
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (200x) XX, x-x 1

Received: , Accepted:

Correspondence to: Luís Dias

Departamento de Produção e Sistemas,

Campus de Azurém, 4800-058 Guimarães, Portugal

lsd@dps.uminho.pt

António Vieira

Researcher, *

Luís S. Dias

Assistant Professor, *

Guilherme A. B. Pereira

Associated Professor, *

José A. Oliveira
Assistant Professor, *

M. Sameiro Carvalho
Associated Professor, *

Paulo Martins
Assistant Professor, *

*: University of Minho
Production and Systems Department

USING SIMIO TO AUTOMATICALLY
CREATE 3D WAREHOUSES AND
COMPARE DIFFERENT STORAGE
STRATEGIES

This paper focuses on a simulation based approach to reduce warehouse

costs. At an early stage, the tool needs to be able to generate different

types of warehouses. To accomplish this, a Simio add-in was built in C#,

using the Simio API, where the user only needs to insert the layout data on

an excel spreadsheet. Afterwards, the created warehouse is capable of

modelling different storage strategies and compare them. The obtained

results indicate that the proposed strategy is able to reduce the picking

time in about 15% and the number of stops per milk run in 50%. Moreover,

it was found that the strategy currently in use needs 35% more space than

the proposed one.

Keywords: Warehouse, milk run, picker, Simulation, Simio, 3D, API,

Excel, C#.

1. INTRODUCTION

In recent years, the Bosch Group has been applying

concepts of the Toyota Production System (TPS) [1]

and of the Lean Manufacturing [2, 3], designated as

Bosch Production System (BPS). The purpose of the

BPS is to “eliminate waste in production and all related

business processes. Thus, BPS provides the basis for

continuous improvements in quality, costs, and supply

performance” [4].

A significant part of the costs of a company are

related to its warehouses [5]. Since one of the objectives

of the BPS is to reduce costs, the need to study

alternatives to the current design and picking system of

the warehouse on a company of the Bosch Group, arose.

This warehouse is comprised by corridors through

which the pickers ride the milk runs to collect

containers of products to satisfy the needs of the

production lines. A corridor is a set of racks, which in

its turn is a set of channels, where the containers, that

hold several units of products of a single type, are

placed. In this context, a simulation model, using Simio,

is being developed. Among other parameters, the tool

must allow several properties to be parameterized, such

as: different storage strategies, types of products,

quantity of requests a picker gets per trip, time between

trips, arrival rate of requests, the number of milk runs

and pickers, the layout of the warehouse, among others.

The principal steps conducted to model the logic of the

system have already been documented [6].

Thus, the main purpose of this work is to use a

simulation tool, developed in Simio that allows to

automatically create different storage layouts and to

compare different storage strategies for a warehouse of

the Bosch Group. In a traditional approach and due to

many reasons, such as the re-adaptation to new

products, new clients, etc., it may be necessary to

perform some changes on a model in order to maintain

it updated, or simply to accurately respond to new

scenarios. This is a process that, made manually can be

very time consuming. Consequently, the need to

automatically design warehouses, using Simio, arose.

Simio provides an API (Application Program

Interface), allowing the users to use their methods,

classes and others. Thus, an add-in for Simio was

created-using C#. By executing it, it is possible to

automatically create and place sets of Simio objects,

which collectively form the intended warehouse.

Moreover, the add-in needs to be able to: create any

number of corridors of channels (simple corridors and

sets of two corridors faced inside out), racks per

corridor, channels per rack (channels per column and

number of columns) and specify the size of the

channels, its position, rotation and the number of ways

the milk runs are allowed to travel on. To specify all

these features the user only has to enter the respective

data on an excel spreadsheet.

Chapter 2 presents a review over the analysed

literature. In chapter 3, the steps to create the add-in are

covered. In the fourth chapter, the developed add-in will

be used to create a warehouse correspondent to the one

being studied and the two types of picking strategies

will be compared. Finally, in the last chapter, the main

conclusions of the work will be discussed.

2. LITERATURE REVIEW

According to Coyle et al. “Warehousing provides

time and place utility for raw materials, industrial

goods, and finished products, allowing firms to use

customer service as a dynamic value-adding competitive

tool” [7]. Thus, warehouses represent a very important

role on modern supply chains [5]. In fact, “whilst

warehouses are critical to a wide range of customer

service activities, they are also significant from a cost

perspective. Figures for the USA indicate that the

2 ▪ VOL. xx, No x, 200x FME Transactions

capital and operating costs of warehouses represent

about 22% of logistics costs, whilst figures for Europe

give a similar figure of 25%” [5]. These costs impel us

to understand the problematic and to use the storage

space as efficiently as possible [8]. Thus, the need to

provide companies with methods capable of improving

the performance of warehouses arises. According to Gu

et al., several methods could be used to model

warehouses, such as simulation, analytical methods and

benchmarking. Nonetheless, “simulation is still the most

widely used technique for warehouse performance

evaluation in the academic literature as well as in

practice” [9]. One example is the simulation model

developed by Costa et al. using Arena. The authors

conducted experiments to identify changes that could be

made on a material delivery system to improve the

efficiency and precision of the logistic train functioning

they were modelling [10].

Notwithstanding, due to the appearance of new

products, new clients, demand changes or other reasons,

it may be necessary to perform some changes on a

model, in order to maintain it updated or just to

accurately respond to new scenarios. This is a process

that, made manually can be very time consuming. Thus,

the possibility of automatically create a simulation

model has already been studied [11].

Hlupic and Paul [13] compared simulation tools,

distinguishing between users of software for educational

and industry purposes. In his turn, Hlupic [14]

developed “a survey of academic and industrial users on

the use of simulation software, which was carried out in

order to discover how the users are satisfied with the

simulation software they use and how this software

could be further improved”. Dias and Pereira et al. [12,

15] compared a set of tools based on popularity on the

internet, scientific publications, WSC (Winter

Simulation Conference), social networks and other

sources. “Popularity should never be used alone

otherwise new tools, better than existing ones would

never get market place, and this is a generic risk, not a

simulation particularity” [12]. However, a correlation

may exist between popularity and quality, since best

tools have greater chances of being more popular.

According to the authors, the most popular tool is Arena

and the good classification of the Simio is noteworthy.

Based on these results, Vieira et al. compared both tools

[16] taking into consideration several factors.

Simio is based on intelligent objects [17-19]. These

“are built by modellers and then may be used in

multiple modelling projects. Objects can be stored in

libraries and easily shared” [20]. Unlike other object-

oriented systems, in Simio there is no need to write any

programing code, since the process of creating a new

object is completely graphic [17-19]. The activity of

building an object in Simio is identical to the activity of

building a model. A vehicle, a customer or any other

agent of a system are examples of possible objects and,

combining several of these, one can represent the

components of the system in analysis. Thus, a Simio

model looks like the real system [17, 19]. This fact can

be very useful, particularly while presenting the results

to someone unfamiliar to the concepts of simulation.

In Simio the model logic and animation are built in a

single step [17, 19]. This feature is very important,

because it makes the modulation process very intuitive

[19]. Moreover, the animation can also be useful to

reflect the changing state of the object [17]. In addition

to the usual 2D animation, Simio also supports 3D

animation as a natural part of the modelling process

[18]. To switch between 2D and 3D views the user only

needs to press the 2 and 3 keys of the keyboard [18].

Moreover, Simio provides a direct link to Google

Warehouse, a library of graphic symbols for animating

3D objects [18, 19].

Notwithstanding the fact that this is a recent tool, it

is already possible to find many studies that use this

tool. Vik et al. [21] used Simio to model a logistic

system design of a cement plant. Vieira et al. also used

Simio to model traffic intersections, so that they could

evaluate the impact on the performance when pre-

signals were introduced [22].

3. BUILDING THE WAREHOUSE

In this chapter, the several steps of the creation of

the Simio add-in will be covered. Moreover, in the last

section, the add-in will be used to create several

different warehouses.

3.1. Data input

To make it simpler for the user to introduce the data

related to the warehouse he wants to create, it was

established that he would only have to introduce the

data on an Excel spreadsheet. Table 1 shows an example

of the content of the mentioned file and in this section

the cells that the user needs to fill will be covered.

In order to allow the user to specify any number of

racks per corridor, it was established that on each line of

the excel file, the user inserts data related to a single

rack. Therefore, to start a new corridor, the user has to

enter the value “1” on the column “New corridor?”.

Conversely, if the user wants to keep adding racks to a

corridor, he just has to keep entering the value “0” on

the corresponding rows, on the same column.

Additionally, for each corridor, the user can chose one

of two types: a simple corridor, which is comprised by

one or more racks; and a set of two corridors that are

disposed inwards, so that a milk run traveling it may

collect containers from both corridors of its left and

right. To make it simpler to refer to these corridors, on

the remaining sections of this document, these will be

referred as simple and double, respectively. In this

sense, to specify a double corridor, the user needs to

assign the value “2” to the row corresponding to its first

rack. In the considered example, illustrated in Table 1,

the user intends to create 2 corridors, one of each type.

In the columns “Size” and “Coordinates”, the user

can specify the size of the channels (length, width and

height) and the position on which the corridors starts to

be built. These values are only read if the user entered

the value “1” on the “New corridor?” column of that

row, since it was assumed that this information does not

vary in the same corridor. The same approach applies

for the “Symbol index” and “Directions” columns. On

FME Transactions VOL. xx, No x, 200x ▪ 3

the first, the user can specify a symbol, from an array of

symbols, to be assigned to the channel. The only

difference between the symbols on this array is its

rotation angles. This approach had to be considered,

since the API of Simio does not provide methods for

rotating a fixed object and, for animation purposes, it

was very important to rotate the corridors and its

channels. However, this approach has a couple of flaws.

Firstly, since the waiting queue of the object is not

considered part of the symbol, it is not “rotated”, i.e.,

despite the fact that a different symbol is assigned to an

object, its queue remains with the rotation as the

original. Lastly, the possible rotation angles have to be

previously assigned. For this case, rotations of 45

degrees were considered (e.g. 1 means a rotation of 45

degrees, 2 means a rotation of 90 degrees and so on).

On the “Directions” column the user can define the

number of ways through which the milk runs can travel

on the corridor. On the last column, “Channels per

column”, the user can define any number of columns

per rack and any number of channels per column,

depending on the number of cells that have values and

the values on each of those cells, respectively. On the

“Rack description” column, the user can specify a string

that, as the name implies, indicates the rack description

of the rack in question. Figure 1 shows the warehouse

created by executing the developed Simio add-in with

the input defined on Table 1.

Figure 1: Warehouse created 1 (user-specified rack layout)

As can be seen, two corridors were created: a simple

and a double. Moreover, they were created at different

locations and with different rotation. The number of

columns and channels per column created also

corresponds to the data specified on Table 1.

3.2. First steps using the Simio API

The add-in was developed in Microsoft Visual

Studio 2012. To start using the Simio API, it is

necessary to create a class that implements the

IDesignAddIn interface:

Afterwards, it is necessary to define the methods of

the implemented interface, otherwise the implemented

IDesignAddIn interface cannot be used. In this sense,

the methods Name, Description, Icon and Execute. The

first three define the name, description and icon that will

be presented in Simio, when a user wants to select an

add-in to execute. Lastly, the Execute method will

contain the code the add-in is supposed to execute. In

this case, the code to create the warehouse. The

following code lines illustrate the above mentioned:

After defining the methods of the IDesignAddIn

interface, it is possible to start to create objects and edit

its properties. To create an object using the Simio API

the user needs to call the CreateObject method. This

method takes a string and a FacilityLocation as

arguments. The later defines the coordinates x, y and z

in Simio and the first is the name of the object that is

supposed to be created on the specified location. This

object can be any one of the Standard library of Simio,

any other created by a user (e.g. a sub model) or even

the object that represents an entity or a worker. Thus, to

create the developed Simio sub-models, which have

already been discussed [6], this method is used.

Notwithstanding, to create a path, a conveyor, a time

path or a connector between objects a different method

is used, even though these are also objects in Simio. In

these cases, the method CreateLink has to be used.

Examples of both methods are given below:

As can be seen, this method takes a string, two

INodeObjects and a collection of FacilityLocations as

arguments. The first corresponds to the object being

created, while the following two arguments correspond

to the two nodes the method is supposed to connect.

Lastly, the collection of FacilityLocations is a list of

coordinates used to create the vertexes of the object. If

the user does not want to specify any vertexes, the value

null can be passed through this argument.

Apart from creating objects, the Simio API may also

be useful for other reasons, such as editing object

properties. In many cases, to accomplish this, it is

necessary to know the name of the property and use the

following code line:

However, there are some properties that require

other means to edit them, like the name of the object, its

size, symbol index, location, among others.

Nonetheless, knowing the name of the property in

question is not always a simple task, due to the lack of

information concerning the Simio API available. In fact,

when a user interacts with the tool and edits an object

property, the name presented by Simio for that property

is actually the display name. To confirm this situation

Figure 2 shows the properties inherited by an object of

the standard library of Simio.

As can be seen, the name of the selected property is

“EnteredAddOnProcess”, while its display name is

“Entered”. Thus, to learn the name of this property, the

user would have to access the list of properties of the

object and check its name, which is very troublesome.

Moreover, to create different orientations for the

corridors of channels that compose the warehouses, or

simply to create two corridors faced inwards,

4 ▪ VOL. xx, No x, 200x FME Transactions

composing a single corridor, it would be necessary to

use a Simio method that could rotate an object, just like

it is possible to do when interacting with the tool itself.

However, the API does not provide any method for this

task, so other workarounds had to be considered. The

solution adopted for this task was to assign different

Simio symbols (Object image representation) to the

objects, each one representing a different rotation angle.

Nonetheless, this does not affect the queue of the

objects. This fact can be seen on Figure 6 and on Figure

7 (chapter 4), where all the queues, of all the channels,

of the two faced inwards corridors, are facing the same

direction. Thus, the queues of the channels on the

second set of channels are facing an opposite direction

to where the pickers and the milk runs travel.

3.3. Excel communication

When the add-in starts its execution, all the data is

read from the excel spreadsheet to avoid having to make

multiple communications with the application. The

method created to that end is given below.

As can be seen, the variable app is used to start

Excel. Afterwards, the workbook variable opens the

intended excel file, by providing it with the correct path.

Lastly, the sheet variable accesses the pretended

worksheet (the first of the opened workbook) and the

range variable gets the range currently being used. At

this point, to read data from a cell of the opened sheet, it

was necessary to use the following expression:

As the purpose of this method is to save the data

contained on the excel sheet to a multidimensional

array, the remaining code lines search through the cells

with content and saves its string value to the respective

position on the array to be returned. Once all the data is

read, the communication with Excel can be terminated.

3.4. Algorithm

After retrieving the data, the add-in can start

building the warehouse. In this section, the code for this

task will be explained as pseudo-code, given below.

© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (200x) XX, x-x 1

As can be seen, the algorithm runs through the

retrieved multidimensional array of strings, with the

contents retrieved from the excel spreadsheet, and

searches for the value “1” on the first column of every

row it searches. Once it finds it, executes the

GetCorridorData method, which is displayed below.

The purpose of this method is to get all the

information related to a corridor and store it on a single

data structure. This method had to be used, since the

way defined to build a simple corridor is different from

the way defined to build a double one. Moreover, to

make it simple for the user to introduce data on the

excel spreadsheet, he only needs to assign the value “2”

on the first rack of the second corridor of the double

corridor. Thus, to know if the corridor in question is a

simple one or a double one, it is necessary to read all the

rows belonging to the same corridor.

To store the data related to a corridor, the authors

defined an array with only two positions of lists of lists

of strings. The strings are the data retrieved from the

excel spreadsheet, while the list of strings (channels in

the code given above) stores the data related to the

number of channels to create, per rack (values of the

column “Channels per column” of Table 1). All the

information related to racks belonging to the same

corridor is stored on the remaining list (racks0 on the

code above). Nonetheless, if the value “2” is found, the

values are saved on a different list (racks1 in the code

above.). After running through all the rows of a

corridor, the two lists are saved on the respective array

positions, and the final data structure is returned. Once

again, considering the data on Table 1, the data

structures resulted from executing the GetCorridorData

for the first corridor is illustrated on Figure 3.

3.5. Add-in Validation

To demonstrate that the add-in is building the

intended warehouses, in this section, several inputs

related to different warehouses will be considered. Time

and Simio objects required for the creation will be

discussed. Three warehouse sizes were considered:

warehouse 1 with a total of 60 channels, warehouse 2

with a total of 300 channels and warehouse 3 totalizing

1500 channels. The numbers of corridors created,

number of objects used and elapsed time to build them

are displayed on Table 2. The way each type of corridor

is built and the number of objects required to create

them has already been explained and documented [6].

These results can greatly vary for the same

warehouse sizes, since they are very dependent of the

number of channels per column of a rack, the number of

columns per rack, the sets of racks, which has more

columns of channels, and more. Thus, to be able to

withdraw some conclusions from this test, the authors

applied the same number of channels, per column,

columns per rack and racks per corridor to the same

warehouse (c.f. Stopplace_Channels created and

Channels created rows). As Table 2 suggests, regardless

of the size of the warehouse, the type of corridor that

requires more time to build is the simple one. This can

be explained by the superior number of objects needed

to build this type of corridor, in comparison to the

double one, which is capable of providing the same

amount of channels in less space, since it can access two

sets of channels, and thus less objects are needed to

create it. Consequently, less time is also needed to

create this type of corridor. In fact, even building 3

simple corridors and 3 double corridors can require

more objects that building a single simple corridor, with

the same total number of channels.

4. COMPARISON OF STORAGE STRATEGIES

After building a warehouse, the model is ready to

run and/or perform simulation experiments. In this

chapter, a warehouse built using the developed add-in

will be used to compare two storage strategies. Figure 4

illustrates the complexity associated to the construction

of a warehouse. In this figure, some of the paths,

TransferNodes and other Simio objects needed to build

the displayed warehouse can be seen, whilst Figure 5

shows the same warehouse, by only showing the

important objects for animation purposes.

6 ▪ VOL. xx, No x, 200x FME Transactions

Figure 2: Warehouse created 2

Figure 3: Warehouse created 3

The system being modelled consists on an advanced

warehouse, located next to the production lines, which

stores about 500 different products. Products are placed

in containers and each container stores only one type of

product. The products are produced and sent to the

warehouse, for later being collected by the pickers and

sent to the respective production lines. These lines

consume the needed product units and, when it is

necessary to start consuming a different type of product,

a reference change occurs. In some cases, this

phenomenon can result on a container being returned to

the warehouse with the leftover product units in it.

The storage strategy used in this warehouse is the

dedicated (single-product within each container and in a

fixed position - channel). This is the simplest case, since

it consists on having a channel dedicated to a single type

of containers [8]. One of its great advantages resides on

the fact that, since the locations of the containers don’t

change, the pickers can memorize them, making the

picking process more efficient [8]. Nevertheless, the

problem with this strategy is that “it does not use space

efficiently. In fact, it is expected that, on average, the

storage capacity is about 50%” [8], which represents a

high amount of costs associated. To overcome this

problem, other strategies can be considered. However,

an alternative to this strategy would have to allow

containers to be mixed within a same channel, whereby

some companies oppose to its implementation. The

main reason for this is that the Information System (IS)

would have to be much more complex, in order to avoid

picking from the non-first position of a channel and to

guide pickers to the proper channel, once they would no

longer have the advantage of having memorized the

location of the containers. Figure 6 displays the running

of the simulation model, while modelling the single-

product storage strategy.

Figure 4: Modelling storage strategy 1

The remaining strategy being considered (multi-

product) consists on letting the pickers know the

channels they have to visit, at the beginning of their

picking trips. Moreover, the containers would have to be

stored, on each channel, taking into consideration their

data consumption (giving priority to the channels that

already have containers of the same type). Thereby, it

should be ensured that pickers always know what

channels they have to visit and that they always have to

collect the first containers on each of those channels. To

compare both storage strategies, the authors mainly

considered the space gained on the warehouse (e.g. the

number of unused channels), the number of stops per

milk run and the time spent by the pickers while

collecting containers. Figure 7 shows the simulation

model execution, while modelling the multi-product

storage strategy.

Figure 5: Modelling storage strategy 2

By comparing both Figure 6 and Figure 7, it is

expected that the single-product strategy requires a

higher quantity of channels to work, since it does not

store different types of product on the same channel.

This can be seen through the colours of the containers,

wherein each colour represents a different type of

product. As the figures illustrate, when the single-

product strategy is modelled (Figure 6), on each

channel, there are only containers of the same colour.

On the other hand, when the strategy being modelled is

the multi-product (Figure 7), containers of different

colours are mixed within a same channel. Moreover, the

containers are more concentrated and the majority of the

channels are close to being full. Conversely, on the

single-product strategy, the channels are divided

through a higher quantity of channels.

FME Transactions VOL. xx, No x, 200x ▪ 7

These differences were already expected.

Nonetheless, to quantify both strategies, some

simulation experiments with a warehouse of

approximately 900 channels were performed. These

experiments were executed with 4 milk runs, a 20

minute time interval between the picking trips and a

maximum capacity of 6 containers to every channel.

Additionally, probabilities of 50% and 5% were

considered for to the act of returning a container to the

warehouse with leftover containers. These percentages

can be justified by the fact that, in the multi-product

strategy, the load of the warehouse is driven by the next

effective production needs (electronic kanban system).

Thus, the quantity of containers returned to the

warehouse (leftovers) is very small. Results are

summarized on Table 3.

Table 1: Comparison of the storage strategies

Table 3 illustrates the several Key Performance

Indicators (KPI) considered for this comparison.

Nonetheless, some KPI were considered in order to

validate the simulation model, such as: the average trips

per milk run, the late pickers (pickers who were not

ready to start a new trip at the respective time), the

reference changes of the production lines and the full

containers collected. By examining the obtained values

for these KPI, it is possible to verify that all of them

present the same values, regardless of the storage

strategy being simulated, indicating that both strategies

are based on the same data. Moreover, it increases the

confidence in the simulation model. Nonetheless, for the

KPI average number of accesses per channel, the

average number of occupied channel positions and total

number of returned containers to the warehouse that

were collected once again, some differences were

obtained. However, these differences can be explained

by the fact that, on the multi-product strategy, the

production is driven by the next effective production

needs, which results in less containers being returned

when a reference change occurs and, in its turn, less

returned containers being collected once again and

slightly less channel positions being occupied.

According to the obtained results, the pickers of the

simulated multi-product strategy could perform their

picking trips in roughly 15 seconds less time,

representing an improvement of about 15% of the time

needed to collect the respective containers. In part, this

can be explained by the different results obtained by the

average number of stops per milk run, where a

difference of almost 2 was registered (improvement of

about 50%). In its turn, the different values registered

for the KPI average number of stops per milk run can be

explained by the fact that, with the implemented IS, it is

possible to store the containers on the warehouse, taking

into consideration the milk runs that will be collecting

them and, consequently, the production lines they are

destined to. Thus, the references that a single milk run

has to collect are more concentrated and a single stop is

enough to collect several containers of different types of

product. Another aspect that influences the picking

times obtained is the fact the pickers of the single-

product strategy had to collect more containers

(Returned containers collected column of Table 3),

since in this scenario the probability of a container

being returned to the warehouse, after being delivered to

a production line, is higher. Lastly, the multi-product

approach was able to achieve this performance and

maintaining one of the advantages of the single-product

approach, which consists on the fact that the pickers

always collect the first container on each channel.

Focusing the analysis on the space occupied on the

warehouse, it is possible to verify that the multi-product

did not use 500 of the roughly 900 channels,

representing a usage percentage of less than 50%. On

the other hand, on the single-product strategy, only 358

channels were not used, representing a usage percentage

of less than 40% and an overall better performance of

the multi-product strategy of 35%, which means that the

system with the single-product warehouse would need

35% more space than the multi-product warehouse.

Lastly, concerning the average number of empty

channels, the strategy of multi-product was able to

obtain roughly 21% more of the empty channels.

5. CONCLUSIONS

One of the goals of the Bosch Production System

(BPS), implemented at Bosch, is to provide “the basis

for continuous improvements in quality, costs, and

supply performance” [4]. Thus, the opportunity to

develop a simulation model in Simio that could help a

company of the Bosch Group, arose. At an early stage,

the tool needs to be able to design several layouts of the

warehouse. After creating the intended warehouse, the

model should be capable of modelling different storage

strategies, allowing the user to specify several

properties.

Throughout chapter 3, it was explained how the

user can specify the warehouse layout he intends to

create, by inserting its data on an Excel spreadsheet.

Additionally, since the information available regarding

the Simio API is very scarse, some code lines needed to

start using it were provided. The code used to

communicate the C# with Excel was also provided,

while the main algorithm was kept as pseudo code. On

the last section of chapter 3, several inputs were used on

the developed add-in, in order to test it, by building

many different warehouses. As the results indicated, the

add-in was able to build all the warehouses. The number

of Simio objects that were created, as well as the time

needed to build them was also analysed. Some Simio

API gaps were also discussed at the end of chapter 3.

On the fourth chapter, the Simio add-in was used to

create a new warehouse to compare two different

8 ▪ VOL. xx, No x, 200x FME Transactions

storage strategies. The first consisted on a dedicated

warehouse (single-product), where each channel only

stores containers of a single type of product. The second

strategy consisted on allowing any number of different

types of products to be stored within the same channel

(multi-product). The comparison considered several

Key Performance Indicators (KPI). Focusing the

analysis on the KPI average picking time, average

channel picking position (Depth), average number of

stops per milk run and the total number of unused

channels, it was possible to notice that, on the multi-

product strategy, the pickers could collect the same

required containers in about 15% less time and by

doing an average of less 2 stops per picking trip

(improvement of about 50%). Moreover, the single-

product strategy needs approximately 35% more space.

Lastly, the analysed results indicate that the multi-

product approach was able to achieve this performance

and maintain one of the advantages of the single-

product approach, which consists on the fact that the

pickers always collect the first container on each

channel, indicating that the company in question could

benefit from this strategy, by reducing the size of their

warehouse and by globally improving their picking

system. Thus, the associated costs, both in time and

space would be reduced.

The good animation results that Simio offers were

an important indicator for its selection for this project.

Additionally, the 3D features as well as the direct

interaction between Google 3D warehouse makes the

final result very similar to the system being modelled,

which can be very important when trying to transmit

confidence to others and also to show the results to third

parties. Throughout the paper, several figures illustrate

the very good animation results obtained (e.g. Figure 7).

ACKNOWLEDGMENT

This work has been co-supported by SI I&DT

project in joint-promotion nº 36265/2013 (HMIEXCEL

- 2013-2015 Project) and by FCT – Fundação para a

Ciência e Tecnologia in the scope of the project: PEst-

OE/EEI/UI0319/2014.

REFERENCES

[1] Monden Y (1998) Toyota Production System – an

integrated approach to Just-In-Time. In. Institute of

Industrial Engineers, Norcross, Georgia

[2] Womack JP, Jones DT, Roos D (1990) The machine

that changes the world. In, Rawson Associates, NY

[3] Womack JP, Jones DT (1996) Lean Thinking. In,

Siman & Schuster, New York, USA

[4] Bosch (2014) consulted online at:

http://www.bosch.com/en/com/home/homepage.html

[5] Baker P, Canessa M (2009) Warehouse design: A

structured approach. European Journal of

Operational Research 193, pp 425-436

[6] Vieira A, Dias L, Pereira G, Oliveira J, Carvalho M,

Martins P (2014) 3D Microsimulation of Milkruns

and Pickers in Warehouses using SIMIO. In:

ESM'2014, FEUP - University of Porto

[7] Coyle JJ, Bardi EJ, Langley CJ (1988) The

management of business logistics. West Pub. Co.

[8] Bartholdi JJ, Hackman ST (2008) Warehouse &

Distribution Science: Release 0.89. The Supply

Chain and Logistics Institute

[9] Gu J, Goetschalckx M, McGinnis LF (2010)

Research on warehouse design and performance

evaluation: A comprehensive review. European

Journal of Operational Research 203, pp 539-549

[10] Costa B, Dias LS, Oliveira JA, Pereira G (2008)

Simulation as a tool for planning a material delivery

system to manufacturing lines. In: Engineering

Management Conference, 2008 IEMC Europe 2008

IEEE International, pp 1-5

[11] Vik P, Luís D, Guilherme P, Oliveira J (2010)

Automatic generation of computer models through the

integration of production systems design software

tools. International Journal for Simulation and

Multidisciplinary Design Optimization 4, pp 141-148

[12] Dias L, Pereira G, Rodrigues G (2007) A Shortlist

of the Most Popular Discrete Simulation Tools.

Simulation News Europe 17, pp 33-36

[13] Hlupic V, Paul R (1999) Guidelines for selection of

manufacturing simulation software. IIE Transactions

31. pp 21-29

[14] Hlupic V (2000) Simulation software: an

Operational Research Society survey of academic

and industrial users. In: Simulation Conference,

2000 Proceedings Winter, pp 1676-1683 vol.1672

[15] Pereira G, Dias L, Vik P, Oliveira JA (2011)

Discrete simulation tools ranking: a commercial

software packages comparison based on popularity

[16] Vieira A, Dias L, Pereira G, Oliveira J (2014)

Comparison of Simio and Arena Simulation Tools.

In: ISC, University of Skovde, Skovde, Sweden

[17] Pegden CD (2007) Simio: A new simulation system

based on intelligent objects. In: Simulation

Conference, 2007 Winter, pp 2293-2300

[18] Sturrock DT, Pegden CD (2010) Recent

innovations in Simio. In: Proceedings - Winter

Simulation Conference, Baltimore, MD, pp 21-31

[19] Pegden CD, Sturrock DT (2011) Introduction to

Simio. In: Proceedings - Winter Simulation

Conference, Phoenix, AZ, pp 29-38

[20] Pegden CD (2013) Intelligent objects: the future of

simulation. Simio. White paper. In, Available online

at:http://www.simio.com/resources/white-papers/Intelligen-

objects/Intelligent-Objects-The-Future-of-Simulation-Page-1.htm

[21] Vik P, Dias L, Pereira G, Oliveira JA (2010) Using

simio for the specification of an integrated

automated weighing solution in a cement plant. In:

Proceedings of the Winter Simulation Conference.

Winter Simulation Conference, Baltimore,

Maryland, pp 1534-1546

[22] Vieira A, Dias L, Pereira G, Oliveira J (2014)

Micro Simulation to Evaluate the Impact of

Introducing Pre-Signals in Traffic Intersections. In:

ICCSA, University of Minho at Guimarães -

Portugal

© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (200x) XX, x-x 1

Table 2: Input Excel table

Length Width Height x y(z in Simio)

1 1 2 1 -20 30 0 2 AAA 4 4 4

0 AAB 4 4 4 4

0 AAC 4

0 AAD 4 4 4

0 AAE 4 4

2 ABA 3 3 3

0 ABB 4 4 3 4 5

0 ABC 4 3 4 3 4 3 3 4

1 2 4 1 15 20 2 1 BAA 6 6 5 5

0 BAB 4 4 4 4 0 0 0

0 BAC 0 3 4 4 3

0 BAD 6 6 6 4

Channels per columnNew corridor? Coordinates Symbol index Directions Rack descriptionSize

Table 3: Different warehouses created using the developed Simio add-in

Figure 6: Verifying name and display name of a property

Figure 7: Data structure representation

