
Advances in Colloid and Interface Science 243 (2017) 23–45

Contents lists available at ScienceDirect

Advances in Colloid and Interface Science

j ourna l homepage: www.e lsev ie r .com/ locate /c i s
Historical perspective
Micro- and nano bio-based delivery systems for food applications:
In vitro behavior
Lívia de Souza Simões a, Daniel A. Madalena a, Ana C. Pinheiro a,b, José A. Teixeira a,
António A. Vicente a, Óscar L. Ramos a,c,⁎
a CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
b Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2781-901 Oeiras, Portugal
c LEPABE - Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, University of Porto, Porto, Portugal
⁎ Corresponding author at: CEB - Centre of Biological E
E-mail address: os.silva.ramos@gmail.com (Ó.L. Ramo

0001-8686/© 2017 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Available online 27 March 2017
 Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improve-
ment of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety
of morphologies that influence their stability and functional performance. The incorporation of bioactive com-
pounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic
nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g.,
heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavail-
ability, while enabling their controlled release and target delivery. This review provides an overview of the
bio-based materials currently used for encapsulation of bioactive compounds intended for food applications,
aswell as themain production techniques employed in the development ofmicro- and nanosystems. The behav-
ior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is
also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main
advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and
nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first
time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices
are provided, together with a revision of the main challenges for their safe commercialization, the regulatory is-
sues involved and the main legislation aspects.
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1. Introduction

The world's population is increasing every year and, consequently,
challenges regarding the production, preservation, safety and sustain-
ability of food products have emerged. Therefore, offering the consumer
high quality foods with the required level of bioavailable nutrients and
dietetic supplements is a current challenge. The application of micro-
and nanotechnology in food industry may represent a solution for the
potential bioavailability issues, providing new solutions and opportuni-
ties to address these challenges [1,2].

Materials atmicro (10−6 m) and nano (10−9 m) scale exhibit differ-
ent physical, chemical and biological properties, which may enhance
the properties of suchmaterials or even exhibit novelmaterial function-
alities and applications, when compared with those at the macro scale
[3]. Due to their reduced size, micro- and nanosystems can improve sol-
ubility, bioavailability and sensorial characteristics (e.g., mask unpleas-
ant flavors), prevent undesirable physical and chemical reactions, as
well as protect bioactive compounds from degradation. This behavior
can be related to the large surface area-to-volume ratio, but also to the
effect of physical and chemical interactions between materials, found
at lower sized structures (i.e., at micro- and nanoscale), which have a
significant effect on the overall properties of those systems [4]. Among
these, the incorporation of bioactive compounds in food and the assur-
ance of their stability during processing, storage and digestion, until
they reach the appropriate delivery point and timing, are the main con-
cerns regarding the controlled release of bioactive compounds [2]. On
the other hand, size reduction promotes a great improvement in
bioadhesive properties that may include a significant increase in adhe-
sive forces, prolonging gastrointestinal (GI) transit time, thus leading
to a higher bioavailability, when compared with larger particles [5].

One of the major challenges regarding the use of micro- and
nanosystems for food applications is the replacement of non-food-
grade materials by bio-based, biodegradable and generally recognized
as safe (GRAS) alternatives [6]. Other challenges include the design
and application of efficient delivery systems for controlled release of
bioactive compounds.
Bioactive compounds are usually labile molecules, highly affected by
light, oxygen and temperature when dispersed in the food matrix;
therefore their encapsulation may allow the improvement of their bio-
availability [7]. Effective delivery systems must be able to maintain the
activity and stability of bioactive compounds until their release, in a
controlledway, and only activate them in the target site (i.e., some com-
pounds lose their activity when they are mixed with food components,
due to their early release). They should also protect bioactive com-
pounds from adverse environmental conditions inherent to food pro-
cessing and storage (e.g., variation of pH, temperature, ionic strength
and enzymatic activity), thus improving their bioavailability. Moreover
delivery systems should not affect the physicochemical and sensory
properties of the final food products [7]. In the case of delivery systems
at nanoscale, their application in food products can be also hindered by
the public concerns regarding possible side effects, once particles with
their dimensions may penetrate biological tissues, thus leading to dis-
ruption of normal function of cells or even cell death, with considerable
adverse effects to human health [8].

Hence, the behavior of such compounds should be assessed, primar-
ily, through in vitro assays (i.e., GI system or cell lines, as in vitromodels)
to evaluate possible nanotoxicity to human body [9]. Current knowl-
edge on possible toxicity caused by particles at nanoscale is very scarce,
therefore studies regarding this subject are mandatory.

In the food industry several techniques were developed in order to
producemicro- and nanosystems for functional and fortified food prod-
ucts using “top-down” or “bottom-up” approaches or the combination
of both strategies [10]. These techniques enable the production of
micro- and nanosystems with distinct characteristics (e.g., controlled
release and delivery properties) [11].

This review aims at providing a relevant insight concerning the
development of micro- and nanosystems using bio-based materials as
encapsulating matrix and the main production techniques employed
in their formation. The bioactive compounds' entrapment and their
controlled release from such micro- and nanosystems will be also ad-
dressed in a critical manner. Moreover, the behavior of delivery systems
when subjected to in vitro GI tract conditions, possible interactions
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established and correlations with in vivo experiments were shown, to-
gether with practical examples of their application in food simulants
or in real food matrices. Finally, regulatory considerations, legislation
aspects and future trends are also addressed.

2. Bio-based materials as ingredients for the encapsulating matrix

Encapsulation is a technique inwhich small substances (i.e., bioactive
compounds) are trapped by a surrounding material to form capsules, at
macro- (macroencapsulation) or nano- (nanoencapsulation) scale. This
structure can sometimes be an effective protection barrier against envi-
ronmental agents such as oxygen, light and free radicals. Moreover,
micro- and nanoencapsulation has the ability to increase the bioavail-
ability, enhance controlled release and targeting precision of bioactive
compounds [12–14]. The release rate of bioactive compounds from
micro- and nanosystems is linearly dependent with the surface area of
such systems, which is inversely proportional to particle size. Therefore,
a decrease in particle size results in an increase of the surface area, and
consequently in the release rate of bioactive compounds [15].

The encapsulatingmaterials used as delivery systems can be chosen
from natural biomaterials as long as they are safe and classified as
Generally Recognized As Safe (GRAS) [16].

Bio-basedmicro- andnanosystems for food industry can be produced
from a wide variety of food-grade materials, including polysaccharides,
proteins and lipids, isolated or associated to form complex delivery sys-
tems. However, the selection of the appropriate bio-based material re-
quires an understanding of the bioactive compound properties, as well
as of the nature of the food matrix, in which such compounds will be in-
corporated [7,17].

2.1. Polysaccharides

Polysaccharides are polymeric carbohydrate molecules composed
by severalmonosaccharide units, bound together by glycosidic linkages.
The chemical differences in the polymeric chain regarding the type,
number, sequence and linkage of monosaccharides influences the mo-
lecular properties of these structures, such as water retention capacity,
solubility, digestibility, as well as gelation and emulsification capability
[18,19].

Polysaccharides are widely found in Nature and can be obtained
from natural sources or from by-products of food industry, mostly
through low-cost processing techniques. These polymers present im-
portant properties such as good stability, non-toxicity, biodegradability
and bioadhesibility that allow their use as delivery systems [20].
Bioadhesibility is of particular relevance, once it contributes to an in-
crease in the residence time of delivery systems in the GI tract [21].
This is mainly due to the intrinsic hydrophilic groups (e.g., hydroxyl,
carbonyl and amine) of polysaccharides that enable the formation of
non-covalent bonds with biological tissue, thus contributing to higher
absorption rates of bioactive compounds entrapped into delivery
systems [22,23].

Usually polysaccharide-based delivery systems are organized
according to their biological origin: plant (e.g., pectin, guar gum,
starch and cellulose), animal (e.g., chitosan), algae (e.g., alginate
and carrageenan) and microbial (e.g., dextran and xanthan gum)
[18,19]. Detailed information regarding the molecular and biological
properties, functional performance, and advantages and disadvan-
tages of the main polysaccharides-based delivery systems can be
found elsewhere [24].

The most widely used bio-based polysaccharides in the manufac-
ture of micro- and nano-delivery systems include chitosan, alginate,
carrageenan and gums (i.e., xanthan gum). Chitosan is a hydrophilic
linear polysaccharide that can enhance the cell membrane perme-
ability, thus increasing the bioavailability of bioactive compounds
because it extends the residence time of the delivery system in the
GI tract [23]. Alginate, obtained from brown seaweeds, is another
polysaccharide commonly used as a delivery system base-material
[2]. On the other hand, carrageenan is obtained from several species
of marine algae, whereas Xanthan gum is produced by microorgan-
ism (Xanthomonas campestris) through extracellular aerobic fermen-
tation [25].

Polysaccharide-based delivery systems have the ability to interact
with bioactive compounds (i.e., through interactions between function-
al groups), whichmakes themversatile carriers to bind and entrap a va-
riety of hydrophilic and hydrophobic functional compounds. Due to
their thermal stability, they are suitable protective carriers for labile
compounds during food processes that require high temperatures, act-
ing as a suitable alternative to lipid and protein-based delivery systems
that melt and denature, respectively [24].

The selection of an appropriate polysaccharide based material to
produce micro- and nano-delivery systems is highly dependent of sur-
rounding environmental conditions, once they may associate to other
compounds and form different structures. Therefore, the knowledge
about their physical and electrical properties, and susceptibility to
chemical and enzymatic reactions is of utmost importance [26].

Polysaccharides can also produce micro- and nanosystems by as-
sembling mechanisms through electrostatic interactions based on
their intrinsic charge that, depending on the base materials, can be clas-
sified as neutral (i.e., amylose, amylopectin, cellulose and guar gum),
anionic (i.e., alginates, carrageenans, gellan, and arabic and xanthan
gums) and cationic (i.e., chitosan) [27]. The relation between pH and
pKa of the charge groups is of extreme importance to establish the elec-
trical charge level on ionic polysaccharides; for instance, anionic poly-
saccharides tend to be neutral at pH values considerably below its pKa
value, but they acquire a negative charge at pH values above its pKa
value. On the other hand, cationic polysaccharides tend to be neutral
at pH values above its pKa value, while they acquire a positive charge
at pH values below its pKa value [26].

Depending on the technique employed in the encapsulation of bio-
active compounds, delivery systems can be produced using a single or
a combination of polysaccharides. Li and McClements [28] showed the
successful formation of hydrogel beads with diameter between 25.3 ±
0.1 μm and 31.7 ± 0.4 μm, using a mixture of two polysaccharides
(i.e., alginate and chitosan) through complex coacervation. On the
other hand, Birch and Schiffman [29] produced stable nanoparticles
during 14 days of storage (in aqueous solution) formed by a mixture
of two polysaccharides (i.e., chitosan and pectin).

2.2. Proteins

Proteins are biological polymers formed by a sequence of amino
acids linked by peptide bonds. There are 20 different amino acids cate-
gorized according to the properties of their side groups as aliphatic, ar-
omatic, charged (positive or negative), or polar. The proteins that are
frequently used in the food industry are obtained from plant (e.g., soy
and zein) and animal (e.g., casein, egg andwhey protein) sources, or hy-
drolysates of these proteins [16,18,30].

The characterization of protein molecules is of utmost importance
since the knowledge of their characteristics (i.e., denaturation tempera-
ture, isoelectric point and chemical degradation reactions) is crucial for
optimizing the necessary production conditions for the development of
protein-based delivery systems [26]. Protein molecules interact with
each other or with other molecules in their vicinity through electrostat-
ic, covalent, van der Waals, steric, hydrogen, hydrophobic and disulfide
bonds [31]. Protein secondary structure (i.e., α-helices and β-sheets)
can be organized in adjacent amino acids on protein chains, which
may play an important role in the formation, stability and functionality
of the resulting structures. The exposure of protein side groups to the
environmental conditions is determined by the conformation of the
amino acid chain, which affects protein stability and reactivity [32].

Regarding protein electrical characteristics, they can be described ac-
cording to their ζ-potential profile, which varies with pH. Their electrical
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charge changes from positive (below their isoelectric point - pI), neutral
(at their pI) and negative (above their pI) according with the pH value.
However,when the protein structure is at its pI, the proteinhas both pos-
itive andnegative charged groups on its surface,which enable the forma-
tion of attractive and/or repulsive electrostatic interactions [2]. Proteins
have a high nutritional value and considerable functional properties
such as emulsification, gelation, foaming and water binding capacity.
Due to their structural versatility, many structures can be produced
(i.e., films, particles, fibers, tubules and hydrogels), offering the possibil-
ity of delivering both hydrophobic and hydrophilic bioactive compounds
[33,34]. Several publication have comprehensively reviewed these sub-
jects [31,33,35,36]. Among these functional properties, gelation is partic-
ularly important for the manufacture of delivery systems. Gelation
typically encompasses two stages: partial unfolding (denaturation) of
the native globular structure followed by intermolecular aggregation.
Denaturation of the native structure of proteins can be induced by sever-
al factors, e.g., addition of chemicals or electrolytes, change in net charge,
increase in hydrostatic pressure, partial enzymatic hydrolysis and electri-
cal fields – but mainly by temperature. Each of these processes may in-
duce partial (or total) denaturation of native proteins, which may
results in protein aggregation and gel formation [20].

When globular proteins are heated until reaching their denaturation
temperature, they start to unfold (i.e., the nonpolar groups, normally
buried within the protein structure, are exposed), and may interact
with other protein structures, forming different types of aggregates
(e.g., fibrillar or particulate aggregates) with diverse mechanical andmi-
crostructural properties. Moreover, proteins canmaintain their individu-
al structure by balancing attractive and repulsive interactions between
them [26]. The extent of aggregation largely depends on extrinsic factors
(e.g., temperature, ionic strength and pH) arising from environmental
and processing conditions. Aggregation is a prerequisite for the forma-
tion of protein micro- and nanosystems; when properly controlled and
engineered, that may result in materials with novel functionalities [32,
37].

Protein micro- and nano-delivery structures can be formed from a
single protein or from a mixture of proteins. Balandrán-Quintana et al.
[38] produced nanoparticles fromα-lactalbuminwith an average diam-
eter of 404 ± 34 nm, an average inner diameter of 71 ± 14 nm and av-
erage heights of 7 ± 0.93 nm. On the other hand, Monteiro et al. [39]
used amixture of two proteins (i.e.,α-lactalbumin and lysozyme) to ob-
tain structures in the micro- and at nano (61 ± 2.3 nm) scale level,
depending on the environmental conditions (i.e., pH and heating treat-
ment) used. These structures showed to be stable for 30 and 90 days
when storage at 25 at 4 °C, respectively.
2.3. Lipids

Lipids are generally referred as fats (in solid form) or oils (in liquid
form) depending on their physical state at room temperature. These com-
pounds are classified as nonpolar (e.g., triacylglycerol and cholesterol) or
polar (e.g., phospholipids) lipids, causing significant differences in their
solubility and functional properties [18,30].

The physicochemical properties of lipids control theirmicrostructur-
al characteristics, colloidal stability, as well as rheological and moisture
barrier properties. A decrease in the length of their hydrocarbon chain
attached to the glycerol backbone, or an increase in the degree of
unsaturation of the fatty acid chains, lowers their melting point and de-
creases their moisture barrier properties [16].

Lipid-based delivery systems confer a series of advantages such as
the ability to retain materials with different solubilities, in particular
those with high hydrophobicity, thus protecting a bioactive compound
frombiological and chemical degradation,while providing stability dur-
ing storage.Moreover, theymay enhance the encapsulation efficiency of
hydrophobic bioactive compounds, thus increasing its bioavailability
and reducing its potential toxicity [10]. Recent articles addressing the
physicochemical properties of distinct lipid-based delivery systems are
made available elsewhere [40–43].

Phospholipids are a class of lipids that are essential for human health
and themain constituents of cellularmembranes. They are biocompatible
materials and have amphiphilic nature, which permits self-assembly,
emulsifying and wetting properties. Hence, such compounds have dem-
onstratedpotential to encapsulate hydrophobic andhydrophilic bioactive
compounds [44]. Ramadan [45] showed that when phospholipids are as-
sociated to polyphenols, they have more antioxidant activity than those
that appeared isolated.

Tamjidi et al. [46] selected oleic acid and glyceryl behenate, from dif-
ferent lipid mixtures, for developing astaxanthin-loaded nanostructured
lipid carriers. This lipid complex showed to be physically stable for deliv-
ering astaxanthin and other lipophilic compounds, into aqueous-based
foods and beverages.

2.4. Different combinations of bio-based materials

Some applications may require the properties of different materials
and, thus, the combination of different bio-based materials can be
performed in order to take advantage of a multi-functional system.
The appropriate combination of bio-based materials (e.g., proteins,
polysaccharides, lipids and other materials) can improve the properties
of micro- and nano delivery systems in terms of mechanical, thermal
and barrier resistance, encapsulation efficiency, stability and bioavail-
ability of bioactive compounds, when compared with those obtained
by using a single material [47].

The combination of proteins and polysaccharides has been reported
in several studies [48–53] as a suitable solution for the development of
efficient oral delivery systems. Proteins have high nutritional properties,
high capacity to form gels and they are easily hydrolyzed by digestive
proteases, while polysaccharides (e.g., alginate, pectin, dextran and
chitosan) possess high stability under harsh gastric conditions (i.e., are
resistant to digestive enzymes) and display a high adhesiveness to the
intestinal mucosal surface [54].

Moreover, the opposite electrical charges between proteins and
polysaccharides affected by environmental conditions, contribute to as-
sociative interactions between both biopolymers trough electrostatic
attraction. For instance, a polymeric system composed by a mixture of
an anionic polysaccharide and a globular protein (at different specific
pH values) can be formed; when the pH of the protein solution is
above its pI, there are repulsive electrostatic forces between protein
and the anionic groups of the polysaccharide structure. However, if
the pH of protein solution is below its pI, the cationic regions of the pro-
tein surface can interact with the anionic groups of the polysaccharide
chain, thus leading to weak electrostatic interactions and to the forma-
tion of soluble complexes. At lower pH values, the content of cationic
groups on the proteins surface increases, which leads to greater electro-
static attraction between protein and anionic polysaccharides, thus
resulting in charge neutralization and protein–polysaccharide complex
formation. At pH values below the pKa of the anionic groups on the
polysaccharide chain, the attractive interactions between the protein
and polysaccharide molecules may weaker, which may result in com-
plex dissociation [55,56].

Ding and Yao [57] developed a soy protein/soy polysaccharide
complex nanogel for encapsulation of folic acid intended to food and
beverage applications. This delivery system was able to protect the
folic acid from heat, light and oxygen in acidic conditions, while the sur-
face of the nanogel, with polysaccharide nature, enabled its dispersion
in acidic conditions.

3. Bioactive compounds

The development of modern biology, chemistry, molecular biology
and biochemistry enabled the isolation of bioactive compounds, as
well as the study of their interactions with the human body. Bioactive
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compounds are molecules that provide several benefits to human
health by preventing or retarding the appearance of diseases through
e.g., antioxidant, anti-inflammatory or anticancer activities. Therefore,
the properties of bioactive compounds should be preserved until the
exact moment and specific site where they will be used [12,55].

Bioactive compounds such as antioxidants, antimicrobials, vitamins,
probiotics, prebiotics, minerals, nutrients and polyphenols are not
added in their pure state to food matrices, due to their susceptibility
to physical, chemical and enzymatic degradation (and in some cases,
due to their low water solubility), during processing, transportation
and storage. The performance of these substances can be highly affected
by light, heat, water and oxygen exposure, which may compromise its
activity and shelf life. Moreover, the degradation of such compounds
can cause off-flavor, off-colors or even carcinogenic residues; for in-
stance some micronutrients, such as iron [58] and zinc [59] can react
with other components in a way that their bioactivity and stability is
compromised. Therefore, their encapsulation is of utmost importance
to allow their incorporation in high water content food products,
while preserving their bioavailability and preventing the aforemen-
tioned undesired effects [7,60].

The addition of encapsulated compounds (i.e., in a protected form)
to food products can overcome some nutritional losses that frequently
occur during food processing and storage; thus conferring protection
and allowing its better absorption in the small intestine until they
reach the bloodstream [7,9,10].

Themain bioactive compounds that have been used in food products
for health promoting and/or disease preventing purposes are discussed
below.

3.1. Antioxidants

Free radical and nitrogen species can be produced in the human
body by various endogenous systems, through the exposure to different
physiochemical conditions or through some pathological states. These
species are considered oneof themajor causes ofmany current diseases,
including diabetes and cardiovascular diseases.

Antioxidants can be obtained from natural sources such as vegeta-
bles, fruits, leaves, oilseeds, cereal crops and herbs and play an impera-
tive role in providing protection against free radical and nitrogen
species [61,62].

Phytochemicals are a large group of plant-derived compounds,
including polyphenols, flavonoids, isoflavones, resveratrol and caroten-
oids that have high antioxidant and anti-inflammatory activity, thus
providing several health benefits [63]. In many cases, phytochemicals
need to be encapsulated in order to prevent undesired sensory proper-
ties (e.g., off-flavors and odors) in food products, thus permitting their
use at higher concentrations without causing adverse effects to con-
sumers [9]. The main physicochemical properties of plant extracts
have been recently reviewed by Armendáriz-Barragán et al. [64]. More-
over, the main challenges associated to the encapsulation of antioxi-
dants and the potential techniques to improve their bioavailability in
different delivery systems were comprehensive reviewed elsewhere
[65–68].

Curcumin is a fat-soluble polyphenol that has received an increased
interest by the scientific community because it possesses significant an-
tioxidant and anticarcinogenic activities, essentially due to the presence
of two phenolic groups and a β-diketonemoiety that all conjugated have
the ability to scavenge reactive oxygen and nitrogen free radicals [69].
Benzaria et al. [70] showed that curcumin was successfully encapsulated
into phosphocasein, being such system able to protect curcumin against
harsh gastric conditions (i.e., it was resistant to pepsin digestion) and re-
lease it in the small intestine (i.e., it was degraded by pancreatin) where
it is absorbed.

Lutein is a naturally occurring fat-soluble phytochemical that belongs
to the carotenoids group. This antioxidant compound has important bio-
logical functions including the ability to prevent the development of
cataracts and arteriosclerosis. However, in the food industry, its applica-
tion is limited since it is highly unstable in the presence of undesired ox-
ygen, light and temperature conditions. Its encapsulation may represent
a suitable solution to overcome this issue [71].

Anthocyanins are water-soluble phytochemicals that belong to the
flavonoids group and are important antioxidant compounds, responsi-
ble for color in several fruits. These bioactive compounds show stability
at acidic pH values (e.g., pH 3), and have low stabilitywhen subjected to
neutral pH conditions. However, the large majority of food products do
not have an acidic pH, thus their encapsulation may allow overcoming
this limitation [72]. Betz et al. [73] showed that the microencapsultion
of blueberry, which is a rich source of anthocyanins, inwhey protein hy-
drogel prevented their degradation at neutral pH (i.e., pH 6.8) condi-
tions in comparison with non-encapsulated blueberry.

3.2. Antimicrobials

Antimicrobial compounds have a fundamental role in controlling
the development and proliferation of pathogenic microorganisms
in food products. Among all antimicrobial compounds, enzymes
(e.g., lactoperoxidase and lysozyme), polysaccharides (e.g., chitosan),
bacteriocins (e.g., nisin) and more recently, herbs, spices, essential oils
(e.g., terpenes), alcohols, ketones, phenols, acids, aldehydes and esters
have been commonly used for controlling the microbial growth [62,
74]. The structural and physicochemical properties of different micro-
and nanosystems, as potential carriers for antimicrobials in food prod-
ucts, were comprehensively reviewed elsewhere [75,76].

Essential oils arose an increasing interest by the food industry
players because they are natural compounds obtained by plant extracts
and they have demonstrated a significant antimicrobial activity, as well
as a wide range of health benefits without known toxicity or side-
effects. However, their application in food products has limitations
due to their poor solubility in water, high volatility and reactivity, and
unpleasant aroma. Therefore, encapsulation appears to be a promising
solution to solve these issues [62].

Donsì et al. [77] showed that the encapsulation of D-limonene into a
nanoemulsion, formulated with sunflower and palm oils preserved
the antimicrobial activity of this essential oil and displayed an inhib-
itory effect against Lactobacillus delbrueckii, Saccharomyces cerevisiae
and Escherichia coli. Moreover, when it was applied in pear and
orange juices, it proved to be more efficient than D-limonene in
free form.

In a study conducted by Liang et al. [78], peppermint oil, used as an
antimicrobial compound, was encapsulated in a nanoemulsion com-
posed of medium-chain triacylglycerol. The authors demonstrated that
the bioactive delivery system displayed a good stability (i.e., during
30 days of storage) and a prolonged antimicrobial activity against
Listeria monocytogenes and Staphylococcus aureus, suggesting that it
could be used to extend the shelf life of aqueous food products.

Moreover, Shah et al. [79] showed that delivery systems encapsulat-
ing eugenol into whey protein/maltodextrin nanocapsules exhibited
antimicrobial activity against several E. coli O157:H7 strains, indicating
that it can be incorporated into food products to prevent bacterial
growth.

3.3. Vitamins

Vitamins are bioactive compounds whose consumption is essential
for growth, development and normal maintenance of the human
body. These compounds cannot be naturally produced by the human
body (except vitaminD and B3) and, consequently, theymust be obtain-
ed from external sources [14].

The nutritional deficiencies in vitamin uptake can be caused by inad-
equate ingestion or utilization, poor absorption, increased excretion or
destruction in the body, or even due to increased needs, which can
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lead to the development of certain diseases (e.g., cancer, and cardiovas-
cular and eye degenerative diseases) [80].

Vitamins are classified as water-soluble (e.g., complex of vitamin B,
including vitamin B1, B2, B3, B5, B6, B7, B9, B12 and vitamin C), or fat-
soluble (e.g., vitamin A, D, E andK). Vitamins are susceptible to degrada-
tion during processing, storage and until the moment of their absorp-
tion in the GI tract, due to a variety of factors (e.g., exposure to
inadequate light, oxygen, temperature, pH or enzymatic conditions).
Therefore, vitamin stability is an important parameter that should be
considered when these compounds are added to food products. For
instance, fat-soluble vitamins and vitamins C, B1, B2 and B7 have poor
oxidation stability, so they should be protected from heat, oxygen,
metallic ions (especially from Fe2+ and Cu2+), polyunsaturated lipids
undergoing peroxidation and UV light [81]. The potential of different
micro- and nanosystems as carriers for lipophilic and hydrophilic
vitamins, as well as the main safety issues associated have been deeply
discussed in the literature [82–84].

Pezeshki et al. [85] successfully encapsulated vitamin A (encapsula-
tion efficiency of 98.5%) in a nanostructured lipid delivery system
composed of caprylic/capric triglycerides, and observed a good stability
of these systems during storage at 25 °C during 2 months. In another
work, Madalena et al. [86] showed that vitamin B2 was successfully en-
capsulated (i.e., efficiency of 26%) into β-lactoglobulin nanohydrogels
and released (i.e., 78%) in the small intestine (throughout an in vitro
GI assay), where its absorption occurs.

3.4. Probiotics and prebiotics

Probiotics are living microorganisms that, upon ingestion of a
sufficient amount i.e., 106 colony-forming units per gram (CFU/g) of in-
testinal content, promote beneficial physiological effects to the host
[87]. Currently, probiotics are widely used during the production of
functional food products, mainly in dairy products, with the purpose
of enhancing the human health. However, when these compounds are
used for health improving purposes, it is imperative that a minimum
of 106 CFU/g of intestinal content of probiotic bacteria are present in
the final food product, at the expiration date [88,89].

The benefits associated to the ingestion of probiotic bacteria include
the prevention and shortening of diarrhea and respiratory tract infec-
tions; the attenuation of lactose intolerance symptoms; the treatment
of food allergy and elimination of toxins and pathogens from ingested
foods or in the GI tract, through its binding [90].

Lactobacillus andBifidobacterium are themain genera of probioticmi-
croorganisms used in food industry. These microorganisms are Gram-
positive lactic acid producing bacteria that constitute a major part of
the normal intestinal microflora in animals and humans [91,92].
Bifidobacteria are particularly sensitive to stress during processing, show-
ing a low survival rate during storage and consumption of food products.
The application of probiotics in food products is not an easy process since
part of the microorganisms may lose their viability before consumption
[93] and during the digestion process. The harsh gastric conditions of
the human stomach are a natural barrier in the host, which significantly
reduces the level of living probiotic bacteria. Thus, their encapsulation
may represent a solution for this issue [94]. The benefits of probiotics
and prebiotics for human health, the possible synergistic interactions be-
tween those bioactive compounds and their encapsulation for controlled
and targeted release in the GI tract has been recently reviewed by Sarao
and Arora [95].

Sarkar [96] reported several possible strategies to improve probiotics
viability; however, they pointed microencapsulation as the best option
to overcome the aforementioned challenges. In this sequence, Ying
et al. [53] maintained the viability of probiotics during storage using a
microemulsion composed by sunflower oil, stabilized by whey proteins
and starch, and produced by spray drying. This delivery system was ini-
tially formulated with 2 × 1011 CFU/g of probiotics and maintained at a
sufficient level (i.e., 107 CFU/g) of viable cells after 5 weeks of storage.
In another study conducted by Priya et al. [97], Lactobacillus acidophilus
were encapsulated into polyelectrolytes-chitosan-carboxymethyl cellu-
lose microspheres produced through a layer-by-layer self-assembly
technique. This system significantly increased the survival of encapsulat-
ed cells (both in simulated gastric and intestinal conditions), when com-
pared with non-encapsulated cells.

Prebiotics (e.g., fructo-oligosaccharides, inulin, galacto-
oligosaccharides and lactulose) are bioactive agents that are not
digested in the upper part of the GI tract and promote the growth
or activity of beneficial microorganisms (e.g., Lactobacillus spp. and
Bifidobacterium spp) that colonize the large intestine, thus contributing
to the well-being of their host [98,99]. These agents have potential to
increase the bioavailability of nutrients and minerals, prevent GI infec-
tions and reduce the risk of ulcerative colitis, inflammatory bowel dis-
ease (e.g., irritable bowel syndrome) and colon cancer development
[92,100].

Krasaekoopt and Watcharapoka [87] encapsulated Lactobacillus aci-
dophilus 5 and Lactobacillus casei 01 in alginate and chitosan microbeads
with galactooligosaccharides and inulin as prebiotic agents, and added
those microbeads to yogurt and fruit juice, used as food models. These
authors concluded that galactooligosaccharides had a greater effect in
probiotics viability, in comparisonwith inulin, thus improving probiotics
growth in both yogurt and fruit juice.

Okuro et al. [101] studied the encapsulation of Lactobacillus acidophilus
into solid lipid microparticles composed by palm oil with or without inu-
lin and polydextrose as prebiotics. Results reveled that probiotic viability
was improved in the formulation containing polydextrose, when evaluat-
ed during storage for 120 days, and in simulated digestion conditions
(i.e., gastric and intestinal fluids).

Rajam and Anandharamakrishnan [102] encapsulated Lactobacillus
plantarum in a microcapsule delivery system made from whey protein
isolate, in either native or denatured form, with addition of fructooligo-
saccharide as prebiotic agent. The blend composed by fructooligosac-
charide and denatured whey protein isolate, with mean diameter of
6.68 μm, showed higher encapsulation efficiency, stability and protec-
tion of probiotics, thus maintaining their viability during processing,
storage, and under simulated gastric and intestinal conditions.
3.5. Other bioactive compounds

Naturalflavorings are smallmolecules responsible for flavor that can
be obtained from animal or vegetal sources through physical, enzymatic
or microbiological processes. Incorporating flavoring substances in food
products may contribute to enhance consumers' acceptance; however,
its incorporation is a difficult task because, even in small amounts,
flavors are usually sensitive, volatile and expensive molecules. There-
fore, encapsulation is very important for the successful application of
most flavors in food products, and thus to allow enhancing food sensory
features [62]. Several examples of flavoring compounds such as oregano
[103], rosemary [104], β-pinene [105], sweet orange [106] and lavender
essential oils added, in encapsulated form, to food products are well
described in the available literature.

Enzymes are bioactive compounds fundamental to catalyze specific
biochemical reactions. Due to their relatively low stability and high
cost, there are limitations associated to their use in food industry [32].
As an example, Jiang et al. [107] microencapsulated α-amylase into
microparticles of alginate, with a mean size of 11.8 μm, which helped
enhancing enzymatic stability and activity.

Minerals are bioactive compounds essential to the human health
that improve sensory and physicochemical food properties [108]. Iron,
for example, is important to prevent anemia and to improve cognitive
development [109]. However, this mineral may react with fatty acids,
amino acids and vitamins present in food products, thus leading to
their oxidation and, subsequently, reducing the nutritional value of
foods. Therefore, iron encapsulation is crucial to prevent such undesired
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reactions [62]. Dubey and Windhab [58] successfully encapsulated iron
in water-in-oil micro- and nanoemulsions prepared from palm stearin.

4. Encapsulation techniques

It is well known that the techniques involved in the synthesis and
production of the structures may influence and modulate the overall
properties of the delivery system. The production of such structures
can be based in two different approaches: “bottom-up” and “top-
down” [110]. The “bottomup” approach builds or grows large structures
through atom-by-atom or molecule-by-molecule techniques. This ap-
proach includes chemical synthesis, self-assembly and positional as-
sembly of molecules, which are influenced by several factors such as
pH, temperature, concentration and ionic strength. The “top-down” ap-
proach involves physical processing of the materials, which requires
precise tools that allow size reduction and shaping of the structure for
the desired application; an example is the homogenization technique,
which is widely used to form emulsions and nanoemulsions [4,111].

The “bottom-up” approach has more control over the structure
properties and conserves more energy than the “top-down” counter-
parts. However, both techniques have been optimized in order to
achieve the desired properties for distinct food applications [112–115].

Bio-based micro- and nanosystems can be fabricated using different
procedures, depending on the nature of the bioactive compound and of
the encapsulating bio-basedmaterial (including theirmolecularweight,
polarity, solubility, particle size distribution, encapsulation efficiency
and shape) [16,116].

Due to the large diversity of available techniques that can be success-
fully employed in the production of micro- and nanosystems for encap-
sulation of bioactive compounds, intended for food applications, the
main advantages, issues and differences are comprehensively discussed
below and summarized in Table 1 [10,12].

4.1. Spray drying

Spraydrying (Figure 1 –A) is amechanical dehydration process used
in the food industry since the 1950s, and is themost extensively applied
encapsulation method for food ingredients. This technique has the abil-
ity to convert a bio-based suspension into a powder, through a heat pro-
cess, which causes rapid evaporation of the solvent and production of
dried systems. The active compound (i.e., core) is homogenized with
the matrix material (i.e., capsule) forming a dispersion; the mixture
placed into the spray dryer is atomized in a hot chamber when passing
Table 1
Examples of bio-based delivery systems (including their main characteristics: base-material, e
ciency) developed for food applications.

Bio-based material Encapsulating material Bioactive compoun

Polysaccharide-based
material

Zein Curcumin
Starch Lycopene
Hydroxypropyl cellulose β-carotene

Protein-based material Whey protein Bilberry extract
β-lactoglobulin Thiosulfinate allici
Whey protein Astaxanthin

Lipid-based material Lipid mixture of low trans hydrogenated
vegetable fat

Phytosterol mixtu

Liquid oil (Octyloctanoat) and solid lipid
(Precirol)

Vitamin A

Combinations of bio-based
materials

Bovine serum albumin-Acacia gum NA
Gelatin-Pectin Lycopene
Maltodextrin- Arabic gum Barberry (Berberis

extract
Chitosan-Cashew gum Lippia sidoides oil
Maltodextrin-Whey protein concentrate Flaxseed oil
Whey protein isolate-Acacia gum β-Carotene

Note: NA: Information not available.
through a nozzle, or a spinning wheel. Water evaporation occurs under
a stream of hot air. Depending on the nature of the material, this tech-
nique can operate at temperatures between 150 and 300 °C. The dry
particles are then collected and separated in a cyclone [26,117].

Spray drying is a relatively simple process and offers several advan-
tages as an encapsulation technique (e.g., low cost, high particle quality
with good yield, small size, rapid solubility and good stability) [47,72].
However, this technique presents some limitations regarding its
application for encapsulation of volatile or thermo-sensitive bioactive
compounds. In fact, it produces particles with some degree of heteroge-
neity regarding particle size and morphology, as well as dispersions
with high viscosity [32].

4.2. Freeze drying

Freeze drying (Fig. 1 – B) is a technique in which ice is sublimed to
produce a gas, under pressure, where a small amount of heat is required
[2]. The main steps of this technique are freezing, sublimation, desorp-
tion and storage [118]. It is an appropriate encapsulation technique for
heat-sensitive materials and for preservation of materials for a long pe-
riod of time [119–122] since the dehydration process occurs at low tem-
perature, under vacuum. However, this technique is more expensive
and requires a long dehydration time when compared with other
techniques [123].

4.3. Spray cooling

Spray cooling (Fig. 1 – A), or spray chilling, is a spray drying-based
concept that uses an atomization source, a particle production chamber
and a sample collecting area. Themaindifference between the two tech-
niques is in the particle production area, in which the particles are
formed from the cooling andhardening of droplets rather than evapora-
tion of a solvent [9]. Therefore, spray coolingmay overcome somedraw-
backs of spray drying since it involves an opposite strategy: the
bioactive compounds are dispersed in a liquefied matrix and atomized
into a cool environment such as cool air. Usually, lipids with high melt-
ing point are used as matrix. At low temperatures, the lipid solidifies
allowing the immobilization of labile compounds, such as mineral
salts, enzymes, flavors and vitamins [17,24].

Alvim et al. [124] assessed the encapsulation of phytosterols into
stearic acid and hydrogenated vegetable fat microparticles through
spray cooling and obtained microparticles ranging from 13.8 to
32.2 μm with a spherical shape. Okuro et al. [101] studied the co-
ncapsulated bioactive compounds, encapsulation techniques, size and encapsulation effi-

d Encapsulation technique Size Encapsulation
efficiency (%)

References

Antisolvent precipitation 153 nm 11.7 [165]
Spray drying NA 29.7 [244]
Spray drying and fluid bed
coating

63 μm NA [136]

Emulsion NA NA [73]
n Freeze drying and spray drying NA NA [220]

Spray-drying 1 to 10 μm 58.7 [245]
re Spray chilling 32 μm 34.0 [124]

Hot homogenization 74–779 nm 98.5 [85]

Complex coacervation 108 nm NA [246]
Complex coacervation NA 93.2 [125]

vulgaris) Spray drying NA 96.2 [247]

Spray drying 405 nm 70.0 [248]
Spray drying 18 μm 60.0 [249]
Complex Coacervation 140 μm 80.0 [126]



Fig. 1. Schematic representation of encapsulation techniques for food applications.
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encapsulation of Lactobacillus acidophilus and polydextrose, probiot-
ic and prebiotic bacteria, respectively, using spray chilling technique.
These authors showed the formation of stable microsystems ranging
from 66.1 ± 3.9 to 98.0 ± 3.9 μm, with viability of microorganisms
preserved during 120 days.

4.4. Complex coacervation

Coacervation is one of the most easily implemented techniques to
produce micro- and nanosystems. It consists in an electrostatic attrac-
tion between opposite chargedmolecules to produce the encapsulating
structure. The combination between molecules produces a complex, in
which the system separates and forms two distinct phases, a polymer-
rich phase (coacervate) and a polymer-poor phase containing the sol-
vent of the solution. This process is controlled by pH, ion concentration
and encapsulatingmaterial versus bioactive compound ratio [17,24,71].
This technique can be classified, according to the number of biopoly-
mers used in this process, as simple (i.e., a single biopolymer is used)
or complex (Fig. 1 – C) (i.e., two or more biopolymers are used) coacer-
vation [10]. In the food industry, complex coacervation is widely used
due to its ability to confer improved functional properties to controlled
delivery systems, when compared with simple coacervation [2]; thus,
more focus will be given to complex coacervation.

Complex coacervation has been widely used to encapsulate bioac-
tive compounds such as lutein [71], lycopene [125], antioxidants
[126–128], probiotics [129], flavors [130,131] and vitamins [132]. This
technique has several advantages when compared with spray drying,
since it offers a protective effect to high-value and unstable bioactive
compounds (e.g., flavors, oils and vitamins). Moreover, complex coacer-
vation (i) does not require high temperatures; (ii) has a high core load-
ing level, a better shell integrity and a higher encapsulation efficiency;
and (iii) the structures formed are water immiscible, which allows
obtaining a controlled release of bioactive compounds [2].

4.5. Fluid bed coating

Fluid bed coating (Fig. 1 – D) is a technique where bioactive com-
pounds are suspended in air and the encapsulating material is sprayed
to form the encapsulation structures, in situ [17]. This technique permit
several advantages such as lowenergy consumption, good reproducibil-
ity, final product standardization in terms of particle size distribution
and shape, reduced operation time and cost (e.g., more than freeze dry-
ing technique) [133,134]. Recently, some bioactive compounds have
been successfully encapsulated using the fluid bed coating technique,
such as probiotics [134], ascorbic acid [135] and antioxidants [136].
However, high temperatures and direct exposure of the bioactive com-
pounds to hot air, during several cycles, are some technical challenges
that may limit their application to high sensitive compounds, once
may led to their oxidation or degradation [137].

4.6. Co-extrusion

Extrusion is based on the injection of a bio-based solution into an-
other solution to promote gelation [26], in order to produce a hard,
dense and glassy structure, which is able to protect bioactive com-
pounds from evaporation and oxidation during storage, enabling their
controlled release [2]. Co-extrusion (Fig. 1 – E) is characterized by the
extrusion of two or more biopolymers in order to obtain the final prod-
uct. It may be used to produce spherical structures with a hydrophobic
core and a hydrophilic or hydrophobic shell [88]. Co-extrusion is an ap-
propriatemethod tomicroencapsulate oil through the creation of a shell
barrier to enclose the oil core [138]. This technique ismainly used to en-
capsulate probiotics [139], antioxidants [138] and seed oils [140].

4.7. Homogenization

Different types of homogenization techniques have been used to de-
velop colloidal dispersions, each one displaying its own characteristics
(i.e., advantages and disadvantages) for applications. Themost common-
ly used techniques e.g., high-shearmixer, high-pressure homogenization,
microfluidization, and membrane and microchannel homogenizers, are
briefly overviewed, whereas detailed information can be found else-
where [141–143].

The high-shear mixer is widely used to form coarse emulsions hav-
ing relatively large droplets, or to produce colloidal dispersions such
as phase-separated biopolymer mixtures, known as water-in-water
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(W/W) or oil-in-water-in-water (O/W/W) systems [144]. These mixers
are suitable for preparing emulsions from low- or intermediate-
viscosity fluids rather than from very high viscosity ones.

A high-shear mixer typically consists of a container where the oil,
water, and other ingredients are placed, and a mixing head capable of
generating intense disruptive forces by rapid rotation. This process
breaks up the oil phase into tiny droplets that are then dispersed within
the aqueous phase, thus leading to emulsion formation [141].

High-pressure homogenization is commonly used to produce con-
ventional emulsions with small droplet size [10]. In this methodology,
a premixed dispersion of oil and water phases passes through a narrow
slit, between the homogenizing valves of the equipment, and the high
shear stress produces small droplets [145].

Microfluidization uses high pressure to produce a current flow that
forces the fluid to pass into microchannels, which reduces the particle
size of emulsions. This technique is comparable to high-pressure ho-
mogenization, but the design of the channels for emulsion flow is differ-
ent [10]. Themajor advantages of microfluidization are related with the
wide range of particle sizes that can be obtained, the high reproducibil-
ity and the absence of toxic organic solvents. These techniques are the
most frequently used to produce nanoemulsions at large scale [10,
146]. However, the resulting emulsion droplets are difficult to control
because of the shear and pressure field variables introduced by such
techniques [147,148]. Moreover, the aforementioned techniques are
classified as high-energy processes because they require the use of me-
chanical devices to generate intense disruptive forces in order to sepa-
rate the oil and water phases, thus leading to a high consumption of
energy (ca. 90–99%) for droplets formation [148].

Novel technologies have been developed and employed to produce
monodisperse emulsions with lower energy consumption, such as
membrane and microchannel homogenizers [149,150]. These tech-
niques are particularly useful for producing particles with well-
defined dimensions and internal structures [151,152].

Membrane homogenizers can be used to form an emulsion directly
from separate oil and water phases, or to reduce the size of the droplets
in a coarse emulsion. In this technique, an emulsion can be obtained
when one immiscible liquid (the disperse phase) is forced into another
immiscible liquid (the continuous phase) through a solid membrane
that contains small pores [147,149]. The size of the droplets in the emul-
sion formed is highly dependent on several factors such as the type and
Fig. 2.Micro- and nano-delivery systems that may be used for encap
amount of emulsifier utilized, themembrane pore size, the oil–water in-
terfacial tension, the pressure employed, and theflow rate of the contin-
uous phase [147].

Microchannel homogenizers work on a similar way as membrane
homogenizers, however the disperse phase is forced to pass through
microchannels with well-defined forms to produce droplets [147,153].
This technique has been useful applied in the production of droplets
with very narrow particle size distributions and with well-defined in-
ternal structures, such as core–shell [141].

5. Micro- and nanosystems for entrapment of bioactive compounds

Several delivery micro- and nanosystems have been developed for
controlled release of bioactive compounds intended for food applica-
tions [4], and this section addresses the main bio-based delivery sys-
tems developed for such purpose.

The size, shape, and internal structure of these systems vary
considerably depending on several factors including themethod andma-
terials used in their production. By definition, nanosystems are usually
assumed to be b100 nm, however, in practice, the upper limit has been
established up to 500 nm, while considering colloids as nanosystems
[7,154,155]. Instead, microsystems usually display sizes comprised be-
tween 1 and 1000 μm [156]. The size is, therefore, an important feature
of delivery systems since it affects their physicochemical stability, encap-
sulation and release characteristics, and biological activity [12,155].

5.1. Capsules

Capsules (Fig. 2 –A) are one of themostwidely studied delivery sys-
tems for bioactive compounds and they are defined as hollow vesicular
structures that can entrap bioactive compounds by surrounding them
with a biopolymer membrane, isolating the core (i.e., the bioactive
compound) from the external environmental conditions [157]. These
systems have the ability to homogeneously disperse or solubilize bioac-
tive compounds inside itsmatrix, so it is not possible to differentiate the
core from the matrix [10,157].

During capsule production various techniques can be applied, how-
ever the most commonly used is coacervation [4].

Capsules can be easily produced (i.e., do not require complex
methodologies), present a high stability during storage, as well as in
sulation of bioactive compounds intended for food application.
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biological fluids, and significantly improve the stability of bioactive
compounds entrapped into. Moreover, these systems allow a controlled
release of bioactive compounds through a complete disintegration of its
structure or by altering its porosity in response to external stimuli
(i.e., changes in ionic strength, pH or temperature) [158].

5.2. Hydrogel

Hydrogel (Fig. 2 – B) is a three-dimensional network of hydrophilic
polymeric molecules that can associate to each other by forming cova-
lent or non-covalent (e.g., hydrogen bonds, van der Waals interactions
and physical entanglements) interactions. This structure has the ability
to swell ca. 30 times their initial size in the presence ofwater, and hold a
large amount of water while maintaining its network structure [31].

The most commonly used strategy to prepare hydrogels includes ge-
lation processes. During this phenomenon (i.e., gelation), the aggrega-
tion of polymeric chain groups occurs, through intermolecular bonds,
which subsequently leads to the formation of a network structure. This
process is denominated by “sol” and the continuous polymerization in-
creases the extend of the ramification (i.e., increase in size of the polymer
chain groups) and, consequently, decreases its solubility. The transition
between the aggregation of polymeric molecules and the continuous
cross-linking is called “sol-gel transition”, or gelation, and the critical
point where the gel is formed is denominated by “gel point” [20,159].

Appearance, texture, responsiveness andwater-holding capacity are
essential properties that are determined by the number, strength and
morphology of the structural units and presence of hydrophilicmoieties
(i.e., hydroxyl, carboxyl, ethers, amines and sulphate groups) [15,32].
The mechanism of water absorption can be described as follows:
when the dry hydrogel is hydrated, the polar hydrophilic groups are hy-
drated, creating the primary bond between water and the polymeric
molecules. As the hydration continues, the polymeric structure in-
creases physically, which exposes the hydrophobic groups that absorb
additional water, thus leading to an equilibrium in the swelling level [4].

Therefore, a hydrogel has the ability to produce a response (i.e.,
swelling or shrinking) in virtue of some chemical (e.g., pH, solvent com-
position and ionic strength) and physical (e.g., temperature, electric or
magnetic field, light and pressure) stimuli, making them important de-
livery systems of bioactive food ingredients [160,161]. For instance in
pH-sensitive hydrogels, shrinkage occurs under gastric conditions;
however, swelling occurs under intestinal conditions, which indicates
that this delivery system can be used to protect a bioactive compound
from the harsh conditions of the human stomach, releasing its content
in the small intestine, so that nutrient absorption can occur [9].

5.3. Lipid-based systems

The enhancement of the bioavailability of orally ingested bioactive
compounds is of utmost importance, particularly for compounds that
present poor water solubility. Lipid-based systems appears as an
appropriate alternative to solve this issue, due to their intrinsic physico-
chemical properties, diversity and biocompatibility [162]. These sys-
tems (e.g., emulsions, solid lipid nanoparticles, nanostructured lipid
carriers and liposomes) have been extensively studied for food applica-
tions [85,163–171] and, therefore, a comprehensive review of such sys-
tems is presented below.

5.3.1. Emulsions
Emulsions (Fig. 2 – C) are composed by two immiscible phases in

which one (i.e., dispersed phase) is spread in small droplets in a solution
(i.e., continuous phase) forming a stable phase combination. Bioactive
compounds can be incorporated into the dispersed droplets and
protected in the continuous phase from external environmental condi-
tions [172,173]. These systems can be classified as oil-in-water (O/W),
water-in-oil (W/O), liquid-in-liquid or solid-in-liquid emulsions. The
emulsion characteristics and stability depend on i) the type of
emulsifiers/surfactants used to stabilize the interface between phases,
ii) its composition, iii) surfactant-to-oil ratio, iv) the presence of co-
solvents and co-solutes, and (v) the homogenization conditions [174].
Oil-in-water emulsions are widely used to encapsulate and deliver lipo-
philic bioactive compounds, essentially due to its easyproductionprocess.

However, depending on the application, they have limitations such
as weak physical stability (i.e., when exposed to high temperatures, or
pH and ionic strength changes) during transportation, storage and
use. This may reduce their protection properties against chemical deg-
radation and consequently its bioactivity [34,117,173].

Conventional emulsions (Fig. 2 –D) usually have awhite opaque ap-
pearance under multiple scattering techniques, while nanoemulsions
(Fig. 2 – E), with smaller droplets size (i.e., typically ranging from 10
to 100 nm), are optically transparent. Hence, nanoemulsions are consid-
eredmore appropriate as delivery systems for controlled release of bio-
active compounds in beverages [175]. Usually, micro-, but in particular,
nanoemulsions have good stability against droplet aggregation because
the range of attractive van der Waals forces, between the droplets, de-
creases with particle size reduction [176].

Nanoemulsions can be used as delivery systems for several lipophilic
compounds, such as essential oils (e.g., ω-3-rich oils), polyphenolics
(e.g., curcumin), antioxidants (e.g., quercetin), antimicrobials
(e.g., thymol) and vitamins (e.g., vitamin A). Moreover, they may also
associate to hydrophilic and amphiphilic bioactive components, that
can be incorporated within the oil droplets, the continuous phase or
the interfacial region of the oil-in-water nanoemulsions, depending of
their nature [177].

Emulsions aremainly produced using high-energy techniques, which
require special equipment that uses high mechanical energy (e.g., high-
pressure valve homogenizers, microfluidizers and sonicators), capable
of generating intense disruptive forces that separate the oil and water
phases, thus leading to the formation of oil droplets. However, low-
energy methodologies, mainly dependent on the intrinsic physicochem-
ical properties of surfactants and oily phases (i.e., phase inversion and
solvent demixing methods), can be also employed [40].

5.3.2. Solid lipid nanoparticles
Solid lipid nanoparticles (SLNs) (Fig. 2 – F) are oil-in-water

emulsions in which the lipid phase has been either fully or partially so-
lidified by a solid lipid, or a blend of solid lipids [4,178,179]. Common
lipids used in this type of nanosystems include sunflower and palm
oils [85,180,181].

SLNs present some limitations such as limited loading capacity and
premature release of the entrapped compounds, which are associated
with the poor solubility of bioactive compounds in the lipid melt and
to high water content of the dispersions (i.e., 70–99.9%), respectively,
thus leading to nanosystems' instability during storage. When the
lipid matrix consists of similar molecules (i.e., tristearin or tripalmitin),
a perfect crystal with few imperfections is formed. Since the bioactive
compounds are incorporated between the lipid layers and in crystal im-
perfections, a highly ordered crystal lattice may not enable a high en-
capsulation efficiency of compounds [42,162].

5.3.3. Nanostructured lipid carriers
Nanostructured lipid carriers (NLCs) (Fig. 2 – G), are a combination

between lipids in the liquid and solid state, where the overall solid con-
tent can be up to 95% of the total weight. NLC were developed to over-
come themain limitations of SNLs, presenting a higher loading capacity
and a sustained bioactive compound release profile (i.e., lowering the
possibility of an early release during storage), because they display a
low crystallinity index [162,182].

Aditya et al. [181] studied the bioavailability of quercetin in different
nanosystems such as SLNs, NLCs and lipid nanoemulsions (LNE). These
authors showed that loading efficiency of quercetin was higher when it
was incorporated in NLCs or LNE, than in SLNs. This can be attributed to
the formation of less ordered lattice defect in NLC and LNE with more
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space for incorporate quercetin [181]. However, in the food industry,
the application of NLCs has some limitations such as: (i) the relatively
low purity of the bio-based materials used, when compared with
those of the pharmaceutical industry; and (ii) the different pH values,
osmotic pressure and ionic strength of food products can lead to ag-
glomeration and flocculation of NLCs [163].

5.3.4. Liposomes
Liposomes (Fig. 2 – H) are spherical vesicles composed by a

membrane-like phospholipid bilayer surrounded by an aqueous medi-
um. This delivery system is formedby a combinationbetween surfactants
and water, under low shear forces. The ability to entrap hydrophilic, hy-
drophobic and amphiphilic bioactive compounds makes them suitable
carriers to be applied to food products [10,42,60]. However, their high
cost associated to their production, low loading capacity, fast release
rates and relatively high instability, during storage, still limiting their ap-
plication in the food industry [183].

5.4. Comparison between distinct micro- and nanosystems

Lipid-based systems, including emulsions and solid lipidnanoparticles
have been developed to carry and deliver hydrophobic compounds, such
as oil-solubleflavors, colors, preservatives, vitamins andnutraceuticals [8,
184]. Lipossomes have the ability to entrap, protect and release hydro-
philic, hydrophobic and amphiphilic bioactive compounds. However,
some challenges exist which limit their application in the food industry,
namely: i) the difficultly of production at an economically feasible and
technically reliable large scale; ii) the poor physical stability when
subjected to distinct conditions present in complex food matrices;
and iii) the poor encapsulation efficiency and loading capacity [185].
Capsules and hydrogels can be designed to spontaneously load either
hydrophilic or hydrophobic bioactive compounds through electrostatic,
van der Waals and/or hydrophobic interactions between the bioactive
compound and the encapsulatingmatrix [186]. These systems also per-
mit a controlled release of bioactive compounds through a partial or
complete disintegration of their structure in response to external stim-
uli (i.e., changes in temperature, pH, ionic strength or enzymatic condi-
tions) [4].

Regarding encapsulation techniques, emulsions are usually pro-
duced through high-energy methods, which require devices that use
high mechanical energy input. Low-energy approaches can be also
employed, but are based on the spontaneous formation of oil droplets
in surfactant-oil-water mixtures when the composition or temperature
of the system is changed [40]. Capsules can be easily produced through
different methodologies such as coacervation, polymerization or self-
assembly, but depending on the technique employed, they may require
Fig. 3. Schematic diagram representing the main physiolog
the intervention of external agents, whichmay turn the production pro-
cess more complex and expensive [4,7]. On the other hand, hydrogels
permit overcoming some drawbacks inherent to other nanosystems
such as the case of lipid-based systems or capsules, once they can be
produced with relatively low cost materials and usually employ simple
preparation methods without requiring addition of extra components.
Moreover, these systems usually allow higher encapsulation and load-
ing yields [4,7].
6. Behavior of micro- and nanosystems and bioavailability of
bioactive compounds

The human digestive system (HDS) is a complex, multi-phase
(i.e., oral, stomach, small intestine and large intestine compartments) bi-
ologic process in which food products undergo a series of processes that
transform them into smaller and more basic components, in order to be
absorbed (mostly in the small intestine) and reach the bloodstream.
Therefore, studying the different physicochemical conditions of the
HDS and their impact on food products is of utmost importance [4,
145]. The summary of the main physicochemical conditions is shown
in Fig. 3.

In the oral cavity, food products are submitted to a neutral environ-
ment (i.e., pH 7.0), mechanical stress (i.e., chewing) and to saliva
(where they are dissolved), which contains some important enzymes
(e.g.,α-amylase) and proteins (e.g., mucins). Subsequently, food passes
to the gastric compartment, where it is submitted to mechanical agita-
tion (peristaltic movements) and acidic environment (i.e., pH ranges
from 1.0 to 3.0), due to HCl secretion. Furthermore, important enzymes
(e.g., pepsin and gastric lipase) interact with food products in order to
break them down into their basic constituents, so that they can be
absorbed in the small intestine. The duodenum is the main absorption
site in the small intestine. At this stage, food suffers an increase in the
environmental pH (from 6.0 to 7.5) so that gastric enzymatic activity
is interrupted. In this compartment, foods interact with inorganic
salts, bile salts and other enzymes (e.g., pancreatic lipase, trypsin, chy-
motrypsin, among others) to further break down food into smaller con-
stituents. Here, the nutrients can be absorbed once enzymatic digestion
is finished [145,158,187]. The non-absorbed digestion products pass to
the large intestine, in which water content, electrolytes and bile salts
are absorbed. At this compartment, polysaccharides and proteins suffer
a fermentation process by the colonic microbiota and the resulting
waste products are then excreted from the human body [188,189].

Due to the HDS complexity, many in vitro digestion models (static
and dynamic) were created in order to study the food behavior when
submitted to GI conditions.
ical conditions present in the human digestive system.



Table 2
Comparison between various static in vitro digestionmodels used to assess the behavior ofmicro- and nanosystems (i.e., made from polysaccharide, protein and lipid-basematerials) and
of the bioavailability of bioactive compounds entrapped into.

Bio-based delivery systems Conditions Oral Phase Stomach Small Intestine Reference

Polysaccharide-base delivery
systems

Delivery system Alginate microgels [194]
pH NA 2.0 (1 M HCl) 7.5 (NA)
Secretion Simulated gastric fluid +

pepsin (4500 U/mL)
Simulated intestinal fluid +
pancreatin (1.0%) + bile salts
(0.5%)

Duration (min) 120 60
Stirring Yes (100 strokes/min) Yes (100 strokes/min)
Delivery system Chitosan nanoparticles [195]
pH NA 1.5–2.0 (9 M HCl) 7.0 (1 M NaHCO3)
Secretion NaCl buffer 0.5% (w/v)
Duration (min) 60 120
Stirring Yes (150 rpm) Yes (90 rpm)
Delivery system Chitosan and alginate [250]
pH 6.8 (NA) 1.2 (1 M HCl) 7.0 (1 M NaOH)
Secretion Simulated saliva fluid +mucin

(5 g/L)
Simulated gastric fluid Simulated intestinal fluid +

bile extract (187.5 mg/mL) +
pancreatic lipase (60 mg/mL)

Duration (min) 10 60 120
Stirring Yes (100 rpm) Yes (100 rpm) Yes (100 rpm)
Delivery system Alginate microcapsules [251]
pH NA 3.0 (0.1 N HCl) 7.0 (0.1 N NaHCO3)
Secretion Pepsin (3 g/L) Pancreatin (1 g/L) + bile salts

(4.5 g/L)
Duration (min) 60 60
Stirring NA NA
Delivery system Gellan microgel coated with chitosan [252]
pH NA 2.0 (6 M HCl) 5.3–7.0 (0.9 M NaHCO3)
Secretion Porcine pepsin (40 mg/mL in

0.1 M HCl) at a ratio of
0.5 g/100 mL of sample

Pancreatin (2 mg/mL) +
porcine bile extract
(12 mg/mL)

Duration (min) 60 120
Stirring Yes (NA) Yes (NA)

Protein-base delivery systems Delivery system Cruciferin nanoparticles [197]
pH NA 1.2 (NA) 7.4 (200 mM phosphate

buffer)
Secretion Simulated gastric fluid +

pepsin (0.5 mg/mL)
Simulated intestinal fluid +
pancreatin (0.5 mg/mL)

Duration (min) 120 NA
Stirring Yes (100 rpm) Yes (100 rpm)
Delivery system β-lactoglobulin-IgE [253]
pH NA 2.0 (NA) 7.0–6.5 (1 M NaHCO3)
Secretion NaCl (35 mM) + pepsin (3440

U/mg)
CaCL2(7.6 mM) + bis-Tris pH
6.8 (20.3 mM) + bile salts
(12.3 mM) + lipase
(28.4 U/mg) +
α-chymotrypsin (0.44 U/mg)
+ trypsin (34.5 U/mg) +
colipase (ratio of 1:895 w/w)

Duration (min) 60 NA
Stirring Yes (NA) Yes (NA)
Delivery system Whey protein isolate [218]
pH 7.4 (4 × 10−4 mM NaOH) 1.2 (0.15 M HCl) 7.4 (4 × 10−4 mM NaOH)
Secretion Simulated saliva fluid +

α-amylase (290 mg) + uric
acid (15 mg) +mucin (25 mg)

Simulated gastric fluid +
pepsin (3.5 g) + mucin (3.0 g)

Duodenal juice + bile juice +
pancreatin (9.0 g) + lipase
(1.5 g)

Duration (min) 5 120 120
Stirring Yes (100 rpm) Yes (100 rpm) Yes (100 rpm)
Delivery system β-lactoglobulin [196]
pH NA 1.2 (0.15 M HCl) NA
Secretion Simulated gastric fluid +

pepsin (3.2 mg/mL)
Duration (min) 120
Stirring Yes (agitation)

Lipid-base delivery systems Delivery system Oil-in-water emulsion stabilized with soy and pea protein isolate [199]
pH NA 2.0 (NA) 7.0 (NA)
Secretion Simulated gastric fluid +

pepsin (25,000 U/mL)
Simulated intestinal fluid +
pancreatin (5.0 mg/mL) +
phospholipase A2 (5.0 mL of
6.7 mg/mL) + simulated bile
fluid (0.4 mM bile salts and
1 mM phospholipids)

Duration (min) 60 120
Stirring Yes (250 rpm) Yes (250 rpm)
Delivery system Corn oil stabilized with Tween 20 [254]
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Table 2 (continued)

Bio-based delivery systems Conditions Oral Phase Stomach Small Intestine Reference

pH 6.8 (HCl or NaOH) 2.5 (HCl) 7.0 (NaOH)
Secretion Simulated saliva fluid + type II

mucin (5.0 g/100 mL)
NaCl (2 g/L) + HCl (0.7% v/v)
+ pepsin (0.3 g/100 mL)

CaCl (5.5 g/L) + NaCl
(32.8 g/L) + bile salts
(0.1 g/mL) dispersed in
phosphate buffer (4 mL) +
lipase (0.2 g/mL)

Duration (min) 10 120 NA
Stirring Yes (100 rpm) Yes (agitation) Yes (agitation)
Delivery system Canola oil nanoemulsion [255]
pH 7.0 (NA) 2.0 (NA) 7.0 (0.1 M NaOH)
Secretion Simulated salivary fluid +

α-amylase (NA)
Simulated gastric juice +
pepsin (3.2 mg/mL)

Simulated intestinal juice +
pancreatin (1.5 mg/mL) + bile
extract (24.0 mg/mL)

Duration (min) 3 120 120
Stirring NA Yes (250 rpm) Yes (250 rpm)
Delivery system Corn oil [198]
pH 6.8 (NA) 2.5 (NA) 7.0 (NA)
Secretion Simulated saliva fluid +mucin

(30 mg/mL)
Simulated gastric fluid +
pepsin (3.2 mg/mL)+

Simulated intestinal fluid +
bile salt solution (3.5 mL) +
lipase solution (2.5 mL)

Duration (min) 10 120 120
Stirring Yes (agitation) NA NA

Note: All experiments were performed at 37 °C; NA: Information not available.
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6.1. In vitro digestion models

In vitro models can be divided into static or dynamic digestion
models, depending on their complexity. These systems are often used
to provide some insight regarding the digestibility of controlled release
systems and bioavailability of functional compounds [190]. Static
models are practical and inexpensive models that allow the assessment
of multiple samples. On the other hand, dynamic digestion models are
complex multistage systems intended to mimic, as close as possible,
the humandigestion conditions, enabling the simulation of the physico-
chemical changes (i.e., pH transitions, enzyme secretion alteration and
peristaltic movements) that occur during an in vivo digestion. In vitro
experiments (i.e., both static and dynamic models) allow obtaining re-
productive (without biological variations) and faster results in a more
economicalway.Moreover they require lessmanpower, are easy to per-
form, do not involve ethical issues and allow sampling at any time of di-
gestion process, when compared with in vivo experiments [190,191].
6.2. In vitro static digestion models

Recently, several studies regarding the assessment of the behavior of
micro- and nanostructured systems, aswell as the release rates and bio-
availability of bioactive compounds were performed using in vitro static
digestion models. The main research results obtained until now are
summarized in Table 2.

Table 2 shows that a wide variety of physicochemical conditions were
used to simulate the physiological conditions of the humanGI tract, dem-
onstrating that there is a lack of agreement regarding the in vitrodigestion
models protocol. In fact, Alminger et al. [190] addressed this subject by re-
ferring that, usually, most of the in vitro digestion models derived from
themethod described byMiller et al. [192] and, thus, the physicochemical
conditions of such studies are significantly different. However, these stud-
ies contributewith important insights regarding the understanding of the
behavior of micro- and nanostructured systems under GI conditions. Re-
cently, within the COST Infogest network, a general standardised and
practical static digestionmethod based on physiologically relevant condi-
tions has been proposed, aiming at uniformizing the existing protocols
and the production of more comparable results [193].

Bokkhim et al. [194] andMadureira et al. [195] assessed the influence
ofGI conditions on alginatemicrogels and chitosannanoparticles, respec-
tively. Both concluded that alginatemicrogels and chitosan nanoparticles
were suitable delivery systems for nutraceuticals. Peram et al. [196] and
Akbari & Wu [197] studied the influence of gastric and GI conditions on
β-lactoglobulin (β-Lg) (on native and heat-denaturated state) and
cruciferin, respectively. They concluded that β-Lg in native state and
cruciferinwere resistant to the gastric andGI conditions (i.e., pH andpep-
sin digestion), respectively, suggesting that both protein systems could
be used as nano-delivery systems for bioactive compounds. Zhang et al.
[198] showed that oil-in-water emulsions can increase the bioaccessibili-
ty of carotenoids from carrots, whereas Fernandez-Avila et al. [199]
proved that oil-in-water emulsions protected their conjugated linoleic
acid content during storage and in vitro digestion. These delivery systems
(from polysaccharide, protein or lipid bio-based nature) showed to be
suitable nutraceutical carriers, throughout the GI tract conditions,
protecting their content until the appropriate release site.

Despite their simplicity and low cost, static in vitromodels do not ac-
curately simulate the complexity and the GI conditions in the HDS [190,
198]. Therefore, dynamic in vitro digestionmodelswere created in order
to overcome these limitations by simulating the dynamic conditions of
the HDS (e.g., peristaltic movements) [158,190].

6.3. In vitro dynamic digestion models

In vitro dynamic digestion models are generally comprised by a
multi-chamber apparatus (e.g., Fig. 4) that can better simulate the dy-
namic changes that are present in HDS [190].

TIM-1 (Fig. 4) is a dynamic in vitro digestionmodel developed by TNO
Nutrition and Food Research (Zeist, the Netherlands), that comprises four
consecutive glass containers simulating the stomach, duodenum, jeju-
num and ileum. Each glass compartment contains a flexible wall within
its structure. All experiments are performed under constant temperature
(37 °C), which is achieved by pumping water into the space between the
glass containers and the flexible wall. This system also mimics the peri-
staltic movements of the HDS by alternating compression and relaxation
of the flexible walls [200]. Moreover, this system allows the simulation of
the intestinal absorption: the jejunum and ileum compartments are con-
nected to filtration units (semi-permeable hollow-fibre devices with a
molecular cut-off of 5 kDa) which allow the quantification of the bioac-
cessibility [201]. Non-bioaccessible fractions (ileal delivery) are collected
at the end of ileum compartment and represent the unabsorbedmaterial
that will pass to the large intestine.

[202]Fondaco et al. [202] studied the lipid digestion ofHuman breast
milk and a commercialized infant formula, by assessing free fatty acid



Fig. 4. Schematic representation of TIM-1 (Adapted from Villemejane et al. [200]).
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bioavailability, using TIM-1 as an in vitro digestion model. They ob-
served that the lipolysis rates were higher in Human breast milk when
compared with the commercialized infant formula. Although, did not
observed significant differences between breast milk and the commer-
cialized infant formula regarding the free fatty acid bioavailability.
Villemejane et al. [200] recently studied the effect of the enrichment
of biscuits (i.e., addition of proteins and viscous fibers) in protein and
starch digestion using TIM-1 as the in vitro digestion model. They ob-
served that the addition of proteins or fibers delayed or lowered
proteolysis.

Ménard et al. [203] developed a dynamic in vitro digestion model
(French National Institute for Agricultural Research - Institut National
de la Recherche Agronomique) to study the digestion of food products
Fig. 5. Dynamic in vitro gastrointestinal digestion system composed by 1) pH probe; 2) gas
6) intestinal compartment and 7) intestinal emptying pump (Adapted from Ménard et al. [203
under in vitro digestion conditions. This system is comprised by two di-
gestion compartments in order to simulate the physiological conditions
of the human stomach and small intestine (Fig. 5). Each chamber con-
sists of a glass jacket, kept at 37 °C, equipped with sensory equipment
(i.e., temperature, pH and redox sensors) and computer-controlled peri-
staltic pumps. Between the stomach and the small intestine compart-
ment, a Teflon membrane, with 2 mm pore size, is inserted to
simulate the sieving effect of the pylorus.

Recently, Adouard et al. [204] adapted this model by adding a third
compartment in order to simulate the stomach, duodenum and small
intestine physiological conditions (i.e., separating the duodenum from
the small intestine phase). The authors used thismodel to study the sur-
vivability of cheese-ripeningmicroorganisms (i.e., six bacteria and three
yeasts).Moreover, they also studied thesemicroorganisms under differ-
ent growth conditions (i.e., in cheese matrix and lab conditions). They
observed that all yeasts (i.e., Geotrichum candidum, Kluyveromyces lactis
and Debaryomyces hansenii) resisted to the in vitro digestion conditions,
whereas one bacteria strain (i.e., Lactococcus lactis) did not survive to
such conditions. On the other hand, bacteria stains (i.e., Brevibacterium
aurantiacum and Arthrobacter arilaitensis) showed to be more sensitive
to in vitro digestion when grown in the cheese matrix.

Chen et al. [205] developed a dynamic gastric simulation model
(DGSM) which dynamically simulates the human gastric conditions
during food digestion. This system is composed by a double-walled
acrylicwater insulated vessel and a probe attached to a texture analyzer.
Recently, Tran Do et al. [206] adapted this model bymaking somemod-
ifications which include the addition of a continuous gastric secretion
system, gastric emptying and a different probe apparatus – Fig. 6.

The authors used this model to investigate the efficacy of selected
supplemental digestive enzymes in order to improve food digestion.
They concluded that supplementary enzymes improved food digestion
during the in vitro gastric digestion.

The simulated human intestinal microbial ecosystem (SHIME -
ProDigest and Ghent University, Gent, Belgium) was developed by
Molly et al. [207] and is composed by a five-chamber apparatus, simu-
lating the human intestinal conditions (i.e., duodenum and jejunum,
ileum, caecum and ascending colon, transverse colon and descending
colon) coupled with pH probes and a pump system [207] – see Fig. 7.
Thismodel suffered somemodification and actually thefive vessels rep-
resent the human stomach, small intestine, ascending, transverse and
descending colon, incorporating a microbial ecosystem in the large in-
testine vessels [208,209].
tric compartment; 3) gastric emptying pump; 4) control system; 5) STORM software;
]).



Fig. 6. Schematic representation of the dynamic gastric simulation model (Adapted from
Tran Do et al. [206]).

Table 3
Comparison between different dynamic in vitro digestion models used to assess the be-
havior of bio-based micro- and nano-delivery systems developed for food applications.

Characteristics TIM-1 DGID DGSM SHIME

Multi-chamber
(Number of chambers)

Yes (4) Yes (3) No Yes (5)

Peristaltic Movements Yes Yes Yes No
pH transitions Yes Yes No Yes
Gastric emptying Yes Yes Yes Yes
Secretion addition Yes Yes Yes Yes
Cost $$$ $$ $ $$$$
Complexity +++ ++ + ++++
Reference [200] [204] [206] [209]

Note: TIM-1: Dynamic in vitro digestion model developed by TNO Nutrition and Food Re-
search; DGID: Dynamic gastrointestinal digester; IDM: In vitro digestion model; DGSM:
Dynamic gastric simulation model; SHIME: Simulated human intestinal microbial ecosys-
tem; $: Low cost; $$:Mediumcost; $$$: Expensive; $$$$: Very expensive;+:Very simple;
++: Simple; +++: Complex; ++++: Very complex.
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Chaikham et al. [208] used this model to assess the survivability of
microencapsulated probiotics (i.e., Lactobacillus acidophilus LA5 or Lac-
tobacillus casei 01) suspended in pressurized longan juice. They ob-
served that both encapsulated probiotics increased significantly the
survival of bifidobacteria and decreased the pathogenic bacteria growth
in the colon.

The dynamic in vitro digestion systemspresented in this reviewhave
some similarities and disparities, however, all of them intended to study
thedigestion of food products/supplements underGI conditions. Table 3
compares the main conditions used in the dynamic digestion models
previously presented.

Most of these systems are composed by amulti-compartment appa-
ratus that simulate the different stages of the human GI tract, the tran-
sitions between the digestion phases (with the exception of the DGSM
model), the gastric emptying, the pH transitions, the gastric and intesti-
nal secretions and the peristaltic movements of the HDS. Although,
these systems differ from each other regarding their complexity, some
considerations have to be made regarding this subject. For instance,
the SHIME is a complex in vitro digestion model due to the presence
Fig. 7. Representative diagram of SHIME sy
of gut microbiota. However, gastric and small intestine secretions may
lack in some important digestion conditions (e.g., enzymes and salts),
since this system is focused on simulating the large intestine conditions.
On the other hand, DGSM has a simple apparatus that intends to simu-
late the gastric conditions of the human body. However, this system
presents a more complete enzymatic content and tries to simulate the
stomach peristaltic movements. The TIM-1 system has an intermediate
complex apparatus, when compared with the aforementioned systems,
since it simulates the GI conditions of the HDS but it lacks in simulating
the human large intestine. However, it is, in fact, a complete system be-
cause it mimics the gastric and small intestine secretions (i.e., enzymes
and salts) and simulates the human GI peristaltic movements, present
in vivo.

There are also other dynamic in vitro digestion models that exist
based on the examples presented above. For instance, Pinheiro [158] de-
veloped a dynamic in vitro GI model, based on TIM-1, and several stud-
ies were conducted using this model. Bourbon et al. [210] assessed the
ability of chitosan coating to interact and increase the stability of
lactoferrin-glycomacropeptide nanohydrogels during gastric condi-
tions. The authors showed that the presence of chitosan increased the
nanohydrogels stability (i.e., reduced the rate of protein digestion). On
the other hand, Pinheiro et al. [158] assessed the influence of different
emulsifier types on the structural changes and bioavailability of
curcumin nanoemulsions. The authors concluded that the emulsifier
type (i.e., electrical charge) significantly influence the behavior of
nanoemulsions regarding free fatty acids release and bioactive com-
pound bioavailability.

Therefore, these in vitro digestion systems can be considered as a
preliminary, but still crucial, step towards the study of functional food
products digestion [200,204,206,209].
stem (Adapted from Prodigest [256]).
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6.4. Caco-2 cell models

The use and optimization of cellular models with the purpose of
evaluating the bioavailability and digestibility of bioactive compounds
(e.g., flavonoids) has been increasing over the last years. These models
try to mimic the conditions within the human small intestine allowing
the determination of several conditions, namely, the bioaccumulation
and toxicity level, the adhesion to or the absorption rate through intes-
tinal epithelial cells [199,211,212].

Caco-2 cells are a human epithelial cell model, derived from colon
carcinoma,with a heterogeneous cell population (i.e., they have different
transport rates) that can rapidly differentiate into a monolayer of cells
with the morphology and maturity of enterocytes. However, Caco-2
cells cannot produce a mucosal layer in order to simulate the intestinal
mucosa. Therefore, Caco-2 cells can be co-cultured with HT29-MTX to
replicate human intestinal mucosa. These co-cultured cell lines showed
significant absorption disparities when compared with single Caco-2
cell lines [211,212]. A few studies are available addressing the effect of
controlled delivery systems in the absorption and digestibility of bioac-
tive compounds using Caco-2 cell cultures.

Fernandez-Avila et al. [199] studied the effect of oil-in-water emul-
sions, stabilized with vegetable protein isolates (e.g., soy and pea pro-
tein isolates) on the protection and delivery of conjugated linoleic acid
(CLA) using a Caco-2 cell culture. They observed that oil-in-water emul-
sions protected CLA during delivery, digestion and through transporta-
tion in the Caco-2 cell monolayer.

Grozdanovic et al. [213] investigated the impact of proteolytic activ-
ity of kiwifruit cysteine protease actinidin (Act 1 d), in vitro and in vivo,
by measuring permeability parameters in a Caco-2 cell model and in
mice, respectively. The authors demonstrated that Act 1 d increased
the permeability of the intestinal barrier by disrupting a human epithe-
lial tight junction (occluding).

Despite the lack of ethical issues and the low cost of in vitro assays in
comparison with in vivo counterparts, they do not meticulously mimic
the HDS [214]. Therefore, in vivo studies need to be carried out in order
to properly understand the behavior of micro- and nanosystems and of
bioavailability of bioactive compounds under real digestive conditions.
6.5. In vivo experiments

In vivo assays can be performed in human or animal-nature organ-
isms in order to understand the impact and behavior of micro- and
nanosized delivery systems in the GI tract, as well as their digestibility.
Some animal organisms are frequently used to perform in vivo experi-
ments such as rodents, rabbits, pigs or calves. Pigs are the ones that
more accurately mimic the HDS, since they are omnivorous colonic fer-
ments, like humans [215,216]. Calves can also be used formilk digestion
assays since they only use the abomasum (monogastric behavior) dur-
ing their first two weeks of life. Rodents are usually employed to study
the physiological conditions of the GI tract [215].

Chen et al. [217] studied the influence of liposomes coated with N-
trimethyl chitosan (TMC) in the absorption of harmine (HM) through
in vivo assay, which it was performed on SpragueDawley rats at a fasted
state. The authors observed that such delivery systems prolonged the
retention time of harmine, protecting it from enzymatic digestion and
improving its transportation across the intestinal epithelial cells.

Jonathan et al. [216] studied the digestibility of alginate, and other
dietary fibers, in pigs. They concluded that, in contrast to the solubility
of alginate in water, its G-blocks precipitated in the colon.

O′Neill et al. [218] studied the effect of whey protein microbeads
(dried at ambient conditions), to serve as carriers for riboflavin during
in vitro and in vivo digestion. In vivo tests were performed on piglets
and showed that dry whey protein microbeads were resistant to gastric
digestion and retarded riboflavin release. The authors concluded that
such structures can be used as delivery systems for riboflavin.
Both in vitro and in vivo assays are crucial for evaluating the behavior
of controlled delivery systems during digestion, therefore comparisons
and correlations between both methodologies are of ultimate impor-
tance and are for the first time carried out in this review paper.

6.6. In vitro-in vivo correlations

In vitro-in vivo correlations were categorized by the Food and Drug
Administration (FDA) into five main levels – i.e., A, B, C, multiple level
C and D. Level A represents in vitro-in vivo point-to-point correlation;
level B compares the mean of in vitro release time with the mean of
in vivo residence or release time (i.e., statistical analysis); level C
correlates a single release parameter (e.g., time required for 50% re-
lease) with a bioactive compound parameter (e.g., concentration). A
multilevel C correlation compares multiple release time evaluations
with multiple bioactive compounds parameters; while level D repre-
sents a rank order correlation. Usually, multiple correlation levels are
used in an in vitro-in vivo correlations being level A a prerequisite to
in vitromethod validation [214].

Some studies were found in literature addressing how bio-based
delivery systems would behave under digestion conditions using both
in vitro and in vivo methodologies. Chen et al. [217] showed that
nanosized liposomes coated with N-trimethyl chitosan (TMC) im-
proved the bioavailability of harmine through in vitro (i.e., protection
against Caco-2 cells homogenates degradation) and in vivo (prolonged
retention time in rats GI tract) methodologies. O′Neill et al. [218] dem-
onstrated that whey protein microbeads retarded riboflavin release
during both in vitro and in vivo GI digestion. Some differences were ob-
served between the results obtained from both methodologies (i.e.,
in vitro and in vivo) regarding the riboflavin content released. Rawat
et al. [214] studied the in vitro-in vivo correlations regarding the con-
trolled release of commercial Risperdal in poly(lactide-co-glycolide)
(PLGA)microspheres. Some variationswere also observed in the release
time of Risperdal between in vitro and in vivo experiments. The com-
pound release was initially faster in the in vitro test, becoming slower
after ca. 30 days, when compared with in vivo assays. The differences
found amongbothmethodologiesmay be due to somephysiological dy-
namics that are typical of live organisms (i.e., in the in vivoGI tract), that
are very difficult to mimic using in vitro models [214].

7. Behavior of micro- and nanosystems in food models

The incorporation of controlled delivery systems into food products
has brought several advantages to the food industry. However, the be-
havior of such systems must be evaluated in food products prior to
their commercialization, in order to understand the impact of food con-
ditions on their properties and functionalities [174], structural stability
[219,220] and bioactive compounds bioavailability [86]. The addition
of delivery systems to food products should not interfere with the sen-
sory properties of the final product. At micro-, but particularly, at nano-
scale delivery systems are imperceptible in the mouth and do not affect
the sensory properties of the food product, thus increasing the public
acceptance [174].

Therefore, some studies were performed regarding the incorpora-
tion of controlled delivery systems in food simulants (i.e., food model
systems) and in food matrices (i.e., real food products), and will be
discussed below.

7.1. Food simulants

According to the Commission Regulation (EU)No 10/2011 on plastic
materials and articles intended to come into contact with food, several
food simulants (showed in Table 4) were listed and regulated in order
to study the impact of food environmental conditions on controlled re-
lease systems [221].



Table 4
List of available food simulants containing its composition and applications (Adapted from
European Parliament and Council [221]).

Food
simulant

Composition Application

A Ethanol 10% (v/v) Hydrophilic products
B Acetic acid 3% (v/v) Hydrophilic and acidic products

(pH b 4.5)
C Ethanol 20% (v/v) Hydrophilic and alcoholic

products (N20% alcohol)
D1 Ethanol 50% (v/v) Hydrophobic, alcoholic (N20%

alcohol) food products and
oil-in-water emulsions

D2 Vegetable oil Hydrophobic food products and
superficial fats

E Poly(2,6-diphenyl-p-phenylene
oxide), particle size of 60–80 mesh,
pore size 200 nm

Dry food products
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Most studies found in the literature use food simulants to study the
migration of compounds, from food packaging to food products.
Linsinger et al. [222], Su et al. [223] and Mackevica et al. [224] studied
the migration of silver nanoparticles to food products using deionized
water and 10% (v/v) of ethanol; 3% (w/v) of acetic acid and 50% (v/v)
of ethanol; and Milli-Q water, 3% of acetic acid and 10% of ethanol,
respectively.

Only few studies are available on this subject regarding the use of
controlled delivery systems. Madalena et al. [86] evaluated the stability
of β-lactoglobulin encapsulated with riboflavin, when incorporated
into a food simulant composed by Milli-Q water and 3% of acetic acid,
thus simulating a yoghurt product. These authors observed that β-
lactoglobulin nanosystems remained structurally stable for 14 days of
storage when compared with the control (i.e., β-lactoglobulin nanosys-
tems in Milli-Q water), showing a complete release of riboflavin over
7 days of storage.

On the other hand, Liu et al. [163] encapsulated coenzyme Q10 in a
nanostructured lipid carrier and added it to a food simulant composed
by 15% of glucose, 0.1% of EDTANa2, 0.1% of benzoic acid and 83.9% of
water (w/v), thus simulating a beverage. The authors showed that this
nanostructured delivery system remained structurally stable during
3 months of storage, suggesting that it may be successfully applied in
the food industry.

Food simulants represent, in fact, a good approach to evaluate the ef-
fect of food conditions on the stability of controlled delivery systems.
However, assays in real food products are required because they pro-
videmore accurate results towards the influence of food product condi-
tions on controlled delivery systems.

7.2. Food matrices

Food products can have a detrimental, neutral or protective effect
over controlled delivery systems. Usually, food additives may include
different types of sugars, salts, aromas, natural or artificial flavorings,
among others. These additives can interact with delivery systems and
decrease their bioavailability [225].

In the literature, some studies report the incorporation of controlled
delivery systems in several food matrices, such as fruit juice [219,226],
pastry dough [227], Cheddar cheese [228], yoghurt [229,230], chocolate
[231] and bread [232].

Nualkaekul et al. [219] showed that encapsulation of Lactobacillus
plantarum and Bifidobacterium longum in alginate and pectinmicrobeads
successfully preserved their viability in pomegranate and cranberry juice
during 6 weeks of storage; while Ying et al. [226] demonstrated that the
viability of Lactobacillus rhamnosuswas maintained when previously in-
corporated into spray dried microcapsules, and thus applied to apple
juice. Both studies showed that microencapsulation of probiotics im-
proved or maintained their viability in fruit juice.
Rivero et al. [227] assessed the controlled release of propionic acid,
from chitosan films, into pastry dough, in order to improve its conserva-
tion properties. They concluded that chitosan is an effective carrier for
propionic acid, promoting a controlled release of this antimicrobial
compound, and thus successful presentation of pastry dough along
time.

Amine et al. [228] studied themicroencapsulation of Bifidobacterium
longum in alginate beads to improve bacteria tolerance to freezing dur-
ing Cheddar cheese production conditions and storage period. They
concluded that alginate beads have a protective effect over bacteria,
during 21 days of storage.

Gomes et al. [229] evaluated the incorporation of red bell pepper
into β-cyclodextrin nanoparticles, and their stability when added into
yoghurt, as well as the performance of different production techniques
(i.e., magnetic stirring and ultrasonic homogenization), and the aspect
of the resulting product. The authors concluded that the complex pro-
duced by ultrasonic homogenization showed less color changes in the
yogurt, thus better preserving its properties during storage. Pando
et al. [230] studied the ability of nanoniosome (composed by Span 60
or Maisine 35-1 as surfactants, and dodecanol as stabilizer) to encapsu-
late resveratrol and their stability in a yoghurt. They concluded that the
complex formed by niosomes and resveratrol did not influence the
product texture, showing that this delivery system is a suitable carrier
for resveratrol for food applications.

Gültekin-Özgüven et al. [231] evaluate the encapsulation effect of
nanoliposomes containing spray dried black mulberry extract and coat-
ed by chitosan in dark chocolate. The authors concluded that the choc-
olate properties were improved and fortified due to the incorporation
of the aforementioned complex.

Rutz et al. [232] studied the encapsulation of palmoil andβ-carotene
into chitosan/sodium tripolyphosphate or chitosan/carboxymethyl cel-
lulose microparticles, and evaluated their performance in food products
(e.g., bread and yoghurt). They observed that chitosan/carboxymethyl
cellulose delivery system improved carotenoid release during storage.
From the tests described above, it is possible to see a positive effect of
micro- and nanoencapsulation on bioactive compounds presentation
and activity, thus improving its controlled release and performance
when added to food products, without interfering negatively with the
organoleptic properties of food products.

During this review, severalmicro- andnano delivery systems and bio-
active compounds entrapped into themwere evaluated in terms of their
behavior and bioavailability, respectively, under digestion (through
in vitro and in vivo experiments), and when incorporated in food
simulants or real food systems. The information available regarding
these subjects is, however, scarce and therefore more studies should be
performed in order to better predict the behavior of delivery systems
for their successfully commercialization in food products, in a near future.

8. Safety and regulatory considerations

Food safety focuses on the protection of food products against phys-
ical, chemical, biological and radiation contamination, during process-
ing, storage and consumption. Nanotechnology is widely applied in
the pharmaceutical and cosmetics fields while in the food industry is
gainingpopularity and a growing interest. However, theuse of this tech-
nology may raise some security issues since it involves the deliberate
manipulation, manufacture, processing or selection of materials, struc-
tures or systems at the nanometer scale, which may influence material
properties (e.g., particle freemovement through the human body due to
their nanosized structure) [113,186].

Particles at nanoscale display new properties and functionalities,
which may improve the performance of traditional products. These in-
novative characteristics have an unpredictable impact in the human or-
ganism, animals or environment, due to potential toxic effects.Materials
at this scale can penetrate and accumulate much deeper within the
human body, breaching the cellular and sub-cellular boundaries,
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which may cause undesired and uncharacterized effects [233,234].
Moreover, long term effects regarding the application of nanotechnolo-
gy to the food industry are still unknown [235].

Therefore, the use of nanotechnology for human consumption must
be meticulously evaluated and regulated and consumer's acceptance
studies should be performed in order to assess the consumer trends
and to understand if what has been done is sufficient towards its accep-
tance and use in the food industry.

Regarding the regulatory measures for nanotechnology/
nanomaterials in food sector, a recent overview shows that still exists
a lack of information exchange consistency among different countries,
which may put in risk the human health and the environment, as well
as restrict the commercialization of novel beneficial products at global
level [236]. The European Union (EU) is, so far, the unique group of
countries that have a clear regulatory definition of nanomaterials (and
their intended use) in current food legislation. In countries outside the
EU this regulation takes place in an implicit form that works only as a
guide for the industry [236].

The European Commission (EC) published a definition of
nanomaterial through regulation No 1169/2011 – “‘engineered
nanomaterial’ means any intentionally produced material that has one
or more dimensions of the order of 100 nm or less, or that is composed
of discrete functional parts, either internally or at the surface, many of
which have one or more dimensions in the order of 100 nm or less, in-
cluding structures, agglomerates or aggregates, which may have a size
above the order of 100 nm but retain properties that are characteristic
of the nanoscale” [237]. This definition intends to inform the consumers
and act as reference in different regulatory sectors. Regarding food con-
tact materials and risk assessment, regulation (EU) no 10/2011 on plas-
tic materials reports that nanoparticles may lead to different
toxicological properties and thus should be evaluated on a case-by-
case basis; it is mentioned that “authorizations which are based on the
risk assessment of the conventional particle size of a substance do not
cover engineered nanoparticles” [221]. Nanoparticles can only be used
if explicitly authorized or named in Annex I of Regulation (EU) no 10/
2011. In accordance with Annex I, only titanium nitride nanoparticles
are reported and therefore, authorized until now. Furthermore, this reg-
ulation also states that nanoparticles should not be enclosed in the func-
tional barrier concept, which basically allows the migration, below a
given detection limit, of certain non-authorized substances present in
multi-layer materials. Risk assessment of nanoparticles through on a
case-by-case basis is also valid on active and intelligent materials, and
articles intended to come into contact with food [238]; which means
that a food additive authorization may be required, as well as for nano-
particles released intentionally from active food contact materials into
the food matrix [236].

In terms of public acceptance or consumer attitudes, Handford et al.
[235] performed a study involving 102 agri-food stakeholders (i.e., 14
interviews and 88 online questionnaires) to understand the current
awareness regarding nanotechnology and its applications in the agri-
food industry. The authors observed that the awareness regarding the
application of nanotechnology to the agri-food industry is still on its
preliminary stage. Although, some opportunities were identified, since
the interviewed are more receptive when nanotechnology is used for
human health benefit as “functional ingredients” or “more nutritional
foods”. Moreover, some risks were clearly identified regarding the “un-
known effects to the human body and within the ecosystem” as well as
“the lack of public knowledge regarding this subject, which may create
doubt in the consumer”. Therefore, toxicological studies must be made
in order to reduce the dubious nature of this subject, regarding the
use of nano delivery systems in food products [239].

Toxicological studies typically start with cytotoxicity assessments
since one of the most important parameters to evaluate the toxicity of
nanosystem materials is their biodegradability. This way, some studies
weremade regarding the cytotoxicity of controlled delivery nanosystems.
Bruge et al. [239] studied the cytotoxicity of different nanostructured lipid
carriers in human dermal fibroblasts. They concluded that all the formu-
lations studied can be considered biocompatible materials. Although,
they also observed that some formulations were susceptible to UV-
radiation, since they present an increase in the cytotoxicity level, under
these conditions.

9. Future trends

The development of functional foods has increased over the past few
years and has passed from a tendency to a reality in the food industry, as
a response to a growing consumers' demand for more and more nutri-
tional and healthy food products. In order to accomplish this evolution-
ary step, the information gathered by researchers and industrial food
workerswas essential. Thus, during this review, it was possible to detect
some important trends regarding the application and production of
controlled delivery micro- and nanosystems.

The development and application of micro- and nanoencapsulation
techniques can be found during all steps of the food chain. The invest-
ment towards the development of novel approaches to scale up the ap-
plication ofmicro- and nanoencapsulation to a large variety of processes
and products is expected to increase in upcoming years.

To guarantee the desired functionality, themain trend is the reverse
engineering approach. The reverse engineering approach is an ideal
strategy for the development of micro- and nanosystems with specific
characteristics, in order to be applied in food process and/or products.
Regarding this methodology, the final product functionalities are previ-
ously determined. Subsequently, studies are conducted regarding the
materials andmethods thatmay be used to develop the desired delivery
systems with the pre-required properties [4].

Innovations in the food industry also refer to new processing tech-
niques. Electrospraying and electrospinning are emergent techniques
for the production of fibers and/or capsules at themicro- and nanoscale.
These versatile and low-cost methodologies can form structures with a
high surface area-to-volume ratio. The principle of these techniques
consists in applying an external electric field between two electrodes
in the bio-basedmaterial solution, generating a repulsive force, opposite
to the surface tension. While the droplet is exposed to an electric field,
the solvent is evaporated and the fibers are formed [240,241].

The layer-by-layer technology is an emergent trend regarding the
development of multilayer controlled delivery systems at micro- and
nanoscale. This technique, based in the alternating deposition of poly-
electrolytes with an opposite charge in a loaded structure, permit the
design of delivery systems with greater performance in terms of con-
trolled size, stability, composition and surface functionality [242,243].
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