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ABSTRACT 

Nonlinear Finite Element Analysis (NFEA) has been widely adopted as an effective and 

reliable method to analyze reinforced concrete (RC) structures subjected to various 

loading scenarios. Amongst many key factors that affect the reliability of a NFEA tool 

used for analysing RC structures, the selected constitutive model still remains the 

foremost challenging task due to the complexity of concrete behaviour associated to the 

cracking in tension and crushing in compression. The present work proposes a new 

constitutive model for cement based materials, allowing the possibility of simulating the 

complex functioning of concrete under both tension and compression. The model 

proposes a unified approach combining a multidirectional fixed smeared crack model to 

simulate the crack initiation and propagation with a plastic-damage model to account for 

the inelastic compressive behaviour of concrete between cracks. The smeared cracking 

model considers the possibility of forming several cracks in the same integration point, 

whose orientations, conditioned by an adopted criterion, are however preserved constant 

during the cracking process. The crack initiation is governed by the Rankine failure 

criterion, whereas the crack propagation (crack opening process) is simulated by a 

trilinear (or a quadrilinear) softening diagram. Two approaches are available to simulate 

the fracture mode II: one based on the concept of shear retention factor, and the other one 

on a shear softening diagram that requires some information about the fracture mode II 

propagation. The plasticity model is defined by four entities: yield function (yield 

surface); flow rule; evolution law for the hardening variable; and condition for defining 

loading–unloading process. Evolution of the yield surface during the plastic flow is 

governed by a single hardening parameter for compression. The plasticity part is 

responsible for simulating irreversible strains and volumetric strain in compression, 

whereas the strain softening and stiffness degradation of the material under compression 

are simulated by a strain based isotropic damage model. In this damage approach the state 

of damage in concrete under compression is equally distributed in all directions, and can 

be represented by a scalar damage parameter. Calculation of the scalar damage parameter 

is an explicit operation as this parameter is driven by the plastic hardening parameter. 
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Two versions of the model are developed, one dedicated to concrete structures subjected 

to plane stress fields, and the second for being applied to concrete structures submitted to 

three dimensional stress states. Both versions of the model are implemented into FEMIX 

4.0 computer program. To appraise the performance of the model and to evidence the 

interaction between cracking and plasticity-damage parts of the model, some numerical 

tests at material level are executed, and the obtained results are discussed. The model 

appraisal at the structural level is also considered. The set of experimental tests simulated 

in this thesis covers a wide range of specimens regarding geometry, concrete type, 

loading configurations, and reinforcement conditions, in order to demonstrate the 

robustness of the developed model. These structures are of particular interest for the 

assessment of the reliability of the model, since in these examples the failure mechanism 

involved simultaneous occurrence of cracking and inelastic deformation in compression. 

The predictive performance of the model in terms of load carrying capacity, ductility, 

crack pattern, plastic zones, and failure modes is obtained by comparing the results of the 

numerical simulations and the available experimental data.  

 

 

Keywords: finite element analysis; plastic-damage multidirectional fixed smeared crack 

model; compressive nonlinearity; cracked concrete; RC structures; cement based 

materials.  
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RESUMO 

O método dos elementos finitos (MEF) tem-se revelado eficaz na análise não linear de 

estruturas de betão armado submetidas a diferentes tipos de carregamentos. De entre os 

muitos fatores que podem afetar a fiabilidade de uma ferramenta capaz de efetuar uma 

análise não linear usando o MEF, o modelo constitutivo selecionado ainda continua a ser 

o desafio mais importante, nomeadamente devido à complexidade do comportamento do 

betão associado à fendilhação quando sujeito a tração e ao esmagamento em compressão. 

O presente trabalho propõe um novo modelo constitutivo, capaz de simular o 

comportamento complexo de materiais de matriz cimentícia quando sujeitos a esforços de 

tração e de compressão. O modelo propõe uma abordagem unificada, combinando um 

modelo de múltiplas fendas fixas distribuídas que permite simular o início de fendilhação 

e a sua propagação com um modelo de dano e plasticidade para simular o comportamento 

inelástico do betão entre fendas. O modelo de fendilhação permite a formação de várias 

fendas por ponto de integração, cuja orientação é condicionada por um determinado 

critério e preservada constante durante o processo de fendilhação. A abertura de fenda é 

condicionada pelo critério de Rankine, sendo o seu desenvolvimento simulado por 

intermédio de um diagrama de amolecimento trilinear ou quadrilinear. Duas abordagens 

estão disponíveis para simular o modo II de fratura: uma baseada no conceito de fator de 

retenção ao corte, e o outro utilizando um diagrama de amolecimento definido com base 

nos parâmetros do modo II de fractura. 

O modelo de plasticidade é definido: pela função de cedência (superfície de cedência); lei 

de escoamento plástico; lei de endurecimento;  condição para a definição do processo de 

carga e descarga. A evolução da superfície de cedência durante o escoamento plástico é 

governada por um único parâmetro de endurecimento. A parte da plasticidade é 

responsável por simular as deformações irreversíveis e a deformação volumétrica em 

compressão, enquanto o amolecimento e a degradação da rigidez do material sob 

compressão são simulados por um modelo de dano isotrópico. Nesta abordagem, o estado 

de dano no betão sob compressão é igualmente distribuído em todas as direções, e pode 

ser representado por um escalar denominado parâmetro de dano. 
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O modelo proposto é desenvolvido numa primeira fase para estados planos de tensão e 

posteriormente generalizado para estados de tensão tridimensionais. Estas duas versões 

do modelo foram integradas no código computacional denominado FEMIX 4.0. De forma 

a evidenciar as partes do modelo que têm em conta a simulação da propagação da 

fendilhação, do dano e da plasticidade, bem como da sua interação, são executados alguns 

testes numéricos focados no comportamento do material, sendo os seus resultados 

discutidos. 

Os ensaios experimentais escolhidos para avaliar a robustez do modelo a nível estrutural 

abrangem uma ampla gama de elementos no que respeita a geometria, tipo de betão, 

configurações de carga e de reforço. Estas estruturas são de particular interesse para a 

avaliação da fiabilidade do modelo, uma vez que nestes exemplos ocorrem 

simultaneamente fendilhação e deformação plástica em compressão. O desempenho do 

modelo em termos de previsão da capacidade de carga, da ductilidade, do padrão de 

fendilhação, das zonas plásticas e dos modos de rutura é obtido comparando os resultados 

das simulações numéricas com os dos ensaios experimentais disponíveis. 
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C H P A T E R   1 

INTRODUCTION 

 

  

 

 

1.1 MOTIVATION 

Concrete is known as one of the most widely used construction material in civil 

engineering. The main advantages of concrete are: high workability and formability that 

allows its application to various structural elements in buildings, bridges, dams, etc; high 

durability in severe environmental condition; it is a relatively cheap material with a few 

maintenance requirements; fire resistance of reinforced concrete (RC) structures, since 

concrete bulk limits the elevation of temperature in the reinforcement rebars. However, 

concrete exhibits highly nonlinear behaviour by increasing deformation, with 

dissymmetric responses in tension and in compression (i.e. concrete has relatively low 

tensile strength when compared to its compressive strength).  

Since the advent of concrete, the analysis and design of concrete structures have been 

objective of many researchers and designers. The development of computer oriented FEM 

(finite element method) based numerical models for two- and three- dimensional 

structural analysis contributed much to the possibility of calculating nowadays concrete 

structures with complex/arbitrary geometry. Analysis of structural engineering problems 

by FEM is based on solution of a set of equilibrium equations between the internal forces 

(those supported by the consitituent materials of the structure) and the external ones 

(combination of load cases). To determine with appropriate accuracy the internal forces, 
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the FEM-based approach must take into consideration the strain/stress limits capable of 

supporting by the materials. The physical/mathematical representation of these limits 

simulates the behaviour of a material, and is generally designated by the “material 

constitutive model”. Many constitutive models, from simple to sophisticated, have been 

developed for material nonlinear analysis of RC structures. However, during the course of 

these developments, modelling of concrete structures has always proven to be a 

challenge, particularly due to the complexity of concrete behaviour. Concrete exhibits 

highly nonlinear behaviour by increasing deformation, with dissymmetric responses in 

tension and in compression. Experimental tests demonstrate that concrete behaviour in 

tension is brittle, and after cracking initiation it develops a softening behaviour with a 

decay of tensile capacity with the widening of the cracks. This crack opening process is 

followed by a decrease of crack shear stress transfer due to the deterioration of aggregate 

interlock. Concrete in compression also exhibits a pronounced nonlinear behaviour with 

an inelastic irreversible deformation. In the pre-peak stage of concrete response in 

uniaxial compression, a nonlinear stage is observed, whose amplitude depends of the 

concrete strength class, followed by a softening stage where brittleness is also dependent 

of the strength class. The complexity of concrete behaviour increases when submitted to 

multiaxial stress field that is the current situation of the major RC structures. For a 

realistic Nonlinear Finite Element Analysis (NFEA) of RC structures, constitutive models 

are required to adequately describe these complex behaviours of concrete. 

One possible theoretical framework to develop a constitutive model capable of simulating 

both dissymmetric responses of concrete under tension and compression, is coupling a 

fracture approach to the plasticity theory. In this class of models, the theory of plasticity 

is used to deal with the elastoplastic behaviour of material under compression, whereas 

various fracture theories can be used to simulate the cracking behaviour (de Borst, 1986; 

Cervenka and Papanikolaou, 2008). However, numerical difficulties may occur with this 

class of models when applied to simulate structures whose failure is governed, 

simultaneously, by cracking and inelastic behaviour in compression (Feenstra, 1993; 

Cervenka and Papanikolaou, 2008). The problem is that in this kind of simulations both 

fracture and plasticity parts of the model might be active over a large region of the 

simulated structure, therefore several types of nonlinearities are occurring simultaneously.  

 

1.2 SCOPES AND OBJECTIVES 
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The primary aim in this thesis is the development of two- and three- dimensional 

constitutive models based on the combination of fracture and plasticity theories, to 

perform material nonlinear analysis of structures made by cement based materials. So, the 

main objectives of the research carried out in the scope of this thesis are: 

 Develop a robust constitutive model able to be used in relatively large scale 

structures whose failure is governed by cracking and inelastic behaviour in 

compression. 

 Develop a constitutive model that is stable and numerically effective in the entire 

loading regime until failure. 

 Integrate the proposed model into FEMIX FEM based computer program (Sena-

Cruz et al., 2007), and assess its predictive performance, at both material and 

structural levels, by considering available experimental data. The developed 

model should be able to predict with good accuracy the load carrying capacity, 

ductility, crack pattern, plastic (compressive) zone, and failure modes of structures 

subjected to different loading paths. 

 Validate the model by choosing a set of experimental tests that should cover a 

wide range of geometry of specimens, concrete type, loading configurations, and 

reinforcement conditions in order to demonstrate the robustness of the developed 

model. 

 Perform an extensive parametric study to demonstrate the sensitivity of the 

simulations to the values adopted for the model parameters. 

 Compare the results obtained by the proposed model with those obtained by the 

already existing constitutive approaches available in FEMIX computer program. 

Advantages of the proposed model over the already existing ones should be 

critically commented.     

 

1.3 OUTLINE OF THESIS 

The present thesis is divided into six chapters. The introduction represented in this 

chapter, chapter 1, defines the motivation and the objectives of the present doctoral study. 

Chapter 2 is dedicated to review the most important mechanical/material behavior of 

concrete under different loading states. A review of several theories frequently used to 
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model these mechanical behaviours of concrete is also presented. The theoretical 

framework for the proposed model, developed in the next chapters, is selected based on 

the discussions made in chapter 2. 

In chapter 3, a two dimensional (2D) constitutive model, called herein as plastic-damage 

multidirectional fixed smeared crack (PDSC) model, is developed. The description of the 

model is made at the domain of an integration point (IP) of a plane stress finite element. 

The proposed model is based on the combination of an already existing multidirectional 

fixed smeared crack model (Sena-Cruz, 2004; Ventura-Gouveia, 2011) to simulate crack 

initiation and propagation, and a numerical strategy that combines plasticity and damage 

theories to simulate the inelastic behaviour of material between cracks. All the theoretical 

aspects related to the fracture, plasticity, and damage components of the model are 

described in detail. This chapter establishes the system of nonlinear equations that should 

be solved to update the local variables of the PDSC model at a generic load increment of 

the incremental/iterative Newton–Raphson algorithm generally adopted in FEM-based 

material nonlinear analysis. A special attention is dedicated in this chapter to the 

algorithm when both smeared cracking and plastic-damage parts of the model are 

simultaneously active in an IP. In this chapter the numerical model is appraised at the 

material level using several single element tests.  

Chapter 4 is dedicated to the application of the 2D PDSC model in the analysis of 

concrete and RC structures. The set of experimental tests simulated in this chapter covers 

a wide range of geometry of specimens, concrete type, loading configurations, and 

reinforcement conditions in order to show the robustness of the developed model. These 

simulated examples are of particular interest for the assessment of the reliability of the 

proposed model, since in these examples the failure mechanism involved simultaneous 

occurrence of cracking and inelastic deformation in compression. In this chapter the 

predictive performance of the PDSC model is also compared with another constitutive 

model, available in FEMIX computer, which includes the same multidirectional fixed 

smeared crack to account for cracking, but considers the linear elastic behaviour for the 

material under compressive deformations. The two models are critically compared to 

demonstrate the advantages of the PDSC model in the simulation of this type of tests. 

Chapter 5 proposes a new three dimensional (3D) constitutive model for cement based 

materials, based in the generalization of the 2D plastic-damage multidirectional fixed 
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smeared crack model. The principal theoretical aspects of the model, called herein as 3D 

PDSC model, are described. In this chapter the 3D PDSC model is validated in both 

material and structural levels. A wide range of experimental tests from literature, 

including RC column under combined axial and flexural loading condition, RC beams 

made by different concrete strength classes, and RC walls subjected to torsion, are 

simulated to highlight the capability of the model to predict with good accuracy the 

deformation and cracking behaviour of these types of structures.  

Finally, Chapter 6 gives the conclusions of this research, as well as some suggestions for 

future researches. Fig. 1.1 represents an overview over the structure of the present thesis. 

 

 

Fig. 1.1 - Structure of the thesis. 
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C H A P T E R   2 

LITERATURE REVIEW 

 

 

 

 

2.1 INTRODUCTION 

During the last decades several constitutive models have been developed in an attempt of 

capturing the quite sophisticated behaviour of concrete when submitted to multi-stress 

fields. To simulate the complex functioning of the structures made by this material, those 

constitutive models are in general implemented in computer programs based on the Finite 

Element Method (FEM) (Hillerborg et al., 1976; Bazant and Oh, 1983; Lubliner et al., 

1989; Moës and Belytschko, 2002). Getting reliable FEM-based simulations is still a 

challenge due to the high complexity of concrete behaviour, mainly its brittle nature. 

Thereby, the section 2.2 is dedicated to review the most important mechanical/material 

behavior of concrete under different loading states. Later, section 2.3 reviews several 

theories frequently used to model these mechanical behaviours of concrete, while section 

2.4 is dedicated to briefly present the formulations of some of these theories. Then, as a 

conclusion, the theoretical framework for the proposed model, that is developed in the 

next chapters, is selected based on the discussions made in sections 2.3 and 2.4. 

 

2.2 MECHANICAL BEHAVIOUR OF CONCRETE 

Concrete exhibits highly nonlinear behaviour by increasing deformation, with 

dissymmetric responses in tension and in compression. In this section the main 
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mechanical behavioural aspects of concrete under tension and compression are reviewed 

based on experimental observations. 

 

2.2.1 Concrete behaviour under compression 

Concrete in compression exhibits a pronounced nonlinear behaviour. Fig. 2.1 identifies 

the three consecutive load-deformation stages that can be identified in concrete under 

uniaxial compressive load, based on initiation and propagation of cracks (Shah et al., 

1995): 

Stage I - below ≈30% of the peak stress. The formation of internal cracks at this stage is 

negligible, and the stress-strain response of the material may be assumed as linear. The 

amplitude of stage I increases with the concrete compressive strength; 

Stage II - between ≈30% and ≈100% of the peak stress. At the beginning of this stage the 

internal cracks initiate and propagate at the interface zone, and new micro-cracks 

develop. Around 60% of the peak stress, the micro-cracks at the cementitious matrix start 

to develop randomly over volume of the material. At approximately 80% up to 100% of 

the peak stress, all the small internal cracks become unstable and start to localize into 

major cracks. The amplitude of stage II decreases with the concrete compressive strength; 

Stage III - after peak load. At this stage the major cracks continuously propagate, 

although the applied load is decreasing. 

 

 

Fig. 2.1 – Load-deformation behaviour of the cement based materials 

under uniaxial compression (Shah et al., 1995). 
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Uniaxial compressive strength of concrete, cf , typically ranges from 15 MPa to 120 MPa. 

A concrete with the compressive strength less than 55 MPa is usually referred as normal 

strength concrete, while to the one considered of high strength has a compressive strength 

higher than 55 MPa. The value of axial strain at (uniaxial) compressive strength, 1c , 

increases with the compressive strength (see Fig. 2.2). The value of 1c  typically ranges 

from 1.8 ‰ and 3.0 ‰ (CEB-FIP Model Code 2010). 

 

 

Fig. 2.2 – Uniaxial compressive stress-strain curves for the 

concrete in different strength (Wischers, 1978). 

 

Concrete in uniaxial compression also exhibits pronounced volumetric strain. Results of a 

test executed by van Mier (1984) are represented in Fig. 2.3 to show the variation of 

volumetric strain ( vol ) in uniaxial compressive test. As can be seen in Fig. 2.3b, near the 

peak load the volumetric strain changes its sign to positive which means that the volume 

of sample increases (volumetric expansion). The volumetric expansion, also referred as 

dilatancy, has a significant effect on the behavior of plain and reinforced concrete 

structures in multiaxial stress states (Lee and Fenves, 1998), and should be properly 

considered in the development of a concrete constitutive model. 
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(a) (b) 

Fig. 2.3 – Behaviour of concrete under uniaxial compression test (van Mier, 1984): (a) axial 

stress-strain response, (b) axial stress-volumetric strain ( vol ) response. 

 

Fig. 2.4 demonstrates, as an example, the behavior of a concrete subjected to cyclic 

uniaxial compressive loading. It can be observed that by increasing deformation, the 

initial elastic stiffness (of intact material) gradually decreases, which is due to the 

cracking process (developed at Stage II and Stage III of the load-deformation response of 

concrete under uniaxial compression, see Fig. 2.1). As unloading occurs, irreversible 

plastic strains develop in concrete, which is due to the presence of aggregates in the crack 

faces and the damage in the aggregates-paste interfaces (the openings of the cracks are 

partially irreversible). 

 

 

Fig. 2.4 – Stress-strain behaviour of concrete under cyclic uniaxial compression test (Sinha et al., 

1964). 
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2.2.2 Concrete behaviour under tension 

According to the principles of nonlinear fracture mechanics of cement based materials, 

three different types of fracture modes can be identified: crack opening mode (fracture 

mode I); shearing mode (fracture mode II – in-plane shear); tearing mode (fracture mode 

III – out-of-plane shear). Fig. 2.5 shows schematically these fracture modes. Fracture 

mode I is one of the most common failure modes in cement based materials, since it 

occurs in uniaxial, splitting and bending tensile failure. In Fracture mode II, the 

displacement of crack surfaces is in the plain of the crack and perpendicular to the leading 

edge of the crack. The tearing mode is not so common like the previous failures modes, 

and occurs in massive structures where 3D stress field can be developed (Ayatollahi and 

Aliha, 2005), or in slab or shell type structures where punching failure mode is a concern 

(Ventura-Gouveira, 2011, Teixeira et al., 2015). 

 

 

Fig. 2.5- Basic fracture modes (Wang, 1996). 

 

Uniaxial tensile test is frequently executed to define the fracture Mode I related properties 

of cement based materials. Experimental tests demonstrate that the concrete response in 

uniaxial tension is almost linear elastic up to attain its tensile strength, ctf , (assumed as 

being the crack initiation), and after cracking initiation develops a softening behaviour 

with a decay of tensile capacity with the widening of the cracking process. Concrete has 

low tensile strength, ctf , when compared to its compressive strength, resulting in the 

appearance of cracks at relatively low stress level. The ratio between the uniaxial tensile 

and compressive strength of concrete, ct cf f , is reported in literature by values usually in 

the range 0.05 to 0.1 (Hugues and Chapman, 1966). Beside, by increasing crack opening 

Mode I
Mode I Mode II Mode III
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the unloading-reloading stiffness of concrete gradually decreases, see Fig. 2.6 (Reinhardt, 

1984). 

 

 

Fig. 2.6 – Cyclic uniaxial tensile loading test (Reinhardt, 1984). 

 

In a tensile cyclic test the permanent tensile deformation developed in each unloading is 

caused by the occurrence of some sliding during the opening process due to the granular 

nature of concrete and non-homogeneous geometry of aggregates and their distribution. 

Mechanical behavior of concretes under the fracture mode II is generally evaluated using 

a shear test suggested by JSCE-G 553-1999 (or the ones suggested by some researchers, 

such as: Petrova and Sadowski 2012, Xu and Reinhardt 2005, Sagaseta and Vollum 2011, 

etc). In general, plain concrete represent a brittle shear behavior after forming a crack 

(Hisabe et al., 2006). The aggregate interlock and friction at the crack faces are known as 

the responsible for transferring shear stresses across the crack (Kim et al. 2010). 

Application of fibers as shear reinforcement is pronounced recently to avoid the brittle 

failures of unreinforced concrete. As concrete matrix is combined with fibers randomly 

distributed over volume of concrete at relatively small spacing, the resulting composite 

exhibits uniform resistance in all the directions and alters brittle material in to ductile one 

(Rao and Rao, 2009). This increase in ductility is due to successive pull-out of the fiber, 

which consumes large amounts of energy. These advantages are dependant mainly to the 

type and volume of fiber added to the matrix.    
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Fig. 2.7 – Cyclic uniaxial tensile-compressive loading test (Reinhardt, 1984). 

 

Typical behaviour of concrete under cyclic uniaxial tension-compression test is shown in 

Fig. 2.7 (Reinhardt, 1984). According to this figure, as the unloading from tension to 

compression occurs, i.e., as the tensile cracks are completely closed and the state of stress 

is changed to compression, the material almost attains its original compressive stiffness. 

This phenomenon is called unilateral effect. In fact according to this experimental 

observation, the stiffness of stress-strain response in compression is marginally affected 

by the already existing tensile cracks, since these cracks (tensile cracks) are almost 

orthogonal to the cracks developed in compression. 

 

2.3 REVIEW OF THE THEORIES FREQUENTLY USED FOR MODELLING 

THE MECHANICAL BEHAVIOUR OF CONCRETE  

Mechanical behaviour of concrete was briefly introduced in section 2.2 based on the 

experimental observations. Concrete behaviour in tension and compression is 

dissymmetric and exhibits nonlinear phenomena like strain softening, stiffness 

degradation, volumetric expansion. Many theories can be found in literature to capture 

these concrete behaviours. The plasticity, continuum damage mechanics (CDM), 

combination of plasticity and CDM, smeared cracking approach, microplane theory, 

Axial deformation (       )

Axial stress (MPa)

m
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discrete interface approach, and generalised finite element method are common theories 

for modelling the nonlinear behaviour of concrete. These models can be categorized into 

two different approaches in respect to their strategies to simulate the failure process of the 

materials: the continuum and the discrete modelling (discrete crack) approaches. 

The models based on discrete approach simulate the cracking by introducing a geometric 

discontinuity in the domain. For instance, in the discrete interface approach (DIA) cracks 

are introduced by explicitly modeling the discontinuity using zero thickness finite 

elements, whereas the surrounding bulk is discretized by regular finite elements (e.g. 

Ortiz and Pandolfi, 1999; Tijssens et al., 2000). Discrete interface approach was initially 

applied to simulate discontinuities in rock mechanics, and later this approach was 

extended to simulate fracture mode I (Rots, 1988; Schellekens and de Borst, 1993), 

fracture mode II (Schellekens, 1990) in brittle materials like concrete. Further 

applications of discrete interface approach can be found in modelling delamination and 

fracture in multi-layered composites (Alfano et al., 2001; Seguarado and LLorca, 2004), 

masonry structures (Thanoon et al., 2008; Ghiasi et al., 2012), soil-structure interaction 

(Coutinho et al., 2003; Cerfontaine et al., 2015), and bond between concrete and 

reinforcement (Kaliakin and Li, 1995; Sena-Cruz, 2004; Wu and Gilbert, 2009; Hawileh, 

2012). Drawback of the discrete interface approach is that the failure zone should be 

predefined before the analysis. Adoption of the discrete interface approach for capturing 

arbitrary crack initiation and propagation requires sophisticated automated mesh 

regeneration techniques to adjust side the finite element mesh to the propagated crack 

surface (Camacho and Ortiz, 1996; May et al., 2016). An interesting discrete crack model 

which allows for capturing arbitrary crack initiation and propagation is the generalised 

finite element method, GFEM (e.g. Wells and Sluys, 2001). This approach incorporates in 

the shape function of the finite element the displacement discontinuity that represents the 

occurrence of a crack. 

In contrast, the models based on the continuum approach maintain the notion of 

continuity of displacement field, and interpret the failure zone by a stress-strain 

relationship. The basic idea of continuum approach is that a large number of small cracks 

usually develop in concrete mainly due to its heterogeneity, but only at the later 
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deformation stage of structures these cracks joint and form the critical cracks (dominant 

crack at the failure stage) (de Borst et al., 2004; Simone, 2007).  

The smeared cracking approach is the most popular continuum approach to simulate 

concrete cracking. The models based on a smeared crack approach assume that the local 

displacement discontinuities at cracks are assumed distributed over a certain length used 

to transform crack width/sliding in a strain concept, also assumed to represent the length 

zone of the fracture process. This length dimension is related to the finite element 

characteristics in order to assure that the results are independent of the adopted finite 

element mesh refinement (Oliver, 1989; de Borst et al., 2004; Oliver, et al., 2008), 

preserving the fracture energy as a material property (de Borst et al., 2004). In the 

smeared crack models the cracks are allowed to form in any directions (according to the 

rules adopted for cracking formation), by preserving the topology of the finite element 

mesh during the cracking process. However, these models cannot predict the precise 

localization and propagation of the discrete cracks, especially the crack opening, since the 

assumption of continuity of displacement field does not reflect the nature of displacement 

discontinuities at the cracks. However, for simulating relatively large concrete structures, 

mainly those with reinforcement that assures the formation of relatively high number of 

cracks, the smeared cracking approach is very convenient, since modelling the cracking 

process is almost resumed to the adoption of a proper constitutive model.  

The models based on the smeared crack approach can be categorized into two main 

groups: fixed and rotating crack models. When the maximum principal tensile stress in an 

integration point attains the concrete tensile strength for the first time, a crack is formed 

and a local ns-coordinate system (where n and s-axes represent the direction normal and 

tangential to crack, respectively) can be assumed for the crack. In fixed crack approach, 

the direction of n-axis is assumed to be fixed for the rest of analysis. This permanent 

allocation of the local crack coordinate system is the main characteristic of fixed smeared 

crack approach. After the crack initiation, the orientation and the values of the principal 

stresses may change during subsequent loading, due to the shear stress transfer between 

the faces of the crack (Rots and de Borst, 1987; Sena-Cruz, 2004). In this case, the local 

ns-coordinate system does not remain coincident with the directions of the actual 

principal stresses. In the multidirectional fixed smeared crack models, another set of 
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smeared cracks is allowed to propagate if the following two criteria are met 

simultaneously (de Borst and Nauta, 1985; Sena-Cruz, 2004): (i) the calculated maximum 

principal stress attains the tensile strength; (ii) the angle between the direction of the 

existing cracks and newly calculated maximum principal stress exceeds a predefined 

threshold angle. In the rotating crack approach the direction of principal stresses are 

calculated for every load increment, and then based on the orientations of principal 

stresses, the direction of crack keeps rotating in order to assure coaxiality between 

principal stresses and strains. 

It is to be noted that the material behaviour in the direction normal to the crack plane 

(crack opening response) and the behaviour in the direction tangential to the crack plane 

(shear sliding response) can be simulated by different damage evolution laws. In the 

models based on the smeared crack approach the concept of shear retention factor (Suidan 

and Schnobrich, 1973) or a local strain-softening law (crack shear stress-shear strain 

softening law) (Rots and de Borst, 1987; Suryanto et al., 2010; Ventura-Gouveia, 2011) 

are the strategies usually adopted to simulate the shear sliding process for cracked 

oncrete. 

The models based on the microplane theory, CDM, and plasticity theory, lie in the 

category of the continuum approach. In the microplane model, the constitutive equation is 

integrated based on volumetric, deviatoric, and tangential microscopic stress and strain 

components on the planes of any orientation, called microplanes, composing a spherical 

surface. Various characteristic behaviour of concrete can be adequately described using 

the microplane theory (Bazant et al., 2000; Cervenka et al., 2005; Kozar and Ozbolt, 

2010). The main shortcoming of the models based on the microplane theory is that 

computational cost and storage requirements are high, since this class of models deal with 

the stress components acting on all the microplanes. 

The plasticity theory has been widely used for modelling concrete behaviour subjected to 

multiaxial stress field (Park and Kim, 2005; Papanikolaou and Kappos, 2007; Pereira, 

2012; Zhang and Li, 2012; Carrazedo et al., 2013; Poltronieri et al., 2014). The plasticity 

theory adopts the split of strain field into the elastic (reversible) and plastic (irreversible) 

parts that realistically represents the experimentally observed inelastic deformation of 

concrete. Plasticity models are defined by four entities: yield function; hardening law; 
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flow rule; and conditions describing loading-unloading paths. The yield surface is derived 

from a failure criterion that defines the strength capacity of a material when submitted to 

a generic stress field. The hardening law defines the evolution of the yield surface during 

the plastic flow. The flow rule defines size and direction of the increment of plastic 

deformation. 

The models based on the plasticity alone fail to address the damage process due to crack 

initiation and propagation, therefore the experimentally observed stiffness degradation of 

the material is not captured accurately by using exclusively the plasticity theory (Gernay, 

2012; Carrazedo et al., 2013; Omidi et al., 2013). In fact, the recent numerical models 

complement the plasticity theory with other approaches that provide a better 

interpretation of concrete behaviour in tension. Combining the plasticity theory with 

CDM (Grassl and Jirasek, 2006; Wu et al., 2006; Taqieddin et al., 2012; Grassl et al., 

2013; Gernay et al., 2013; Omidi and Lotfi, 2013), and with the nonlinear fracture 

mechanics (de Borst, 1986; Cervenka and Papanikolaou, 2008) are alternatives that have 

been explored. 

The theoretical framework of the CDM is based on the gradual reduction of the elastic 

stiffness. The damage is defined as the loss of strength and stiffness of the material when 

subjected to a certain loading process. There are several possibilities of how the state of 

damage can be represented by a model. The isotropic (scalar) damage models assume a 

state of damage is equally distributed in all directions by means of a scalar measure. As 

stated before, concrete materials exhibit different responses (damage mechanisms) in 

tension and compression. Some isotropic damage models accounted for both the damage 

mechanisms in tension and compression using a single damage variable (Lee and Fenves, 

1998; Willam et al., 2001; Ferrara and di Prisco, 2001; Nechnech et al., 2002; Luccioni 

and Rougier, 2005; Jason et al., 2006; Grassl and Jirásek, 2006). The other isotropic 

damage models account for different responses of concrete under various loadings using 

multiple hardening scalar damage variables (Mazars and Pijaudier-Cabot, 1989; Faria et 

al, 1998; Willam et al., 2003; Jirásek, 2004; Marfia et al., 2004; Tao and Phillips, 2005). 

However, it was argued that isotropic damage models (with single or multiple damage 

variables) cannot simulate anosotropic damage effects, i.e. different cracking in different 

directions, in concrete. This shortcoming is eliminated in the anisotropic damage models 
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that consider a damage tensor to account for micro-cracking (damage) in different 

directions, but the adoption of this approach is limited due to the high level of 

sophistication, especially when it is combined with the other theories, like plasticity 

(Meschke et al., 1998; Hansen et al., 2001; Carol et al., 2001; Cicekli et al., 2007). 

Drawback of the models based on CDM is that these models are not suitable for 

simulating the irreversible (plastic) deformations and inelastic volumetric expansion in 

compression (Abu Al-Rub and Kim, 2010; Omidi and Lotfi, 2013). At nonlinear stage of 

stress–strain response of a concrete like material, neglecting the irreversible deformations 

according to a pure damage model would result in an artificial increase of damage (a 

secant branch is assumed in this approach to simulate unloading phase), see Fig. 2.8. 

Neglecting damage effects in a pure plasticity model would result in maintaining initial 

elastic stiffness (stiffness of intact material) by increasing deformation (i.e. at any given 

point of the stress-strain response the slope of the unloading branch is the same as initial 

elastic stiffness). Therefore plasticity and damage theories can be merged in an attempt of 

constituting reliable approaches capable of simulating the strength and stiffness 

degradation and occurrence of irreversible deformations.  

 

   
(a) (b) (c) 

Fig. 2.8 – Schematic unloading responses according to three approaches (Jason et al., 2006): (a) 

damage model, (b) plasticity model, (c) plastic-damage model (Note: in this figure the 

parameter E is the initial elastic stiffness, and the parameter d is an scalar representing the state 

of damage in the material).      

 

One popular class of plastic-damage models incorporate the plasticity approach 

formulated in effective stress space (Ju, 1989; Mazars and Pijaudier-Cabot, 1989; Lee and 

Fenves, 1998; Jefferson, 2003; Voyiadjis and Kattan, 2006; Jason et al., 2006; Voyiadjis 
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et al., 2008), while another group relies on the plasticity part formulated in nominal stress 

space (Lubliner et al., 1989; Krätzig and Pölling, 2004). Effective stress is the stress 

acting on undamaged configuration of the material, while the nominal stress is defined as 

the stress acting on damaged configuration of the material. In the models which the 

plasticity is formulated in the effective stress space, the plasticity part is responsible to 

simulate irreversible deformations, while the damage part account for stiffness 

degradation of the materials. The advantage of this approach is that the stiffness 

degradation is decoupled from the plastic deformation in the computation process. It was 

demonstrated by Grassl and Jirásek (2006) local uniqueness condition (i.e. the condition 

that for any prescribed displacement there is a unique response for stress and internal 

variables) is guaranteed for the plastic-damage models with the plasticity part formulated 

in effective stress space, while for the other group (the plastic-damage models with the 

plasticity part formulated in nominal stress space) local uniqueness requires severe 

restriction. Besides, it was demonstrated by some authors that the plastic-damage models 

with the plasticity part formulated in effective stress space are more stable and 

numerically efficient in comparison to those with the plasticity part formulated in 

nominal stress space (Taqieddin, 2008; Gernay, 2012; Omidi and Lotfi, 2013). 

 

2.4 BASICS OF THE CONSTITUTIVE MODELS FREQUENTLY USED FOR 

CONCRETE  

Several theories frequently used to model the mechanical behaviour of concrete were 

reviewed in section 2.3. In the current section, the basic formulations of some of them, 

namely discrete interface approach, generalized finite element method, fixed smeared 

crack approach, and plasticity theory are presented. 

 

2.4.1 Discrete interface approach (DIA) 

Consider a body   with the boundary   which contains a discontinuity surface 
d  

separating the body into two subregions  , and   (see Fig. 2.9). The body containing 

the discontinuity is designated hereafter as \ d  .  
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Fig. 2.9 – Domain   crossed by a discontinuity d
 (Wells and Sluys, 2001).  

 

The load applied to \ d   consist of body forces b , and natural
1
 boundary conditions t  

. The natural boundary conditions are distributed over the external bonndary 
t . The 

essential boundary conditions are applied on the remaining part of the boundary, 
u , in a 

way that 
t u     and 

t u   . The vector n  is normal to the boundary surface 

pointing outward the body, while n  is the vector normal to 
d  pointing inward the 

region  .  

The displacement field for each point in the domain  , u , can be decomposed into two 

parts: a regular (continuum) displacement field, û , and enhanced displacement field u  

induced by the jumps at the discontinuity 
d , such that: 

 

ˆ

ˆ

u u in
u

u u in

 

 

  
 

 
 (2.1) 

 

Following the principle work for the continuum body with a discontinuity, shown in Fig. 

2.9, the following variational formulation can be written (Malvern, 1969; Dias-da-Costa 

2010): 

     

\ \

( ) : ( ). . . 0

d d d

s

t

u d u u t d u b d u t d       

     

            (2.2) 

                                                           
1
 If a condition involves the applied loads, it is natural. A condition is essential if it directly 

involves the nodal freedom, such as displacement or rotaion.  

d



t 

t 

n
n

t
n

t



u


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where (.)s  implies symmetric part of (.) , (.)  and (.)  denote the quantity (.)  at the   

and   side of the discontinuity, respectively, and (.) implies gradient of (.) , and (.)  

means virtual variation of (.) .  

The variational formulations of the DIA and GFEM are derived based on Eq. (2.2). In this 

equation the term 
\

( ) :
d

s u d 
 

   is the internal work, and the term 

\
. .

d t

u b d u t d 
  

    is the external work, which both are the regular terms 

adopted in a continuum finite element approach. The term ( ).
d

u u t d   


   is the 

work produced at the discontinuity.     

In DIA the discontinuity is modelled explicitly by adopting zero thickness finite elements, 

while the surrounding domain is modelled by regular finite elements. For this approach 

the Eq. (2.2) can be written separately for the domains \ d   and 
d  according to the 

following form (Dias-da-Costa 2010):  

 

\ \

( ) : . .

d d t

s u d u b d u t d   
    

        

( ). .

d d

u u t d u t d    

 

     

(2.3a) 

 

(2.3b) 

 

Eq. (2.3a) can be assumed as the application of usual virtual work principle to the domain 

\ d  . Eq. (2.3b) corresponds to virtual work principle applied to the domain of the 

discontinuity 
d , and the procedure used to discretize this equation is addressed in this 

section.  

Consider the interface finite elements with n pairs of nodes as shown in Fig. 2.10. The 

displacement field for each interface finite element can be approximated as following: 

 

u u u NW      (2.4) 
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Fig. 2.10 – Zero thickness interface elements with n pars of nodes with 

indication of local (s, n) and global (x1, x2) coordinate systems (Malvern, 1969; 

Dias-da-Costa 2010).   

 

Eq. (2.4) in incremental form can be written as: 

 

d u N dW  (2.5) 

 

The matrix N  includes the interpolation functions of n pairs of nodes, such that:   

 

1

1

0 ... 0

0 ... 0

n

n

N N
N

N N

 
  
 

 
(2.6) 

   

The term dW  is obtained by computing the difference between the incremental 

displacements of each pairs of nodes at the domains 
d

  and 
d

 : 

    

dW Lda  (2.7) 

 

where L is a (2n4n) matrix defined as: 

 

d



x
2

x
1

s

n
+

2
+

n
+

(n
-1

)
+

n
-

(n
-1

)
-

2
-

1
-

1
+

d


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1 0 1 0 ... 0 0 0 0

0 1 0 1 ... 0 0 0 0

... ... ... ... ... ... ... ... ...

0 0 0 0 ... 1 0 1 0

0 0 0 0 ... 0 1 0 1

L

 
 


 
 
 

 
  

 

(2.8) 

 

and the term da  includes incremental displacements of the nodes 1 to n, as the following: 

 

1 1
...T T T T T

n n
da da da da da   

 
 

 (2.9) 

 

where (.)T
 implies transpose of (.) .  

The constitutive equations at the discontinuity can be represented by the following 

traction-relative displacement at discontinuity (jump) relationship: 

 

d ddt D d u D N dW   (2.10) 

 

where 
dD  is the constitutive matrix of the discontinuity, and it can be represented as: 

 

0

0

n

d

t

D
D

D

 
  
 

 (2.11) 

  

where 
nD , and 

tD  represent, respectively, the normal and tangential stiffness modulus. 

Substituting Eq. (2.5) and Eq. (2.10) into Eq. (2.3b), and taking to account B N L , 

yields: 

 

aaK da df  (2.12) 

 

In Eq. (2.12), df , is the vector of external loads and 
aaK  is the stiffness matrix obtained 

as: 
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d

T

aa dK B D B d



   
(2.13) 

 

2.4.2 Generalized finite element method (GFEM)       

As discussed before, in the DIA the discontinuity is explicitly modelled using interface 

finite elements, so the discontinuity can only propagate along the interface finite 

elements. In GFEM the discontinuity is implicitly modelled using the element own shape 

function, not the shape function of interface finite elements (Dias-da-Costa 2010). 

Consider an element before the formation of a crack discontinuity. The element has the 

nodal displacements of â , which is the regular displacement adopted in a continuum 

finite element approach. As the element is crossed by a discontinuity, GFEM incorporate 

the nodal enrichment techniques by adding an additional nodal displacements ( a ) to each 

node of the element (in the GFEM the nodes at the edge containing the tip are not 

enriched (Wells and Sluys, 2001)). Then the displacement field can be represented such 

that: 

 

ˆ
du u H u   

1

0
d

in
H

otherwise





 



 

(2.14) 

(2.15) 

 

The term 
dH

=1 (which appears in Eq. (2.15)) for the domain  , implies the jump of 

displacement in discontinuity is entirely transmitted to the domain   (see Fig. 2.11). 

 

 The displacement at discontinuity can be written as the following: 

  

| | |( ) ( )
d d d

u u u u u u   

        (2.16) 
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Fig. 2.11 – Propagation of discontinuity in GFEM (Dias-da-Costa 2010). 

 

To obtain the variational formulation of GFEM, the term ( )u u u      (see Eq. 

(2.16)) is inserted into Eq. (2.2), such that: 

   

\ \

( ) : . . . 0

d d d

s

t

u d u t d u b d u t d    

     

          (2.17) 

 

Similar to Eq. (2.14), the virtual displacements u  are decomposed into regular end 

enhanced parts, as the following: 

 

ˆ
du u H u     (2.18) 

 

By inserting Eq. (2.18) into Eq. (2.17) and considering: i) u =0; and ii) û =0, the 

variational formulation of GFEM in the final form can be written as (Dias-da-Costa 

2010): 

 

\ \

ˆ ˆ ˆ( ) : . .

d d t

s u d u b d u t d   
    

        

( ) : . . .

d t

s u d u t d u b d u t d    
 





  

         

(2.19a) 

 

(2.19b) 

 

The displacement field ( u ) in Eq. (2.19a) and Eq. (2.19b) can be approximated as:  

  

enriched elements

regular node

enhanced node
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ˆ( ) \d du N a H a in     (2.20) 

 

The displacement at discontinuity can be written as the following: 

 

| |( ) ( )
d d

u u u u u N a   

       (2.21) 

 

where N  is the matrix of element shape function evaluated at 
d .   

The strain field can be represented as: 

 

ˆ( ) \e

d dLN a B a H a in       (2.22) 

 

The incremental stress and incremental traction are computed by the following equations: 

 

ˆ( ) \d dd D B da H da in      

el el ddt T d u T N Lda at    

(2.23) 

(2.24) 

 

being D  the constitutive matrix of the material.  

By inserting Eqs. (2.20) to (2.24) the variational formulation of GFEM (Eq. (2.19a), and 

Eq. (2.19b)) can be discretized as: 

 

ˆ ˆ ˆ
ˆˆ

aa aaK da K da df   

ˆ
ˆ ( )aa aa dK da K K da df    

(2.25) 

(2.26) 

 

where the stiffness matrixes ˆ ˆaaK , âaK , ˆaaK , aaK , dK  are given by: 

 

ˆ ˆ

\ d

T

aaK B D B d

 

   (2.27) 

 

ˆ ˆ ˆ;T T

aa aa aa aaK B D B d K K K


     (2.28) 
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d

T

d dK N D N d



   (2.29) 

 

and the force vectors ˆdf  and df  are defined as:     

 

\

ˆ

d t

T Tdf N db d N dt d

  

      

t

T Tdf N db d N dt d
  

      

(2.30) 

 

(2.31) 

 

2.4.3 Fixed smeared crack approach 

This section represents the fundamental theoretical aspects of the non-orthogonal fixed 

smeared crack approach, considering the presentation is restricted to plane stress state, 

and at the domain of an IP. In the smeared crack approach, total strain increment,  ,  

can be decomposed into an incremental crack strain component, cr
 , and an incremental 

concrete strain component, co
 , as proposed by de Borst and Nauta (1985), 

co cr
      . The cr

  is obtained from the incremental local crack strain vector, 

cr
 , as the followings:  

 

T
cr cr cr

T    
 

 (2.32) 

 

Assuming m cracks can be formed in a generic IP, the incremental local crack strain (

cr
 ) is given: 

 

,1 ,1 , , , ,... ...
Tcr cr cr cr cr cr cr

n t n i t i n m t m                 (2.33) 

 

being cr

n , cr

t  normal and tangential crack strain components of the m cracks. 
cr

T  is 

the matrix that transforms the stress components from the coordinate system of the finite 

element to the local coordinate system of each crack (a subscript  is used to identify 

entities in the local crack coordinate system). If m cracks occur at an IP: 
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1 ... ...
T

cr cr cr cr

i mT T T T 
 

 (2.34) 

 

The constitutive equation at the crack coordinate system has the following form: 

 

cr cr cr
D      (2.35) 

 

where cr
  is the vector of the incremental crack stress in the crack coordinate system 

with the contribution of normal, cr

n , and tangential components, cr

t . For m crack, 

cr
  can be obtained as: 

 

,1 ,1 , , , ,... ...
Tcr cr cr cr cr cr cr

n t n i t i n m t m                  (2.36) 

    

where cr
D  is the matrix that includes the constitutive law of the m active cracks (de Borst 

and Nauta, 1985; Rots and de Borst, 1987).  

The following relation is hold between the increment of global stress,  , and increment 

of stress at local crack coordinate system: 

   

cr cr
T     (2.37) 

 

The constitutive equation for the elastic-cracked material is given by: 

 

e co
D     (2.38) 

 

Including Eq. (2.32), Eq. (2.35) and Eq. (2.38) into Eq. (2.37) and taking to account 

co cr      , yields: 

 

 
1

Tcr cr e ecr cr crD T D T T D 


       (2.39) 
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Substituting Eq. (2.39) into Eq. (2.38) and taking into account that co cr      , and 

T crcr crT      , gives, after some arrangements (Borst and Nauta, 1985): 

 

 
1

T Tcrco e e cr e ecr cr cr crD D D T D T D T T D  
 

             
 

 (2.40) 

 

Eq. (2.40) represents the constitutive relation for the cracked concrete. 

     

2.4.4 Plasticity approach 

The classical plasticity theory emerged through the study of the behavior of metal 

materials in the late nineteen century. Nowadays many constitutive models for simulating 

mechanical behaviour of concrete are based in this theory (e.g. Poltronieri et al., 2014; 

Xenos and Grassl, 2016; Zhang et al., 2016; Lu et al., 2016). In the plasticity approach 

the total strain increment,  , is decomposed into an incremental plastic strain 

component, p
 , and an incremental elastic strain component, e

 , e p
      . 

The incremental elastic strain vector is related to the incremental stress vector,  , 

according to the following constitutive equation: 

 

( )
e p

D       (2.41) 

 

In general, a plasticity model needs to be defined by four components: 

1) Yield function: the yield function, also known as yield surfaces or loading 

surfaces, is derived from a failure criterion. The strength capacity of a material 

when submitted to a generic stress field can be represented by a failure criterion. 

The yield function is a scalar function which represents a surface in a stress space 

coordinate system. The yield function is used in a plasticity model to identify the 

permissible stress states from non-permissible ones. If the current state of stress is 

inside the yield surface, the deformation is purely elastic. The plastic deformation 

(plastic flow) can only occur if the stress point is on the yield surface. Stress states 
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outside the yield surface are not possible in this concept. During the plastic flow, 

size and shape of the yield surfaces can be changed by means of at least one 

internal variable, called here hardening variables, . In general, a yield function,  

f, has the following form: 

 

 , 0ijf    (2.42) 

 

 

Where 
,( , 1,2,3)ij i j 

 is the stress tensor which is defined in Cartesian coordinate 

system as: 

 

x xy xz

ij xy y yz

xz yz z

  

   

  

 
 

  
 
 

 (2.43) 

 

 

2) Flow rule; The following equation represent a generic flow rule: 

 

p

ij

g
 




  


 (2.44) 

 

where g  is a scalar function, called plastic potential function,   is the non-

negative plastic multiplier.  

The flow rule, represented in Eq. (2.44), defines the magnitude (  ) and the 

direction (
ijg   ) of the increment of plastic strains ( p

 ) developed during 

the plastic flow. 

 

3) Evolution law for the hardening variable: the state of hardening parameter, , 

during the plastic flow is changed according to an evolution law of the hardening 

variable. An evolution law, in general, has the following form (Grassl and Jirasek, 

2006): 

 

( , )ijpk     (2.45) 
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where 
pk  an scalar function depending on the state of stress and hardening 

variable (i.e. ( , )p ijk  ). 

 

4) Conditions describing loading-unloading paths:  at any stage of loading- 

unloading process the following conditions, Kuhn–Tucker conditions, must be 

satisfied: 

 

0, ( , ) 0, ( , ) 0ij ijf f         (2.46) 

 

The first condition indicates the plastic multiplier is always non-negative. The 

second condition implies the stress state must be inside or on the yield surface, 

whereas the last condition ensures the stress state during the plastic flow is on the 

yield surface. 

 

In three dimensional problems, the state of stress is defined by six independent 

components of the stress tensor (
ij ), see Eq. (2.43). For isotropic materials, the values 

of the three principle stresses (
1 ,

2 ,
3 ) are sufficient to describe the state of stress, 

since in this case the orientation of principle stresses is immaterial (Chen and Han, 1988; 

Dunne and Petrinic, 2005). The principle stresses for the stress tensor 
ij , represented in 

Eq. (2.43), are roots of the following characteristic equation: 

 

 3 2

1 2 3 0I I I       (2.47) 

 

where   represents the three roots, and 
1I , 

2I , 
3I  are the constants known as first, 

second and third invariants of hydrostatic stresses, respectively. These constants are 

defined as:   

 

1 x y zI       (2.48) 

2 2 2

2 ( )x y y z z x xy yz zxI                (2.49) 
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x xy xz

ij xy y yz

xz yz z

I

  

   

  

   

 

(2.50) 

 

 

So the yield function represented in Eq. (2.42) can be represented as a function of the 

principle stresses: 

 

 1 2 3, , , 0f      (2.51) 

 

The three principal stresses, as well as most other stress invariants, can be represented in 

terms of the combination of the three stress invariants: the first invariants of hydrostatic 

stresses (
1I ); second invariant of the deviatoric stress (

2J ); and third invariant of the 

deviatoric stress (
3J ). The invariants 

2J , 
3J  are defined as: 

 

 2 2 2 2 2 2

2 (1 3) 3 3 3x y z x y x z y z yz xz xyJ                      

 

3 3 3 2 2 2 2 2 2

3

2 2 2 2 2

2 2 2 2

(2 27)( ) (1 9)( )

(4 9) (2 3)( ) (1 3)(

) 2

x y z x y x z y x y z z x z y

x z y x yz y xz z xy x xy x xz

y xy y yz z xz z yz yz xz xy

J               

            

          

        

      

    

 

(2.52) 

 

(2.53) 

 

Thus, Eq. (2.51) is replaced by the following expression: 

 

1 2 3( , , , ) 0f I J J   (2.54) 

 

The geometrical and physical interpretation of the invariants 
1I , 

2J , 
3J  are described in 

detail in Annex A. 

Including Eq. (2.44) into Eq. (2.41) the constitutive equation of the material under plastic 

deformations is obtained: 
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( )
e

ij

g
D  




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
 (2.55) 

 

The system of equations for the plasticity model includes the Eqs. (2.45), (2.54), and 

(2.55) that should be solved for set of the unknowns that are components of the stress 

tensor, and the plasticity internal variables,   and . 

 

2.5 CONCLUSIONS 

Based on the literature review presented in this chapter, the following decisions are made 

for the development of a new constitutive model described in the next chapters: 

 

 The model adopts a multidirectional fixed smeared cracking approach to account 

for crack opening and shear sliding process of concrete. It was discussed in this 

chapter that the models based on the smeared cracking approach are less precise 

on prediction of localization and propagation of the discrete cracks, but they are 

more appropriate for simulating relatively large concrete structures, mainly those 

with reinforcement that assure the formation of relatively high number of cracks. 

Besides, it is of special interest to use the proposed model for simulating 

structures made of steel fiber cement based materials. Since this type of materials 

assures formation of diffuse crack patterns, due to reinforcing mechanisms of 

fibers bridging the cracks, thus a smeared crack model can be practically more 

appropriate when compared to a model based on discrete crack approach. 

 

 The proposed model simulates the inelastic compressive behaviour of material 

between cracks, by a numerical strategy that combines plasticity and damage 

theories. As it was argued in literature review, the models based on plasticity or 

damage theories alone are not able to describe some important mechanical 

behaviour of concrete (see section 2.3). So, in the proposed model, plasticity and 

damage theories are being merged in an attempt of constituting reliable 

approaches capable of simulating the strength and stiffness degradation and 

occurrence of irreversible deformations of concrete in compression. 
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Combination of the plasticity and damage theories is assured by considering that 

the plastic flow occurs in undamaged (with respect to compression) material, 

together with the strain based damage approach assuming state of damage equally 

distributed in all the material directions (isotropic damage). This type of coupling 

between the damage and plasticity was noticed robust and numerically efficient by 

many authors (as discussed in section 2.3). The isotropic damage approach is 

considered for the proposed model because of its convenience and applicability in 

structural analysis. 

 

 



 

 

 

C H A P T E R   3 

TWO DIMENSIONAL PLASTIC-DAMAGE 

MULTIDIRECTIONAL FIXED SMEARED CRACK 

MODEL 

 

 

 

 

3.1 INTRODUCTION 

In this chapter the development of an efficient model capable of simulating the 

nonlinearities of cement based materials, like concrete, subjected to several loading paths 

is presented. For this purpose a brief description of an already existing multidirectional 

fixed smeared crack (SC) model is made (Sena-Cruz, 2004; Ventura- Gouveia, 2011). 

Then, a plasticity-damage model is proposed to consider the inelastic compressive 

deformation of material between the cracks, and its coupling with the SC is described. 

The predictive performance of the developed model is validated at the material level by 

simulating the stress-strain histories of a single element with one integration point (IP), 

loaded under some different scenarios. The model appraisal at the structural level is 

assessed in the next chapter. 

  

3.2 MULTIDIRECTIONAL FIXED SMEARED CRACK MODEL (SC MODEL) 
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In the present section the SC model is briefly discussed and its presentation is restricted to 

plane stress state and at the domain of an IP. In this approach modelling cracked materials 

is based on the decomposition of the total incremental strain vector into an incremental 

crack strain vector ( cr
 ) and an incremental concrete strain vector ( co

 ), as earlier 

discussed in section 2.4.3. For the present stage of the model description, it is assumed 

that material between cracks develops linear elastic behaviour, therefore the co
  is the 

incremental elastic strain vector ( co e
    ). To simulate the plastic response of 

material in compression, the co
  should also include the plastic part of the material 

deformation, co e p
      , which will  be discussed in the next section. 

The constitutive law for the elastic-cracked material can be, therefore, written as: 

 

( )
e cr

D       (3.1) 

 

being 
1 2 12{ , , }         the incremental stress vector induced into the material due 

to 
1 2 12{ , , }         and considering the constitutive matrix of the intact material, 

e
D .  

The cr
  is obtained from the incremental local crack strain vector, cr

 , and the 

transformation matrix cr
T  according to Eq. (2.32).    

The vector cr
  includes normal ( cr

n ) and tangential ( cr

t ) crack strain components 

of the m cracks that can be formed in an IP (see Eq. (2.33)). The transformation matrix of 

generic ith crack, cr

iT , is obtained by having orientation of the ith crack, 
i , that is the 

angle between 
1x  axis and the vector perpendicular to the ith crack (Sena-Cruz, 2004). 

At the crack zone (damage material) of an IP, the opening and sliding process is governed 

by the crack constitutive relationship introduced in Eq. (2.35), (i.e. cr cr cr
D    ). 

As defined in section 2.4.3, cr
  is the vector of the incremental crack stress in the crack 

coordinate system with the contribution of normal, cr

n , and tangential components, 
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cr

t , of the m cracks that can be formed in an IP (see Eq. (2.36)). Accordingly the 

constitutive law of ith generic crack, cr

iD , is given:  

 

0

0

cr
cr n

i cr

t

D
D

D

 
  
 

 
 (3.2) 

 

where cr

nD  and cr

tD  represent, respectively, the stiffening/softening modulus 

corresponding to fracture mode I (normal), and fracture mode II (shear), of the ith crack. 

At the IP the equilibrium condition is assured by imposing the Eq. (2.37), (i.e. 

cr cr
T    ).  

In the course of the implementation of the constitutive model, it is assumed that at a 

certain loading step, n, the stress and strain quantities are known, and the local crack 

variables are updated as well. At the onset of the next loading step, n+1, Eq. (2.37) must 

be accomplished: 

 

1, 1 1

cr cr

nn nT    (3.3) 

 

Including Eqs. (3.1), (2.32) and (2.35) into Eq. (3.3), and taking into account that 

, 1 , , 1

cr cr cr

n n n      and 
1 1n n n     , yields, after some arrangements, in: 

 

1 1 1 1 1, , 1 1 , 1 0
T

cr cr cr cr cr e cr e cr cr

n n n n nn n n n nD T T D T D T          
        
 

 (3.4) 

 

From the load step n to n+1, the the total strain increment (
1 n ) is already calculated 

by the main FEM iterative solving algorithm. Afterward the Newton-Raphson method is 

used to solve the Eq. (3.4), the system of nonlinear equations, where the unknowns are 

the components of 
, 1

cr

n  . After obtaining 
, 1

cr

n  , the 1

cr

n   and 
, 1

cr

n   are determined 

from Eqs. (2.32) and (2.35), respectively, and finally 
1 n  is calculated from Eq. (3.1). 
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The crack initiation is governed by the Rankine failure criterion that assumes that a crack 

occurs when the maximum principal tensile stress in a IP attains the concrete tensile 

strength, 
ctf , under an assumed tolerance. After crack initiation, the relationship between 

the normal stress and the normal strain in the crack coordinate system, i.e. cr cr

n n  , is 

simulated via the trilinear (Sena-Cruz, 2004) or the quadrilinear (Salehian and Barros, 

2015) diagrams represented in Fig. 3.1. Normalized strain, 
i  (for trilinear i=1,2; for 

quadrilinear i=1,2,3), and stress, 
i  (for trilinear i=1,2; for quadrilinear i=1,2,3), 

parameters are used to define the transition points between linear segments, being 
fG   the 

fracture energy mode I, while 
bl  is the characteristic length (crack bandwidth) used to 

assure that the results of a material nonlinear analysis is not dependent of the refinement 

of the finite element mesh. 

 

 
 

(a) (b) 

Fig. 3.1 – Diagrams for modelling the fracture mode I at the crack coordinate system: (a) trilinear 

diagram (Sena-Cruz, 2004), (b) quadrilinear diagram (Salehian and Barros, 2015). 

 

The model considers shear behaviour of the cracked concrete according to two methods: 
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1) using an incremental crack shear stress shear strain approach based on a shear retention 

factor,  . According to this approach the fracture mode II modulus, cr

tD , is simulated 

as: 

 

1

cr

t cD G






 (3.5) 

 

where 
cG  is the concrete elastic shear modulus, while the shear retention factor ,  , can 

be a constant value or, alternatively, as a function of current crack normal strain, cr

n , and 

of ultimate crack normal strain, 
,

cr

n u , such as: 

 
1

,

1

P
cr

n

cr

n u






 
   
 

 (3.6) 

 

being the exponent P1 a parameter that defines the decrease rate of   with increasing cr

n

. 

2) adopting a cr cr

t t   softening law to simulate more correctly the shear stress transfer 

during the crack opening process, which allows better predictions in terms of load 

carrying capacity, deformability, and crack pattern of RC elements failing in shear 

(Ventura-Gouveia, 2011). The adopted shear softening law is represented in Fig. 3.2, and 

can be formulated by the following equation (Ventura-Gouveia, 2011): 

 

 

,1 ,

,

, , , ,

, ,

,

0

0

cr cr cr cr

t t t t p

cr

t pcr cr cr cr cr cr cr

t t p t t p t p t t ucr cr

t u t p

cr cr

t t u

D   


      

 

 

  



    





 

 

(3.7) 

 

where 
,

cr

t p  is the crack shear strength (shear stress at peak), 
, , ,1

cr cr cr

t p t p tD   is the crack 

shear strain at peak, and ,

cr

t u  is the ultimate crack shear strain: 
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,

,

,

2 f scr

t u cr

t p b

G

l



  (3.8) 

 

being 
,f sG  the fracture energy corresponding to fracture mode II, and 

bl  the crack 

bandwidth that is assumed to be equal to the one adopted to simulate the fracture mode I. 

Since no dedicated research is available on the process of determining the crack 

bandwidth parameter that bridges crack shear slide with shear deformation in the smeared 

shear crack band, it was decided to adopt the same strategy for the crack bandwidth 

regardless the type of fracture process. This decision has, at least, the advantage of 

assuring the same results regardless the mesh refinement, which is not assured when 

using the concept of shear retention factor in structures failing in shear. The inclination of 

the hardening branch of diagram, 
,1

cr

tD  (see Fig. 3.2), is introduced according to (3.5) 

where   is set as a constant value in the range  0,1 . More details corresponding to the 

crack shear softening diagram can be found elsewhere (Ventura-Gouveia, 2011). 

 

 
Fig. 3.2 – Diagram for modelling the fracture mode II at the crack 

coordinate system (Ventura-Gouveia, 2011). 

 

Fig. 3.3 represents a schematic representation of the crack shear stress-shear strain 

diagram for the incremental approach based on shear retention factor (Eq. (3.5) and Eq. 
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(3.6)). It is verified that with the increase of 
cr

t  the crack shear modulus, 
cr

tD , decreases 

but the crack shear stress, 
cr

t , increases up to attain a maximum that depends on the 

parameters considered for the Eq. (3.6). This value can be much higher than the concrete 

shear strength according to available experimental data and design guidelines.  

 

 
Fig. 3.3 – Relation between crack shear stress and crack shear strain for the 

incremental approach based on a shear retention factor (Barros et al., 2011). 

 

For RC elements failing in bending the maximum value of 
cr

t  is relatively small, 

therefore simulating shear stress degradation with the evolution of 
cr

t  has not relevant 

impact of the predictive performance of the simulations. However, in RC structures 

failing in shear, the adoption of a constitutive law capable of simulating the crack shear 

stress degradation, as the one adopted in the present work, is fundamental for the 

predictive performance. The computing time consuming and the convergence stability of 

the incremental and iterative procedure of the model when adopting softening diagrams 

for simulating all the fracture processes are, however, increased, therefore shear softening 

approach is only recommended when shear is the governing failure mode. 

 

3.3 PLASTIC-DAMAGE MULTIDIRECTIONAL FIXED SMEARED CRACK 

MODEL (PDSC MODEL) 

The SC model described in the section 3.2 is now extended in order to simulate the 

inelastic behaviour of cement based materials in a compression-compression and 
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compression-tension stress fields. For this purpose a plastic-damage approach is coupled 

with the SC model, deriving a model herein designated as plastic-damage multidirectional 

fixed smeared crack (PDSC) model, which is capable of simulating the nonlinear 

behaviour of cement based materials due to both cracking and inelastic deformation in 

compression. 

 

3.3.1 Damage concept in the context of plastic-damage model 

To demonstrate the process of damage evolution in compression when an isotropic 

damage model is applied to simulate strength and stiffness degradation in compression, a 

simple bar loaded in compression is presented. This problem is similar to the case of the 

bar under tension proposed by Kachonov (1958). Consider a bar made by cement based 

materials and exposed to a certain level of damage due to uniaxial compressive force, N , 

as illustrated in Fig. 3.4a (Abu Al-Rub and Kim, 2010). The total cross-sectional area of 

the bar in damaged, nominal, status is denoted by A , then the stress developed on this 

area is defined as N A  , herein designated as nominal stress. Due to the thermo-

hygrometric effects during the curing process of cement based materials, voids and 

micro-cracks are formed even before these materials have been loaded by external loads 

(Pereira, 2012). However, the impact of these “defects” in terms of stiffness and strength 

of the material can be neglected, and the degeneration of the micro- into meso- and macro 

cracks is generally a gradual damage process depending on the evolution of the external 

loading conditions. Let’s assume the variable DA  represents the area corresponding to 

these defects (meso- and macro cracks) (Fig. 3.4b). According to the principle of 

isotropic damage approach, a scalar measure, cd , is defined to represent this damage 

level in total cross-sectional area ( A ), such that: 

 

D
c

A
d

A
  (3.9) 

 

that can take values from 0 to 1. The state cd =0 implies the area of A  is intact, while 

cd =1 denotes the area of A  is completely damaged. 
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Fig. 3.4 – One dimensional representation of the effective and nominal 

stresses (Abu Al-Rub and Kim, 2010). 

 

A fictitious undamaged, effective, area of A , is defined by removing all the damage 

regions from the area of A  (  1D cA A A d A    ), then the uniaxial stress developed 

on the area A ,  N A , is denoted as effective stress  (Fig. 3.4c). Since the applied 

force on both damaged and undamaged areas is N , then the following relation holds 

between the uniaxial stress at damaged (nominal),  , and undamaged (effective),  , 

configurations: 

 1 cd    (3.10) 

 

By extending this concept for a multidimensional stress field, the relation between the 

nominal stress vector ( ), and the effective stress vector ( ) for isotropic damage 

models can be expressed as: 

  

 1 cd    (3.11) 

 

The present study adopts a stress based plasticity model formulated in effective stress 

space in combination with an isotropic damage model. The resultant plastic-damage 

approach is meant to utilize for modelling inelastic deformation of material under 

compression. 

(a) the bar under compression (c) Effective (undamaded)

      configuration

N

A

N
A

 
N

A
 

A

Remove the cracks 

DA (Area of the cracks)

N

(b) Nominal (damaded)

      configuration



CHAPTER 3.   TWO DIMENSIONAL PLASTIC-DAMAGE MULTIDIRECTIONAL FIXED 

SMEARED CRACK MODEL 

44 

 

 

 

 

 

Fig. 3.5 – Schematic representation of damage evolution in the proposed model. 

 

An important assumption of the proposed plastic-damage model is to define the stage that 

damage initiation takes place. In this study the damage threshold was assumed based on 

the phenomenological interpretation of the behaviour of current concrete under 

compressive loading. In section 2.2.1 the three distinct consecutive stages (stage I, stage 

II, and stage III) of cracking that can be identified in concrete under uniaxial compressive 

load were introduced. In this study damage initiation is assumed to be related to 

development of the major cracks formed after the peak load (i.e. stage III). Then 

evolution of the damage through the stage II is considered to be null ( cd =0), and 

nonlinear behaviour of the current concrete in this stage is reproduced by only a plasticity 

model. At the stage III the plasticity model is responsible for simulating irreversible 

plastic deformation and inelastic volumetric expansion of the material whereas the 

isotropic damage model deals with strength and stiffness degradation of the material due 

to formation of the major cracks. Fig. 3.5 demonstrates the schematic representation of 

the damage evolution at the proposed plastic-damage model for the three stages of 

cracking in uniaxial compression. 

It is noted the statement of “damage” in the text intends to simulate the inelastic 

behaviour of concrete in compression by using a plastic-damage model, while cracking 

formation and propagation is simulated by a SC model. Therefore, if concrete is cracked 

and concrete between cracks experience inelastic deformation in compression, both 

models are coupled. 

  

1
-d

c

S
tag

e   

Stage   

0

1.0

Compressive deformation
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3.3.2 Constitutive relationship for PDSC model  

For modelling of a cracked member with material between cracks in compression, the 

term co
  is further decomposed into its elastic, e

 , and plastic parts, p
 , (

co e p
      ), thereby the incremental constitutive relation for the PDSC model is 

given by: 

  

( )
e p cr

D         (3.12) 

 

where the incremental crack strain vector, cr
 , is evaluated by the SC model described 

in section 3.2. A stress based plasticity model formulated in effective stress space, i.e. 

without considering damage, is responsible for the evaluation of p
 . The plasticity 

model assumes that plastic flow occurs on the undamaged material between the damaged 

regions formed during the strain softening compression stage of the material. Then the 

effective stress state obtained according to Eq. (3.12) needs to be mapped into nominal 

stress space according to the principle of CDM. This mapping process should distinguish 

the tensile from the compressive stress components, since the damage is only applied to 

these last ones. Ortiz (1985) proposed the split of the effective stress vector,  , into 

positive (tensile) and negative (compressive) components to adopt different scalar 

damage variables for tension and compression. Such operation is given by: 

  

,
i ii

i

P P    
  

       (3.13) 

 

where 


 and 


 are the positive and the negative parts of the effective stress vector, 

respectively, and i  is the i
th

 principal stress extracted from vector  , and i
P  is the 

normalized eigenvector associated with the i
th

 principal stress ( i ). The symbol .   

denotes Macaulay bracket function operating as ( ) 2x x x    . 
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The compressive damage scalar, 
cd , must affect only the negative part of the effective 

stress vector, i.e. 
 , therefore a similar approach to Eq. (3.11) gives the nominal stress 

vector, such as: 

 

(1 )cd  
 

    (3.14) 

 

3.3.3 – Plasticity model in effective stress space 

The plastic strain vector, p
 , is evaluated by a time-independent plasticity model that is 

defined by four entities: yield function (yield surface); flow rule; evolution law for the 

hardening variable; and condition for defining loading-unloading process. In this study 

the yield function, f, was derived from the five-parameter Willam and Warnke (W-W) 

failure criterion (Willam and Warnke, 1974) (the details of this process are in the Annex 

B), which shows a good ability to represent the experimental results of cement based 

materials (Willam and Warnke, 1974; Swaddiwudhipong and Seow, 2006), and also 

satisfies all the requirements of being smooth, convex, pressure dependent, and curved in 

the meridian plane. The equation of this yield function is: 

  

 

1/2

1
2 2

2 2
; ( ) ( ) ( ) 0

3
c c c c c c

I b a
f J J

c cc
   

  
       
   

 (3.15) 

 

where 1I  is the first invariant of the effective stress tensor, 2J  is the second  invariant of 

the deviatoric effective stress tensor (see Eq. (2.48) and Eq. (2.52), respectively). The 

variables a, b and c are the scalars used to interpolate the current yield meridian between 

the tensile and compressive meridians, as described in detail in the Annex B.  

The term ( )c c , which appears in Eq. (3.15), is the hardening function depending on the 

hardening parameter (
c
). The hardening parameter is a scalar measure used to 

characterize the plastic state of the material under compressive stress field. Therefore 
c
  

is an indicator of the degree of inelastic deformation the material has experienced during 

the loading history. The evolution of the yield surface during the plastic flow is governed 



CHAPTER 3.   TWO DIMENSIONAL PLASTIC-DAMAGE MULTIDIRECTIONAL FIXED 

SMEARED CRACK MODEL 

47 

 

 

 

 

by 
c
. As long as 

c
 is null, no inelastic deformation occurred, and ( ; ( 0)) 0 c cf    

corresponds to the initial yield surface. 

When the effective stress state reaches to the yield surface at generic stage (i) of yielding 

process, 0if , plastic strains are developed, being its increment evaluated by a flow 

rule: 

 

p g
 




  


 (3.16) 

 

where g  is a scalar function, called plastic potential function, and   is the non-negative 

plastic multiplier. In the present version of the model, g f  was assumed (Dunne and 

Petrinic, 2005).  

The state of hardening parameter, c , during the plastic flow is changed according to the 

following evolution law (Ristinmaa et al., 2007): 

 

c

c

f





  


  (3.17) 

 

The yield function ( f ) and plastic multiplier (  ) at any stage of loading and unloading 

paths are constrained to follows Kuhn-Tucker conditions: 

  

0, ( , ) 0, ( , ) 0c cf f         (3.18) 

 

3.3.3.1 Hardening law 

Compressive behaviour of the material in effective stress space is governed by the 

uniaxial hardening law of 
c c   (Fig. 3.6a). The term 

c  is the uniaxial compressive 

stress in effective stress space, and the hardening parameter ( c ) is an equivalent plastic 

strain measure that is proportional to the plastic strain (
p

 ) developed in the material. 
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Hardening parameter corresponding to total axial strain at compression peak stress (
1c
) 

is obtained such that:  

 

1 1c c cf E   (3.19) 

 

being 1c  the total strain at compression peak stress, and cf  the compressive strength. 

In this study it is assumed that the compressive damage, 
cd , is initiated at the plastic 

deformation corresponding to 
1c
, i.e. if 

1c c
, then 

cd =0 (Fig. 3.6b). According to this 

assumption, the effective and nominal responses are identical for the domain of 1c c  

(Eq. (3.15) assuming 
cd =0). Then c c  for the domain of 

1c c
 can be directly 

obtained by experimental uniaxial stress-strain curves, which are in the nominal stress 

space, such relation was adopted according to the following equation: 

 

 1 2c c cE E          (3.20) 

where: 

 

2 2

0 0 0 1 1( 1) ( ) 2 ( )c c c c cf f E f E           

1/2
2

1( ) ( (2 ))c c cE f E E          

(3.21) 

 

(3.22) 

 

where 
0cf  is the uniaxial compressive strength at plastic threshold, i.e. 

0 0( 0)  c c c cf f  , and 
0  is a material constant to define the beginning of the 

nonlinear behaviour in uniaxial compressive stress-strain test. 

For 
1c c
, the damage takes place ( 0cd ), then the effective stresses cannot be 

determined by direct identifications from relevant uniaxial compressive stress-strain tests 

(Gernay et al., 2013; Abu Al-Rub and Kim, 2010). For this domain (
1c c
) and in order 

to reduce the number of parameters required in the plasticity model, a perfectly-plastic 

behaviour is assumed for the 
c c    law, with an effective stress capacity equal to the 
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compressive strength of the material, ( ) c c cf . Fig. 3.6a represents the above 

described hardening law ( c c ). In Annex C, the adopted c c  law for the domain 

1c c
 is replaced by a more elaborated equation, and the resultant response of the 

proposed model in cyclic uniaxial compressive test is discussed. 

 

 
 

 
 

(a) (b) 

 
(c) 

Fig. 3.6 – Diagrams for modelling the concrete compression behaviour: (a) the c c   relation 

used in the plasticity model; (b) the (1 )c dd   relation adopted in the isotropic damage 

model; (c) the (1 )c c cd    diagram for compression with indication of the compressive 

fracture energy, 
,f cG .   

 

3.3.3.2 System of nonlinear equations 

Assuming the material is in uncracked stage, or eventually the former active cracks are 

completely closed, then the incremental crack strain is null, 0
cr

  , and the 

constitutive law of PDSC model, Eq. (3.12), is reduced to: 

c

cf

1c
,c u

 c

0 0c cf f

,( . . )c c ui e 
0d 

d

1( . . )c ci e 
, 1d c u c 

1.0

(1 )cd

0 0c cf f

cf

1c

(1 )c cd 

,f c

c

G

l

c

,c u
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( )
e p

D       (3.23) 

 

It is assumed that at a certain loading step of the incremental/iterative Newton-Raphson 

algorithm generally used for solving the equilibrium of the structure, n, the stress and 

strain quantities and the local variables of the plasticity (
n  and 

,c n
) are known at all 

IPs. At the next loading step (n+1) the increment of total strain vector (
1n  ) is 

calculated by the main FEM iterative solving algorithm, and the problem is to update the 

effective stress vector (
1n 
), the increment of plastic strain vector (

1

p

n  ) and the local 

variables of the plasticity (
1n   and 

, 1c n
), in a way that is consistent with the 

constitutive law. 

A mathematical basis scheme called return-mapping algorithm (Simo and Hughes, 1998) 

is used to calculate these unknowns within a generic loading step (n+1). The return-

mapping algorithm is strain driven and basically consists of two steps: calculation of the 

elastic trial stress, elastic-predictor step, and mapping back to the proper yield surface 

using a local iterative process, plastic-corrector step. In the first approximation (elastic-

predictor step), the effective stress vector (
1

trial

n 
) is calculated assuming null value for the 

plastic strain increment (the total strain increment is assumed to be elastic, 
1 1

e

n n      

). In this step null plastic multiplier is assumed (
1 0n   ) and hardening parameter has 

the value corresponding to the previous loading step (n). The conditions at the elastic-

predictor step can be written as: 

 

,

1 1

,

1 1 11

1 1

,

1 , 1 ,

, 1 ,

0; 0

( )

;

p trial trial

n n

p trialtrial e e

n n nn

trial trial

n n n

p trial p trial

n n c n c n

trial

c n c n

D D

 

   

  

 

 

 

  

 

 



   

     

 

 



 

(3.24) 

 

Substitution of Eq. (3.24) into Eq. (3.15), gives the yield surface in trial state as: 

 



CHAPTER 3.   TWO DIMENSIONAL PLASTIC-DAMAGE MULTIDIRECTIONAL FIXED 

SMEARED CRACK MODEL 

51 

 

 

 

 

1 1 1 , 1( , )trial trial trial trial

n n n c nf f       (3.25) 

 

Then behaviour of the material remains elastic if: 

 

1 1 , 1( , ) 0trial trial trial

n n c nf       (3.26) 

 

In this case (
1 0trial

nf   ), it can be seen that the Kuhn-Tucker conditions are satisfied (

1 1 , 1( , ) 0trial trial trial

n n c nf       and 
1 0trial

n   ), implying that the trial state of stress (
1

trial

n 
) is 

acceptable. The updated variables at the load step n+1 are given as: 

 

11 1 , 1 ,; ;
p ptrial

n nn n c n c n         (3.27) 

 

Otherwise, if 
1 1 , 1( , ) 0trial trial trial

n n c nf      , the material enters into elasto-plastic behaviour 

(plastic flow occurs). In this case (
1 0trial

nf   ), the effective stress vector, at the load step 

n+1, should be corrected by applying a plastic-corrector step such that:  

 

1 11

1 1 11

( )

( )

pe

n nn n

p pe e trial e

n n nn n

elastic predictor Plastic corrector

D

D D D

   

    

 

  

    

        

(3.28) 

 

Including Eq. (3.16) in Eq. (3.38), yields: 

 

 
1 1 1 1 1( )trial e

n n n n n

elastic predictor Plastic corrector

D f            (3.29) 

 

The hardening variable at the loading step n+1 should be updated according to the 

following equations: 

 

1
, 1 1

, 1

, 1 , , 1

n
c n n

c n

c n c n c n

f





 



 


 



 

 

(3.30) 

 

(3.31) 
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The system of equations for the proposed plasticity model includes the Eqs. (3.15), 

(3.29), (3.31) which can be rewritten in the form: 

 

 

 

1
1

1, 1 1 1 1

1

1
2, 1 , 1 1

, 1

3, 1 1 1 , 1

( ) 0

0

, 0

e trial n
n n n n

n

n
n c n c n

c n

n n n c n

f
f D

f
f

f f

  





 




   




  



   


   




   



 

 

(3.32a) 

 

 

(3.32b) 

 

(3.32c) 

 

 

The unknowns of the system of equations are the components of effective stress vector, 

1n 
, and the plasticity internal variables, 

1n   and 
, 1c n

. An iterative local Newton-

Raphson method is used to solve this system of equations, according to the following 

equation: 

 

( 1) ( )

1 1, 1

( ) ( 1) ( )

1 , 1 2, 1

( 1) ( )

1 3, 1

k k

n n

k k k

n c n n

k k

n n

d r

J d r

d r







 



  



 

   
   

    
      

 

 

(3.33) 

 

 

 

Within this procedure the objective is to minimize the residues vector, 

( ) ( ) ( )

1, 1 2, 1 3, 1

T
k k k

n n nr r r  
     , to be less than an assumed tolerance. The variable k 

denotes the iteration required to minimize the residues vector. For this system of 

equations the residues ( )

1, 1

k

nr 
, ( )

2, 1

k

nr 
, ( )

3, 1

k

nr 
 are given as: 

 

 

 

( )
1

( ) ( ) ( ) 1
1, 1 1 1 1 ( )

1

( )
( ) ( ) ( ) 1

2, 1 , 1 , 1 ( )

, 1

( ) ( ) ( ) ( )

3, 1 1 1 , 1

( )

,

k
k e k trial k n
n n n n k

n

k
k k k n
n c n c n n k

c n

k k k k

n n n c n

f
r D

f
r

r f

  





 




   




  



   


  




  





 

 

 

 

(3.34) 
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The Jacobian matrix (
( )

1

k

nJ  ) used in the iterative local Newton-Raphson method is given:  

 

( )

1, 1 1, 1 1, 1

1 , 1 1

2, 1 2, 1 2, 1( )

1

1 , 1 1

3, 1 3, 1 3, 1

1 , 1 1

k

n n n

n c n n

n n nk

n

n c n n

n n n

n c n n

f f f

f f f
J

f f f

 

 

 

  

  

  



  

  

  

   
 
   

 
   
   
 
   
 
    

 

 

 

 

(3.35) 

 

 

where the components of the Jacobian matrix are as follows: 

 

 
 

2
11, 1 1

1 2

1 1

2
1, 1 , 11

1

, 1 1 , 1 , 1

1, 1 1

1 1

n e n
n

n n

n c nn
n

c n n c n c n

n n

n n

f f
D

f f

f f


 




 

 

 


 

 


   

 

 

 
  

 

 
 

   

 


 

 

 

 

 

(3.36) 

 

 

 

2
2, 1 1

1

1 , 1 1

2
2, 1 , 11

1 2

, 1 , 1
, 1

2, 1 1

1 , 1

1

n n
n

n c n n

n c nn
n

c n c n
c n

n n

n c n

f f

f f

f f


  






 

 


  

 


 


 

 

 
 

  

 
 

 

 


 

 

 

 

 

(3.37) 

 

 

3, 1 1

1 1

3, 1 , 11

, 1 , 1 , 1

3, 1

1
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n n
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f f
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



 
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 
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(3.38) 
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The implementation of Eq. (3.35) requires other derivatives which are exposed in details 

in Annex D. These derivatives are: first and second order derivatives of the yield function 

respect to components of the effective stress vector (i.e. f   , 2 2( )f   ); first and 

second order derivatives of the yield function respect to the hardening function (
cf   ,

2 2( )cf   ); the second order derivative of the yield function respect to the stress, and 

respect to the hardening function ( 2 ( )cf     ). 

Once the convergence is obtained through the certain number of iteration (k), i.e. the 

residues ( )

1, 1

k

nr 
, ( )

2, 1

k

nr 
, ( )

3, 1

k

nr 
 are less than an assumed tolerance, the unknowns can be 

obtained by summation of the increments calculated in each iteration (i=1 to k): 
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

 

 

 







 

 

 

(3.39) 

 

 

3.3.4 – Coupling the plasticity and the SC models  

In this section the plasticity model, formulated in effective stress space, and the 

multidirectional smeared crack (SC) model are combined within an integrated approach 

in order to be capable of evaluating cr
  and p

  simultaneously at a generic IP. For a 

loading path the computation of the unknowns, which are the effective stress state and the 

local variables of the plasticity and cracking models, follows an iterative process similar 

to the return-mapping algorithm indicated in 3.3.3.2.  

In the first approximation of the unknowns (elastic-predictor step), values of effective 

stress vector, i.e. trial stress (
1

trial

n 
), and incremental crack strain vector ( ,

1

cr trial

n  ), and 

the local crack variables are calculated by only the SC model assuming the elastic 

behaviour for the material under compressive deformations. In this step null plastic 

multiplier is assumed (
1 0trial

n   ) and hardening parameter has the value corresponding 
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to the previous loading step (n). The conditions at the elastic-predictor step can be written 

as: 

 

, ,

1 11

,

1 11

1 1

, 1 , , 1 ,

0 ; 0 ;

( )

;

p trial p trial ptrial

n n nn

cr trialtrial e

n nn
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n n n
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c n c n c n c n

D

   

  

  

 

 

 

 

 

    

   

 

 

 

(3.40) 

 

The value of yield function at the trial state, 
1 1 , 1( , )trial trial trial

n n c nf    
, is calculated next. 

Behaviour of the material remains elastic-cracked if 
1 0trial

nf   , while for 
1 0trial

nf   , 

material enters into elasto-plastic-cracked behaviours and the state of effective stress 

needs to be corrected by determining the plastic part of strain increment (
1

p

n  ), (plastic-

corrector step).  

As indicated in section 3.1, the equilibrium condition for a cracked IP is assured when: 

 

 

Introducing  
1 1n n n      into Eq. (3.41), yields after some arrangements in: 

 

1 1, , 1 11, 1 0
cr cr cr cr

n nn n nnf D T           (3.42) 

 

The system of equations proposed for the plasticity model (in section 3.3.3.2) needs also 

to be modified to include the deformational contribution of the sets of active smeared 

cracks ( cr
 ). By considering 

1 1n n n      and introducing Eqs. (2.32) and (3.16) 

into Eq. (3.12), yields after some arrangements in: 

 

11 1 , 12, 1 1

1

( ) 0
T

e cr cr e

nn n n nn n

n

f
f D T D    


   



                     
 (3.43) 

 

 1 1, , 1 1

cr cr cr cr

n nn n n nD T     
    
   (3.41) 
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The equations describing the yield function (Eq. (3.32c)) and the evolution law for 

hardening variable (Eq. (3.32b)), still hold in the form deduced in section 3.3.3.2, since 

these equations are not affected by cr
 . In this section these two equations are 

designated as the followings: 

 

1
3, 1 , 1 1

, 1

0n
n c n c n

c n

f
f 




  




   


 

 4, 1 1 1 , 1, 0n n n c nf f        

(3.44) 

 

(3.45) 

 

The system of equations includes the Eqs. (3.42)-(3.45) which should be solved for set of 

the unknowns, namely, the effective stress vector, 
1n 
, the incremental local crack strain 

vector, 
, 1

cr

n  , the plastic multiplier, 
1n  , and the hardening parameter, 

, 1c n
, all of 

them at the n+1 loading increment. An iterative local Newton-Raphson method is used to 

solve this system of equations, according to the following equation: 
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(3.46) 

 

 

 

where the residues are: 
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(3.47a) 

 

(3.47b) 

 

(3.47c) 

 

(3.47d) 

 

 

The Jacobian matrix (
( )

1

k

nJ  ) used in the iterative local Newton-Raphson method is given:  
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where the components of the Jacobian matrix, Eq. (3.52), are as follows: 
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Finally, once the convergence is obtained, i.e. the residues of the system of equations are 

less than an assumed tolerance, the unknowns can be obtained by summation of the 

increments calculated in each iteration (i=1 to k), such as: 
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3.3.5 – Isotropic damage law 

The stress vector (
1n 
) obtained by solving the system of equations presented in the 

sections 3.3.3.2 and 3.3.4 is in the effective stress space, and must be transferred to the 

nominal stress space (
1n 
). For the damage models based on the isotropic damage 

mechanics, the evaluation of the nominal stress is performed by a damage-corrector step 

(Eq. (3.11)) without an iterative calculation process. The present model adopts a damage-

corrector process according to the Eq. (3.14), which considers the compressive damage 

scalar (
cd ) only for negative (compressive) part of effective stress vector. The evaluation 

of the compressive damage scalar (
cd ) during loading history is obtained according to 

the approach proposed by Gernay et al. (2013): 

 

( ) 1 exp( )c d c dd a    (3.54) 

 

where 
d

 is a scalar parameter known as damage internal variable.    

Accordingly, the damage internal variable, 
d

, can be evaluated as a function of the 

plasticity hardening variable, 
c
, which is available at the end of plasticity analysis. As 

indicated in section 3.3.3.1, damage initiates at the plastic deformation corresponding to 

1c
, then the damage internal variable, 

d
, can be defined as: 

   

1

1 1

0 c c

d

c c c c

if

if


 

 
 (3.55) 

 

The non-dimensional parameter 
ca  indicates the rate of damage with the variation of 

d
, 

obtained from: 

 

, 12.3 / ( )c c u ca    (3.56) 
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being 
,c u

 the ultimate hardening parameter that is related to the compressive fracture 

energy, 
,f cG , the characteristic length for compression, 

cl , the compressive strength, 
cf , 

and 
1c
 according to the following equation: 

 

,

, 1

3.1 11

48

f c

c u c

c c

G

l f
   (3.57) 

 

The characteristic lengths in tension (crack bandwidth) and compression (
cl ) are usually 

considered the same (Feenstra, 1993; Lee and Fenves, 2001; Gernay et al., 2013), then in 

the present approach 
c bl l   was assumed. The parameters E, 

0 , 
cf , 

1c , 
,f cG , which 

simulate the response of the material under compression, can be obtained by executing 

uniaxial compression tests carried out in high stiff rigs, under displacement control, with 

specimens of slenderness capable of assuring a central zone considered in uniaxial stress 

field (it is assumed the same E in compression and tension). The instruction to derive the 

parameter 
,f cG , from the uniaxial compressive tests, independent of geometry of 

specimens is represented in Annex E, but the detailed exposition can be found elsewhere 

(Jansen and Shah, 1997; Vasconcelos et al., 2009). 

 

3.4 SIMULATION AT THE MATERIAL LEVEL 

The stress-strain histories at the material (single element with one IP), loaded on some 

different scenarios are simulated by the proposed PDSC model. The loading procedure of 

the tests consists of imposing prescribed displacement increments and the crack 

bandwidth (
bl ) was assumed equal to 100 mm. Since the concrete properties in each test 

were different, the corresponding values are indicated in the caption of the figures. 

- Monotonic and cyclic uniaxial compressive tests (Fig. 3.7 and Fig. 3.8): A 

monotonic uniaxial compressive test of Kupfer et al. (1969), and a cyclic uniaxial 

compressive test of Karsan and Jirsa (1969) are simulated, and the predictive 

performance of the proposed model is appraised by comparing the numerical and 

experimental results. Fig. 3.7 shows that the hardening and softening stress-strain 

branches registered experimentally by Kupfer et al. (1969) are properly fitted by 
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the nominal response of the proposed model. For comparison, Fig. 3.7 also 

represents the response of the model in effective stress space. As can be seen the 

stress-strain response in both effective and nominal stress spaces are identical for 

the domain before attaining the peak (
1c c ), whereas for higher deformations (

1c c ) the two responses starts diverging because of the damage initiation 

process ( 0cd  ). Under the cyclic uniaxial compression the model (nominal stress 

response) accurately simulate the stress-strain envelope response registered 

experimentally, but overestimates the plastic deformation of the material when 

unloading occurs (Fig. 3.8), since the assumption of perfect-plastic behaviour (

( )c c cf  ) for the post peak stage (domain 
1c c ) of the 

c c   law is a 

simplified approach to reduce the number of parameters required in the plasticity 

model.  

 

 

Fig. 3.7 – Experimental (Kupfer et al., 1969) vs. predicted stress-strain response of 

concrete under monotonic uniaxial compressive test: (Values for the parameters of the 

constitutive model: poison’s ratio,  =0.2; young’s modulus, E=27 GPa; compressive 

strength, 
cf =32 MPa; strain at compression peak stress 

1c =0.0023; parameter to define 

elastic limit state 
0 =0.3; compressive fracture energy, 

,f cG =15.1 N/mm). 

 

In Annex D the adopted 
c c   law for the domain 

1c c  is replaced by a more 

elaborated equation which gives better approximation in simulation of the 
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unloading phase. Another alternative to better predict the residual strain in 

unloading phases is to follow a more sophisticated diagram, like the one proposed 

by Barros et al. (2008) but this approach it too demanding in terms of computer 

time consuming when integrated in a PDSC model, and when the final goal is 

using this model for the analysis of structures of relatively large dimensions. 

 

 
Fig. 3.8 – Experimental (Karsan and Jirsa, 1969) vs. predicted stress-strain response of 

concrete under cyclic uniaxial compressive test: (Values for the parameters of the constitutive 

model:  =0.2; E=27 GPa; 
0 =0.3; 

1c =0.0017; 
cf =28 MPa; 

,f cG =11.5 N/mm). 

 

- Simulation of closing a crack developed in one direction, by imposing 

compressive load in the orthogonal direction (Fig. 3.9): The element is initially 

subjected to the uniaxial tension in the direction of X1 (Step 1). Then a crack is 

formed with the orientation of 0º  , and further propagated up to a stage that 

the crack does not be able to transfer more tensile stresses (fully opened crack 

status). At this stage the displacement in the direction of X1 is fixed (Step 2), and 

the element is loaded by compressive displacements in the X2 direction up to end 

of the analysis (Step 3). 

Due to applied compressive displacements, uniaxial compressive stresses are 

induced in the material in the X2 direction. Consequently, expansion of the 

material in the X1 direction imposes the crack be gradually closing. When the 
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material is in the compression softening phase, in X2 direction, the crack will be 

completely closed. When the crack closes, the state of stress is changed to biaxial 

compression, and a second hardening-softening response is reproduced 

corresponding to the appropriate biaxial state of stress. The above-described 

loading path was successfully simulated by the proposed model, and the 

prediction agrees well with the solution of Cervenka and Papanikolaou (2008). 

 

 

 

 

Fig. 3.9 – Prediction of the PDSC model for closing a crack developed in one direction, 

by imposing compressive load in the orthogonal direction (Values for the parameters of 

the constitutive model:  =0.2; E=36 GPa; 
cf =30 MPa; 

,f cG =30 N/mm; 
1c =0.0022; 

0 =0.3; 
ctf =2.45 MPa; 

I

fG =0.05 N/mm; 
1 =0.2; 

1 =0.7; 
2 =0.75; 

2 =0.2. 

 

3.5 CONCLUSIONS 

This Chapter describes a two dimensional (plane stress) plastic-damage multidirectional 

fixed smeared cracking (PDSC) model to simulate the failure process of concrete and 

reinforced concrete (RC) structures subjected to different loading paths. The model 

proposes a unified approach combining a multidirectional fixed smeared crack model to 

simulate the crack initiation and propagation with a plastic-damage model to account for 

the inelastic compressive behaviour of concrete between cracks. The smeared crack model 
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considers the possibility of forming several cracks in the same integration point during the 

cracking process. The plasticity part accounts for the development of irreversible strains 

and volumetric strain in compression, whereas the strain softening and stiffness 

degradation of the material under compression are controlled by an isotropic strain base 

damage model. The model appraisal is performed by simulating several tests at the 

material level (single element with one IP). Monotonic and cyclic uniaxial compressive 

tests were simulated at first, followed by a sophisticated biaxial tension-compression 

numerical test which is intended to demonstrate the interaction between cracking and 

plasticity-damage parts of the model. The results of the simulated examples are in close 

agreement with the experimental data or the results reported by the other authors. 

It should be noted that the applications of the proposed model in structural analysis are 

described in the next chapter (chapter 4).  

 

 



 

 

 

C H A P T E R   4 

APPLICATION OF TWO DIMENSIONAL PDSC 

MODEL IN STRUCTURAL ANALYSIS   

 

 

 

 

4.1 INTRODUCTION 

In this chapter, the structural performance of the proposed model is assessed. For this 

purpose, PDSC constitutive model, described in chapter 3, was implemented into 

FEMIX 4.0 computer program (Sena-Cruz et al., 2007) as a new approach to simulate the 

nonlinear behaviour of cement based structures. FEMIX 4.0 is a computer code whose 

purpose is the analysis of structures by the Finite Element Method (FEM). This code is 

based on the displacement method, being a large library of types of finite elements 

available, e.g., 3D frames and trusses, plane stress elements, flat or curved elements for 

shells, and 3D solid elements. Linear elements may have two or three nodes, plane stress 

and shell elements may be 4, 8 or 9-noded and 8 or 20 noded hexahedra may be used in 

3D solid analyses. This element library is complemented with a set of point, line and 

surface springs that model elastic contact with the supports, and also several types of 

interface elements to model inter-element contact. Embedded line elements can be added 

to other types of elements to model reinforcement bars. All these types of elements can be 

simultaneously included in the same analysis, with the exception of some incompatible 

combinations. The analysis may be static or dynamic and the material behaviour may be 

linear or nonlinear. Data input is facilitated by the possibility of importing CAD models. 
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Post processing is performed with a general purpose scientific visualization program 

named drawmesh, or more recently by using GID. 

In the same nonlinear analysis several nonlinear models may be simultaneously 

considered, allowing, for instance, the combination of reinforced concrete with 

strengthening components, which exhibit distinct nonlinear constitutive laws. Interface 

elements with appropriate friction laws and nonlinear springs may also be simultaneously 

considered. The global response history is recorded in all the sampling points for selected 

post-processing. Advanced numerical techniques are available, such as the 

Newton-Raphson method combined with arc-length techniques and path dependent or 

independent algorithms. When the size of the systems of linear equations is very large, a 

preconditioned conjugate gradient method can be advantageously used.  

The set of experimental tests simulated in this chapter, has covered a wide range of 

geometry of specimens, concrete type, loading configurations, and reinforcement 

conditions in order to demonstrate the robustness of the developed model. Moreover, the 

simulated structural elements are of particular interest for the assessment of the reliability 

of the proposed model, since in these examples the failure mechanism involved 

simultaneous occurrence of cracking and inelastic deformation in compression. In this 

type of simulations the concrete of a large number of IP is submitted to cracking and 

inelastic compressive deformations. This situation can be considered as a complex 

loading scenario, since both smeared cracking and plastic-damage parts of the model are 

active over a large region of the simulated structure. 

 

4.2 STRUCTURAL EXAMPLES 

4.2.1 Shear RC walls  

To highlight the efficiency of the proposed constitutive model, the shear wall panels, 

tested by Maier and Thürlimann (1985), were simulated. The analysed specimens are 

registered at the experiment as S1, S2, S3, S4, S9, and S10. The experimental loading 

procedure introduces an initial vertical compressive force, 
vF , and then a horizontal 

force, 
hF , that was increased up to the failure of the wall. These shear walls had a 
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relatively thick beam at their bottom and top edges for fixing the walls to the foundation, 

and for applying 
hF  and 

vF , respectively, as depicted in Fig. 4.1. The analysed shear 

walls differ in geometry, reinforcement ratio, and initial vertical load (
vF ). 

 

 
(a) 

 
(b) 

Fig. 4.1 – Geometry and loading configurations of the shear walls tested by 

Maier and Thürlimann (1985) (dimensions in mm): (a) the walls in group A 

(with vertical flange); (b) the walls in group B (without vertical flange). 

 

These walls can be categorized considering geometry of the walls in two groups: group A, 

which includes walls with vertical flanges at their lateral edges; group B, which contains 

the walls with uniform rectangular cross section (without vertical flanges). All the walls 

are reinforced in both vertical and horizontal directions with the reinforcement ratios 
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designated as 
x  and y . For the walls at the group A (specimens with vertical flanges), 

F  indicates the reinforcement ratio of the vertical flanges. Table 4.1 includes the details 

corresponding to geometry, reinforcement ratios, and initial vertical force for each shear 

wall analysed in this section. 

 

Table 4.1 – Details for the shear wall panels. 

Specimen 

ID 

geometry x  

(%) 

y  

(%) 

F  

(%) 
vF  

(kN) 

exp

,h uF  

(kN) 

,

num

h uF  

(kN) 

exp exp

, , ,

num

h u h u h uF F F  

(%) 

S1 group A 1.03 1.16 1.16  433 680 721 6.0 

S2 group A 1.03 1.16 1.16  1653 928 958 3.3 

S3 group A 1.03 2.46 2.46  424 977 991 1.4 

S4 group B 1.03 1.05 1.05  262 392 364 7.1 

S9 group B 0.0 0.99 0.99  260 342 310 9.3 

S10 group B 0.98 1.0 5.71  262 670 656 2 

 average 4.85 

 

FEM modelling of the walls and top beams were performed using 8-noded serendipity 

plane stress finite elements with 33 Gauss-Legendre IP scheme. Fig. 4.2a presents, as an 

example, the finite element mesh used for analysis of the wall S4. Instead of modelling 

the foundation, the bottom nodes of the panels are fixed in vertical and horizontal 

directions. The vertical and horizontal loads are uniformly distributed over the edges of 

the top beam, as schematically represented in Fig. 4.2a. Elements of the top beam are 

assumed to exhibit linear elastic behaviour during the analysis, since no damage is 

reported for these elements in the original papers. For modelling the behaviour of the 

steel bars, the stress-strain relationship represented in Fig. 4.3 was adopted (Sena-Cruz, 

2004). The reinforcement is meshed using 2-noded perfect bonded embedded cables with 

two IPs. The values of parameters used to define the constitutive models of steel and 

concrete are included in Table 4.2 and Table 4.3, respectively. The effect of tension-

stiffening was indirectly simulated using the trilinear tension-softening diagram. 

The experimental relationship between the applied horizontal force and the horizontal 

displacement of the top beam, Fh-Uh, for the wall S4 is represented in Fig. 4.2b. This 

figure also includes the predicted Fh-Uh response obtained by both PDSC and SC models. 
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(a) (b) 

   
(c) (d) (e) 

Fig. 4.2 – Simulation of the S4 shear wall tested by Maier and Thürlimann (1985): (a) finite 

element mesh used for the analysis; (b) horizontal load vs. horizontal displacement diagram, Fh-

Uh; (c) experimentally observed crack pattern (Maier and Thürlimann, 1985); (d) crack pattern 

and (e) plastic zone (results of (d) and (e) correspond to 18hU mm , the final converged step, 

for the simulation using 
,f cG =30 N/mm) (Notes: (1) - In pink color: crack completely open; in 

red color: crack in the opening process; in cyan color: crack in the reopening process; in green 

color: crack in the closing process; in blue color: closed crack; in red circle: the plastic zone; (2) 

- The crack pattern and plastic zone are represented over the finite element mesh adopted for the 

concrete).  

 

Table 4.2 – Values of the parameters of the steel constitutive model for the shear walls tests. 
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Fig. 4.3 – Uniaxial constitutive model (for both tension and 

compression) for the steel bars (Sena-Cruz, 2004). 

 

Table 4.3 – Values of the parameters of the concrete constitutive model for shear wall test. 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =26000 
2

N mm  

Parameters defining the plastic-damage part of 

the model 

0 = 0.4; 
cf =30.0 N/mm

2
; 

1c =0.0035; 

,f cG =20, 30, 40 N/mm for the wall S4; 

,f cG = 30 N/mm for other walls 

Trilinear tension softening diagram (Fig. 3.1a) 
2.2ctf   N/mm

2
; 0.14fG  N/mm; 

1 0.15 

; 
1 0.3  ; 

2 0.575  ; 
2 0.15     

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Type of shear retention factor law P1 = 2 

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

According to the experimental observations, the wall S4 exhibits a ductile Fh-Uh response 

after attaining the peak load, and the failure was governed by crushing of concrete at the 

bottom left side of the panel. Predictions of the PDSC model are obtained for three levels 

of compressive fracture energy (
, 20,30,40 /f cG N mm ) to evident the effect of 

different rate of compressive softening on behaviour of the simulated wall. At  

4hU mm  the IP closest to the left bottom side of the wall enters to the compressive 

softening phase ( 0cd  ). After 7hU mm  the load carrying capacity and ductility of the 

( , )su su 

( , )sh sh 
( , )sy sy 

3PT

2PT
1PT

SE
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simulated Fh-Uh responses are significantly affected by changing the compressive fracture 

energy; the load carrying capacity and ductility increase with 
,f cG . Ductility of the wall is 

underestimated for the simulation with 
,f cG =20 N/mm, and overestimated when using 

,f cG =40 N/mm. A proper fit of the experimentally observed ductility and softening 

response after peak load was obtained for 
,f cG =30 N/mm. This value is close to the upper 

limit of the interval values obtained by Vonk (1992). Fig. 4.2d and Fig. 4.2e present, 

respectively, the numerical crack pattern and the plastic zone, i.e. the area indicating 

those IPs under inelastic compressive deformation ( 0c  ), for the simulation using 
,f cG

=30 N/mm, at the deformation corresponding to 18hU mm  (final converged step). A 

general analysis of Fig. 4.2d and Fig. 4.2e demonstrate the cracks with fully opened status 

are spread over the right lower side of the panel (tensile zone) while the plastic zones are 

concentrated at the bottom left corner of the panel. This numerical prediction correlates 

well with the experimental observations (see Fig. 4.2c). 

The Fh-Uh prediction of the SC model is similar to those of the PDSC model only in the 

beginning stage (up to 1hU mm ) when inelastic deformation due to compression is 

negligible, but for higher displacements the two models start diverging significantly. The 

SC model does not consider the inelastic behaviour of concrete under compression that 

justifies the significant overestimation of the predicted load carrying capacity of the 

simulated panel.  

Size of the finite element mesh used for the analysis of the wall S4 is refined with a factor 

of four in order to show that the structural response predicted by the PDSC model is not 

dependent of the adopted mesh refinement. Fig. 4.4a shows the refined mesh adopted for 

this analysis. Eight-noded serendipity plane stress finite elements with 33 Gauss–

Legendre IP scheme are adopted. The Fh-Uh relationship predicted by the analysis with 

the refined mesh is compared in Fig. 4.4b with that of the analysis with the coarse mesh 

(the one already obtained in Fig.4.2b using 
,f cG =30 N/mm). From this figure it is verified 

that sensitivity of the structural response of the PDSC model to the applied mesh schemes 

is negligible. Both meshes show similar cracking patterns (see Fig. 4.2d and Fig. 4.4c). 
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(a) (b) 

 
(c) 

Fig. 4.4 – Sensitivity of the analysis of the panel S4 respect to the size of finite element 

mesh: (a) refined finite element mesh used for analysis; (b) Fh-Uh relationship; (c) 

Numerical crack pattern obtained at final converged step of the analysis. Note: the 

crack pattern is represented over the finite element mesh adopted for the concrete. 

 

Results of the analysis for the other shear walls are represented in Fig. 4.5 in terms of Fh-

Uh relationship and crack pattern. As can be seen in this figure the PDSC model assuming 

,f cG =30 N/mm  was able to accurately predict the overall experimental Fh-Uh behaviour 

and the experimental crack patterns of these walls. 
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Fig. 4.5 – Simulation of the shear walls S1, S2, S3, S9, S10 tested by Maier and Thürlimann 

(1985): (a) horizontal load vs. horizontal displacement relationship, Fh-Uh; (b) numerical crack 

pattern predicted by PDSC model and corresponding to the final converged step; (c) 

experimentally observed crack pattern (Maier and Thürlimann, 1985). Note: the crack pattern is 

represented over the finite element mesh adopted for the concrete. 

 

In Table 4.1, the numerical peak load, 
,

num

h uF , predicted by the PDSC model are compared 

with the experimental ones, exp

,h uF , for all the 6 shear walls. The information provided at 

Table 4.1 verifies that the peak loads of all shear walls are precisely simulated with the 
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average error of 4.85%. Comparing the Fh-Uh responses obtained by both PDSC and SC 

models reveals the major influence of simulating compressive nonlinearity on the 

predicted deformational behaviour and failure mechanism of these shear walls. If 

nonlinear compressive behaviour is neglected in these analyses, as the approach adopted 

in SC model, the ductility and load carrying capacity are significantly overestimated. 

 

P
an

el
 S

9
 

 
  

 (a) (b) (c) 

P
an

el
 S

1
0

 

 
 

 
 (a) (b) (c) 

Fig. 4.5 – (Continued) 

 

4.2.2 RC deep beams with openings 

Application of the proposed model for simulating reinforced concrete deep beams with 

openings, tested by El-Maaddawy and Sherif (2009), is considered in this section. A total 

of six beams (NS-200-B, NS-250-B, NS-200-T, NS-250-T, NS-200-C, NS-250-C) are 

analysed which have the same shear span over dept ratio, thickness, and reinforcement 

layout. All the beams include two square openings, one in each shear span, while the 

differences between these beams are restricted to the location and size of the openings. 

These beams can be categorized considering the location of the openings within shear 
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span in three groups: group C which includes the beams whose openings are installed at 

the middle points of the shear spans; group B, and group T, which contain the beams that 

their openings are located, respectively, at bottom of shear spans near loading points, and 

at top of the shear spans near supports. The opening size for each beam was either 

200×200 mm
2
 or 250×250 mm

2
 giving the opening height over the dept (a/h) ratios of 0.4 

and 0.5 respectively. More details corresponding to the geometry and loading 

configuration of these beams are provided at Fig. 4.6, and Table 4.4. 

 

Table 4.4 – Details for the deep beam tests. 

specimen 

ID 

geometry  opening size 

(mm
2
) 

a/h
(4)

  

ratio 

exp

uP   

(kN) 

num

uP  

(kN) 

exp expnum

u u uP P P  

(%) 

NS-200-B group B
(1) 

200×200
 

0.4 210.7 212 0.61 

NS-250-B group B 250×250 0.5 137.9 143.15 3.8 

NS-200-C group C
(2) 

200×200
 

0.4 163 183 12.2 

NS-250-C group C 250×250 0.5 106.6 108.9 2.1 

NS-200-T group T
(3) 

200×200
 

0.4 220 236 7.2 

NS-250-T group T 250×250 0.5 127.6 128.6 0.78 

average 4.45 

(1) Opening is located at bottom of shear span near loading point. 

(2) Opening is located at middle of the shear span. 

(3) Opening is located at top of shear span near support. 

(4) a: height of openings; h: dept of the beam. 

 

The tensile reinforcement consists of 4 steel bars of 14 mm diameter, with the cross-

sectional area of 153.9 mm
2
 for each bar, while two steel bar of 8 mm diameter, with the 

cross-section area of 50.3 mm
2
 for each bar, are applied as the compressive 

reinforcement. The web reinforcements are applied with the steel bar of 6 mm diameter, 

with the cross-section area of 28.3 mm
2
, spaced at 150 mm in both vertical and horizontal 

directions (see Fig. 4.6). The web reinforcement intersecting the opening spaces is cut 

prior to casting the corresponding specimen (El-Maaddawy and Sherif, 2009). 

Due to symmetry of the beams about the vertical axis at the center of the beam, only half 

beam was modelled. Horizontal displacements of all the nodes on the symmetry axis of 

the beam are fixed, by applying roller support, to impose the symmetry condition. 
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(a) 

  
(b) (c) 

 
(d) 

Fig. 4.6 – Deep beams with openings tested by El-Maaddawy and Sherif (2009): (a) details of 

the reinforcement system, common for all the beams in the experimental program; (b) geometry 

of the beams at group B, NS-200-B and NS-250-B; (c) geometry of the beams at group T, NS-

200-T and NS-250-T; (d) geometry of the beams at group C, NS-200-C and NS-250-C. 

 

Eight-noded serendipity plane stress finite elements with 33 Gauss–Legendre IP scheme 

were used for modelling the beams, supports and loading plates. In Fig. 4.7 is 

represented, as an example, the finite element mesh used for the simulation of the beam 

NS-200-C. 
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Fig. 4.7 – Finite element mesh, load and support conditions used for 

analysis of the beam NS-200-C.   

 

The steel reinforcement is meshed using 2-noded perfect bonded embedded cables with 

two IPs. For modelling the behaviour of the steel bar elements, the stress-strain 

relationship represented in Fig. 4.3 was adopted. The values of parameters used to define 

the stress-strain diagram indicated in Fig. 4.3 are included in Table 4.5. Support and 

loading plates are modeled as a linear-elastic material with Poisson’s coefficient of 0.3 

and elasticity modulus of 200 GPa. Properties of concrete are taken from Hawileh et al. 

(2012), and the values of the parameters to define the PDSC model are, accordingly, 

included in Table 4.6. 

 
Table 4.5 – Values of the parameters of the steel constitutive model for deep beams tests. 

 
sy   

(%) 

sy  

(N/mm
2
) 

sh  

(%) 
sh  

(N/mm
2
) 

su  

(%) 
su  

(N/mm
2
) 

Third branch 

exponent 

14  0.21 420 1.4 430 4.4 540 1 

8  0.21 420 1.4 430 4.4 540 1 

6  0.15 300 1.4 330 4.4 440 1 

 

 

elements of steel plate

  

  
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LC
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Table 4.6 – Values of the parameters of the concrete constitutive model for the deep beam (with 

openings) test. 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =20000 
2

N mm  

Parameters defining the plastic-damage part of 

the model 

0 =0.4; 
cf =20.0 N/mm

2
; 

1c =0.0035; 

,f cG =8  N/mm  

Trilinear tension softening diagram (Fig. 3.1a) 
1.1ctf   N/mm

2
; 0.04fG  N/mm; 

1 0.0022  ; 
1 0.3  ; 

2 0.1  ; 
2 0.15     

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Type of shear retention factor law P1 = 2 

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

Fig. 4.8 shows the experimental load vs. mid-span deflection ( P U  relationship) for the 

beams in analysis and the respective numerical predictions with the SC and PDSC 

models. Table 4.4 gives the failure loads of the beams obtained in the experimental 

program (
exp

uP ) and in the numerical simulations (
num

uP ). Amongst the beams with the 

opening size of 200×200 mm
2
 (NS-200-B, NS-200-T, NS-200-C), i.e. the beams having 

the a/h ratio of 0.4, the beam NS-200-T has the maximum experimental failure load (see 

Fig. 4.8 and Table 4.4). The failure load of the beam NS-200-T is close to that of the 

beam NS-200-B (the load corresponding to the beam NS-200-T is 4.4% larger than that 

of NS-200-B), and is 35% higher than that of the beam NS-200-C. The beam NS-200-C 

has the minimum failure load among these three beams, since its openings, located at the 

center of the shear spans, significantly interrupts the loading path which is a line 

connecting loading to the support plates. In case of the beams NS-200-B and NS-200-T 

whose openings are located at the corners of the shear spans, the loading paths are less 

interrupted and higher load carrying capacities are obtained at the experimental program. 

A close inspection of Table 4.4 also reveals that the PDSC model was able to simulate 

this experimental observation, since the numerical failure load (
num

uP ) predicted for the 

beam NS-200-B is higher than that of NS-200-C and is lower than the value calculated 

for the beam NS-200-T. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4.8 – Experimental load vs. mid-span deflection (El-Maaddawy and Sherif, 2009) 

in compare with the predictions of the PDSC and SC models for the beams: (a) NS-

200-B; (b) NS-200-T; (c) NS-200-C; (d) NS-250-B; (e) NS-250-T; (f) NS-250-C. 

 

By comparing the experimental failure loads of the beams in the same geometry group 

(group B, group C, or group T) but with the different opening sizes (different a/h ratios of 

0.4 or 0.5), e.g. compare the failure load of the beam NS-200-T with that of the beam NS-

250-T, it can be concluded as the opening size increases, the loading path of the beam is 

more interrupted, and the failure load decreases. From Fig. 4.8 and Table 4.4, it is evident 

that PDSC model was able to simulate the reduction of the load carrying capacity as the 

a/h ratio of the beams increases from 0.4 to 0.5.  
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Fig. 4.8 also shows that the PDSC model fit with high accuracy the experimental P U  

curves at all stages of loading till failure. The failure loads were predicted with the 

average error of 4.45% (see Table 4.4).  

 

  
(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 4.9 – Experimental crack patterns (El-Maaddawy and Sherif, 

2009) for the beams: (a) NS-200-B; (b) NS-200-T; (c) NS-250-B; (d) 

NS-250-T; (e) NS-250-C. 
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If SC approach is taken into account to simulate these beams, the predicted P U  

responses consider the stiffness degradation only due to cracking of concrete and yielding 

of steel reinforcements. Since the SC model assumes a linear behaviour for the concrete 

in compression, the stiffness and ultimate load is overestimated for all the beams, and the 

final failure mode is incorrectly predicted as yielding of reinforcement (see Fig. 4.8). 

The experimental cracking patterns of all the beams at the failure stage demonstrated two 

critical diagonal cracks in the above and below of one of the openings, see Fig. 4.9. As 

can be seen in Fig. 4.10, the crack patterns predicted by PDSC model demonstrate 

flexural cracks with insignificant opening status in middle of the beams, whereas more 

propagated diagonal cracks (cracks with the orientation of 45º  ) can be observed 

along the line connecting the support and loading plates.  

 

N
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N
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-T
 

  

Fig. 4.10 – Numerical crack patterns (left) and plastic zones (right) predicted by PDSC 

model for the beams in analysis (the results correspond to the final converged step). 

Note: the crack pattern and plastic zone are represented over the finite element mesh 

adopted for the concrete. 
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Fig. 4.10 – (Continued) 

 

It seems clear that the PDSC model was able to simulate with high accuracy the 

experimentally observed crack patterns of the beams in analysis.  The simulated plastic 
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zones for these beams, see Fig. 4.10, evidence formation of the compressive struts 

connecting the loading points and supports.  

 

4.2.3 Indirect (splitting) tensile test 

Splitting tensile tests are frequently executed as the indirect method for determining the 

tensile strength of cement based materials. In this section the model ability to predict the 

concrete behaviour under the splitting tensile test is investigated. The model is applied to 

simulate the test executed in the work of Abrishambaf et al. (2013), and the model 

predictions are compared with the results reported at the experimental program. The 

specimen is a cylinder with a diameter of 150 mm and length of 60 mm made by a steel 

fibre reinforced self-compacting concrete, SFRSCC, of 60 kg per m
3
 steel fibers. To 

localize the crack plane, the specimen includes two 5 mm notches cut on each opposite 

face of the specimen. Fig. 4.11 shows the specimen geometry, loading configuration and 

experimental crack pattern observed at the failure stage.  

  

  

 

 

(a) (b) (c) 

Fig. 4.11 – Details of the splitting tensile test: (a) setup of the test (Abrishambaf et al., 2015); 

(b) geometry of the specimen, dimensions are in mm; (c) experimental crack pattern at the 

failure stage (Abrishambaf, 2015). 

 

Only a quarter of the specimen is modelled, due to the double symmetry condition. Roller 

supports were imposed at all the nodes on the both axes of symmetry to fix the 

displacements perpendicular to the axes of symmetry (see Fig. 4.12). The finite element 

mesh of 8-noded plane stress finite elements with 33 Gauss-Legendre IP scheme was 
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adopted for the specimen and the loading plate, see Fig. 4.12. Elements of the loading 

plate are assumed to exhibit linear elastic behaviour with the elastic modulus and 

Poisson’s ratio corresponding to 200E  GPa, and 0.3  . 

  

 
Fig. 4.12 – Finite element mesh, load and support conditions used for analysis of the 

splitting tensile test. 

 

The applied load is uniformly distributed over the edges of the elements of the loading 

plate, under the displacement control by the arc-length method. The properties of 

concrete are taken from Abrishambaf et al. (2013), and the values of the parameters to 

define the constitutive law for concrete are included in Table 4.7. 

Fig. 4.13 shows the relationship between the applied load vs. crack opening mouth 

displacement ( F W ) obtained at the experiment in comparison to the predictions of 

both SC and PDSC constitutive models. The good predictive performance of the PDSC 

model is further demonstrated by providing the numerical crack pattern and the plastic 

elements of steel plate
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zone obtained at the final converged loading step of the calculation process (see Fig. 

4.14). 

  

Table 4.7 – Values of the parameters of the concrete constitutive model for the test of cylinder 

splitting specimen made of SFRSCC.  

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =36000 
2

N mm  

Parameters defining the plastic-damage part 

of the model 

0 =0.4; 
cf =48.0 N/mm

2
; 

1c =0.0035; 

,f cG =35  N/mm  

Trilinear tension softening diagram (Fig. 3.1a) 
3.5ctf   N/mm

2
; 3.0fG  N/mm; 

1 0.007  ; 

1 0.5  ; 
2 0.15  ; 

2 0.55     

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Type of shear retention factor law P1 = 2 

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

 
Fig. 4.13 – Experimental load vs. crack mouth opening displacement 

relationship (Abrishambaf et al., 2013) in comparison with the predictions of 

the PDSC and SC models. 

 

The analysis executed by SC model reveals at the load corresponding to 45  kN that the 

splitting cracks are initiated (see Fig. 4.13). These cracks have an orientation of 
o0   

and have formed in IPs in the vicinity of the vertical symmetry axis of the cylinder. Once 

these cracks start to propagate ( 0W  ), the stiffness of F W  response slightly 
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decreases, but the predicted load carrying capacity continuously increases without the 

occurrence of a failure load, since this model (SC model) assumes an elastic behaviour 

for the concrete in compression. However according to the to the PDSC response, after 

the initiation of the splitting cracks ( 0W  ), the predicted load increases and attains a 

hardening branch followed by a softening stage that is mainly governed by the nonlinear 

inelastic behaviour of concrete under compression. From Fig. 4.13 it is evident that there 

is a close correlation between the experimental F W  response and the one predicted by 

the PDSC model. Fig. 14a demonstrates that the cracks with highly propagated opening 

status are spread along the vertical symmetry axis of the specimen, while Fig. 4.14b 

shows the plastic zone is concentrated at the region under the loading plate. These 

observations imply the final failure mechanism of this test (see Fig. 4.11c) is a 

combination of the tensile splitting crack and the compressive failure modes. 

 

 

  
(a) (b) 

Fig. 4.14 – Predictions of PDSC model for the splitting tensile test: (a) numerical crack pattern; (b) 

numerical plastic zone (results of (a) and (b) correspond to 1.9W  mm, the final converged 

loading step). 

 

It should be aware that in the approach followed in the current work for modelling the 

behaviour of SFRSCC, this material is considered to be homogeneous. However SFRSCC 

can be regarded as a heterogeneous medium, like the approach proposed by Cunha et al. 

(2012). Within their numerical model, SFRSCC was modeled as a material composed of 
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two phases: matrix and discrete steel fibres. The matrix phase is simulated with a 3D 

multidirectional fixed smeared crack model, while the stress transfer between crack 

planes due to the reinforcing mechanisms of fibres bridging active cracks is modeled with 

3D embedded elements. This approach is, however, too demanding in terms of computer 

time consuming when applied to elements of structural scale, which is the type of 

structures aimed to be analyzed in the present chapter. 

Another splitting tensile test, which was simulated in the work of Feenstra and de Borst 

(1996) is here presented. The specimen is a cube with a side dimension of 150 mm made 

by a concrete with the compressive strength of 35 MPa. Fig. 4.15 summarizes the 

specimen geometry and loading configuration of the test. A quarter of the specimen is 

modelled, due to double symmetry condition, with two different mesh schemes (coarse 

and fine mesh sizes) in order to demonstrate that the structural response of the model is 

mesh independent. For both meshes, 8-noded plane stress finite element with 33 Gauss–

Legendre IP scheme were used. The applied load for each mesh discretization is 

uniformly distributed over the edges of those elements at the left top corner according to 

Fig. 4.15. The properties of concrete are taken from Feenstra and de Borst (1996), and the 

values of the parameters to define the constitutive law for concrete are included in Table 

4.8. 

 

Table 4.8 – Values of the parameters of the concrete constitutive model for the test of cube 

splitting specimen made of plain concrete.  

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E=27000 
2

N mm  

Parameters defining the plastic-damage part 

of the model 

0 =0.4; 
cf =35.0 N/mm

2
; 

1c =0.0022; 

,f cG =4.5 N/mm  

Trilinear tension softening diagram (Fig. 3.1a) 
2.7ctf   N/mm

2
; 0.06fG  N/mm; 

1 0.01  ; 

1 0.3  ; 
2 0.25  ; 

2 0.2     

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Type of shear retention factor law P1 = 2 

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 
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Fig. 4.16 shows that the mesh refinement has small influence on the relationships 

between the applied stress (applied vertical load over the area the load is distributed, 

21.4150 mm
2
) vs. the vertical displacement under the load (

v vf U  relationship) when 

the PDSC model is used. This figure also includes the 
v vf U   relationships predicted by 

Feenstra and de Borst (1996), as well as the response obtained with the SC model. The 

predictive performance of the model is further demonstrated by providing the numerical 

crack pattern and the plastic zone obtained at the final converged loading step of the 

calculation process (see Fig. 4.17 and Fig. 4.18). Fig. 4.17 and Fig. 4.18 show that the 

final failure mode of the test is a combination of the splitting cracks in middle of the cube 

cross section area, and inelastic compressive deformations in the region under the loading 

platen.  

 

  
(a) (b) 

Fig. 4.15 – Cube splitting tensile test: (a) coarse mesh; (b) fine mesh (dimensions in mm). 
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Fig. 4.16 – Stress vs. vertical displacement under the load for the cube 

splitting tensile test. 

 

  
(a) (b) 

Fig. 4.17 – Numerical crack pattern obtained by PDSC model for cube splitting tensile test: (a) 

coarse mesh; (b) fine mesh (results correspond to the final converged loading step).  
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(a) (b) 

Fig. 4.18 – Numerical plastic zone obtained by PDSC model for cube splitting tensile test: (a) 

coarse mesh; (b) fine mesh (results correspond to the final converged loading step).  

 

4.2.4 RC short span beams  

The experimental program (Soltanzadeh et al., 2016a) is composed of six beams of a span 

length, L, of 1050 mm and a rectangular cross section of 150 mm wide, b, and 300 mm 

height, h. Two longitudinal steel bars of 12 mm diameter, 12 , and one of 10 mm 

diameter, 10 , positioned at a depth of 230 mm, 
sd , and a ribbed GFRP rebar of 12 mm 

diameter, 12 , with a depth of 270 mm, 
GFRPd , were used for the flexural reinforcement. 

The general configuration of the beams and the arrangement of the reinforcements are 

represented in Fig. 4.19.  

 

 
Fig. 4.19 - Beam configuration and test setup (dimensions in mm) (Soltanzadeh et al., 

2016a). 
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The prestress levels of 0% (control beam), 20% and 30% of GFRP ultimate tensile 

strength ( ,GFRP uf =1350 MPa) were adopted for the experimental program. Table 4.9 

presents the details of each series of fabricated beams, introduced by the label “Bi-Pj”, 

where “i” identifies the number of the tested beams in each series (two beams were tested 

per each series) and “j” is the percentage of prestress applied to the GFRP bar. The three-

point bending test setup adopted in the present study is illustrated in Fig. 4.19. All the 

beams are developed by a steel fibre reinforced self-compacting concrete, SFRSCC, of 90 

kg per m
3
 steel fibers. 

  

Table 4.9- General information about the simulation of the prestress load by means of temperature 

variation. 

 Prestress 

percentage 

 

(%) 

Stress applied to 

GFRP corresponding 

to prestress level 

t
 a
 (MPa) 

Coefficient of 

thermal expansion 

 

( / ( ))mm mm c  

Temperature 

variation 

 

( )T c  

Bi-P0 (i=1, 2) 0 - - - 

Bi-P20 (i=1, 2) 20 270
 

1 10
-5

 -482 

Bi-P30 (i=1, 2) 30 405
 

1 10
-5

  -723 
a 

,prestress percentaget GFRP uf   ; 
, 1350GFRP uf MPa . 

Note: the thermal strain and corresponding stress are calculated from: 
t T   ; 

t GFRP tE  . 

 

The finite element mesh of 8-noded plane stress finite elements with 33 Gauss-Legendre 

IP scheme, represented in Fig. 4.20, was adopted for the beams (the differences between 

beams in different series are limited to the prestress load applied to the GFRP bar). The 

GFRP bar was modeled using 2-noded truss elements (one degree-of-freedom per each 

node) with two IPs. The longitudinal steel bars are meshed using 2-noded embedded 

cables with two IPs. Perfect bond was assumed between the reinforcement bars and the 

surrounding concrete. For modeling the behavior of the steel bars, the stress-strain 

relationship represented in Fig. 4.3 was adopted.  
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Fig. 4.20 - Finite element mesh used for the simulated beams (dimensions in mm). 

 

The behavior of GFRP bar was modeled using a linear-elastic stress-strain relationship 

defined by the values indicated in Table 4.10. The prestress load was simulated by means 

of temperature variation applied to the truss elements modeling the GFRP bar. Table 4.9 

represents the values of the temperature variation applied to each simulated beam. The 

values of parameters used to define the constitutive models of steel and concrete 

(FRSCC) are included in Table 4.11 and Table 4.12, respectively. 

To simulate the shear crack initiation and the degradation of crack shear stress transfer, 

the shear softening diagram represented in Fig. 3.2 is assumed. To define this diagram the 

values of the corresponding parameters, included in Table 4.12, were obtained by 

simulating the experimental results of the reference beams (Bi-P0) as best as possible. 

Then the same values of the parameters of the constitutive model were adopted for the 

prestressed beams (Bi-P20, and Bi-P30).   

 

Table 4.10–Mechanical properties of the GFRP bar. 

Diameter 

(mm) 

Density 

(gr/cm
3
) 

GFRPE
a
 

(GPa) 
,GFRP uf

b 

(N/mm2) 

12 2.23 56  1350 
a 

GFRPE

 

Modulus of elasticity. 
b
 

,GFRP uf Ultimate tensile strength. 

 

Table 4.11 – Values of the parameters of the steel constitutive model for short beams tests. 

Diameter 

(mm) 
sy  

(%) 

sy  

(N/mm
2
) 

sh  

(%) 
sh  

(N/mm
2
) 

su  

(%) 
su  

(N/mm
2
) 

Third branch 

exponent 

10, 12 0.28 500 0.28 500 10.0 591 1 

 

GFRP bar elements

Steel bar elements

IP

Plane stress element with 8 nodes LC

  

  

  

52580

30

40

230
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Table 4.12 – Values of the parameters of the concrete constitutive model for the test of short span 

beams 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =34000 
2

N mm  

Parameters defining the plastic-damage part 

of the model 

0 =0.4; 
cf =65.0 N/mm

2
; 

1c =0.004; 

,f cG =65 N/mm  

Quadrilinear tension softening diagram (Fig. 

3.1b) 

ctf  3.25 N/mm
2
; 

fG  6 N/mm;  

1  0.0005; 
1 0.75; 

2  0.0025;  

2  0.1; 
3  0.1; 

3  0.6 

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Parameters defining the crack shear stress-

crack shear strain softening diagram (Fig. 3.2) ,

cr

t p  1.75 N/mm
2
;   0.2 ; ,f sG 1.0 N/mm  

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

The experimental and the numerical relationships between the applied load and the 

deflection at the mid-span for all the beam series are compared in Fig. 4.21. 

 

  
(a) (b) 

 
(c) 

Fig. 4.21 - Numerical prediction of the applied load vs. mid-span deflection in comparison with the 

corresponding experimental results of the beam series: (a) Bi-P0; (b) Bi-P20; (c) Bi-P30. 
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In Fig. 4.22 the numerical crack patterns of these beam series at the end of the analysis (at 

the end of the last converged load increment) are compared with the obtained 

experimental crack patterns. These two figures show that the numerical model is able to 

capture with good accuracy the deformational response of the beams and captured profile 

of the failure crack. 
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Fig. 4.22 - Crack patterns predicted by the model (a) and crack patterns obtained in the  

experimental tests (b) for the beam series: Bi-P0; Bi-P20; Bi-P30.  

 

The predicted strain in steel reinforcement (at the closest IP of the symmetric axis of the 

beams) versus mid-span displacement corresponding to each simulation is represented in 

Fig. 4.23. These curves shows that at a deflection of about 2.3 mm the longitudinal steel 
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reinforcements of the reference beam (Bi-P0) started yielding, which indicates that the 

reinforcing mechanisms of the adopted content of steel fibres (90 kg per m
3
) were 

sufficient to assure yield initiation of longitudinal reinforcement before the occurrence of 

the reference beam’s shear failure.  

 

 
Fig. 4.23 – Strain in steel reinforcement (obtained at the closest IP to the 

symmetric axis of the beam) vs. mid-span deflection predicted by the 

numerical simulations. 

 

The numerically predicted relationship between the applied load and the deflection at the 

mid-span for all the beam series are gathered in Fig. 4.24. The points at crack initiation 

and at yield initiation of the steel reinforcement are also represented in this figure by 

using markers, demonstrating that by both the load at crack initiation and at yield 

initiation of steel reinforcements increase with the prestress level. 

 

 
Fig. 4.24 – The predicted load-deformation behavior for all the beam series. 
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4.2.5 Shear strengthened RC beams  

4.2.5.1 Beam prototypes 

The experimental program (Barros and Dias, 2013) is composed of a reference beam 

(Fig. 4.25) and four NSM shear strengthened beams (Fig. 4.26). Fig. 4.25 represents the T 

cross section geometry and the steel reinforcement detailing for the series of beams, as 

well as the loading configuration and support conditions. The adopted reinforcement 

systems were designed to assure shear failure mode for all the tested beams. All the tested 

beams had a percentage of longitudinal tensile steel bars (sl) of 2%. To localize the shear 

failure in only the monitored shear spans, asp, a three point loading configuration with a 

distinct length for the beam shear spans was selected, as shown in Fig. 4.25. Steel stirrups 

of 6 mm diameter at a spacing of 112 mm (6@112mm) were applied in the bsp beam 

span to avoid shear failure.  

 

  
Fig. 4. 25 - Geometry of the reference beam (3S-R), steel reinforcements common to all beams, support and 

load conditions (dimensions in mm) (Barros and Dias, 2013). 

 

The differences between the tested beams are restricted to the shear reinforcement 

systems applied in the asp beam span. The reference beam is designated as 3S-R (three 

steel stirrups in the asp shear span, 3S, leading a steel shear reinforcing ratio, ρsw, of 

0.09%), while the following different NSM strengthening configurations were adopted 

for the other four beams that also include 3 steel stirrups in the asp shear span (Fig. 4.26 

and Table 4.13): 
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Fig. 4.26 – NSM shear strengthening configurations (CFRP laminates at dashed lines; 

dimensions in mm) (Barros and Dias, 2013). 

 

3S-4LI-S2 - four CFRP laminates of type 2 (with a cross section of 1.4×20 mm
2
) per face, 

inclined at 52 degrees with respect to the longitudinal axis of the beam (f = 52º), and 

installed from the bottom surface of the flange to the bottom tensile surface of the beam’s 

web, i.e., bridging the total lateral surfaces of the beam’s web; each CFRP laminate was 

installed in the outer part of a slit of a depth of 21 mm executed on the beam’s web lateral 

surfaces. The length of each laminate was 634 mm; 
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3S-4LI-P2 - four CFRP laminates of type 2 (with a cross section of 1.4×20 mm
2
) per face, 

inclined at 52 degrees with respect to the longitudinal axis of the beam (f = 52º), and 

installed from the bottom surface of the flange up to 10 mm above the top surface of the 

longitudinal tensile steel reinforcement. Each CFRP laminate was installed in the deeper 

part of a slit of a depth of 35 mm from the surface of the beam’s web lateral surfaces. The 

length of each laminate was 527 mm; 

3S-4LI4LI-SP1 - eight CFRP laminates of type 1 (with a cross section of 1.4×10 mm
2
) 

per face, inclined at 52 degrees with respect to the longitudinal axis of the beam (f = 

52º). The configuration of the slits executed in this section combines the configurations of 

the beams 3S-4LI-P2 and 3S-4LI-S2. In each slit, with a depth of 35mm, was installed 

one laminate as deeper as possible and one laminate as superficial as possible. 

3S-4LI4LV-SP1 - eight CFRP laminates of type 1 (with a cross section of 1.4×10 mm
2
) 

per face, four of them inclined at 52 degrees with respect to the longitudinal axis of the 

beam (f = 52º) and bridging the total lateral surfaces of the beam’s web (the length of 

each inclined laminate was 634 mm), while the other four laminates were installed in 

vertical slits executed from the bottom surface of the web up to 10 mm above the top 

surface of the longitudinal tensile steel reinforcement (the length of each vertical laminate 

was 432 mm). The vertical laminates were installed as deeper as possible into a slit of a 

depth of 35 mm from the surface of the beam’s web lateral surfaces. The inclined 

laminates were installed as outer as possible into a slit of a depth of 15 mm executed on 

the beam’s web lateral surfaces. 

 

4.2.5.2 Material properties  

All the NSM shear strengthened beams were executed with a concrete that presented an 

average compressive strength (
cf ) of 40.1 MPa. For the reference beam 3S-R the value of 

cf  was 36.4 MPa. The average value of the yield stress of the steel bars of 6, 12, 16 and 

32 mm diameter was 556.1, 566.6, 560.8 and 654.5 MPa, respectively, while average 

value of the ultimate stress for these corresponding bars was: 682.6, 661.6, 675.0 and 

781.9 MPa. The constitutive law for the steel bars follows the stress-strain relationship 

represented in Fig. 4.3, and values for its definition are those indicated in Table 4.14. The 
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CFRP laminates presented a linear-elastic stress-strain response with a tensile strength of 

3009 MPa and an elasticity modulus of 169 GPa and 166 GPa for the laminate type 1 and 

2, respectively. The complementary discussion on the characterization of the CFRP 

laminates and epoxy adhesive can be found in Barros and Dias (2013). 

 

Table 4.13 - CFRP shear strengthening configurations of the tested beams. 

Beam 

Shear reinforcement system in the shear span asp 

Material Quantity 
Percentage 

(%) 

Spacing 

(mm) 

Angle 

(º) 

3S-4LI-S2 

Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP 

laminates 

2×4 laminates  

(1.4×20 mm
2
) 

0.113 350 52 

3S-4LI-P2 

Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP 

laminates 

2×4 laminates  

(1.4×20 mm
2
) 

0.113 350 52 

3S-4LI4LI-SP1 

Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP 

laminates 

2×(4×2) laminates  

(1.4×10 mm
2
) 

0.113 350 52 

3S-4LI4LV-SP1 

Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP 

laminates 

2×4 laminates  

(1.4×10 mm
2
) 

0.056 350 90 

NSM CFRP 

laminates 

2×4 laminates  

(1.4×10 mm
2
) 

0.044 350 52 

 

4.2.5.3 Finite element modelling and constitutive laws for the materials 

The finite element mesh of 8-noded plane stress finite element with 22 Gauss-Legendre 

IP scheme, represented in Fig. 4.27, was adopted (corresponds to the 3S-4LI-S2 beam, 

but the differences for the other beams are limited to the CFRP strengthening 

configurations).  

 

 
Fig. 4.27 – Finite element mesh used for the beam 3S-4LI-S2 (dimensions are in mm). 
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To avoid local crushing of the concrete, the load and support conditions were applied 

through steel plates that are modeled as a linear-elastic material with Poisson’s coefficient 

of 0.3 and elasticity modulus of 200 GPa. The longitudinal steel bars, stirrups and CFRP 

laminates were modelled using 2-noded embedded cables (one degree-of-freedom per 

each node) with two IPs. Perfect bond was assumed between the reinforcement and the 

surrounding concrete. The behaviour of CFRP laminates was modeled using a linear-

elastic stress-strain relationship. The values correspondent to the parameters of the 

constitutive model for concrete is gathered in Table 4.15. These values are obtained from 

the experimental program for the characterization of the relevant properties of the 

intervening materials.  

  

Table 4.14 – Values of the parameters of the steel constitutive model for test of the shear 

strengthened RC beams. 

Property 6  10  12  16  32  

(%)sy  0.27805 0.2833 0.2833 0.2804 0.32725 
2( )sy N mm  556.1 566.6 566.6 560.8 654.5 

(%)sh  1 1 1 1 1 
2( )sh N mm  583.905 594.93 594.93 588.8 687.2 

(%)su  10 10 10 10 10 
2( )su N mm  682.6 661.6 661.6 675.0 781.9 

Third branch 

exponent 

1 1 1 1 1 

 

To simulate the shear crack initiation and the degradation of crack shear stress transfer, 

the shear softening diagram represented in Fig. 3.2 is assumed, and the values of the 

parameters to define this diagram are included in Table 4.15. 

 

4.2.5.4 Results and discussions 

For the shear strengthened beams (3S-4LI-S2; 3S-4LI-P2; 3S-4LI4LI-SP1; 3S-4LI4LV-

SP1), the transversal reinforcement (CFRP laminates and steel stirrups) provides 

additional confinement effect on the surrounding concrete bulk. This confinement 

enhances the aggregate interlock effect in the shear cracks crossed by these shear 

reinforcements. 
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Table 4.15 – Values of the parameters of the concrete constitutive model for the test of the shear 

strengthened RC beams. 

Property Value 

Poisson’s ratio 0.15 

Young’s modulus E=32000 
2

N mm  

Parameters defining the plastic-damage part 

of the model 

0 =0.4; 
1c =0.0035; 

,f cG  =20 N/mm ;  

for strengthened beams 
cf =40.1 N/mm

2
; 

for the reference beam (3S_R) 
cf =36.4 

N/mm
2
 

Trilinear tension softening diagram (Fig. 

3.1a) 

ctf  2.5 N/mm
2
; 

fG  0.1 N/mm;  

1  0.008; 
1 0.25; 

2  0.4; 
2  0.05  

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Parameters defining the crack shear stress-

crack shear strain softening diagram (Fig. 3.2) 

,

cr

t p =1.6 N/mm
2
;   0.03 ;  

for strengthened beams 
,f sG =0.3 N/mm; 

for the reference beam 
,f sG =0.04 N/mm 

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

For these beams, even though the CFRP laminates and steel stirrups are separately 

modelled with embedded cable elements, their favourable effect in terms of aggregate 

interlock was considered by adopting different values of shear fracture energy (
,f sG ) for 

the reference and strengthened beams.  

Since the equivalent shear reinforcement ratio (CFRP laminates and steel stirrups) was 

not too different amongst the strengthened beams, the same value of 
,f sG =0.3 N/mm was 

adopted in the constitutive model, while in the reference beam a 
,f sG =0.04 N/mm was 

assumed, see Table 4.15. In fact, by increasing 
,f sG  the beam’s stiffness and load carrying 

capacity also increase, which indirectly simulates the favorable effect of the shear 

reinforcements on the aggregate interlock. 

Predictions of the PDSC model in terms of the applied load versus displacement at the 

loaded section for all the beams of the experimental program are represented at Fig. 4.28. 

The good predictive performance was not only in terms of the load-deformation 

responses, but also in regards of the crack patterns (Figs. 4.29 and 4.30). The plastic zone 
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for each beam is also represented in Fig. 4.30 that shows the formation of the 

compressive strut in this type of shear tests. 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 4.28 – Experimental (Barros and Dias, 2013) and numerical load vs. the deflection at loaded 

deflection: (a) 3S-R; (b) 3S-4LI-S2; (c) 3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1.  

 

Fig. 4.31 represents the strain development in the stirrups and CFRP laminates measured 

through the test of the beam 3S-4LI-S2 in compare to those of the proposed model. The 

results demonstrate the reasonable level of accuracy for this beam, but this conclusion can 
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be generalizes for all the simulated beams. Therefore it is believed the assumption of the 

perfect bond between the transverse shear reinforcement and concrete bulk did not 

significantly influence the resolution of the numerical predictions. 

 

  
(a) 3S-R (b) 3S_4LI_S2 

  

(c) 3S_4LI_P2 (d) 3S_4LI4LI_SP1 

 
(e) 3S_4LI4LV_SP1 

Fig. 4.29 – Crack patterns of the tested beams at failure (Barros and Dias, 2013). 

 

crack pattern plastic zone 

  

 (a) 3S-R 

Fig. 4.30 –Crack patterns and plastic zones predicted by PDSC model for the beams: (a) 3S-R; (b) 3S-

4LI-S2; (c) 3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1 (the results are correspondent to the 

final converged step) 
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crack pattern plastic zone 

  

(b) 3S-4LI-S2 

 
 

(c) 3S-4LI-P2 

  

(d) 3S-4LI4LI-SP1 

  
(e) 3S-4LI4LV-SP1 

Fig. 4.30 – (Continued) 
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(a) 

 

 
(b) 

  
(c) 

 
 

(d) 

Fig. 4.31 – Experimental and numerical presentations of load-strain diagram for the beam 3S-4LI-

S2: (a) monitored laminates; (b) NSM laminate A; (c) NSM laminate B; (d) monitored still 

stirrup. 
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4.2.6 Effect of fiber dosage and prestress level on shear behavior of RC beams 

The experimental program (Soltanzadeh et al., 2016b) is composed of seven real-scale I 

cross section beams of 4000 mm total length, L, and 500 mm cross section height, h. 

These beams are categorized in two groups with, respectively, three and four members. 

The cross sectional dimensions and arrangement of the reinforcements of the beams in 

both, the first and second group, is illustrated in Fig. 4.32. The members of both groups 

shared the same configuration and geometry, but featured different level of prestress (in 

the first group of beams with three members) and fiber volume fraction (in the second 

group of beams with four members). Two different shear spans, of 1475 mm and 1650 

mm, were also adopted, respectively, for the beams of first and second group, as shown in 

Fig. 4.32.  

 

 

 

(a) 

 
  

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

Fig. 4.32 - Geometry, reinforcement and test setup of the beams of (a) group 1 (G1-F1.1-S0; G1-

F1.1-S23; G1-F1.1-S46), (b) group 2 except G2-F0-ST, (c) G2-F0-ST (dimensions in mm) 

(Soltanzadeh et al., 2016b). 
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The influence of prestressing the steel longitudinal reinforcements on the shear behavior 

of the beams was studied by testing the three beams of the first group, while the four 

beams of second group were tested to investigate the effect of fiber dosage on improving 

the shear resistance of the developed elements. The beams in both groups were 

longitudinally reinforced with one steel strand (15.2 mm diameter with a nominal cross 

section of 140 mm
2
) of seven wires (of 5 mm diameter each, 5 ), and 2 GFRP rebars of 

12 mm diameter, 12 , with ribbed surface. For the GFRP rebars elasticity modulus of 56 

GPa (
GFRPE =56 GPa), and tensile strength of 1350 (

,GFRP uf =1350 MPa) was reported at 

the experimental program (Soltanzadeh et al., 2016b). 

In the beams of the first group the level of prestress, solely applied to the steel strand, was 

the main variable investigated. These beams were developed without conventional steel 

stirrups by using the concrete composition SCC-F1.1 that includes 90 kg/m
3
 steel fibers 

(equal to 1.1% of the concrete volume). The beams of the second group were developed 

with constant level of prestress and different dosage of steel fibers, namely: 0%, 1.1%  

and 1.5% in volume (or respectively 0, 90, 120 kg/m
3
 steel fibers in weight). The 

concretes with 0% and 1.5% steel fibers are designated as SCC-F0 and SCC-F1.5, 

respectively. Both the steel and GFRP reinforcements of this group (group 2) of the 

beams were prestressed, the steel strand at 56% of its tensile strength (974 MPa, since the 

tensile strength of the strand is 1740 MPa), while the two GFRP bars were prestressed at 

30% of its tensile strength (405 MPa, since 
,GFRP uf =1350 MPa).  These beams of the 

second group were developed without conventional steel stirrups except the beam G2-F0-

ST. The beam G2-F0-ST was reinforced with steel stirrup of 6 mm diameter, 6 , with 

spacing of 130 mm. The steel stirrups had the elastic modulus of 200 GPa and yield, and 

ultimate tensile strength of respectively 556 MPa and 682 MPa. Table 4.16 presents the 

relevant characteristics of the beams of the first and second groups. 

Eight-noded serendipity plane stress finite elements with 33 Gauss–Legendre IP scheme 

were used for modeling the beams of both groups 1 and 2. In Fig. 4.33 is represented, as 

an example, the finite element mesh used for the simulation of the beam G1-F1.1-S0. The 

longitudinal steel strand and GFRP bars were modeled using 2-noded cable elements (one 

degree-of-freedom per each node) with two IPs. The compressive reinforcement and steel 
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stirrups installed in the beam G2-F0-ST are meshed using 2-noded embedded cables with 

two IPs. Perfect bond was assumed between the reinforcement bars/strand and the 

surrounding concrete. For modeling the behavior of the steel reinforcement, the stress-

strain relationship represented in Fig. 4.3 was adopted. The values of the parameters that 

define the stress-strain law (Fig. 4.3) for the steel strand, stirrups, and compressive 

reinforcement are included in Table 4.17. The behavior of GFRP bar was modeled using 

a linear-elastic stress-strain relationship. The prestress load was simulated by means of 

temperature variation applied to the cable elements modeling the GFRP bars and steel 

strand. Table 4.18 includes the values of the temperature variation applied for each 

simulated beam. The values of the parameters used to define the constitutive law for 

concretes SCC-F0, SCC-F1.1 and SCC-F1.5 are indicated in Table 4.19.  

 

Table-4.16 Details of the beams in first and second group. 

Specimen ID 
Concrete 

type 

Prestress level 

fV  

(%) 

Stirrup 
Steel strand 

(% of 
syf ; 

stress level in 

MPa) 

GFRP 

(% of 
,GFRP uf ; stress 

level in MPa) 

G
ro

u
p
 1

 G1-F1.1-S0 SCC-F1.1 0; 0 0 1.1 NO 

G1-F1.1-S23 SCC-F1.1 23; 400 0 1.1 NO 

G1-F1.1-S46 SCC-F1.1 46; 800 0 1.1 NO 

G
ro

u
p
 2

 G2-F0 SCC-F0 56; 974 30; 405 0 NO 

G2-F0-ST SCC-F0 56; 974 30; 405 0 YES 

G2-F1.1 SCC-F1.1 56; 974 30; 405 1.1 NO 

G2-F1.5 SCC-F1.5 56; 974 30; 405 1.5 NO 

 

 
Fig. 4.33 - Finite element mesh, load and support conditions used for analysis of the beam G1-

F1.1-S0.   

 

plane stress element with 8 nodes
LC

2D-cable element

   (GFRP bars)

P/2

  

  

  

2D-cable element

    (steel strand)
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Table-4.17 Values of the parameters of the steel constitutive model. 

Diameter 

(mm) 
sy  

(%) 

sy  

(N/mm
2
) 

sh  

(%) 
sh  

(N/mm
2
) 

su  

(%) 
su  

(N/mm
2
) 

Third branch 

exponent 
a 
15.2 0.87 1740 0.87 1740 20.0 1917 1 
b 
10 0.28 566 1 594 10.0 661 1 

c 
6 0.278 556 1 583 10.0 682 1 

a
 steel strand; 

b 
compressive reinforcement; 

c 
stirrups.  

 

Table-4.18 General information about the simulation of the prestress load by means of 

temperature variation. 

Specimen ID 

a

,t S  

(MPa) 

b

,t GFRP
 

(MPa) 

c
  

( / ( ))mm mm C

 

d

ST  

( )C  

e

GFRPT  

( )C  

G1-F1.1-S0 - - - - - 

G1-F1.1-S23 400 - 1 10
-5

 -200 - 

G1-F1.1-S46 800 - 1 10
-5

 -400 - 

G2-F0 974 405 1 10
-5

 -487 -723 

G2-F0-ST 974 405 1 10
-5

 -487 -723 

G2-F1.1 974 405 1 10
-5

 -487 -723 

G2-F1.5 974 405 1 10
-5

 -487 -723 
a
 

,t s thermal stress applied to the steel strand; 
b
 

,GFRPt  thermal stress applied to the GFRP 

bars; 
c
  coefficient of thermal expansion; 

d
( C)O

ST  temperature variation applied to the 

steel strand; 
e

( C)O

GFRPT  temperature variation applied to the GFRP bars. 

Note: the thermal strain and corresponding stress for the steel strand are calculated from: 

,t S ST   ; 
, ,t S S t SE  . For the GFRP bars the following equations are taken: 

,GFRPt GFRPT   ; 

, ,GFRPt GFRP GFRP tE  . 

To simulate the shear crack initiation and the degradation of crack shear stress transfer, 

the shear softening diagram represented in Fig. 3.2 is assumed, and the values of the 

parameters to define this diagram for each concrete are included in Table 4.19. For the 

concretes SCC-F1.1 and SCC-F1.5 the same crack shear strength was used (
,

cr

t p =1.75 

MPa), while for the concrete SCC-F0 the value 1.2 MPa was adopted for 
,

cr

t p . The shear 

fracture energy for the concrete without steel fiber (concrete SCC-F0) was adopted as 

,f sG =0.08 N/mm. For the concretes including the steel fibers (concretes SCC-F1.1 and 

SCC-F1.5) higher values of 
,f sG   are adopted, as indicated in Table 4.19, to simulate the 

effect of fiber reinforcement in resisting the degradation of shear stress transfer between 

the faces of the cracks during the cracking process. 
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Table 4.19 – Values of the parameters of the concrete constitutive model for concretes SCC-F0, 

SCC-F1.1, and SCC-F1.5. 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus 

for SCC-F0 E=32100 
2

N mm ; 

for SCC-F1.1 E =33230 
2

N mm ; 

for SCC-F1.5 E =30580 
2

N mm  

Parameters defining the plastic-damage part 

of the model 

for SCC-F0: 
cf =66.45 N/mm

2
 ; 

,f cG =25 N/mm ; 
1c =0.0035; 

0 =0.4; 

for SCC-F1.1: 
cf =67.05 N/mm

2
 ; 

,f cG =55 

N/mm ; 
1c =0.004; 

0 =0.4; 

for SCC-F1.5: 
cf =60.03 N/mm

2
 ; 

,f cG =65 N/mm ; 
1c =0.004; 

0 =0.4 

Quadrilinear tension softening diagram (Fig. 

3.1b) 

for SCC-F0: 
ctf  3.25 N/mm

2
;  

fG  0.08 N/mm; 
1  0.007; 

1 0.3;  

2  0.1; 
2  0.15; 

3  0.15; 
3  0.05; 

for SCC-F1.1: 
ctf  3.25 N/mm

2
;  

fG  6.0 N/mm; 
1  0.0005; 

1 0.75; 

2  0.0025; 
2  1.0; 

3  0.1; 
3  0.6; 

for SCC-F1.5: 
ctf  3.25 N/mm

2
; 

fG  7.5 N/mm; 
1  0.0005;

1 0.75;  

2  0.0025; 
2  1.0; 

3  0.1; 
3  0.6 

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Parameters defining the crack shear stress-

crack shear strain softening diagram (Fig. 3.2) 

for SCC-F0: ,

cr

t p  1.2 N/mm
2
;   0.4;  

,f sG =0.08 N/mm;  

for SCC-F1.1: ,

cr

t p  1.75 N/mm
2
;   0.2; 

,f sG =1.5 N/mm;  

for SCC-F1.5: ,

cr

t p  1.75 N/mm
2
;   0.2; 

,f sG =2.0 N/mm  

Crack bandwidth 
Square root of the area of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

Fig. 4.34 and Fig. 4.35 compare the numerical and the experimental load vs. mid-span 

deflection for the beams of first and second groups, respectively. Fig. 4.36 represents the 

experimental crack pattern of all the beams in both groups at the failure stage. 



CHAPTER 4. APPLICATION OF TWO DIMENSIONAL PDSC MODEL IN STRUCTURAL 

ANALYSIS 

111 

 

 
 

 

 

 

  
(a) (b) 

 
(c) 

Fig. 4.34 - Experimental and numerical load vs. mid-span deflection of the beams of the first 

group: (a) G1- F1.1-S0; (b) G1- F1.1-S23; (c) G1- F1.1-S46. 

 

In Fig. 4.37 is represented, as an example, the numerical crack pattern for the simulation 

of the beams G2-F1.5 at the end of the analysis (at the end of the last converged loading 

step). The figures 4.34 to 4.37 show that the numerical model is able to capture with good 

accuracy the deformational response of the beams and the experimentally observed 

profile of the failure crack. For all the beams the numerical peak load, 
max

NumF , predicted 

by the model are compared with the experimental ones, 
maxF , in Table 4.20. The 

information provided in Table 4.20 shows that the peak loads of all beams are closely 

simulated with the average error of 6.07%. 
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(a) (b) 

  
(c) (d) 

Fig. 4.35 - Experimental and numerical load vs. mid-span deflection of the beams of the second 

group: (a) G2- F0; (b) G2- F0-ST; (c) G2- F1.1; (d) G2-F1.5.  
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Fig. 4.36 – Crack pattern at failure of the first and second group of beams 

(Soltanzadeh et al., 2016b). 
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Fig. 4.37 - Numerical crack pattern predicted by PDSC model for the beam G2- F1.5 (The results 

correspond to the final converged step). 

 

Fig. 4.38 compares the numerical and the experimental load vs. strain (
STIRRUPP  ) 

relationship, where strain was registered in the location where the strain gauges SG4 and 

SG5 were installed in the stirrups of the beam G2-F0-ST (see Fig. 4.32). This figure 

indicates the both stirrups are already yielded at the failure stage of the beam G2-F0-ST, 

which was also observed in the experimental program.  

 

  

(a) (b) 

Fig. 4.38 - Experimental and numerical load vs. strain in steel stirrups of beam G2-F0-ST.  

 

The predicted 
GFRPP   relationships (load versus strain obtained in the IP closest to the 

mid-span of the beam) for all the beams, except for the G1-F1.1-S46 beam (due to 

malfunctioning of the corresponding strain gauge), are compared with those of 

experiments in Fig. 4.39. 
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Fig. 4.38 and Fig. 4.39 show the numerical simulations, in general, predict with good 

accuracy the strain measured in the stirrups and GFRP bars, which means the assumption 

of perfect bond between the steel stirrups and GFRP bars and surrounding concrete 

adopted in these simulations, is acceptable. It should be aware that strains recorded by 

strain gauges are quite dependent on their distance to the cracks crossing the 

reinforcements where they are installed.  

 

Table 4.20 – Details of the experimental results and the numerical analysis. 

Specimen ID maxF  

(kN) 

max

NumF  

(kN) 

max max max/NumF F F  

(%) 

G1-F1.1-S0 240.12 221.04 7.9 

G1-F1.1-S23 244.80 249.08 1.74 

G1-F1.1-S46 245.6 251.53 2.41 

G2-F0 229.52 207.63 9.53 

G2-F0-ST 277.98 263.88 5.0 

G2-F1.1 263 296.91 12.89 

G2-F1.5 293.75 302.78 3.07 

 Average 6.07 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 4.39 - Experimental and numerical load vs. GFRP strain at mid-span of the beams. 
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The numerical relationships of the load vs. strain of steel strand at the beam’s mid-span (

STRANDP  ) for all the developed beams are represented in Fig. 4.40 (the strain is 

obtained at the IP closest to the mid-span of the beam). Fig. 4.40 shows that the steel 

strand is not yielded in the control beam of the group 1 (the beam G1-F1.1-S0), while in 

the beams G1-F1.1-S23 and G1-F1.1-S46 (the beams in group 1 and with prestress 

applied to the steel strand) the steel strand has yielded at the loads about 230 kN. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4.40 - Numerical load vs. strain of strand in mid-span of the beams relationships. 
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(g) 

Fig. 4.40 – (Continued)  

 

For the beams G2-F0 and G2-F0-ST, which are in the second group and made by 

concrete SCC-F0, the steel strands has yielded at the load of about 200 kN. The predicted 

strain in the strand at failure stage of the beam G2-F0-ST is about 77% higher than that of 

the G2-F0, which is mainly due to the larger ultimate deflection of the beam G2-F0-ST.  

For the beams in the second group and made by SFRSCC (the beams G2-F1.1 and G2-

F1.5), the yield initiation of steel strands has occurred at the load of about 240 kN. This 

load is higher than those predicted for the beams made by concrete SCC-F0 (the beams 

G2-F0 and G2-F0-ST), since the steel fibers bridging the flexural cracks crossing the steel 

strand have contributed to decrease the average strain installed in the strand 

(Mazaheripour et al., 2016).  

Taking into account that the steel strand of the G1-F1.1-S0 beam was the unique to have 

not yielded, the remaining beams can be considered as having failed in flexural-shear, 

since the formation of a critical shear crack in these beams has occurred after yield 

initiation of the steel strand and was caused by the strain-hardening character of this type 

of steel, and the linear behavior and relatively high ultimate tensile strain of GFRP bars. 

 

4.3 CONCLUSIONS 

The constitutive model developed in chapter 3, was integrated in plane stress element of 

the FEMIX computer code, which is a general purpose finite element program. The 

chapter 4 is mainly dedicated to explore the potentialities of the proposed constitutive 

model for the analysis of concrete and RC structures. The model is employed to simulate 

0 6000 12000 18000
0

100

200

300

( )

( )

4870 

Yielding of steel strand

STRAND

 Numerical

( ) 

 
L

o
ad

 -
 P

 (
k

N
)

strain of steel strand at mid-span -

G2-F1.5

8700sy 

Deflection 15.6mm



CHAPTER 4. APPLICATION OF TWO DIMENSIONAL PDSC MODEL IN STRUCTURAL 

ANALYSIS 

117 

 

 
 

 

 

experimental tests that are governed by nonlinear phenomenon due to simultaneous 

occurrence of cracking and inelastic deformation in compression. The simulated 

examples cover a wide range of geometry of specimens, concrete type, loading 

configurations, and reinforcement conditions.  

The numerical simulations have predicted with good accuracy the load carrying capacity 

ductility, crack pattern, plastic (compressive) zone, and failure modes of all types of 

structures analysed. The results of these analyses indicate the robustness and accuracy of 

the proposed model for simulating concrete and RC structures subjected to multi-axial 

loading configurations. 
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C H A P T E R   5 

THREE DIMENSIONAL PDSC MODEL: 

FORMULATION AND APPLICATION IN STRUCTURAL 

ANALYSIS 

 

 

 

 

5.1 INTRODUCTION 

Three dimensional FEM analyses can be simplified into two dimensional ones when 

geometry of the structure under analysis and the distribution of loads allow the structure 

to be treated as bi-dimensional body. In this case the two dimensional analysis can be 

used to save the computational cost with sufficient accuracy. However in some cases, due 

to specific geometry of the structure or the distribution of the loads, the two-dimensional 

analyses are incapable to predict with sufficient accuracy the behaviour of the structures 

under analysis, therefore three dimensional approaches should be used instead 

The present chapter proposes a new three dimensional (3D) constitutive model for cement 

based materials, based in the generalization of the two dimensional (2D) plastic-damage 

multidirectional fixed smeared crack model (represented in chapter 3), allowing the 

possibility of simulating its failure in structures with arbitrary geometry and dimensions. 

The proposed model simulates the crack opening and shear sliding according to an 

already existing 3D multidirectional fixed smeared crack model (Ventura-Gouveia et al., 

2008; Ventura-Gouveia, 2011). The model simulates the nonlinear compressive 
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behaviour of concrete between the cracks using a numerical strategy that combines the 

elasto-plasticity (plasticity) and damage theories. 

Later in this chapter the three dimensional PDSC model was included in the 3D solid 

element of the FEMIX computer code (Sena-Cruz et al., 2007; Ventura-Gouveia et al., 

2008), and its performance validated by simulating examples at the material and 

structural levels. The numerical tool is employed to simulate the experimental tests of RC 

column subjected to different eccentric loadings, RC beams made by different concrete 

strength classes, and RC walls subjected to pure torsion. The predicted load carrying 

capacity, ductility, crack pattern, plastic (compressive) zone, and failure modes of all 

types of analysed structures are discussed and compared with the experimental data. 

Finally, a parametric study is executed for highlighting the sensitivity of the numerical 

simulations to the values adopted for the model parameters. 

 

5.2 MODEL DESCRIPTION 

5.2.1 Part of the model corresponding to the cracking process 

To derive the constitutive equation of the proposed model, the additive decomposition of 

the incremental strain vector,  , into an incremental crack strain vector, cr
 , and an 

incremental elastic strain vector, e
 , and an incremental plastic strain vector, p

 , is 

adopted (i.e. cr e p
        ). The incremental elastic strain vector is related to 

the incremental stress vector,  , according to the following constitutive equation: 

 

( )
e p cr

D         (5.1) 

 

Being 
1 2 3 23 31 12{ , , , , , }               the incremental stress vector induced into 

the material due to 
1 2 3 23 31 12{ , , , , , }               and considering the constitutive 

matrix of the intact material, e
D .  

The cr
  is obtained from the incremental local crack strain vector, cr

  according to 

the Eq. (2.32). 
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 where: 

1 2
, ,

Tcr cr cr cr

n t t           (5.2) 

 

with the subscripts n , 
1t , and 

2t  indicating the axes of the local coordinate system of the 

crack (see Fig. 5.1). The component cr

n  is the mode I incremental crack normal strain, 

while 
1

cr

t  and 
2

cr

t  are the sliding mode incremental crack shear strains in the 

directions 
1̂t  and 

2̂t , respectively. 

 

 

Fig. 5.1 – Crack stress components, displacements and local coordinate system of the crack 

(Ventura-Gouveia et al., 2008; Ventura-Gouveia, 2011). 

 

At the crack zone of an IP, the opening and sliding process is governed by the following 

crack constitutive relationship according to Eq. (2.35), (i.e. cr cr cr
D    ). 

where cr
  is the vector of the incremental crack stress in the crack coordinate system 

with the contribution of normal, cr

n , and tangential components, 
1

cr

t , 
2

cr

t : 

 

1 2
, ,

Tcr cr cr cr

n t t            (5.3) 
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Fig. 5.1 represents the components of the crack stress vector (i.e. cr

n , 
1

cr

t , 
2

cr

t ) in the 

local coordinate system of the crack, and the corresponding displacements (i.e. w , 
1s , 

2s

), being w  the opening displacement, 
1s  the sliding displacement in 

1̂t  direction, and 
2s  

sliding displacement in 
2̂t  direction. 

At the IP the equilibrium condition is assured by imposing the Eq. (2.37), (i.e. 

cr cr
T    ). 

The matrix cr
D  that includes the constitutive law of the active cracks, i.e., the ones not 

completely closed, is defined as: 

 

1

2

0 0

0 0

0 0

cr

n

cr cr

t

cr

t

D

D D

D

 
 

  
 
 

  (5.4) 

 

where cr

nD , 
1

cr

tD  and 
2

cr

tD  represent, respectively, the modulus corresponding to fracture 

mode I (normal), sliding modulus in the 
1̂t  direction, and sliding modulus in the 

2̂t  

direction. 

The crack normal stress, cr

n , and the modulus cr

nD  are obtained from a 

trilinear/quadrilinear diagram i.e. cr cr

n n   law, like the one represented in Fig. 3.1.  

The sliding modulus 
1

cr

tD  and 
2

cr

tD  can be simulated as: 

 

1 2 1

cr cr

t t cD D G



 


 (5.5) 

 

where 
cG  is the concrete elastic shear modulus, while the shear retention factor,  , can 

be a constant value or, alternatively, obtained by Eq. (3.6).  

The cr cr

t t   softening law (represented in Fig. 3.2) adopted to simulate more correctly 

the shear stress transfer during the crack opening process (Ventura-Gouveia, 2011; Baghi 
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and Barros, 2016; Soltanzadeh et al., 2016b). In this approach the crack shear stress (

1

cr

t or 
2

cr

t ), and the modulus cr

tD  are obtained from the cr cr

t t   softening law. The 

modulus of the first branch, 
,1

cr

tD  (see Fig. 3.2), is obtained according to Eq. (5.5) and 

using a constant value in the range  0,1 for  . For each crack shear component, the 

crack shear strain at peak (
1 ,

cr

t p  or 
2 ,

cr

t p ) is obtained using the crack shear strength 
,

cr

t p  and 

the crack shear modulus 
,1

cr

tD  from the following equation (Ventura-Gouveia, 2011): 

 

1 2

,

, ,

,1

cr

t pcr cr

t p t p cr

tD


    (5.6) 

 

The ultimate crack shear strain in each sliding directions (
1 ,

cr

t u  or 
2 ,

cr

t u ) depends on the 

shear fracture energy, 
,f sG , crack shear strength, 

,

cr

t p , and the crack bandwidth, bl , as 

follows (Ventura-Gouveia, 2011): 

 

1 2

,

, ,

,

2 f scr cr

t u t u cr

t p b

G

l
 


   (5.7) 

 

As demonstrated in the previous 2D version of the PDSC model (represented in chapter 

3), for accurate predictions of the behavior of RC elements failing in shear, is 

fundamental the adoption of a crack shear softening approach. 

It should be noted the above-described equations are represented for the particular case of 

only one crack per IP, however, the model is able to consider forming several cracks in 

the same IP. The details corresponding to this development can be found elsewhere 

(Ventura-Gouveia et al., 2008; Ventura-Gouveia, 2011). 

 

5.2.2 Part of the model corresponding to the elasto-plasticity 

The plastic strain vector, p
 , which appears in Eq. (5.1), is evaluated by a time-

independent plasticity model that is defined by four entities: yield function (yield 
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surface); flow rule; evolution law for the hardening parameter; and conditions for 

defining loading-unloading process. The plasticity part of the model is formulated in the 

effective stress space, and accounts for the development of irreversible strains and 

inelastic volumetric expansion of material under compression. To define the effective 

stress space a distinction is made between the stress acting on damaged and undamaged 

configurations of the material when subjected to a compression stress field. Effective 

stress means the stress acting in the undamaged configuration of the material, defined as 

the force divided by the undamaged area. Force divided by the total area (damaged plus 

undamaged area) is called nominal stress (Edalat-Behbahani et al., 2015; Edalat-

Behbahani et al., 2016). Formulation of the plastic response in the effective stress space 

implies the plasticity model do not account for the damage formed when the material is 

loaded in compression. In this model, the state of damage in material under compression 

is simulated in the framework of CDM as will be discussed in section 5.2.3. 

For the three dimensional model, the equations describing yield function (Eq. (3.15)), 

flow rule (Eq. (3.16)), evolution law for the hardening parameter (Eq. (3.17)), and 

onditions for defining loading-unloading process (Eq. (3.18)) still hold in the form 

deduced in section 3.3.3. 

 

5.2.3 Part of the model corresponding to the damage process 

In this model, the stiffness degradation and softening behaviour of concrete under 

compression are simulated in the framework of CDM, in which the damage is considered 

as an isotropic process. In this approach the state of damage in concrete under 

compression is equally distributed in all directions, and can be represented by a scalar 

measure, represented by 
cd . The scalar damage parameter 

cd  calculated according to Eq. 

(3.54). The scalar damage parameter 
cd  is used to map the effective stress vector ( ) 

into the nominal stress vector ( ) according to Eq. (3.14). 

The coupling between the presented parts of the model and the corresponding obtained 

system of nonlinear equations, that should be solved to update the local variables of the 

3D PDSC model at a generic load increment of the incremental/iterative Newton–

Raphson algorithm generally adopted in FEM-based material nonlinear analysis, are 
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similar to the described in the section 3.3.3.2 and 3.3.4 of the chapter 3 for the 2D PDSC 

model. 

 

5.3 SIMULATIONS AT THE MATERIAL LEVEL 

The proposed model is initially validated by executing numerical tests at the material 

level (single cube-shaped 8-noded solid element with one IP), which are intended as an 

elementary verification of the basic capabilities of the model. The loading procedure of 

the tests consists of imposing prescribed displacement increments and assuming the crack 

bandwidth (
bl ) equal to 100 mm. Since the concrete properties in each test were different, 

the corresponding values are indicated in the caption of the figures. 

- Simulation of cyclic compression-tension loading sequence (Fig. 5.2): The element is 

initially loaded in compression, along the direction X2, up to a stage where the  

concrete enters in the softening phase (
1c c ). Due to compressive loading beyond 

the uniaxial compressive strength of the concrete ( 30cf  MPa), damage due to 

inelastic compressive deformation is developed ( 0cd  ). Then the element is unloaded 

to tension and the unloading occurs with the damaged stiffness (1 )cd E , being E the 

undamaged stiffness at the plasticity model. By increasing the tensile loading, a crack 

(with the crack plane orthogonal to the loading direction X2) initiates and further 

propagates. The element is then reloaded to compression, which causes the crack to be 

gradually closed with a secant unloading branch. By increasing compressive loading 

the crack is completely closed and later the response returns back to the softening 

stage in compression. The loading procedure is continued for one more cycle of 

compression-tension-compression, and the similar material response as that of the first 

cycle was simulated. The response of the proposed model (in nominal stress space) is 

compared in Fig. 5.2a with the solution reported at the work of Gernay et al. (2013). 
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(a) 

 

 
(b) 

Fig. 5.2 – Simulation of cyclic compression-tension load sequence at the 

material level (values for the parameters of the constitutive model:  =0.2; 

E =22 GPa; cf =30 MPa; 
,f cG =7 N/mm; ctf =3 MPa; 1c =0.0025; 0 =0.3; 

fG 

=0.04 N/mm; 1 =0.2; 1 =0.7; 2 =0.75; 2 =0.2). 

 

For comparison, Fig. 5.2b represents the response of the proposed model in nominal 

stress space (represented at Fig. 5.2a) and the one in effective stress space. In 

compression zone (
2 0  ), the stress-strain responses in both effective and nominal 

stress spaces are identical for the domain before attaining the peak (
1c c ), whereas 

for higher deformations (
1c c ) the two responses starts diverging because of the 

damage evolution process ( 0cd  ). In tension zone, the simulated responses in both 

effective and nominal stress spaces are also identical, since the compressive damage 
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scalar (
cd ) only affects the negative (compressive) part of effective stress vector (



), (see Eq. (5.14)). 

 

- Simulation of closing a crack developed in one direction, by imposing compressive 

load in the orthogonal direction (Fig. 5.3): The element is initially subjected to the 

uniaxial tension in the direction of X2 (Step 1).  

 

 

 

Fig. 5.3 – Prediction of the PDSC model for closing a crack developed in one direction, by 

imposing compressive load in the orthogonal direction (values for the parameters of the 

constitutive model:  =0.2; E =36 GPa; cf =30 MPa; 
,f cG =30 N/mm; ctf =2.45 MPa; 1c

=0.0025; 0 =0.3; 
fG  =0.05 N/mm; 1 =0.2; 1 =0.7; 2 =0.75; 2 =0.2). 

 

Then a crack is formed with the orientation of 0º  , and further propagated up to a 

stage that the crack does not be able to transfer more tensile stresses (fully opened 

crack status). At this stage the displacement in the direction of X2 is fixed (Step 2), and 

the element is loaded by compressive displacements in the X3 direction up to end of 

the analysis (Step 3). 
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Due to applied compressive displacements, uniaxial compressive stresses are induced 

in the material in the X3 direction. Consequently, expansion of the material in the X2 

direction imposes the crack be gradually closing. When the material is in the 

compression softening phase, in X3 direction, the crack will be completely closed. 

When the crack closes, the state of stress is changed to biaxial compression, and a 

second hardening-softening response is reproduced corresponding to the appropriate 

biaxial state of stress. The above-described loading path was successfully simulated by 

the proposed model (see Fig. 5.3), and the prediction agrees well with the solution of 

Cervenka and Papanikolaou (2008). 

 

- Simulation of closing two cracks developed along two orthogonal directions, by 

imposing compressive load in the third orthogonal direction (Fig. 5.4): The element is 

initially subjected to equal tensile displacements along orthogonal directions X1 and 

X2, therefore, two orthogonal cracks are developed (Step 1 in Fig. 5.4). The tensile 

displacements are increased up to the stage that the two orthogonal cracks attain the 

fully opened crack status.  

At this stage the displacements of the elements in directions X1 and X2 are fixed (Step 

2 in Fig. 5.4) and, simultaneously, compressive displacements are imposed in direction 

X3 up to end of the analysis (Step 3 in Fig. 5.4). Due to compressive contraction in 

direction X3, the material expands along X1 and X2 directions, consequently the both 

existing cracks are gradually closing. When the material is in compressive softening 

stage (in direction X3), both cracks become completely closed, and the state of stress in 

direction X3 changes from uniaxial compression to triaxial compressive state. Fig. 5.4 

presents the simulated loading path, and its comparison to the solution reported by 

Cervenka and Papanikolaou (2008). A good agreement can be observed. 
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Fig. 5.4 – Prediction of the PDSC model for closing two cracks developed along two 

orthogonal directions, by imposing compressive load in the third orthogonal direction 

(values for the parameters of the constitutive model adopted the same as those mentioned 

in Fig. 5.3). 

 

5.4 SIMULATIONS AT THE STRUCTURAL LEVEL 

5.4.1 RC columns subjected to different eccentric loadings 

To highlight the efficiency of the proposed model, three RC columns, here designated as 

C-e0.3, C-e0.57, and C-e0.86 tested by El-Maaddawy (2009), were simulated. All the 

specimens have the same geometry and reinforcement layout as represented in Fig. 5.5. 

The test setup used for the execution of these tests is represented in Fig. 5.6. The test 

specimen includes two end corbels, with the cross sections of 250250 mm and length of 

350 mm, to transfer the load to the central region of the specimen, designated by “test 

region”, which has the cross section of 125125 mm and length of 500 mm. The flexural 

and shear reinforcement adopted for the end corbels are designed to ensure the damage 

only occurs in the “test region” (El-Maaddawy, 2009). The differences between the 

specimens C-e0.3, C-e0.57, and C-e0.86 are restricted only to the length of the 
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eccentricity (e) of the load applied to each specimen. The value of “e” for the C-e0.3, C-

e0.57, and C-e0.86 is, respectively, 37.5, 71, and 107.5 mm that correspond to an 

eccentricity length over the section height (e/h) ratios of 0.3, 0.57, and 0.86 (h=125 mm). 

The longitudinal steel reinforcement in the “test region” consists of 4 steel bars of 10 mm 

diameter while 6 mm diameter hoops are applied as the shear reinforcement. More details 

about the geometry, reinforcing system and support conditions are indicated in Fig. 5.5 

and Fig. 5.6. 

 

 

Fig. 5.5 – Details of the test specimen (El-Maaddawy, 2009) (dimensions in mm). 

 

FEM modelling of the concrete, and the loading steel plates are performed using twenty-

noded solid elements with 222 Gauss–Legendre integration scheme. The loading steel 

plates are modeled as a linear-elastic material with Poisson’s coefficient of 0.3 and 

elasticity modulus of 200 GPa. Fig. 5.7 represents, as an example, the finite element mesh 

used for the simulation of the column C-e0.86 (the differences between each column test 

are limited to the length of eccentricity for the load application). The longitudinal steel 

bars and steel hoops are modeled with 3D embedded cables of 2 nodes (one degree-of-
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freedom per node), by using a 2 Gauss-Legendre integration scheme, and assuming 

perfect bond to the surrounding medium.  

 

 

 
 

 

 

Fig. 5.6 – Test set up (El-Maaddawy, 2009).  

 

For modelling the behaviour of the steel bar elements, the stress-strain relationship 

represented in Fig. 4.3 was adopted, and the values of parameters used to define this 

diagram are included in Table 5.1. Properties of concrete are taken from (El-Maaddawy, 

2009), and the values of the parameters to define the PDSC model are, accordingly, 

included in Table 5.2. Elements of the top and bottom corbels are assumed exhibiting 

linear elastic behaviour during the analysis, since no damage is reported for these 

elements in the original papers. The applied load is uniformly distributed over the 

appropriate edges of those elements of the top steel plate (see Detail A of Fig. 5.6), and 

the simulation is performed under the displacement control by the arc-length method 

considering the horizontal X2 translational degree of freedom of a point located at the 

mid-height of tensile zone of the column. 
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Table 5.1 – Values of the parameters of the steel constitutive model for the tests with RC column 

subjected to eccentric loading. 

 
sy  

(%) 

sy  

(N/mm
2
) 

sh  

(%) 
sh  

(N/mm
2
) 

su  

(%) 
su  

(N/mm
2
) 

Third branch 

exponent 

6 , 10  0.26 550 0.26 550 10 725 1 

 

Table 5.2 – Values of the parameters of the concrete constitutive model for the tests with RC 

column subjected to eccentric loading. 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =20000 N/mm
2 

Parameters defining the plastic-damage part of 

the model 

0 =0.4; 
cf =26 N/mm

2
; 

1c =0.003; 

 
,f cG =10 N/mm  

Trilinear tension softening diagram (Fig. 3.1a) 
ctf =1.8 N/mm

2
; 

fG  =0.08 N/mm; 
1 =0.004; 

1 = 0.4; 
2 =0.1; 

2 = 0.15 

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Type of shear retention factor law P1 = 2 

Crack bandwidth 
Cube root of the volume of Gauss 

integration point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 

 

   

(a) (b) 

Fig. 5.7 – Finite element mesh used for the simulation of the column C-e0.86: (a) concrete 

and steel plates; (b) reinforcements.   
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The experimental relationship between the applied load versus the lateral mid-height 

displacement (
hP U ) of the column C-e0.3 is represented in Fig. 5.8a. This figure 

includes the predicted 
hP U  responses obtained by PDSC model and the SC model. The 

SC model includes the same 3D multidirectional fixed smeared crack approach (Ventura-

Gouveia et al., 2008; Ventura-Gouveia, 2011) to account for cracking, but considers the 

linear elastic behaviour for the material under compressive deformations.  

 

 

(a) 

  

(b) (c) 

Fig. 5.8 – Experimental vs. numerical P-Uh responses (El-Maaddawy, 2009)  for the specimen: 

(a) C-e0.3; (b) C-e0.57; (c) C-e0.86.   

 

According to the experimental observations, the column C-e0.3 exhibits a ductile 
hP U  
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side of the column, without yielding of the longitudinal steel in the tensile side of the 

specimen. 

The experimental load vs. strain (
,r tP  ) relationships, where strain was recorded in 

mid-height of the longitudinal steel reinforcement located at tensile zone, corresponding 

to the column C-e0.3 is provided at Fig. 5.9a. This figure, Fig. 5.9a, indicates that the 

strain in the reinforcement at failure stage is about 
,tr  0.0008, which is less than the 

strain corresponding to the yield initiation of steel bar (
,t 0.0026r  ). 

 

   
(a) (b) (c) 

Fig. 5.9 – Experimental vs. numerical ,r tP   responses (El-Maaddawy, 2009) for the specimen: 

(a) C-e0.3; (b) C-e0.57; (c) C-e0.86.   

 

The numerical analysis using the SC model reveals that at the load corresponding to 40 

kN the cracks in the tension-side of the column C-e0.3 are initiated (see Fig. 5.8a). Once 

these cracks start to propagate, the stiffness of 
hP U  response slightly decreases, but the 

predicted load carrying capacity continuously increases without the occurrence of a 

failure load, since the SC model assumes an elastic behaviour for the concrete in 

compression. However, according to the PDSC response, after the initiation of the cracks 

in the tension-side of the column, the 
hP U  response is mainly governed by the 

nonlinear compressive behaviour of concrete at compression side of the column.  

Fig. 5.10b and 5.10c present, respectively, the numerical crack pattern and the plastic 

zone, at the deformation corresponding to 9.2hU   mm (last converged step). As can be 
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seen in Fig. 5.10b, the cracks with large opening status are spread at the tension-side of 

the column, while Fig. 5.10c shows the plastic zone is concentrated at the compression 

side of the column. This numerical prediction correlates well with the experimental 

observations (see Fig. 5.10a). The 
,r tP   response predicted by PDSC model, also, 

confirms the longitudinal steel bars located in the tensile side of the column have not 

yielded at the failure stage (see Fig. 5.9a). 

 

   

(a) (b) (c) 

Fig. 5.10 – Results of the specimen C-e0.3: (a) experimentally observed damage (El-Maaddawy, 

2009); (b) numerical crack pattern and (c) plastic zone (results of (b) and (c) correspond to the 

last converged step ( 9.2hU mm ). 

 

According to the experimental program, the columns C-e0.57 and C-e0.86 have failed by 

yielding of longitudinal tension steel and crushing of concrete at compression side of the 

specimen (El-Maaddawy, 2009). Predictions of PDSC model for the columns C-e0.57 

and C-e0.86 are represented in Fig. 5.8 and Fig. 5.9 in terms of 
hP U  and 

,r tP   

relationships, respectively. As can be in seen in these two figures the PDSC model was 

able to predict with good accuracy the overall experimental 
hP U  and 

,r tP   
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responses of the columns C-e0.57 and C-e0.86. The predicted 
,r tP   relationships for 

both columns confirm the tensile longitudinal steel bars are already yielded at their failure 

stages. By comparing the experimental 
hP U  and 

,r tP   responses of the three 

columns, it can be concluded that by increasing the e/h ratio the failure load decreases 

whereas the strains in tensile longitudinal reinforcement bars increase. This experimental 

observation was successfully simulated by the PDSC model as revealed in Fig. 5.8 and 

Fig. 5.9. 

 

5.4.2 RC beams made by different concrete strength classes 

The proposed model is applied in this section on the simulation of RC beams made by 

different concrete strength classes, tested by Yang et al. (2003). The six beams analysed: 

L-60, L-75, L-100, H-60, H-75, H-100, have the same shear span over cross-section depth 

ratio (a/h) and thickness (b). Fig. 5.11 and Table 5.3 provide the relevant information 

about these beams. The tensile longitudinal reinforcement ratio for all the beams is about 

1.0%, applied in one or two layers, while no shear reinforcement at the shear spans is 

adopted for these beams. The tensile reinforcement consists of steel bars of 19 mm 

diameter and 22 mm diameter, with a total cross sectional area represented by Ast in Table 

5.3.  

 

 
Fig. 5.11 – Geometry and reinforcement layout for the beams tested by Yang et al. 

(2003) (dimensions in mm). 
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Table 5.3 – Details of the beams tested by Yang et al. (2003). 

ID group cf  

(MPa) 

h  

(mm) 

a  

(mm) 

d  

(mm) 
L  

(mm) 

l  

(mm) 
stA (a) 

(mm
2
) 

Web 

Reinf. 

a/h 

(-) 

b 

(mm) 

L-60 L 31.4 600 300 555 2400 2100 861 

No 0.5 

160 

H-60 H 78.5 600 300 555 2400 2100 861 160 

L-75 L 31.4 750 375 685 1650 1350 1148 160 

H-75 H 78.5 750 375 685 1650 1350 1148 160 

L-100 L 31.4 1000 500 935 1900 1600 1348 160 

H-100 H 78.5 1000 500 935 1900 1600 1348 160 

(a)
stA : 861 (= 3 No. 19); 1148 (= 4 No. 19); 1348 (= 2 No. 19 + 2 No. 22)  

 

In order to prevent flexural failure by the yielding of tension bars prior to shear failure, 

some of the bars (namely those of 19 mm diameter) were of high tensile strength. Two 

steel bars of 10 mm diameter were used as compressive reinforcements for all the beams. 

The properties of the steel bars are indicated in Table 5.4. The beams can be assembled in 

two groups according to the concrete strength level: L group that contains the beams of 

concrete strength of 31.4 MPa (
cf =31.4 MPa); and H group formed by the beams made 

by high strength concrete (
cf =78.5 MPa). Each group (L or H) contains three beams that 

differ on the overall depth of the cross section (h=600, 750, or 1000 mm), while all the 

beams have the same a/h ratio equal to 0.5. 

Twenty-noded solid elements with 333 Gauss–Legendre integration scheme were used 

for modelling the beams, supports and loading plates. Fig. 5.12 presents, as an example, 

the finite element mesh used for the simulation of the beam L-75. The steel reinforcement 

is modelled by 2-noded perfect bonded embedded cables with two IPs. For modelling the 

behaviour of the steel bar elements, the stress-strain relationship represented in Fig. 4.3 

was adopted, whose defining values are included in Table 5.4.  

Support and loading plates are modeled as a linear-elastic material with Poisson’s 

coefficient of 0.3 and elasticity modulus of 200 GPa. Properties of both regular and high 

strength concrete (
cf =31.4 MPa, 

cf =78.5 MPa) are taken from Yang et al. (2003), and 

the values of the parameters to define the PDSC model are, accordingly, included in 

Table 5.5. 
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Fig. 5.12 – Finite element mesh used for the simulation of the beam L-75 

(due to symmetry conditions only half beam was modelled). 

 

For the concrete with cf =31.4 MPa the value of 
,f cG = 10 N/mm was considered, which is 

the lower limit of the interval values proposed by Vonk (1992). For the high strength 

concrete the average value of the interval proposed by Vonk (1992) was assumed (
,f cG = 

15 N/mm). To simulate the shear crack initiation and the degradation of crack shear stress 

transfer, the shear softening diagram represented in Fig. 3.2 is assumed, and the values of 

the parameters to define this diagram are included in Table 5.5. Due to lack of reliable 

experimental evidences to characterise this diagram, the adopted values were estimated 

taking into account the results obtained in previous simulations with RC beams failing in 

shear, as well as the influence of the concrete strength class in the values of these 

parameters (Barros et al., 2016; Baghi and Barros, 2016; Edalat-Behbahani et al., 2015).  

 

Table 5.4 – Values of the parameters of the steel constitutive model for modelling the beams 

tested by Yang et al. (2003).  

Bar 

diameter 
sy  

(%) 

sy  

(N/mm
2
) 

sh  

(%) 

sh  

(N/mm
2
) 

su  

(%) 

su  

(N/mm
2
) 

Third branch 

exponent 

22  0.21 407 2.5 420 10 553 1 

19  0.413 804 1.3 808 10 890 1 

10  0.209 408 1.42 412 4.4 549 1 

 

3X

1X

2X

roller supports

elements of steel

 plates

elements of concrete
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Table 5.5 – Values of the parameters of the concrete constitutive model for simulating the beams 

tested by Yang et al. (2003). 

Property Group Value 

Poisson’s ratio L, H  =0.15 

Young’s modulus 
L E =27000  N/mm

2 

H E =39000 N/mm
2
  

Parameters defining the plastic-

damage part of the model 

L 
0 =0.4; 

cf =31.4 N/mm
2
; 

1c =0.0025;  

,f cG =10 N/mm 

H 
0 =0.4; 

cf =78.5 N/mm
2
; 

1c =0.0035;  

,f cG =15 N/mm 

Trilinear tension softening 

diagram (Fig. 3.1a) 

L 
ctf =1.8 N/mm

2
; 

fG  =0.07 N/mm; 
1 =0.005; 

1 = 

0.3; 
2 =0.1; 

2 = 0.15 

H 
ctf =2.0 N/mm

2
; 

fG  =0.08 N/mm; 
1 =0.005; 

1 = 

0.3; 
2 =0.1; 

2 = 0.15 

Parameter defining the mode I 

fracture energy available to the 

new crack (Sena-Cruz, 2004) 

L, H 2 

Parameters defining the crack 

shear stress-crack shear strain 

softening diagram (Fig. 3.2) 

L, H ,

cr

t p =1.2 N/mm
2
;  =0.1 ; 

,f sG =0.08 N/mm 

Crack bandwidth L, H Cube root of the volume of Gauss integration point 

Threshold angle (Sena-Cruz, 

2004) 
L, H 30 degree 

Maximum number of cracks 

per integration point (Sena-

Cruz, 2004) 

L, H 2 

 

The relationships between the applied force and the mid-span displacement, F-U, for all 

the beams, registered experimentally and obtained numerically with the PDSC model, are 

represented in Fig. 5.13. 

According to the experimental observations, all the beams exhibited large load carrying 

capacity after the formation of the first diagonal crack, due to the resisting mechanism 

ensured by the compressive strut connecting the loading points and the supports. The 

experimental cracking patterns of all beams at the failure stage demonstrated the 

formation of flexural cracks with very small crack width in middle of the beam, whereas 

highly propagated diagonal cracks were observed along the line connecting the support 

and loading plates. All beams failed by crushing of concrete compressive strut in brittle 
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and sudden manner (Yang et al., 2003). In Fig. 5.14 is represented, as an example, the 

experimental cracking patterns of the beams H-60 at its failure stage, while the same 

pattern was observed for the other beams at the test (Yang et al., 2003).  

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 5.13 – Experimental (Yang et al., 2003) and numerical load vs.  mid-span deflection 

for the beams: (a) L-60; (b) L-75; (c) L-100; (d) H-60; (e) H-75; (f) H-100. 

 

Table 5.6 gives the failure loads of the beams obtained in the experimental program ( expF

) and in the numerical simulations ( numF ), where it is verified that PDSC model was able 

to simulate, with high accuracy, the experimental failure loads with an average error of 

5.13% (see Table 5.6). 
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(a) (b) 

 

(c) 

Fig. 5.14 – Results of the beam H-60: (a) experimental crack patterns; (b) numerical 

crack pattern; (c) plastic zone (for (b) and (c) the damage stages are obtained at the last 

converged step).  

 

By comparing expF  of the beams with the same cross section depth but of different 

concrete compressive strength, it can be concluded the increase of 
cf  from 31.4 to 78.5 

MPa resulted in an average increase of 66% in the failure loads. This experimental 

observation was successfully captured by the PDSC model, as shown in Table 5.6 and 

Fig. 5.13. This figure also shows that the PDSC model fit with high accuracy the 

experimental F U  curves at all stages of loading till failure. Fig. 5.14b shows that the 

diagonal cracks at the last converged step of the analysis are in the full opening status 

(cracks in pink colour), which means that the cracks are not capable of transferring any 

type of stresses, while the simulated plastic zone for this beam (Fig. 5.14c) evidences the 

formation of the compressive struts connecting the loading points and supports. 
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Table 5.6 – Experimental and numerical failure loads of the beams. 

ID group 
expF  

(kN) 

numF  

(kN) 

exp

exp

numF F

F


 

(%) 

L-60 L 1070.2 1047.8 2.09 

H-60 H 1646.4 1583.6 3.81 

L-75 L 1193.6 1140.7 4.43 

H-75 H 2020.8 1841.6 8.86 

L-100 L 1164.2 1144.3 1.7 

H-100 H 2058.0 1854.1 9.9 

average 5.13 

 

5.4.3 RC wall subjected to pure torsion 

In this section the PDSC model is used for simulating reinforced concrete walls under 

pure torsion loading configuration, tested by Peng and Wong (2011). The walls that were 

designated by S8, S10 in the experimental program were selected for the numerical 

simulations. The experimental loading procedure introduces the horizontal-pushing forces 

F1 and F2 (the force F2 acts in the opposite direction of F1) to produce a torque on the 

wall specimens. The magnitude of the forces F1 and F2 at the experimental program was 

almost identical varying in the range of  1 kN (Peng and Wong 2011). The distance 

between the two pushing forces was 500 mm. These walls had relatively thick slabs (with 

the dimension of 1250 mm ×750 mm ×200 mm)
 
at their bottom and top edges for fixing 

the walls to the foundation, and for applying the forces (F1 and F2), respectively (see Fig. 

5.15). 

The walls are reinforced in both vertical and horizontal directions with the reinforcement 

ratios designated as 
v  and 

h , respectively (see Table 5.7). Both walls have the same 

thickness, tw, and height, hw, as indicated in Table 5.7, and are made of a concrete with a 

compressive strength of 29.5 MPa. Details corresponding to the reinforcement applied in 

horizontal and vertical directions are included in Table 5.7. The primary variable of these 

two walls is the length of the wall (lw): the lw of S8 and S10 is, respectively, 800 mm and 

1000 mm. 
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Fig. 5.15 – General arrangement of the wall specimens tested by Peng and Wong (2011) 

(dimensions in mm).. 

 

Table 5.7 – Details of the RC walls submitted to torsion. 

ID wt  

(mm) 

wh  

(mm) 
wl  

(mm) 

(1)
Vertical reinforcement 

(5)
Horizontal reinforcement 

(2)
N 

(3)
D 

(mm) 

(4)
v  

(%) 

(6)
D 

(mm) 

(7)
Sh 

(mm) 

(8)
h  

(%) 

S8 150 1500 800 9 10 1.18 8 125 0.57 

S10 150 1500 1000 8 12 1.2 10 200 0.55 

(1) vertical reinforcement is applied in two layers; (2) number of bars applied in each layer of 

vertical reinforcement; (3) diameter of each bar in vertical reinforcement; (4) vertical 

reinforcement ratio; (5) horizontal reinforcement was applied in the form of the rectangular 

hoop; (6) diameter of one leg of each stirrup; (7) spacing of the stirrups; (8) horizontal 

reinforcement ratio. 

 

The test setup used for execution these tests is represented in Fig. 5.16a. Figs. 5.16b and 

16c indicate the arrangement of linear variable displacement transducers (LVDTs) used to 

measure the twist angle per unit length ( ) of these walls. As can be seen in these figures, 

four LVDTs (designated by 
3iL , 

3 jL , 
2iL , 

2 jL ) are installed at two height levels (here is 

called “level 2” and “level 3”) of each wall. The twist angle per unit length ( ) was 
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calculated at the experimental program by using the measured data of these four LVDTs 

according to the following equation: 

 

3 3 2 2
arctan( ) arctan( ) /

i j i j

h

l l

L L L L
d

d d


  
  
  

 (6.1) 

 

where the values of 
hd  and 

ld  are defined in Fig. 5.16c.  

 

 

 

(a) (b) 

 

(c) 

Fig. 5.16 – Setup for the test of shear walls subjected to torsion (Peng and 

Wong, 2011). 
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FEM modelling of the walls, top slabs and steel plates were performed using twenty-

noded solid finite elements with 333 Gauss-Legendre IP scheme. Fig. 5.17 presents, as 

an example, the finite element mesh used for analysis of the wall S10. Instead of 

modelling the foundation, all the degrees-of-freedom of the bottom nodes of the walls are 

considered fixed. The loads F1 and F2 are uniformly distributed over the appropriate 

faces of the steel plate elements, as schematically represented in Fig. 5.17. The loading 

steel plates are modeled as a linear-elastic material with Poisson’s coefficient of 0.3 and 

elasticity modulus of 200 GPa. Elements of the top slab are assumed to exhibit linear 

elastic behaviour during the analysis, since no damage is reported for this RC Slab in the 

original paper. For modelling the behaviour of the steel bars, the stress-strain relationship 

represented in Fig. 4.3 was adopted. The reinforcement is meshed using 2-noded perfect 

bonded embedded cables with two IPs.  

 

 

 

Fig. 5.17 – Finite element mesh used for the simulation of the wall S10. 

 

The values of parameters used to define the constitutive models of steel and concrete are 

included in Table 5.8 and Table 5.9, respectively. For modelling the shear stress transfer 
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during the crack opening process, the crack shear softening law (Fig. 3.2) was adopted, 

whose defining values are included in Table 5.9. Fig. 5.18 shows the experimental torque 

vs. twist angle per length (T  ) relationships for both walls and the respective 

numerical predictions with the PDSC model. According to the experimental observations, 

these walls exhibit ductile T   responses after the crack initiation, and their failure 

were governed by the formation of diagonal cracks inclined about 45° to the vertical axis. 

Fig. 5.19 represents, as an example, the experimental crack pattern of the S8 wall at its 

failure stage and the respective numerical prediction. For both walls the ductility and the 

torque carrying capacity are predicted by the PDSC model with good accuracy, although 

a slight higher torque was obtained numerically, mainly in the Wall S10. The numerical 

crack pattern shows that the inclined cracks with highly propagated opening status are 

spread over all faces of the wall which is in agreement with the experimental observation. 

 

Table 5.8 – Values of the parameters of the steel constitutive model for the test of RC walls.  

 
sy  

(%) 

sy  

(N/mm
2
) 

sh  

(%) 

sh  

(N/mm
2
) 

su  

(%) 

su  

(N/mm
2
) 

Third branch 

exponent 

8  0.228 422 0.2284 422 10 574 1 

10  0.253 450 0.253 450 10 576 1 

12  0.261 481 0.261 481 10 600 1 

 

Table 5.9 – Values of the parameters of the concrete constitutive model for the test of RC walls. 

Property Value 

Poisson’s ratio 0.2 

Young’s modulus E =26000 N/mm
2
 

Parameters defining the plastic-damage part of 

the model 

0 =0.4; 
1c =0.003; 

,f cG =10 N/mm ;  

cf =29.5 N/mm
2
 

Trilinear tension softening diagram (Fig. 3.1a) 
ctf =2.0 N/mm

2
; 

fG  =0.07 N/mm;  

1 =0.006; 
1 = 0.3; 

2 =0.2; 
2 = 0.1 

Parameter defining the mode I fracture energy 

available to the new crack (Sena-Cruz, 2004) 
2 

Parameters defining the crack shear stress-

crack shear strain softening diagram (Fig. 3.2) ,

cr

t p =1.2 N/mm
2
;  =0.3 ; 

,f sG =0.07 N/mm 

Crack bandwidth 
Cube root of the volume of Gauss integration 

point 

Threshold angle (Sena-Cruz, 2004) 30 degree 

Maximum number of cracks per integration 

point (Sena-Cruz, 2004) 
2 
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(a) (b) 

Fig. 5.18 – Experimental (Peng and Wong, 2011) and numerical torque-twist angle per length 

for: (a) the wall S8; (b) the wall S10.  

 

   

(a) (b) 

Fig. 5.19 – Results of the S8 wall: (a) experimentally observed crack pattern (Peng and 

Wong, 2011); (b) numerically predicted crack pattern, obtained at the last converged step. 

Note: the numerical crack pattern is represented over the finite element mesh adopted for 

concrete, i.e., the finite element mesh adopted for the reinforcement is hidden. 
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5.5 PARAMETRIC STUDY FOR THE MODEL PARAMETERS 

A parametric study is performed to assess the influence of the values of the model 

parameters on the simulated behaviour of the structures analyzed in the previous section 

(section 5.4). The parameters under consideration are those simulating the nonlinear 

behaviour of concrete under compression (
cf ,

,f cG , 
1c ), and those used to define the 

crack shear softening diagram (
,

cr

t p ,
,f sG ,  ). To assess the influence of the parameters 

cf

,
,f cG  and 

1c  the RC beam L-75 was chosen since its failure behavior is governed mainly 

by crushing of the compressive strut. The RC wall S10 was selected to study the 

influence of the parameters 
,

cr

t p , 
,f sG ,  , because the influence of the crack shear 

softening diagram, which simulate the degradation of the shear stress transfer between the 

faces of the crack, is significant to predict correctly the deformational and cracking 

behaviour of this wall. 

 

5.5.1 Influence of 
cf  

Three different values for 
cf  were adopted, 20, 31.4 and 40 N/mm

2
 in the simulations of 

the L-75 beam, the first one is lower than the value considered in the analysis of Section 

5.4.2 (
cf =31.4 N/mm

2), while the third is higher.  

Fig. 5.20a indicates that the beam’s stiffness and the load carrying capacity increase with 

cf . As expected, the SC model predicts a much higher ultimate load since the concrete in 

compression is assumed having a linear behaviour. 

The stages where the effect of inelastic compressive deformation becomes relevant on the 

force-deflection responses of the beam in analysis are indicated in Fig. 5.20a using 

markers. It is verified that these markers are localized in the force-deflection response of 

this beam when predictions with the PDSC model start diverging from that of SC model. 

The higher is the concrete compressive strength the larger is the load carrying capacity of 

the beam corresponding to the marker, which is justified by the adoption of a constant 

value for the 
0  parameter, which defines the initiation of the inelastic deformation of 

concrete in compression (
0 0c cf f ). Since experimental research demonstrates (Hassan 
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et al., 2012) the amplitude of the initial linear-elastic branch of the uniaxial compressive 

behaviour increases with the concrete compressive strength (and consequently 
0  

increases with 
cf ), the initiation of the influence of the concrete inelastic compressive 

deformation in the response of the beam will be postponed for larger deflection.  

 

   

(a) (b) (c) 

Fig. 5.20 – Sensitivity of the analysis of the beam L-75 with respect to the values 

of the parameters: (a) 
cf ; (b) 

1c ; (c) 
,f cG . 

  

 

5.5.2 Influence of 
1c  

To assess the influence of the parameter 
1c  on the response of the beam in analysis, 

three values were considered, 0.0018, 0.0025 and 0.0035, the first one is lower than the 

value considered in the analysis executed in Section 5.4.2 (
1c =0.0025), while the third 

value is higher. The parameter 
1c  influences both plasticity and damage parts of the 

PDSC model. Within the plasticity part, the value of the hardening parameter at 

compressive strength, 
1c
, is calculated according to Eq. (3.19) by attributing a certain 

value to 
1c . According to this equation 

1c
 follows the tendency of 

1c , therefore the 

pre-peak branch (hardening phase) of the 
1c c    diagram is as stiffer as smaller is 

1c , 

as shown in Fig. 3.6a. According to the PDSC model, the damage threshold is assumed to 

be related to 
1c
: when 

1c c , 0cd  , while for 
1c c  the scalar damage parameter is 
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0cd  . Since 
1c
 increases with 

1c , the occurrence of damage (i.e. 0cd  , which 

characterize the entrance of concrete in its compressive strain softening stage), initiates at 

higher compressive deformation. These effects are reflected in the deformational 

behaviour of the beam, since its stiffness in the initial force-deflection stage has 

decreased with the increase of 
1c  (Fig. 5.20b). However, the entrance in the post-peak 

concrete compressive softening stage is postponed with the increase of 
1c , resulting a 

increase of the beam’s  ductility and load carrying capacity at the ultimate stage. This 

means that by increasing 
1c  the stiffness of the load vs. deflection response decreases, 

but the ultimate load, and its deflection increase, with benefits in terms of the ductility 

response and load capacity of the beam. 

 

5.5.3 Influence of 
,f cG  

The parameter of compressive fracture energy (
,f cG ) controls the rate of strain softening 

in compression, i.e. the level of stress decrease with the increase of compressive strain 

(see Fig. 3.6c). As larger is 
,f cG  as smoother is this stress decay, which is a characteristic 

of very ductile materials like fibre reinforced concrete (Barros and Sena-Cruz, 2001). Fig. 

5.20c compares the force-deflection responses obtained for three different values of the 

,f cG , 5, 10 and 17 N/mm, the first one is lower than the value considered in the analysis 

of Section 5.4.2 (
,f cG =10 N/mm), while the third is higher. Fig. 5.20c shows that the 

parameter 
,f cG  influences the force-deflection response of the beam only after the 

deflection of 1.7 mm, which corresponds to the deflection stage above that the effect of 

strain softening behaviour of concrete under compression becomes relevant. By 

increasing 
,f cG  the ultimate load capacity and deflection performance are increased. 

 

5.5.4 Influence of 
,

cr

t p  

Fig. 5.21a represents the influence of the parameter 
,

cr

t p  on the torque vs. twist angle per 

length (T  ) relationship of the S10 wall. Three different values for 
,

cr

t p  were chosen, 
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0.5, 1.2 and 3.0 N/mm
2
, the first one is lower while the last one is higher than the value 

considered in the analysis of Section 5.4.3 (
,

cr

t p =1.2 N/mm
2
).  

 

  

(a) (b) 

Fig. 5.21 – Sensitivity of the analysis of the S10 wall with respect to the value of the 

parameter ,

cr

t p . 

 

As expected, increasing 
,

cr

t p  leads to higher torque carrying and deformation capacity at 

structural level. This is justified by the crack shear stress-shear strain diagrams 

represented in Fig. 5.21b, since for the simulation with higher 
,

cr

t p , the entrance of the 

shear cracks in their softening stage is postponed for larger crack shear deformations, 

conducting to higher torque carrying capacity for the simulated wall. 

 

5.5.5 Influence of   

The parameter   is used to define the crack shear stress variation in the pre-peak stage, 

,1

cr

tD , of the cr cr

t t   diagram, see Eq. (5.5). The value of crack shear strain at peak, 
,

cr

t p , 

is then evaluated in accordance to the calculated 
,1

cr

tD . To better understand the influence 

of  , the S10 wall was simulated by adopting three distinct values for  :  =0.05, 

=0.3,  =0.85. The T   curves corresponding to these simulations are depicted in Fig. 

5.22a, where it is visible that the stiffness in the initial cracking stage of the wall’s 

response increases with  , while the wall maximum torque capacity increases with the 

decrease of  . The stiffness of the pre-peak branch of the cr cr

t t   diagram increases 
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with   (see Fig. 5.22b), which justifies the first observation. However, by decreasing  , 

the entrance of the critical shear cracks in the shear softening phase is postponed for 

larger deflection levels of the beam, providing an increase on its torque carrying capacity 

at ultimate stage.  

 

  

(a) (b) 

Fig. 5.22 – Sensitivity of the analysis of the S10 wall with respect to the value of the 

parameter  . 

 

5.5.6 Influence of 
,f sG  

Fig. 5.23a compares the predicted T   responses for the three levels of shear fracture 

energy corresponding to 0.03, 0.07, and 1.0 N/mm. The first value (
,f sG =0.03 N/mm) is 

lower than the value considered in analysis of section 5.4.3 (
,f sG =0.07 N/mm), while the 

third is higher.  

By increasing 
,f sG  the crack shear stress decay in the softening stage is smaller, which 

means that the material has more ductile shear behavior at the crack level (see Fig. 

5.23b). As Figure 5.23a demonstrates, this effect leads to a higher torque carrying and 

deformation capacity at structural level.  
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(a) (b) 

Fig. 5.23 – Sensitivity of the analysis of the S10 wall with respect to the value of the 

parameter 
,f sG .   

 

5.6 CONCLUSION 

This chapter propose a 3D constitutive model for cement based materials, based in the 

generalization of a 2D plastic-damage multidirectional fixed smeared crack model. The 

proposed model was then included in the 3D solid element of the FEMIX computer code, 

and its valdation was executed at the material and structural levels. Cyclic tension-

compression test were simulated at first, followed by sophisticated biaxial and triaxial 

tension-compression numerical tests. In these numerical tests the interaction between 

cracking and plasticity-damage parts of the model were discussed. It was shown that the 

stress-strain predictions of the model for these numerical tests were in a very good 

agreement with the solution reported by another author. 

A wide range of experimental data from literature including RC column under combined 

axial and flexural loading condition, RC beams made by different concrete strength 

classes, and RC walls subjected to torsion, are simulated to highlight the capability of the 

model to predict with good accuracy the deformation and cracking behaviour of these 

types of structures. According to these simulations, the following results can be drawn: 

 Results of the experimental program executed by El-Maaddawy (2009) reveals 

that by increasing length of the eccentricity (e) of the load applied to each column, 

the failure load decreases whereas the strains in tensile longitudinal reinforcement 
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bars increase. This experimental observation was successfully simulated by the 

PDSC model. 

 In the experimental program of Yang et al. (2003), the primary variable of the test 

is the compressive strength of concrete. The specimens are categorized into two 

groups: L group which includes the specimens with 
cf =31.4 MPa, and H group 

which includes the specimens having the compressive strength of 78.5 MPa. The 

PDSC model was able to simulate with high accuracy the deformational and 

cracking behavior of the beams in both groups L and H.     

 Two walls subjected to torsion loading configuration are simulated by the 

proposed model. Predicted torque carrying capacity, ductility, crack pattern for 

these walls are in reasonable agreement with the experimental observations.   

In this chapter a parametric study is also executed, to acess the sensitivity of the 

simulations to the values of the model parameters. In general, for the structure failing in 

shear the effect of the model parameters 
,f sG , 

,

cr

t p ,   can be summarized as the 

following:      

 By increasing 
,f sG  the crack shear stress decay in the softening stage of cr cr

t t   

diagram is smaller, which leads to a higher load carrying and deformation 

capacity at structural level.  

 By increasing 
,

cr

t p  the entrance of the shear cracks in their softening stage is 

postponed for larger crack shear deformations, conducting to higher load carrying 

and deformation capacity at structural level.  

 By decreasing   the entrance of the critical shear cracks in the shear softening 

phase is postponed for larger deflection levels of the beam, providing an increase 

on its load carrying capacity at ultimate stage. 

For the structures whose failures are governed by inelastic compressive behaviour of the 

concrete, the effects of the model parameters 
cf , 

1c , 
,f cG  can be summarized as the 

following: 
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 The higher is the concrete compressive strength (
cf ), the higher is the value of 

peak stress at 
c c   diagram (i.e. 

cf  is the stress at peak of 
c c   diagram), and 

the larger is the load carrying capacity of the structure. 

 By increasing 
1c  the stiffness in the initial force-deflection behaviour of the 

structure decreases, but ductility and load carrying capacity at the ultimate stage 

of force-deflection behaviour increase.   

 By increasing ,f cG  a more ductile strain softening stage in compression is 

simulated, which leads to a higher load carrying and deformation capacity at 

structural level. 
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C H A P T E R   6 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

 

 

6.1 GENERAL CONCLUSIONS 

A two dimensional (2D) constitutive model was developed for predicting the failure 

behaviour of structures made by cement based materials when submitted to different 

loading paths. The proposed model incorporates a multidirectional fixed smeared crack 

approach to simulate crack initiation and propagation, whereas the inelastic behaviour of 

material between cracks is treated by a numerical strategy that combines plasticity and 

damage theories. The smeared crack model considers the possibility of forming several fixed 

cracks in the same integration point during the cracking process. The crack initiation occurs 

when the maximum principal tensile stress in an IP attains the concrete tensile strength 

under an assumed tolerance. After crack initiation, the relationship between normal stress 

and normal strain in the crack coordinate system is simulated via a trilinear or a 

quadrilinear diagrams. Two methods are available to simulate the crack shear stress 

transfer: one based on the concept of shear retention factor, and the other on a shear 

softening diagram that requires some information about fracture mode II propagation.  

The plasticity model is formulated in effective stress space and is defined by four entities: 

yield function (yield surface); flow rule; evolution law for the hardening variable; and 
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condition for defining loading–unloading process. The yield function was derived from 

the Willam–Warnke failure criterion, and its evolution during the plastic flow is governed 

by a single hardening parameter (for compression). The plasticity part is responsible for 

simulating irreversible strains and volumetric strain in compression, whereas the strain 

softening and stiffness degradation of the material under compression are simulated in the 

framework of continuum damage mechanics, in which the damage is considered as an 

isotropic process. In this approach the state of damage in concrete under compression is 

equally distributed in all directions, and can be represented by a scalar measure that is 

evaluated as a function of the concrete plastic strain. 

The model was implemented into the plane stress state element of the FEMIX 4.0 

computer program as a new approache to simulate the nonlinear behaviour of concrete 

structures. The model is initially validated by simulating stress-strain histories of the 

materials loaded on some different scenarios. Monotonic and cyclic uniaxial compressive 

tests were simulated at first, followed by a biaxial tension-compression numerical test that 

is intended to demonstrate the interaction between cracking and plasticity-damage parts 

of the model. The results of the simulated example under uniaxial compressive load 

demonstrate the accuracy of the model in capturing the uniaxial behavior of concrete 

under compression. Under the cyclic uniaxial compression, the model (nominal stress 

response) accurately simulated the stress–strain envelope response registered 

experimentally, but overestimates the plastic deformation of the material when unloading 

occurs. Under the biaxial tension-compression test the model succeeded to simulate 

closing a crack developed in one direction, by imposing compressive load in the 

orthogonal direction. The stress-strain prediction of the model for this numerical test was 

in a very good agreement with the solution reported by another author.  

Subsequently, the model appraisal is performed by simulating experimental tests with 

structural reinforced concrete (RC) elements. For this propose, a wide range of 

experimental tests was simulated to demonstrate the robustness of the developed model 

(two dimensional PDSC model). The numerical simulations have predicted with good 

accuracy the load carrying capacity, deformation, crack pattern, and plastic (compressive) 

zones of all types of tests analyzed. The results of these analyses demonstrate the 
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applicability of the proposed model for simulating structures made by cement based 

materials subjected to multi-axial loading configurations. 

The previous model (2D-PDSC) was extended in order to be capable of simulating RC 

structures modelled by solid finite elements (those where is important to consider a 3D 

stress field). This model (3D-PDSC) was implemented in the FEMIX computer code and 

its predictive performance was initially validated by executing some numerical tests at the 

material level, which were intended as an elementary verification of the basic capabilities 

of the model. Next the model appraisal was performed at the structural level. 

Experimental tests, from literature, including RC column subjected to different eccentric 

loadings, RC beams made by different concrete strength classes, and RC walls subjected 

to torsion, are simulated to highlight the capability of the model to predict with good 

accuracy the deformation and cracking behaviour of these types of structures. Results of 

these analysis indicates the robustness and accuracy of the proposed model for simulating 

the structures made by cement based material as subjected to different loading paths. 

At the end, a feedback can be presented to the objectives already defined in the 

Introduction section (see section 1.2). It can be concluded that all of these objectives are 

achieved in this thesis, based on the following justifications: The numerical simulations, 

represented in the chapters 3, 4, and 5 shows the proposed models are stable and 

numerically effective in the entire loading regime until failure; Experimental tests from 

literature, covering a wide range of geometry of specimens, concrete type, loading 

configurations, and reinforcement conditions, are simulated to demonstrate the 

applicability of the model for simulating the structures subjected to different loading 

paths; A parametric study for the model parameters is executed. Through the parametric 

study it was explained how changing each model parameter can affect the predictive 

performance of the model; Results of the analysis obtained by the proposed model were 

compared also with those of another constitutive model (available in FEMIX) that 

includes the same multidirectional fixed smeared crack, to simulate cracking, but 

considers the linear elastic behavior for the material between the cracks. In general, and 

considering the type of structures analysed, this comparison clearly demonstrated the 

advantages of the proposed model for simulating the experimental behaviour of cement 
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based material, mainly when relatively large volume of concrete can enter in the 

compression softening stage. 

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

6.2.1 Creep model 

The constitutive models developed in this study (two and three dimensional PDSC 

models), can simulate time dependent irreversible deformations of the material under load 

(creep phenomenon). In the current version of the models the incremental concrete strain 

vector, 
co

 , (which characterize the deformation of the intact material between the 

cracks) is decomposed into its elastic (
e

 ) and plastic parts (
p

 ), (
co e p

      ). 

This strain decomposition concept can be extended in order to integrate the parcel due to 

creep, 
crp

 , (i.e. 
co e p crp

        ). Thereby the incremental constitutive 

relation of the new model is obtained as: ( )
e p cr crp

D          . The 

definition of  , 
e

D ,  , 
cr

  are the same as those introduced in Chapter 3.     

Due to this additional term (
crp

 ) the flow rule and isotropically hardening of the yield 

surface are remained as before. Stress update process must be augmented by stress 

components due to time dependent deformations. Based on the stress update, internal 

nodal forces will be calculated and compared by the external one to satisfy the 

equilibrium equation.  

 

6.2.2 Numerical simulation of fire condition 

Another phenomenon that can be captured by the concept of strain decomposition is the 

dependence of the material properties to the temperature. In this way another term of 
T

  

related to the thermal variation must be introduced into the constitutive equation of the 

plastic-damage multidirectional fixed smeared crack model. Such constitutive equation 

can be written as ( )
e p cr T

D          .  

In a previous work (Ventura-Gouveia, 2011) a general thermal model was developed and 

introduced in the FEMIX computer code. Steady-state and transient thermal analysis are 
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available, including early-age heat generation during the hardening phase of concrete. 

Furthermore, the multidirectional fixed 3D smeared crack model was adapted to 

incorporate the incremental strain decomposition and a thermo-mechanical model 

obtained. 

In future developments, the model can be adapted to incorporate the possibility of 

simulating structures under high temperatures, like fire condition. A possible application 

of the numerical tool can be mentioned in simulating behavior of ECC/FRP panel 

strengthening system subjected to the high temperatures. This composite system has been 

designed to show considerable residual strength after exposure to fire condition 
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ANNEX   A 

GEOMETRIC REPRESENTAION OF STRESS 

INVARIANTS 

 

 

 

 

Fig. A.1 represents a three dimensional orthogonal coordinate system aligned in the 

directions of the principal stresses (
1 , 

2 , 
3 ), which is known as Haigh- Westergaard 

coordinate system. An additional axis, called Hydrostatic axis, is also defined in this 

figure, which is aligned in the direction of the bisector 
1 2 3    . The state of stress for 

every point on the hydrostatic axis is 
1 2 3    . Any plane perpendicular to 

Hydrostatic axis is called deviatoric plane.  

Consider a generic state of stress represented by point P with the coordinates (
1 , 

2 , 
3

) in Haigh-Westergaard stress space. Assuming the stress point O is the origin, the stress 

vector OP  can be decomposed into two components: the component ON  in the direction 

of hydrostatic axis and the component NP  perpendicular to ON  (the vector NP  is the 

projection of OP  on the deviatoric plane). The vector NP  has the magnitude of 

22J  , while the magnitude of the vector ON  is 
1 3I   (Chen and Han, 1988).  

To trace the exact location of the stress point P in the deviatoric plane, the stress invariant 

3J  (third invariant of the effective deviatoric stress tensor) is also required. If the triplet 

axes 
1 , 

2 , 
3  are projected on the deviatoric plane, and the axis 

1  is taken as the 
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vertical one, the orientation of the vector NP  in the deviatoric plane is defined by the 

angle of similarity ( ) according to the following equation (Chen and Han, 1988): 

 

1 3

3/2

2

1 3 3

3 2

J
cos

J
 

 
   

 
 (A.1) 

where 
2J  is second invariant of the effective deviatoric stress tensor.  

 

 

Fig. A.1 – Haigh-Westergaard stress space (Grassl et al., 2002). 
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ANNEX   B 

EXTRACTING YIELD FUNCTION FROM FAILURE 

CRITERION 

 

 

 

 

According to the Willam-Warnke failure criterion, two extreme meridians and an 

elliptical function, used to interpolate the current failure meridian between the two 

extreme meridians, can represent the entire failure surface. The extreme meridians are 

called the tensile meridian where angle of similarity is zero ( 0  ), and the compressive 

meridian where 60   (see Fig. B.1).  

 

 
 

(a) (b) 

Fig. B.1 – Willam-Warnke failure surface represented in (a) meridian plane; (b) deviatoric plane (

1 ,
2 ,

3  are the principle effective stresses). 
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The equations for the tensile and compressive meridians in ( , ,   ) coordinate system 

are given by the following quadratic parabolas (Swaddiwudhipong and Seow, 2006): 

 

2

( , 0 ) ( , 0 )

2 1 0

c c c

a a a
f f f

   
   

   
     

   
   

 

2

( , 60 ) ( , 60 )

2 1 0

c c c

b b b
f f f

   
   

   
     

   
   

 

(B.1) 

 

 

(B.2) 

 

being   the hydrostatic stress invariant defined as 
1 3I  , and   the deviatoric stress 

invariants also defined as 22 J  . The term 
( , ) 

  implies the deviatoric stress 

invariant (  ) that is corresponds to any set of   and  . For the tensile meridian (where 

0  )  and compressive meridian (where  60  ), the deviatoric stress invariant (  ) 

are denoted, respectively, by 
( , 0 ) 




 and 
( , 60 ) 




. 

It is assumed that the tensile and compressive parabolas (meridians) intersect each other 

at the hydrostatic axis, 22 J  =0, therefore 
0 0a b  (Willam and Warnke, 1974; 

Swaddiwudhipong and Seow, 2006). 

The constants 
0a , 

1a , 
2a , 

1b , and 
2b   are the five constants of the W-W failure surface, and 

the procedure used in their determination is discussed in the following. To obtain the 

unknowns 
0a , 

1a , 
2a  (which are the coefficients of the tensile meridian) it is sufficient to 

choose three known failure states lying on the tensile meridian (Eq. B.1), such that: 

 

1. Uniaxial tensile strength, (
ctf ). 

2. Biaxial compressive strength, ( 1.15cc cf f ), (Kupfer et al., 1969). 

3. An experimental data corresponding to confined biaxial compression with the 

coordinate, ( ,c cf f  )=(-6.754, 3.461) (Kupfer et al., 1969). 
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These three failure points, expressed in ( ,  , ) coordinate system, are represented in 

Table B.1. 

 

Table B.1 – Experimental failure points to determine the constants of tensile meridian 

Test Failure points 

(
cf ) (

cf ) ( ) 

Uniaxial tension 1

3

ct

c

f

f
 2

3

ct

c

f

f
 

0  

Biaxial compression 2
(1.15)

3
  2

(1.15)
3

 
 

0  

 

Confined biaxial compression -6.754 

 

3.461 0  

 

Including these three failure point, represented in Table B.1, into Eq. (B.1), yields after 

some arrangement the following system of equations:  

 

2

0

2

1

2 2

2 2 1
1

3 3 3

2 2 2
1 1.15 (1.15) (1.15)

3 3 3

1 3.461 (3.461) 6.754

a

a

a

  
   
   
    
    

     
        
      

 

 

 

(B.3) 

 

 

 

being   a non-dimensional parameter defined as 
ct cf f  . According to the approach 

adopted in the PDSC model, the tensile crack opening is initiated based on the Rankine 

tensile criterion (i.e. a crack occurs when the maximum principal tensile stress in a IP 

attains 
ctf ), so the plasticity part does not required to account for the tensile cracking 

behavior of concrete. Therefore to determine the parameter   for the plasticity model, 

the value of concrete tensile strength, 
ctf , was replaced by 

cf  (i.e. 1c cf f   ), which 

is a higher value adopted to prevent the crack opening based on the plasticity failure 

criterion. 

The coefficients of the tensile meridian (
0a ,

1a ,
2a ), which are the unknowns of the 

equation B.3, can be deduced as: 
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2

0 2

3(7.4241 0.6737 )

8.197 9.0605 1.6814
a

 

 




 
 (B.4a) 

 

2

1 2

3( 5.7392 3.694 2.091 )

8.197 9.0605 1.6814
a

 

 

  


 
 (B.4b) 

 

2 2

3( 1.0098 3.3911 )

8.197 9.0605 1.6814
a



 

 


 
 (B.4c) 

 

The same procedure is repeated for the unknown coefficients of the compressive 

meridians (b1, b2). Two failure states (failure points) lying on the compressive meridian (

60  ) are used as: 

1. Uniaxial compressive strength, (
cf ), ( ,c cf f  )=( 1 3 , 2 3 ). 

2. An experimental data corresponding to confined biaxial compression with the 

coordinate, ( ,c cf f  )=(-3.3774, 2.77), (Kupfer et al., 1969).  

 

By substituting the coordinates of these two failure points into equation of compressive 

meridian (Eq. B.2), the following system of equations is obtained:  

 

1 0

22 0

2 2
( 1 3)

3 3
3.3774

2.77 (2.77)

b b

b b

 
                 

 

 

(B.5) 

 

 

By taking into account 
0b =

0a , the coefficients 
1b  and 

2b  are obtained by solving Eq. (B.5). 

These coefficients in the final form are as the following:  

 

2

1 2

3( 2.3328 9.169 1.5469 )

8.197 9.0605 1.6814
b

 

 

  


 
 (B.6d) 
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2

2 2

3( 1.2437 4.6489 0.04254 )

8.197 9.0605 1.6814
b

 

 
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

 
 (B.6e) 

 

The W-W failure criterion uses the following elliptical equation to interpolate current 

failure meridian, or the intermediate failure meridians, between the two extremes (tensile 

and compressive meridians) (Willam and Warnke, 1974; Swaddiwudhipong and Seow, 

2006):  

 

( , )

s

t
 

   (B.7a) 

where  

 

2 2
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         

      

     

     

    

   
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 

 (B.7b) 

and 

 

2 2 2 2

( , 60 ) ( , 0 ) ( , 60 ) ( , 0 )
4( )cos ( 2 )t

       
    

   
     (B.7c) 

 

being 
( , ) 

  is the deviatoric stress invariant of current failure meridian (see Fig. B.1b that 

demonstrates the deviatoric plane of W-W). As Fig. B.1b shows, Eq. (B.7) ensures 

convexity and smoothness of the surface anywhere. Eqs. (B.1), (B.2) and (B.7) describe 

one sixth of the failure cone lying between 0 60  , then due to six fold symmetry, 

these equations are sufficient to present the entire failure surface. 

The intermediate failure meridians are also quadratic parabola in a form 

(Swaddiwudhipong and Seow, 2006):  

 

2

( , ) ( , )

c c c

a b c
f f f

   
     
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 (B.8) 
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The intermediate meridian must also meet the hydrostatic axis at the same location that 

tensile and compressive meridians already intersected, such a requirement implies that 

(Swaddiwudhipong and Seow, 2006):  

 

0 0c a b   (B.9) 

 

The two unknowns a and b are determined by solving Eq. (B.8) in two known failure 

points laying on the intermediate failure meridian. Based on the current state of effective 

stress vector ( ) the angle of similarity is calculated from Eq. (A.1) (see Annex A). The 

arbitrary control points of 
cf = 

1CP = -0.5 and 
cf = 

2CP = -0.6 can be chosen, then 

the corresponding failure points of 
1( , )CP  




, and 
2( , )CP  




 were interpolated from Eq. 

(B.7). The coefficients a and b can then be obtained from:  
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(B.10) 
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 (B.11) 

 

Including 
1 3I   and 

2( , )
2 J

 
   into Eq. (B.8) and replacing 

cf  with the current 

uniaxial compressive stress, i.e. the hardening function denoted by 
c ,  the equation of 

yield function is obtained in the form of Eq. (3.15). 

 



 

 

 

ANNEX   C 

SIMULATION OF CYCLIC UNIAXIAL COMPRESSIVE 

TEST 

 

 

 

 

The adopted 
c c   law for the domain 

1c c  (
c cf  ) can be replaced by the following 

equation which includes the parameter   controlling the slop of the post-peak branch: 

 

1

1

( ) ( )c
c c c c c

c

f
f


  


 (C.1) 

 

where   is calculated as 
0 1cl  , and the non-dimensional coefficient 

0l  can take the 

values as 
01 l   . For 

0l    Eq. (C.1) gives ( )c c cf   that corresponds to ideal 

plastic behaviour (slop of 
c c   law for the domain 

1c c  becomes zero). 

Using the values of the parameters of the constitutive model in the simulation of cyclic 

test of Karsan and Jirsa (1969), Fig. C.1a represents the Eq. (C.1) for two distinct values 

of 
0l =4.5 and 

0l =9. As can be seen in this figure, by increasing the value of 
0l  the 

inclination of the 
c c   law is decreased. The appropriate value for the parameter 

0l  is 

usually obtained using an inverse analysis whereas such inverse method is described in 

the contribution Abu Al-Rub and Kim (2010). For the case 
0l =4.5 (assuming all the other 

parameters have the same values as described in Fig. 3.8) the cyclic stress-strain response 
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of the model for the test of Karsan and Jirsa (1969) is represented in Fig. C.1b which 

demonstrates a close approximation of the residual plastic deformations when compared 

to those registered in the experimental test. 

 

  

(a) (b) 

Fig. C.1 – Cyclic uniaxial compressive test of Karsan and Jirsa (1969) ; (a) the c c   law of the 

model, (b) Experimental (Karsan and Jirsa, 1969) vs. predicted stress-strain response (assuming 0l

=4.5). 
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ANNEX   D 

FIRST AND SECOND ORDER DERIVATIVES 

 

 

 

 

D.1 Derivative of the stress invariants with respect to the components of the effective 

stress vector 

For a general case of three dimensional problem, the effective stress tensor is written in 

the vector format as:  

 

T

i j x y z yz xz xy               (D.1) 

 

The first order derivatives of the stress invariants 
1I , 

2J , and 
3J  with respect to 

components of the effective stress vector (
i ) are defined as the following: 

 

1 1 1 1 1 11; 0
x y z yz xz xy

I I I I I I
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 (D.2) 

 



ANNEX D. FIRST AND SECOND ORDER DERIVATIVES  188 

 

 
 

 

 

 

 

 

2 2

2 2

2 2

1
2 , 2

3

1
2 , 2

3

1
2 , 2

3

x y z yz

x yz

y x z xz

y xz

z x y xy

z xy

J J

J J

J J

   
 

   
 

   
 

 
   

 

 
   

 

 
   

 

 

(D.3a) 

 

(D.3b) 

 

(D.3c) 

 

 

 

 

 

 

 

2 2 23

2 2 2

2 2 23

2 2 2

2 2 23

2 2 2

1
2 2 2 4

9

1
2

3

1
2 2 2 4

9

1
2

3

1
2 2 2 4

9

1
2

3

x y z x y x z y z

x

xy xz yz

y x z x y y z x z

y

xy yz xz

z x y x z y z x y

z

xz yz xy

J

J

J

        


  

        


  

        


  


     



  


     



  


     



  

 

(D.4a) 

 

 

 

(D.4b) 

 

 

(D.4c) 

 

 

 

 

3

3

3

2
2 2

3

2
2 2

3

2
2 2

3

yz y z x xy xz

yz

xz x z y xy yz

xz

xy x y z xz yz

xy

J

J

J

     


     


     



   




   




   



 

(D.4d) 

 

(D.4e) 

 

(D.4f) 

 

D.2 Derivative of the yield function with respect to the components of the effective 

stress vector 

The first order derivative of the yield function with respect to the components of the 

effective stress vector (
i ) is given by: 
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D.3 Derivative of the coefficients of loading meridian (a, b) with respect to the 

components of stress vector 

First order derivatives of the coefficient of the loading meridian parabola (coefficients a, 

and b) with respect to the components of the effective stress vector (
i ), are as follows: 
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where the auxiliary variables A and B are defined as: 
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It is also noted that according to Eq. (B.9), the constants 
0a  and 

0b  have the same value 

(i.e. 
0 0a b ). 

 

D.4 Derivative of the interpolation function 
( , ) 

  (Eq. (B.7a)) with respect to the 

components of  the effective stress vector 

The derivation of the interpolation function respect to the stress vector components (
i ) 

is given by:  
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where the variables t  and c  are defined as 
( , 0 )t  

 


  and 
( , 60 )c  

 


 , 

respectively. 

 

D.5 Derivative of angle of similarity ( ) with respect to the component of the 

effective stress vector 
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The angle of similarity is only dependent on the stress field. So, its first order derivation 

with respect to the components of the stress vector (
i ) is:  
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D.6 Derivative of the yield function with respect to the hardening function 

First order derivation of the yield function with respect to the hardening function (
c ) is 

given by: 
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D.7 Second order derivative of stress invariants with respect to the components of 

the effective stress vector 

The second order derivative of the first invariant of the effective stress tensor, 
1I , with 

respect to the effective stress components (
i ) and (

j ) is given by:  
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The second order derivative of of the second  invariant of the deviatoric effective stress 

tensor, 
2J , with respect to the effective stress components (

i ) and (
j ) is given by: 
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The second order derivative of of the third invariant of the deviatoric effective stress 

tensor, 
3J , with respect to the effective stress components (

i ) and (
j ) is given by: 
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D.8 Second order derivative of the yield function with respect to the effective stress 

components 

The second order derivative of of the yield function with respect to the effective stress 

components (
i ) and (

j ) is given by:  
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where functions A, B and their derivatives (
jA   ,

jB   ) are: 
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D.9 Second order derivative of the coefficients of the loading meridian (a, b) with 

respect to the effective stress components 

The second order derivative of coefficient b with respect to the effective stress 

components (
i ) and (

j ) is given by: 
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where the auxiliary functions A, B, F, G, and the derivatives 
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jB    are 

defined as follows:  
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The second order derivative of  the coefficient a with respect to the effective stress 

components (
i ) and (

j ) is given by:  
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D.10 Second order derivative of the interpolation function ( , ) 
  with respect to the 

effective stress components 

The second order derivative of the interpolation function (
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 ) with respect to the 

effective stress components (
i ) and (

j ) is given by:  
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where the auxiliary functions F, G, and H are defined as follows: 
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D.11 Second order  derivative of the angle of similarity with respect to the effective 

stress components 

The second order derivative of  the angle of similarity with respect to the effective stress 

components (
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j ) is given by: 
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D.12 Second orderderivative of the yield function with respect to the  hardening 

function 

The second order derivative of the yield function with respect to hardening function (
c ) 

and (
c ) is given by: 
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D.13 Second order derivative of the yield function with respect to the  hardening 

function and to components of stress vector 

The second order derivative of the yield function with respect to the hardening function (

c ) and to the components of the effective stress vector (
i ) is given by: 
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ANNEX   E 

METHODOLOGY TO DERIVE COMPRESSIVE 

FRACTURE ENERGY FROM EXPERIMENTAL DATA   

 

 

 

 

To determine the compressive fracture energy of a generic intervening material, uniaxial 

compression test with the set-up like the one represented in Fig. E.1 is recommended.  

 

   

Fig. E.1 – Set up of uniaxial compression test (Cunha, 2010). 

 

In general, two cones of confined concrete are formed at the top and bottom extremities 

of the specimen due to the friction between the steel plates of the test setup and the 



ANNEX E. METHODOLOGY TO DERIVE COMPRESSIVE FRACTURE ENERGY FROM 

EXPERIMENTAL DATA 

202 

 

 
 

 

 

specimen’s top and bottom ends. The more concrete is confined, in the contact region of 

the sample and the steel plates, the higher strength measurement is likely to be. To avoid 

the effect of confinement on the measured strength of the specimens the following 

treatments are recommended: 

- Application of intermediate layers of teflon between the specimen’s top and 

bottom ends and the steel plates to reduce the friction between the two surfaces. 

- If a cylinder specimen is adopted, the height of the specimen should be higher 

than, at least, two times of the cylinder diameter. Only the central region of the 

cylinder specimen is monitored, since the state of stress in this region is more 

likely to be uniaxial (i.e. the confined concrete cones at the top and bottom 

extremities have minimum effect on the state of stress in the central region of the 

specimen).     

As can be seen in Fig. E.1, the two ring devices were positioned at top and bottom of the 

central region of the specimen (here is called “test region”). The axial displacement of the 

specimen at the “test region”, 
s , was measured using three linear voltage displacement 

transducers, LVDTs, placed in such a way as depicted in Fig. E.1.  

Considering   denotes stress measured at the test, the compressive fracture energy can 

be determined by the area under the post-peak branch of 
inel   diagram, see Fig. E.2 

(Jansen and Shah 1997; Vasconcelos et al., 2009). Inelastic displacement, 
inel , is 

calculated from the following equation: 

 

0

inel s
k


    (E.1) 

 

where k0 is the initial stiffness of 
inel   response (see Fig. E.2). 
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Fig. E.2 – Model for determination of inel . 
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