains in more detail what it is and why it

was the chosen one between several others. This section also exposes the utilities’ panoply

offered by dcm4che, addressing with more detail the components that were indispensable

to this project’s development. After all this explanation, one is capable of describing the

default architecture constructed with the used utilities, as well as the workflow observed in

that context.

After some research and according to the knowledge acquired and documented on Sec-

tion 2.4, it was possible to understand that NoSQL databases – and more specifically HBase

– show a huge promise in what concerns to the future of data stores. In this way, an HBase

cluster was setup and dcm4che was adapted to it. Section 4.3 concentrates on the explana-

tion of the HBase data schema and cluster that were setup to work as the new dcm4che

backend. Moreover, this section discloses how this cluster was integrated with the DICOM

toolkit.

Despite all the advantages HBase can provide, it also presents some security issues. Since

it is a cloud oriented database and uses an unreliable communication channel – the inter-

net [92]. In such way, protecting the stored data with a cryptographic layer is a clever deci-

sion. In such way, Section 4.4 presents an HBase implementation protected with symmetric
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key encryption. Here is discussed the protected data elements and how this implementa-

tion was integrated with the dcm4che toolkit.

4.2 dcm4che – the dicom toolkit

The dcm4che [22] is an open source toolkit composed of a set of utilities, each one of

them playing a different role. It is implemented in Java and supports deployments with

JDK version 1.6 and higher. This toolkit presents a solid implementation of the DICOM

standard and it is currently on its third version. The version used as basis to this master

thesis was dcm4che3.3.7 which is a re-written version of the dcm4che1.x and dcm4che2.x,

providing increased flexibility and performance.

Section 4.2.1 focuses on explaining, in a more extensive way, what the dcm4che toolkit is

and why it was chosen over a panoply of other available open source softwares. Thereafter,

Section 4.2.2 exposes its architecture and workflow.

4.2.1 Why dcm4che

With the evolution of medical IT, the development of open source tools to back this field’s

research started growing. In such way, the dcm4che toolkit is not alone in this battle. There

is a panoply of open source frameworks [119–121] to help researchers accomplish new

advances in the PACS industry.

After some research, a huge amount of software applicaitons that could eventualy fit our

purpose emerged. Between those, it is possible to find IQ-DICOMTEST [122], Orthanc [123],

OsiriX [124], DICoogle [125–127], CDMEDIC [128], DCMTK [129], dcm4che [22], ClearCan-

vas [130], Conquest [131], OSPACS [132], Xebra [133], between others. In fact, in 2013,

Medfloss [119], listed 11 open source projects, ranked according users’ ratings. Although,

each one of them presented characteristics that made them less attractive than dcm4che to

this project’s development. Some only presented a Graphical User Interface (GUI) with no

source code available, others were just an upper layer of another software, and some of

them stopped being developed some years ago. It was needed an up-to-date software with

an accessible and flexible source code, an easy interface, and a well defined architecture.

Thus,dcm4che was the only of the above mentioned software applications to fit all these

demands.

The most attractive characteristics presented by dcm4che are:

• Modular and flexible architecture: it is organized in a set of modules, each one imple-

menting a set of related functionalities, making it more flexible and easily adaptable;
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• Up-to-date: it is currently being developed, being updated according to the eventual

change of the standards;

• Command line interface: its interface enables an easy usage along with a better

integration with benchmark scripts.

It is important to notice that the dcm4che toolkit contains a batch of utilities, each one

of them implementing a DICOM service. These utilities resort to the previously mentioned

modules to perform the needed operations and will also be used as basis to this project’s

development.

Being aware of the strengths and general aspects of the dcm4che, it is now important to

understand how the toolkit is architected and how it works. Thus, Section 4.2.2 explores

the toolkit’s utilities and the workflow and architecture that they create together.

4.2.2 Architecture and workflow

Section 2.3.2 focused on explaining some of the most important services that are described

by the DICOM standard. Dcm4che contains a set of utilities, where each one of them, in a

simple way, implements a distint DICOM service. Since the objective of this master thesis

is to evaluate the performance of the toolkit using different backends, only two operations –

read and write – will stay in focus. The DICOM services responsible for this are the storage

service and the query/retrieve service. To accomplish that, only the following eight out of

thirty nine utilities were used [134]:

• DcmDict: lookup DICOM attribute in DICOM dictionary;

• DcmDump: dump file content in textual form;

• DcmDir: dump, create or update DICOMDIR file;

• StoreSCP: DICOM object receiver;

• StoreSCU: DICOM object sender;

• DCMQRSCP: simple DICOM archive;

• GetSCU: makes DICOM retrieve requests – C-GET;

• MoveSCU: makes DICOM retrieve requests – C-MOVE.

Starting with the storage service, the main utilities used were the StoreSCP and the StoreSCU.

StoreSCP works like a storage server. This component is responsible for receiving objects

and storing them in the local disk. To start it is necessary to define two property values: the
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Application Entity Title (AET) and the port. Optionally, the directory for storing received

files can be provided. The AET works like a server name and it is one of the characteristics

the client is going to lookup when trying to establish connection with it. The port is going

to be used to establish connection with the client. An example of a command employed to

start the StoreSCP can be found on the Listing 4.1 example.

storescp -c STORESCP :11112 --directory dicom/images

Listing 4.1: Start StoreSCP – example command.

The StoreSCU is the storage client. To connect with the server it needs to know the server

address with which it wants to establish connection with, meaning, ip, port, and AET, as

well as the image or images that the client wants to store. Listing 4.2 shows an example of

a command to start a storage client.

storescu -b STORESCP@cloud80 :11112 image.dcm

Listing 4.2: Start StoreSCU – example command.

At the end of a storage activity, it is important to update the DICOMDIR. The DICOMDIR

is a file where all images are indexed and its locations on the filesystem are stored. It uses

images’ UIDs to construct a kind of an images tree, where the PatientID is the root, fol-

lowed by StudyInstanceUID, SeriesInstanceUID and SOPInstanceUID levels [1] – Figure 1.

In order to better understand this mapping, it is important to notice that a patient may be

targeted at several studies and a study can be composed of several image series. A serie

is the result of an examination. Although, these series can be composed of several slices,

where each one of these slices represent an image, which ID is the SOPInstanceUID. To cre-

ate and update this file, the dcmdir utility is used. It receives as parameter the DICOMDIR

and the locations of the images to be indexed. Examples of the DICOMDIR’s creation and

update commands can be consulted on Listings 4.3 and 4.4, respectively.

dcmdir -c dicom/DICOMDIR

Listing 4.3: Create DICOMDIR – example command.

dcmdir -u dicom/DICOMDIR dicom/images

Listing 4.4: Update DICOMDIR – example command.

Before explaining the query/retrieve model, it is important to understand that there are

two different models that can be used to execute query/retrieve protocols: the C-GET –

executed by the GetSCU utility – and the C-MOVE – executed by the MoveSCU utility, the

major ones being: security, flexibility and impact on the system’s architecture. In terms of
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Figure 1.: DICOMDIR levels (Adapted from [1]).

security, C-MOVE is a better option because it needs an intermediary utility (StoreSCP) to

store the received images. Meaning, the client is not an open channel to receive images. It

needs to be recognized as the correct machine to receive the data by identifying the StoreSCP

AET. In terms of flexibility, C-MOVE also presents some advantages. When retrieving an

image, this protocol requires the establishment of two distinct connections – one to execute

the query and another to retrieve the contents. In this way, the negotiation of the transfer

syntax1 being used is much more flexible. While in the C-GET model the transfer syntaxes

are listed by the GetSCU and the DCMQRSCP needs to pick one, in the C-MOVE model, the

transfer syntaxes are listed by the DCMQRSCP according to the query being made by the

GetSCU and the client just needs to agree with it. In terms of architecture, it is now clear

that the C-MOVE model requires the usage of the StoreSCP besides the query/retrieve client

and server, while C-GET does not need it.

To the present case study it is unnecessary to add complexity to the system’s architecture

and the latency of extra connections that need to be established. Since the only thing being

tested is the overhead introduced or removed by a new backend, this is not important, as

the same backend can also be implemented in a C-MOVE model.

Now, one is in condition of understanding the architecture of the query/retrieve task.

The DCMQRSCP works as the query/retrieve server. It is responsible for receiving a query,

processing it, and retrieving the adequate content to the client. To start this utility, it is

necessary the specification of the component AET, the port from which it will establish

connections and the path to the DICOMDIR where the images are indexed, as is possible

to see on Listing 4.5.

dcmqrscp -b DCMQRSCP :11113 --dicomdir dicom/DICOMDIR

1 The transfer syntax corresponds to the image’s encoding/file format and the network transferring methods [135,
136]
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Figure 2.: Dcm4che default – architecture and workflow.

Listing 4.5: Start DCMQRSCP – example command.

In what concerns to the GetSCU, it works in a similar way to the StoreSCU. It is responsi-

ble for sending a query to the query/retrieve server and receiving the retrieved content. In

order to correctly establish connection with the server, the parameters that must be specified

are: server’s AET, port, and ip; and the query values, as Listing 4.6 shows.

getscu -c DCMQRSCP@cloud81 :11113 -m StudyInstanceUID =1.2.3.4

Listing 4.6: Start GetSCU – example command.

In what concerns to the implementation of these services on a cluster, it is important to

notice that the client utilities are deployed on a different machine of the server ones. In

this way, it is possible to compare with more efficiency the performance of each component.

Figure 2 shows the workflow and architecture that was setup for the baseline system –

default dcm4che.

4.3 dcm4che with hbase backend

HBase is a NoSQL database that presents several advantages in comparison to SQL systems

and local storages, as mentioned on Section 2.4. These present improved characteristics

in areas such as scalability, load distribution, data replication, and availability. This can

indicate that this can be a great alternative to the existing medical images storage solutions.

To this project’s development, it was used HBase version 0.98 and HDFS version 2.7.
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Table 1.: HTable schema with example values.

SOPInstanceUID
Patient Image Series Study

ID Name Birth date (...) Type Date Hour (...) ID Date Hour (...) ID Date Hour (...)

1.2.3.4 00001 ”John” 02-05-1987 (...) ”Orig/Prim” 15-10-2013 14:32:26 (...) 1.3.5.9 15-10-2013 14:31:34 (...) 1.2.7.4 14-10-2013 10:12:43 (...)
1.2.3.5 00002 ”Mary” 23-07-1965 (...) ”Orig/Prim” 29-12-2010 17:47:13 (...) 1.4.7.3 29-12-2010 17:40:12 (...) 1.5.3.6 15-11-2010 21:07:11 (...)
(...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...) (...)

Section 4.3.1 focuses on detailing the HBase data schema, whereas Section 4.3.2 exposes

the setup HBase cluster’s architecture. In terms of implementation, Section 4.3.3 exposes

the adaptations performed to the toolkit, as well as some decisions taken during its im-

plementation’s course. At last, Section 4.3.4 explains the overall system architecture and

workflow, as well as how the small parts interact with each other.

4.3.1 Data schema

Before addressing the system’s architecture and the procedure taken to save the data on the

HBase cluster, it is important to understand the data schema used to store it.

As explained on Section 2.3.1, DICOM objects are composed of two main parts: a “header”

– containing the image’s metadata – and another part where the actual graphical image is

encoded. The amount of data that is written in File Meta-Information (FMI) can take major

proportions and not every attribute is important to the user or, at least, there is no interest

on querying the database using some attributes, such as attributes regarding to the image

dimensions. In this way, only values that might have some interest for querying were stored

on the database.

As is possible to see in Table 1, 4 column families were defined2: Patient, Image, Series,

Study. Each one of these column families is composed of a set of column qualifiers referring

to the column family. The meaning of each column can be conferred on Table 2. Addition-

ally, for every table entry it is necessary to specify a row-key (see section 2.5). Since each

entry refers to one image, its identifier specified on its metadata – the SOP Instance UID –

was the one used as row-key.

4.3.2 HBase cluster architecture

HBase, on its own, has a well defined architecture, as explained on Section 2.5. However,

it can be deployed in different modes depending on the work’s purpose. There are three

possible deployment modes [137] – standalone and distributed, where the distributed mode

can be subdivided in pseudo-distributed and fully-distributed modes.

2 Notice that a patient can have several studies associated, while a study can be composed of a group of series
and a serie can contain a set of images.
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Table 2.: HTable columns’ description.
Column family Column qualifier Description

Patient

ID Patient identifier number.
Name Patient name.
BirthDate Patient birth date.
Gender Patient gender.
Weight Patient weight.
History Patient medical history.

Image

Type Indicates if the image is original or derived and if it is primary or secondary.
Date Date of the image’s creation.
Hour Instant of the image’s creation.
TransferSyntax Image’s transfer syntax.

Study

UID Study instance UID.
Date Date of the study’s creation.
Hour Instant of the study’s creation.
Description Body part being studied.

Series

UID Series instance UID.
Date Date of the series’ creation.
Hour Instant of the series’ creation.
Modality Type of performed examination (Computed Radiography (CR), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), etc).
Manufacturer Acquisition equipment manufacturer.
Institution Medical Institution where the series was acquired.
ReferringPhysician Name of the patient’s physician.
Description More detailed description of the examined body part.

The standalone mode needs only one HBase node to work. It is the mode running with

simpler configuration: it does not need HDFS – uses the local filesystem – and ZooKeeper

is handled by HBase in a transparent way. The usage of the local filesystem instead of

HDFS leads to the possibility of loosing data. When using HDFS, it makes sure not to

loose files, while the local filesystem can loose data, for instance, when a file is edited

and not properly closed. Additionally, this configuration does not allow data distribution

across multiple servers. This is a better option at the beginning, to learn the HBase basics

and get comfortable working with it. Unfortunately, it does not allow load distribution or

replication, which is the opposite of this project’s goal.

About the distributed modes, they both work in the similar ways. Their main difference

is that the pseudo-distributed mode runs on a single node and can use the local filesystem

or HDFS, while the fully-distributed mode needs to run on multiple servers and only runs

against HDFS. Like the standalone mode, the pseudo-distributed mode is a satisfactory

option in a preliminary stage. It is a good way of testing configurations and prototyping

HBase, but still presents drawbacks in what concerns to performance testing. The most

complete and more advisable for production is the fully distributed mode and, thus, it was

the one used in this project.

To run a fully-distributed HBase cluster it is necessary to deploy several HBase instances

in diferent servers. It needs at least one master server – HMaster – and the remaining

hosts act like region servers – HRegions. In what concerns to the filesystem, in the fully-

distributed mode, the usage of HDFS is demanded. In the same way as HBase, HDFS has

a master – NameNode – and slaves – DataNodes –, where the NameNode runs on the

same host as the HMaster and DataNodes run on the same hosts as HRegions. About the

ZooKeeper, it is demanded to have a ZooKeeper running on the cluster. It is recommended

to have three or more ZooKeeper instances on the cluster, allways maintaining an odd total.

Since the objective of this project is not to test the system’s fault tolerance, one ZooKeeper
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Figure 3.: Implemented HBase cluster.

instance is enough. This way, only one machine has the load of having the ZooKeeper

running and the other ones are not unnecessarily burdened.

In terms of cluster, four machines were set up: one master server and three region servers.

Each one of the machines was equiped with an Intel i3 CPU with four cores at 3.7 GHz, 8

GB of RAM and an SSD disk with 128GB.

Figure 3 represents the implemented cluster.

To install an HBase cluster the developer needs to define the desired architecture through

several configuration files. The configuration files used to set up the cluster can be consulted

on Appendix B.2.

The following section – Section 4.3.3 – explains the changes made to the DICOM toolkit

in order to adapt it to this HBase cluster.

4.3.3 Toolkit adaptations

As said before, the purpose of this master thesis is to compare the performance of a baseline

system – featuring a standard local disk as backend – versus two versions of HBase backend:

one protected with symmetric cipher and one without security concerns. Thus, the dcm4che

baseline version – Section 4.2 – needed to be adapted to use a new backend. Therefore, two

utilities were modified: the StoreSCP and the DCMQRSCP. Only these utilities deal with

read and write operations, so those were the ones in need to be adjusted.

The following subsections focus on explaining how StoreSCP and DCMQRSCP were

adapted to use an HBase backend.

StoreSCP

The first change necessary on the StoreSCP was the addition of an option to the utility’s

command line arguments. The -f option must provide the HBase client configuration file as
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input. This configuration file contains all the information the client needs to connect himself

to the HBase cluster and interact with it. The properties included in this file are [19]:

• hbase.zookeeper.quorum: ZooKeeper instances’ hosts;

• hbase.rootdir: directory where HBase will store its data;

• hbase.cluster.distributed: whether the HBase is deployed on standalone mode or

distributed mode;

• hbase.zookeeper.property.dataDir: directory where the ZooKeeper’s snapshots

are stored;

• hbase.master.hostname: HMaster adress;

• hbase.zookeeper.property.clientPort: port that will allow the client’s connection.

The values each one of these properties took can be found on appendix B.1.

In the default version, every time a C-STORE action is required, a new class –

DefaultStoreSCP – is instantiated and, thereafter, every operation is performed according

with that class’s methods. To bypass this process, a new class was written – HBaseStore –

which implements operations on the default HBase version. This class contains the same

methods as the DefaultStoreSCP class, although adapted to the new backend. The default

class contains one main method – store() – which is responsible for a cascade of oppera-

tions conducting to a correct storage of the image in the filesystem. Thus, the new adapted

class follows the same guideline. Since the actual image still needs to be stored in the lo-

cal disk, the code of the default method was maintained and some was added in order to

perform the HBase-related operations.

In what concerns to the HBaseStore the main instructions performed were (see listings

on Appendix B.3):

1. Create a new table if it does not exist;

2. Extract the tags’ values from the FMI;

3. Create a new Put with every value that needs to be inserted on the table;

4. For protected attributes it is necessary to set an Attribute in the Put;

5. Execute the Put over the table.

Every value inserted on the HTable – whether it is a column family, column qualifier,

value or attribute – needs to be converted to bytes. In what concerns to dates and times, they
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were previously convertd to a long format, by getting the date’s or time’s milliseconds3, and

then converted to bytes. It is important to notice that the extracted times from the FMI are

retrieved as a string in the format ’HHMMSS’. Thus, it was necessary to parse the tag content

to a workable format. To do so, it was used a parser that converted this string into the long

format. This can be consulted on Appendix B.4.

Having all these instructions completed, the process of storing the metadata in the HBase

is accomplished. It is now important to understand how the whole images are retrieved to

the client having only metadata stored there.

When a C-STORE request is performed on an image, before its metadata is sent to the

HBase, the image is stored in the local disk in a known location (given by the user through

the command line when the StoreSCP is deployed). To enable the identification of the cor-

rect image when a query is performed, these images are stored with their SOPInstanceUID

as file name. This makes the retrieve process easier since this tag value is the row key in

the HTable.

DCMQRSCP

In a analogue way to the StoreSCP, the first change made to the DCMQRSCP utility, was

the addition of a command line option (-f) to provide the HBase client configuration file,

which can be consulted on Appendix B.1.

The DCMQRSCP utility contains an important method used to perform the match search

for each query – calculateMatches(). It receives as parameter an object Attributes con-

taining the tag values inserted in the query. Then, from these attributes, independently of

the queried ones, are extracted the PatientID, StudyInstanceUID, SeriesInstanceUID, and

SOPInstanceUID. These are the only values verified because they are the only ones stored

in the DICOMDIR (see DICOMDIR tree – Figure 1). Knowing which were the queried val-

ues, the DICOMDIR is scanned by level until the correct match(es) is (are) found. At the

end an InstanceLocator list is returned. Each one of these objects contains information

about one match that must be retrieved to the client. Furthermore, it contains the location

of the image, identified by its Uniform Resource Identifier (URI).

Having in mind the default matches calculation process, it is possible to understand that,

to adapt the toolkit to the HBase backend, it needs to iterate over an HTable and not over a

DICOMDIR. In such way, the calculateMatches() method was rewritten, resulting on the

calculateHBaseMatches(). Thus, the following instructions were written (see listings on

Appendix B.5):

1. Read the queried attributes;

3 The date’s millisecons corresponds to the milliseconds occurred since the Unix time’s beginning, which was on
Thursday, 1 January 1970.
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2. If the row-key attribute is given, a get operation is performed. If not, a scan with a

SingleColumnValue filter is performed;

3. An InstanceLocator instance is created for each match and it is then added to the

list to be returned.

It is important to notice that a SingleColumnValueFilter is being used to scan the

HTable. Therefore, the developed system is only capable of supporting queries with a

single restriction. This means that to each scan can only be associated one filter with one

restriction. Moreover, this type of filter does not allow the execution of scan operations

with multiple restrictions. This will implicate that the system can only handle queries, for

instance, to retrieve all images of patients with weight=70kg. To avoid this constraint, a

FilterList could be used [19].

However, since the purpose of this work is to test the basic query cases, the implementa-

tion of these filters was not a priority. Remember that the baseline version only supported

queries with the four values stored in the DICOMDIR file. Since this prototype’s database

stores other values – such as names, dates or institutions – these parameters can also be

queried. Thus, this is a new feature added to the default ones.

There is also another detail important to refer. The InstanceLocator object needs four

values to be instantiated: SOP Class UID, SOP Instance UID, Transfer Syntax UID, and

the image’s URI. However, the SOP Class UID is not stored in the HBase and the Trans-

fer Syntax UID is not in the get or scan result. This implies the images are read from

the filesystem to extract the needed values and, only then, the InstanceLocator instance

can be created. This is a time consuming operation which can have some impact on the

performance results.

Section 4.3.4 explains how the adapted toolkit interacts with the set up cluster and which

is the resultant system architecture.

4.3.4 Architecture and workflow

Having in mind the defined HBase data schema, the set up cluster, and the changes made

to the toolkit, one is now in condition of understanding how these parts interact altogether

and how the components are distributed over the cluster.

Besides the HBase cluster’s four machines, two more were used: one for the StoreSCU

and GetSCU, and one for the StoreSCP and DCMQRSCP. The first two components work as

client applications that make store and query/retrieve requests to StoreSCP and DCMQRSCP.

Nonetheless, the SCP component are the ones responsible for issuing store and retrieve

requests to HBase, making them the HBase clients. Figure 4 represents the system’s com-

ponents and the architecture that they construct together.
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Figure 4.: Dcm4che with HBase backend – architecture and workflow.

Between the components represented on Figure 4, in a store job, the following workflow

is established:

1. StoreSCU sends a store request for a set of images to the StoreSCP;

2. StoreSCP processes the images;

3. StoreSCP writes the images on the local disk and sends the attributes’ values to the

HBase cluster.

In what concerts to query/retrieve jobs, the following workflow is established:

1. GetSCU sends a query to the DCMQRSCP;

2. DCMQRSCP processes the query and communicates it to the HBase cluster;

3. HBase retrieves the SOPInstancesUIDs that matched the query to the DCMQRSCP;

4. DCMQRSCP searches for the corresponding images on the filesystem and retrieves

them to the GetSCU.

4.4 dcm4che with protected hbase backend

HBase presents great advantages in what concerns to the storage and retrieval of contents.

However it still presents some security issues since it uses an unreliable mean of commu-

nication. When working with medical data, the safety measures must be increased since

these constitute a sensitive point in what concerns to personal privacy violations. In this

way, a symmetric key encryption system was associated with the system described on the

previous section – Section 4.3.
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Having this in mind, before explaining how the implementation was made, it is impor-

tant to understand the modifications made to the data schema and which attributes were

protected – Section 4.4.1.

In terms of architecture and workflow, there is no change in comparison to the system

presented on Section 4.3 – dcm4che with HBase backend. This happens because the crypto-

graphic layer was embedded in the toolkit’s implementation. However, a simple overview

of the established workflow is made on Section 4.4.3. Section 4.4.2 focuses on explaining

the changes made to the toolkit in order to alter its backend to an HBase protected version.

4.4.1 Protected data

To develop a dcm4che prototype with a protected HBase as backend, in comparison to the

previously described version – dcm4che with a simple HBase backend –, the only change

needed, in terms of schema, was the decision of which attributes should be protected and

the development of the encryption and decryption system. In such way, the HBase data

schema was maintained (see Figures 1 and 2), however, a column attribute was added in

order to mark the attributes that need to be protected.

According to the directives described on Section 2.7, all attributes that can lead to an indi-

vidual’s identification must be protected. In such way, in our understanding and according

to the list given in Department of Health & Human Services - USA [106], the attributes

chosen to be protected were:

• Patient:Name;

• Patient:BirthDate;

• Patient:Weight;

• Patient:History;

• Series:RefPhysician;

• Series:Institution.

The following section – Section 4.4.2 – shows how the toolkit was adapted in order to

support a protected version of HBase.

4.4.2 Toolkit adaptations

In order to protected the attributes indicated on Section 4.4.1 as susceptible to reveal the

individual’s identity, the first step was the development of two classes:
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• EncryptionService: responsible for the data encryption;

• DecryptionService: responsible for the data decryption.

To execute both of the above mentioned services, two parameters need to be specified:

• IvParameterSpec: initial vector;

• SecretKeySpec: secret key.

Both initial vector and secret key are hard-coded and take as input a 16 byte array, which

is enough for a performance testing environment. However, in a further development these

parameters should be given from an external input, e.g., a file.

Regarding the type of cipher, it was used an "AES/CBC/PKCS5PADDING". The AES [138] is

the symmetric encryption standard currently implemented by the National Institute of Stan-

dards and Technology (NIST). In this case study a block cipher of 128 bits was used [139].

Cipher Block Chaining (CBC) [140] is an encryption method which states that for each block

of plain text it is ciphered with the previously ciphered text block. The "PKCS5PADDING"

string indicates the padding used in the encryption/decryption service. Public Key Cryp-

tography Standards (PKCS) 5 is a password-based encryption service which has associated

a padding of 64 bits.

Three operations are being tested: put, get, and scan. To execute these operations the

decryption service is not needed. However, for testing purposes and for a future work,

the decryption service class was created. This class was used to verify, before starting the

benchmarking tests, if the encryption service was working correctly. These encryption and

decryption classes can be consulted on Appendixes B.7.1 and B.7.2, respectively.

Having the encryption service working, it is now time to adapt the basic operations put

and scan. To do so, two new classes were created:

• SymHBaseStore: extends the class HBaseStore (mentioned on section 4.3) and over-

rides the createTableInterface method, which returns a SymColTable instance.

• SymColTable: overrides the put and getScanner methods of the TableInterface with

new ones, adapted to encrypt the chosen values.

The above mentioned classes can be found on Appendixes B.8.1 and B.8.2, respectively.

In a generic way, the SymColTable methods check if the put or scan being executed have

the attribute marking the values as sensitive ones. If this attribute is found, a new put

or scan is created with an encrypted value and, then, the operation is executed over the

TableInterface. This means the encryption jobs are being executed on the StoreSCP and

DCMQRSCP.
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Figure 5.: Dcm4che with protected HBase backend – architecture and workflow.

Knowing how this dcm4che version was implemented, one is now in condition of under-

standing the architecture and workflow of this system. These topics are approached on the

following section.

4.4.3 Architecture and wokflow

Knowing how the system is implemented, it is now important to know how its parts interact

with each other and which workflow is established.

Since the way data is inserted on the HTable and the way it is searched didn’t change (in

comparison to the dcm4che with simple HBase backend) the architecture and workflow of

the system is maintained – Figure 5. The only difference is the encryption job on the SCPs.

In such way, instead of communicating to HBase all metadata in plaintext, the protected

tags are communicated in a ciphered way.
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5
B E N C H M A R K I N G

This chapter focuses on explaining the most important concepts in what concerns to the

performance evaluation methods and how their metrics were acquired. Furthermore, here

is exposed the used data set and how it was generated. Section 5.1 contextualizes the

chapter and describes its overall structure.

5.1 introduction

Acquiring performance metrics and comparing them, whether on computer science or any

other industry, is commonly called benchmarking [141]. The DSR methodology states that af-

ter the prototype systems’ development it is important to assess their performance. In such

way, this chapter focuses on explaining how the developed prototypes were benchmarked.

It is important to notice that to execute benchmarking tests, it is necessary to have some

kind of application simulating clients and executing controlled requests over the system.

In the first place, it is necessary to supply the benchmark with data to work. In such

way, a python script was written in order to automatically generate a dataset composed of

several medical images. Section 5.2 focuses on explaining how this script works and, thus,

in what consists the used dataset.

Thereafter, Section 5.3 explains how a system’s performance can be assessed. Here are de-

scribed the most important performance indicators, as well as the specific metrics acquired

during the developed prototypes’ testing.

Section 5.4 exposes how the referred metrics were acquired during the tests’ execution.

Finally, Section 5.5 focuses on explaining how the scripts used to simulate clients were

constructed and what processes are started in each test.

5.2 data set

To run benchmarking tests with medical images it was important to have a solid dataset to

supply to clients. In such way, a base image was used, which was then replicated to create
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a dataset with a customizable size. The base image used was a slice of a helical chest CT

scan, whose content dump can be consulted on Appendix A.2. The image’s size is 531KB.

In order to create a diversified dataset and become closer to a real-world system, the

image was cloned and the stored tag values were modified to a random value. To achieve

that, a python script was written. This script made use of the DCMTK toolkit’s utility

dcmodify to change some tags’ values. The usage of this toolkit was necessary because

dcm4che does not contain a utility capable of performing this operation. Besides, this has

a similar usage to dcm4che, meaning it has a command line interface and is, thus, easily

employable in such scripts as this one.

Regarding the script’s execution, some parameters need to be provided. First of all, it

needs a preferences file that contains:

• The base image’s path;

• The path to the dcmodify utility binary file;

• The location where the replicas will be stored.

These parameters were specified in a file because they are less likely to change from run

to run. More unstable parameters need to be given through the command line. These

parameters are:

• The preferences’ file path;

• The number of wanted replicas;

• The number of images with patient’s weight = 70kg.

As said before, images’ metadata is composed of several tags. Although, for this case

study, it was only important to diversify the ones being inserted on the HTable. In such

way, hereafter is described how each one of the new values were chosen.

In what concerns to the image’s UIDs – Study Instance UID, Series Instance UID, and

SOP Instance UID – were modified using the options provided by the dcmodify utility –

gst, gse, and gin, respectively – to maintain valid values for these tags and, thus, maintain

a valid image.

About the patient’s weight, it takes random values between 20kg and 120kg. However,

it was decided that, in order to have control over the retrieved image’s number when per-

forming scan operations, it would be useful to decide the number of images with the same

weight inserted on the database. In such way, as previously mentioned, the developer needs

to specify the number of images with patient weight=70kg that will be created. Hence, in

first place, the script generates all required images with weight=70kg and only then starts

creating images with a random patient weight.
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In what concerns to the remaining tag values, every value is randomly picked from

a group of possible values, with the exception of the patient name, referring physician

name and institution. These last three values are result of a concatenation of the strings

"PATIENT", "PHYSICIAN", and "INSTITUTION" with a sequential number. Pieces of the script

used to generate the data set can be consulted on Appendix B.6.

Having the dataset created, it is now possible to start executing the performance tests.

The following section – Section 5.3 – focuses on explaining how a system’s performance

can be assessed, which kind of parameters should be analysed and what metrics were

acquired during the benchmarking job.

5.3 performance evaluation

A system, on the user’s perspective, is considered a well performing system when the user

is not able to notice any kind of delay on the system’s response. This performance can be

measured [142, 143]. There are some metrics that can be acquired and be used to assess

quantitatively a system’s performance. These metrics are also known as Key Performance

Indicators (KPIs) and are subdivided in two main groups. Hereafter are described each one

of these groups and what metrics are considered in each one:

• Service-oriented – measure the service’s quality provided to the user:

– Availability: amount of time that the system is available;

– Response time: time took to answer to a client’s request;

• Efficiency-oriented – assesses the system’s infrastructure use:

– Throughput: number of operations made per time unit;

– Capacity: percentage of available resources usage.

The work described on this master thesis focuses on two main metrics – latency (response

time) and throughput. However, in order to support the obtained results, some capacity

indicators were also acquired. Between these, it is possible to find: CPU, disk, memory, and

network usage, as well as percentage of performed reads and writes.

Having these concepts in, it is possible to perceive that, to test the prototypes and acquire

these metrics, it is necessary to implement ways of acquiring them. In such way, Section 5.4

describes how the system’s metrics were acquired.

5.4 metrics acquisition

The metrics’ acquisition is a fundamental step in software performance test. In the present

case, both service and efficiency metrics were acquired. About the capacity efficiency met-
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rics, they were acquired through the start of a dstat process. This process writes to a csv

file the state of the disk, network, memory, and I/O operations. This process is started in

every machine of the cluster through the command presented on Listing 5.1.

♥♦❤✉♣ dstat -t -c -d -m -n -r --output cloud80.csv --noheaders > /dev/null &

Listing 5.1: dstat process start – example command.

In what concerns to latency and throughput, some timers were added to the source code

of the SCU utilities to register the time each operation took to be executed. These timers

are posteriorly written to a text file for further processing.

Regarding GetSCU, the timers’ results account for the amount of time occurred between

the issuing of the retrieve request and the image write in the client’s local disk. However,

it is important to notice that for each retrieved image, the instant of the request issuing is

registered. In the StoreSCU case, the timers measure the time occurred during the image’s

send job.

Knowing the amount of images retrieved or sent in each test, as well as the tests’ duration,

it is possible to calculate each job’s latency and throughput.

Section 5.5 focuses on explaining how clients were simulated and, thus, how the used

scripts are structured.

5.5 benchmarking scripts

In order to run performance tests, it is necessary to use an application tool simulating

clients issuing requests. In such way, bash scripts were written.

In a simple way, these scripts execute the following operations:

• Prepare the machine for a new test run:

– Remove previous results files;

– Create new results files;

– Generate the dataset;

– Start a process to monitor the state of the machine – dstat;

– Start the SCP;

• Start the client(s);

• Stop the dstat process;

• Collect the data.
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This is the overall workflow of the benchmarking scripts. Although, some small devia-

tions can be identified between put, get and scan scripts due to the system’s requirements.
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6
R E S U LT S

This chapter focuses on exposing and exploring the results obtained from the systems’

benchmarking. Here are explained the tests performed, their results and some conclusions

that can be taken from analysing the results.

6.1 introduction

From some tests execution over the developed prototypes, many sets of results were ob-

tained. With those results, some charts were constructed in order to make the results’

analysis easier. These charts were constructed using python scripts.

This chapter is subdivided into four main sections. The first three focus on results ob-

tained in each developed system. Section 6.2 focuses on tests run over the baseline system,

Section 6.3 on tests run on the dcm4che with an unprotected HBase backend, and Section 6.4

focuses on the results obtained from the tests run over the dcm4che with a protected HBase

backend.

Finally, Section 6.5 makes a direct comparison between each system’s performance results

for each tested operation. This has the purpose of making it easier to identify the overhead

between systems.

6.2 default dcm4che

The first system that is important to analyse is the baseline, i.e., the system that already

exists on the market and uses the local disk and filesystem as backend. In such way, tests

over two functionalities – C-STORE and C-GET – were performed.

Each one of these tests is explained on a distinct section. Section 6.2.1 focuses on explain-

ing the C-STORE tests, the obtained results and what conclusions can be taken of the results’

analysis. The same happens with the C-GET test, in Section 6.2.2.
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Table 3.: Default dcm4che – C-STORE latency and throughput.

Metric Average Standard deviation

Latency (ms) 25.157 15.618

Throughput (ops/ms) 0.040 0.0002

Table 4.: Baseline dcm4che – DICOMDIR creation and update latency and throughput.

Metric Average Standard deviation

Latency (ms) 0.019 0.001

Throughput (ops/ms) 52.532 1.839

6.2.1 C-STORE

In order to test the baseline system when storing medical images, a test was ran and re-

peated 9 times, performing a total of 10 runs. Each run of the test stored 20 000 images

on the server. The operation’s throughput and latency were calculated by averaging the

acquired values. These metrics are represented on Table 3.

From the analysis of the results presented on Table 3, it is possible to see that the C-STORE

registered latency was 25.157ms, with 15.618ms standard deviation. In terms of throughput,

for this operation, was registered a 0.040ops/ms throughput, with 0.0002ops/ms standard

deviation.

It is important to notice that having the images stored, the system is still not prepared

to answer to queries. To allow the query/retrieve workflow, the creation and update of

the DICOMDIR file is needed. Without this step, the GetSCU will not consider the images

that are not registered on this file. However, the time required to update the DICOMDIR

is not considered in the C-STORE results because it is necessary to use a different dcm4che

utility to update it. Table 4 shows the latency and throughput of adding a new image

to the database in the worst case scenario, which consists of the addition of four new

records: Patient ID, Study Instance UID, Series Instance UID, and SOP Instance UID. At

the end of each C-STORE test, the DICOMDIR was updated. Hence, the results presented

on Table 4 were calculated on the basis of ten tests, each of them registering 20 000 new

images. This table shows that this operation’s registered latency was 0.019ms, with 0.001ms

standard deviation. Regarding its throughput, the obtained value was 52.535ops/ms, with

1.839ops/ms standard deviation.

6.2.2 C-GET

In order to test the query/retrieve service’s performance, 10 000 random C-GET requests

were executed over two DICOMDIR sizes – 10 000 and 20 000 images. The system was
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(a) Latency. (b) Throughput.

Figure 6.: Default dcm4che – C-GET latency and throughput.

queried by every image in the database with a given Study Instance UID. It is important

to notice that this system can only be queried by the tags mapped on the DICOMDIR, i.e.,

Patient ID, Study Instance UID, Series Instance UID, and SOP Instance UID.

From the query/retrieve job acquired times, the first 100 were not considered in order to

prevent the inclusion of results influenced by the server’s warm up. The obtained latency

and throughput values, which are presented on Figure 6, were calculated by averaging the

acquired times.

From the analysis of the system’s latency – represented on Figure 6a – it is possible to

see that in a bigger database the query/retrieve service takes slightly more time to answer

a request. However, this is a 0.816ms increase – from 52.758ms to 51.942ms – which is not

significant. The standard deviation in the database with 10 000 entries is 3.780ms, while in

the database with 20 000 rows it is 3.872ms.

This small increase on the C-GET latency might happen because the images are being

mapped on a file. Since the number of records in this file is bigger, the time for the system

to seek the queried value in the entire database increases.

On the other hand, the throughput – represented on Figure 6b – does not show different

values on different sized databases. The registered throughput value on both databases was

0.019ops/ms, with 0.001ops/ms standard deviation. This empowers the idea that there is

no significant difference on the system’s response time, independently of the number of

records registered on the DICOMDIR file.

It is important to notice that to execute the each C-GET it is necessary to restart the client’s

Java Virtual Machine (JVM) – GetSCU – because the dcm4che does not support querying a

list of values. In the C-STORE case it was opted to use the same client to perform the images’

storage because it is a more realistic scenario.
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Table 5.: Dcm4che with unprotected HBase backend – put throughput and latency.

Metric Average Standard deviation

Latency (ms) 25.245 11.105

Throughput (ops/ms) 0.040 0.0003

6.3 dcm4che with hbase backend

In order to test the dcm4che version with an unprotected HBase backend, tests over three

types of operations were run – put, get, and scan. Each one of these tests is addressed in

Section 6.3.1, 6.3.2, and 6.3.3, respectively. These sections expose the tests run, which were

the obtained results and which conclusions can be taken from the results’ analysis.

6.3.1 Put

In order to test the system’s behaviour when performing put operations, a test was made

where 20 000 images/rows were inserted in the HTable, which was empty at the beginning.

Here, as in the default dcm4che, was only used one StoreSCP client to store all images.

The test was run 10 times, in order to have a more solid set of results, since the initial state

of the database is different for each image insertion. Afterwards, latency and throughput

values were determined using the average of the values acquired during those puts. The

registered latency and throughput values can be consulted on Table 5.

From Table 5 results’ analysis, it is possible to see that the put operation in this dcm4che

version the registered latency was 25.245ms with 11.105ms standard deviation. In terms of

throughput, was obtained a total of 0.040ops/ms, with 0.0003ops/ms standard deviation.

In this case, since the database used is HBase, the creation and update of the DICOMDIR

is completely unnecessary. This happens because the query/retrieve workflow was devi-

ated from this file and redirected to HBase.

6.3.2 Get

One of the search operations that can be performed over HBase is the get. To perform this

operation it is necessary to query the database using the image’s SOP Instance UID, which

is the HBase’s row key. In order to test the performance of this functionality in the dcm4che

environment, two tests were made. Each one of these tests performed 10 000 random gets,

where the first 100 of each were dumped. However, one of the tests was performed over

a database populated with 10 000 rows and the other one over a database populated with

20 000 rows.
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(a) Latency. (b) Throughput.

Figure 7.: Get results on dcm4che with simple HBase backend.

It is important to notice that the dcm4che does not allow querying for a list of values.

Meaning, it is not possible to execute all 10 000 gets within a single client. In such way, to

perform each get it is necessary to start a new GetSCU client.

From the analysis of the obtained throughput and latency values, which are presented

on Figure 7, it is possible to conclude that the database’s size increase has almost no impact

on the get latency – Figure 7a. From one database size to another, the get latency only

increases 0.562ms – from 41.840ms to 42.402ms. It is also possible to see that the latency’s

standard deviation is 2.935ms for the database with 10 000, and 3.233ms for the database

with 20 000 rows.

This same conclusion is reinforced by the non-existent difference between the throughput

obtained on the 10 000 and 20 000 rows databases – presented on figure 7b – , which value

is 0.024ops/ms with 0.002ops/ms standard deviation.

6.3.3 Scan

To test the scan operation provided by the HBase in the dcm4che environment, two tests of

10 000 scans were made, where the first 100 results were removed from each of them. One

of these tests was performed over a database populated with 10 000 rows and the other one

was made over a database populated with 20 000 rows. In this way, it is possible to study

the influence that the database size has in the operation’s performance.

To run this test, the database was queried for images of patients weighting 70kg. Notice

this is a new feature that was added to the system. In the baseline dcm4che version, the

system was only capable of answering to queries by Patient ID, SOP Instance UID, Series

Instance UID, and Study Instance UID because these are the only values stored on the DI-

COMDIR. Despite the acceptance of query parameters like the patient’s weight, the baseline

system does not even verify their existence on the query. Remember that the number of
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(a) Latency. (b) Throughput.

Figure 8.: Scan results on dcm4che with simple HBase backend.

matches was controlled when the dataset was generated and, in this case, it was chosen a

number of matches equal to one.

Observing the obtained results – represented on Figure 8 – it is possible to see that the

operation’s latency suffers a major increase – from 82.502ms to 114.257ms which makes a

31, 755ms difference – when the database size is increased. For the database with 10 000

entries, the registered standard deviation was 5.235ms, while in the database 20 000 rows

one was 5.487ms.

In the same way, since the GetSCU is restarted to peform a new request, the throughput

shows a major decrease when the database size is increased – decreases from 0.009ops/ms

(with 0.001ops/ms standard deviation) to 0.012ops/ms (with 0.0004ops/ms standard de-

viation). This happens because when an operation takes more time to be performed, the

system cannot perform the same number of operations per time unit. Notice that this is

only true when performing operations in a non-concurrent way, like in this case. These re-

sults are expected because the number of rows to be scanned increases and thus, the HBase

needs to do a full table scan in order to find every match satisfying the query.

6.4 dcm4che with protected hbase backend

The dcm4che version with the ciphered HBase backend was also tested. Here, the types

of tests run were the same as in the unprotected version – put, get, and scan. Thus, in

this section, the results are also organized in three main subsections, each one addressing a

test type. Section 6.4.1 addresses the put tests, the results obtained, and some conclusions

taken from analysing those results. The same happens with the get and scan tests on

Sections 6.4.2 and 6.4.3, respectively.
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Table 6.: Dcm4che with protected HBase backend – put latency and throughput.

Metric Average Standard deviation

Latency (ms) 28.227 19.349

Throughput (ops/ms) 0.035 0.0005

6.4.1 Put

Having tested the performance of the baseline system and the system with a simple HBase

backend it is now important to test the behaviour of the system protected with symmetric

cipher. To do so, a test was performed by inserting 20 000 images in the database. After-

wards, this test was repeated 9 times, performing a total of 10 runs, in order to have a more

consistent set of data.

With the obtained results, two metrics were acquired – throughput and latency. The

values obtained for each one of those are indicated on Table 6.

From the analysis of Table 6 it is possible to see that in this put operation were regis-

tered 28.227ms of total latency, with 19.349ms standard deviation. In what concerns to the

throughput, was registered a 0.035ops/ms total value, with 0.0005ops/ms standard devia-

tion.

6.4.2 Get

In order to test the get performance for this dcm4che prototype, the same tests as in the

other versions were executed. Meaning, two tests of 10 000 random get operations were

performed, where one was made over a database previously populated with 10 000 rows

and the other one was run over a database with 20 000 rows. The first 100 results were

discarded from each test as ramp up time.

By analysing the obtained throughput and latency results – represented on Figure 9 –

it is possible to see that the get latency on the 10 000 rows database – Figure 9a – is

41.996ms, which is lower than the value registered on the 20 000 rows database – 42.630ms.

However, this is not a significant difference because it only performs a difference of 0.634ms.

Analysing the standard deviation, it is possible to see that in the smaller database were

registered 3.099ms, while in the bigger one were registered 4.693ms.

Evaluating the throughput results, represented on Figure 9b, it is possible to see that

there is no difference between these metrics’ values for the 10 000 and 20 000 database sizes.

This result strengthens the fact that the latency difference between each tested case is not

significant.

54



6.4. Dcm4che with protected HBase backend

(a) Latency. (b) Throughput.

Figure 9.: Get results on dcm4che with protected HBase backend.

6.4.3 Scan

To test the scan’s behaviour in the dcm4che with a protected HBase backend, the same

tests were run as in the unprotected version. Meaning, two tests of 10 000 scans were made:

one on a database with 10 000 rows and another one on a database with 20 000 rows. In a

similar way as in the previous tests, the first 100 results for each test were not included on

the calculations. To perform this operation, the database was queried for all images were

the patient’s weight was 70kg. Notice that in the database only one image was stored with

this weight, thus, the number of matches was exactly one.

Figure 10 represents the obtained latency and throughput values. From the analysis of

the latency – Figure 10a – it is possible to see that when the database size increases, the

latency also increases from 82.836ms – with 5.499ms standard deviation – to 150.813ms –

with 49.986ms standard deviation–, which performs a total latency difference of 63.977ms.

Regarding the standard deviation values, it is possible to see that the tests run on the

database with 20 000 rows have a much higher standard deviation. A possible justification

for this, is that when the tests over the bigger database were run, the network was much

loaded. Again, these latency results are expected because the number of rows to be scanned

is bigger.

In the same way, and since the clients are not concurrent, the system’s throughput de-

creases when the size of the database increases. The registered throughput on the 10 000

rows database was 0.012ops/ms – with 0.001ops/ms standard deviation –, while in the

20 000 rows one was 0.007ops/ms – with 0.002ops/ms standard deviation.
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(a) Latency. (b) Throughput.

Figure 10.: Scan results on dcm4che with protected HBase backend.

6.5 comparison between systems

Having in mind how each system performs on its own, now it is important to establish

a comparison between each system’s performance and, thus, take some conclusions about

the trade-offs between the tested systems.

6.5.1 C-STORE and put

Figure 11 makes a comparison between each system’s store service. Meaning, a comparison

is established between the baseline system’s C-STORE and the put of the dcm4che with an

unprotected and protected HBase backend. Remember that to test this operation, 20 000

puts were made in 10 different tests and the shown results refer to the average of the

obtained values

Starting with the latency, shown on Figure 11a, it is possible to see that the system with

the best latency is the baseline. Nevertheless, the system with an unprotected HBase back-

end presents a very similar put latency in comparison to the baseline one. This is, the

baseline system presents a total latency of 25.157ms with 15.618ms standard deviation,

while the dcm4che with an unprotected HBase backend presents 25.245ms with 11.105ms

standard deviation. These two values are only 0.088ms apart, which is not a significant

difference. It is important to notice that this C-STORE results do not include the time re-

quired to create and update the DICOMDIR, which is essential to allow the query/retrieve

job. This is an operation that adds a 0.019ms latency to the process. The system with a

protected HBase backend shows, naturally, an higher latency in comparison to the other

two systems – 28.227ms with 19.349ms standard deviation. This is an expected result be-

cause the encryption process has an additional overhead in the time it takes to process a

query. However, the latency only increases 2.982ms in comparison to the dcm4che with
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(a) Latency (b) Throughput

Figure 11.: Comparison of storage performance for each system.

the unprotected HBase backend. Given the total latency, this is not a big difference, which

allows the conclusion that the encryption process does not have a significant impact on the

operation’s latency.

In what concerns to the systems’ storage throughput, represented on Figure 11b, it is

possible to see that it has the exact opposite behaviour in comparison to the latency. The

throughput corresponds to the number of operations a systems is capable to perform per

time unit. In such way, it is expected from systems with lower latency to have higher

throughput. As is possible to see on Figure 11b, the baseline system is the one with higher

throughput – 0.040ops/ms with 0.0002ops/ms standard deviation –, as well as the dcm4che

version with an unprotected HBase backend – 0.040ops/ms with 0.0003ops/ms. The system

with the protected HBase backend shows a throughput 0.0002ops/ms lower in comparison

to the other prototypes – 0.035ops/ms with 0.0005ops/ms standard deviation – because the

encryption job includes some latency on the operation. However, as explained before, this

is a very small difference, which supports the conclusion that the data encryption does not

have a significant impact on the system’s performance.

6.5.2 C-GET and get

This section establishes a comparison between the default dcm4che’s C-GET and the two

prototypes’ get operation performance. These two operations are being compared because

these are both retrieve mechanisms. Remember that the obtained results are the product of

two types of tests: one in a database with 10 000 rows and another one in a database with

20 000 rows. In each test 10 000 random requests were executed, where the first 100 runs

were excluded from each test as ramp up time. A comparison between the obtained results

is made on Figure 12.
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Before starting the results analysis, it is important to notice that when performing get

operations there is no sensitive data being exchanged. To perform this operation only the

row key is needed, which is an unprotected value – the SOP Instance UID.

Having this in mind it is possible to understand that the latency – Figure 12a – and

throughput – Figure 12b – values on the protected and unprotected HBase version are

equal, as expected, because the operations that are being performed are exactly the same.

In a database with 10 000 entries was registered a latency of approximately 42ms with

3ms of standard deviation, while in a database with 20 000 entries was registered a latency

of approximately 42.5ms with a standard deviation of 4.693ms in the protected case, and

3.233ms in the unprotected.

Furthermore, it is also possible to see that, in comparison to the prototypes’ get, the

baseline dcm4che’s C-GET shows higher latency and lower throughput. In a database with

10 000 records, was registered a 51.942ms latency with 3.780ms standard deviation. In the

database with 20 000 records was registered a latency of 52.758ms with 3.872ms standard

deviation. These values are approximately 10ms greater than the ones obtained using both

HBase versions as backend.

Regarding the throughput, the recorded value was 0.019ops/ms with 0.001ops/ms stan-

dard deviation for both database sizes. It is possible to see that this value is 0.005ops/ms

lower than the one registered in both prototype systems for the get operation.

These results show that the latency of performing a single get request is lower than when

performing a local search for the image on the DICOMDIR, despite the communication

overhead between the DCMQRSCP and the database. This happens because the HTable’s

entries in each HRegion are sorted by key and the HBase applies bloom filters to check if

the queried entry is eventually present on the set or definitely not in it. Besides, since the

get operation is made by unique keys, when a match is found, the search stops. On the

other hand, when executing queries over a DICOMDIR, the file needs to be fully scanned

for a match. The application of bloom filters on HBase reduces the search space, making it

more efficient than the DICOMDIR’s full scan.

6.5.3 C-GET and scan

This section focuses on comparing the baseline’s C-GET with the two prototype systems’

scan – dcm4che with an unprotected and a protected HBase backend. One more time, it

is important to compare the C-GET’s performance with the scan because, unlike the two

developed prototypes, the default dcm4che only presents one way of performing searches.

Before starting the results analysis, it important to recall that the obtained results are the

product of two types of tests – one on a 10 000 rows database and another one on a 20 000
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(a) Latency (b) Throughput

Figure 12.: Comparison between the performance of baseline dcm4che’s C-GET and the get of the
dcm4che with an unprotected and protected HBase backend.

rows – that consisted of 10 000 requests, where the first 100 values were discarded as ramp

up time.

Figure 13 establishes a direct comparison between the scan’s performance on the unpro-

tected and protected systems, as well as between those and the baseline dcm4che’s C-GET.

By analysing this figure, it is possible to see that, in the 10 000 rows database, the dif-

ference between the unprotected and protected HBase scan’s latency and throughput is

almost imperceptible. The unprotected version shows a latency value of 82.502ms with

5.235ms standard deviation, while the protected one shows a total latency of 82.836ms with

5.499ms standard deviation. In such way, it is possible to see that for this database size the

latency included by the encryption job is insignificant – 0.334ms. However, when looking

to the 20 000 rows database, the difference between each prototype’s latency is much big-

ger. When dealing with protected data in such database, maintaining the HBase backend,

the system increases its latency from 114.257ms – with 5.487ms standard deviation – to

150.813ms – with 49.986ms standard deviation –, performing a total difference of 36.286ms.

Given the results on the database with 10 000 entries, it is possible to infer that this is not

the expected result. In this database, the latency values should be higher than in the smaller

one but still similar. This discrepancy may be present due to the high standard deviation

that the tests run on the dcm4che with a protected HBase backend show – 49.986ms. This

is clearly an uncommon value for a standard deviation, which suggests that something

external affected the test’s results. For example, an unusually loaded network.

Regarding the scan’s throughput on both prototypes, it is possible to see that it maintains

a 0.012ops/ms throughput with 0.001ops/ms standard deviation. However, on the database

with 20 000 entries it decreases from 0.009ops/ms – with 0.0004ops/ms standard deviation

– to 0.007ops/ms – with 0.002ops/ms standard deviation. This happens for the reasons

previously described.
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Comparing the scan and the C-GET performances, it is visible that the the C-GET has

a much lower latency and higher throughput. Having a database with 10 000 rows, the

baseline systems shows a 51.942ms latency with 3.780ms standard deviation, while the

dcm4che with an unprotected backend presents a latency value of 82.502ms with 5.235ms

standard deviation. This means that the baseline systems has a 30.56ms lower latency

than the prototype system. On the bigger database, this difference is even more notorious.

The C-GET’s latency is 52.758ms with 3.872ms standard deviation, which is 61.499ms lower

than the unprotected prototype system’s. In terms of throughput, the baseline system

reached a throughput value of 0.019ops/ms with 0.001ops/ms standard deviation in both

databases, which is greater than the one achieved with the dcm4che with an unprotected

HBase backend.

Despite this difference, it is important to notice that the C-GET does not allow the query

of much parameters. Using the default dcm4che it is only possible to execute queries using

four parameters: Patient ID, Study Instance UID, Series Instance UID, and SOP Instance

UID. On the other side, the prototype systems allow the query by every tag value stored on

the HTable. These parameters are specified on Section 4.3.1 and perform a total of 22 possi-

ble query values. This allows the user to execute queries using more intuitive parameters,

such as names or modalities, becoming more useful to physicians and researchers.

(a) Latency (b) Throughput

Figure 13.: Comparison between the performance of baseline dcm4che’s C-GET and the scan of the
dcm4che with an unprotected and a protected HBase backend.
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7
C O N C L U S I O N S A N D F U T U R E W O R K

This dissertation ends with this chapter, which focuses on the main conclusions that can

be taken from the development of the described work about the safe storage of medical

images in NoSQL databases.

The project was based on NoSQL databases concepts, more specifically HBase, as well as

the associated standards with the storage and communication of medical images. Moreover,

some knowledge of cryptographic concepts was required, as well as some performance

evaluation notions.

Having this said, this chapter is divided in two main sections. Section 7.1 focuses on

gathering the main overall conclusions that can be taken form the presented results, as well

as this work’s main contributions. Section 7.2 makes some suggestions about some future

work that can be made over this project.

7.1 final considerations

This master thesis main goal was the development of a secure and highly available storage

solution for medical images, using NoSQL databases.

This project’s motivation emerged from the high usage that is being made of SQL databases

in the medical industry. These systems present several issues essentially in what concerns

to availability and scalability. Nowadays, due to the high rate of data volume creation,

the presence of these characteristics in the storage systems used in the medical industry is

crucial.

During this project’s development, and according to the DSR methodology, some steps

were followed. After some research, the lack of a scalable, available, low-cost, and secure

imaging system was evident. In such way, a solution for the identified problem emerged:

the development of a storage system compliant with the medical imaging standards – the

DICOM – capable of storing medical imaging data without violating the individual’s data

privacy. Having made this decision, the identification of an open-source DICOM toolkit

that implemented this standard and allowed the adaptation of its backend became crucial.

Along these lines, the chosen toolkit was the dcm4che.
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After some study of the dcm4che’s structure and functioning, it was altered to use two

different new backends: an unprotected and a protected version of HBase. Having this

major step accomplished, some performance evaluation tests were performed. These tests

evaluated the performance of storage operations – C-STORE and put –, as well as retrieve

operations – C-GET, get, and scan. From these tests the latency and throughput were

acquired and analysed.

By analysing the obtained results it is possible to identify some trade-offs between sys-

tems:

• ❈✲❙❚❖❘❊ and ♣✉t: the storage operations’ throughput and latency are equivalent both

on the baseline dcm4che and dcm4che with a simple HBase backend. The dcm4che

with personal data protection compliance shows an higher latency and lower through-

put in comparison to the other two systems due to the time required to encrypt the

data. However, this is not a significant difference. Moreover, the two prototype sys-

tems update de database by themselves in the storage process, which does not happen

in the baseline dcm4che’s case.

• ❈✲●❊❚ and ❣❡t: the retrieve process with the get operation on the dcm4che with an

unprotected or protected HBase backend have a much better performance than the

default dcm4che, in terms of latency and throughput. Between the two prototypes,

there is no performance difference in these metrics because there is no encryption job

being made when this operation is executed.

• ❈✲●❊❚ and s❝❛♥: when performing a retrieve process using a scan in the two dcm4che

prototypes, the system shows a higher latency and lower throughput in comparison

to the default dcm4che. However, the newly developed systems are capable of per-

forming a wider range of queries. Meaning, the baseline system can only be queried

for four parameters, while the two new systems can support queries with 22 different

tag values. Between the two systems with HBase backends, the encrypted one shows

a higher latency and lower throughput due to the encryption step performed before

executing the scan on the database.

According to the objectives defined on Chapter 1, the availability of medical images was

increased by storing their metadata on a distributed server, as proposed. Furthermore, the

query capabilities of the used DICOM toolkit were improved, as well as the storage ones by

discarding the need to create and update the DICOMDIR separately from the storage job.

7.2 future work

The prototypes presented in this master thesis, as initially proposed, already increased

the availability of the medical images’ database. Nevertheless, some improvements can be
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made in order to increase it even more. For instance, the actual medical images should be

stored in a distributed filesystem, such as HDFS. Having them stored on the HDFS, a link

to their location should also be stored on the HBase.

In terms of performance, it would be interesting to study more extensively the behaviour

of the HBase’s scan operation in order to understand how its efficiency can be improved. It

would be attractive to reduce the discrepancy between the time required to execute a query

using different parameters.

In terms of security, there are also some improvements to be made. The symmetric

cipher is a well known technique and well established on the market. However, there

are some novel techniques currently emerging on the market, showing great promise in

terms of security guarantees. An example is multi-party computation and secret sharing,

as described by Pontes et al. [144]. In this model, it is considered that the cloud provider is

untrusted and, thus, the data being stored is divided and protected in different parties. This

is made in such way that it is not possible to acquire any information about the original,

unless every provider cross information with the others. Pontes et al. [144] show that

there is a loss in terms of performance when using this type of security protocols, yet, the

provided security guarantees are huge.

This master thesis focused on the development of a NoSQL data store for medical images

metadata. However, as mentioned on Chapter 2, medical institutions still make use of

RDBMS systems. Hence, it would be interesting to these institutions to implement a layer

that converts SQL queries to NoSQL operations, enabling the usage of NoSQL databases

without changing the existent SQL interfaces.
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way to the cloud. In Information Systems and Technologies (CISTI), 6th Iberian Conference,

pages 1–6. IEEE, 2011.

[7] P. M. A. van Ooijen, P. J. M. ten Bhomer, and M. Oudkerk. PACS storage requirements

— influence of changes in imaging modalities. In International Congress Series, volume

1281, pages 888–893. Elsevier, 2005.

[8] Apache HBase. Reference guide, January 2016. URL http://hbase.apache.org/

book.html#configuration. Accessed on: 30-01-2016.

[9] Google cloud platform. Cloud BigTable. URL https://cloud.google.com/

bigtable/.

[10] CouchDB. Data where you need it. URL http://couchdb.apache.org.

[11] Mongodb. MongoDB. URL https://www.mongodb.com.

[12] OpenStack. OpenStack Swift. URL http://docs.openstack.org/developer/swift/.

64

https://www.medicalconnections.co.uk/kb/DICOMDIR
https://www.medicalconnections.co.uk/kb/DICOMDIR
http://searchhealthit.techtarget.com/definition/picture-archiving-and-communication-system-PACS
http://searchhealthit.techtarget.com/definition/picture-archiving-and-communication-system-PACS
http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#configuration
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
http://couchdb.apache.org
https://www.mongodb.com
http://docs.openstack.org/developer/swift/


Bibliography

[13] Planet Cassandra. What is NoSQL?, 2015. URL http://www.planetcassandra.org/

what-is-nosql/. Accessed on: 05-11-2015.

[14] Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database. In Pervasive

computing and applications (ICPCA), 6th international conference, pages 363–366. IEEE,

2011.

[15] Yishan Li and Sathiamoorthy Manoharan. A performance comparison of SQL and

NoSQL databases. In Communications, Computers and Signal Processing (PACRIM), Pa-

cific Rim Conference, pages 15–19. IEEE, 2013.

[16] Jaroslav Pokorny. NoSQL databases: a step to database scalability in web environ-

ment. International Journal of Web Information Systems, 9(1):69–82, 2013.

[17] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[18] Teddyma. Learn cassandra. 2015.

[19] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[20] Xuhui Liu, Jizhong Han, Yunqin Zhong, Chengde Han, and Xubin He. Implementing

WebGIS on Hadoop: A case study of improving small file I/O performance on HDFS.

In Cluster Computing and Workshops, International Conference, pages 1–8. IEEE, 2009.

[21] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view

of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[22] dcm4che. Open source clinical image and object management, . URL http://www.

dcm4che.org.

[23] Robert H. Choplin, J. M. Boehme 2nd, and C. D. Maynard. Picture archiving and

communication systems: an overview. Radiographics, 12(1):127–129, 1992.

[24] Samuel J. Dwyer III. A personalized view of the history of PACS in the USA. In

Medical Imaging, pages 2–9. International Society for Optics and Photonics, 2000.

[25] NEMA. About DICOM. URL http://dicom.nema.org/Dicom/about-DICOM.html.

Accessed on: 10-11-2015.
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A
D I C O M S U P P O RT M AT E R I A L

a.1 dicom dictionary

# Tag VR Name VM Version

#

(0000 ,0000) UL CommandGroupLength 1 DICOM_2009

(0000 ,0002) UI AffectedSOPClassUID 1 DICOM_2009

(...)

(0002 ,0000) UL FileMetaInformationGroupLength 1 DICOM_2009

(0002 ,0001) OB FileMetaInformationVersion 1 DICOM_2009

(0002 ,0002) UI MediaStorageSOPClassUID 1 DICOM_2009

(0002 ,0003) UI MediaStorageSOPInstanceUID 1 DICOM_2009

(0002 ,0010) UI TransferSyntaxUID 1 DICOM_2009

(...)

(0004 ,1130) CS FileSetID 1 DICOM_2009

(0004 ,1141) CS FileSetDescriptorFileID 1-8 DICOM_2009

(...)

(0004 ,1500) CS ReferencedFileID 1-8 DICOM_2009

(...)

(0008 ,0008) CS ImageType 2-n DICOM_2009

(0008 ,0012) DA InstanceCreationDate 1 DICOM_2009

(0008 ,0013) TM InstanceCreationTime 1 DICOM_2009

(0008 ,0014) UI InstanceCreatorUID 1 DICOM_2009

(0008 ,0016) UI SOPClassUID 1 DICOM_2009

(0008 ,0018) UI SOPInstanceUID 1 DICOM_2009

(0008 ,001A) UI RelatedGeneralSOPClassUID 1-n DICOM_2009

(0008 ,001B) UI OriginalSpecializedSOPClassUID 1 DICOM_2009

(0008 ,0020) DA StudyDate 1 DICOM_2009

(0008 ,0021) DA SeriesDate 1 DICOM_2009

(0008 ,0022) DA AcquisitionDate 1 DICOM_2009

(0008 ,0023) DA ContentDate 1 DICOM_2009

(0008 ,002A) DT AcquisitionDateTime 1 DICOM_2009

(0008 ,0030) TM StudyTime 1 DICOM_2009

(0008 ,0031) TM SeriesTime 1 DICOM_2009

(0008 ,0032) TM AcquisitionTime 1 DICOM_2009

(0008 ,0033) TM ContentTime 1 DICOM_2009
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(0008 ,0050) SH AccessionNumber 1 DICOM_2009

(...)

(0008 ,0060) CS Modality 1 DICOM_2009

(...)

(0008 ,0070) LO Manufacturer 1 DICOM_2009

(0008 ,0080) LO InstitutionName 1 DICOM_2009

(0008 ,0081) ST InstitutionAddress 1 DICOM_2009

(0008 ,0082) SQ InstitutionCodeSequence 1 DICOM_2009

(0008 ,0090) PN ReferringPhysicianName 1 DICOM_2009

(...)

(0008 ,1030) LO StudyDescription 1 DICOM_2009

(0008 ,1032) SQ ProcedureCodeSequence 1 DICOM_2009

(0008 ,103E) LO SeriesDescription 1 DICOM_2009

(0008 ,103F) SQ SeriesDescriptionCodeSequence 1 DICOM_2009

(0008 ,1040) LO InstitutionalDepartmentName 1 DICOM_2009

(...)

(0010 ,0010) PN PatientName 1 DICOM_2009

(0010 ,0020) LO PatientID 1 DICOM_2009

(...)

(0010 ,0030) DA PatientBirthDate 1 DICOM_2009

(0010 ,0032) TM PatientBirthTime 1 DICOM_2009

(0010 ,0040) CS PatientSex 1 DICOM_2009

(0010 ,0050) SQ PatientInsurancePlanCodeSequence 1 DICOM_2009

(...)

(0010 ,1010) AS PatientAge 1 DICOM_2009

(0010 ,1020) DS PatientSize 1 DICOM_2009

(0010 ,1030) DS PatientWeight 1 DICOM_2009

(...)

(0010 ,21B0) LT AdditionalPatientHistory 1 DICOM_2009

(...)

(0018 ,0010) LO ContrastBolusAgent 1 DICOM_2009

(0018 ,0012) SQ ContrastBolusAgentSequence 1 DICOM_2009

(0018 ,0014) SQ ContrastBolusAdministrationRouteSequence 1 DICOM_2009

(0018 ,0015) CS BodyPartExamined 1 DICOM_2009

(...)

(0020 ,000D) UI StudyInstanceUID 1 DICOM_2009

(0020 ,000E) UI SeriesInstanceUID 1 DICOM_2009

(0020 ,0010) SH StudyID 1 DICOM_2009

(0020 ,0011) IS SeriesNumber 1 DICOM_2009

(0020 ,0012) IS AcquisitionNumber 1 DICOM_2009

(...)

Listing A.1: Used DICOM dictionary.
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a.2 dicom image dump

0002 ,0002 Media Storage SOP Class UID: 1.2.840.10008.5.1.4.1.1.2

0002 ,0003 Media Storage SOP Inst UID:

1.2.276.0.7230010.3.1.4.0.2001.1461079064.595125

0002 ,0010 Transfer Syntax UID: 1.2.840.10008.1.2

0002 ,0012 Implementation Class UID: 1.2.40.0.13.1.1

0002 ,0013 Implementation Version Name: dcm4che -3.3.7

0002 ,0016 Source Application Entity Title: DCMQRSCP

0008 ,0005 Specific Character Set: ISO_IR 100

0008 ,0008 Image Type: ORIGINAL\PRIMARY\AXIAL

0008 ,0016 SOP Class UID: 1.2.840.10008.5.1.4.1.1.2

0008 ,0018 SOP Instance UID: 1.2.276.0.7230010.3.1.4.0.2001.1461079064.595125

0008 ,0020 Study Date: 20010105

0008 ,0021 Series Date: 20010105

0008 ,0022 Acquisition Date: 20010105

0008 ,0023 Image Date: 20010105

0008 ,0030 Study Time: 083501

0008 ,0031 Series Time: 083709

0008 ,0032 Acquisition Time: 083848

0008 ,0033 Image Time: 083852

0008 ,0050 Accession Number: 0000000001

0008 ,0060 Modality: CT

0008 ,0070 Manufacturer: GE MEDICAL SYSTEMS

0008 ,0080 Institution Name: Toronto Hosp , West Div.

0008 ,0090 Referring Physician ’s Name: PHYSICIAN

0008 ,1010 Station Name: TWD1_OC0

0008 ,1030 Study Description: CHEST

0008 ,103E Series Description: HELICAL CHEST

0008 ,1060 Name of Physician(s) Reading Study: RADIOLOGIST

0008 ,1070 Operator ’s Name: BK

0008 ,1090 Manufacturer ’s Model Name: HiSpeed CT/i

(...)

0010 ,0010 Patient ’s Name: PATIENT1

0010 ,0020 Patient ID: 0000001

0010 ,0030 Patient ’s Birth Date: 19700101

0010 ,0040 Patient ’s Sex: M

0010 ,1010 Patient ’s Age: 089Y

0010 ,1030 Patient ’s Weight: 0.000000

0010 ,21B0 Additional Patient History: WIGHT LOSS ,COUGH

(...)

0018 ,0022 Scan Options: HELICAL MODE

0018 ,0050 Slice Thickness: 5.000000

0018 ,0060 kVp: 120

0018 ,0088 Spacing Between Slices: 6.500000

0018 ,0090 Data Collection Diameter: 480.000000

0018 ,1020 Software Versions(s): 05
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0018 ,1100 Reconstruction Diameter: 346.000000

0018 ,1110 Distance Source to Detector: 1099.3100585938

0018 ,1111 Distance Source to Patient: 630.000000

0018 ,1120 Gantry/Detector Tilt: 0.000000

0018 ,1130 Table Height: 167.100006

0018 ,1140 Rotation Direction: CW

0018 ,1150 Exposure Time: 800

0018 ,1151 X-ray Tube Current: 200

0018 ,1152 Exposure: 200

0018 ,1160 Filter Type: BODY FILTER

0018 ,1190 Focal Spot(s): 0.700000

0018 ,1210 Convolution Kernel: STANDARD

0018 ,5100 Patient Position: FFS

(...)

0020 ,000D Study Instance UID:

1.2.840.113619.2.30.1.1762295590.1623.978668949.886

0020 ,000E Series Instance UID:

1.2.840.113619.2.30.1.1762295590.1623.978668949.890

0020 ,0010 Study ID: 40933

0020 ,0011 Series Number: 2

0020 ,0012 Acquisition Number: 1

0020 ,0013 Image Number: 1

0020 ,0032 Image Position (Patient): -161.399994\ -148.800003\4.700000

0020 ,0037 Image Orientation (Patient):

1.000000\0.000000\0.000000\0.000000\1.000000\0.000000

0020 ,0052 Frame of Reference UID:

1.2.840.113619.2.30.1.1762295590.1623.978668949.886.8493.0.12

(...)

0028 ,0004 Photometric Interpretation: MONOCHROME2

0028 ,0010 Rows: 512

0028 ,0011 Columns: 512

0028 ,0030 Pixel Spacing: 0.675781\0.675781

0028 ,0100 Bits Allocated: 16

0028 ,0101 Bits Stored: 16

0028 ,0102 High Bit: 15

0028 ,0103 Pixel Representation: 1

0028 ,0120 Pixel Padding Value: 32768

0028 ,1050 Window Center: 40

0028 ,1051 Window Width: 400

0028 ,1052 Rescale Intercept: -1024

0028 ,1053 Rescale Slope: 1

(...)

Listing A.2: Used image’s dump.
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b.1 hbase client configuration file

<configuration >

<property >

<name>hbase.zookeeper.quorum </name>

<value >cloud80 </value >

</property >

<property >

<name>hbase.rootdir </name>

<value >hdfs: // cloud80:8020/hbase </value >

</property >

<property >

<name>hbase.cluster.distributed </name>

<value >true</value >

</property >

<property >

<name>hbase.zookeeper.property.dataDir </name>

<value >/usr/local/hbase -0.98.20 - hadoop2/zookeeper -dir</value >

</property >

<property >

<name>hbase.master.hostname </name>

<value >cloud80 </value >

</property >

<property >

<name>base.zookeeper.property.clientPort </name>

<value >2181</value >

</property >

</configuration >

Listing B.1: HBase client configuration file.
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b.2 cluster configuration files

b.2.1 Master server

HBase

<configuration >

<property >

<name>hbase.rootdir </name> <!--propriedade para definir qual o

filesystem -->

<value >hdfs: // cloud80:8020/hbase </value >

</property >

<property >

<name>hbase.cluster.distributed </name>

<value >true</value >

</property >

<property >

<name>hbase.zookeeper.property.dataDir </name>

<value >/usr/local/hbase -0.98.20 - hadoop2/zookeeper -dir</value >

</property >

<property >

<name>hbase.zookeeper.quorum </name>

<value >localhost </value >

</property >

<property >

<name>hbase.zookeeper.property.clientPort </name>

<value >2181</value >

</property >

<property >

<name>hbase.master.hostname </name>

<value >cloud80 </value >

</property >

</configuration >

Listing B.2: hbase-site.xml file.

cloud81

cloud82

cloud83

Listing B.3: regionservers file.

HDFS
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<configuration >

<property >

<name>fs.default.name</name>

<value >hdfs: // cloud80:8020 </value >

</property >

</configuration >

Listing B.4: core-site.xml file.

<configuration >

<property >

<name>dfs.replication </name>

<value >4</value >

</property >

<property >

<name>dfs.name.dir</name>

<value >/usr/local/hadoop -2.7.2/ dfs/name</value >

</property >

<property >

<name>dfs.data.dir</name>

<value >/usr/local/hadoop -2.7.2/ dfs/data</value >

</property >

</configuration >

Listing B.5: hdfs-site.xml file.

cloud81

cloud82

cloud83

Listing B.6: slaves file.

b.2.2 Region servers

HBase

<configuration >

<property >

<name>hbase.rootdir </name>

<value >hdfs: // cloud80:8020/hbase </value >

</property >

<property >

<name>hbase.cluster.distributed </name>

<value >true</value >
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</property >

<property >

<name>hbase.zookeeper.quorum </name>

<value>cloud80 </value >

</property >

</configuration >

Listing B.7: hbase-site.xml file.

localhost

Listing B.8: regionservers file.

HDFS

<configuration >

<property >

<name>fs.default.name</name>

<value >hdfs: // cloud80:8020 </value >

</property >

</configuration >

Listing B.9: core-site.xml file.

<configuration >

<property >

<name>dfs.replication </name>

<value >4</value >

</property >

<property >

<name>dfs.name.dir</name>

<value >/usr/local/hadoop -2.7.2/ dfs/name</value >

</property >

<property >

<name>dfs.data.dir</name>

<value >/usr/local/hadoop -2.7.2/ dfs/data</value >

</property >

</configuration >

Listing B.10: hdfs-site.xml file.

localhost

82



B.3. Storing data on HBase

Listing B.11: slaves file.

b.3 storing data on hbase

1. Create a new table if it does not exist:

String tableName = "DicomTable";

TableName tbname = TableName.valueOf(tableName);

HTableDescriptor table = ♥❡✇ HTableDescriptor(tbname);

HColumnDescriptor patientFamily = ♥❡✇ HColumnDescriptor("Patient");

HColumnDescriptor imageFamily = ♥❡✇ HColumnDescriptor("Image");

HColumnDescriptor seriesFamily = ♥❡✇ HColumnDescriptor("Series");

HColumnDescriptor studyFamily = ♥❡✇ HColumnDescriptor("Study");

table.addFamily(patientFamily);

table.addFamily(imageFamily);

table.addFamily(seriesFamily);

table.addFamily(studyFamily);

tableInterface = createTableInterface(conf , tableName);

Listing B.12: Create table code.

2. Extract the tags’ values from the FMI:

✐❢ (fmi.contains(Tag.PatientID)) {

patientID = fmi.getString(Tag.PatientID);

}

Listing B.13: Tags’ values extraction – example code.

3. Create a new Put with every value that needs to be inserted on the table:

String key = SOPInstanceUID;

❜②t❡[] patientCf = "Patient".getBytes ();

❜②t❡[] imageCf = "Image".getBytes ();

❜②t❡[] studyCf = "Study".getBytes ();

❜②t❡[] seriesCf = "Series".getBytes ();

Put put = ♥❡✇ Put(key.getBytes ());
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✐❢ (! patientID.equals(♥✉❧❧)) {

put.add(patientCf , "ID".getBytes (), patientID.getBytes ());

}

Listing B.14: Put construction – example code

4. For protected attributes it is necessary to set an Attribute in the Put:

put.setAttribute("protected:" + "Patient" + ":Name", "".getBytes ());

Listing B.15: Addition of a column attribute to a protected one – example code.

5. Execute the Put over the table:

tableInterface.put(put);

Listing B.16: Put execution

b.4 time parser

♣r✐✈❛t❡ ❧♦♥❣ ParseTime(String timeTag) {

✐♥t len = timeTag.length ();

Long mills;

✐❢ (len == 4) {

timeTag = ♥❡✇ StringBuffer(timeTag).insert(timeTag.length () - 2, ":").

toString ();

timeTag = ♥❡✇ StringBuffer(timeTag).insert(timeTag.length (), ":00").

toString ();

} ❡❧s❡ ✐❢ (len == 6) {

timeTag = ♥❡✇ StringBuffer(timeTag).insert(timeTag.length () - 2, ":").

toString ();

timeTag = ♥❡✇ StringBuffer(timeTag).insert(timeTag.length () - 5, ":").

toString ();

} ❡❧s❡ ✐❢ (len > 6) {

timeTag = ♥❡✇ StringBuffer(timeTag).insert(3, ":").toString ();

timeTag = ♥❡✇ StringBuffer(timeTag).insert(5, ":00").toString ();

} // if none of these conditions are verified , it means that the time

// format is invalid

❡❧s❡ ✐❢ (len < 4 || len ==5){

Date date = ♥❡✇ Date();

r❡t✉r♥ date.getTime ();

}

SimpleDateFormat formatter = ♥❡✇ SimpleDateFormat("hh:mm:ss");
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Date date = ♥❡✇ Date();

tr② {

date = (Date) formatter.parse(timeTag);

} ❝❛t❝❤ (ParseException e) {

e.printStackTrace ();

}

mills = date.getTime ();

r❡t✉r♥ mills;

}

Listing B.17: Parser used do convert times from the DICOM file’s format to long.

b.5 retrieving data from hbase

1. Read the queried attributes:

✐❢ (keys.contains(Tag.PatientID)){

patientID = keys.getString(Tag.PatientID);

}

✐❢ (keys.contains(Tag.PatientName)){

patientName = keys.getString(Tag.PatientName);

}

Listing B.18: Qeried attributes read – example code.

2. If the row-key attribute is given, a get operation is performed. If not, a scan with a

SingleColumnValue filter is performed:

✐❢ (SOPInstanceUID != ♥✉❧❧){

Get get = ♥❡✇ Get (SOPInstanceUID.getBytes ());

get.setAttribute("protected: "+"Patient" + ":BirthDate", "".

getBytes ());

get.setAttribute("protected: " + "Patient" + ":Name", "".

getBytes ());

Result res = tableInterface.get(get);

String value = ♥❡✇ String(res.getRow ());

// (...)

}❡❧s❡{

Scan scan = ♥❡✇ Scan();

✐❢ (patientBirthDate != ♥✉❧❧){

filter = ♥❡✇ SingleColumnValueFilter("Patient".getBytes (), "

BirthDate".getBytes (), CompareFilter.CompareOp.EQUAL , Longs

.toByteArray(patientBirthDate));

scan.setAttribute("protected: "+"Patient" + ":BirthDate", "".

getBytes ());
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}

// (...)

}

scan.setFilter(filter);

ResultScanner scanner = tableInterface.getScanner(scan);

❢♦r (Result res = scanner.next(); res != ♥✉❧❧; res = scanner.next()

){

String value = ♥❡✇ String(res.getRow ());

// (...)

}

Listing B.19: get and scan execution – example code.

3. An InstanceLocator instance is created for each match and it is then added to the

list to be returned:

DicomInputStream dis = ♥❡✇ DicomInputStream (♥❡✇ File(imagesFolder +

"/" + value));

DatasetWithFMI dataWithFMI = dis.readDatasetWithFMI ();

String uri = dis.getURI ();

Attributes dataset = dataWithFMI.getDataset ();

String cuid = dataset.getString(Tag.SOPClassUID);

String tsuid = dataset.getString(Tag.TransferSyntaxUID);

InstanceLocator resInstance = ♥❡✇ InstanceLocator(cuid , value ,

tsuid , uri);

list.add((T) resInstance);

Listing B.20: Creation of the InstanceLocator list – example code.

b.6 data set’s creation script

❞❡❢ execute_command(command):

bash_command = command.split(" ")

subprocess.call(bash_command)

❞❡❢ generate_dataset (num_replicas , num_fixed_weight , image_path ,

replicas_folder , dcmodify):

❢♦r i ✐♥ os.listdir(path=replicas_folder):

os.remove(replicas_folder + i)

❢♦r i ✐♥ r❛♥❣❡(num_replicas):
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shutil.copy2(image_path , replicas_folder + str(i+1) + ’.dcm’)

PatientName_tag = "(0010 ,0010)"

PatientAge_tag = "(0010 ,1010)"

PatientWeight_tag = "(0010 ,1030)"

# (...)

StudyDescription_tag = "(0008 ,1030)"

Modality_tag = "(0008 ,0060)"

# (...)

SeriesDate_tag = "(0008 ,0021)"

SeriesHour_tag = "(0008 ,0031)"

SeriesDescription_tag = "(0008 ,103E)"

ReferingPysician_tag = "(0008 ,0090)"

SOPInstanceUID_m = dcmodify + " -gin "

StudyInstanceUID_m = dcmodify + " -gst "

SeriesInstanceUID_m = dcmodify + " -gse "

PatientID_m = dcmodify + " -m " + PatientID_tag + "="

PatientName_m = dcmodify + " -m " + PatientName_tag + "="

PatientAge_m = dcmodify + " -m " + PatientAge_tag + "="

PatientWeight_m = dcmodify + " -m " + PatientWeight_tag + "="

# (...)

Modality_m = dcmodify + " -m " + Modality_tag + "="

# (...)

SeriesDate_m = dcmodify + " -m " + SeriesDate_tag + "="

SeriesHour_m = dcmodify + " -m " + SeriesHour_tag + "="

SeriesDescription_m = dcmodify + " -m " + SeriesDescription_tag + "="

gender = ["M", "F"]

description = ["CHEST", "HELICALCHEST", "PELVIS", "HEAD"]

modality = ["CT", "CR", "PET", "MRI"]

# (...)

counter = 1

❢♦r j ✐♥ r❛♥❣❡(num_replicas):

i = str(j+1) + ".dcm"

♣r✐♥t (i)

execute_command(SeriesInstanceUID_m + replicas_folder + i)

execute_command(StudyInstanceUID_m + replicas_folder + i)

execute_command(SOPInstanceUID_m + replicas_folder + i)

# (...)

execute_command(PatientName_m + "PATIENT" + str(counter) + " " +

replicas_folder + i)

execute_command(PatientAge_m + str(random.randint (10, 80)) + " " +

replicas_folder + i)

# (...)

✐❢ counter < (num_fixed_weight +1) :
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execute_command(PatientWeight_m + str(70) + " " + replicas_folder

+ i)

❡❧s❡ :

value = random.randint (20 ,120)

✐❢ value == 70:

value = value + 1

execute_command(PatientWeight_m + str(value) + " " +

replicas_folder + i)

execute_command(Modality_m + random.choice(modality) + " " +

replicas_folder + i)

# (...)

execute_command(SeriesDate_m + str(random.randint (1998 , 2016)) + str(

random.randint(1, 12)).zfill (2) +

str(random.randint(1, 28)).zfill (2) + " " +

replicas_folder + i)

execute_command(SeriesHour_m + str(random.randint(8, 23)).zfill (2) +

str(random.randint(0, 59)).zfill (2) +

str(random.randint(0, 59)).zfill (2) + " " +

replicas_folder + i)

execute_command(SeriesDescription_m + random.choice(description) + " "

+ replicas_folder + i)

# (...)

counter += 1

❢♦r i ✐♥ os.listdir(path=replicas_folder):

✐❢ i.endswith(".bak"):

os.remove(replicas_folder+i)

✐❢ __name__ == ’__main__ ’:

cl_parser = argparse.ArgumentParser(description=’Give preferences.xml’)

cl_parser.add_argument(’file’, ❤❡❧♣=’preferences file’, t②♣❡=str)

cl_parser.add_argument(’num_fixed_weight ’, ❤❡❧♣=’number of images with

weight =70kg’, t②♣❡=✐♥t)

cl_parser.add_argument(’num_images ’, ❤❡❧♣=’number of copies ’, t②♣❡=✐♥t)

args = cl_parser.parse_args ()

preferences_file = args.❢✐❧❡

num_fixed_weight = args.num_fixed_weight

num_replicas = args.num_images

tree = ET.parse(preferences_file)

base_image = tree.find("baseImage").text

replicas_folder = tree.find("replicasFolder").text

dcmodify = tree.find("dcmodify").text

generate_dataset(num_replicas , num_fixed_weight , base_image ,

replicas_folder , dcmodify)

Listing B.21: Data set’s creation script – example code.
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b.7 cryptographic services

b.7.1 Encryption service class

♣✉❜❧✐❝ ❝❧❛ss EncryptionService {

♣r✐✈❛t❡ ❜②t❡[] key;

♣r✐✈❛t❡ ❜②t❡[] initVector;

♣✉❜❧✐❝ ❜②t❡[] getKey () {

r❡t✉r♥ key;

}

♣✉❜❧✐❝ ✈♦✐❞ setKey(❜②t❡[] key) {

t❤✐s.key = key;

}

♣✉❜❧✐❝ ❜②t❡[] getInitVector () {

r❡t✉r♥ initVector;

}

♣✉❜❧✐❝ ✈♦✐❞ setInitVector(❜②t❡[] initVector) {

t❤✐s.initVector = initVector;

}

♣✉❜❧✐❝ EncryptionService (){

s✉♣❡r();

}

♣✉❜❧✐❝ EncryptionService(❜②t❡[] key , ❜②t❡[] initVector){

t❤✐s.key = key;

t❤✐s.initVector = initVector;

}

♣✉❜❧✐❝ ❜②t❡[] cipher(❜②t❡[] value) t❤r♦✇s UnsupportedEncodingException ,

NoSuchAlgorithmException ,

NoSuchPaddingException , InvalidKeyException ,

InvalidAlgorithmParameterException ,

IllegalBlockSizeException , BadPaddingException{

IvParameterSpec iv = ♥❡✇ IvParameterSpec(initVector);

SecretKeySpec skeySpec = ♥❡✇ SecretKeySpec(key , "AES");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE , skeySpec , iv);

❜②t❡[] encrypted = cipher.doFinal(value);

r❡t✉r♥ encrypted;

}

}
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Listing B.22: EncryptionService class.

b.7.2 Decryption service class

♣✉❜❧✐❝ ❝❧❛ss DecryptionService {

♣r✐✈❛t❡ ❜②t❡[] key;

♣r✐✈❛t❡ ❜②t❡[] initVector;

♣✉❜❧✐❝ ❜②t❡[] getKey () {

r❡t✉r♥ key;

}

♣✉❜❧✐❝ ✈♦✐❞ setKey(❜②t❡[] key) {

t❤✐s.key = key;

}

♣✉❜❧✐❝ ❜②t❡[] getInitVector () {

r❡t✉r♥ initVector;

}

♣✉❜❧✐❝ ✈♦✐❞ setInitVector(❜②t❡[] initVector) {

t❤✐s.initVector = initVector;

}

♣✉❜❧✐❝ DecryptionService (){

s✉♣❡r();

}

♣✉❜❧✐❝ DecryptionService(❜②t❡[] key , ❜②t❡[] initVector){

t❤✐s.initVector = initVector;

t❤✐s.key = key;

}

♣✉❜❧✐❝ ❜②t❡[] decipher(❜②t❡[] value) t❤r♦✇s UnsupportedEncodingException ,

NoSuchAlgorithmException ,

NoSuchPaddingException , InvalidKeyException ,

InvalidAlgorithmParameterException ,

IllegalBlockSizeException , BadPaddingException{

IvParameterSpec iv = ♥❡✇ IvParameterSpec(initVector);

SecretKeySpec skeySpec = ♥❡✇ SecretKeySpec(key , "AES");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE , skeySpec , iv);

❜②t❡[] original = cipher.doFinal(value);

r❡t✉r♥ original;
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}

}

Listing B.23: DecryptionService class.

b.8 classes used to execute operations with protected data on hbase

b.8.1 Extension to the HBaseStore class

♣✉❜❧✐❝ ❝❧❛ss SymHBaseStore ❡①t❡♥❞s HBaseStore{

♣✉❜❧✐❝ SymHBaseStore(String file , String storageDir) t❤r♦✇s

MasterNotRunningException , ZooKeeperConnectionException , IOException {

s✉♣❡r(file , storageDir);

}

@Override

♣✉❜❧✐❝ HTableInterface createTableInterface(Configuration conf , String

tableName) t❤r♦✇s Exception {

r❡t✉r♥ ♥❡✇ SymColTable(conf , tableName);

}

}

Listing B.24: SymHBaseStore class.

b.8.2 Extension to the HTable class

♣✉❜❧✐❝ ❝❧❛ss SymColTable ❡①t❡♥❞s HTable {

st❛t✐❝ ❢✐♥❛❧ Log LOG = LogFactory.getLog(SymColTable.❝❧❛ss.getName ());

♣r✐✈❛t❡ ❢✐♥❛❧ st❛t✐❝ ❜②t❡[] keyFile = ♥❡✇ ❜②t❡[16];

♣r✐✈❛t❡ ❢✐♥❛❧ st❛t✐❝ ❜②t❡[] initVector = ♥❡✇ ❜②t❡[16];

♣r✐✈❛t❡ ❢✐♥❛❧ EncryptionService encService;

♣r✐✈❛t❡ ❢✐♥❛❧ DecryptionService decService;

♣✉❜❧✐❝ SymColTable(Configuration conf , String tableName)

t❤r♦✇s InvalidKeyException , IOException , NoSuchAlgorithmException ,

NoSuchPaddingException , FileNotFoundException ,

InvalidAlgorithmParameterException {

s✉♣❡r(conf , tableName);

encService = ♥❡✇ EncryptionService(keyFile , initVector);

decService = ♥❡✇ DecryptionService(keyFile , initVector);

91



B.8. Classes used to execute operations with protected data on HBase

}

@Override

♣✉❜❧✐❝ ResultScanner getScanner(Scan scan) t❤r♦✇s IOException{

SingleColumnValueFilter scanFilter = (SingleColumnValueFilter) scan.

getFilter ();

❜②t❡[] value = scanFilter.getComparator ().getValue ();

❜②t❡[] cq = scanFilter.getQualifier ();

❜②t❡[] cf = scanFilter.getFamily ();

CompareOp compareOp= scanFilter.getOperator ();

Scan encScan = ♥❡✇ Scan();

✐❢ (scan.getAttribute("protected:" + ♥❡✇ String(cf) + ":" + ♥❡✇ String (cq

)) != ♥✉❧❧){

tr② {

encScan.setFilter(♥❡✇ SingleColumnValueFilter(cf , cq , compareOp ,

encService.cipher(value)));

} ❝❛t❝❤ (InvalidKeyException e) {

e.printStackTrace ();

} ❝❛t❝❤ (NoSuchAlgorithmException e) {

e.printStackTrace ();

} ❝❛t❝❤ (NoSuchPaddingException e) {

e.printStackTrace ();

} ❝❛t❝❤ (InvalidAlgorithmParameterException e) {

e.printStackTrace ();

} ❝❛t❝❤ (IllegalBlockSizeException e) {

e.printStackTrace ();

} ❝❛t❝❤ (BadPaddingException e) {

e.printStackTrace ();

}

}❡❧s❡{

encScan.setFilter(♥❡✇ SingleColumnValueFilter(cf , cq , compareOp , value))

;

}

r❡t✉r♥ s✉♣❡r.getScanner(encScan);

}

@Override

♣✉❜❧✐❝ ✈♦✐❞ put(Put put) {

tr② {

Put encPut = ♥❡✇ Put(put.getRow ());

CellScanner cs = put.cellScanner ();

✇❤✐❧❡ (cs.advance ()) {

Cell cell = cs.current ();

String cf = ♥❡✇ String(CellUtil.cloneFamily(cell));

String cq = ♥❡✇ String(CellUtil.cloneQualifier(cell));

✐❢ (put.getAttribute("protected:" + cf + ":" + cq) != ♥✉❧❧) {
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❜②t❡[] value = CellUtil.cloneValue(cell);

❜②t❡[] encValue = encService.cipher(value);

encPut.add(CellUtil.cloneFamily(cell),

CellUtil.cloneQualifier(cell), encValue);

} ❡❧s❡ {

encPut.add(CellUtil.cloneFamily(cell),

CellUtil.cloneQualifier(cell),

CellUtil.cloneValue(cell));

}

}

s✉♣❡r.put(encPut);

} ❝❛t❝❤ (IOException ex) {

LOG.info(ex);

t❤r♦✇ ♥❡✇ IllegalArgumentException(ex);

} ❝❛t❝❤ (IllegalBlockSizeException ex) {

LOG.info(ex);

t❤r♦✇ ♥❡✇ IllegalArgumentException(ex);

} ❝❛t❝❤ (BadPaddingException ex) {

LOG.info(ex);

t❤r♦✇ ♥❡✇ IllegalArgumentException(ex);

} ❝❛t❝❤ (InvalidKeyException e) {

e.printStackTrace ();

} ❝❛t❝❤ (NoSuchAlgorithmException e) {

e.printStackTrace ();

} ❝❛t❝❤ (NoSuchPaddingException e) {

e.printStackTrace ();

} ❝❛t❝❤ (InvalidAlgorithmParameterException e) {

e.printStackTrace ();

}

}

}

Listing B.25: SymColTable class.
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