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HIGHLIGHTS

GRAPHICAL ABSTRACT

e A DNA aptamer against OPN, a tumor
biomarker, selected by SELEX itera-
tive in vitro process is reported for
the first time.

e An electrochemical (square wave
voltammetry) signal-off DNA apta-
sensor was designed exhibiting af-
finity towards OPN.

e The DNA aptasensor had satisfactory
sensitivity and selectivity towards
OPN, with low signal interferences
from other proteins.

e The DNA aptasensor had a LOD of 1.3
+ 0.1 nM (synthetic human plasma)
within OPN levels found breast can-
cer patients.

o Preliminary results showed that DNA
aptasensor can detect OPN in real
human plasma, similarly to the stan-
dard ELISA method.
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A DNA aptamer with affinity and specificity for human osteopontin (OPN), a potential breast cancer
biomarker, was selected using the SELEX process, considering its homology rate and the stability of its
secondary structures. This aptamer exhibited a satisfactory affinity towards OPN, showing dissociation
constants lower than 2.5 nM. It was further used to develop a simple, label-free electrochemical apta-
sensor against OPN. The aptasensor showed good sensitivity towards OPN in standard solutions, being
the square wave voltammetry (SWV), compared to the cyclic voltammetry, the most sensitive technique
with detection and quantification limits of 1.4 + 0.4 nM and 4.2 + 1.1 nM, respectively. It showed good
reproducibility and acceptable selectivity, exhibiting low signal interferences from other proteins, as
thrombin, with 2.6—10 times lower current signals-off than for OPN. The aptasensor also successfully
detected OPN in spiked synthetic human plasma. Using SWV, detection and quantification limits
(1.3 £ 0.1 and 3.9 + 0.4 nM) within the OPN plasma levels reported for patients with breast cancer (0.4
—4.5 nM) or with metastatic or recurrent breast cancer (0.9—8.4 nM) were found. Moreover, preliminary
assays, using a sample of human plasma, showed that the aptasensor and the standard ELISA method
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quantified similar OPN levels (2.2 + 0.7 and 1.7 + 0.1 nM, respectively). Thus, our aptasensor coupled
with SWV represents a promising alternative for the detection of relevant breast cancer biomarkers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Osteopontin (OPN) is a matricellular protein, expressed by a
variety of cell types and found in several biological fluids and tumor
tissues [1,2]. The OPN contains around 314 amino acid residues
subject to multiple post-translational modifications, thus resulting
in a molecular weight range between 41 and 75 kDa [1,3,4]. The
OPN is rich in aspartate, glutamate and serine residues. Besides, it
contains several functional domains such as arginine-glycine-
aspartate (RGD), serine-valine-valine-tyrosine-glutamate-leucine-
arginine (SVVYGLR) and the thrombin cleavage site (RSK) [4—7].
High levels of OPN in serum or plasma have been detected in people
suffering from cancer and may be associated with tumor progres-
sion, aggressiveness and metastasis [8—14]. Indeed, human OPN
has been pointed as a potential biomarker in a number of cancers
including breast, ovarian, prostate, lung, liver and colon
[3,11,13—19]. Moreover, OPN has been considered as a possible
therapeutic target for blocking tumor growth and subsequent
metastasis [20—22]. Therefore, the detection of OPN can be used to
monitor the disease progression and provide useful information
about its prognosis [23]. Commonly, OPN detection in plasma
samples is performed through enzyme-linked immunosorbent
assay (ELISA). Bramwell et al. [ 11] quantified human OPN in plasma
samples of patients with breast cancer using ELISA. The average
OPN concentration determined was 46 ng mL~! (~0.7 nM)' ranging
from 22.6 ng mL~! (~0.4 nM)' to 290 ng mL~! (~4.5 nM)'. For pa-
tients with metastatic breast cancer or with recurrent breast can-
cer, higher mean OPN levels were found 60.7 ng mL~' (~0.9 nM)’,
ranging from 23.3 ng mL~! (~0.4 nM)' to 543 ng mL~! (~8.4 nM)’
Despite the usefulness of ELISA, alternative methods ought to be
developed for the detection of OPN at the lower concentrations that
are usually found in early stages of the disease. Advances in the
biosensors field, namely the possibility of designing new and
extremely specific bioreceptors (e.g. aptamers), make them very
promising for the detection of low levels of protein biomarkers,
such as OPN, in plasma or blood samples [24—29].

Aptamers are short single-strand DNA (ssDNA) or RNA oligo-
nucleotides (20—100 nucleotides) that can fold into unique tertiary
structures [30,31]. It is possible to isolate aptamers, from an
oligonucleotide library, with high affinity and specificity to a wide
variety of targets, ranging from small molecules to large proteins,
using the Systematic Evolution of Ligands by Exponential Enrich-
ment (SELEX) methodology [32,33]. Usually 5 to 15 cycles of se-
lection are necessary to isolate one or few aptamers (RNA or DNA)
that possess the highest affinity and specificity to the desired target
[34]. Overall the use of aptamers as bioreceptors in biosensors is
gaining an increased interest, especially as alternatives to anti-
bodies, mainly due to their unique features. Aptamers are easy to
produce and synthesize; present a good stability over a wide range
of pH, temperature and/or storage conditions; are resistant to
denaturation and degradation; are amenable to chemical modifi-
cations, thus enabling their immobilization in several surfaces; and
can be labelled with fluorophores, and other tags facilitating their

! Reported OPN levels in ng mL~! were converted to OPN levels in nM, assuming
an OPN molecular weight of 65 kDa.

applications as bioreceptors in biosensors [25,35—37].

Mi et al. [20] described the first RNA aptamer against OPN that
was used by Cao et al. [38] to develop an electrochemical apta-
sensor using a pyrolytic graphite disk electrode (3.0 mm diameter),
functionalized with AuNPs. The human OPN detection limit ach-
ieved by SWV was 10.7 ng mL~! (~0.2 nM).? The aptasensor high
sensitivity could be attributed to the use of nanoparticles that in-
crease the superficial area available for aptamers immobilization
[39]. However, these strategies increase the biosensor cost and can
affect its reproducibility and performance when complex samples
are used [40]. Recently, a voltammetric aptasensor, based on the
same RNA aptamer, was used to detect human OPN with satisfac-
tory performance, reproducibility and stability but with a greater
detection limit (3.7 + 0.6 nM) [41]. Also, the RNA aptasensor was
sensitive to thrombin, a protein that is also present in human blood
and serum, which could be a drawback when real samples are used.
Hence, herein it is reported for the first time the isolation and
characterization of a high affinity DNA aptamer for human OPN,
through SELEX. The binding affinity of the selected DNA aptamer
was determined by fluorescence assays. Moreover, this aptamer
was used as bioreceptor for the development of a label-free elec-
trochemical DNA aptasensor to detect human OPN. The aptasensor
was tested by cyclic voltammetry (CV) and SWV and its perfor-
mance was evaluated using standard solutions prepared in PBS
buffer (pH 7.4), synthetic and real human plasma samples.

2. Experimental section
2.1. Material and reagents

Nitrocellulose membranes (0.45 pm) were purchased from
Whatman. dNTP mix (containing dATP, dCTP, dGTP, and dTTP
(4 mM each)) and Taq DNA polymerase (5 U pL~!) were obtained
from New England Biolabs. TOPO TA cloning Kit was acquired from
Invitrogen. GRS Plasmid Purification Kit was purchased from Grisp
Research Solutions. Kieselgur, sodium acetate, urea, 3,3-
dithiodipropionic acid (DPA), N-(3-dimethylaminopropyl)-N-eth-
ylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS),
ethanolamine (ETA), sulfuric acid (purity = 99.999%) and synthetic
human plasma (P9523) were obtained from Sigma-Aldrich. Potas-
sium hexacyanoferrate (IlI) [K3Fe(CN)g] and potassium hex-
acyanoferrate (II) [K4Fe(CN)g] were obtained from Acros Organics
and potassium dihydrogen phosphate (KH,PO4) from Merck. So-
dium chloride (NaCl), potassium chloride (KCI), sodium hydrogen
phosphate (Na;HPO4) and Ethanol were acquired from Panreac.
Recombinant human osteopontin (rhOPN, 65 kDa, isoelectric point
(pI) = 3.5), recombinant bovine osteopontin (rbOPN, 60 kDa,
pl = 3.59—4.46) and Quantikine ELISA kit as well as the Quantikine
Immunoassay Control Set 565 for Human Osteopontin were pur-
chased from R&D Systems. Thrombin from human plasma (THR,
37.4 kDa, pl 7—7.6), bovine serum albumin (BSA, 66 kDa, pl = 4.7),
lysozyme from chicken egg white (LYS, 14.3 kDa, pI = 10—11) and
streptavidin were obtained from Sigma-Aldrich. A real human

2 Reported OPN levels in ng mL~! were converted to OPN levels in nM, assuming
an OPN molecular weight of 65 kDa.
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plasma sample, belonging to a 46-year-old patient with an invasive
ductal primary tumor was used to evaluate the aptasensor herein
developed. This sample was collected in 2015 at the Hospital of
Braga (Portugal). This study was approved by the ethics committee
of the University of Minho and Hospital of Braga and the sample
was collected after the patient signing an informed consent.

2.2. Solutions

All solutions were prepared using Milli-Q grade water (18.2 MQ)
purified by a milli-QTM system (Millipore). Phosphate buffer saline
(PBS) solution (137 mM NacCl, 2.7 mM KCl, 81 mM NayHPO4 and
1.47 mM KH,PO4) with an adjusted pH 7.6 was used for the selec-
tion/isolation and characterization of the DNA aptamer and with
pH 7.4 for the development of the electrochemical aptasensor. A
solution of urea (7 M) was prepared in PBS buffer pH 7.6 (elution
buffer). EDC (200 mM) and NHS (100 mM) stock solutions were
prepared and stored at —20 °C until use. Stock solution of strep-
tavidin (1 mg mL™!) was prepared in PBS (pH 7.4) and stored
at —20 °C. Stock solutions of DPA (200 nM) and ETA (100 mM) were
stored at 4 °C. Stock solutions of each protein were prepared ac-
cording to the manufacturer specifications and stored at —20 °C.
The protein working solutions were obtained by adequate dilutions
with PBS buffer (pH 7.4) and stored at 4 °C until use. The electro-
chemical probe [Fe(CN)s]*>7*", consisting of 5 mM of K3Fe(CN)g and
K4Fe(CN)g (1:1), and KCI (10 mM) in PBS (100 mL), with an adjusted
pH of 7.4, was prepared daily. Stock solutions of DNA aptamer
(100 uM) were prepared with RNase water and stored at —20 °C.
The working solutions were prepared before each assay by dilution
of those solutions with fresh PBS and stored at 4 °C until use. Before
the fluorescence assays and immobilization on the gold working
electrode, the DNA aptamer was subjected to a temperature
treatment (95 °C during 5 min; 4 °C for 5 min and 10 min at room
temperature) to obtain an adequate structure flexibility of the
aptamer enabling its interaction with streptavidin on the gold
electrode surface.

2.3. ssDNA library, primers and aptamer sequences

A 70-base single-stranded DNA (ssDNA) library purified by
polyacrylamide gel electrophoresis (PAGE) containing 10" random
sequences and the primer-binding sites were synthesized by Alfa-
gene (Portugal). Each sequence of the library contains a central
region of 30 random nucleotides (nt) flanked by two 20 nt primer
hybridization sites (5'- GGG GGT GGT ACC AGA GAT GC-N3p-CAG
AGA GGA GGT ACC GTG GG-3'). A forward primer (5’- GGG GGT GGT
ACC AGA GAT GC-3’) and a reverse primer (5’- CCC ACG GTA CCT
CCT CTC TG-3’) were used in the PCR amplification of the selected
aptamer pool. The selected DNA aptamer sequence was modified
with 6-carboxyfluorescein (5’-6-FAM- TGT GTG CGG CAC TCC AGT
CTG TTA CGC CGC-3’) and biotinylated in the 5'-end (5’-Biotin-TGT
GTG CGG CAC TCC AGT CTG TTA CGC CGC-3’). These modified se-
quences were provided by Integrated DNA Technologies (Belgium).

2.4. Apparatus and electrodes

The pH was measured using a pH meter (iHANNA instruments
pH 211). ssDNA and DNA plasmid were quantified using a Nanodrop
1000 (Thermo Scientific). The fluorescence measurements were
conducted in 96-dark-well plates using an ELISA reader (Synergy
HT, BIO-TEK, IZASA) equipped with thermostat holding tempera-
ture control (accuracy of +0.1 °C) and filters configured to a
wavelength of 492 nm for excitation and 518 nm for emission. The
Gen5™ data analysis software was used for collecting microplate
data. Electrochemical measurements were carried out at room

temperature with a Potentiostat-Galvanostat device (PG580, Uni-
scan Instruments). Screen printed gold electrodes (SPGEs) were
purchased from DropSens (Spain) and consisted in a three-
electrode system with a gold working electrode (diameter of
0.8 mm, reference DRP-CX220), a gold counter or auxiliary elec-
trode and a silver pseudo-reference electrode.

2.5. Procedures

2.5.1. SELEX methodology

The selection of aptamers able to specifically bind rhOPN de-
mands several cycles of isolation using a random ssDNA library
(10—10" different sequences) that interacts with the protein
previously immobilized on a Kieselgur support (25 mg), in each
cycle. Before immobilization, this support was washed three times
with PBS buffer (pH 7.6) and centrifuged at 13500 rpm during
5 min. Depending on the selection cycle, decreasing rhOPN con-
centrations were used: 154 nM for the 1% to the 4™ cycle; 77 nM for
the 5™ to the 8™; and 38 nM for the last two cycles. The pre-washed
Kieselgur support was inoculated with the adequate rhOPN con-
centrations for 6 h at 37 °C with gentle agitation (130 rpm). Then, it
was washed three times with PBS buffer (pH 7.6) and centrifuged at
13500 rpm for 5 min. To confirm the success of the immobilization
step, the supernatant was collected and analyzed by poly-
acrylamide gel electrophoresis (PAGE). The Kieselgur support with
immobilized rhOPN was dried at 37 °C (=18 h) and was then ready
to be used for inoculation with the ssDNA library. In each selection
cycle the ssDNA pool was prepared as follows. First, the ssDNA pool
in PBS buffer (pH 7.6) was denatured (heating to 95 °C for 5 min)
and then immediately cooled to 4 °C for 15 min, and finally kept at
room temperature for 5 min. Second, the re-natured ssDNA pool
was filtered through a 0.45-um nitrocellulose filter to remove all
filter-binding molecules (negative selection). Afterwards, the
ssDNA library (1% cycle) or the DNA bound rhOPN (2™ to 9 cycle)
was incubated with the immobilized rhOPN. These DNA solutions
contained approximately 5 uM in 1%t cycle; 7 uM in the 2" to the 5™
cycles; 3 M in the 6 to the 9™ cycles; and 1 uM in the 10 cycle.
Following 4 h of incubation with the rhOPN (37 °C and 130 rpm),
three washing steps with PBS buffer (pH 7.6) (centrifuged at
13500 rpm during 5 min) were performed to remove the unbound
ssDNA. The bound ssDNA was eluted using a urea solution (7 M)
and heat treatment (95 °C for 5 min) twice. The eluted ssDNA was
precipitated by adding sodium acetate (0.3 M) and 2.5 vol of 95%
ethanol; centrifuged at 13500 rpm, at 4 °C for 5 min, and the pellet
was washed twice with 70% ethanol. The recovered ssDNA was then
amplified by PCR, ethanol-precipitated (as described above), and
separated into single-stranded sequences (through heat treatment
at 95 °C for 10 min) for the next selection cycle. The final concen-
trations used in the PCR reaction were as follows: PCR buffer (1x),
dNTP mix (200 uM), forward primer and reverse primer (0.4 uM
each), ssDNA pool (10—100 ng uL~1), and Taq DNA polymerase (2.5
U pL~1). The initial denaturation step was conducted at 95 °C for
90 s, proceeded by 30 cycles (denaturation, annealing and exten-
sion) at 95 °C for 1 min, 53 °C for 30 s and 72 °C for 30 s, followed by
a final extension at 72 °C for 2 min and then temperature was
lowered to 4 °C. After the 10™ selection cycle, the ssDNA pool
recovered was cloned using the TOPO TA Cloning Kit. Nineteen
colonies were randomly picked, purified and sequenced. Plasmids
were purified using the GRS Plasmid Purification Kit and were
sequenced at Macrogen Corporation (The Netherlands). The sec-
ondary structure analysis of the isolated aptamers was established
using the MFold online available tool (http://mfold.rna.albany.edu/?
gq=mfold/DNA-Folding-Form) setting up the conditions Na* con-
centration of 0.146 M at 37 °C [42].
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2.5.2. Determination of the isolated DNA aptamer affinity to rhOPN

The DNA aptamer C10K2 modified with 6-carboxyfluorescein
(FAM) in the 5’-end was subjected to heat treatment (95 °C dur-
ing 5 min, 4 °C for 5 min and 10 min at room temperature) before
each fluorescence assay. Initially, different concentrations of FAM-
DNA aptamer were used to determine the contribution of the free
aptamer to the overall fluorescence and to later estimate its con-
centration in the aptamer-protein complex studies. The DNA
aptamer concentrations (varying from 2.5 to 100 nM) were stored/
incubated for 30 min or 4 h at room temperature. Afterwards, these
solutions were excited at 492 nm and the fluorescence was
measured at 518 nm. These assays allowed establishing the cali-
bration curves that relate the fluorescence intensity and FAM-DNA
aptamer concentrations for both incubation times. To determine
the fluorescence intensity of the aptamer-protein complexes, the
FAM-DNA aptamer concentration was fixed by varying the rhOPN
concentrations. In each fluorescence assay, 60 L solution of FAM-
DNA aptamer (20 nM) were incubated with the same volume of
different concentrations of rhOPN (0, 3, 10, 22, 100, 300 and
370 nM) prepared in the same buffer [43,44], in 96-dark-well
plates. The mixtures were incubated at room temperature for two
different incubation times. The mixture was excited at 492 nm and
the fluorescence was measured at 518 nm. The analysis of the
fluorescence data and the confirmation of the aptamer-rhOPN
complex formation by means of dissociation constant (Kg) esti-
mation was performed as previously described [41] and were sta-
tistically analyzed using the Z-test [45].

2.5.3. Development and evaluation of the DNA aptasensor

The DNA aptasensor was developed according to the procedure
described by Meirinho et al. [41]. Briefly, it includes the cleaning
and functionalization with streptavidin and immobilization of the
isolated DNA aptamer onto the working electrode surface via
streptavidin-biotin interaction, followed by the incubation of the
rhOPN protein with the aptamer. Despite some complexity of the
procedure, the aptamer immobilization via streptavidin-biotin
interaction has been chosen based on the known advantages of
the methodology, previously reported in the literature [46—50].
These include the need of very low amounts of biotinylated
aptamer [47]; the fact that it is less affected by changes of buffer
concentration, pH, denaturants and high temperatures; as well as
the decrease of non-specific adsorption and improvement of the
signal-noise ratio [48,49]. However, it is important to mention that
other options could have been evaluated to immobilize the aptamer
onto the gold electrode surface, such as via Au-S bond for instance.

2.5.3.1. Cleaning and functionalization of the working electrodes.
The electrode was electrochemically cleaned by a series of oxida-
tion and reduction cycles using three solutions (H,SO4 (0.5 M), KCI
(0.01 M)/H2S04 (0.1 M) and H,SO4 (0.05 M)), under a potential
range between —0.3 and +1.5 V at a scan rate of 0.1 V s~! until a
representative cyclic voltammogram of a clean gold electrode was
obtained. To functionalize the cleaned working electrode for the
DNA aptamer immobilization, the electrode was incubated with
DPA during 30 min at room temperature and then rinsed with
deionized water for 1 min. The carboxylic groups of the self-
assembled monolayer formed were activated with EDC and NHS
(1:1 v/v) during 60 min at room temperature. Then, the working
electrode was exposed to a streptavidin solution overnight at 4 °C,
enabling the binding of the amine groups. Finally, the functional-
ized working electrode was exposed with ETA during 20 min at
room temperature to block any remaining active carboxyl groups.

2.5.3.2. Immobilization of the DNA aptamer and interaction with the
protein. Prior to the immobilization, the DNA aptamer solution

prepared in PBS buffer was subjected to heat treatment (95 °C
during 5 min, 4 °C for 5 min and 10 min at room temperature) to
obtain an adequate flexible aptamer structure for interacting with
the streptavidin on the gold electrode surface. Then, DNA aptamer
(5 pL, 4 nM) was placed on the cleaning working electrode, fol-
lowed by a rinsing step with PBS buffer (pH 7.4) to remove the
unbound DNA aptamer. Next, rhOPN (5 pL, 1540 nM) was dropped
on the working electrode and kept during 60 min (incubation time)
for enabling the formation of aptamer-protein complex. After that,
the electrode surface was washed with PBS solution to remove the
unbound protein. Details regarding the optimal concentration of
DNA aptamer and the incubation time for the formation of
aptamer-protein complex are given as supplementary material.

2.5.3.3. Evaluation of the DNA aptasensor in standard solutions.
The sensitivity of the aptasensor was evaluated using rhOPN solu-
tions prepared by serial dilutions in PBS at pH 7.4. The concentra-
tions tested were 25, 50, 100, 200, 400, 801 and 1540 nM. Several
SPGEs modified with DNA aptamer (4 nM) were incubated with
different rhOPN standard solutions during 60 min at room tem-
perature. The sensitivity of aptasensor was evaluated through the
calculation of the detection limit (LOD) and quantification limit
(LOQ), based on the linear relationship obtained between relative
current change (Al %) values of the oxidation peak current and the
different rhOPN concentrations through the equations LOD = 3 x
SD/b and LOQ = 10 x SD/b, respectively, where SD is the standard
deviation of the intercept and b is the average slope of the
regression line [51].

The stability, reproducibility, reusability and specificity of the
aptasensor were examined by CV. The specificity of the aptasensor
was established by measuring and comparing the response of the
DNA aptamer to rhOPN and to other non-specific proteins with
different molecular weights (MW) and isoelectric points (plI).
Different SPGE modified with DNA aptamer (4 nM) were tested
with each individual protein, all at a concentration of 200 nM. The
non-specific proteins tested include BSA, THR, LYS and rbOPN. The
stability of the aptasensor was investigated over time during 20-
days by using three SPGE modified with 4 nM DNA aptamer and
further incubated with 1540 nM rhOPN. The aptasensor was stored
at 4 °C and subjected to electrochemical measurements every 5
days. The reproducibility of the aptasensor was studied at a rhOPN
concentration of 200 nM and 1540 nM using five different SPGE
prepared in different days and three different SPGE prepared in the
same days. The reusability of the aptasensor was evaluated through
the analysis of successive cycles of regeneration of the binding
surfaces. To regenerate the aptasensor, NaCl (2 M) and urea (7 M)
were evaluated. Three different SPGE modified with DNA aptamer
were incubated with rhOPN (1540 nM), then incubated with the
regenerate reagent (2 min at room temperature) and then again
incubated with rhOPN for 5 times. The cyclic voltammogram was
recorded before and after the incubations with the regeneration
reagent.

2.5.3.4. Evaluation of the DNA aptasensor in complex biological
samples. The potential ability of the DNA aptasensor to detect
rhOPN was further evaluated using synthetic human plasma sam-
ples and both CV and SWV techniques and in real human plasma
sample applying only the SWV technique. Two different assays
were carried out using different SPGEs modified with DNA aptamer.
First, increased known amounts of rhOPN were added to synthetic
human plasma solutions and the sensitivity was evaluated through
the calculation of the LOD and LOQ values. Afterwards, a series of
the synthetic human plasma solutions and real human plasma so-
lutions spiked with rhOPN solutions of known concentrations were
prepared to estimate the rhOPN recovery. The results obtained
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using the aptasensor were compared with standard Enzyme-
Linked Immunosorbent Assay (ELISA) method using a comercial
available Quantikine ELISA kit, following the guidelines of the
manufacturer.

2.5.3.5. Electrochemical measurements. All electrochemical mea-
surements were performed at room temperature, using [Fe(CN)6]3’/
4 solution (60 pL) as electrochemical probe, in which the three
electrodes (working, counter and reference) were dipped. The
electrochemical analysis was performed by CV and SWV. The CV
was used in all stages of the development of the aptasensor using a
potential range of —0.5 to +0.6 V and with a scan rate of 50 mV s~
while SWV was only used to confirm the electrochemical behavior
after each preparation step of the aptasensor development using
the following conditions: amplitude 50 mV; potential range —0.5 V
to +0.6 V; scan increment 5 mV and frequency 100 Hz.

In both techniques, the decrease in peak current was calculated
based on the relative current change (Al %) considering the peak
current values obtained after aptamer immobilization and protein
incubation of the cyclic and SWV voltammograms recorded using
the equation (1):

Al %= (Io - I)/Ip x 100 (1)

where 41 is relative current change (%); Ip and I; represents the
current before and after the sample incubation, respectively.

3. Results and discussion
3.1. Isolation of DNA aptamers against rhOPN

The SELEX procedure was used to isolate and identify DNA
aptamers with affinity and specificity against rhOPN. This meth-
odology can be used to isolate both RNA and DNA aptamers. The
selection of RNA aptamers is more expensive, complex and time
consuming than of DNA aptamers, mainly due to the chemical
modifications required to increase its nuclease resistance, as well as
to additional transcription and reverse transcription steps [52,53].
In the current work, 10 selection cycles were conducted. The bound
aptamers sequences were cloned in the vector pCR2.1-TOPO and 19
clones were isolated and sequenced. These aptamers can poten-
tially be used as biorecognition elements for the development of
rhOPN aptasensors. The sequences of the isolated aptamers are
typically examined taking into account their homology, lowest
Gibbs energy and ability to form stable secondary structures
considering the aptamer full-sequence (70 nucleotides (nt)) or the
random region (30 nt). All the 19 DNA aptamer sequences exhibited
avariable region with 30 nt (Table 1). These sequences were further
aligned based on the common trinucleotide sequence (TGT) and
were classified into seven groups taking into account their ho-
mology. Although the clones C10K9, C10K3 and C10K5 only pre-
sented a partial TG nucleotide, given their homology with the group
(inserted in groups II, Il and V, respectively), they were included in
the analysis (Table 1). Since the trinucleotide was not found in the
constant regions of the sequences, these regions were not consid-
ered in the analysis. From Table 1, it can be seen that the sequences
C10K2, C10K12, C10K5 and C10K20 present higher homology
compared to sequences of the same group. The sequence C10K2
exhibits 80% of homology with the clones C10K1 and C10K10.

The aptamer sequences were analyzed using the MFold online
tool [42]. This tool predicts their potential secondary structures
calculating the lowest Gibbs free energies and the number of
structures that can be formed using the same conditions as those
used for the selection. Table 1 also shows the lowest Gibbs free
energy values calculated taking into account both the random

(30 nt) and full sequence with conserved regions (70 nt) for all the
DNA aptamers isolated. The sequences exhibiting higher Gibbs free
energy values (4G) (i.e. lower stability) and with multiple possible
secondary structures were not chosen for further characterization.
Moreover, although the sequences C10K2, C10K9, C10K3, C10K?7,
C10K5, C10K15 and C10K18 exhibited the lowest 4G values in the
analysis with 70 nt, multiple structures could be formed. Analysing
only the random region (30 nt) (Table 1), the sequences with the
lower 4G values were C10K2, C10K7 and C10K15 and these were
found to form a stable secondary structure (data not shown). On the
other hand, the sequence corresponding to the constant regions
could be involved in the aptamers functional secondary structure
conferring it stability [54,55], thus an analysis comprising these
regions was also conducted. When adding parts of the conserved
region to the random region it was found that only the sequences
C10K2, C10K7, C10K15 and C10K18 presented an increase in the 4G
value (—4.41 (35 nt), —3.18 (50 nt), —2.65 (35 nt) and —3.92
(40 nt) Kcal moL~!, respectively) and the formation of a single
secondary structure (data not shown). In the stem-loop structure of
this sequence, it could be observed the common trinucleotide
(TGT), thus suggesting that this trinucleotide could be involved in
the specific binding site to the rhOPN protein. Therefore, the C10K2
clone sequence was chosen for the following studies since it
showed the lowest 4G value and the same stable stem-loop sec-
ondary structure (Fig. 1). Stem-loop structures are important as
binding regions of the DNA or RNA aptamers to their targets and the
consensus motifs are often located in these structures [56]. To date,
only one RNA aptamer presenting a stem-loop secondary structure
was reported to specifically recognize OPN [20]. Some researchers
argue that the RNA is more reliable for aptamer identification, since
structures are more diverse than those obtained with DNA, mainly
due to the presence of 2’-OH group and non-Watson—Crick base
pairing in RNA. RNA aptamers are more flexible than the DNA
molecules and can offer a wider range of conformational diversity.
However, the RNA is more susceptible to nuclease degradation,
which can restrict its use in the presence of biological fluids. On the
other hand, the DNA aptamers are considered naturally more
robust than RNA aptamers due to the absence of the hydroxyl group
at their 2’-end [57], displaying high stability for biological appli-
cations [52,53,55,58,59].

3.2. Determination of the affinity of the isolated DNA aptamer to
rhOPN

Fluorescence binding assays are suitable methods to determine
the dissociation constants of aptamer-protein complexes, and are
very simple methods only requiring the modification of the
aptamer with a fluorescent dye molecule [43,60]. The dissociation
constant (Ky) of the isolated DNA aptamer (C10K2) was determined
taking into account the fluorescence intensity of the free aptamer
and the aptamer-protein complex formed, using the method pre-
viously described [41]. The DNA aptamer (C10K2) was modified
with 6-carboxyfluorescein (FAM). The fluorescence intensity of the
free aptamer was measured at increasing concentrations of FAM-
DNA aptamer in solution. Fig. 2A shows the two calibration
curves established for the incubation time of 30 min and 4 h,
respectively. The calibration curves obtained at the two time pe-
riods for the free aptamer were similar. The fluorescence intensity
of the aptamer-protein complex was measured after the inocula-
tion of the aptamer with different rhOPN concentrations. The total
fluorescence of the aptamer-protein complex formed versus the
rhOPN concentration is plotted in Fig. 2B. As can be inferred, the
fluorescence increased with increasing rhOPN concentrations for
the two abovementioned incubation periods. Moreover, it was
found that the total fluorescence was greater for the assays in



Table 1
Nucleotide sequences of the clones obtained from the 10™ cycle of selection. The sequences listed correspond to the 30 nucleotides random region (30 nt) of each ssDNA aptamer isolated. The regions were aligned based on the
TGT trinucleotide.

Clone Full vs random aptamer sequence
Variable region (5' to 3') Homology 70 nt / 30 nt

Name Possible AG
Group I (%) structures (Kcal mol™)

C10K1 G A A/GT -/ G6GG@&T cT AT -ATIGT CHEGEEN A C GG CCAT|C 67 2/5 2.81/0.62

C10K2 i - EGN - G T G C€C GG -|/clA|Cc T C CA G T  CHEEENET A CGC C|(G -|C 80 4/1 -4.89/-421

C10K10 T c/G T|T G T G|T C|/G T T G/C T AA A G A CHEEEENNG G C T|C 63 3/3 -3.99/-0.02
Group II

C10K9 GG G AClGGTTTAGATC|G THE-/G T CTTGGICTTGC 57 1/2 -4.31/-1.49

C10K4 AT AT CCT AT GG A TG AT G A|T €CT A G -JEEGENNG T C C 60 3/1 -2.15/-0.80

C10K12 GGG T T GG -/T GG GCG|T 6T AGT THENMEENG C CTTG A C 70 4/1 3.01/-1.20
Group ITI

C10K3 G T JGRECEN c GEETRGEN A AN T PAN c RN - ECRECEEGEEE T T C c [EEcE A ¢ 63 3/1 -4.07/-1.54

C10K16 € A CT|€C A -|G T(AG'T A G A G| THEEEEENCC| C T A - G e @ 63 7/3 -2.29/-0.50

CI10K17 € C AlGCEC A -|GT GAT -G G A THESENNC GG T G G T G T G T|C 63 5/1 -3.04/-1.96
Group IV

C10K7 C AT AA|C - Ac|G G|T A/A T T GHEEENG A A Cc/C G C|T G TG 53 212 -3.66 /-2.06

CIOK11 G c ccCcCG T G A G/A AT GHEEEHEEN T T|/G G TG G'T G T G 53 4/1 -243/-1.55

C10K6 T|6G € T G T G|T GEEESEENN C| A G G € C AT G T|TTCGTGTC 50 5/3 -1.08/0.17
Group V

C10K20 T G C T A CAACACTTG G A ANNNENEC A/ C G CT G G T C 73 9/3 -1.19/-0.01

C10K14 AlG/G T AlG G T|C TACTG - T ARNEEEE-A T Gl - BIMGE c -Gl T G Cc C 57 1/4 -3.18/-0.49

C10K5 G|C A A G C|€C C A C|CAT|C A G T|A ARNENEE- G ¢ cRET & @ T @ k] 2/2 -4.58/-1.66

CI0K15 G G G A C|€C A A G G|C|IT/A A C C/ACT - A C|ANENENNG G ClC|C 60 2/1 -5.03/-2.64
Group VI

C10K8 C AlC|T| -/A T G -/CHEEENEC C G T T CT|A G T C T|T G|€ T G C|C 67 1/4 -2.38/0.40

CI0K18 € A -|T C|A CcCc T|CHEEEBNC A G A G|T A/AGT GG -/AC T C|T C 67 32 448 /-1.26

C10K22 T G -|T G C AJEEEN - A G G C|/T T C C C T A|T A € C/G6G T TTASC 47 2/2 -3.42/-0.70

3 Aptamers selected by Systematic Evolution of Ligands by Exponential enrichment (SELEX). ® MFold program was used to calculate the Gibbs free energy (4G) (Kcal mol '), number of predicted structure using
[Na*]=0.146 mol/L, [Mg?*] = 0 mol/L and 37 °C. © The percentage of homology was estimated as the ratio between the number of highlighted nucleotides and the length of the random region. The gaps shown here are indicated
by hyphens.
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Fig. 1. Secondary structure of the selected DNA aptamer. The DNA aptamer sequence of C10K2 with 70, 30 and 35 nucleotides were analyzed using the MFold software. The
operational conditions considered were a temperature of 37 °C and a Na* concentration of 0.146 M. The resultant stem-loop secondary structures with the lowest free energy

folding are shown. The conserved regions are displayed in lowercase.
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Fig. 2. Fluorescence assays. (A) Calibration curves of FAM-DNA aptamer for two incubation times (30 min and 4 h), and (B) Titration curve of FAM-DNA aptamer with increasing
rhOPN concentrations in PBS buffer pH 7.6 at 30 min and 4 h. The concentration of the DNA aptamer was 20 nM.

which 4 h of incubation was used, thus proving an increased for-
mation of the aptamer-protein complex. However, 30 min of in-
cubation was sufficient to obtain an aptamer-protein interaction.
These results suggest that the total fluorescence is due to both non-
bound aptamer and aptamer-rhOPN complex. Therefore, assuming
that only one aptamer-rhOPN high affinity-binding site exists, Kq
values of 2.5 and 1.1 nM were estimated for 30 min and 4 h,
respectively. The relative standard deviation (RDS) of three exper-
iments was lower than 5% for the two incubation periods,
demonstrating that the DNA aptamer has a high affinity for rhOPN
for both incubation periods studied. The Ky values herein deter-
mined for the DNA aptamer are of the same order of magnitude as
those previously obtained for the RNA aptamer [41]. Furthermore,
based on the standard errors of the estimated Ky values for both
aptamers, no statistical significant differences were found (P-
value > 0.230, for Z-test, for 30 min and 4 h incubation times).
Nevertheless, it should be noticed that the DNA aptamer showed
higher fluorescence intensities (ranging from 1390 to 1530 au)
(Fig. 2B) than the RNA aptamer (ranging from 700 to 1200 au), for
the same concentration levels [41].

To confirm the specificity of DNA aptamer for rhOPN, the same
fluorescence experiments were conducted with other proteins
(thrombin (THR), bovine serum albumin (BSA) and recombinant
bovine osteopontin (rbOPN)). In these experiments, 20 nM of DNA
aptamer was incubated with different concentrations of THR, BSA
and rbOPN for 30 min and 4 h, respectively. No titration curves
could be obtained using the total fluorescence measured after
interaction of the DNA aptamer with those proteins and so, it was
not possible to estimate the respective dissociation constants. Thus,
it can be concluded that the DNA aptamer exhibits high specificity
for rhOPN.

3.3. Characterization of aptasensor

The CV and SWV techniques were used to determine the elec-
trochemical behavior and monitor each step of the aptasensor
development. The Fig. 3 illustrates the voltammograms obtained by
CV (Fig. 3A) and SWV (Fig. 3B), using the solution of [Fe(CN)5]3’/4’
as electrochemical probe, for three experimental steps: bare Au
electrode, DNA aptamer and DNA aptamer-rhOPN protein. Detailed
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Fig. 3. Immobilization of the DNA aptamer onto the working gold electrode via streptavidin-biotin interaction. A) Cyclic voltammograms and B) Square wave voltammograms of
5 mM [Fe(CN)s]> /4~ probe in PBS buffer solution of pH 7.4 at a scan rate of 50 mV/s for aptasensor preparation steps: bare Au electrode, DNA aptamer and DNA aptamer-rhOPN

protein.

information about voltammetric changes occurring during all steps
of the aptamer immobilization in the electrode surface, as well as
for rhOPN detection, can be found in the supplementary material
(Fig. S2 and Table S1). Globally, the voltammograms profiles for CV
and SWV showed a similar trend of peak current intensities, thus
evidencing that both techniques are adequate to monitor the
electrochemical changes during aptamer preparation and analysis.
However, since SWV (Fig. 3B) is more sensitive than CV (Fig. 3A),
the differences observed between plots are more pronounced.
Table 2 summarizes the electrochemical parameters, namely the
potential variation between cathodic and anodic peaks (AEp), the
cathodic peak current value (Ipc) and anodic peak current value
(Ipa) calculated using the cyclic voltammograms and the peak
current (Ip) calculated using the forward and reverse current of the
square wave voltammograms. The results correspond to the mean
values (+standard deviation) obtained from assays using different
SPGEs and prepared in different days.

A characteristic quasi-reversible electrochemical cyclic voltam-
mogram of the [Fe(CN)g]>~/#~ redox solution at the bare gold
electrode was observed (Fig. 3A), with a peak-to-peak separation
AEp of 100 mV and similar cathodic and anodic peaks current in-
tensities (Table 2). Fig. 3B also shows that the bare gold electrode
presented a high peak current intensity (Ip 102.1 pA) for the redox
probe and exhibited maximum peak intensity at the potential
0.070 V. The step corresponding to the DNA aptamer immobiliza-
tion on the working electrode gold surface showed an increase of
the 4Ep and lower peaks current intensities compared to the bare

Table 2

gold electrode. This probably occurs due to the negative charges of
the aptamer backbone phosphate group and [Fe(CN)5]3’/4* redox
probe. Indeed, the electrostatic repulsive interaction is expected to
block the electron transfer [61]. These results suggest that the DNA
aptamer was successfully assembled on the working electrode gold
surface. Next, the SPGE modified with the DNA aptamer was
incubated with a standard rhOPN solution (1540 nM) and signifi-
cant changes of the voltammograms could be observed.

In rhOPN analysis, CV technique showed the highest potential
variation between peaks and the lowest peak current intensity
compared with the bare gold surface electrochemical values
(Table 2). Similar trends were found for the SWV analysis, in which
it was observed a higher decrease of peak current intensity (54.8%
compared to that of the bare gold surface) and a lower potential
value (+0.06 V). These significant changes observed in the two
electrochemical techniques strongly evidence that the formation of
the aptamer-rhOPN complex can alter the permeability of the layer
towards the charged redox solution and consequently the rate of
their diffusion [62]. The higher decrease (negative readout signal)
in the peaks current intensities after rhOPN incubation can be
associated with the high specificity of the DNA aptamer to rhOPN
and this specific interaction can lead to a change of the aptamer
structure and conformation.

The optimal concentration of DNA aptamer to be immobilized
onto the working electrode, as well as the best incubation time for
enhancing the rhOPN interaction with the surface-bound aptamer
were evaluated as previously described [41]. Details regarding

Electrochemical parameters obtained after each electrode surface preparation step obtained using the by CV and SWV techniques in three experimental steps: bare Au

electrode, DNA aptamer and DNA aptamer-rhOPN protein.

Steps cv SWV

4Ep (mV) Ipa (pA) Ipc (nA) Ip (nA)
Bare gold 100 + 10 6.9 + 0.5 69+ 04 102.1 + 2.9
DNA aptamer 133+6 59+03 6.5+ 02 66.7 + 0.3
rhOPN 230+ 10 41+0.2 49+03 46.2 + 0.2

AEp - potential variation between cathodic and anodic peaks; Ipc - cathodic peak current value; Ipa - anodic peak current value; Ip — Peak current intensity (Ip = If — Ir); If -

forward current; Ir - reverse current.
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these optimization experiments are given as supplementary ma-
terial (Fig. S1). The results showed that the optimal aptamer con-
centration and incubation time were 4 nM and 60 min, respectively.
These conditions were found to be similar to those previously re-
ported for a RNA aptamer [41].

3.4. Evaluation of the DNA aptasensor using standard solutions

The sensitivity of the DNA aptasensor was evaluated taking into
account its response (Al % values) to standard solutions containing
different amounts of rhOPN, using [Fe(CN)6]>7#" as electrochemical
probe. Each rhOPN assay was carried out using different SPGEs. The
CV and SWYV assays showed a decrease in the current response with
increasing concentrations of rhOPN (Fig. 4A and B). Fig. 4C illus-
trates the AI % values as a function of the rhOPN concentration. The
results show increasing values of Al % with the increase of the
rhOPN concentration, in the range between 25 and 1540 nM for CV
and between 12 and 1540 nM for SWYV, reaching signal saturation
near 400 nM, for both techniques. For CV, a linear correlation could
be established (R? = 0.999) for a dynamic concentration range from
25 to 100 nM (Al % = 0.201 (+0.003) x [rhOPN, nM] + 1.504
(+0.180)). Based on the regression parameters [51], the detection
and quantification limits were calculated as 2.6 + 0.3 and
79 + 1.0 nM (~169 ng mL~! and ~514 ng mL~!)’, respectively. The
linear correlation for the SWV technique could be established
(R? = 0.999) for a dynamic concentration range between 12 and

3 Reported OPN levels in ng mL~! were converted to OPN levels in nM, assuming
an OPN molecular weight of 65 kDa.

100 nM (Al % = 0.122 (+0.001) x [rhOPN, nM] + 6.13 (+0.04)), being
the detection and quantification limits equal to 1.4 + 0.4 and
4.2 + 11 nM (~91 ng mL~! and ~267 ng mL~1)?, respectively. Thus,
as expected, the SWV technique allowed an increase in the sensi-
tivity of the proposed aptasensor, enabling a faster analysis with
lower LOD and LOQ values compared to the CV technique. It should
be pointed out that, based on the LOD and LOQ values determined
and taking into account the reported values of OPN (up to
290 ng mL™') in breast cancer patients (including in patients with
metastatic and recurrent breast cancer [11]), it could be concluded
that although both electrochemical techniques could be used to
detect OPN levels in people suffering from cancer, only SWV could
be applied for quantification purposes. In addition, compared to
previous works on rhOPN detection (Table S2), the proposed DNA
aptasensor exhibited a better detection limit than the RNA apta-
sensor previously developed by Meirinho et al. [41], but still higher
than those reported by other researchers using different tech-
niques, type of electrodes and biosensor preparation methodolo-
gies (e.g.,0.17 nM [63] and 10.7 ng mL~" (~0.2 nM)? [38]). However,
it should be noticed that in the studies of Cao et al. [38] and Chen
et al. [63], the working electrode surfaces were greater that those
used in the RNA aptasensor of Meirinho et al. [41] and also in the
DNA aptasensor herein described. Indeed, the later works envis-
aged the biosensor miniaturization, with a substantial impact on
the amounts of reagents and samples volumes required for the
detection. Finally, the use of antibody-based biosensors (immuno-
sensors) to detect a protein presents some drawbacks such as their
production, stability, modification, washing steps and reagents
requirement that are sensitive to temperature and expensive [64].
Therefore, the use of aptamers still is a good alternative.
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The aptasensor stability was evaluated through the detection of
the electrochemical signal of three SPGEs stored at 4 °C during
different time periods. When compared with the initial Al % value,
the response after 5, 10, 15 and 20 days was found to retain 94.3%,
94.7%, 92.1% and 90.5% of the original value, respectively, thus
demonstrating a good stability of the aptasensor response along
time. The results showed that the Al % only decreases about 10% of
the original value after 20 days of storage in buffer at 4 °C. After 10
days, the stability of the DNA aptasensor was higher than that
obtained with the RNA aptasensor (that retain 88%) previously
reported [41]. This interesting gain in stability may be due to the
fact that the RNA aptamer sequences are more susceptible to
degradation by nucleases than the DNA aptamers [24,65]. In addi-
tion, the method herein proposed showed satisfactory intra-day
repeatability. Indeed, the electrochemical signals recorded with
three SPGE prepared in the same day and inoculated with 200 nM
and 1540 nM rhOPN, showed relative standard deviations (RSD) of
4.7% and 5.7%, respectively. Furthermore, the method also showed
satisfactory inter-day repeatability since, for five SPGE prepared in
different days, the electrochemical signals recorded for 200 nM and
1540 nM showed a RSD of 4.2% and 5.0%, respectively. For evalua-
tion the possible regeneration of the aptasensor, considering
that aptamers can be denatured several times without losing its
function tests using two regenerate reagents (NaCl and urea)
[64,66,67] were carried out and the Al % values obtained after
aptamer-protein binding (rhOPN analysis) and after incubation
with the regenerate reagents, were found to be statistically the
same. Therefore, the regenerate solutions used were not effective in
disrupting the aptamer-protein complex without degradation of
the aptamer.

The selectivity is crucial to evaluate the aptasensor performance
and it can be assessed by comparing the DNA aptamer binding with
the specific protein (rhOPN) and with non-specific proteins. Non-
specific binding to the aptasensor leads to high background sig-
nals, decreasing its performance. Four proteins (THR, BSA, rbOPN
and LYS) were evaluated as possible interferents. These proteins
were chosen taking into account their molecular weights and iso-
electric points, as well as their distinctive features that can affect
the aptasensor performance. THR was used since the OPN has a
conserved thrombin cleavage domain (RSK (arginine!®8-lysine!”%)
adjacent to the RGD domain) and it is a secreted serine protease
found in the human blood [6,7]. BSA is inert and similar to the
human serum albumin (HSA) also present in human blood [68] and
in high concentrations in serum samples [69]. rbOPN was used
since its cDNA sequence holds a high degree of homology with
rhOPN [4,70]. Finally, LYS was used as a control protein since it
possesses the lowest MW and highest pI compared with all the
other proteins studied and it is known to non-specifically bind to
nucleic acids [69]. The relative current response (Al %) for the
interferent proteins tested was found to be negligible as compared
to the unique binding response obtained with rhOPN (Fig. 5). The
results clearly demonstrate the great DNA aptamer sensitivity and
specificity to rhOPN. This DNA aptasensor showed a better selec-
tivity for THR, LYS and similar for rbOPN than the one obtained with
the RNA aptasensor previously reported [41]. The slightly higher
response towards THR may be tentatively attributed to the possible
aptamer cross-reactivity, which may be enhanced since OPN con-
tains a THR cleavage domain [7]. These results suggest that this
aptasensor could be used to detect rhOPN in biological samples
such as blood, plasma or serum.

3.5. Use of the DNA aptasensor to detect rhOPN in complex
synthetic and real biological samples

The applicability of the proposed method to analyze the

30

me

rhOPN THR BSA

Proteins

rbOPN LYS

Fig. 5. The relative current response (Al %) to non-specific proteins (200 nM): BSA —
bovine serum albumin, LYS — lysozyme, rbOPN — bovine osteopontin and THR-
thrombin and for specific-protein thOPN — human osteopontin. Error bars corre-
spond to the relative standard deviation of three independent experiments.

presence of rhOPN in synthetic human plasma solutions was also
studied, allowing the assessment of the DNA aptasensor perfor-
mance in more realistic samples. The response of the DNA apta-
sensor was evaluated by CV and SWV (Fig. 6A and B, respectively)
showing a current intensity decrease trend with the increase of the
rhOPN concentration, similarly to those previously observed for the
rhOPN standard solutions prepared with PBS buffer (pH 7.4). In this
study, as in the study with standard solutions, the sensitivities
obtained by the two electrochemical techniques used are statisti-
cally different (P-value < 0.001). Based on the calibration curves
established using the synthetic plasma solutions (Fig. 6C), and
contrary to CV, it could be found that for SWV, lower detection and
quantification limits (1.3 + 0.1 nM (~85 ng mL™)* and 3.9 + 0.4 nM
(~245 ng mL~1)*, respectively) were obtained as compared to the
rhOPN standard solutions. The better performance observed in
complex medium (i.e., human synthetic samples) strengthen the
confidence that the DNA aptasensor developed coupled with SWV
could be used for detecting and quantifying OPN levels in breast
cancer patients, for whom levels up to 290 ng mL~' have been
reported. Also, for the assays with synthetic plasma samples it was
verified that the slope of the calibration curve for SWV is 4 times
higher than that obtained by CV, thus confirming the expected
higher sensitivity of the SWV technique.

Finally, the results of the rhOPN recovery assays (Table S3)
pointed out that for both electrochemical techniques similar and
satisfactory recoveries were obtained (ranging from 44.3% to 80.8%
for CV and from 61.2% to 89.1% for SWV), which were in accordance
with the recoveries achieved with the standard ELISA method
(from 69.1% to 156.5%). These results demonstrate that the apta-
sensor also presents a very satisfactory performance in the pres-
ence of complex samples, such as the synthetic human plasma.

Furthermore, a sample of human plasma was also analyzed
using both methods (i.e., DNA aptasensor and ELISA method) and
the results obtained for SWV showed that the aptasensor and the
standard ELISA method quantified (using the standard addition
method) similar OPN levels in the real plasma sample (2.2 + 0.7 nM
(~141 ng mL~)* and 1.7 + 0.1 nM (~108 ng mL 1), respectively).
This preliminary satisfactory performance pointed out that the DNA

4 Reported OPN levels in ng mL~' were converted to OPN levels in nM, assuming
an OPN molecular weight of 65 kDa.
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Fig. 6. Response of the DNA aptasensor by CV (A) and SWV (B) using synthetic plasma samples. The insert plot (A) represents the oxidation peak. All experiments were performed in
triplicate. The calibration curves based on the Al % values were obtained by CV and SWV (C) and the error bars were indicated on the curve.

aptasensor could be foreseen as a promising analytical tool for the
detection of rhOPN in complex biological samples and within the
concentration levels expected to be found in breast cancer patients.
However, further assays with additional human samples from a
broader donors would be needed to validate the proposed
aptasensor.

4. Conclusions

In this work we proposed a simple and sensitive label-free
electrochemical aptasensor for the detection of rhOPN using a
SPGE modified with a newly isolated DNA aptamer as the bio-
receptor element. The developed aptasensor showed high sensi-
tivity, stability and repeatability being able to detect and quantify
OPN in complex biological samples solutions, within the concen-
tration ranges usually reported in plasma samples from patients
with breast cancer. A DNA aptasensor comprises an efficient and
simple strategy to directly analyze relevant biomarkers in complex
samples, thus enabling a fast and cheap method for diagnosis and
therapy monitoring. Nevertheless, it is expected that combining
this simple strategy with the use of nanomaterials, such as gold
nanoparticles, could greatly increase the performance of these
aptasensors. In addition, the availability of two different aptamers
with different binding sites for the detection of the same protein
could allow the design of different aptasensors, such as sandwich
format and it could enable the development of multiplexed
aptamer arrays, thus increasing the sensitivity and specificity.
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