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Abstract

Epidemiological models and Optimal Control Theory are closely interrelated, inasmuch as

the development of control interventions that could help to perceive and minimize the spread

of infection diseases is a pressing need. However, the application of these two subjects can be

extended to other scientific domains apart from health. In this respect, this dissertation takes

advantage of the foundations of Mathematical Epidemiology and Optimal Control Theory to

study the dynamics of Viral Marketing within a certain population and, with less detail, Computer

Viruses Transmission into network systems.

Due to the fierce marketing competition, not all the marketing campaigns become viral, and

formulate strategies that could leverage traditional marketing campaigns is not a trivial task. In

this regard, since the process of di�using Viral Marketing campaigns through social networks can

be modeled under concepts of Mathematical Epidemiology and being strategy the keyword, the

benefits of Optimal Control Theory on the di�usion of a real viral advertisement are studied and

control strategies to maximize the spread of viral messages with low cost are investigated and

proposed in optimal time windows. Numerical methods based on the Pontryagin’s Maximum

Principle (indirect methods) and methods that treat the Optimal Control problem as a nonlin-

ear constrained optimization problem (direct methods) are tested and compared, using di�erent

numerical solvers.

In an introductory way, Computer Viruses Transmission and its dynamics are briefly studied

by using epidemiological modeling over networks. In addition, an R software package related to

the mathematical modeling of infectious diseases is discussed and the propagation of computer

viruses within a network system is illustrated.

Keywords: Epidemiological Dynamical Systems; Optimal Control Theory; Pontryagin’s Maximum Principle; Math-

ematical Modeling and Optimization; Viral Marketing; Computer Viruses Transmission.

vii



– This page is intentionally left blank –



Resumo

O desenvolvimento de políticas de controlo é crucial para perceber e minimizar a propagação

de doenças infeciosas. Sob este pressuposto, os modelos epidemiológicos e a Teoria do Controlo

Ótimo surgem, cada vez mais, intimamente relacionados. Todavia, a aplicação destes domínios

científicos pode ser estendida a outras áreas do conhecimento. Neste contexto, a presente dis-

sertação estuda não só as dinâmicas do Marketing Viral no seio de uma população, recorrendo

a fundamentos de Epidemiologia Matemática e à Teoria do Controlo Ótimo, mas também, com

menor enfoque, a Transmissão de Vírus Informáticos em sistemas em rede.

Atendendo à crescente competitividade dos mercados, nem todas as campanhas de marketing

se tornam virais. Para além disso, a conceção de estratégias de marketing que, por sua vez,

permitam colmatar as carências das campanhas tradicionais pode revelar-se uma tarefa bastante

complexa. Sob evidências científicas de que o processo de difusão de campanhas de Marketing Viral

pode ser modelado sob conceitos de Epidemiologia Matemática, são estudadas as potencialidades

da Teoria do Controlo Ótimo na disseminação de um campanha real de marketing. Mais ainda, são

discutidas e propostas estratégias de controlo para maximizar a difusão de mensagens virais a um

baixo custo. São, igualmente, testados e comparados métodos númericos baseados no Princípio do

Máximo de Pontryagin (métodos indiretos) e, por outro lado, métodos que tratam um problema

de Controlo Ótimo como um problema de otimização não linear com restrições (métodos diretos).

No que concerne à Transmissão de Vírus Informáticos, a sua dinâmica de propagação é anal-

isada, de uma forma puramente introdutória, sob pressupostos relativos à modelação epidemiológ-

ica em redes. Para isso, é explorado um pacote do software R dedicado à modelação de doenças

infeciosas, permitindo ilustrar a propagação de vírus informáticos num dado sistema.

Palavras-chave: Sistemas Dinâmicos Epidemiológicos; Teoria do Controlo Ótimo; Princípio do Máximo de Pon-

tryagin; Modelação Matemática e Otimização; Marketing Viral; Transmissão de Vírus Informáticos.
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Introduction

In Mathematics, the art of proposing a

question must be held of higher value

than solving it.

Georg Cantor

Conventionally, epidemiological models have been widely applied to understand the dynamics

of several infectious diseases. Nevertheless, since the dynamics of infections can evolve in an erratic

way, research studies have applied Optimal Control Theory to Epidemiology, aiming to provide

e�ective and economic strategies to perceive and curtail the propagation of a virus infection within

a certain population. At this point, the relationship between Epidemiology and Optimal Control

Theory has proved to be highly correlated [112].

According to H.W. Hethcote in his remarkable article published in 2000, “The Mathematics of

Infectious Diseases” [44], the gradual emergence of infectious diseases has awakened the interest

of the scientific community to study them. In this regard, the use of mathematical models to

describe and control the propagation of viral infections is of utmost importance, in spite of the

inherent complexity associated to the formulation of accurate models which reflect the reality of

the disease.

Let us focus now on the control measures. Notice that the formulation of strategies that

could help to improve knowledge concerning viral outbreaks may really make a di�erence in saving

human lives. This is quite relevant and stimulating, in such a way that the urgency in both contain

virus outbreaks and restrict future re-infections triggers research studies in Optimal Control applied

to Epidemiology.

However, the relationship between these two areas has been explored beyond its conventional

use. In fact, among many others, Viral Marketing (see, e.g., [51, 52, 54]) and Computer Viruses

1



Transmission processes (see, e.g., [23, 133]) have been increasingly exploited - in the first one,

purposing to maximize viral infections (with Viral Marketing messages) within the population

and, in the second one, aiming to minimize the propagation of viruses or other malicious programs

within computer networks. These processes are the main topics of this dissertation, in which we

try to answer to some core questions, related to both subjects, such as:

• How do viruses spread within a population?

• How can Viral Marketing and Computer Viruses Transmission be seen as epidemiological

dynamical systems?

• How should marketing companies invest in publicity actions to generate viral campaigns?

• Regarding the Viral Marketing, when and what control measures should be applied to max-

imize information spreading in an economically sustainable way?

• How do computer viruses spread within a network system?

Objectives and Dissertation Outline

Purposing to tackle the research questions stated before, this dissertation intends to:

• Devise a recent in-depth review of the scientific literature of epidemiological models and

Optimal Control Theory.

• Analyze and study the influence of Mathematical Epidemiology and Optimal Control Theory

on dynamical systems, particularly on their applications to Viral Marketing and Computer

Viruses Transmission.

• Apply and compare indirect and direct numerical optimization techniques on the resolution

of the proposed mathematical models.

• Use epidemiological modeling over networks to describe the propagation of computer viruses.

2



For that, this research project is composed by two main Parts.

The First Part introduces well known concepts related to epidemiological models (Chapter 1)

and Optimal Control Theory (Chapter 2), taken from the literature. In the second Chapter, a brief

explanation of numerical methods to solve Optimal Control problems is also provided. Throughout

the First Part, some scientific literature references and examples are given.

The Second Part uses the theoretical background raised in the First Part to understand the

dynamics of Viral Marketing (Chapter 3) and Computer Viruses Transmission (Chapter 4). Specif-

ically, in Chapter 3, we begin to describe Viral Marketing as an epidemiological dynamical system.

Then, based on real numerical data from one of the most viral marketing campaigns of all time,

epidemiological models with Optimal Control are formulated and studied, aiming to maximize

the propagation of a marketing message with a low cost. Here, indirect and direct numerical

methods to solve the formulated problems are analyzed and compared, using several numerical

solvers. Moreover, Optimal Control strategies related both to the encouragement of susceptible

individuals to share the marketing message and the fostering of infected individuals to continue

to share it are proposed in optimal time windows.

Finally, in a less detailed perspective, computer virus infections over networks are briefly studied

using Network Theory in Chapter 4. In addition, numerical simulations to validate the behavior of

epidemic models are performed, using a recent R software package related to the mathematical

modeling of infectious diseases.

This dissertation ends with a section devoted to conclusions and future research.

3
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State of the Art
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1 | Epidemiological Models

This Chapter intends to introduce and mathematically describe some of the standard

epidemiological models, which divide the host population into mutually-exclusive com-

partments, namely SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-

Recovered) and SIRS (Susceptible-Infected-Recovered-Susceptible) without births and

deaths (vital dynamics). A short overview of some scientific studies related to each

model is also provided.

1.1 Introductory Remarks

Throughout this dissertation, epidemiological models should be understood as dynamical sys-

tems formed by ordinary di�erential equations (ODEs), that describe and model the dynamics of

an epidemic phenomenon within a certain population.

According to K. Dietz [26], the concept of epidemiology has two possible definitions: the

study of the dynamics of infectious diseases within a population or the study of the variables

that have influence on the incidence of an infectious disease. Considering only the first definition

given by the author, infectious diseases can be seen as clinically identifiable illnesses caused by

pathogenic microorganisms, which can be spread among a population, by direct or indirect ways,

from one person to another [127]. However, for both definitions, the use of mathematical modeling

mechanisms reveals a fruitful tool to better understand infectious processes. At this point, for

more details on the application of Mathematics to infectious diseases, the reading of [44] and the

references cited therein is highly recommended.

Looking back through history, despite of Daniel Bernoulli had proposed the smallpox model

in 1760 (see [8]), the vast majority of the basic theory of Mathematical Epidemiology was only

developed between 1900 and 1935. At this time, Mathematical Epidemiology theory was truly
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driven by the studies of Kermack and McKendrick in 1927, namely with the paper entitled “A

contribution to the mathematical theory of epidemics” [58], in which they proposed a deterministic

mathematical model that considers classes of susceptible, infected and recovered individuals. In

addition, in 1932 and 1933, these authors also developed new scientific advances on the first

paper, cementing the importance of Mathematics in modeling infectious diseases [79].

Since then, more and more models are currently being developed, not only to perceive the dy-

namics of infectious diseases, but also to formulate control strategies to tackle them, strengthening

the role of Mathematical Epidemiology.

From a global and assertive perspective, it is plausible to say that the biggest challenge in

Mathematical Epidemiology relates to modeling epidemic phenomena with art, always attempting

to formulate models, as simply as possible, capable of tackle the research questions raised [43] (as

cited in [107]).

With these motivations, this Chapter intends to introduce and describe some fundamental

epidemiological models using Mathematical Epidemiology theory.

The writing of the following sections of this Chapter is mainly based on theory presented in

[12, 44, 79]. Nevertheless, more details on mathematical theory of infectious diseases can also be

found in, e.g., [11, 14, 20].

1.2 Preliminary Concepts

As a tool to describe dynamical systems, mathematical models can be formulated in order to

understand, the best possible, epidemic phenomena. Regarding the process of formulate mathe-

matical models, M. Martcheva describes in [79] a general approach to modeling, which basically

consists on an iterative method to tackle a proposed biological question, converting it into a

mathematical problem:

1. the model must be analyzed in order to generate critical quantities that play a key role on

the dynamics of the solutions;

2. the model should be fitted to given data or used to conduct numerical simulations that, a

posteriori, generate experimental data;

3. the parameters of the model should be carefully estimated;

8



4. the resultant model must be validated through several numerical experiments to attest the

reliability of the results, and the dynamics of the model when varying its parameters should

be assessed, showing its importance.

Typically, the formulation of epidemic models can follow a stochastic or deterministic approach.

In the first one, model variables are characterized by probability distributions. On the other hand,

in deterministic epidemic models, the state variables are uniquely determined by both parameters

in the model and initial conditions of the variables. These models subdivide the population into

mutually-exclusive compartments, where the individuals can move through it according to their

disease status, and are usually governed by systems of ODEs with respect to time, subject to

given initial conditions. Since in these models the population is subdivided in terms of the disease

status, basic terminology for the model compartments, that will be considered in the next sections,

is provided as follows.

• Susceptible (S): this compartment represents individuals who are susceptible to contract

a disease after some kind of contact with an infectious individual.

• Infected (I): this compartment represents individuals who are currently infected and can

transmit the disease to individuals in the class S who they contact. Infected individuals who

can transmit the infectious disease are called infectious. Once infected, these individuals

can or not develop immunity against reinfection.

• Recovered or Removed (R): this compartment represents individuals who have been

infected and have recovered.

In addition, based on [79], basic concepts of epidemiology are also defined.

Definition 1.2.1 (Incidence). Incidence is the number of individuals who become sick during a

specific time interval.

Definition 1.2.2 (Prevalence). The concept of prevalence related to an infectious disease can be

defined as the number of individuals who have the disease at a particular time. Nevertheless, it is

usual to consider this number divided by the total size of the population.

Definition 1.2.3 (Basic reproduction number). Denoted by R
0

, the basic reproduction number

is defined as the average number of secondary infections induced by an infected individual within

a susceptible population.

9



This number is crucial to understand the dynamics of an epidemic model, as we shall see later.

Based on the explained above, the following sections will describe SIS, SIR and SIRS deter-

ministic models without vital dynamics, under the assumption that the number of individuals in

each model compartment is a di�erentiable function of time t.

1.3 The SIS Model

In the SIS epidemiological model, if an infectious individual comes into successful contact with

a susceptible, this one becomes infected and infectious but does not develop immunity against

reinfection. Therefore, an individual who get recovered from an infectious disease returns to the

class S, becoming once again susceptible to contract the disease. The compartmental diagram

for the SIS model, which traduces the arguments given above, is illustrated in Fig. 1.1.

S I

Figure 1.1: Compartmental diagram for the SIS model.

Example 1.3.1. Gonorrhea, Malaria, Syphilis or Yellow fever, e.g., are good examples of infectious

diseases that can be modeled by epidemic models related to the SIS model, since they do not

produce an immune response on the individuals who contract them.

The dynamics of the SIS epidemiological model can be described, at time t, by the following

system of ODEs:

8
>>>><

>>>>:

dS(t)

dt
= ��S(t)I(t)

N
+ �I(t)

dI(t)

dt
=

�S(t)I(t)

N
� �I(t) ,

(1.1)
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subject to initial conditions S(0) > 0 and I(0) > 0. The positive parameters � and � traduce the

contact and recovery rate, respectively. The total population size, N , is assumed to be constant

over time, i.e.,

S(t) + I(t) = N , dN

dt
= 0 , 8t 2 [0,1) .

Remark 1.3.1. If the recovery rate � is null in (1.1), the basic SI epidemiological model is

obtained. In this model, once an individual is infected remains infected over time.

If one looks at the system (1.1), the standard incidence
✓
�S(t)I(t)

N

◆
comes from the prob-

ability of a susceptible individual contacts with an infected one
✓
I(t)

N

◆
, multiplied by the rate of

infections caused by an infected individual (�S(t)) per unit time t. The �I(t) term relates to the

rate of infected individuals who recover per unit time t.

In addition, the length of the infectious period is represented by the fraction 1

�
, and R

0

=

�

�
is

obtained according to the necessary condition for an epidemic, dI(t)

dt
> 0, considering S(0) ⇡ N .

1.3.1 On the SIS Models

SIS epidemiological models have been the subject of intensive research, notwithstanding its

simplicity. In [39], the authors extend the classic deterministic SIS model to a stochastic one and

formulate it as a stochastic di�erential equation for I(t). In fact, the global stability of this model

was recently studied in [129], where the author presents a stochastic threshold theorem related

to R
0

. In this regard, X. Meng et al. [81] developed a method to obtain the threshold of the

stochastic SIS model. In addition, other research studies investigate the dynamics of stochastic

SIS models with Lévy jumps (see, e.g., [36, 134, 137]), with delay (see, e.g., [2, 53, 69, 87]), or

even with nonlinear incidence rate (see, e.g., [66, 118]).

The dynamics and major properties of the SIS model are described next.

1.3.2 Dynamics and Mathematical Properties

To simplify algebraic manipulations, and since S(t) = N � I(t), note that the state system

(1.1) can be reduced to the simple ODE (logistic growth equation)

11



dI(t)

dt
= I(t)

✓
�
(N � I(t))

N
� �

◆
. (1.2)

To study the dynamics of the SIS model, it is pertinent to determine its equilibrium solutions,

that is, solutions I⇤ that satisfy the condition

dI(t)

dt
= 0 .

Thus, the equilibrium solutions for the SIS model are E
1

= (N, 0), also called Disease-Free

Equilibrium (DFE), and E
2

=

✓
�N

�
,

✓
1 � �

�

◆
N

◆
, called endemic equilibrium. In order to

guarantee that the endemic equilibrium is positive in their components, lying in a domain of

interest, the recovery rate should be strictly less than the contact rate (� < �).

Regarding the linear stability of the equilibrium solutions, notice that:

• For E
1

, if � > � then E
1

is unstable. On the other hand, if � < � then E
1

is locally

asymptotically stable.

• For E
2

, if � > � then E
2

is locally asymptotically stable. On the contrary, if � < � then

E
2

is unstable.

Expressed the other way around, this means that there exists a transcritical bifurcation at

� = �, where E
1

= E
2

and the stability of the equilibrium solutions exchanges. For more

complete details about stability theory see, e.g., [55].

Remark 1.3.2. It should be noted that � > � and � < � correspond to R
0

> 1 and R
0

< 1,

respectively.

Using the analysis above, the following theorem highlights the relevance of R
0

to the dynamics

of the SIS model.

Theorem 1.3.1. Let (S(t), I(t)) be a solution pair for the SIS system. Then, the following

conditions hold:

1. If R
0

> 1, then lim

R+
0 3t!1

(S(t), I(t)) =

✓
�N

�
,

✓
1� �

�

◆
N

◆
(Endemic equilibrium).

2. If R
0

< 1, then lim

R+
0 3t!1

(S(t), I(t)) = (N, 0) (Disease-Free equilibrium).

12



Proof. Firstly, the ODE (1.2) can be rewritten as

dI

dt
= AI

✓
1� I

B

◆
, (1.3)

where A = �� � and B =

AN

�
. Now, excluding the trivial case where A = 0, two possible cases

must be considered: A > 0 and A < 0, corresponding to R
0

> 1 and R
0

< 1, respectively.

• (Condition 1) Let A > 0. Since the equation (1.3) is a separable non-linear ODE, it follows

that

BdI(t)

I(t)(B � I(t))dt
= A

tZ

0

BdI(t)

I(t)(B � I(t))
=

tZ

0

A dt

I(t)Z

I(0)

Bdv

v(B � v)
= A

tZ

0

dt

I(t)Z

I(0)

dv

v
+

I(t)Z

I(0)

dv

B � v
= A

tZ

0

dt

log(|v|)
����
I(t)

I(0)

� log(|B � v|)
����
I(t)

I(0)

= At ,

since B � I(t) and B � I(0) have the same sign, yields

log

 
I(t)

�
B � I(0)

�

I(0)
�
B � I(t)

�
!

= At

BI(0)

B � I(0)

eAt
+ I(0)

= I(t)
t!1���! B , (1.4)

which means that the disease remains in the population, for an indefinite period of time t.

As a consequence, lim

R+
0 3t!1

S(t) = N �
✓
1� �

�

◆
N =

�N

�
, thus proving Condition 1.

13



• (Condition 2) The proof of Condition 2 is much more simpler. From the hypothesis that

A < 0 it follows that B < 0. Thus,

dI(t)

dt
6 AI(t) . (1.5)

This di�erential inequality leads to I(t) = I(0)eAt A<0���! 0. As a consequence

lim

R+
0 3t!1

S(t) = N , (1.6)

which concludes the proof.

1.4 The SIR Model

Proposed by Kermack and McKendrick [58], the SIR model is one of the earliest epidemiological

models. In detriment of the previous model, SIR model can be applied to infectious diseases that

cause an immune response in the body. For a specific disease, if an individual become infected,

then it is highly unlikely that a reinfection process occurs, being permanently immune. These

arguments can be illustrated by the following compartmental diagram (Fig. 1.2).

S I R

Figure 1.2: Compartmental diagram for the SIR model.

Example 1.4.1. Smallpox, Chickenpox and Rubella, e.g., are infectious diseases that produce an

immune response on the individuals who contract them. Hence, they can be modeled under SIR

epidemiological models or its derivatives, as long as the immunity feature continues to be met.

14



The standard form of this model is given by the following system of ODEs:

8
>>>>>>><

>>>>>>>:

dS(t)

dt
= ��S(t)I(t)

N

dI(t)

dt
=

�S(t)I(t)

N
� �I(t)

dR(t)

dt
= �I(t) ,

(1.7)

subject to S(0) > 0, I(0) > 0 and R(0) = 0. The parameters � and � and the duration of

the infection have the same biological meaning as in the SIS model. However, for this epidemic

model, in contrast to the previous one, infected individuals move to the class R at a rate �I per

unit time t and can not return to the susceptible class S, and the total size of the population is

given by N = S(t) + I(t) +R(t).

Similarly to the SIS model, the basic reproduction number, R
0

, for the SIR model is �

�
,

considering that at the beginning of the epidemic almost everyone is susceptible (S(0) ⇡ N).

Moreover, by setting the right hand side of the system (1.7) to zero, the equilibrium solutions

for the SIR model are (N, 0, 0) and (0, 0, N). In the Second Part of this dissertation, the stability

analysis of these solutions is carefully studied. Hence, this study is omitted in this section.

1.4.1 On the SIR Models

From an interesting perspective, T. Harko et al. [41] computed, in a parametric form, the exact

solution of the SIR model, showing also that the SIR model with vital dynamics can be reduced to

an Abel type equation – simplifying the model analysis and the deduction of its properties. Since

the concept of incidence is highly important in Mathematical Epidemiology, Y. Chen et al. [24]

studied infection age and saturated incidence of an SIR epidemic model, establishing a threshold

dynamics. On the other hand, S. Bidari et al. [7] analyzed explicit formulas for the final size

distribution for line and star graphs of arbitrary size.

In [67], the introduction of saturated treatment and logistic growth rate into an SIR epidemic

model with bilinear incidence is studied. In addition, the authors also establish su�cient conditions

for the existence and local stability of the DFE. Regarding the logistic growth in the absence of

disease, Q. Liu et al. [76] analyzed the dynamics of a stochastic nonautonomous SIR model,

presenting su�cient conditions for the persistence of an epidemic.
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Stochastic delayed SIR models with temporary immunity (see, e.g., [71]), vaccination (see,

e.g., [72]) or even nonlinear incidence (see, e.g., [75]) are also investigated.

1.4.2 Model Properties and the Maximum Number of Infections

The dynamics of the SIR model can be scrutinized through an assertive analysis on the equa-

tions of (1.7). Independently of the initial conditions, dS(t)

dt
6 0 and dR(t)

dt
> 0, for all t,

meaning that the number of susceptible individuals is always decreasing and the number of recov-

ered individuals is always increasing. Hence, since S(t) and R(t) have a monotone behavior and

noting that for all t, 0 6 S(t) 6 S(0) 6 N and 0 6 R(0) 6 R(t) 6 N , the following limits exist:

lim

R+
0 3t!1

S(t) = S1 and lim

R+
0 3t!1

R(t) = R1 , (1.8)

where S1 is called the final size of the epidemic. Moreover, the value of S1 can be computed,

using the initial conditions, by the equation:

dS(t)

dt
=

��S(t)dR(t)

�Ndt

dS(t)

S(t)dt
=

��dR(t)

�Ndt

tZ

0

dS(t)

S(t)
=

��

�N

tZ

0

dR(t)

log(|S(t)|)
����
t

0

=

��

�N
R(t)

����
t

0

S(t) = S(0)e
��(R(t)�R(0))

�N , (1.9)

which allows to conclude not only that S1 > 0, but also that there are susceptible individuals

who never contract the disease.

In addition, by (1.8), there exists

lim

R+
0 3t!1

I(t) = N � S1 �R1 = I1 . (1.10)
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In fact, it can be shown that if (1.10) holds, the epidemic extinguishes. For that, it is su�cient

to integrate the first equation of the system (1.7) with respect to time t:

1Z

0

dS(t) = � �

N

1Z

0

S(t)I(t) dt ,

S
0

� S1 =

�

N

1Z

0

S(t)I(t) dt > �

N
S1

1Z

0

I(t) dt , (1.11)

which implies that I(t) is integrable on R+

0

. Therefore, I(t) t!1���! 0.

In what concerns to the behavior of I(t), it deeply depends on the parameters � and �. In fact,

the number of infected individuals, over time t, may start to increase until a maximum level be

reached, and then, as proved above, decreasing to zero in the asymptotic limit. Mathematically,

the prevalence first starts to increase if

dI

dt

���
t=0

> 0

I(0)>0, �S(0)

N
� � > 0 , �S(0)

�N
> 1 . (1.12)

This increasing in the prevalence followed by a declining to zero traduces an epidemic. Here, it is

possible to determine, explicitly, the maximum number of infected individuals. To this end, first

note that since R(t) = N � S(t)� I(t). Then, the state system (1.7) can be reduced to

8
>>><

>>>:

dS(t)

dt
= ��S(t)I(t)

N

dI(t)

dt
=

�S(t)I(t)

N
� �I(t) .

(1.13)

Now, dividing the second ODE of the state system (1.13) by the first one, and separating the

variables, yields

dI(t)

dt
=

�dS(t)

dt
+

�N

�

✓
dS(t)

S(t)dt

◆

Z
dI(t) = �

Z
dS(t) +

�N

�

Z
dS(t)

S(t)

I(t) = �S(t) +
�N

�
logS(t) + C , C 2 R . (1.14)
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Then, is possible to derive an implicit equation for the orbits of the solution of the state system

(1.13):

C = I(t) + S(t)� �N

�
logS(t), C 2 R . (1.15)

Using the initial conditions and observing that the equation (1.15) holds for (S(0), I(0)), the

arbitrary constant C is given by

C = I(0) + S(0)� �N

�
logS(0) . (1.16)

Note also that so far we already proved (1.8). Thus, since the equation (1.15) also holds for

(S1, 0), it follows that

S1 � �N

�
logS1 = I(0) + S(0)� �N

�
logS(0) , (1.17)

rearranging the terms, yields

�N

�

✓
logS(0)� logS1

◆
= S(0) + I(0)� S1

�

�
=

N log

S(0)

S1
S(0) + I(0)� S1

> 0 , (1.18)

since S(0) + I(0) > S1.

Finally, taking into account that the maximum number of infected individuals is attained when
dI(t)

dt
= 0, i.e., when S(t) =

�N

�
, and using not only both equations (1.15) and (1.16), but also

that I(t) t!1���! 0, the maximum number of infected individuals, I
max

, is given by

I
max

= I(0) + S(0) +
�N

�

✓
log

�N

�
� logS(0)� 1

◆
. (1.19)

This number is very important, inasmuch as it allows to predict the moment when the number

of infections begins to fall down.
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Compiling the major properties discussed so far, the dynamics of the SIR model can be de-

scribed by the following theorems:

Theorem 1.4.1 (Epidemic Threshold Theorem). Let S(t), I(t) and R(t) be a solution to the

model (1.7). Then, the following conditions hold:

1. If R
0

> 1, then I(t) starts to increase until I
max

has been reached, and then I(t)
t!1���! 0

(Epidemic).

2. If R
0

< 1, then I(t)
t!1���! 0 (DFE).

Proof. The proof of this theorem can be found in [44]. Therefore, the proof is omitted.

Theorem 1.4.2 (Kermack and McKendrick, adapted from [13]). The dynamics of the epidemic

develops in compliance with (1.7) subject to initial conditions S(0), I(0) and R(0), where S(0)+

I(0) = N . Hence, the following conditions hold:

1. When the di�usion of the viral content stops, there exists a positive number of susceptible

individuals that were never infected and R1 = S(0) + I(0)� S1.

2. For S(0) >
1

R
0

, the condition dI

dt

���
t=0

> 0 is necessary and su�cient to the occurrence of

a surge.

3. If S(0) >
1

R
0

by a small quantity " and I(0) < ", then the final number of susceptible

individuals that remain within the population is approximately 1

R
0

� " and R1 ⇡ 2".

Proof. This theorem can be proved using the same technique as in [13]. Hence, the proof is

omitted.

1.5 The SIRS Model

As an intermediate between SIS and SIR epidemiological models, the SIRS model is very known

not only in what concerns to the modeling of infectious diseases, but also in terms of developing

control actions to minimize the damages caused by them [70].

The biological meaning of the SIRS epidemiological model is almost the same as the standard

SIR model, with the exception that this model considers that individuals can lose immunity and
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enter to the susceptible state, once again, at a rate �. Hence, the immune state lasts for a limited

time window. The compartmental diagram for this model is illustrated in Fig. 1.3.

S I R

Figure 1.3: Compartmental diagram for the SIRS model.

Example 1.5.1. Influenza, e.g., is a viral disease that can be modeled by SIRS models.

Hence, the deterministic SIRS model is formed by the following system of ODEs:

8
>>>>>>><

>>>>>>>:

dS(t)

dt
= ��S(t)I(t)

N
+ �R(t)

dI(t)

dt
=

�S(t)I(t)

N
� �I(t)

dR(t)

dt
= �I(t)� �R(t) ,

(1.20)

subject to initial conditions S(0) > 0, I(0) > 0 and R(0) = 0.

Once again, the total size of the population, N , is considered constant. Notice that, when

infected individuals get recovered, the number of recovered individuals R(t) increases at a rate �

(�I(t)). In contrast, this number decreases at a rate � (��R(t)) when individuals lose immunity

and become susceptible once again - increasing the number of individuals in the class S (�R(t)).

Considering S(t) + I(t) +R(t) = N , the solutions

(S⇤, I⇤, R⇤
) = (N, 0, 0) and (S⇤, I⇤, R⇤

) =

✓
�N

�
,
�N(� � �)

�(� + �)
,
�N(� � �)

�(� + �)

◆
(1.21)

are the equilibrium states of the system (1.20), satisfying the system
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8
>>>>>>><

>>>>>>>:

dS(t)

dt
= 0

dI(t)

dt
= 0

dR(t)

dt
= 0 .

(1.22)

Note also that the solutions (1.21) correspond to the DFE and endemic state, respectively,

and, as before, R
0

=

�

�
considering S(0) ⇡ N , requiring the condition R

0

> 1 to have an

epidemic. The calculations related to the linear stability of the steady states are omitted.

1.5.1 On the SIRS Models

Regarding the study of SIRS models, Lyapunov functions are used to prove that the DFE

of an SIRS epidemic model with generalized non-linear incidence rate and vaccination is globally

asymptotically stable when the R
0

6 1, and that the endemic equilibrium is globally asymptotically

stable for R
0

> 1 [62]. At this point, global stability has also been the subject of intensive research,

using Lyapunov functional techniques: Y. Muroya et al. [88] performed a global analysis on an

SIRS epidemic model, but with graded cure and incomplete recovery rates, reaching to the same

conclusion for R
0

as in [62]; Y. Nakata et al. [91] studied global stability of an endemic equilibrium

for an SIRS epidemic model with distributed time delays. In fact, this work was deepened in [30],

where su�cient conditions of the rate of immunity loss for the global asymptotic stability of an

endemic equilibrium are established. Still on global stability, curious results were derived in [86],

where su�cient conditions for the global stability of an endemic equilibrium of a multi-group SIRS

epidemic model with varying population sizes were established without a grouping technique by

graph theory (frequently used to study multi-group SIR models).

In addition, stochastic fluctuations have already proved to be successful, by providing control

interventions to manage the dynamics of an infectious disease (see, e.g., [16, 22]).

1.6 Concluding Remarks

In this Chapter, SIS, SIR and SIRS models were introduced and described. For each one of

them, major mathematical properties were recalled and some literature was referenced. These

properties will support the arguments given in the Second Part of this dissertation.
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It should be mentioned that, in addition to the models previously described, other types of

epidemiological models can be found in the current scientific literature (see, e.g., [45, 68, 73, 74,

80, 105, 107], amongst many others).

The importance of R
0

on the model dynamics was mathematically shown. Here, the reading

of [79, 107] for the computation and examples of this number using the next generation method

is highly recommended.

To sum up, it is possible to assure that mathematical models are increasingly important for

the development of Mathematical Epidemiology and, consequently, for the control of disease

epidemics. At this point, the conditions to introduce Optimal Control Theory are in place.
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2 | Optimal Control Theory

This Chapter introduces the fundamental results on Optimal Control Theory with

applications to biological models, for systems with continuous time ODEs. The Pon-

tryagin’s Maximum Principle is presented and some numerical methods to solve Op-

timal Control problems are described. At the end of this Chapter, the relationship

between epidemiological models and Optimal Control Theory is studied by revisiting

the scientific literature.

2.1 Introduction

With a major importance in several fields, from Biology to Economics, Physics or Engineering,

Optimal Control (OC) Theory is an extension of the calculus of variations that seeks to determine

optimal strategies to control a given dynamical system, eventually subject to constraints, and

optimize (maximize or minimize) a specific performance index [101, 106].

Within biological phenomena, OC provides useful insights into how circumstances involving

trade-o� situations should be handled [64]. However, OC can be applied to several fields beyond

Biology, as will be seen in the Second Part of this dissertation.

Given a dynamical system of ODEs, the behavior of the state system is described by a set

of state variables. Moreover, it is assumed that the state variables can be steered using one or

more control functions, that will have influence on the dynamics of the state system. Hence,

the ultimate goal is to adapt the control function(s) in order to optimize a performance index,

hereinafter called objective functional, which in turn balance the objective established a priori.

Frequently, this functional represents a trade-o� between the intended goal and the cost to achieve

it. However, it should be noted that this cost may have other meanings apart from money [64].
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Since the main purpose of this dissertation is to interconnect epidemiological models with OC

theory, the mathematical theory presented throughout this Chapter was mainly retrieved from

[64]. Nonetheless, other good references can be considered (see, e.g., [21, 33, 101]).

2.2 Formulation of an Optimal Control Problem

In this dissertation, the general nonlinear dynamical control system takes the following form:

dx

dt
= g(t, x(t), u(t)), x(0) = x

0

, t 2 [0, tf ] , (2.1)

where the solution x(t) is absolutely continuous and piecewise di�erentiable such that

x(t) = x
0

+

tZ

0

g(s, x(s), u(s)) ds , (2.2)

where g : I ⇥ X ⇥ U ! Rn is a C1 map, I is an interval of R, X and U are open sets of

Rn and Rm, respectively. The state x(t) 2 Rn is a function of the independent time variable

t 2 [0, tf ], where tf is the final time, and dx

dt
is governed by the function g. Let U = {u : I !

Rm | u(·) is Lebesgue measurable}. The piecewise continuous function u(t) 2 U represents the

control. The pair (x(t), u(t)) is admissible when, for a starting point x
0

, all trajectories lie in

X ⇥ U over [0, tf ]. Moreover, control functions that produce admissible trajectories are defined

as admissible control functions.

Here, the main goal is to find the control function u(t) in (2.1), in order to obtain the best

response of the given control system. As the control function is changed, the solution (2.2) will

also change. Note that the solution depends on both the control and the initial conditions.

Considering t 2 [0, tf ], our basic OC problem relates to find a piecewise continuous control

function u(t) and the associated state variable x(t), aiming to maximize an objective functional

J(u), that is,

max
u

J(u) =

tfZ

0

f(t, x(t), u(t)) dt

subject to dx

dt
= g(t, x(t), u(t))

x(0) = x
0

,

(2.3)
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x(tf ) could be free or fixed, when the value of x(tf ) is unrestricted or x(tf ) = xf , respectively.

Henceforth, f, g will always represent continuously di�erentiable functions in all three argu-

ments. Therefore, the control(s) will always be piecewise continuous and the related states will

be piecewise di�erentiable.

Remark 2.2.1. An OC problem can be described by three formulations, namely Lagrange, Mayer

and Bolza. In addition, it can be proved that these formulations are equivalent (see, e.g., [107]

for more detailed information).

Next, the necessary conditions that an OC and the corresponding state variables must satisfy

are introduced.

2.3 Pontryagin’s Maximum Principle

Introduced by Lev Pontryagin et al. [101], the Pontryagin’s Maximum Principle (PMP) is a

fundamental result in OC Theory. These authors introduced the concept of adjoint functions with

an analogous purpose as the Lagrange multipliers in multivariate calculus, that a�x constraints

to the function to be optimized. In this case, adjoint functions are introduced to a�x the ODEs

to the objective functional.

Before moving on to the PMP, let us define the Hamiltonian function H.

Definition 2.3.1 (Hamiltonian). Consider the OC problem (2.3). The Hamiltonian H is defined

by the equation

H(t, x(t), u(t),�(t)) = f(t, x(t), u(t)) + �(t)g(t, x(t), u(t))

Theorem 2.3.1 (Pontryagin’s Maximum Principle). If u⇤(t) and x⇤(t) are optimal for the OC

problem (2.3), then there exists a piecewise di�erentiable adjoint variable �(t) such that

H(t, x⇤(t), u(t),�(t)) 6 H(t, x⇤(t), u⇤(t),�(t)) ,

for all controls u at each time t, where H is the Hamiltonian and

d�(t)

dt
= �@H(t, x⇤(t), u⇤(t),�(t))

@x
(adjoint equation)

�(tf ) = 0 (transversality condition)
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Proof. The proof of this theorem can be found in [101].

Notice that both the adjoint and Hamiltonian H allow to obtain the optimality condition

@H

@u
= 0 , at u⇤ for each t 2 [0, tf ] , (2.4)

that states that the Hamiltonian H has a critical point, in the variable u, at u⇤ for each t.

Remark 2.3.1. Based on the above, the use of the Hamiltonian is su�cient to derive the necessary

conditions that an optimal control and state must satisfy, inasmuch as, considering the PMP, the

problem of finding a control that maximizes the objective functional was converted to maximizing

the Hamiltonian pointwise with respect to u.

In addition, the following concavity conditions hold:

• If @2H

@u2
< 0 at u⇤, for each t 2 [0, tf ], then the OC problem is of the maximization type.

• If @2H

@u2
> 0 at u⇤, for each t 2 [0, tf ], then the OC problem is of the minimization type.

Considering that it is possible to solve for the optimal control in terms of x⇤(t) and �(t),

the formula for u⇤(t) is called characterization of the optimal control. So, the optimality system

is defined by the state and adjoint equations together with the characterization of the optimal

control and the boundary conditions.

So far, necessary conditions were derived. However, to solve an OC problem, some issues can

arise with this method: the necessary conditions could yield multiple solution sets, only some of

which are optimal controls, or even they could be solvable when the original OC problem has no

solution [64].

Hence, the following results justify the methods used previously.

Theorem 2.3.2. For the OC problem (2.3), suppose that f(t, x(t), u(t)) and g(t, x(t), u(t))

are both continuously di�erentiable functions in their three arguments and concave in x and u.

Suppose that u⇤(t) is a control, with associated state x⇤(t), and �(t) a piecewise di�erentiable

function, such that u⇤(t), x⇤(t) and �(t) together satisfy, on [0, tf ], the following conditions:
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@f

@u
+ �(t)

@g

@u
= 0 ,

d�(t)

dt
= �

✓
@f

@x
+ �(t)

@g

@x

◆
,

�(tf ) = 0 ,

�(t) > 0 .

Then for all controls u(t), yields

J(u⇤(t)) > J(u(t)) .

Proof. See [64] for the proof of this theorem.

Since the above theorem does not guarantee an optimal control with finite objective functional,

the following result gives the existence of u⇤(t) with J(u⇤(t)) finite.

Theorem 2.3.3 (Existence of OC). Let the set of controls for the problem (2.3) be Lebesgue

integrable functions on [0, tf ] with values in R. Suppose that f(t, x(t), u(t)) is concave in u, and

there exists constants C
4

and C
1

, C
2

, C
3

> 0 and � > 1 such that

g(t, x(t), u(t)) = ↵(t, x(t)) + �(t, x(t))u(t)

��g(t, x(t), u(t))
�� 6 C

1

�
1 + |x(t)|+ |u(t)|�

��g(t, ex(t), u(t))� g(t, x(t), u(t))
�� 6 C

2

��x̃(t)� x(t)
��
(1 + |u(t)|)

f(t, x(t), u(t)) 6 C
4

� C
3

|u(t)|� ,

for all t 2 [0, tf ], x(t), x̃(t), u(t) 2 R. Then, there exists an optimal control problem u⇤(t)

maximizing J(u(t)), with J(u⇤(t)) finite.

Proof. The proof of this theorem can be found in [21, 33].

Remark 2.3.2 (Uniqueness). For a maximization problem, suppose that there is u⇤(t) such that

J(u(t)) 6 J(u⇤(t)) < 1 for all control(s) u(t). The optimal control u⇤(t) is unique if whenever
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J(u(t)) = J(u⇤(t)), then u(t) = u⇤(t) at all but finitely many points. It should also be emphasized

that:

• If the functions f(t, x(t), u(t)) and g(t, x(t), u(t)), and the right hand side of the adjoint

equation are Lipschitz in the state and adjoint variables, then the uniqueness of solutions of

the optimality system holds for a small tf .

• However, for an autonomous control system, the above argument holds for any tf , and the

Hamiltonian H is a constant function of time t along the optimal path – in the Second Part

of the dissertation will only be considered autonomous control systems.

2.4 Optimal Control with Payo� Terms

OC with payo� terms are often used when it is intended to optimize a function at tf , in

detriment of the entire time interval. An OC problem with payo� terms takes the following form

max
u

J(u) = �(x(tf )) +

tfZ

0

f(t, x(t), u(t)) dt

subject to dx

dt
= g(t, x(t), u(t))

x(0) = x
0

,

(2.5)

where the payo� (or salvage) term �(x(tf )) is a goal with respect to the final position or population

level x(tf ).

In comparison to the problem (2.3) and regarding the necessary conditions for this problem,

the only change is in the transversality condition. The following result establishes the necessary

conditions for the problem (2.5).

Proposition 2.4.1. If u⇤(t) and x⇤(t) are optimal for the OC problem (2.5), then there exists a

piecewise di�erentiable adjoint variable �(t) such that

H(t, x⇤(t), u(t),�(t)) 6 H(t, x⇤(t), u⇤(t),�(t)) ,

for all controls u at each time t, where H is the Hamiltonian defined as for (2.3) and
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d�(t)

dt
= �@H(t, x⇤(t), u⇤(t),�(t))

@x
(adjoint equation)

@H

@u
= 0 (optimality condition)

�(tf ) = �0
(x⇤(tf )) (transversality condition)

Proof. The proof of this proposition can be found in [50] (as cited in [107]).

2.5 Optimal Control with Bounded Controls

In order to obtain realistic solutions, some OC problems require bounds on the control function

u(t). Next, it is considered that the control has a lower bound u
min

and an upper bound u
max

.

So, this type of OC problem takes the form

max
u

J(u) = �(x(tf )) +

tfZ

0

f(t, x(t), u(t)) dt

subject to dx

dt
= g(t, x(t), u(t))

x(0) = x
0

u
min

6 u(t) 6 u
max

,

(2.6)

where u
min

and u
max

are fixed and u
min

< u
max

. In addition, the necessary conditions are given

as follows.

Proposition 2.5.1. If u⇤(t) and x⇤(t) are optimal for the OC problem (2.6), then there exists a

piecewise di�erentiable adjoint variable �(t) such that

H(t, x⇤(t), u(t),�(t)) 6 H(t, x⇤(t), u⇤(t),�(t)) ,

for all controls u at each time t, where H is the Hamiltonian defined as for (2.3) and
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dx(t)

dt
=

@H

@�
, x(0) = x

0

d�(t)

dt
= �@H

@x
(adjoint equation)

@H

@u
= 0 (optimality condition)

�(tf ) = �0
(x(tf )) (transversality condition) .

Hence,

8
>>>>>>>><

>>>>>>>>:

u⇤(t) = u
min

if @H

@u
< 0

u
min

6 u⇤(t) 6 u
max

if @H

@u
= 0

u⇤(t) = u
max

if @H

@u
> 0 .

(2.7)

Proof. The proof of this proposition can be found in [50] (as cited in [107]).

Apart from the standard examples, the vast majority of the controlled dynamical systems can

not be solved algebraically. Thus, the following Section depicts numerical methods to solve OC

problems.

2.6 Numerical Methods to Solve Optimal Control Problems

The complexity of general nonlinear programming problems (NLP) with optimal control re-

quires the use of numerical methods in order to optimize a given performance index of a dynamical

system subject to constraints [106]. Hence, this Section introduces two types of methods to solve

OC problems related to dynamical systems, which are usually described by ODEs: indirect methods

and direct methods, that will be described in Sections 2.6.2 and 2.6.3.

Firstly, for the sake of convenience, let us start with a short description of numerical methods

to solve dynamical systems of ODEs.
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2.6.1 Numerical Methods for Ordinary Di�erential Equations

When a system of ODEs is to extensive or composed by equations that can not be solved

analytically, numerical methods reveal their importance in order to compute a numerical approx-

imation to the solution of an initial-value problem. Among many others, Euler’s method and

fourth order Runge-Kutta method are here introduced (see, e.g. [104] for numerical examples of

these two methods and [96] for other numerical methods to solve ODEs). The following numerical

methods assume ODEs in the form

dy(t)

dt
= f(t, y(t)) , y(t

0

) = y
0

. (2.8)

2.6.1.1 Euler’s Method

Euler’s method approximates the equation (2.8) by

yn+1

= yn + hf(tn, yn) . (2.9)

From an equivalent perspective, this method can be described by the following equation:

y(t+ h) = y(t) + h
dy(t)

dt
, (2.10)

where the h is called time step.

This method computes the value at t + h with an error of order O(h2). The time step h is

crucial to determine the accuracy of the approximation. Here, the smaller the value of h, the

greater the accuracy of the approximation. However, the smaller the value of h, the greater the

computational e�ort required. As such, for higher order systems of ODEs, due to its dependency

on h, the Euler’s method can become unstable and, consequently, does not converge to the

solution.

2.6.1.2 Runge-Kutta Method

There are several modifications of the Runge-Kutta method to compute an approximated

solution for equations that take the form (2.8). One of these modifications is the fourth order
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Runge-Kutta method (RK4), that was developed with the main purpose of producing results

with the same accuracy as the methods obtained by Taylor series expansion, but avoiding the

computation of several derivatives of f . This method has the following form:

yn+1

= yn +

h

6

✓
k
1

+ 2k
2

+ 2k
3

+ k
4

◆
, (2.11)

where

k
1

= f(tn, yn)

k
2

= f(tn +

h

2

, yn +

h

2

k
1

)

k
3

= f(tn +

h

2

, yn +

h

2

k
2

)

k
4

= f(tn + h, yn + hk
3

) .

The parameter h is the time step. Notice not only that yn+1

is the approximation of y(tn + h),

but also that the values of ki : i = 1, 2, 3, 4, are computed for each n and used in n + 1. In

addition, this method has an error of O(h4) and it is conditionally stable.

Before moving ahead to the description of indirect and direct numerical methods, the reading

of [106] is recommended as a theoretical support for the next sections.

2.6.2 Indirect Numerical Methods

Indirect methods use the PMP to solve OC problems. More precisely, PMP is used to compute

the first-order optimality conditions. Thus, the optimal trajectories are derived by solving a

multiple-point boundary-value problem. At this point, as an indirect numerical approach, Forward-

Backward Sweep Method (FBS) is here introduced (see [64] for more details). This method can

be used to solve problems with the formulation of (2.3) (minimization problems are obviously

included), and generates numerical approximations to the optimal piecewise continuous control

u⇤(t).

Let us consider ~x = (x
1

, ..., xN+1

) and ~� = (�
1

, ...,�N+1

) as the vector for the state and

adjoint, respectively. Hence, this algorithm can be informally understood as follows.
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Algorithm 1: Forward-Backward Sweep Method

1. Initial guess for ~u over the time interval (~u ⌘ 0 is almost always su�cient).

2. Using x
1

= x
0

and the values for ~u, solve ~x forward in time, in compliance with its

di�erential equation in the optimality system (using, e.g., RK4).

3. Using �N+1

= �(tf ) = 0 and the values for ~u and ~x, solve ~� backward in time, in

compliance with its di�erential equation in the optimality system (using, e.g., RK4).

4. Update ~u using the new values for ~x and ~� into the characterization of the OC.

5. Check convergence. If values of the variables in this iteration and the last one are

su�ciently close, output the current values as solutions. Otherwise, return to step 2.

Remark 2.6.1. The convergence speed can be improved when a convex combination between the

control values given by the characterization of the optimal control in step 4 and the previous ones

is used.

2.6.3 Direct Numerical Methods

Assertively, direct methods use discretization with respect to time to solve OC problems, in

which the objective functional is directly optimized [96] and treat an OC problem as a nonlinear

constrained optimization problem (see, e.g., [6] for more details). In these problems, it is common

to use nonlinear optimization software packages through platforms such as NEOS server [92]

to solve them. Here, among many others, the solvers IPOPT, KNITRO and LOQO are briefly

described.

IPOPT [123], for Interior Point OPTimizer, is a software package for large-scale nonlinear

optimization, written in Fortran and C, that implements a primal-dual interior-point method

using line search methodologies based on filter methods.

KNITRO [15], for Nonlinear Interior Point Trust Region Optimization, is a nonlinear solver

for large-scale problems, but also able to support linear, quadratic, and general smooth nonlinear

optimization in continuous and integer variables.

LOQO [122], is an optimization solver for smooth constrained problems, supported to linear,
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quadratic, nonlinear, convex or nonconvex objectives and constraints in continuous variables. It

should be emphasized that for convex problems, this solver finds a globally optimal solution.

Remark 2.6.2. Some advantages and drawbacks can be pointed out to both indirect and direct

methods (see [109]). In this regard, according to E. Trélat [121], direct methods are more robust

and less sensitive to the choice of the initial conditions than indirect methods, being more easier

to implement. However, reaching to a desirable accuracy highly depends on the chosen NLP

solver. In addition, the author states both the possibility of obtain local minima, when the direct

discretization of an OC problem is employed, and the necessity of a large amount of memory,

which in turn can lead to ine�ciencies (when, for instance, the dimension of the problem is too

complex). On the other hand, indirect methods provide high levels of numerical accuracy, but its

implementation can be quite di�cult due to the necessity of computing derivatives and necessary

conditions related to the PMP.

The choice of the best method for a problem deeply depends on the features of the dynamical

system. In this regard, in the Second Part of this dissertation, both indirect and direct methods

to solve continuous time dynamical systems are compared using di�erent numerical solvers.

Finally, by exploring the current scientific literature, we end this Chapter showing the actual

synergies between epidemiological models and OC Theory.

2.7 Problems Mixing Epidemiological Models and Optimal Control

Theory

Within an enormous set of applications, some major problems mixing epidemiological models

with OC are now highlighted and the relevance and usefulness of this dissertation’s topic, regardless

of the application, is enhanced.

The application and formulation of mathematical models to describe several epidemic phe-

nomena is gathering further highlight. In addition, to both optimally manage the response of

a mathematical system when optimization strategies are added to it, and get the best possible

result, OC Theory is often combined with epidemiological models (see [38]).

Conventionally, controlled epidemic models are applied to infectious diseases in an attempt to

prevent and control them. From a wide range of topics, epidemiological models with OC have been
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applied to study the epidemic spreading based on complex networks, considering virus variation

factors [130]; to modeling cholera using quarantine treatments [63], public health interventions

[90, 103] or optimal vaccination strategies [18]; to investigate intervention strategies to malaria

[17, 31, 89, 93]; to study the transmission dynamics of hepatitis C using control treatments

[95, 135]; to modeling HIV transmission [77, 94, 113, 114, 136] or even tuberculosis [10, 85, 115].

In addition, particular attention has been given to Ebola virus, by proposing OC interventions,

related to treatment and preventive controls, that could minimize its fatality rate (see, e.g., [4, 9]

and the references cited therein).

However, control interventions must be applied using cost-reducing principles. In this regard,

P. Giamberardino and D. Iacoviello [37] proposed a controlled SIR epidemiological model with

state dependent switching cost index in order to use resources in a rational way, depending on the

severity of the disease.

Summarizing, it is now clear that the integration of OC Theory in epidemiological models

allows to formulate strategies that optimize a given objective functional, which in turn eventually

provides an optimal solution for a certain complex problem.

The fruitful relationship between OC Theory and Epidemiology has also been applied to mod-

eling Viral Marketing (VM) and Computer Viruses Transmission (CVT) processes. Throughout

the Second Part of this dissertation, scientific literature related to these subjects is presented.

2.8 Concluding Remarks

This Chapter recalled necessary conditions and an existence result related to standard OC

problems. Since the majority of the controlled dynamical systems are too complex to be alge-

braically solved, indirect and direct numerical methods to solve OC problems were described and

discussed. The relationship between epidemiological models and OC Theory was pointed out by

briefly revisiting current scientific literature.

Next, in the Second Part of this work, epidemiological models and OC Theory are used to

understand the dynamics of VM, aiming to provide control policies that may maximize information

spreading with low cost. In addition, CVT is also studied by taking advantage of numerical

simulations related to epidemic models over networks.
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Part II

Applications: Marketing and

Computer Viruses Transmission
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3 | Viral Marketing

Within a marketing context, the transmission of a marketing message to a specific

audience can be quite erratic. In this Chapter, a definition and description of the Viral

Marketing process is given. Moreover, in order to understand the dynamics of a viral

message within a population, a SIR model applied to a real Viral Marketing campaign

is introduced and studied. With the main purpose of maximize, in a economically

way viable, the impact of a marketing message under di�erent marketing strategies,

OC Theory is incorporated into the mathematical models. Furthermore, numerical

simulations and methods to solve the models are also tested and compared, aiming

to provide guidelines to marketers.

3.1 Understanding the Dynamics of Viral Marketing

Marketing is a valuable tool to orient and increase the performance of an organization [110],

in such a way that companies frequently use marketing strategies to enhancing and strengthening

a brand. However, over time, to cope with progress in technology, traditional marketing strategies

have proved to be ine�ective from the perspective of meeting demanding conditions of consumers

[102]. Therefore, since the beginning of a successful marketing campaign deeply depends on the

motivation of individuals in such a way that they will feel challenged and inspired to spread a

marketing message within their social network [1], marketing professionals have been trying to

design attractive and viral campaigns, based on strategies that allow to revert the drawbacks of

traditional marketing.

One of these strategies is known as VM, which refers to the process that takes advantage

of the word-of-mouth to replicate and di�use a marketing message into a large set of customers

[65]. According to N. Adelsarbanlar and B. Khoshtinat [1], VM can be seen as a virus, by using
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communication and distribution channels to di�use a specific information content. Whereas, in

traditional marketing, communication strategies are deeply concentrated in the customer, VM

creates mechanisms in order to avoid both the implication of the original source, by increasing

information exchange among customers and consumers [126], and the necessity to establish a

direct contact with targeted individuals [84]. In addition, VM has a snowball e�ect by replicating

the message among the susceptible population, increasing the number of ‘infected’ individuals

[42]. As a statement of VM’s e�ectiveness, A. Dobele et al. [28] consider that this strategy can

provide three crucial perks to a marketing company: low investment costs, using network e�ects;

the transmission process of a message is voluntary which in turn should increase the probability

of being visited by potential consumers, and induces more e�ectiveness in targeting individuals

(see, e.g., [98] for more detailed information about reasons for forwarding messages). Never-

theless, when planning and implementing VM strategies, marketing professionals must guarantee

that characteristics like entertainment, humor, curiosity, surprise, useful information, and relevant

content are not neglected, in order to convert a simple message into a viral and attractive one

[27].

According to M. Woerndl et al. [126], VM has, however, some drawbacks that must be

highlighted: negative word-of-mouth that could lead to boycott and ruin; privacy issues and the

fact that consumers can feel exploited, cheated and used. Moreover, these authors stand out the

uncontrollable nature of this marketing strategy, namely related to an eventual loss over content

and few possibilities to measure success and timing.

Thus, in view of the above, the ultimate goal of VM relates to reach a large audience with

a low cost associated to it, by exploiting network e�ects which in turn maximize the process of

spreading the intended information. Note that this goal can be seen as a trade-o� and the use

of mathematical tools might be a fruitful solution to reach the masses without compromising the

financial capacity of a company.

Assertively, the unpredictable dynamics of VM, justified by the di�cult in predicting the suc-

cess of a marketing campaign, is the main motivation for the choice of this application in this

dissertation - since it is crucial to find strategies that could control the uncertainty associated

to the impact of a specific marketing campaign and, consequently, turn it into a viral, successful

and e�ective message. Taking into account that one of the major di�culties in di�using a viral

message relates to create mechanisms that convince and persuade individuals to spread it on the
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best time window, OC Theory is considered. Over time, OC problems applied to information

epidemics have been proposed and discussed [51, 52, 54, 60]. More precisely, these research

studies focus on study optimal strategies to promote information di�usion in social networks and

environments. In this regard, and considering that VM can be modeled by epidemiological models

[65, 108, 116, 124], the dynamics and impact of a real VM advertisement, Dove Real Beauty

Sketches, are studied using mathematical theory presented in the First Part of this dissertation.

Produced in 2013, Dove Real Beauty Sketches is a publicity campaign that focuses on state the

definition of beautiful, promoting self-esteem and changing the perception of beauty [29]. This

campaign was a huge success across the globe, considered the most viral video advertisement of

all time [117], and represents an excellent example of how to build a successful viral marketing

campaign.

Thereby, under a mathematical perspective and based on Dove’s campaign numerical data,

the next sections study the dynamics of VM and optimal policies that might help marketing

professionals to increase information di�usion with low cost in future campaigns.

3.1.1 Viral Marketing as an Epidemiological Dynamical System

Motivated by the overwhelming success of Dove’s campaign, the mathematical properties and

dynamics of the campaign are now studied - from the parameters estimation to the stability of the

mathematical model, simulated in Matlab. Mathematically, using an SIR epidemiological model,

it is shown not only that the campaign was a viral epidemic, but also that it can be leveraged

and optimized by epidemiological and mathematical modeling, which o�er important guidelines

to maximize the impact of a viral message and minimize the uncertainty related to the conception

and outcome of new marketing campaigns.

3.1.1.1 Can Mathematical Epidemiology and Marketing Work Together?

As mentioned above, taking into consideration that VM can be modeled under standard

epidemic models, an SIR epidemiological model is considered to analyze, over time, the dynamics

of the Dove Real Beauty Sketches marketing campaign, under initial conditions related to the

campaign real data presented in [117]:
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dS(t)

dt
= ��

S(t)I(t)

N

dI(t)

dt
= �

S(t)I(t)

N
� �I(t)

dR(t)

dt
= �I(t) ,

8
>>>>>>>><

>>>>>>>>:

S(0) = 10

9 � 30000

I(0) = 30000

R(0) = 0 .

(3.1)

In terms of marketing, we define compartment S as the audience that marketers want to

reach with the marketing message; I as the individuals that transmit the message or recommend

a product to friends or relatives, motivated by monetary interests or just for the attractiveness of

the intended message, and R as the population who stop transmitting the message because, for

instance, it is no longer appealing. Regarding the parameters in terms of marketing, � can be

seen as the predisposition to deal with the message and be motivated to share it, and � as the

interruption of the message transmission by individuals [108].

The total host population N , estimated by 10

9 [111], is considered to be constant in time.

Noting that R(t) derives from S(t) and I(t) and considering the fractions s =

S

N
, i = I

N
,

r =

R

N
, the SIR system (3.1) and its initial conditions can be normalized as follows.

8
>>>>>>><

>>>>>>>:

ds(t)

dt
= ��s(t)i(t)

di(t)

dt
= �s(t)i(t)� �i(t)

r(t) = 1� s(t)� i(t) ,

8
>>>>>>>><

>>>>>>>>:

s(0) =
S(0)

N

i(0) =
I(0)

N

r(0) = 0 .

(3.2)

According to the analysis developed in the First Part of this dissertation, the marketing message

is widely di�used if di(t)

dt
> 0. Considering s ⇡ 1 in this inequality we get �

�
> 1. Here, the basic

reproduction number, R
0

=

�

�
, represents secondary transmissions sent by a single individual to a

specific target audience. Moreover, if R
0

< 1 the message is not widespread. On the other hand,

if R
0

> 1 the message is broadly sent among the susceptible population [108].

Note that, by the side of marketers, an accurate estimation of the parameters � and � deeply

helps to monitor the evolution of the campaign among the social network environment. Hence,

in the next Section, we estimate � and � in order to adjust the model to the campaign real

data. This estimation has taken into account the first seven days of Dove’s campaign, where the
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maximum peak of infection is attained.

3.1.1.2 Parameters Estimation using an Optimization Approach

The estimation of � and � has a significant importance in the model dynamics and adjustment

to the campaign real data. However, it is not trivial to find strategies or recipes to estimate model

parameters. Moreover, in the marketing field, this di�cult increases exponentially, due to its

erratic behavior. Another important aspect is linked to the fact that, related to the word-of-

mouth and network e�ects processes, social behavior is not predictable with a desired accuracy.

So, find a perfect method to estimate parameters related to stochastic patterns it is quite di�cult,

and marketers must take these critical aspects into account upon the design of future campaigns,

in order to have more control on the evolution of it. Although, there are accurate estimation

methods among the literature to fit the model to data from an outbreak. Based on [79] (pp.

125–129), fminsearch function, associated to Nelder-Mead method (see [61]), is used from the

Matlab optimization toolbox. Hence, � ⇡ 67.5244 and � ⇡ 65.0751 were obtained as optimal

parameters. In the appendix of [19], it is possible to find the sensitivity equations for the SIR

model, which constitute an important indicator to study the e�ect of � and � variation. In this

context, considering the first seven days of the campaign, some simulations to assess and analyze

the parameters variation are performed (Fig. 3.1).
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Figure 3.1: The e�ect of � and � variation in the adjustment to the campaign real data.
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Figure 3.1(a) displays the estimated data with optimal parameters. Figure 3.1(b) presents the

estimated data with a smooth variation in � and �. According to Fig. 3.1(b), it becomes clear

that a slight variation on the optimal parameters leads to a misalignment between the estimated

and the real data.

3.1.1.3 Qualitative Analysis of the Solutions

This Section performs a stability and dynamical analysis of the model, by linking it to the

Dove’s campaign, based on standard Mathematical Epidemiology and Dynamical Systems theory.

Henceforth, as a starting point to analyze and discuss mathematical properties related to stability

and dynamics of the model, it will be considered the system (3.2).

Let f :

[0, 1]2 ! R2 be a C1 map. It is possible to write (3.2) as

dx

dt
= f(x(t)), 8t 2 [0,1) ,

where

x(t) =

2

64
s

i

3

75 and f(x(t)) =

2

64
��s(t)i(t)

�s(t)i(t)� �i(t)

3

75 .

By solving f(x(t)) = 0R2 , it is concluded that all the points in the form (s⇤, 0), where s⇤ can

be any number on [0, 1], are equilibrium solutions of the system. However, special focus is devoted

to two solutions: E
1

= (1, 0), when the levels of infection are null, and E
2

= (0, 0), related to

the end of the epidemic, when r ⇡ 1. In analyzing equilibrium solutions it is pertinent to obtain

the linearized matrix of the system (3.2), in a neighborhood of a critical point (s⇤, i⇤), for which

i⇤ = 0:

Jf (s
⇤, 0) =

2

6664

@
���s(t)i(t)

�

@s

@
���s(t)i(t)

�

@i

@
�
�s(t)i(t)� �i(t)

�

@s

@
�
�s(t)i(t)� �i(t)

�

@i

3

7775����
(s⇤,0)

=

2

64
0 ��s⇤

0 �s⇤ � �

3

75 .

(3.3)
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Considering the characteristic equation det(Jf (s
⇤, 0)��I

2

) = 0, the eigenvalues of the Jaco-

bian matrix Jf (s
⇤, 0) are �

1

= 0 and �
2

= �s⇤ � �. In general, by evaluating the eigenvalues at

the equilibrium solutions, we can infer its stability. However, for E
2

, linear stability analysis may

not be su�cient. In this particular case, more advanced mathematical techniques to study the

dynamics of the system around E
2

are necessary.

Considering the optimal parameters obtained in the previous section, it follows, for E
1

and

E
2

, respectively, that

�
2

= � � � > 0 = �
1

and �
2

= �� < 0 = �
1

.

In relation to E
1

, since <(�
2

) > 0, according to basic stability properties of linear systems, E
1

is an unstable solution. Establishing a relationship with marketing, this solution corresponds to the

case that the fraction of individuals who recommend the marketing campaign increases faster than

it stops being shared (Viral Marketing epidemic). Considering the equilibrium E
2

, is not possible

to conclude, from the linear stability analysis by itself, whether or not the equilibrium solution E
2

is

stable. In this regard, the behavior of the autonomous systems as well as its equilibrium solutions

can be described through a phase-space, attending to the equation (1.15). Hence, Fig. 3.2 shows

one orbit of the SIR system (3.2) and illustrates the impact, over time, of Dove’s campaign.
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Figure 3.2: Orbit of the nonlinear SIR model.

Following an assertive analysis of the Fig. 3.2, s = 1 represents the launching of the marketing
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campaign, where almost nobody knows about it (i ⇡ 0). Over time, individuals begin to spread

the marketing campaign through network e�ects and the fraction of people who have contact with

the marketing message reaches a maximum level, that is

lim

s! 1
R0

+
i(s) = i

max

.

Note that i
max

can be obtained through the equation (1.19). Then, when a large fraction of

people has already contacted with the campaign, the fraction of infected people tends to decay

to zero. It should be noted that the greater the sharing of the message, the greater the fraction

of infected individuals. Below, the mathematical results previously analyzed are illustrated.

Figure 3.3(a) refers to the nonlinear model (3.2) and, for each trajectory considered, the

initial and final point are marked with a circle and a square, respectively. Figure 3.3(b) displays

the vector field of the linearized model, generated by (3.3) at the equilibrium E
1

. From the phase-

plane analysis we infer that E
2

is stable, since all trajectories starting in an arbitrary a 2 B(E
2

, �),

for � > 0, move about a finite range of distance, converging to an ending point b 2 R2

+

nearby E
2

.

In other words, the solutions contract back in the direction of E
2

. In what concerns to the vector

field showed in Fig. 3.3(a), the vectors behavior is perfectly expectable due to the fact that, by

the first equation of (3.2), ds

dt
< 0, since s, i > 0. At this point, s = 1

R
0

is crucial to understand

the dynamics of the system. For starting points (a
0

, b
0

) 2 R2

+

in a neighborhood of (s⇤, 0), for

which s⇤ ⌧ 1

R
0

, the trajectories tend to return to a nearby solution (sF , 0) 2 B(E
2

, �), for

� > 0. Relating to the marketing context, this means that if a small group of persons has contact

with the marketing campaign, then it will not be widespread (no viral epidemic). Concerning

to E
1

, as calculated previously, this solution is unstable since the trajectories grow away from

the equilibrium, and computing simulations confirm this finding (Fig. 3.3(b)). In other words,

supposing that starting points (a
0

, b
0

) 2 R2

+

are nearby (s⇤, 0), for which s⇤ >
1

R
0

, the trajectories

tend to diverge from the equilibrium, causing a viral epidemic. Hence, these equilibrium solutions

are unstable. In terms of marketing, this means that the number of infected individuals - who

recommend the campaign - tends to, gradually, grow up, until the maximum level of infection be

reached. Then, over time, this number tends to fall down to nearby zero. According to Fig. 3.3(b),

the instability of E
1

is even more evident through the vector field, which corroborates that Dove’s

campaign was a viral epidemic.
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(b) Linearized SIR model at E1

Figure 3.3: Vector fields of the SIR model.

The next Section applies OC Theory to the mathematical model, aiming to optimize informa-

tion spreading.

3.2 Optimizing Information Spreading using Optimal Control

In this Section, the process of di�using a viral marketing message with a low cost is studied

using OC Theory and an SIR epidemiological model. In Section (3.2.1), a control intervention

related to the encouragement of susceptible individuals to act as spreaders is formulated. Next,

another control policy related to the fostering of infected individuals to continue to spread the

message is implemented (Section (3.2.2)).

3.2.1 SIR Model with One Control

The standard SIR model characterized by the system (3.2) is now considered. Henceforth,

throughout this Chapter, we assume the marketing definitions of the state variables and model

parameters described in Section 3.1.1.1 and summarized in Table 3.1.

Hence, under the marketing assumptions of the SIR model described so far, the following

Section formulates an OC problem, in order to optimize information spreading with a low cost.
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Table 3.1: Summary of variables and parameters of SIR model under a VM context.

Symbol Description Estimated value Reference

� Predisposition to share the marketing message 67.5244 [79]

� Interruption of the message transmission 65.0751 [79]

N Total population size at the campaign launching 109 [111]

S(0) Number of susceptible individuals at the campaign launching 109 � 30000 [117]

I(0) Number of infected individuals at the campaign launching 30000 [117]

R(0) Number of recovered individuals at the campaign launching 0 [117]

3.2.1.1 Formulation of an Optimal Control Problem

To the system (3.2), one control function u(·) is added. Hence, the resultant controlled SIR

epidemiological model is given by the following system of ordinary di�erential equations:

8
>>>>>>><

>>>>>>>:

ds(t)

dt
= ��s(t)i(t)� u(t)s(t)

di(t)

dt
= �s(t)i(t) + u(t)s(t)� �i(t)

r(t) = 1� s(t)� i(t) ,

8
>>>>>>><

>>>>>>>:

s(0) = 1� 3⇥ 10

�5

i(0) = 3⇥ 10

�5

r(0) = 0 .

(3.4)

This system was firstly introduced in [54]. The control function u(·) represents the recruitment

of susceptible individuals to act as spreaders within social networks (e.g. through advertisements

in mass media [51]) by marketing companies, purposing to maximize the levels of information

di�usion.

Let tf be the considered campaign deadline. The set of admissible control functions is defined

by

⌦ =

(
u(·) 2 L2

(0, tf ) | 0 6 u(t) 6 u
max

, 8t 2 [0, tf ]

)
. (3.5)

For the bounded control u(t), the application of the control policy is maximum if u = u
max

and null if u = 0. The main goal is to find the optimal value u⇤ for the control u, in such a

way that the state trajectories are the solution of the system (3.4) over [0, tf ], and maximize the

objective functional (3.6). As a trade-o�, the OC problem consists in maximize the spreading of
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the message (maximizing the fraction of individuals who have contacted with it) and minimize

the intervention costs related to the implementation of the control strategy u, i.e.,

max

⌦

J(u(·)) = i(tf ) + r(tf ) +

Z tf

0

�Bu2(t) dt , (3.6)

subject to (3.4), where the nonnegative constant B represent the weight of the investment costs

associated to the control strategy u. At this point, under a marketing perspective and assuming

that the costs do not take a linear form, we consider a quadratic structure for the weighted control

function instead of a linear form as in [54].

Let s⇤(t), i⇤(t), r⇤(t) and �⇤
1

(t),�⇤
2

(t),�⇤
3

(t) denote the optimal states and adjoint functions,

respectively.

Theorem 3.2.1. There exists an optimal control function u⇤(t) 2 ⌦ and a set of corresponding

solutions (s⇤(t), i⇤(t)) that maximize the objective functional (3.6) subject to (3.4).

Proof. This theorem is proved based on the Theorem 4.1 proposed in [33]. Hence, the following

conditions must be satisfied:

1. The set of solutions of the controlled system with initial conditions (3.4) and u 2 ⌦ is not

empty.

2. The set ⌦ is closed and convex.

3. The right hand side of the state system (3.4) is continuous, bounded above by a sum of

the bounded function u and the state variables, and can be written as a linear function in

u with state variables as coe�cients.

4. The integrand of the objective functional (3.6) is concave on ⌦ with respect to u and there

exists constants C
0

> 0, C
1

and C
2

> 1 such that

�Bu2(t) 6 C
1

� C
0

��u(t)
��C2 .

The Condition 2 is satisfied since ⌦ is closed and convex by definition. Condition 3 is satisfied

according to the following arguments (see, e.g., [32, 130]):

The state system (3.4) can be rewritten as
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V (x) =̇
dx

dt
= Ax+B(x) , (3.7)

where the matrix A, the state vector x and the nonlinear function B(x) are defined as follows.

A =

0

B@
�u 0

u ��

1

CA, x =


s i

�T
and B(x) =

✓
��si �si

◆T

.

In addition, notice that:

���B(x)�B(x̃)
��� =

�����

 
��


(s� s̃)i+ s̃(i�˜i)

�
�


(s� s̃)i+ s̃(i�˜i)

� !T �����

6 2

���i
����s� s̃

��
+ 2

���s̃
����i�˜i

��

6 C
���s� s̃

��
+

��i�˜i
��� ,

where C = max

�
2

���i
��, 2

���s̃
�� . Therefore,

��V (x)� V (x̃)
�� 6 D

��x� x̃
�� , (3.8)

by taking D = C + kAk, which proves that V (x) is uniformly Lipschitz continuous. Hence,

also attending to the definition of ⌦ and the non-negativity of the state solutions, Condition 1 is

satisfied. The state variables s(t), i(t) and the objective functional (3.6) take values in a compact

interval [0, 1], and 0 6 u(t) 6 u
max

, 8t 2 [0, tf ]. Hence, V (x) is bounded above by a sum of

the bounded function u and the state variables. Moreover, it is easy to show that V (x) can be

written as a linear function in u(t) with state variables as coe�cients, thus Condition 3 is satisfied.

Finally, Condition 4 is proved since the integrand of the objective functional (3.6) is concave on

⌦ and

�Bu2(t) 6 C
1

� C
0

��u(t)
��C2 , (3.9)

if C
0

= B, C
1

= 1, C
2

= 2 were chosen. Hence the proof is concluded.
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According to the Pontryagin’s Maximum Principle (PMP) [101] and considering the OC prob-

lem (3.6), if u⇤(·) is a control that is optimal for the problem, then exists a Lipschitz continuous

map called covector � :

[0, tf ] ! R2, �(t) = (�
1

(t),�
2

(t)), such that

ds(t)

dt
=

@H

@�
1

,
di(t)

dt
=

@H

@�
2

(3.10)

and

d�
1

(t)

dt
= �@H

@s
,

d�
2

(t)

dt
= �@H

@i
, (3.11)

where the Hamiltonian function H is defined by

H
⇣
s(t), i(t), u(t),�

1

(t),�
2

(t)
⌘
= �Bu2(t)

+ �
1

(t)
⇣
� �s(t)i(t)� u(t)s(t)

⌘

+ �
2

(t)
⇣
�s(t)i(t) + u(t)s(t)� �i(t)

⌘
.

(3.12)

Theorem 3.2.2. Given the optimal solution (s⇤(t), i⇤(t)) of the state system (3.4) and objective

functional (3.6), associated to the optimal control variable u⇤(t) 2 ⌦, there exists adjoint functions

�
1

(t), �
2

(t) such that

8
>>><

>>>:

d�
1

(t)

dt
= �

1

(t)
⇣
�i⇤(t) + u⇤(t)

⌘
� �

2

(t)
⇣
�i⇤(t) + u⇤(t)

⌘

d�
2

(t)

dt
= �

1

(t)
⇣
�s⇤(t)

⌘
� �

2

(t)
⇣
�s⇤(t)� �

⌘
,

(3.13)

with transversality conditions

�
1

(tf ) = 0 and �
2

(tf ) = 1 . (3.14)

Further, the optimal control u⇤ is represented by

u⇤(t) = min

(
max

(
s⇤(t)

⇣
�
2

(t)� �
1

(t)
⌘

2B
, 0

)
, u

max

)
. (3.15)

53



Proof. Following the PMP [101], and setting s(t) = s⇤(t), i(t) = i⇤(t), u(t) = u⇤(t), the adjoint

system (3.13) comes from

8
>>><

>>>:

d�
1

(t)

dt
= �@H

�
s⇤(t), i⇤(t), u⇤(t),�

1

(t),�
2

(t)
�

@s

d�
2

(t)

dt
= �@H

�
s⇤(t), i⇤(t), u⇤(t),�

1

(t),�
2

(t)
�

@i
.

(3.16)

Since i(tf ) and r(tf ) appear as payo� terms in the objective functional (3.6), then �
1

(tf ) =

0 and �
2

(tf ) = 1.

Moreover, the optimality condition

@H
⇣
s⇤(t), i⇤(t), u⇤(t),�

1

(t),�
2

(t)
⌘

@u
= �2Bu⇤(t) +

⇣
�
2

(t)� �
1

(t)
⌘
s⇤(t) = 0 (3.17)

holds almost everywhere of [0, tf ]. Thus, by (3.17) and considering the boundedness condition of

u on ⌦, we obtain (3.15).

Based on the above, it is possible to derive the optimality system, which consists in the state

system (3.4), the adjoint system (3.13) and transversality conditions (3.14) with the characteri-

zation (3.15):

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ds⇤(t)

dt
= ��s⇤(t)i⇤(t)� u⇤(t)s⇤(t)

di⇤(t)

dt
= �s⇤(t)i⇤(t) + u⇤(t)s⇤(t)� �i⇤(t)

d�
1

(t)

dt
= �

1

(t)
⇣
�i⇤(t) + u⇤(t)

⌘
� �

2

(t)
⇣
�i⇤(t) + u⇤(t)

⌘

d�
2

(t)

dt
= �

1

(t)
⇣
�s⇤(t)

⌘
� �

2

(t)
⇣
�s⇤(t)� �

⌘

r⇤(t) = 1� s⇤(t)� i⇤(t)

u⇤(t) = min

(
max

(
s⇤(t)

⇣
�
2

(t)� �
1

(t)
⌘

2B
, 0

)
, u

max

)
,

(3.18)

with initial values s(0) = 1 � 3 ⇥ 10

�5, i(0) = 3 ⇥ 10

�5, r(0) = 0 and transversality conditions

�
1

(tf ) = 0 and �
2

(tf ) = 1. The optimal control and states can be obtained by solving (3.18)
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using numerical methods for OC problems. It should be noted that by the fact that the state and

adjoint functions are bounded and preserve the Lipschitz structure, u⇤ is unique for tf su�ciently

small (see, e.g., [49]).

3.2.1.2 Numerical Implementation and Methods

For the controlled SIR model previously proposed, this Section studies the dynamics of the state

and control variables and its impact on the performance index. To meet this goal, the solutions

of the associated OC problem are compared using indirect and direct numerical methods.

For that, three distinct weight factors B = 10

�1, B = 10 and B = 10

2 are considered to

generate numerical simulations. These factors traduce, respectively, a low, moderate and high

investment cost scenario in recruiting susceptible population to act as spreaders on the target

population, by marketers. The choice of these values is related to the formulation of investment

cost scenarios that best described the marketing reality. At this point, as an indirect numerical

approach, Forward-Backward Sweep method (FBS) is considered. This method was implemented

and solved in Matlab (the complete code is included in the Appendix Section).

To use direct methods, the problem (3.6) must be discretized with respect to time t. For that,

a first order Euler’s method was considered with tn = nh : n 2 {0, 1, ...,M}, and a step size h =

3

500

, where the error in each step is proportional to h2.

Let F :

[0, 1]2 ! R2 is a C1 map. According to the Euler’s scheme, for

ẋ = F
�
x(t)

�
, 8t 2 [0, 6] , (3.19)

where

x(t) =

2

64
s(t)

i(t)

3

75 and F
�
x(t)

�
=

2

64
��s(t)i(t)� u(t)s(t)

�s(t)i(t) + u(t)s(t)� �i(t)

3

75 ,

it comes, for x(tn) ⇡ xn, that

xn+1

� xn
h

= f
�
xn
� ) x(t+ h) = x(t) + hF

�
x(t)

�
. (3.20)

Therefore, the problem (3.6) is discretized into the following nonlinear constrained optimization

problem:
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max
⌦

i(M) + r(M)� 3B

M

✓
u2(0) + u2(M) + 2

M�1X

k=1

u2(k)

◆

s.t.

2

64
s(k + 1)

i(k + 1)

3

75 =

2

64
s(k)

i(k)

3

75+ h

(2

64
��s(k)i(k)� u(k)s(k)

�s(k)i(k) + u(k)s(k)� �i(k)

3

75

)
,

(3.21)

where k 2 {0, 1, ...,M � 1}, and M is the the last index of the Euler’s scheme and corresponds

to tf = 6.

KNITRO, IPOPT and LOQO were used as software packages to solve the discretized problem

above. The problem (3.21) was modeled in the algebraic modeling language AMPL [34] (the

complete code is included in the Appendix Section) and numerically solved in NEOS Server plat-

form [92]. It should be noted that the CPU time can vary depending on the machine used in

NEOS server platform. Thus, this variable is not taken into account when analyzing the results.

Numerical results are presented in the next Section.

3.2.1.3 Numerical Results and Discussion

This Section reports and compares the computacional results not only for the state and control

variables of the state system (3.4), but also for the objective functional (3.6) using di�erent

numerical solvers related to both indirect and direct numerical methods described so far.

First of all, Figure 3.4 shows the influence of OC application in Dove’s marketing strategy. At

this point, it is possible to notice that the fraction of infected people, that is, individuals that pass

or recommend Dove’s campaign, increase significantly when OC Theory is applied, for di�erent

values of B. The levels of infection obtained for these values will be discussed later.

Further, each graphic illustrates the solution obtained for both control and state variables, by

using the di�erent numerical solvers. In the computacional measurements, all the direct solvers

converged and a local optimal solution was attained for all the solvers and weight factor variations.

In Table 3.2, the number of iterations and function evaluations spent by each direct solver for each

weight factor B is presented. Table 3.3 reports the obtained values for the proposed objective

functional.
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Figure 3.4: The e�ects of Optimal Control application on i(t).

Table 3.2: Computational performance indicators of direct solvers.

B = 10

�1 B = 10 B = 10

2

Solver
iterations evaluations iterations evaluations iterations evaluations

KNITRO 10 12 11 13 10 12

IPOPT 21 22 26 27 23 24

LOQO 21 21 28 28 26 26

Table 3.3: Objective functional values.

B = 10

�1 B = 10 B = 10

2

Solver
⇡ J(u(t)) ⇡ J(u(t)) ⇡ J(u(t))

FBS 0.8836 0.4643 0.2739

KNITRO 0.8841 0.4643 0.2743

IPOPT 0.8841 0.4643 0.2743

LOQO 0.8689 0.4638 0.2734

Starting with the weight factor B = 10

�1 (Fig. 3.5), all the solvers suggest that for a small

investment cost in the control u, the fraction of susceptible population decreases over time t,
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which means that the control measure adopted is e�ective on encouraging individuals to spread

the marketing message within their social network, inducing, therefore, high levels of infection

in a short period of time (see Fig. 3.5(b)). All the methods tested also show that virtually all

the target population tends to spread the message, since, for t = 6, the fraction of susceptible

population is almost null (see Fig. 3.5(a)) and the fraction of individuals tends to fully recover

(see Fig. 3.5(c)).

In terms of the application of the control policy (Fig. 3.5(d)), mainly LOQO’s curve allows to

infer that, since the investment cost is low, the control u should be applied gradually from the

beginning of the campaign in order to attain the maximum peak of infection. In fact, the higher

levels of cost functional (3.6) are obtained for B = 10

�1 (see Table 3.3). It should be emphasized

that despite of the dynamics of LOQO be di�erent than the obtained with the other solvers for the

control signal u(t), its behavior on the state variables as well as on the cost functional is consistent

with the dynamics produced by all numerical solvers tested. The di�erences in the dynamics of

the solvers can be explained by the numerical steps that promote global convergence (see, e.g.,

[100]).

On the other hand, for a reasonable investment cost in implementing u (Fig. 3.6), all the

solutions obtained show that the levels of information spreading are lower than the ones obtained

for B = 10

�1 (see, Fig. 3.6(b)). In fact, whereas for B = 10

�1 the majority of the individuals

spreads or has contact with the marketing message, Fig. 3.6(a) reveals that for B = 10 about half

of the target population is not stimulated to share the intended message, which in turn induces

lower levels of recovery (see Fig. 3.6(c)). Moreover, Fig. 3.6(d) suggests that facing a reasonable

investment cost in control actions, the control measures should be applied with higher intensity

at the beginning of the campaign and not over time as in the case of B = 10

�1. In terms of the

proposed objective functional, for B = 10, all the solvers conducted to an approximated solution,

which is roughly half than the obtained for B = 10

�1 (see Table 3.3). This fact is natural, since

the adoption of this control weight represents a bigger e�ort in terms of cost minimization.

Regarding the factor B = 10

2, illustrated in Fig. 3.7, the simulations related to the fraction

of susceptible and recovered population are omitted in order to avoid redundancy. However, for

a high investment cost in u, the recorded levels of infection are the lowest (Fig. 3.7(a)). In terms

of the intensity of the application of the control policy, the results are analogous to the obtained

for B = 10, but the values are smaller (see Figs. 3.6(d) and 3.7(b)).
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Figure 3.5: Model dynamics for FBS, KNITRO, IPOPT and LOQO under a low investment cost

in u. Parameter values: B = 10

�1 and u
max

= 1 .
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Figure 3.6: Model dynamics for FBS, KNITRO, IPOPT and LOQO under a reasonable investment

cost in u. Parameter values: B = 10 and u
max

= 0.1 .

60



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

time t (days)

i
(
t
)

 

 
FBS
KNITRO
IPOPT
LOQO

(a) Fraction of infected population

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time t (days)

u
(
t
)

 

 
FBS
KNITRO
IPOPT
LOQO

(b) Optimal control

Figure 3.7: Model dynamics for FBS, KNITRO, IPOPT and LOQO under a high investment cost

in u. Parameter values: B = 10

2 and u
max

= 0.025 .

Transversally, whatever the factor B considered, it is possible to observe that di�erent nu-

merical solvers lead to an analogous dynamics, being exactly the same for KNITRO and IPOPT

(red and black curves are always superimposed). However, KNITRO leads to a smaller number of

iterations and function evaluations than IPOPT (see Table 3.2).

Our results support the conclusion that both indirect and direct methods lead to analogous

behaviors in terms of state variables, confirming the reliability of the obtained results. However,

in what concerns to the control variable u, the dynamics vary inasmuch as the investment costs

in control policies have a direct influence on the objective functional. At this point, numerical

simulations showed that when the investment cost related to the adoption of u decreases, the

magnitude of u increases. In contrast when the investment cost associated to the implementation

of u increases, the magnitude of u decreases.

Having analyzed the situation of attracting susceptible individuals to spread the message, the

next Section studies the case in which the infected individuals are also stimulated to continue to

spread it.
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3.2.2 SIR Model with Two Controls

In Section 3.2.1, an OC strategy to encourage susceptible individuals to spread the marketing

message was tested. However, it is also important to fostering infected individuals to continue to

spread the marketing message in order to maintain high levels of information spreading. Motivated

by this purpose, another control function, u
2

(t), 8t 2 [0, 6], is added to the system (3.4), resulting

in the following system of ordinary di�erential equations:

8
>>>>>>><

>>>>>>>:

ds(t)

dt
= ��� + u

2

(t)
�
s(t)i(t)� u

1

(t)s(t)

di(t)

dt
=

�
� + u

2

(t)
�
s(t)i(t) + u

1

(t)s(t)� �i(t)

r(t) = 1� s(t)� i(t) ,

8
>>>>>>><

>>>>>>>:

s(0) = 1� 3⇥ 10

�5

i(0) = 3⇥ 10

�5

r(0) = 0 .

(3.22)

This system was adapted from [51]. The new control function u
2

(t) expresses the foster-

ing of infected individuals to continue to spread the marketing message into the social network

(e.g., through vouchers, rewards, monetary stimuli) [51]. Moreover, the set of admissible control

functions becomes

⌦ =

(
(u

1

(·), u
2

(·)) 2 (L2

(0, tf ))
2 | 0 6 u

1

(t) 6 u
1max

^ 0 6 u
2

(t) 6 u
2max

, 8t 2 [0, tf ]

)
.

Similarly to the OC problem formulated in the previous Section, the objective functional is

now defined as

max

⌦

J(u
1

(·), u
2

(·)) = i(tf ) + r(tf ) +

Z tf

0

�
h
Bu2

1

(t) + Cu2
2

(t)
i
dt , (3.23)

subject to (3.22), where the non-negative constants B and C represent the weights of the invest-

ment costs associated to the control signals u
1

and u
2

, respectively. The existence of an optimal

solution can also be derived, recalling [33] for existence results of optimal solutions.

Let �i(t) : i = 1, 2. be the adjoint functions, s⇤(t), i⇤(t) the optimal state variables and

u⇤i (t) : i = 1, 2. the optimal controls. For the sake of simplicity, the necessary conditions, for the

proposed OC problem, that the state and control variables must satisfy are derived as follows.
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Hamiltonian:

H(s(t), i(t), u
1

(t), u
2

(t),�
1

(t),�
2

(t)) = �(Bu2
1

(t) + Cu2
2

(t))

+ �
1

(t)
h
��� + u

2

(t)
�
s(t)i(t)� u

1

(t)s(t)
i

+ �
2

(t)
h�
� + u

2

(t)
�
s(t)i(t) + u

1

(t)s(t)� �i(t)
i
.

Adjoint system:
8
>>><

>>>:

d�
1

dt
= �

1

(t)
h�
� + u⇤

2

(t)
�
i⇤(t) + u⇤

1

(t)
i
� �

2

(t)
h�
� + u⇤

2

(t)
�
i⇤(t) + u⇤

1

(t)
i

d�
2

dt
= �

1

(t)
h�
� + u⇤

2

(t)
�
s⇤(t)

i
� �

2

(t)
h�
� + u⇤

2

(t)
�
s⇤(t)� �

i
,

(3.24)

with transversality conditions �
1

(tf ) = 0 and �
2

(tf ) = 1.

In addition, using the Hamiltonian maximizing condition at the interior points, the optimal

controls u⇤
1

(t) and u⇤
2

(t) are characterized by:

u⇤
1

(t) = min

(
max

(
s⇤(t)

⇣
�
2

(t)� �
1

(t)
⌘

2B
, 0

)
, u

1max

)
, (3.25)

and

u⇤
2

(t) = min

(
max

(
s⇤(t)i⇤(t)

⇣
�
2

(t)� �
1

(t)
⌘

2C
, 0

)
, u

2max

)
. (3.26)

The optimality system consists in the state system (3.22), the adjoint system (3.24) and

transversality conditions with the characterizations (3.25) and (3.26).

Theorem 3.2.3 (Uniqueness of Optimality System). Given the initial value problem (3.22) and

the objective functional (3.23), the optimal solution (s⇤(t), i⇤(t)), with associated optimal control

functions u⇤
1

(t), u⇤
2

(t), and the adjoint functions �
1

(t), �
2

(t) are unique for tf su�ciently small.

Proof. Let (s, i,�
1

,�
2

) and (s, i,�
1

,�
2

) be two solutions of the optimality system. Consider

s = e�ta
1

, i = e�ta
2

, �
1

= e��tb
1

, �
2

= e��tb
2

. Analogously, consider s = e�ta
1

, i = e�ta
2

,

�
1

= e��tb
1

, �
2

= e��tb
2

, where � is a constant.
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Let

u
1

(t) = min

(
max

(
a
1

(b
2

� b
1

)

2B
, 0

)
, u

1max

)
,

u
2

(t) = min

(
max

(
e�ta

1

a
2

(b
2

� b
1

)

2C
, 0

)
, u

2max

)
,

and

u
1

(t) = min

(
max

(
a
1

(b
2

� b
1

)

2B
, 0

)
, u

1max

)
,

u
2

(t) = min

(
max

(
e�ta

1

a
2

(b
2

� b
1

)

2C
, 0

)
, u

2max

)
.

Henceforth, for the sake of simplicity, it will be considered u
1

, u
1

, u
2

, u
2

instead of their

specific characterizations. Using the assumptions above, the first state equation of the optimality

system becomes

e�t
da

1

dt
+ �e�ta

1

= �(� + u
2

)e2�ta
1

a
2

� u
1

e�ta
1

. (3.27)

Similarly, for �
1

= e��tb
1

, yields

e��tdb1
dt

� �e��tb
1

= e��t
(b

1

� b
2

)

h
(� + u

2

)e�ta
2

+ u
1

i
. (3.28)

Now, the equations for s and s, i and i, �
1

and �
1

, �
2

and �
2

are subtracted. Then, each of

these equations is multiplied by an appropriate di�erence of functions and integrated from 0 to

tf . Hence, the four integral equations resultant from these operations are listed below.

64



1

2

�
a
1

(tf )� a
1

(tf )
�
2

+ �

Z tf

0

(a
1

� a
1

)

2 dt

= �
Z tf

0

e�t

"
(� + u

2

)a
1

a
2

� (� + u
2

)a
1

a
2

)

#
(a

1

� a
1

) dt�
Z tf

0

(u
1

a
1

� u
1

a
1

)(a
1

� a
1

) dt

= �
Z tf

0

e�t

"
�
⇣
(a

1

� a
1

)a
2

+ a
1

(a
2

� a
2

)

⌘
+ u

2

(a
1

� a
1

)a
2

+ u
2

a
1

(a
2

� a
2

)

#
(a

1

� a
1

) dt

�
Z tf

0

e�t

"
(u

2

� u
2

)a
1

a
2

#
(a

1

� a
1

) dt�
Z tf

0

"
(u

1

� u
1

)a
1

+ u
1

(a
1

� a
1

)

#
(a

1

� a
1

) dt ,

(3.29)

1

2

�
a
2

(tf )� a
2

(tf )
�
2

+ �

Z tf

0

(a
2

� a
2

)

2 dt

=

Z tf

0

e�t

"
(� + u

2

)a
1

a
2

� (� + u
2

)a
1

a
2

#
(a

2

� a
2

) dt+

Z tf

0

(u
1

a
1

� u
1

a
1

)(a
2

� a
2

) dt

� �

Z tf

0

(a
2

� a
2

)

2 dt

=

Z tf

0

e�t

"
�
⇣
(a

1

� a
1

)a
2

+ a
1

(a
2

� a
2

)

⌘
+ u

2

(a
1

� a
1

)a
2

+ u
2

a
1

(a
2

� a
2

)

#
(a

2

� a
2

) dt

+

Z tf

0

e�t

"
(u

2

� u
2

)a
1

a
2

#
(a

2

� a
2

) dt+

Z tf

0

"
(u

1

� u
1

)a
1

+ u
1

(a
1

� a
1

)

#
(a

2

� a
2

) dt

� �

Z tf

0

(a
2

� a
2

)

2 dt ,

(3.30)

1

2

�
b
1

(0)� b
1

(0)

�
2

+ �

Z tf

0

(b
1

� b
1

)

2 dt

= �
Z tf

0

"
(b

1

� b
2

)

h
(� + u

2

)e�ta
2

+ u
1

i
� (b

1

� b
2

)

h
(� + u

2

)e�ta
2

+ u
1

i#
(b

1

� b
1

) dt

= �
Z tf

0

e�t

"
�
⇣
a
2

⇥
(b

1

� b
1

)� (b
2

� b
2

)

⇤
+ (a

2

� a
2

)(b
1

� b
2

)

⌘
+ u

2

a
2

⇥
(b

1

� b
1

)� (b
2

� b
2

)

⇤

+ u
2

(b
1

� b
2

)(a
2

� a
2

)

#
(b

1

� b
1

) dt�
Z tf

0

e�t(b
1

� b
2

)(u
2

� u
2

)a
2

(b
1

� b
1

) dt

�
Z tf

0

h
u
1

⇣
(b

1

� b
1

)� (b
2

� b
2

)

⌘
+ (u

1

� u
1

)(b
1

� b
2

)

i
(b

1

� b
1

) dt ,

(3.31)

65



1

2

�
b
2

(0)� b
2

(0)

�
2

+ �

Z tf

0

(b
2

� b
2

)

2 dt

= �
Z tf

0

e�t

"
(b

1

� b
2

)(� + u
2

)a
1

� (b
1

� b
2

)(� + u
2

)a
1

#
(b

2

� b
2

) dt� �

Z tf

0

(b
2

� b
2

)

2 dt

= �
Z tf

0

e�t

"
�
h
a
1

⇣
(b

1

� b
1

)� (b
2

� b
2

)

⌘
+ (a

1

� a
1

)(b
1

� b
2

)

i
+ u

2

a
1

⇣
(b

1

� b
1

)� (b
2

� b
2

)

⌘

+ (b
1

� b
2

)(a
1

� a
1

)u
2

#
(b

2

� b
2

) dt�
Z tf

0

e�t(b
1

� b
2

)(u
2

� u
2

)a
1

(b
2

� b
2

) dt

� �

Z tf

0

(b
2

� b
2

)

2 dt .

(3.32)

Next, in these four integral equations, some terms are estimated. Firstly, notice that
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Therefore, using these estimates, the following inequalities are obtained:
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By adding all of these estimations, and noting that e�tf 6 e3�tf , it follows that
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Rearranging the terms,
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where ˜D and ˜F depend on the coe�cients and the bounds of a
1

, a
2

, b
1

, b
2

.

By choosing � > ˜D +

˜F and tf <
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67



0 6 1

2

h�
a
1

(tf )� a
1

(tf )
�
2

+

�
a
2

(tf )� a
2

(tf )
�
2

+

�
b
1

(0)� b
1

(0)

�
2

+

�
b
2

(0)� b
2

(0)

�
2

i

6 (

˜D +

˜Fe3�tf � �)

Z tf

0

(a
1

� a
1

)

2

+ (a
2

� a
2

)

2

+ (b
1

� b
1

)

2

+ (b
2

� b
2

)

2 dt

6 0 ,

(3.41)

which implies that
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Thus, knowing that (

˜D +

˜Fe3�tf � �) < 0, we have a
1

= a
1

, a
2

= a
2

, b
1

= b
1

, b
2

= b
2

and

(s, i,�
1

,�
2

) = (s, i,�
1

,�
2

), which concludes the proof.

3.2.2.1 Numerical Results and Discussion

With the inclusion of the new control function u
2

, the main goal is to provide insights related

to when and which control strategies should be applied to maximize the spreading of information

and minimize costs. Using Matlab software to solve the optimality system, numerical results

are obtained by using FBS method.

In what follows, two approaches are considered. Firstly, simulations of the control weights are

performed using both optimal controls u⇤
1

and u⇤
2

, in order to assess which control weights induce

a higher cost functional. Secondly, these pairs are used to model and compare scenarios related

to high, low and equal investments costs in publicity actions.

• Control Weights Simulation using u⇤
1

and u⇤
2

Firstly, using both optimal controls u⇤
1

and u⇤
2

, the variation of the control weights on both

infected individuals (i(t)) and control signals is studied over [0, 6]. The simulations of the control

weights are performed under three strategies described in Table 3.4.

The choice of the values for B and C was based on several experimental simulations that

aimed at obtaining the results that best described the reality of each strategy. For the sake of

consistency, since at the beginning of a viral epidemic the main goal is to attract susceptible
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Table 3.4: Marketing strategies using Optimal Control.

# Strategy Marketing context

Strategy 1:

B = 1 and C 2 {x | x = 10

�i
: i = 1, ..., 3}

Low investment costs in encouraging infected

individuals to continue to spread the marketing

message (e.g., exploiting social networks such as

Facebook and Twitter).

Strategy 2:

B = 1 and C 2 {x | x = 10

i
: i = 1, ..., 3}

High investment costs in fostering infected

individuals to continue to spread the marketing

message (e.g., monetary rewards and stimuli,

expensive promotional gifts and international

trips).

Strategy 3:

B 2 {x | x = 10

i
: i = 0, ..., 3} and C = 1

Increasing the investment costs in recruiting

susceptible individuals to act as spreaders.

individuals, it is conceivable to start with an intermediate investment cost in detriment of a lower

one. For this reason, the above strategies do not consider B < 1. The simulations regarding the

three strategies are illustrated in Fig. 3.8.

Figure 3.8(a) shows that around the first day, the fraction of infected individuals is higher

when the investment costs in fostering people who had already been in contact with the marketing

message are low, namely for B = 1 and C = 10

�3.

Regarding the Strategy 2 (Fig. 3.8(b)), by fixing B = 1, as the control weight C increases,

infection levels do not vary. Thus, it is plausible to conclude that higher costs in implement further

publicity strategies to fostering infected individuals do not result in higher levels of spreading.

In what concerns Strategy 3, Fig. 3.8(c) reports that as the control weight B increases, the

fraction of people who have contact with the intended message is diminishing all the time and the

maximum peak of infection is attained increasingly late.

Transversally, whatever the strategy considered, the smaller the investment costs neither in fos-

tering infected individuals to continue to spread the message, nor in recruit susceptible individuals

to act as spreaders, the greater the levels of information spreading.
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Figure 3.8: Variation of the control weights on i(t) for the di�erent marketing strategies.

Overall, Table 3.5 presents the values for objective functional (3.23), by varying the control

weights for each strategy. Here, the pairs of control weights that induce a higher cost functional

are highlighted in bold, for each strategy. The choice of the highlighted pairs was based on the

aim of portray low, high and equal investment cost scenarios, respectively.
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Table 3.5: Summary of optimal cost functionals varying control weights (B,C).

Strategy 1 Strategy 2 Strategy 3

(B,C) ⇡ J(u⇤
1

, u⇤
2

) (B,C) ⇡ J(u⇤
1

, u⇤
2

) (B,C) ⇡ J(u⇤
1

, u⇤
2

)

(1, 10�3) 0.699766 (1, 10) 0.698692 (1, 1) 0.698693

(1, 10�2

) 0.698815 (1, 102) 0.698691 (10, 1) 0.463743

(1, 10�1

) 0.698704 (1, 103) 0.698691 (10

2, 1) 0.273901

– – – – (10

3, 1) 0.159022

• Control Experiments for Di�erent Investment Cost Scenarios

The scenarios based on the control weights highlighted in Table 3.5 are now simulated, varying

the control functions u
1

(t) and u
2

(t), 8t 2 [0, 6]. If the company has monetary funds to invest in

extra publicity actions either on susceptible or already infected individuals, upper control policies

are tested. The upper control is here defined as the maximum control value for which the cost

functional (3.23) is positive, and it represents the maximum application of a control measure.

Henceforth, let u
1max

and u
2max

be the upper controls related to the control functions u
1

and

u
2

, respectively.

1) Low Investment Cost Scenario using Control Weights (B,C) = (1, 10�3

)

In Fig. 3.9(a) it is possible to note that the fraction of infected individuals is significantly higher

whenever optimal control is applied. In this regard, the implementation e�ect of the controls u
1

and u
2

is assessed over [0, 6], see Fig. 3.10.

Observing Figs. 3.10(a) and 3.10(b) at the launch of the advertisement, the best policy is

to implement the optimal control combination (u⇤
1

,u⇤
2

), in order to rapidly attain the maximum

peak of infection at the end of the first day of the Dove’s campaign (see Fig. 3.9(a)). Then,

during the next 2 days, the control u
2

is at the upper bound (see, Fig. 3.10(b)), suggesting in

this time window that the best policy is to apply (0, u⇤
2

) in such a way as to encourage infected

individuals to continue to spread the message. Hence, at the end of t = 2, when the levels of

recovery begin to increase, the pair (u⇤
1

, 0) should be implemented in order to minimize the rate

of recovered individuals by attracting new susceptible individuals to di�use the intended message,
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Figure 3.9: Infected individuals for B = 1, C = 10

�3, u
1max

= 0.4, u
2max

= 1.
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Figure 3.10: Optimal controls u
1

and u
2

for B = 1, C = 10

�3, u
1max

= 0.4, u
2max

= 1.

see Fig. 3.10(a). In terms of cost functional, despite of infection levels attain a maximum level

using (u
1max

, u
2max

), J(u
1max

, u
2max

) ⇡ 0.002095, which means that a double investment in

both control policies compromises the objective of minimize costs.

In contrast, based on Table 3.5, J(u⇤
1

, u⇤
2

) ⇡ 0.699766, that is, the simultaneous use of the
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control functions u⇤
1

and u⇤
2

fulfills the proposed trade-o�, notwithstanding by applying (u⇤
1

, 0)

an excellent marketing performance is obtained with less costs (J(u⇤
1

, 0) ⇡ 0.698678). This

is underpinned by the fact that, for the control intervention (u⇤
1

, u
2max

), the cost functional

(3.23) is almost the same as the obtained when the optimal controls u⇤
1

and u⇤
2

are applied

(J(u⇤
1

, u
2max

) ⇡ 0.695835). These arguments show the importance of the control u
1

to attain

the maximum peak of infection at the beginning of the campaign.

2) High Investment Cost Scenario using Control Weights (B,C) = (1, 10)

In this scenario, analogously to the previous one, the fraction of infected individuals at the

beginning of the campaign is higher with the implementation of control policies than without it,

see Fig. 3.11(a).
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Figure 3.11: Infected individuals for B = 1, C = 10, u
1max

= 0.4, u
2max

= 0.01.

However, Fig. 3.12(b) illustrates that the magnitude of the control u⇤
2

is significantly lower

when compared to the magnitude of u⇤
1

(Fig. 3.12(a)), due to the high investment costs imposed.

By linking this finding with Fig. 3.11(a), it is possible to infer not only that the optimal control

measure u⇤
2

applied by itself has no direct influence on the information dissemination (dark blue

curve), but also that by applying (u⇤
1

, 0), the levels of information di�usion are satisfactory.
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Figure 3.12: Optimal controls u
1

and u
2

for B = 1, C = 10, u
1max

= 0.4, u
2max

= 0.01.

When upper control measures are applied, the infection levels increase substantially, see

Fig. 3.11(b). Nonetheless, similarly to the previously scenario, the use of (u
1max

, u
2max

) results

in a residual cost functional (J(u
1max

, u
2max

) ⇡ 0.001591).

At this point, upper control policies for u
2

are disadvantageous, inasmuch as the adoption

(u⇤
1

, u
2max

) leads to the same infection levels as the obtained by using both optimal controls, see

Figs. 3.11(a) and 3.11(b). Furthermore, J(u⇤
1

, 0) ⇡ 0.698678, which means that the application

of the control u⇤
1

is a su�cient condition to achieve the proposed trade-o�.

Linking with the previous scenario, it also can be notice that the control u
1

has much more

influence on the information spreading than u
2

, as one would have expected.

In order to avoid redundancy, the control simulations using B = C = 1 are omitted. However,

in this case, the importance of the control intervention u
1

overlaps u
2

.

3.3 Discussion

This Chapter introduced VM as an epidemiological dynamical system. In addition, based one

of the most viral video advertisements of all time - Dove Real Beauty Sketches, OC Theory was

used with the aim of maximize information spreading with a low cost associated to it. In this

regard, two controlled systems of ODEs were formulated and several numerical solvers were used
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to ensure the reliability of the results. Moreover, in order to improve the timing of the information

di�usion, optimal time windows to apply the control policies u
1

and u
2

were recommended, for

each scenario.

In terms of guidelines to marketing professionals, our results showed that when the investment

cost related to the adoption of u decreases, the magnitude of u increases. In contrast when the

investment cost associated to the implementation of u increases, the magnitude of u decreases.

Moreover, it was possible to infer that the control u
1

is a crucial variable to meet the proposed

objective.

On the other hand, we observed that the numerical estimation of � and � may give rise to

di�culties, inasmuch as the attainment of a quasiperfect fitting to the real data with a residual

margin of error is not always feasible. At this point, as future research, the estimation method

used should be improved in order to guarantee the total reliability of the estimation results.

To sum up, OC Theory plays a key role on the e�ective di�usion of Viral Marketing campaigns,

by providing not only higher levels of infection than the obtained without using it, but also by

speeding up the transmission process within the target audience.
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4 | Computer Viruses Transmission

This Chapter begins to define preliminary concepts and present some state of the art

related to the process of computer viruses transmission. Then, the dynamics of a virus

within a system is explained and illustrated under network and epidemiology theory.

4.1 Understanding the Dynamics of Computer Viruses Transmis-

sion

A computer virus can be defined as a computer program capable of replicating itself and

propagate from one computer to another, within a certain network [133], and its behavior is

similar to the propagation of a biological virus [40].

According to the report referenced in [78], the origin of computer viruses dates back to 1949,

discussed in the paper entitled “Theory and Organization of Complicated Automata”, by John

von Neumann. In this report, the author groups destructive software, or malicious objects, into

four main categories: trojan horses, logic bombs, worms and computer viruses, and describe the

four main phases that portray the general behavior of computer viruses within a computer system:

1. Numbness phase, where the user is unaware of the computer virus that is present in his

system.

2. Propagation phase, where the virus attempts to attach itself to other files present in the

system. Consequently, other machines in the network can become infected.

3. Triggering phase, referring to the moment when the virus is detected by the user.

4. Damaging phase, where, as the name suggests, the virus causes damages along the system

network.
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4.1.1 Can Mathematical Epidemiology and Computer Viruses Transmission Work
Together?

Following up the continuous advancement of the internet and social networks, computer viruses

became more efective and harder to detect and remove [120] (as cited in [99]), raising the potential

for damage, loss and destruction of data within companies and individuals [25].

Over time, in order to try to understand the dynamics of CVT and minimize its propagation,

epidemiological models began being intensively explored since the initial study proposed by J.

Kephart and S. White in [57]. In this regard, C. Zhang and H. Huang [133] refer that the current

studies on virus epidemiology have been mainly focused on two major subjects, namely viruses

spreading on fully-connected networks, under the assumption that every machine on the network

is equally likely to be accessed by other one, and viruses spreading on complex networks, related

to network topology (see, e.g., [132]).

Still on the subject of study the dynamics of CVT, R. Thommes and M. Coates [119] studied the

propagation of computer viruses, but the length of latency was not assessed. Moreover, according

to [82], P. Yan and S. Liu [131] proposed a SEIR (Susceptible–Exposed–Infected–Recovered) model

that assumes, with a given mathematical probability, a permanent immunization period related to

the recovered hosts, which simply bears no relation to reality. In this regard, to overcome these

obstacles, B. Mishra and D. Saini [83] proposed a SEIRS model with latent and temporary immune

periods, which, in fact, can confirm the propagation of malicious objects. The transmission of

worms in computer networks was also studied in [82], e.g., where the authors formulated an

e-epidemic SIRS model for the fuzzy transmission of worms, assessing low, medium and high

dynamics of infection, in order to better understand the worms dynamics within a computer

network.

Regarding the computer viruses whose life period is associated to latent and disruptive phases

(disruptive viruses), Y. Wu et al. [128] proposed an heterogeneous epidemic model to assess the

prevalence of disruptive computer viruses in the case that every node in a network has its own

virus-related attributes. Besides, some measures of containing the prevalence of malicious objects

are provided by these authors.

Aiming to minimize the damages caused by computer viruses, C. Gan et al. [35] explored the

influence of vaccination probability on the di�usion of computer viruses using a novel SIRS model
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with generalized nonlinear incidence, providing also e�ective strategies to minimize the prevalence

of viruses. From a related perspective, I. Ahn et al. [3] introduced an C-SEIRA (Susceptible-

Exposed-Infectious-Removed-Antidotal) epidemic model with optimal control to both minimize

the rate of virus infections and the cost of isolating infectious computers from the network,

showing that OC Theory has a positive e�ect on the control the virus epidemic. For the proposed

model, this work also studied stability conditions of the equilibrium solutions.

The information above allows to infer that the process of CVT is being increasingly understood,

as well as it shows that Mathematical Epidemiology and OC Theory reveal a key tool to model

complex problems.

Established some introductory remarks on CVT, Network Theory to describe the dynamics of

computer viruses is now presented.

4.1.2 Virus Epidemic over Networks

According to [56], network and epidemiology theory are intrinsically related. In [125], G.

Witten and G. Poulter discussed the spread of infectious diseases on networks, and described

several common network models, namely Random, Watts-Strogatz, Lattice, Barabasí–Albert and

Scale-free networks. According to these authors, each one of these models has some parallels and

disparities from those expected of typical human contact networks.

Epidemiological models can be adapted to networks. Thus, based on [5], the next Section

introduces the SIS and SIR epidemiological models over homogeneous networks. Heterogenous

models can also be defined. However, for the sake of convenience, only homogeneous models are

considered.

Notice that, throughout the following sections, the dynamics of the models are presented

associated to an universe of computer network systems rather than individuals.

4.1.2.1 Homogeneous Network Models

In this type of network models, all nodes have degree very close to hki. Thus, by considering

that computer systems have, approximately, hki chances of contagion from neighbours, we can

rewrite the standard SIS and SIR systems as follows.
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Homogeneous SIS Epidemiological Model:

8
>>><

>>>:

dS(t)

dt
= ��hkiS(t)I(t)

N
+ �I(t)

dI(t)

dt
=

�hkiS(t)I(t)
N

� �I(t) ,

8
>>><

>>>:

S(0) = S
0

> 0

I(0) = I
0

> 0 .

(4.1)

The classes S and I represent the number of computer systems which are susceptible to

become infected by a malicious object and the number of machines which are infected, respectively.

Regarding the model parameters, susceptible machines move to the class I at a rate �, becoming

infected. Then, after the implementation of some kind of anti-infection intervention, an infected

machine becomes susceptible again at a rate �.

Considering S(0) ⇡ N , we define R
0

=

�

�
as the number of secondary infections produced

by a single infected machine within a computer network system. At this point, it is easy to prove

that if R
0

<
1

hki , then an outbreak does not occur. On the contrary, if R
0

>
1

hki , an epidemic

occurs. The model dynamics is the same as for the standard non-networked SIS model described

in Chapter 1.

Homogeneous SIR Epidemiological Model:

8
>>>>>>><

>>>>>>>:

dS(t)

dt
= ��hkiS(t)I(t)

N

dI(t)

dt
=

�hkiS(t)I(t)
N

� �I(t)

dR(t)

dt
= �I(t) ,

8
>>>>>>>><

>>>>>>>>:

S(0) = S
0

> 0

I(0) = I
0

> 0

R(0) = 0 .

(4.2)

The biological meaning of the state variables and model parameters is almost the same as

for the SIS system (4.1), apart from the fact that, under the SIR model philosophy, after the

implementation of some kind of anti-malware policies, an infected machine becomes immune, at

a rate �, and can not become infected again.

Remark 4.1.1. In this context, the assumption that a machine can become completely immune

to reinfections does not capture the real essence of virus dynamics. However, it is plausible to

consider that if a computer system is equipped with fully e�ective anti-malware programs, then the

probability of certain malicious objects compromise the whole system is substantially lower than
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without further anti-malware measures. In this regard, the better the fully e�ective anti-malware

programs used, the smaller the probability of a computer system become infected. See [59] for a

careful analysis on epidemic models applied to CVT.

Nevertheless, on the basis of the above arguments, and just to briefly illustrate the dynamics

of a virus within a network computer system, SIS and SIR epidemic models are considered and

simulated in the next Section.

4.1.2.2 SIS and SIR Epidemiological Models over Networks

Recalling that the dynamics of a virus infection in humans is similar to the propagation of

virus in computer systems, this Section focuses on Network Theory to model the progression of a

virus infection within a given set of computer systems, by both using SIS and SIR epidemiological

models and exploring an R package for Mathematical Modeling of Infectious Disease over Networks

(EpiModel) [48]. Moreover, the networks are considered to be temporal exponential random graph

models (ERGMs), which allow the epidemic modeling to be firmly grounded in empirical data on

the contacts and persistent partnerships that can spread infection (see [47] and the references

cited therein for more detailed information). In ERGMs, the probability distribution is given by

Pr(Y = y | ✓) = exp {✓T g(y)}P
y02Y exp {✓g(y0)} (4.3)

where,

• y is the observed network;

• ✓ is a vector of model coe�cients, representing the prevalence of the node-edge structure;

• g(y) is a vector of network statistics;

• P
y02Y exp {✓g(y0)} is a normalizing constant that represents the set of all possible node-

edge structures of the network with the size and nodal composition of y.

In EpiModel, both the estimation and simulation of the dynamic networks are implemented

using the Markov Chain Monte Carlo algorithm functions from the statnet package [46].

Hereinafter, each individual in the network (represented by a node) can develop relationships/-

partnerships (represented by edges) with other individuals in its neighborhood in such a way that

virus spreads-itself from node to node. Throughout this Section, the edges of the graphs have no
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orientation (undirected graphs), which means that if an individual I
1

has a relationship with an

individual I
2

, then the symmetric relationship is also valid. Moreover, the graphs are considered

to be complete, meaning that every pair of distinct nodes is connected by a unique edge.

The generation of networks in EpiModel requires the use of functions to estimate the generative

model for the dynamic partnership networks (netest); to simulate replications of the network over

time from the model fit in netest (netdx); to run the stochastic epidemic processes over a network

simulated from netest (netsim).

In Listing 4.1, a source code for a network SIS model is given. Lines 1 and 2 specify the

number of nodes and the undirected feature of the edges, in order to create the empty network.

The command o�set(edges) establishes an homogeneous dissolution model in which the edge

duration is the same for all partnerships (line 3). In this regard, line 4 introduces a su�cient high

duration value in order to guarantee that the connections between the nodes are not dissolved over

time. Next, the network dissolution (line 5) and formation (line 6) formulas specify, respectively,

how machines in the system dissolve and form partnerships over time, where edges and concurrent

represent the number of partnerships in the network, and the number of nodes which have more

than one partnership at any time step, respectively. At this point, since we are considering

complete graphs, the maximum number of edges of an undirected graph G with n nodes obeys

to the formula

G(n, 2) =
n(n� 1)

2

. (4.4)

Hence, the target statistics vector (line 7) is related to the expected values of the network

statistics for each cross-sectional slice of the dynamic network time series. In the listing below,

the maximum number of edges for a graph with 20 nodes is considered, as well as the maximum

number of nodes with two or more ties - the choice of these values is based on the assumption

that machines are connected to one another, in a real computer system networks.

In addition, to simulate the standard SIS and SIR epidemic models, three parameters are

required:

• The probability of transmission per act (inf.prob);

• The rate of acts that occur within each active partnership during each time step (act.rate);
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• The probability of an infected node recovers at a given time step (rec.rate), with immunity

(not permanent) (SIR model) or re-susceptibility (SIS model).

Listing 4.1: Source code for the SIS model - EpiModel.

1 s i z e <� 20

2 nw <� network . i n i t i a l i z e ( s i z e , d i r e c t e d = FALSE)

3 d i s s o l u t i o n <� ~ o f f s e t ( edges )

4 d u r a t i o n <� 10^7

5 c o e f . d i s s <� d i s s o l u t i o n _ c o e f s ( d i s s o l u t i o n , d u r a t i o n )

6 f o r m a t i o n <� ~ edges + c o n c u r r e n t

7 t a r g e t . s t a t s <� c (190 ,20)

8 e s t <� n e t e s t (nw , fo rmat ion , t a r g e t . s t a t s , c o e f . d i s s , v e r b o s e = FALSE)

9 dx <� netdx ( e s t , ns ims = 5 , n s t e p s = 10)

10 param <� param . net ( i n f . prob = 0 . 4 , ac t . r a t e = 0 . 4 , r e c . r a t e = 0 . 2 )

11 i n i t <� i n i t . ne t ( i . num = 1 , r . num = 0 )

12 c o n t r o l <� c o n t r o l . ne t ( type = " SIS " , ns ims = 5 , n s t e p s = 10 , v e r b o s e . i n t = 0)

13 sim <� net s im ( es t , param , i n i t , c o n t r o l )

14 p l o t ( sim , type = " network " , a t = 10 , s ims = 1 , c o l . s t a t u s = TRUE)

Notice that the listing 4.1 can be adapted to the SIR model, by changing the type command

accordingly in line 12. In the next simulations, one infected individual at the beginning of the

epidemic and a mean infectious period of 5 (rec.rate�1) are assumed. In terms of notation, the

blue, red and green nodes traduce, respectively, susceptible, infected and recovered computer

systems. The epidemic behavior on the network is studied by considering di�erent number of time

steps to solve the model over (1, 3 and 10) and 5 simulations to run.

So, figure 4.1 illustrates the beginning of the epidemic, where only a single computer system

is infected. At t = 3 (Fig. 4.2), attending to the fact that the mean infectious period is 5, the

number of infected systems increases in both models. Note that due to the full connections in

the computer network, a single infected computer can infect many others.

Now, if anti-malware measures are only taken in the short term, then the number of infected

nodes decreases and the infected machines recover from the infection but with re-susceptibility

(Fig. 4.3(a)). If, though, anti-malware measures are taken in the long term, then the number of

infected nodes decreases and the infected machines recover from the infection but with immunity

(Fig. 4.3(b)) (with the important caveat that this immunity should not be seen as permanent.

In other words, the machine has only less probability to become infected, as highlighted in the

Remark 4.1.1).
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(a) SIS model (b) SIR model

Figure 4.1: Prevalence on SIS and SIR models at t = 1: blue – susceptible; red – infected.

(a) SIS model (b) SIR model

Figure 4.2: Prevalence on SIS and SIR models at t = 3: blue – susceptible; red – infected.
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(a) SIS model (b) SIR model

Figure 4.3: Prevalence on SIS and SIR models at t = 10: blue – susceptible; green – recovered.

Remark 4.1.2. Although network epidemic models are essential to study the propagation of virus

infections, some obstacles arise when high dimensional networks are considered. In the context of

challenges for network epidemic models, see [97].

4.2 Discussion

The propagation of viruses within computer networks is becoming an increasingly urgent issue.

This Chapter began to propose a scientific literature review on the subject. Then, in a very

superficial way, the infection propagation within computer networks was modeled using Network

Theory from a very recent R package for Mathematical Modeling of Infectious Disease over

Networks (EpiModel). It should be strengthened that the high dimension of the real networks

might be a problem to the use of some softwares to model epidemic phenomena, both in terms of

computacional performance and accuracy. In addition, it is appropriate to reinforce the necessity

of more realistic models to capture, the best possible, the real dynamics of CVT.
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Conclusions and Future Research

The major aim of this dissertation was to understand and explore both Mathematical Epidemi-

ology and Optimal Control Theory. More particularly, these domains were used to understand the

dynamics of two di�erent environments - Viral Marketing and Computer Viruses Transmission.

With this purpose, we started by introducing some basic theory related to epidemiological

models (Chapter 1) and Optimal Control Theory (Chapter 2). Then, in the Second Part of this

dissertation, the dynamics of Viral Marketing and Computer Viruses Transmission was analyzed

using the mathematical tools described in the first two chapters. In this process, some major

contributions were derived.

Major Contributions

The main perceived remarks on Viral Marketing and Computer Viruses Transmission are de-

scribed as follows.

In Chapter 3, Viral Marketing is presented as an epidemiological dynamical system. Next,

an Optimal Control problem related to the trade-o� between the maximization of information

spreading and the minimization of the costs associated to it was formulated and studied using not

only indirect and direct numerical techniques to solve the problem, but also real numerical data

from one of the most viral advertisements of all time - Dove Real Beauty Sketches. At this point,

we studied the impact of encouraging susceptible individuals to share the marketing message and

concluded that when the investment costs in publicity policies increase, the fraction of individuals

who have contact with the marketing message decreases. Additionally, a second control policy

related to the fostering of infected individuals to continue to spread the marketing messages was

assessed, allowing to provide Optimal Control strategies in optimal time windows.

In Chapter 4, a recent R package for Mathematical Modeling of Infectious Disease over Net-

works (EpiModel) was used to analyze the dynamics of SIS and SIR models over networks, aiming
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to illustrate, in an introductory way, Computer Viruses Transmission. These models were de-

scribed under an homogeneous network environment and the results correlated positively with the

well-known dynamics of these epidemic models.

Future Research

As future work, it would be interesting to test other solvers with additional optimal control

measures and perform a sensitivity analysis on the parameters. In addition, a cost-e�ectiveness

analysis to compare the application of control policies separately or in combination is also a major

goal to be achieved in Viral Marketing.

Considering that, in marketing campaigns, there are individuals who discourage others to

share the marketing message, it is pertinent to consider the inclusion of variables that assess the

pejorative impact of anti-propagation campaigns.

On the other hand, since Viral Marketing and Computer Viruses Transmission dynamics depend

also on the past, in terms of time, our intention relates to formulate Optimal Control problems

with delay di�erential equations, to give even more realism to the dynamical process of these

two phenomena. Moreover, several types of delay, multi-objective optimization and Bang-Bang

controls are also pointed as future research.

Blessed are the Mathematicians who

breathe, explore, develop and expand the

most beautiful language on earth.

João N.C. Gonçalves
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Appendix: Source Codes

Forward-Backward Sweep Method Algorithm in Matlab

Listing 2: Forward-Backward Sweep Method in Matlab.

1 f u n c t i o n y = code_FBSMethod_NORM

2 t e s t = �1;

3 T=6;

4 d e l t a = 0 . 0 0 1 ;

5 M = 1000 ;

6 t=l i n s p a c e (0 ,T,M+1) ;

7 h=T/M;

8 h2 = h /2 ;

9 N=10^9;

10 beta =67.524423215969549;

11 gamma=65.075135004128185;

12

13 S=z e r o s (1 ,M+1) ;

14 I=z e r o s (1 ,M+1) ;

15 R=z e r o s (1 ,M+1) ;

16 S (1 ) =(N�30000)/N; % i n i t i a l c o n d i t i o n s a s s i g n e d to x (0 )

17 I (1 ) =30000/N;

18 R(1) =0;

19 u=z e r o s (1 ,M+1) ;

20 lambda1=z e r o s (1 ,M+1) ;

21 lambda2=z e r o s (1 ,M+1) ;

22 lambda3=z e r o s (1 ,M+1) ;

23 lambda1 (M+1)=0;

24 lambda2 (M+1)=1;

25 lambda3 (M+1)=1;
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26

27 J=z e r o s (1 ,M+1) ;

28 w h i l e ( t e s t < 0) % w h i l e t o l e r a n c e i s a t t a i n e d , r e p e a t the p r o c e s s

29

30 o ldu = u ;

31 o ldS = S ;

32 o l d I = I ;

33 oldR = R ;

34 old lambda1 = lambda1 ;

35 o ld lambda2 = lambda2 ;

36 o ld lambda3 = lambda3 ;

37

38 f o r i = 1 :M % fo rward

39

40 m11 = (�beta ⇤S( i ) ⇤ I ( i ) )�u ( i ) ⇤S( i ) ;

41 m12 = ( beta ⇤S( i ) ⇤ I ( i ) )�gamma⇤ I ( i )+(u ( i ) ⇤S( i ) ) ;

42 m13 = gamma⇤ I ( i ) ;

43

44 m21 = (�beta ⇤(S( i )+h2⇤m11) ) ⇤( I ( i )+h2⇤m12) �0.5⇤(u ( i )+u ( i +1) ) ⇤(S( i )+h2⇤m11) ;

45 m22 = ( beta ⇤(S( i )+h2⇤m11) ) ⇤( I ( i )+h2⇤m12)�gamma⇤( I ( i )+h2⇤m12)

46 +0.5⇤(u ( i )+u ( i +1) ) ⇤(S( i )+h2⇤m11) ;

47 m23 = gamma⇤( I ( i )+h2⇤m12) ;

48

49 m31 = (�beta ⇤(S( i )+h2⇤m21) ) ⇤( I ( i )+h2⇤m22) �0.5⇤(u ( i )+u ( i +1) ) ⇤(S( i )+h2⇤m21) ;

50 m32 = ( beta ⇤(S( i )+h2⇤m21) ) ⇤( I ( i )+h2⇤m22)�gamma⇤( I ( i )+h2⇤m22)

51 +0.5⇤(u ( i )+u ( i +1) ) ⇤(S( i )+h2⇤m21) ;

52 m33 = gamma⇤( I ( i )+h2⇤m22) ;

53

54 m41 = (�beta ⇤(S( i )+h⇤m31) ) ⇤( I ( i )+h⇤m32)�u ( i +1)⇤(S( i )+h⇤m31) ;

55 m42 = ( beta ⇤(S( i )+h⇤m31) ) ⇤( I ( i )+h⇤m32)�gamma⇤( I ( i )+h⇤m32)

56 +u ( i +1)⇤(S( i )+h⇤m31) ;

57 m43 = gamma⇤( I ( i )+h⇤m32) ;

58

59 S( i +1) = S( i ) + ( h /6) ⇤(m11 + 2⇤m21 + 2⇤m31 + m41) ;

60 I ( i +1) = I ( i ) + ( h /6) ⇤(m12 + 2⇤m22 + 2⇤m32 + m42) ;

61 R( i +1) = R( i ) + ( h /6) ⇤(m13 + 2⇤m23 + 2⇤m33 + m43) ;

62 end

63 f o r i = 1 :M % backward
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64 j = M + 2 � i ;

65

66 % ADJOINT FUNCTIONS

67

68 n11 = lambda1 ( j ) ⇤( beta ⇤ I ( j )+u ( j ) )�lambda2 ( j ) ⇤( beta ⇤ I ( j )+u ( j ) ) ;

69 n12 = lambda1 ( j ) ⇤( beta ⇤S( j ) )�lambda2 ( j ) ⇤( beta ⇤S( j )�gamma)�lambda3 ( j ) ⇤gamma ;

70 n13 = 0 ;

71

72 n21 = ( lambda1 ( j )�h2⇤n11 ) ⇤( beta ⇤ ( 0 . 5⇤ ( I ( j )+I ( j �1) ) ) +(0.5⇤( u ( j )+u ( j �1) ) ) )

73 �(lambda2 ( j )�h2⇤n12 ) ⇤( beta ⇤ ( 0 . 5⇤ ( I ( j )+I ( j �1) ) ) +(0.5⇤( u ( j )+u ( j �1) ) ) ) ;

74 n22 = ( lambda1 ( j )�h2⇤n11 ) ⇤( beta ⇤ ( 0 . 5⇤ ( S( j )+S( j �1) ) ) )�(lambda2 ( j )�h2⇤n12 ) ⇤(

beta ⇤ ( 0 . 5⇤ ( S( j )+S( j �1) ) )�gamma)�(lambda3 ( j )�h2⇤n13 ) ⇤gamma ;

75 n23 = 0 ;

76

77 n31 = ( lambda1 ( j )�h2⇤n21 ) ⇤( beta ⇤ ( 0 . 5⇤ ( I ( j )+I ( j �1) ) ) +(0.5⇤( u ( j )+u ( j �1) ) ) )

78 �(lambda2 ( j )�h2⇤n22 ) ⇤( beta ⇤ ( 0 . 5⇤ ( I ( j )+I ( j �1) ) ) +(0.5⇤( u ( j )+u ( j �1) ) ) ) ;

79 n32 = ( lambda1 ( j )�h2⇤n21 ) ⇤( beta ⇤ ( 0 . 5⇤ ( S( j )+S( j �1) ) ) )�(lambda2 ( j )�h2⇤n22 ) ⇤(

beta ⇤ ( 0 . 5⇤ ( S( j )+S( j �1) ) )�gamma)�(lambda3 ( j )�h2⇤n23 ) ⇤gamma ;

80 n33= 0 ;

81

82 n41 = ( lambda1 ( j )�h⇤n31 ) ⇤( beta ⇤ I ( j �1)+u ( j �1) )�(lambda2 ( j )�h⇤n32 ) ⇤

83 ( beta ⇤ I ( j �1)+u ( j �1) ) ;

84 n42 = ( lambda1 ( j )�h⇤n31 ) ⇤( beta ⇤S( j �1) )�(lambda2 ( j )�h⇤n32 ) ⇤

85 ( beta ⇤S( j �1)�gamma)�(lambda3 ( j )�h⇤n33 ) ⇤gamma ;

86 n43 = 0 ;

87

88 lambda1 ( j �1) = lambda1 ( j ) � ( h /6) ⇤( n11 + 2⇤n21 + 2⇤n31 + n41 ) ;

89 lambda2 ( j �1) = lambda2 ( j ) � ( h /6) ⇤( n12 + 2⇤n22 + 2⇤n32 + n42 ) ;

90 lambda3 ( j �1) = lambda3 ( j ) � ( h /6) ⇤( n13 + 2⇤n23 + 2⇤n33 + n43 ) ;

91 end

92

93 b=10^2; % f o r example

94 u1=min ( 0 . 0 2 5 , max ( ( S . ⇤ ( lambda2�lambda1 ) ) /(2⇤b ) ,0 ) ) ;

95 u=0.5⇤( u1 + o ldu ) ;

96 J= I (M+1)+R(M+1)�t r a p z ( t , b⇤( u . ^ 2 ) )

97 temp1 = d e l t a ⇤sum( abs ( u ) ) � sum( abs ( o ldu � u ) ) ;

98 temp2 = d e l t a ⇤sum( abs (S) ) � sum( abs ( o ldS � S) ) ;

99 temp3 = d e l t a ⇤sum( abs ( I ) ) � sum( abs ( o l d I � I ) ) ;
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100 temp4 = d e l t a ⇤sum( abs (R) ) � sum( abs ( oldR � R) ) ;

101 temp5 = d e l t a ⇤sum( abs ( lambda1 ) ) � sum( abs ( o ld lambda1 � lambda1 ) ) ;

102 temp6 = d e l t a ⇤sum( abs ( lambda2 ) ) � sum( abs ( o ld lambda2 � lambda2 ) ) ;

103 temp7 = d e l t a ⇤sum( abs ( lambda3 ) ) � sum( abs ( o ld lambda3 � lambda3 ) ) ;

104 t e s t = min ( temp1 , min ( temp2 , min ( temp3 , min ( temp4 , min ( temp5 , min ( temp6

, temp7 ) ) ) ) ) ) ;

105 end

AMPL formulation for the discretized controlled system (3.21) using

KNITRO

Listing 3: AMPL formulation for the discretized controlled system (3.21).

1 #### PARAMETERS ###

2 param N=1000;

3 param beta =67.524423215969549;

4 param gamma=65.075135004128185;

5 param B=0.1; # f o r example

6 param x1_0=(10^9�30000) /(10^9) ;

7 param x2_0 =(30000) /(10^9) ;

8 param x3_0=0;

9 param t f =6;

10

11 #### VARIABLES ###

12 va r x1 { 0 . .N} , >=0 <=1, d e f a u l t x1_0 ; # s u s c e p t i b l e i n d i v i d u a l s

13 va r x2 { 0 . .N} , >=0 <=1, d e f a u l t x2_0 ; # i n f e c t e d i n d i v i d u a l s

14 va r x3 { 0 . .N} , >=0 <=1, d e f a u l t x3_0 ; # r e c o v e r e d i n d i v i d u a l s

15 va r u { 0 . .N} , >=0 <=1; # c o n t r o l v a r i a b l e ( r e c r u i t m e n t o f

s u s c e p t i b l e i n d i v i d u a l s to ac t as s p r e a d e r s ) / the upper bound o f " va r

u" must change a c c o r d i n g to the v a l u e o f B .

16

17 #### OBJECTIVE FUNCTION ###

18 maximize

19 c o s t : x3 [N]+x2 [N]�B⇤( t f /(2⇤N) ) ⇤( u [0]^2+ u [N]^2+2⇤(sum{ i i n 1 . . N�1} u [ i ] ^2 ) ) ;

20

21 #### CONSTRAINTS ###

22 s u b j e c t to

23
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24 i 1 : x1 [ 0 ] = x1_0 ;

25 i 2 : x2 [ 0 ] = x2_0 ;

26 i 3 : x3 [ 0 ] = x3_0 ;

27 f1 { i i n 0 . . N�1}: x1 [ i +1] = x1 [ i ] + ( t f /N)⇤(�beta ⇤x1 [ i ]⇤ x2 [ i ]�u [ i ]⇤ x1 [ i ] ) ;

28 f2 { i i n 0 . . N�1}: x2 [ i +1] = x2 [ i ] + ( t f /N) ⇤( beta ⇤x1 [ i ]⇤ x2 [ i ]+u [ i ]⇤ x1 [ i ]�

gamma⇤x2 [ i ] ) ;

29 f3 { i i n 0 . . N�1}: x3 [ i +1] = x3 [ i ] + ( t f /N) ⇤(gamma⇤x2 [ i ] ) ;

30

31 ### SOLVE ###

32 o p t i o n s o l v e r k n i t r o ; # case where KNITRO i s used .

33 s o l v e ;

34

35 ### OUTPUT SCREEN ###

36 d i s p l a y _to ta l_so l v e_t ime ;

37 p r i n t f : " # c o s t = %24.16 e\n " , c o s t ;

38 p r i n t f : " # N = %d\n " , N;

39 p r i n t f { i i n 0 . .N} : "%d %24.16 e %24.16 e %24.16 e %24.16 e %24.16 e\n " ,

40 i , i ⇤ t f /N, x1 [ i ] , x2 [ i ] , x3 [ i ] , u [ i ] ;

41 end ;
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