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Abstract

Study of the electronic structure of bidimensional ma-
terials with the GW approximation and Bethe-Salpeter
equation

In this work the electronic and optical properties of bidimensional mate-
rials h-BN and phosphoerene have been studied. It is well known that DFT
often fails to predict properties like electronic band-structures and absorp-
tion spectra. To correct those predictions, theories that use electron-electron
and electron-hole interactions are needed. The GW approximation formal-
ism, which includes electron-electron interactions, is used to compute the
electronic band-structures of the h-BN and phosphorene. With the elec-
tronic band-structures computed we can measure quantities like the band
gap value. The BSE formalism, which includes electron-hole interactions, is
used to compute the absorption spectra. This allows us to measure the opti-
cal gap and the excitonic binding energy. Only a few theoretical works that
use many-body theories like GW approximation and BSE have been done
in these materials. Their results are not consistent enough to give a clear
understanding of the electronic and optical properties of these two materials.
This work aims at clarifying the issue.
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Resumo

Estudo de estrutura electrónica de materias bidimen-
sionais na aproximação GW e pela equação Bethe-Salpeter

Neste trabalho as propriedades electrónicas e ópticas dos materiais bidi-
mensionais h-BN e fosforeno foram estudadas. É sabido que a DFT falha na
maior parte das vezes a previsão de propriedades como a estrutura de ban-
das electrónicas e o espectro de absorção. Para corrigir tais previsões, teorias
que incluem interacções electrão-electrão e electrão-lacuna são necessárias. O
formalismo da aproximação GW , que inclui interacções electrão-electrão, é
usado para calcular as estruturas de bandas electrónicas. Desta forma pode-
mos medir o hiato de banda destes materiais. O formalismo BSE, que inclui
interacções electrão-lacuna, é usado para calcular o espectro de absorção.
Com este espectro podemos medir o valor do hiato óptico e também a ener-
gia de ligação do excitão. Poucos trabalhos que utilizam teorias com efeitos
de muitos corpos como a aproximação GW e a BSE foram feitos para estes
dois materiais. Dessa forma há uma falta de dados para termos um conheci-
mento claro das suas propriedades electrónicas e ópticas. Este trabalho tem
como objectivo fornecer tal conhecimneto.
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Chapter 1

Introduction

Density functional theory (DFT) is a very successful computational method
to determine ground state properties of many-electron systems. One of its
most important applications is to predict the electronic band-structure of
solids, which allows us to study the electronic and optical properties of a
particular material. DFT is very precise when predicting ground state prop-
erties like lattice parameters, bulk modulus and cohesive energies, However,
it does not predict correctly the electronic and optical properties of semicon-
ductors and insulators in most cases. Electronic bands-structures computed
by DFT give band gaps often underestimated, predicting metal materials
that are semiconductors or insulators [1–3]. Other electronic properties like
ionization energies and magnetic moments are also in disagreement with ex-
perimental results [4, 5]. And because optical properties are very related to
electronic properties, DFT also gives wrong predictions in quantities like the
dielectric functions and absorption spectra [6]. The reason for these discrep-
ancies is that many of the properties are related to excited states, which are
outside the DFT domain.

The basic idea of DFT is that the ground state energy can be represented
as a functional of the ground state electronic density n0 which is a quantity
that is more easy to work than the many-body wave function. Besides, the
ground state energy can be obtained by a variational principle of the ground
state electronic density. Khon and Sham [7] used these ideas to formulate a
system of N non-interacting fictitious particles that obeys the equations 1.1
(in atomic units)[

1

2
∇2 + VH + Vext + Vxc

]
Φi = εiΦi, n0 =

N∑
i=1

|Φi|2 , (1.1)

where Φi are the Khon-Sham orbitals, εi the Khon-Sham eigenvalues, Vext
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is the external potential, VH and Vxc is the Hartree potential and exchange-
correlation potential respectively, that are given by equations 1.2

VH(r) =

∫
n(r′)

|r− r′|
dr′, Vxc(r) =

δExc[n]

δn(r)
, (1.2)

where Exc is the exchange-correlation energy that contains correlation and
kinetic effects that are not included in the Hartree potential. The exact
form for the Exc is not known, so in order to solve the Khon-Sham equa-
tions we have to use approximations for the exchange-correlation potential.
One of the most used approximations is the Local-Density-Approximation [7]
(LDA), where the exchange-correlation potential is replaced by a homoge-
neous electron gas that is evaluated locally. With this approximation we have
an exchange-correlation potential that is local, where it depends only on the
local density in each point of space and is energy independent. We can give
more information to this potential if we include the gradient corrections to
the local density. This second approximation is called Generalised-Gradient-
Approximation [8] (GGA) and despite its corrections to LDA it is still local
(or semi-local) and energy independent.

These two approximations, LDA and GGA, are very simple and very
successful when describing the ground state properties of many-electron sys-
tems. If the exact form of the exchange-correlation potential were known,
we would obtain the exact ground state electronic density of the system
and have exact ground state results. The discrepancies mentioned above
about the electronic and optical properties come from DFT being a ground
state theory. The Khon-Sham eigenvalues and orbitals are just mathemat-
ical tools without any clear physical meaning with the exception that the
square of the Khon-Sham orbitals sums up to the ground state density and
the highest occupied Khon-Sham eigenvalue corresponds to the chemical po-
tential for metals [9] or the negative ionization energy for semiconductors
and insulators [10]. Nevertheless, we are tempted to identify or interpret
the corresponding Khon-Sham eigenvalues spectrum to the excited energies.
There is not a justification for this interpretation and that is the reason why
DFT shows discrepancies when predicting electronic properties like electronic
band-structures. Even with the exact form of the exchange-correlation po-
tential, there is still no reason to use DFT to describe properties related
to excited energies. Nevertheless, there are many cases where DFT energy
dispersions are in good agreement with experimental data and even if they
are not a real description of the system the results can be often interpreted
qualitatively.

One of the experimental techniques for measuring the excitation energies
which allows us to measure the band gap energies is photo-emission spec-

2



troscopy or photo-electron spectroscopy. This technique can be performed in
two ways: direct photo-emission or inverse photo-emission. The basic idea of
the direct photo-emission is to impinge a photon on the sample with energy
~ω which will cause an electron to be ejected with kinetic energy Ekin. What
happens in this process is that the electron in an occupied band absorbs the
photon and then it is removed from the sample with a kinetic energy Ekin.
During this process the absorbed energy by the electron has to be greater
than the work function φ which is the energy necessary to remove an electron
from the sample to the vacuum. Considering that the initial state with N
electrons has energy EN

0 and the final excited state with N − 1 electrons has
energy EN−1

n , then by conservation of energy we get

~ω + EN
0 = EN−1

n + Ekin + φ, (1.3)

and knowing that the binding energy of an electron can be considered as
εn = EN

0 − EN−1
n , we can reach the following expression

εn = Ekin + φ− ~ω, (1.4)

allowing us to measure the excitation energy. This process is represented in
figure 1.1.

Direct photo-emission Indirect photo-emission

Figure 1.1: Direct photo-emission on the left and inverse photo-emission on
the right. Ekin is the kinetic energy of the electron, ~ω the photon energy,
EV B and ECB is the energy of the last valence band and first conduction band
respectively, φ is the work function which is the energy necessary to remove
the electron from the sample to the vacuum with Evac being the vacuum
energy.

In the inverse photo-emission, also represented in figure 1.1, an electron
is injected to the sample with a kinetic energy Ekin. After that the electron

3



will go to a lower energy in the conduction band emitting a photon with
energy ~ω. In this case the binding energy is defined as εn = EN+1

n − EN
0 .

These two processes fail to be a reliable description of the reality because
the ejection and injection of electrons in the sample is a many-body problem
where the electrons are correlated with each other by Coulomb interactions.
The electrons are not independent particles, and there are many complex
interactions as phonon and defect scattering that are not considered in these
photo-emission process. Still, we can give more reliability to this process
when considering the screening effect, which is a very important effect that
should be considered in electron interactions. If we consider the screening
process, where the electron repulses the other electrons creating a positive
cloud charge that ”screens” the electron, we can still describe the photo-
emission process with the quasi-independent picture. But this time we are
considering not the bare electron, but the electron surrounded by the cloud
of positive charge that we call a quasi-particle as we can see in figure 1.2 for
the electron addition case.

- -

- -

- -

- -

- -

- -

-

Figure 1.2: In the left picture we have a system of N electrons interacting via
Coulomb potential. In the second picture, an electron is added to the system.
The new electron will repulse the other electrons, polarizing the system. This
polarization creates a positive cloud charge that surrounds the electrons. The
electrons are not bare electrons anymore because the positive cloud charge
and the electron behave as one which we call quasi-particle. The interactions
between the quasi-particles are not Coulomb interactions but interactions by
a weaker potential called the screened Coulomb potential.

A many-body theoretical formulation that is related to adding or remov-
ing quasi-particles of a system where the initial state has energy EN

0 and
the final excited state have energies EN±1

i is the Green’s function formal-
ism. With this formalism we can find the mathematical description of the
quasi-particles which allows us to determine the excitation energies and many
other important properties like quasi-particles life times. Such mathematical
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description requires the knowledge of the quasi-particle self-energy operator
Σ that provides all information about exchange and correlation effects. The
problem now is to calculate this quantity, which is far more complex than
any quantity in DFT. We will see that with Hedin’s equations [11, 12] it is
possible to reach a very useful approximation for calculating Σ and determine
the excited properties of any material. That approximation is called the GW
approximation [11,12] where the Σ is approximated in the following way

Σ ≈ GW, (1.5)

where G is the Green’s function and W is the screened Coulomb interaction.
In the figure 1.3 we can understand the motivation of the GW approximation:

Figure 1.3: Comparison of the band gap values obtained by LDA and by the
GW approximation (GWA) with experimental data. Taken from reference
[13].

There is still something very important that is missing in this approxi-
mation. If we use it to calculate optical properties we still have some bad
descriptions when compared to experiments. The reason is the excitonic
effects that are being ignored. The electron-hole interactions are very impor-
tant to describe the optical properties of materials like semiconductors and
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insulators which have considerable gaps. The solution is to do calculations
with the Bethe-Salpeter equation [14,15] (BSE) which takes into account the
electron-hole interactions like screening and exchange. In figure 1.4 we can
see the motivation for using the BSE equation to describe the absorption
spectrum.

Figure 1.4: Absorption spectrum of silicon. The black dots are the ex-
perimental data, the dashed-dot curve is the Random-Phase-Approximation
(RPA) which can be obtained by DFT, the dotted curve is obtained by GW -
RPA which includes the quasi-particle corrections but does not include the
excitonic interactions, the solid curve is obtained by the BSE which include
the quasi-particle corrections and excitonic effects. This graphic is taken
from [16].

An introduction to Green’s function, GW approximation and BSE for-
malism is presented in the chapter 2. In the chapter 3 an explanation of how
these methods can be implemented numerically in order to perform compu-
tational calculations is given. Then we have two chapters for two different
bidimensional materials: Bidimensional hexagonal-boron nitride (h-BN) and
phosphorene. We will apply the DFT, GW approximation and BSE com-
putational techniques to these materials in order to study their electronic
an optical properties. First we give a brief introduction to every material.
Then we perform DFT and GW calculations and discuss the results. Finally
we perform BSE equations to calculate optical properties. In the chapter
Conclusions and outlook we give a summarized discussion of all the results
obtained for the different materials.
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Chapter 2

Theoretical Background

We saw in the Introduction chapter that it is not reliable to describe photo-
emission spectroscopy by considering that the electrons are independent par-
ticles. The reason for this is that photo-emission is a many-body problem
and electrons are correlated with each other by Coulomb forces. It is very
difficult to solve a many-body problem with real strong interacting particles
but, fortunately for us, we can solve it by considering fictitious weakly in-
teracting particles. We call this particles ”quasi-particles”. One of the best
techniques to solve the many-body problem is using the Green’s function for-
malism. In this chapter we give an introduction to Green’s function where
we show it’s properties and usefulness. Then we show that with the Green’s
function formalism we can construct an approximation, the GW approxima-
tion [11, 12], that takes into account the dynamical potential with screening
of the quasi-particles and determines the self-energy operator, which is the
operator that contains the exchange-correlations effects of these particles.
With the knowledge of the self-energy operator we can determine the quasi-
particles energy spectrum, which are the excitation energies that give us the
electronic band-structures. Finally we talk about the Bethe-Salpeter equa-
tion [14, 15] (BSE) which takes into account the excitonic effects that are
very important to describe the optical properties.

2.1 Introduction to Green’s function

Here we give a brief introduction to the main properties of Green’s function.
Most of the theory that is written in this section is based on the literature
in references [17–19], so it is recommended to consult those references if the
reader wants to understand the concepts with more detail.
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2.1.1 One particle Green’s function as a propagator

The Green’s function for one particle is defined by the following equation

iGαβ(r, t; r′, t′) =
〈ΨN

0 |T
[
ψ̂α(r, t)ψ̂†β(r′, t′)

]
|ΨN

0 〉

〈ΨN
0 |ΨN

0 〉
, (2.1)

where |ΨN
0 〉 is the many-body Heisenberg ground state of the interacting

system with N particles that satisfies equation ĤΨN
0 = EΨN

0 with Ĥ being
the many-body Hamiltonian, and ψ̂α and ψ̂†β are the Heisenberg destruction
and creation operators respectively. The spin indices, α and β, are written
explicitly and can take two values, up or down for fermions. Everything
that is presented in this chapter is about fermions and not bosons. The T
that appears in equation 2.1 is called the time-ordering operator and in this
particular case it operates in the following way

T
[
ψ̂α(r, t)ψ̂†β(r′, t′)

]
= ψ̂α(r, t)ψ̂†β(r′, t′)θ(t−t′) − ψ̂†β(r′, t′)ψ̂α(r, t)θ(t′−t),

(2.2)
where θ is the Heaviside function. The time-ordering operator in general
orders the operators with the highest value in time to the left, until the
ascending order is achieved. It adds a factor of (−1)P for P interchanges
of the fermion operators. In the above case where we have t′ > t, we have
to do one interchange between the two operators, so we have to add the
(−1)1 = −1 factor. With this definition we can rewrite equation 2.1 in the
following way:

iGαβ(rt; r′t′) =


〈ΨN

0 | ψ̂α(rt)ψ̂†β(r′t′) |ΨN
0 〉

〈ΨN
0 |ΨN

0 〉
t > t′

−
〈ΨN

0 | ψ̂
†
β(r′t′)ψ̂α(rt) |ΨN

0 〉
〈ΨN

0 |ΨN
0 〉

t′ > t

. (2.3)

We can see that Green’s function is complex, because it is nothing more
than a matrix element of the Heisenberg ground state. These elements are
expectation values of the field operators that depends on the coordinates. So
Green’s function is simply an ordinary function that depends on the coordi-
nates (r, t) and (r′, t′). It is possible to show that if the Hamiltonian is time
independent then Green’s function is translation invariant in time. That can
be easily shown knowing that the Heisenberg operator can be written in the
following way

ψ̂α(r, t) = eiĤt/~ψ̂α(r)e−iĤt/~, (2.4)
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and by using eiĤt/~ |ΨN
0 〉 = eiEt/~ |ΨN

0 〉 we will obtain a Green’s function that
depends on the coordinates (r, r′, τ), where τ = t− t′. The equation 2.3 will
be expressed as

iGαβ(r, r′, τ) =


eiEτ/~

〈ΨN
0 | ψ̂α(r)eiĤτ/~ψ̂†β(r′) |ΨN

0 〉
〈ΨN

0 |ΨN
0 〉

t > t′

−e−iEτ/~
〈ΨN

0 | ψ̂
†
β(r′)eiĤτ/~ψ̂α(r) |ΨN

0 〉
〈ΨN

0 |ΨN
0 〉

t′ > t

. (2.5)

where eiEτ/~ is just a complex number. Looking to the expression of equation
2.3, we can observe that Green’s function is identical to a propagator. For
t > t′, Green’s function give us the probability amplitude for the propagation
of an additional electron from the coordinates (r′, t′) to (r, t). For the case
t′ > t, we have the propagation of an additional hole from the position
(r′, t′) to (r, t). This process can be more easily understood if we work in
the Schrödinger picture, with the Heisenberg and Schrödinger states being
related by the following expression

|ΨH〉 = Û(t, t′) |ΨS(t)〉 , (2.6)

where the time-evolution operator is given by Û(t, t′) = e−iĤ(t−t′)/~. A parti-
cle can be created in the point (r′, t′) by applying the creation operator ψ̂†β(r′)
on the Schrödinger state |ΨS(t′)〉. Then it will propagate in time according
to Û(t, t′). For t > t′, the overlap of this state with ψ̂†α(r) |ΨS(t)〉 has the
following expression

〈ΨS(t)| ψ̂α(r)U(t, t′)ψ̂†β(r′) |ΨS(t′)〉 , (2.7)

and it is the probability amplitude at a later time t for finding an additional
electron at the sate ΨS(t). The reverse, t′ > t is the probability amplitude
to find an additional hole at later time t′ in the ground state ΨS(t′). The
holes can be considered as electrons going backwards in time. So we under-
stand now the physical meaning of the one particle Green’s function as a
propagator.

2.1.2 One particle Green’s function and observables

It is possible to calculate very interesting properties with the one particle
Green’s function of equation 2.1. We are talking for example about the
expectation value of any single particle operator of a ground state system.
Using the following definition for the single particle operator,

Ô =

∫
d3r
∑
αβ

ψ†β(r)O(r)αβψα(r) (2.8)
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and knowing that the expectation value of the operator is given by 〈ΨN
0 |Ô|ΨN

0 〉
it is possible to get the following expression:

〈Ô〉 = ±i
∫
d3r lim

t′→t+
lim
r′→r

∑
αβ

O(r)αβGαβ(r, t; r′t′) (2.9)

where t+ is an infinitesimal greater than t to ensure that the operators are
in the correct order (seeing the derivation on the literature, it is easy to see
that the case considered is t′ > t, so the positive infinitesimal assures that).
With the expression 2.9 we can express single-particle operators depending
on the one particle Green’s function. For example the total kinetic energy
can be expressed as:

〈T̂ 〉 = ±i
∫
d3r lim

r′→r

[
−~2∇2

2m
trG(r, t; r′t+)

]
(2.10)

where tr is the trace. It is also possible to show that the ground state energy
depends on the one particle Green’s function, where the expression is given
by (see literature in reference [17] for full derivation):

E = 〈T̂ + V̂ 〉 = 〈Ĥ〉 = ±1

2
i

∫
d3r lim

t′→t+
lim
r′→r

[
i~
∂

∂t
− ~2∇2

2m

]
trG(r, t; r′t′).

(2.11)
It is clear that one particle Green’s function can give us access to really

interesting observable properties, like the ground state energy. Unlike DFT,
we can obtain the exact ground sate energy as a functional of the Green’s
function, but it is much more complex to calculate as we will see in the next
sections.

There is one very important property that one particle Green’s function
can give us. The excitation spectrum of the system, that is going to be
introduced in the next section.

2.1.3 Excitation spectrum

To simplify our calculations, let us consider that the Heisenberg ground state
in equation 2.1 is normalized, that is, 〈ΨN

0 |ΨN
0 〉 = 1, and the spins are

implicit from now on. If we insert the completeness relation
∑

n |Ψn〉 〈Ψn| = 1
between the two operators in equation 2.5 we end up with the following
equation

iG(r, r′, τ) =
∑
n

[
e−i(En−E)t/hθ(τ) 〈ΨN

0 |ψ̂(r)|Ψn〉 〈Ψn|ψ̂†(r′)|ΨN
0 〉
]

−
∑
n

[
−ei(En−E)t/hθ(τ) 〈ΨN

0 |ψ̂†(r′)|Ψn〉 〈Ψn|ψ̂(r)|ΨN
0 〉
]
, (2.12)
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where equation H |Ψn〉 = En |Ψn〉 was used. We can see in the first term the
state |Ψn〉 corresponds to a state with N + 1 particles, considering that the
ground state has N particles. That is because 〈ΨN

0 |ψ̂(r)|Ψn〉 〈Ψn|ψ̂†(r)|ΨN
0 〉 =∣∣∣〈ΨN

0 |ψ̂(r)|Ψn〉
∣∣∣2, which means that the state |Ψn〉 must contain one more

particle than state |ΨN
0 〉. So we can define the state |Ψn〉 in the first term as

|ΨN+1
n 〉. In the second term we have the opposite, so we define the state |Ψn〉

as |ΨN−1
n 〉. Using equations H |ΨN±1

n 〉 = EN±1
n |ΨN±1

n 〉 and H |ΨN
0 〉 = E |ΨN

0 〉,
we can rewrite equation 2.12 in following way:

iG(r, r′, τ) =
∑
n

θ(τ)ΨN+1
n (r)Ψ∗N+1

n (r′)e−iε
N+1
n τ/~

−
∑
n

θ(−τ)ΨN−1
n (r)Ψ∗N−1n (r′)e−iε

N−1
n τ/~, (2.13)

where

ΨN+1
n (r) = 〈ΨN

0 |ψ̂(r)|ΨN+1
n 〉 ΨN−1

n (r) = 〈ΨN−1
n |ψ̂(r)|ΨN

0 〉 , (2.14)

and
εN+1
n = EN+1

n − E εN−1n = E − EN−1
n . (2.15)

If we perform a Fourier transform in frequency space of equation 2.13, we
obtain the following equation

G(r, r′, ω) =
∑
n

ΨN+1
n (r)Ψ∗N+1

n (r′)

~ω − εN+1
n + iη

+
∑
n

ΨN−1
n (r)Ψ∗N−1n (r′)

~ω − εN+1
n − iη

(2.16)

where η is a positive infinitesimal. The denominator in the first term of
equation 2.16 can be expressed in the following way

~ω − εN+1
n = ~ω − (EN+1

n − EN+1)− (EN+1 − E). (2.17)

The quantity EN+1 − E represents the change of energy on ground state
when a extra particle is added to the system with N particles. If the volume
is kept constant, this change of energy is just the chemical potential µ. The
quantity EN+1

n −EN+1 = εN+1
nex

is the excitation energy of the N + 1 system.
We can do the same analogy for the second denominator and finally rewrite
equation 2.16 in the following way:

G(r, r′, ω) =
∑
n

ΨN+1
n (r)Ψ∗N+1

n (r′)

~ω − µ− εN+1
nex

+ iη
+
∑
n

ΨN−1
n (r)Ψ∗N−1n (r′)

~ω − µ− εN−1nex
− iη

(2.18)

This equation shows that the one particle Green’s function has poles at the
exact excitation energies of the interacting system. For energies above the

11



Figure 2.1: Singularities of equation 2.18 in the complex plane. For N +
1 excitations we have energies above the chemical potential and the poles
(crosses) are below the real axis. For N − 1 excitations we have energies
below the chemical potential and the poles (crosses) are above the real axis.

chemical potential we have poles that are slightly below the real axis. For
energies below the chemical potential we have poles that are slightly above
the real axis. These singularities are shown in figure 2.1. With the excitation
energies one can obtain the energy spectrum of the material.

2.1.4 Dyson’s equation and quasi-particle equation

Is is clear that Green’s function gives us very useful properties that are ob-
servable. Still we have to solve the Green’s function for a many-body in-
teracting system where the Hamiltonian in the second quantization has the
following expression (spins are implicit from now on):

Ĥ =

∫
ψ̂†(r)ĥ0(r)ψ̂(r)d3r+

1

2

∫
ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r)d3rd3r′, (2.19)

where v(r, r′) is the Coulomb interaction. The quantity ĥ0 is the one-particle
operator defined as

ĥ0(r) = −∇
2

2
+ Vext(r), (2.20)

with Vext being the potential created by the ions. From the Heisenberg
equation of motion

i
∂ψ̂(r, t)

∂t
=
[
ψ̂(r, t), Ĥ

]
, (2.21)

and using equation 2.1 with the ground state normalized, we can obtain the
following equation,[

i
∂

∂t
− ĥ0(r)

]
G(r, t, r′, t′) = δ(r− r′)δ(t− t′)

− i
∫
v(r, r′′) 〈ΨN

0 | T̂
[
ψ̂†(r′′, t)ψ̂(r′′, t)ψ(r, t)ψ†(r′, t′)

]
|ΨN

0 〉 d3r′′, (2.22)
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which is equation of motion for the Green’s function. As we can observe in
the second term of the right hand side of equation 2.22, there is a quantity
that involves the interaction between two particles. That quantity is the
two-particle Green’s function and it is defined as

G(,r1t1, r2, t2; r
′
1, t
′
1, r
′
2, t
′
2) =

(−i)2
〈ΨN

0 | T̂
[
ψ̂(r1, t1)ψ̂(r2, t2)ψ̂

†(r′2, t
′
2)ψ̂

†(r′1, t
′
1)
]
|ΨN

0 〉

〈ΨN
0 |ΨN

0 〉
. (2.23)

We can see that equation 2.22 depends on the Green’s function for two-
particles which means that equation of motion of Green’s function for two-
particles depends on the Green’s function for three-particles and so on. So we
have an hierarchy of equations which are very complicated to solve. There is
a very special and useful identity that allows us to get rid of the two-particle
Green’s function. This is what we want because we are interested only on
the one-particle Green’s function properties. That identity comes from the
Schwinger’s functional derivative method [20,21] and it is defines as∫

Σ(rt; r′′, t′′)G(r′′, t′′, r′, t′)dr′′dt′′ + VH(r, t)G(r, t; r′, t′)

= i

∫
v(r, r′′) 〈ΨN

0 | T̂
[
ψ̂†(r′′, t)ψ̂(r′′, t)ψ(r, t)ψ†(r′, t′)

]
|ΨN

0 〉 d3r′′, (2.24)

where the Hartree Potential is defined as

VH(r, t) =

∫
v(r, t; r′′, t′′)n(r′′, t′′; r′′, t′′ + η), dr′′ (2.25)

with η being an infinitesimal positive of time and the density is defined as
n(r′′t′′; r′′t′′ + η) = iG(r′′t′′; r′′t′′ + η). This allows us to rewrite 2.22 as[

i
∂

∂t
− ĥ(r)

]
G(r, t, r′, t′)

= δ(r− r′)δ(t− t′) +

∫
Σ(r, t; r′′, t′′)G(r′′, t′′, r′, t′)dr′′dt′′, (2.26)

which is Dyson’s equation and the ĥ is the sum of the ĥ0 and the Hartree
potential. The Σ is the self-energy operator and we can solve the Green’s
function exactly if we know the exact form of self-energy operator. In order
to understand the physical meaning of self-energy operator one can do a
Fourier transformation of equation 2.26 in the frequency domain and then
use equation 2.16 to obtain

ĥ (r) Ψn(r) +

∫
Σ(r, r′; εn)Ψn(r′)d3r′ = εnΨn(r), (2.27)
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which is often called the quasi-particle equation. We can see that Σ acts as a
non-local frequency dependent potential on a Schrödinger like equation. This
equation is not a mean-field formalism because Σ is a dynamical operator and
takes into account all many-body exchange and correlations effects beyond
Hartree potential. This means that Ψn and εn are not single-particle quan-
tities. They are actually properties of the many-body problem as defined in
equation 2.14 and 2.15.

If we consider a non-interacting system, the self-energy vanishes, that is,
Σ = 0. This allows us to obtain 2.26[

i
∂

∂t
− ĥ(r)

]
G0(r, t; r

′, t′) = δ(r− r′)δ(t− t′), (2.28)

where G0 is the Green’s function for a non-interacting system. If we multiply
2.26 for G0 and 2.28 by G one can rewrite the Dyson’s equation as

G(r, t; r′, t′) = G0(r, t; r
′, t′)

+

∫
G0(r, t; r

′′, t′′)Σ(r′′, t′′; r′′′, t′′′)G(r′′′, t′′′; r′, t′)dr′′dr′′′, (2.29)

which can be represented diagrammatically by Feynman’s diagrams in figure
2.2.

Figure 2.2: Feynman’s diagram representation to the Dyson’s equation. The
notation used is represented in equation 2.34.

If our system is homogeneous stationary and non-magnetic (which means
that G and Σ are diagonal in respect to spin indices) it is possible to make
a Fourier transformation of 2.29 to get an algebraic equation

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω), (2.30)

allowing us to obtain

G(k, ω) =
[
G0(k, ω)−1 − Σ(k, ω)

]−1
. (2.31)

The beauty of equation above is that when we do an approximation for the
self-energy we are actually calculating an infinite subseries of the perturbation
series. This happens because those series are all contained in the self-energy
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operator. The self-energy can be considered as everything that is beyond the
non-interacting Green’s function. The equation 2.31 can be written symbolic
as

G−1 = i
∂

∂t
− ĥ− Σ, (2.32)

which holds even if G and Σ are non-diagonal [18].
It is important to note that the non-interacting Green’s function G0 is

in principle known because it is the Green’s function for the non-interacting
Hamiltonian. Then we can calculate self-consistently the G by using equation
2.31. For that is necessary to know how to calculate or approximate the self-
energy operator.

2.2 Hedin’s Equations: GW Approximation

In this section the Hedin’s equations [11, 12] are presented, which is where
the GW approximation takes place. Hedin’s equations provides a set of
integral-differential equations that gives the explicit form for the self-energy
operator. The essential idea is that the self-energy can be expressed in terms
of the screened Coulomb potential W instead of the bare Coulomb potential
v. When expanding the self-energy in terms of v, it is known that the series
will be divergent for metals and even if it converges, the convergence ratio
becomes poor with the increase of the system polarizability [11, 12]. On the
contrary, when expanding in terms of the screened potential W , the first
order gives good results for system with large polarizability. The reason for
this is the fact that W is weaker than v because of the dielectric medium
which is polarized. This happens because of the screening effect. We will see
that despite of the Hedin’s equations looking like a self-consistent procedure,
we have to iterate them analytically. This is where the GW approximation
emerges.

2.2.1 Hedin’s equations

We saw that equation 2.22 can be solved by using an identity that comes
from using the Schwinger’s functional derivative method which can be done
by introducing an external potential U(r, t) that will be set to zero at the
end. The first term of equation of motion 2.26 is now[

i
∂

∂t
− ĥ(r)− U(r, t)

]
G(r, t; r′, t′). (2.33)
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In order to reduce the number of primes on equations that will be written
later, one can use the following notation:

1 = (r, t) , 2 = (r′, t′) , 3 = (r′′, t′′) , (2.34)

δ(1, 2) = δ (r− r′) δ (t− t′) , (2.35)

v(1, 2) = v (r− r′) δ (t− t′) , (2.36)∫
d1 =

∫
d3r

∫ +∞

−∞
dt, (2.37)

1+ = (r, t+ η) , (2.38)

where η is a positive infinitesimal. The equation of motion of the Green’s
function can be rewritten in the new notation as[

i
∂

∂t1
− Ĥ0(1)

]
G(1, 2)−

∫
Σ(1, 3)G(3, 2)d3 = δ(1, 2), (2.39)

where Ĥ0 = ĥ + U . This is nothing more than the Dyson’s equation of 2.26
but with the external potential included. The question now is how can one
evaluate Σ. This is where the Schwinger’s functional derivative method takes
place. It is possible to show that [22]

δG(1, 2)

δU(3)

∣∣∣
U=0

= G(1, 2)G(3, 3+)−G(1, 3, 2, 3+) (2.40)

and now we understand how we got rid of the two-particle Green’s function
in the previous section. We can see that if we look again to equation 2.22
with the two-particle Green’s function and use identity 2.40, one can obtain
the following equality

− i
∫
v(1+, 3)G(1, 3, 2, 3+)d3

= −i
∫
v(1, 3)G(3, 3+)G(1, 2)d3 + i

∫
v(1+, 3)

δG(1, 2)

δU(3)
d3

(2.41)

where n(3, 3+) = iG(3, 3+) is the density. From equation 2.41 and 2.39 we
arrive at: ∫

Σ(1, 3)G(3, 2)d3 = i

∫
v(1+, 3)

δG(1, 2)

δU(3)
d3 (2.42)

Now using identity [22]∫
d3G(1, 3)G−1(3, 2) =

∫
d3G−1(1, 3)G(3, 2) = δ(1, 2), (2.43)
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we can reach the following expression

Σ(1, 2) = i

∫
v(1+, 3)

δG(1, 4)

δU(3)
G−1(4, 2) d3 d4 (2.44)

Finally, using this identity [22]∫
δ (G(1, 4)G−1(4, 2))

δU(3)
d4 =∫

δG(1, 4)

δU(3)
G−1(4, 2)d4 +

∫
δG−1(4, 2)

δU(3)
G(1, 4)d4 = 0 (2.45)

it is possible to reach the following expression

Σ(1, 2) = −i
∫
v(1, 3+)G(1, 4)

δG−1(4, 2)

δU(3)
d3 d4

= −i
∫

v(1, 3+)G(1, 4)
δG−1(4, 2)

δV (5)

δV (5)

δU(3)
d3 d4 d5

(2.46)

This allows us to reach the final expression for Σ which is given by

Σ(1, 2) = i

∫
W (1+, 3)G(1, 4)Γ(4, 2, 3)d3 d4, (2.47)

where the self-energy is expressed in terms of W , the screened Coulomb
potential and the Γ vertex function. Before talking about the explicit ex-
pressions for the W and Γ let us define some important quantities that can
be obtained using the functional differentiation. The response function is
defined as

R(1, 2) =
δn(1)

δU(2)

∣∣∣
U=0

. (2.48)

which is how the density changes due to the external field. The following
quantity

V (1) = U(1) +

∫
v(1, 3)R(3, 2)U(2) d2 d3, (2.49)

is the effective or average potential and it is the sum of the Hartree potential
and the external potential.

The inverse dielectric function is a very important quantity because it
measures the screening in the system. It can be obtained classically by
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differentiating the average potential due to a small variation in the external
potential,

ε−1(1, 2) =
δV (1)

δU(2)

∣∣∣
U=0

= δ(1, 2) +

∫
v(1, 3)R(3, 2)d3. (2.50)

The other quantity is the polarization function or polarizability which is the
change of density upon the average potential, and it is given by

P (1, 2) =
δn(1)

δV (2)

∣∣∣
U=0

. (2.51)

Using the following identity

ε−1 =
δV

δU
= 1 + v

δn

δV

δV

δU
, (2.52)

we can invert the epsilon function in equation 2.50 and obtain

ε(1, 2) = δ(1, 2)−
∫
v(1, 3)P (3, 2)d3. (2.53)

Now we know that the potential that an electron at position 1 feels due to the
presence of a test charge at position 2 including the effects of the polarization
of the electrons is the screened potential given by

W (1, 2) =

∫
ε−1(1, 3)v(3, 2)d3 (2.54)

Using equation identity 2.52, we can rewrite the inverse epsilon function as

ε−1(1, 3) = δ(1, 3) + v(1, 4)
δn(3)

δV (4)

δV (4)

δU(3)

= δ(1, 3) + v(1, 4)P (3, 4)ε−1(4, 3). (2.55)

The screened potential can now be rewritten as

W (1, 2) =

∫
ε−1(1, 3)v(3, 2)d3 = v(1, 2) +

∫
v(1, 3)P (3, 4)W (4, 2)d3d4.

(2.56)
The vertex function Γ in the expression 2.47, is defined as

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)

∣∣∣
U=0

, (2.57)
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If we use the identity 2.31 taking into account the inclusion of the external
potential, we can obtain the following expression

G−1(1, 2) = i
∂

∂t1
−H0(1)−Σ(1, 2) = G−10 (1, 2)−U(1)δ(1, 2)−Σ(1, 2). (2.58)

With the expressions of 2.57 and 2.58 we get

Γ(1, 2, 3) = − δ

δV (3)

[
G−10 (1, 2)− U(1)δ(1, 2)− Σ(1, 2)

]
= δ(1, 2)δ(1, 3) +

δΣ(1, 2)

δV (3)
, (2.59)

noting that the V (3) is the sum of the external potential and the Hartree
potential that is included in the G−10 (1, 2). We can rewrite equation 2.59 in
the following way

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δV (3)
d4 d5

= δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)Γ(6, 7, 3)G(7, 6)d4 d5 d6 d7 (2.60)

where the identity 2.45 was used. The same can be done to the polarization
function. Considering n(1) = −i~G(1, 1+), we can obtain:

P (1, 2) = −i∂G(1, 1+)

∂V (2)
= −i

∫
G(1, 3)

∂G−1(3, 4)

∂V (2)
G(4, 2)d3 d4

= −i
∫
G(1, 3)Γ(3, 4, 2)G(4, 1)d3 d4. (2.61)

So in summary we get the following set of integral-differential equations:
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G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d3 d4, (2.62)

Σ(1, 2) = i

∫
W (1, 3+)G(1, 4)Γ(4, 2, 3)d3 d4, (2.63)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(5, 6)G(7, 4)Γ(6, 7, 3)d4 d5 d6 d7,

(2.64)

P (1, 2) = −i
∫
G(1, 3)G(4, 1)Γ(3, 4, 2)d3 d4, (2.65)

ε(1, 2) = δ(1, 2)−
∫
v(1, 3)P (3, 2)d3, (2.66)

W (1, 2) =

∫
ε−1(1, 3)v(3, 2)d3, (2.67)

which are called the Hedin’s equations. These equations can be solved self-
consistently in order to solve the many-body problem. The idea is to start
with some value for Σ and then evaluate G and Γ which allows us to evaluate
P . With P we can calculate the W and finally the new Σ. We can do this
procedure over and over again until self-consistency is achieved. Figure 2.3
represents the cylce procedure of the self-consistent loop of Hedin’s equations.

Figure 2.3: Cycle procedure of the self-consistent loop of Hedin’s equations.
First we start with an approximation for Σ and then we cam calculate the
other quantities until the new Σ is calculated. The cycle can be repeated
over and over again until self-consistency is achieved.
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2.2.2 GW approximation

Hedin proposed in the first iteration to consider the Σ = 0 which means that
G = G0. With this consideration the vertex function is simply

Γ(1, 2, 3) = δ(1, 2)δ(1, 3). (2.68)

Then we can calculate the polarization function that is given by

P (1, 2) = −iG(1, 2)G(2, 1), (2.69)

which allows us to determine the epsilon function and W . Finally we can
calculate the Σ which is given by

Σ(1, 2) = iG(1, 2)W (1+, 2). (2.70)

The equation 2.70 is the GW approximation. This is nothing more than the
contribution of order one of the Σ that comes from the zero order contribution
of the other terms. Then we can get the first order contribution for G and for
the vertex function Γ. The later is done by doing the functional derivative
and obtain Γ(1, 2, 3) = iG(1, 3)G(3, 2)W (1+2) which allow us then to obtain
the second order contribution of Σ, which is given by

i2
∫
W (1+, 3)G(1, 4)G(4, 3)W (4+, 2)d3d4. (2.71)

We can see that this gets very complicated because the second contribution
from Γ now arises from the first and second contribution of Σ.

2.2.3 G0W0

One of the complexity of the GW approximation is to stop in the first order
contribution

Σ(1, 2) = iG(1, 2)W (1+, 2). (2.72)

and neglect the contribution from the other orders. Of course this is of very
practical interest for computational calculations because we are not treating
the GW approximation as a self-consistent procedure. Now the problem is
how to calculate the G0 of the first iteration. We can take advantage of
DFT calculations and calculate the Green’s function G0 using singe-particle
quantities as we will see in the next chapter. This allows us to determine
the polarizability which is given by P0 = −iG0(1, 2)G0(2, 1). This is called
the Random-Phase-Approximation (RPA). Finally we obtain the W0 which
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Figure 2.4: G0W0 scheme. We start by considering that Σ = 0 which allows
us to calculate the other quantities till the new Σ is calculated. This new Σ
is given by iG0(1, 2)W0(1

+, 2).

is the screened potential calculated from the RPA. Then we calculate Σ and
this procedure is called single-shot or one-shot GW (G0W0):

Σ(1, 2) = iG0(1, 2)W0(1
+, 2). (2.73)

Figure 2.4 represents the G0W0 scheme.
In the next chapter we will talk about the numerical implementation

where one can understand how to relate the quasi-particles energies and the
Khon-Sham energies.

Despite it’s simplicity, G0W0 approximation is very successful when de-
scribing the electronic excitations in solids and molecules [23, 24]. More in-
sight about this approximation will be given in the chapter Implementation
of GW approximation and BSE, where we can understand better what is the
significance of the quantities that are involved in this approximation.

2.3 Bethe-Salpeter Equation (BSE)

To describe the absorption spectrum of the materials one has to take into
account the excitonic interactions, that is, electron-hole interactions. These
interactions are not included in the GW approximation, which is why we

22



don’t have reliable descriptions of optical properties with the RPA [6]. It
is important then to consider the two-particle Green’s function instead of
one-particle. The two-particle Green’s function has the following expression

G(1, 2, 3, 4) = (−i)2 〈ΨN
0 | T̂

[
ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)

]
|ΨN

0 〉 , (2.74)

considering that ground state is normalized.

2.3.1 Four-point reducible polarizability

Let’s introduce the quantity L which is called the four-point reducible polar-
izability and has the following expression

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−G(1, 2, 3, 4), (2.75)

where L0 is the non-interacting four-point reducible polarizability and it is
defined as L0(1, 2, 3, 4) = iG(1, 3)G(4, 2). We can see that L describes the
the propagation of electron and hole separately which is the L0 quantity,
minus the coupled propagation of electron and hole which is the two-particle
G. Using the equation 2.40, we can rewrite the L function as

L(1, 2, 3, 4) = −iδG(1, 2)

δU(3, 4)
. (2.76)

Using the identity 2.45, we can rewrite 2.76 as

L(1, 2, 3, 4) = −iδG(1, 2)

δU(3, 4)
= +i

∫
G(1, 5)

δG−1(5, 6)

δU(3, 4)
G(6, 2)d5d6

= +i

∫
G(1, 5)

δ
[
G−10 (5, 6)− U(5)δ(5, 6)− Σ(5, 6)

]
δU(3, 4)

G(6, 3)d5d6,

(2.77)

and because the only term in G−10 that depends on the external potential is
the Hartree potential, we have

L(1, 2, 3, 4) = +i

∫
G(1, 5)

δ [VH(5)δ(5, 6)− U(5)δ(5, 6)− Σ(5, 6)]

δU(3, 4)
G(6, 2)d5d6,

= −iG(1, 3)G(4, 2) + i

∫
G(1, 5)G(6, 2)

δ [VH(5)δ(5, 6)− Σ(5, 6)]

δU(3, 4)
d5d6

= L0(1, 2, 3, 4)+i

∫
G(1, 5)G(6, 2)

[
δVH(5)δ(5, 6)

δG(7, 8)
− δΣ(5, 6)

δG(7, 8)

]
G(7, 8)

δU(3, 4)
d5d6d7d8.

(2.78)
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Using the definition of the Hartee potential in equation 2.25, we can obtain
the following expression

L(1, 2, 3, 4) = L0(1, 2, 3, 4)

+

∫
L0(1, 2, 5, 6)

[
v(5, 7)δ(5, 6)δ(7, 8)− i δΣ(5, 6)

δG(7, 8)

]
L(7, 8, 3, 4)d5d6d7d8,

(2.79)

which is called the Bethe-Salpeter equation (BSE) [14, 15]. This equation is
very similar to the Dyson equation. If one consider the following quantity

Ξ(5, 6, 7, 8) =

[
v(5, 7)δ(5, 6)δ(7, 8)− i δΣ(5, 6)

δG(7, 8)

]
, (2.80)

which is called the kernel of the BSE, we can rewrite the BSE in the following
way

L(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
L0(1, 2, 5, 6)Ξ(5, 6, 7, 8)L(7, 8, 3, 4)d5d6d7d8.

(2.81)
It’s diagrammatic representation can be seen in figure 2.5.

Figure 2.5: Feynman diagram of the Bethe-Salpeter equation. Sometimes it
is called Dyson’s equation, see similarity with figure 2.2.

One fact that should be noted is that we just need the two-point reducible
polarizabilty that is given by

χ(1, 2) = −iδG(1, 1+)

δU(2, 2)
(2.82)

to describe the optical properties. The problem is that there is not a closed
equation to this quantity in the Green’s function formalism, which means we
need to evaluate the four-point reducible polarizability. We have to calculate
the L function which depends on Σ. Let’s recall the GW approximation
where

Σ(1, 2) = iG(1, 2)W (1+, 2). (2.83)
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Using the identity
δ(GW )

δG
= W +G

δW

δG
. (2.84)

and noting that δW
δG
≈ 0 because the variation of screening with the excitation

can be neglected [25–27], one can rewrite the kernel of BSE as

Ξ(1, 2, 3, 4) = v(1, 3)δ(1, 2)δ(3, 4)− δ(1, 3)δ(2, 4)W (1, 2). (2.85)

We can now rewrite the BSE equation as

L = L0 + L0(v −W )L. (2.86)

Looking at the above equation, we can see that it represents the sum of
the electron-hole exchange energy without screening, which is the term with
the four-point extension of the Coulomb interaction v, plus the electron-hole
attractive four-point extended screened Coulomb interaction. The diagram-
matic representation of the kernel is shown in figure 2.6

Figure 2.6: Feynman diagram of the kernel of the BSE. See figure 2.5 for BSE.
The quantity v is the repulsion part and represents the Coulomb interaction.
The quantity W is the electron-hole attractive screened Coulomb interaction.

2.3.2 Connection to absorption spectrum

So far we know how to calculate the BSE, but we did not explicit it’s con-
nection with absorption spectrum. That can be seen in the macroscopic
dielectric function which is given in the plane-wave basis by equation

εM(q, ω) = 1− lim
q→0

[
vG=0(q)

∫
drdr′e−iq(r−r

′)χ(r, r′;ω)

]
, (2.87)

where q is a vector of the first Brillouin zone and G is a reciprocal vector.
The absorption spectrum is simply the imaginary part of the macroscopic di-
electric function. To calculate this function we have to perform a contraction
on the four-point L to obtain the two-point χ, which is defined as

χ(1, 2) = L(1, 2, 1, 2), (2.88)

allowing us to calculate the absorption spectrum.
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Chapter 3

Implementation of GW
approximation and BSE

In this chapter we present how the GW [11, 12] approximation and BSE
[14,15] is implemented numerically in order to do computational calculations.
Most of the content that is written here was taken from [16,19].

3.1 Numerical implementation GW approxi-

mation

As refereed in the previous chapter, in the first iteration of GW approxima-
tion we have to know how to determine G0. Normally we use the single-
particle quantities from DFT calculations to calculate G0 which is the non-
interacting Green’s function. After that we can calculate the screened po-
tential by using the RPA which allows us to obtain the self-energy operator.
We can stop here and use the results for the quasi-particle calculations. This
is called the single-shot or one-shot GW and its numerical implementation
will be explained below.

3.1.1 Single-shot GW or G0W0

If one Fourier transforms equation 2.72, which in real space has the expression

Σ(r, r′, τ) = iG0(r, r
′, τ + ω′)W (r, r′, τ + t), (3.1)

we obtain

Σ(r, r′, ω) =
i

2π

∫
dω′G0(r, r

′, ω + ω′)W (r, r′, ω′)eiω
′η. (3.2)
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where η is an infinitesimal positive to ensure the correct order. We saw that
Green’s function can be defined as

G(r′, r′, ω) =
∑
n

Ψn(r)Ψ∗n(r′)

ω − εn − iη sgn(εn − µ)
, (3.3)

where Ψn are the quasi-particle wave-functions, εn are the eigenvalues, µ
chemical potential and η → 0+ an infinitesimal positive. We are not writing
the quasi-particle functions and wave-functions with the superscripts N ± 1
to simplify the next equations. It is important to remember that when εn > µ
we are dealing with a system of N −1 particles and for εn < µ we are dealing
with a system of N + 1 particles.

As a starting point, we can use the solutions and energies obtained by the
Khon-Sham equations which we define as φKSn and εKSn respectively. Doing
the following approximations in equation 3.3,

Ψn ≈ φKSn εn ≈ εKSn ,

we can now calculate G = G0 which is given by,

G0(r, r
′, ω) =

∑
n

φKSn (r)φ∗KSn (r′)

ω − εKSn − iηsgn(εKSn − µ)
. (3.4)

This is one of the best guesses that can be made for the initial G0 function.
The function W is given by equation 2.67, where the dielectric function is
given by equation 2.66. Thus, it is necessary to calculate the polarizability
function P . This function is given by

P = P0 = −iG0(1, 2)G0(2, 1),

and it has the physical meaning that electrons respond to the total field
(external plus induced) as non-interacting particles. This is called the RPA
as referred in the previous chapter. If we perform a Fourier transformation
and use equation 3.4, we obtain

P0(r, r
′, ω) =

∑
spin

occupied∑
n

unoccupied∑
m

φKSn (r)φ∗KSm (r)φ∗KSn (r′)φKSm (r′)

×
(

1

ω + εKSn − εKSm + iη
− 1

ω − εKSn + εKSm − iη

)
. (3.5)

With the function P0 calculated, we can calculate the dielectric function and
consequently the potential W . We call it W0 because it was calculated with
the RPA. Finally we have the approximation

Σ(1, 2) = iG(1, 2)W (1, 2) = iG0(1, 2)W0(1, 2).
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With the self-energy operator Σ calculated, we can return to the quasi-
particle equation 2.27 to calculate the quasi-particle energies. This equation
can be rewritten in the following notation,[

h+ Σ(εGWn )
]
|ΨGW

n 〉 = εGWn |ΨGW
n 〉 . (3.6)

Of course we have a problem that is the Σ depends on the quasi-particle
energies, which are the energies that we want to calculate. To solve this
problem, we use the first order perturbation, where the perturbation is the
difference between the Σ of the G0W0 and the exchange-correlation potential
used in the Khon-Sham calculation (V KS

xc ). First we approximate ΨGW
n ≈

φKSn to treat the G0W0 as perturbation to the Khon-Sham solutions. It is
reported that this approximation is harmless [28]. Then we do the difference
between the quasi-particle equation

〈φKSn |
[
h0 + Σ(εGWn )

]
|φKSn 〉 = εGWn , (3.7)

with the Khon-Sham equation

〈φKSn |
[
h0 + V DFT

xc

]
|φKSn 〉 = εKSn , (3.8)

where we can obtain,

εGWn − εKSn = 〈φKSn |
[
Σ(εGWn )− V DFT

xc

]
|φKSn 〉 . (3.9)

There is still a term that depends on the quasi-particle eigenvalues, Σ(εGWn ).
What we can do is to consider initially εGWn = εKSn to compute the quasi-

particle energy ε
GW (0)
n . Then we consider εGWn = ε

GW (0)
n to compute the

new quasi-particle energy ε
GW (1)
n . The process has to be repeated until self-

consistency is achieved. There are many cases where the self-energy is a
nearly linear function of εGWn and we can compute Σ(εGWn ) for two grid points
and evaluate self-consistent εGWn by using the Newton’s method [28]

εGWn = εGW (0)
n +

dΣ(ε
GW (0)
n )

dω
Zn(εGW (0)

n − εKSn ). (3.10)

where Zn is the renormalization factor given by

Zn =

(
1− dΣ(ε

GW (0)
n )

dω

)−1
. (3.11)

We can easily see that the most difficult step in this G0W0 method is to
calculate the self-energy operator, because the other terms can be easily ex-
tracted from the DFT calculations. The approximation G0W0 can be divided
in two parts,

ΣGW = iG0W0 = i [G0v +G0(W0 − v)] = ΣGW
x + ΣGW

c , (3.12)
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where the first term corresponds to the exchange part and it is given by

ΣGW
x (r, r′, ω) =

i

2π

∫
G0(r, r

′, ω + ω′)v(r, r′)eiω
′ηdω′, (3.13)

the second term corresponds to the correlation part and it is given by

ΣGW
c (r, r′, ω) =

i

2π

∫
G0(r, r

′, ω + ω′) [W (r, r′, ω′)− v(r, r′)] dω′. (3.14)

The first term can be calculated analytically and it is nothing more than the
Hartree-Fock exchange,

〈φKSn |ΣGW
x |φKSn 〉 = − e2

4πε0

occupied∑
m

∫
φ∗KSn (r)φKSm (r)φ∗KSm (r′)φKSn (r′)

|r− r′|
d3r1d

3r2.

(3.15)
In the other hand, the second term has to be calculated numerically and it
is the responsible for the computational expensiveness. In the following list
the steps to calculate the quasi-particle energies are shown:

1. Self-consistent calculation using DFT to obtain the Khon-Sham func-
tions φKSn and the corresponding energies εKSn . In this point it is pos-
sible to determine G0 and calculate the term of equation 3.15.

2. Calculate the polarizability functions P with the RPA. Then the di-
electric functions is calculated by equation 2.66.

3. With dielectric function calculated it is possible to calculate W by
equation 2.67.

4. Calculate the correlation term of equation 3.14 by a numerical contour
integration on the complex frequency plane.

5. With the self-energy operator calculated, we can calculate the quasi-
particle energies according equation 3.10.

3.1.2 Plasmon Pole Approximation

One of the steps that is very computational expensive is the determination of
W of equation 3.14. It is easy to see that to evaluate ΣGW

c (ω) one has to know
W (ω′) for each frequency point, which means that we have to evaluate the
dielectric function for all frequencies. There is an approximation, Plasmon
Pole Approximation (PPA), where we can obtain a model for the dielectric
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function with the frequency dependence using few parameters. The idea is to
calculate the static dielectric function and then extend it to finite frequencies.
There are many proposed models for PPA. The model used in this work is
the model proposed by Hybertson e Louie [28]. It is explained with more
detail in the next chapter. It is important to note that PPA has to be used
carefully and we have to check its validity. This can be done by comparing it
with a calculation evaluated in a frequency grid. Nevertheless, in materials
like semiconductors or insulators PPA often gives good results [28].

3.2 Numerical implementation of BSE

In this section we will introduce briefly how the BSE is implemented numer-
ically with the help of a GW calculation. For more detail one can consult
references [15,16,29].

3.2.1 How to calculate BSE with GW

We saw in the previous chapter that the BSE is given by:

L = L0 + L0(V −W )L, (3.16)

where L is the four-point reducible polarizability and L0 the non-interacting
four-point reducible polarizability. The first consideration that is made before
calculating the BSE is to assume that W is static. This approximation is
harmless because dynamical effects in the electron-hole W and G tend to
cancel each other and we can ignore them [15, 29]. This allows us to do the
following tranformations:

W (1, 2)→ W (r, r′, t− t′)→ W (r, r′)δ(t− t′), (3.17)

and

L(1, 2, 3, 4)→ L(r, r′, r′′, r′′′, t− t′)→ L(r, r′, r′′, r′′′, ω). (3.18)

Next step is to take advantage of the fact that only a limited number of
electron-hole pairs contribute to the excitations. One can then change the
basis to the transition space (which is the product of single-particle orbitals)
where any four-pint quantity S(r, r′, r′′, r′′′, ω) can be written as

S(r, r′, r′′, r′′′, ω) =
∑

n1n2n3n4

Ψ∗n1
(r)Ψn2(r

′)Ψn3(r
′′)Ψ∗n4

(r′′′)S(n1n2)(n3n4)(ω),

(3.19)
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where

S(n1n2)(n3n4)(ω) =

∫
S(r, r′, r′′, r′′′, ω)Ψn1(r)Ψ∗n2

(r′)Ψ∗n3
(r′′)Ψn4(r

′′′)drdr′dr′′dr′′′.

(3.20)
The ni is the index for the band, k-point and spin. The expansion set of
single-particle orbitals has to form a complete basis set in the Hilbert space.
The non-interacting polarizability can be expressed now as

L0(r, r
′, r′′, r′′′, ω) =

∑
n,n′

fn − fn′
εn − εn′ − ω

Ψ∗n(r)Ψn′(r
′)Ψn(r′′)Ψ∗n′(r

′′′) (3.21)

and it is diagonal in the electron-hole basis,

L0(n1n2)(n3n4)(ω) = − fn1 − fn2

εn1 − εn2 + ω
δn1,n3δn2,n4 (3.22)

With this transformation, the BSE equation can now be rewritten as

L(n1n2)(n3n4)(ω) = L0(n1n2)(ω)

[
δn1,n3δn2,n4 +

∑
n5n6

K(n1n2)(n5n6)(ω)L(n5n6)(n3n4)(ω)

]
.

(3.23)
To solve the above equation we have to invert it for each frequency. The
problem it that the matrix L can be very large and the inversion of equation
3.23 can become impossible. Nevertheless, we can reformulate this problem
to an effective eigenvalue problem. By rewriting equation 3.23 as∑

n5n6

[
δn1,n5δn2,n6 − L0(n1n2)(ω)K(n1n2)(n5n6)(ω)

]
L(n5n6)(n3n4)(ω)

= L0(n1n2)(ω), (3.24)

and using equation 3.22, one can obtain∑
n5n6

[
(εn2 − εn1 − ω) δn1,n5δn2,n6 − (fn2 − fn1)K(n1n2)(n5n6)(ω)

]
× L(n5n6)(n3n4)(ω) = fn2 − fn1 . (3.25)

We considered above that W is static which means that K is also static. This
allows us to define an effective frequency independent Hamiltonian with the
expression

Hex
(n1n2)(n5n6)

= (εn2 − εn1) δn1,n5δn2,n6 − (fn2 − fn1)K(n1n2)(n5n6). (3.26)
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where we define it as the excitonic Hamiltonian. The BSE can now be reduced
to

L(n1n2)(n3n4)(ω) = [Hex − Iω]−1(n1n2)(n3n4)
(fn2 − fn1) , (3.27)

where I is the identity matrix with same size as the excitonic Hamiltonian.
In the spectral representation we have

[Hex − Iω]−1(n1n2)(n3n4)
=
∑
λλ′

Aλn1n2
Aλ
′
n3n4

Eλ − ω
N−1λλ′ (3.28)

where the eigenvalues Eλ and eigenvectors Aλ given by

HexAλ = EλAλ, (3.29)

are the excitonic energies and eigenstates respectively. TheNλλ′ is the overlap
matrix defined by

Nλλ′ ≡
∑
n1n2

[Aλn1n2
]∗Aλ

′

n1n2
. (3.30)

The Hamiltonian of equation 3.29 is in general not Hermitian. There is an
approximation, Tamm-Dancoff approximation, where only the electron-hole
pairs at positive energies are considered and the Hamiltonian becomes her-
mitian. With this approximation the excitonic hamiltonian has the following
expression with the k-point dependence explicit

H = (εnk − εn′k) δmnδn′mδkk′ + [2Vnn′k,mm′k′ −Wnn′k,mm′k′ ] , (3.31)

where the εn(m)k can be the Khon-Sham eigenvalues or quasiparticles energies.
Finally the imaginary part of the dielectric function can be obtained by

ImεM = lim
q→0

8π2

q2V

∑
λ

∑
nn′k

| 〈n′k− q| eiqr |nk〉Aλn′nk|2δ((Enk−q − En′k)− ω)

(3.32)
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3.3 Important facts about the G0W0 and BSE

calculations.

In this section we give some important topics about the G0W0 and BSE
calculations that are done using the BerkeleyGW [30] package. More
details are presented in appendix B.

3.3.1 G0W0 calculations

The G0W0 calculations that will be shown in chapters 4 and 5 use the
Generalised-Plasmon-Pole (GPP) model proposed by Hybertson e Louie [28].

In that model, we first have to compute the static polarizability matrix
of equation B.1.

We have to construct the matrix elements Mnn′ where n is the number
of occupied bands and n′ the number of empty bands. For computing these
elements we have to choose a cut-off which we call the dielectric cut-off. The
number of empty bands is the number of bands used for the summation of
the static polarizability matrix. The last empty band used in this summation
has to be consistent with the dielectric cut-off. So we can choose a number
of bands for the summation and then choose the dielectric cut-off to be
consistent with the energy of the last empty band.

When we have all parameters needed to construct the static polarizability
matrix, we can compute the static dielectric matrix and calculate equation
B.9. The next step is to calculate Σ which is divided in two parts, equation
B.14 and equation B.15. These equations also depend on the plane-wave
matrix elements Mnn′ , and equation B.15 has a band summation that has
infinite terms.

So we have to choose a cut-off for the plane-wave matrix elements and a
number of bands for equation B.15. Because the cut-off for the plane-wave
matrix elements cannot be greater than the dielectric cut-off, we use that
cut-off in equations B.14 and B.15 (which depend on the plane-wave matrix
elements).

The number of bands for equation B.15, which is the number of bands in
the Coulomb hole calculation, is a parameter that has to be converged.

To summarize, we have to study convergence for two parameters, the
number of bands used for the construction of the plane-wave matrix elements
of equation B.2 and the number of bands in the Coulomb hole calculation of
equation B.15.
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3.3.2 BSE calculations

First we have to do compute the kernel in a coarse grid of k-points using
equations B.21 and B.22.

Just like in the dielectric computation, we have to choose a cut-off for
and the number of valence and conduction bands for the construction of the
matrix M of equations B.21 and B.22. The cut-off is chosen to be the same
of the dielectric cut-off used in the G0W0 calculation.

The number of valence and conduction bands are convergence parameters
that have to be studied.

Finally, we have to choose a coarse grid for the computation of the kernel.
We choose the grid for which the G0W0 calculation was converged, which is
11×11×1. After computing the kernel we have to interpolate it in a fine grid
to include more k-points in the BSE. To do this interpolation we choose the
number of valence and conduction bands we want to use for the interpolation.

So the important quantities we have to study are the number of valence
and conduction bands to construct the kernel with the coarse grid and the
number of k-points of the fine grid, and the number of valence and conduction
bands in which we want do to the interpolation.
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Chapter 4

2D hexagonal boron nitride

4.1 Introduction

The bidimensional (2D) hexagonal boron nitride (h-BN) has gain a lot of
attention because of its similarity with graphene. As can be shown in figure
4.1, the structure of 2D h-BN is analogous to graphene, where boron and
nitrogen atoms are bound by strong covalent bonds. Like graphene, 2D h-
BN has good mechanical properties and high thermal conductivity [31], but
it is an insulator with a wide gap greater than 4 eV [32]. Having a wide
band gap makes this material good for band gap engineering and chemical
functionalization. It was shown that the h-BN can become semiconductor
by tuning its gap, which makes it a promising candidate to semiconductor
applications [33]. Besides, its high energy gap is good for the realization of
ultra-violet lasers [34] and ultrasonic devices [35].

The 2D h-BN is a very recent material, and few works were done to pro-
vide a good description of electronic and optical properties of this material.
The band gap energy obtained using first principles calculations varies from
author to author as we will see. Besides, there is a lack of study about exci-
tonic properties. It is important then to study this material with a reliable
description. In this chapter we study the electronic and optical properties of
the 2D h-BN using the GW approximation [11,12] and BSE [14,15].

4.2 DFT calculations

Ab initio Density Functional Theory (DFT) calculations were performed by
using the Quantum ESPRESSO package [36]. Plane-wave representation
is used. Scalar-relativistic pseudopotentials for both boron and nitrogen
atoms were used. The exchange-correlation functional is approximated by
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Figure 4.1: Structure of 2D h-BN. The blue colour corresponds to B atoms
which are the small ones, while the grey colour corresponds to N atoms.

PBE [37] generalised gradient approximation (GGA). A plane-wave energy
cut-off of 80 Ry (1088 eV) was used. The k-points mesh was sampled by a
Monkhorst-Pack [38] method with convergence at 6× 6× 1. Both the plane-
wave energy cut-off and the k-points mesh convergence are shown in the
figures A.1 and A.2 of appendix A. We have used a super-cell with the vectors
represented in table 4.1, which can be seen in figure 4.2. The optimized lattice

Real space Reciprocal space

~a1 =
√
3a
2
~ex + a

2
~ey ~b1 = 2π

a
√
3
~kx + 2π

a
~ky

~a2 =
√
3a
2
~ex − a

2
~ey ~b2 = 2π

a
√
3
~kx − 2π

a
~ky

Table 4.1: Lattice vectors in real space and reciprocal space. The parameter
a is the lattice constant.

parameter is a = 4.78 bohr and a vacuum size between the layers of c ≥ 15
bohr is enough to avoid interactions between the periodic images. This study
is shown in figure A.3 and A.4 of appendix A. Figure 4.3 shows the electronic
band-structure along a chosen k-points path. It is easy to see that we obtain
a direct band gap at the K point of 4.43 eV and an indirect band gap of 4.56
eV from Γ to K point.

In table 4.2 we summarized the DFT h-BN studies from our work and
previous works. In table 4.2 we can see that the lattice constant in in good
agreement with the other works. This is expected because DFT predicts with
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Figure 4.2: The red shadow is the area of the cell used to construct the 2D
h-BN structure. The vectors ~a1 and ~a2 are the ones shown in table 4.1.
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Figure 4.3: Electronic band-structure of 2D h-BN along the path K-Γ-M-K.
The exchange-correlation functional is approximated by PBE-GGA.

good precision the lattice constants as mentioned in the chapter 1.
When comparing data from our electronic band-structure with other

works, we can some incongruences. First, our band gap is direct at K point
and most of the other works present an indirect band gap from Γ to K point.
We have tested some other pseudopotentials with different approximations
for exchange-correlation functional to see if the problems persists, and we
conclude that the indirect and direct nature of the gap is very sensitive to
the type of pseudopotential. In the band-structure shown in figure 4.3 the
difference between the energy of the lowest conduction band at Γ and K
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Reference XC functional a [bohr] D. Gap [eV] I. Gap [eV]

This Work GGA 4.78 4.43 (K-K) 4.56 (K-Γ)
[33] LDA 4.72 4.50
[31] GGA 4.56 (K-Γ)
[31] HSE 5.56 (K-Γ)
[39] GGA 4.74 4.64 (K-Γ)
[40] GGA 4.74 4.61 (K-K)

Table 4.2: DFT results from different works including our work. We include
the exchange-correlation functional (XC), the lattice constant a, the direct
band gap (D. Gap) and the indirect band gap (I. Gap). We could not obtain
the lattice constant from the work [31] and the work [33] has obtained an
indirect band gap that is not a transition from the (K-Γ).

point is 0.12 eV. This difference is relatively small when compared to the
band gap and can vary easily with the choice of the type of pseudopoten-
tial. Nevertheless, the calculated band gaps in table 4.2 are not so deviated,
ranging from (4.43 to 4.64 eV). The second incongruence comes from the
work that used the hybrid functional HSE [41]. We can see that there is a
difference of the order of 1.0 eV when compared to the rest of the works. It
is well known that at DFT-LDA or DFT-GGA level the band gap energies
are underestimated as mentioned in the chapter 1. DFT-HSE level can be
used to correct that underestimation [41]. This is a signal that is necessary
to do other calculations beyond DFT to have a correct description of the
electronic properties.

Experimental data shows band gaps for bidimensional h-BN ranging from
4.6 to 7.0 eV [32]. There are also works that assume that the gap of 2D h-
BN is the same as in the bulk h-BN [31]. But despite of that, the direct and
indirect band gaps are still not known accurately. The bulk h-BN band gap
values varies from 3.6 to 7.1 eV [42]. Besides, it is not clear if this experiments
are measuring the fundamental band gap or the optical gap which includes
excitonic effects. To accurately calculate the band gap of 2D h-BN is needed.
That is the reason why GW approximation calculations are fundamental to
have a correct description of the electronic band-structures.

We also calculated the absorption spectrum which is proportional to the
imaginary part of the macroscopic dielectric function using the post process-
ing code of Quantum ESPRESSO epsilon.x which computes it using the
RPA. The Im εm is shown in figure 4.4, for light polarized along the surface
direction. The spectrum is the same for the light polarized along the x or y
axis. This graphic will be discussed with more detail in the section 4.4.
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Figure 4.4: Imaginary part of the macroscopic dielectric function at DFT-
GGA+RPA level of bidimensional h-BN for light polarized along the direc-
tion parallel to the surface. Local field effects are not included. A gaussian
smearing of 0.2 eV was used.
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4.3 G0W0 calculations on 2D h-BN

We saw in the previous section that we have to do calculations beyond DFT
to have a more reliable description of the electronic band-structure of the
2D h-BN. In this section we use the BerkeleyGW [30] package code to
do G0W0 calculations by using the previous DFT calculations as starting
point. We use the Generalized-Plasmon-Pole (GPP) proposed by Hybertson
e Louie [28]. In the chapter 3 we talked about the important factors about
the G0W0 calculations which are done here.

At DFT level the convergence was achieved for a plane wave cut-off of 80
Ry (1088 eV) and a k-points mesh of 6× 6× 1. We also saw that a vacuum
size between the layers greater or equal than 15 bohr is sufficient to avoid
interactions with the periodic images. Our first G0W0 calculation uses a grid
of 6 × 6 × 1 and a vacuum size of 50 bohr. Figures 4.5 and 4.6 show the
convergence of the quasi-particle direct (K-K) and indirect gap (K-Γ) using
the G0W0 calculations with the GPP.
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Figure 4.5: Quasi-particle direct gap vs number of bands in the Coulomb
hole calculation for a G0W0 calculation that used a grid of 6 × 6 × 1. The
legend on box represents the number of bands used to construct the plane-
wave matrix elements for the dielectric function. We used a criterion for
convergence within approximately 0.02 eV.
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Figure 4.6: Quasi-particle indirect gap vs number of empty bands in the
Coulomb hole calculation for a G0W0 calculation that used a grid of 6×6×1.
The legend on the left represents the number of bands used to construct the
plane-wave matrix elements for the dielectric function. We used a criterion
for convergence within approximately 0.02 eV.

In the graphic of the figure 4.5 and 4.6 the gap value is converged for 1000
bands in the Coulomb hole calculation (see equation B.15) and 1000 bands
for the construction of the plane-wave matrix elements (see equation B.2)
which correspondsto a dielectric cut-off of 15.95 Ry (217 eV). The direct gap
is 8.05 eV and the indirect gap is 7.50 eV. This means that the band gap is
indirect and not direct as predicted by our DFT calculations.

Besides, the band gap value is now 7.50 eV, which is a huge difference
compared to the 4.43 eV from DFT. One fundamental point that should be
noticed is the independent convergence that we can see in the two graphics. If
we choose to fix the construction of the plane-wave matrix given by equation
B.2, which are the elements needed to compute the static dielectric matrix
given by equation B.8, with 100 bands that corresponds to a dielectric cut-
off energy of 2.9 Ry, we can see that the number of bands needed to do
the summation of the Coulomb hole calculation of equation B.14 is just 400
considering our criterion of convergence which is 0.02 eV.

Now if we increase the dielectric cut-off by including 1000 bands in the
construction of the plane-wave matrix elements, which corresponds to di-
electric cut-off energy of 15.95 Ry, we see that we need 1000 bands in the
Coulomb hole calculation to achieve convergence.

It is clear then that we cannot fix one parameter and test the convergence
of the other parameter independently. This happens because a low cut-
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off energy for the dielectric matrix will prevent the contribution from high-
energy conduction bands to the Coulomb-hole self-energy [43]. That is the
reason why we have a false convergence behaviour for lower cut-off energies
for the dielectric matrix. Figure 4.7 shows the quasi-particle electronic band-
structure with the converged parameters of the graphics of figure 4.5 and 4.6
compared to the one obtained by DFT.
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Figure 4.7: Quasi-particle band-structure (red) and DFT band-structure
(brown).

Here we could conclude our GW work and say that the corrected band
gap energy is 7.50 eV and it results from an indirect transition. But GW
calculations also depends on the k-points as it is clear from appendix B.
Figures 4.8 and 4.9 show the study of the convergence of the quasi-particle
direct and indirect band gap with the same parameters of the previously
study but now with a grid of 12× 12× 1.
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Figure 4.8: Quasi-particle direct gap vs number of bands in the Coulomb
hole calculation for a G0W0 calculation that used a grid of 12× 12× 1. The
The legend on box represents the number of bands used to construct the
plane-wave matrix elements for the dielectric function. We used a criterion
for convergence within approximately 0.02 eV.
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Figure 4.9: Quasi-particle indirect gap vs number of bands in the Coulomb
hole calculation for a G0W0 calculation that used a grid of 12× 12× 1. The
The legend on box represents the number of bands used to construct the
plane-wave matrix elements for the dielectric function. We used a criterion
for convergence within approximately 0.02 eV.
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From figure 4.8 and 4.9 we can see that the convergence is achieved for
for 1000 bands in the Coulomb hole calculation and 1000 bands for the con-
struction of the plane-wave matrix elements. The direct gap is 7.32 eV and
the indirect gap is 6.93 eV. When compared to the graphics with a grid of
6 × 6 × 1 we see that with a grid of 12 × 12 × 1 the converged band gap is
now lower as can be seen in figure 4.10. This shows that despite convergence
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Figure 4.10: Quasi-particle band-structure of 2D h-BN. The blue graphic
used a grid of 6× 6× 1 to compute the G0W0 calculations whereas the blue
graphic used a grid of 12× 12× 1.

at DFT happens with a grid of 6× 6× 1 it does not mean that the same is
going to happen at G0W0 level. The reason for this can be explained by the
fact that when we have a finer grid, we have more k-points contributing for
the screening. It is known that the screening is higher for k-points near the
Γ point which are captured by denser grids. The dielectric function for 2D
materials varies a lot with k-points in the region near the Γ point and for
higher points is is almost constant [44]. That is why it is important to have
finer grids in order to capture the contribution of this small points near the
Γ point.

It is also important to study the convergence of the quasi-particle energies
with the size of the vacuum size between the layers. When increasing the
the vacuum size, the number of G-vectors increases because it scales with
the unit cell volume. This means that we have to do the previous studies
all over again for the different vacuum sizes. The table 4.3 shows our G0W0

obtained gap for all different vacuum sizes and different grids.
We only made detailed studies for a vacuum size of 50 bohr with a grid

of 6×6×1 and a grid of 12×12×1 which were shown in figures 4.5-4.9. For
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k-points sampling
Vacuum space [bohr]
30 40 50 70

6× 6× 1 6.97 7.25 7.50 8.12
8× 8× 1 6.89 7.05 7.16 7.53

12× 12× 1 6.85 6.90 6.93 -
14× 14× 1 6.87 6.91 6.92 -

Table 4.3: G0W0 calculated indirect gap for 2D h-BN for four vacuum sizes.

the other studies with different vacuum sizes the procedure was to choose
a high value for the number of bands in the construction of the plane-wave
matrix elements and for each value we used two high values for the bands at
Coulomb hole calculation and tested if the difference of the obtained gap is
within 0.02 eV.

For example: we choose the value 1000 and 900 for the number of bands
in the construction of the plane-wave matrix elements and we choose two
high values for the Coulomb hole calculation, like 1000 and 900, and tested
the convergence in these 4 calculations.

We can observe from table 4.3 that for different vacuum sizes we have
different convergences. For a vacuum size of 70 bohr we could not find
the converged value because calculations started to be very computational
expensive for grids greater than 8× 8× 1. We note that for different vacuum
sizes we had different converged parameters. For a vacuum size of 30 bohr
the indirect gap was converged with a dielectric cut-off of 21.10 Ry and for
vacuum size of 40 bohr the indirect gap was converged with a dielectric cut-
off of 17.60 Ry. This happens because the energy of a certain empty state is
not the same for different vacuum sizes.

For a vacuum of 30 bohr we have a convergence at 8× 8× 1. Increasing
the grid will not alter significantly the value of the band gap as can be seen
in table. For a vacuum space of 40 and 50 bohr we have a convergence at
12× 12× 1. Looking at the data with 70 bohr we could anticipate that the
convergence would be achieved for grids greater than 12×12×1. This shows
that when we increase the vacuum size a finer grid is necessary to obtain the
true contribution of the screening. We think that this is due to a change of
the behaviour of the dielectric function with the increase of the vacuum size
but further investigation is need in order to have a clear understanding of
this.

Nevertheless, it is clear that even when the convergence is found, the
band gap value increases with the vacuum size. This can be explained by the
non-local screening effects of the GW approximation which makes the gap
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Reference Type of calculation L [bohr] Band gap [eV]

This Work G0W0 50 6.92 K-Γ
[31] G0W0 Extrapolation L→∞ 7.40 K-Γ
[40] GW0 28.34 6.86 K-Γ
[46] G0W0 14.0 < L < 26.0 6.00 K-Γ

Table 4.4: Summarized results for different works that use GW calculations
for 2D h-BN. In our work we present the results with a vacuum distance of
50 bohr. In the first row of table L stands for the vacuum size between the
layers while in reference [31] an extrapolation to infinity was done and for a
reference [46] a vacuum size greater than 14 but smaller than 26.0 bohr was
used. The GW0 calculation is an update of the G0W0 calculation where only
G is updated by converging the quasi-particle energies.

converges with 1/L, where L is the vacuum size. This non-local screening
effects are more weak with the increasing of the vacuum size which makes the
electrons more correlated and thereby increasing the value of the band gap.
The detailed physics beyond this convergence with 1/L can be consulted in
reference [45].

To get the true band gap, one can use the fact that band gaps converge
as 1/L and do an extrapolation in the limit of infinite L. Unfortunately,
more calculations with different vacuum sizes, are needed in order to do such
extrapolations. We just have results for three vacuum sizes, which is not
enough. Nonetheless we can see that the band gap will not be so far from
6.9 eV since the difference between the vacuum distance of 40 and 50 bohr
is just 0.01 eV.

In table 4.4, we have summarized the results of some works on the quasi-
particle band gap of 2D h-BN. We can see that work [40] has computed
a band gap of 6.86 eV which is in good agreement with our work. The
others present computed band gaps that are far from our calculated value.
Analysing reference [31] we could not find information about the G0W0 cal-
culations parameters, but we can see that they used a grid for sampling the
Brillouin zone that is not greater than 6× 6× 3. We show in our work that
such grid is not enough to get a converged value for the band gap. From our
table 4.3 we can see that a 6× 6× 1 grid would result in a too high value for
the band gap.

In reference [46] we can find many issues that could lead to an underesti-
mation of the band gap. First the BN bond length is set to the experimental
distance of 2.74 bohr. This value cannot be the optimized one and that
changes the band-structure of this material. Also, the vacuum distance is
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smaller than 26 bohr and only 40 bands per atom were used. From our work
it is clear that a distance greater than 40 bohr and at least 500 bands per
atom are needed for full convergence. They also use a convergence criterion
of 0.1 eV while we used a much stricter one of 0.02 eV.

Nevertheless, there are some common results between our work and the
other works. The band gap is indirect (K - Γ) and it is larger than 6 eV,
which is completely different from the results of DFT. We also confirm that
it is important to use the GW approximation to predict the electronic band-
structures.

4.4 BSE calculations on 2D h-BN

After the DFT and G0W0 calculations, we proceed to the optical calculations
with the Bethe-Salpeter equation (BSE).
We start choosing a fine grid of 24×24×1, which corresponds to 576 k-points.
We choose to include 2 valence and 4 conduction bands on the calculation
of the kernel and 2 valence and 2 conduction bands for the interpolation.
The cut-off used (21.1 Ry) is the same that was used in the dielectric cut-off
for the G0W0 calculation with a vacuum size of 30 bohr (we are using the
previous G0W0 calculation results done with that vacuum space). Figure
4.11 shows the calculated absorption spectrum.
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Figure 4.11: Absorption spectrum of 2D h-BN. The G0W0+RPA calculation
does not include electron-hole interactions, while in G0W0+BSE excitonic
effects are included. A gaussian broadening of 0.1 eV is used.
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Figure 4.12: Left: G0W0+BSE absorption spectrum. Right: G0W0+RPA
absorption spectrum. The red curves are the spectrum shown in figure 4.11.
The blue curves have the same parameters of the red curves spectrum with
the same number of valence bands (VB) but with more conduction bands
(CB) for the kernel and interpolation.

It is necessary to study the convergence of theG0W0+RPA andG0W0+BSE
spectrum. First we tested how changing the number of bands for the con-
struction of the kernel and for the interpolation affects the spectrum. In-
creasing the number of valence bands in the kernel and in the interpolation
does not influence the shape of the absorption spectrum but increasing the
number of conduction bands has influence for energy values greater than 12
eV as can be seen in figure 4.12.

We are interested in the low energy zone where we measure the optical gap
and binding energy. That is where we want the spectrum to be converged.
The results with 2 valence and 4 conduction bands for the calculation of
the kernel and 2 valence and 2 conduction bands for the interpolation are
sufficient to achieve the convergence for that zone. We shall then use those
values for the rest of the calculations.

The next absorption spectrum was calculated with an interpolation with
a fine grid of 48× 48× 1 which has 2304 k-points. The graphics are shown
in figures 4.13 where we also included the graphic for 576 k-points for com-
parison.

When comparing the two graphics we can see that there are no significant
differences between the shape of the spectrum. The only difference is that
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Figure 4.13: Left: absorption spectrum of 2D h-BN with the G0W0+BSE
with an interpolation for a fine grid of 576 k-points (red) and 2304 k-points
(green). Right: absorption spectrum of 2D h-BN with the G0W0+RPA with
an interpolation for a fine grid of 576 k-points (red) and 2304 k-points (blue).

the “wiggle” is lower in the finer grid. That is not surprising because the
elimination of the “wiggle” happens when we increase the density of k-points.

The other difference that we can observe is the red-shift of the spectrum
for the G0W0+BSE with more k-points. The first peak and second peak
are positioned at an energy of 5.3 eV and 6.2 eV for the grid 576 k-points,
while for the grid 2304 k-points we have 4.9 eV and 5.8 eV. Because this
red-shift is very significant it is important to study the convergence of these
two peaks with the number of k-points used in the interpolation. So we do
the previous calculations but changing the finer grid in which the kernel is
interpolated and check where the convergence of the position of the two peaks
is achieved. This study is shown in figure 4.14. We choose a convergence
within a criterion of approximately 0.1 eV.

The first and second peak are converged for a fine grid with 25600 k-
points and the correspondent graphic is shown in figure 4.15. When we look
at the converged spectrum of figure 4.15 and compare with the left spectra in
figure 4.13, we see that there are not many differences. The only difference is
the red-shift in the G0W0+BSE spectrum and the elimination of the “wiggle”
which is very visible in the G0W0+RPA spectrum which is much more smooth
now.

With the convergence achieved we can conclude that the optical gap is
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Figure 4.14: Convergence of the first and second peak position of the
G0W0+BSE absorption spectrum. We used a criterion for the convergence
approximately 0.1 eV. The first peak and second peak are converged for a fine
grid with 25600 k-points with an energy of 3.8 eV and 4.7 eV respectively.
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Figure 4.15: Absorption spectrum with the same parameters of figure 4.11
but with a finer grid with 25600 k-points.

3.8 eV. Knowing that the band gap calculated with the G0W0 (for a vacuum
size of 30 bohr) was 6.9 eV, we obtain a binding energy of 3.1 eV for the first
exciton. But it is important, as mentioned in the previous section, that we
must recalculate everything for different vacuum sizes. We use the previous
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G0W0 results with the vacuum sizes of 40 bohr and 50 bohr. The absorption
spectra that were obtained with these vacuum sizes have the same shape of
the one obtained with a vacuum size of 30 bohr, but the position of the peaks
are different. Figure 4.16 shows the convergence of the position of the peaks
with the number of k-points of the fine grid for the interpolation. Figure
4.17 shows the converged absorption spectra for a vacuum size of 40 and 50
bohr.
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Figure 4.16: Convergence of the first and second peak positions of the
G0W0+BSE absorption spectrum for a vacuum size of 40 bohr and 50 bohr.
The first peak and second peak are converged for a fine grid with 25600 k-
points with an energy of 4.2 eV and 5.1 eV respectively for a vacuum size of
40 and 50 bohr.
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Figure 4.17: Absorption spectrum with the same parameters of 4.15 but for
a vacuum size of 40 bohr (left) and 50 bohr (right).
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For a vacuum size of 40 and 50 bohr, we obtain an optical gap of 4.2 eV
and knowing that the G0W0 band gap was 6.9 eV, the binding energy is 2.7
eV. These two values are very different from the one obtained with a vacuum
size of 30 bohr. Again, this shows the importance of doing a convergence
study of the vacuum size between the periodic images.

More calculations with different vacuum sizes are needed in order to
achieve more accuracy in the optical gap and binding energy of the first
exciton. Nevertheless, with our calculations we can see that the binding en-
ergy is tending to values in the range of 2.8 to 3.0 eV, since the difference
of the excitonic binding energy for vacuum distances of 40 and 50 bohr is
less than 0.1 eV . This excitonic binding energy is relatively high since other
works give around 0.7 eV [47] for the bulk h-BN excitonic binding energy.
This happens because the screening is less for systems with low dimension-
ality and the overlap between the electron and hole is higher, which enhance
the Coulomb interaction between them.

Only a few works considering a theory with excitonic effects have been
done. Yet, those effects are very important as we can see in figures 4.4
and 4.17. Using only the DFT+RPA or the G0W0+RPA to calculate the
absorption spectrum is not enough.

If the G0W0+RPA spectrum were totally converged for high energies, we
could see that G0W0+RPA is the DFT spectrum but blue-shifted.

This is because DFT+RPA spectrum is just a RPA full frequency cal-
culation without the quasi-particle energies corrected. When the excitonic
interactions are considered in the G0W0+BSE calculation, two strong peaks
appear for energies lower than the band gap energy. The first excitonic peak,
which is the optical gap, is the dominant peak of the absorption spectrum.
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Reference Type of calculation 1o peak [eV] 2o peak [eV] EBE [eV]

This Work G0W0+BSE 4.2 5.1 2.7
[48] GLLBSC+BSE 6.1 7.1 1.9
[49] GW+BSE 5.6 6.4 1.4
[47] GW0+BSE - - 2.1

Table 4.5: Summarized results for different works that use the BSE for 2D
h-BN. In our work we use the results with a vacuum distance of 50 bohr. The
work [48] do not use GW calculations but the DFT functional GLLBSC [50].
In the work [49] we could not know that the GW is the self-consistent step
after G0W0. In the work [47] the GW0 is the result of updating the G0W0

quasi-particles until self-consistency is achieved.

In table 4.5 we summarize some of the results of the works that used
the BSE calculation to calculate the absorption spectrum of 2D h-BN. We
note that for all works in table 4.5 the absorption spectra presented the same
shape, where we have two peaks with more intensity for energies lower than
the band gap energy. The differences are the position of the excitonic peaks
and the band gap energy. This of course is going to change the excitonic
binding energy. This differences are not unexpected because we saw that the
same happens for the band gap energy in the previous G0W0 calculations.

It is not easy to tell the origin of this differences because the works [47,49]
do not have information about the GW and BSE calculations. In the work
[48] the BSE is calculated with Brillouin zone sampled on a non Γ-centered
32 × 32 grid. This grid is very small when compared to the converged grid
of our work. They also used a vacuum size of 38 bohr with a truncation
technique to avoid the periodic interactions. Even with truncation techniques
it is necessary to study the convergence with respect to vacuum size because
there is always an influence in the wave-functions and energies for highly
unbounded states [44].

As we mentioned in the chapter 1, few experimental works have been
done for 2D h-BN. In reference [51] the optical gap was measured for h-BN
films (two to five layers) and its value is 5.56 eV but the excitonic binding
energies are not measured. In reference [52] an optical gap of 5.955 eV is
measured and an excitonic binding energy of about 130 meV is obtained. It
mentions that the excitons in h-BN are of the Wannier type, in contrast to
the theoretical framework.
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Chapter 5

Phosphorene

5.1 Introduction

Single layer black phosphorus, or phosphorene, is a very recent material [53]
that has been studied in many areas due to its promising properties. It is a
semiconductor material and its band gap is approximately 2.0 eV [54] which
is much higher that the bulk band gap which is 0.3 eV [55]. Studies have
reported a high mobility for this material [56] which makes this material
very good for the construction of field-effect transistors. The reported on/off
ratios are up to 105 [57, 58]. Also it can be used for gas sensor [59] and
solar-cell applications [60]. Another particular property is the strong in-
plane anisotropy of transport and optical properties. The reason for the
anisotropy is its structure that is shown in figure 5.1 where we can see that
phosphorene is structured by puckered lattice due to sp3 hybridization. This
structure allows band gap engineering by applying strain in-plane or out of
plane [61].

Because this material is bidimensional, the excitonic effects can not be
neglected and must be taken into account if we want to study its optical prop-
erties like absorption spectra. We study the electronic properties by using
the GW approximation [11, 12] and the optical properties by using Bethe-
Salpeter equation [14,15] (BSE). This is very important because as we will see
DFT does not provide a good description of the electronic band-structures of
phosphorene and a many-body formalism that takes into account electron-
electron interactions is necessary. Besides, we cannot neglect the excitonic
effects and the BSE is also very important and should be considered.
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Figure 5.1: Structure of phosphorene. The yellow balls corresponds to P
atom. Top: top view in xy plane. Bottom: side view in zy plane. In the
xy plane we can see that phosphorene structure is arranged in different ways
with a zigzag structure along the x axis and an armchair structure along the
y axis.
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5.2 DFT calculations

First principle calculations were done by using the Quantum ESPRESSO
package [36] which is based on the DFT formalism. A plane-wave basis
is used. The pseudopotential used for phosphorus atom is non-relativistic.
The exchange-correlation functional is approximated by PBE [37] generalised
gradient approximation (GGA). A plane-wave energy cut-off of 70 Ry (952
eV) was used. The k-points mesh was sampled by a Monkhorst-Pack [38]
method with convergence at 9× 9× 1. Both the plane-wave energy cut-off
and the k-points mesh convergence are shown in figure A.5 and A.6 in the
appendix A.

We have used a periodic cell with the vectors shown in table 4.1 which
are shown in figure 5.2.

Real space Reciprocal space

~a1 = a~ex ~b1 = 2π
a
~kx

~a2 = b~ey ~b2 = 2π
b
~ky

Table 5.1: Lattice vectors in real space and reciprocal space. The parameter
a and b are the lattice constants.

Figure 5.2: The shadow is the area of the unit cell used to construct phos-
phorene. The vectors ~a and ~b are given in table 5.1.

We relaxed the system to obtain the optimized structure and obtained the
lattice parameters a = 6.24 bohr and b = 8.67 bohr. A vacuum size between
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the layers of c ≥ 20 bohr is enough to avoid interactions between the periodic
images. This study is shown in figure A.7 of appendix A. In figure 5.3 the
obtained band-structure along a chosen k-point path is shown.
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Figure 5.3: Electronic band-structure of 2D h-BN along the path Γ-X-S-Y-
Γ. The exchange-correlation functional is approximated by PBE-GGA. The
band gap is direct at Γ point with an energy of 0.87 eV.

We can see that we have a direct band gap at the Γ point and it has an
energy of 0.87 eV.

In table 5.2 we have summarized some works that we found in the liter-
ature about DFT of phosphorene.

Reference XC functional a [bohr] b [bohr] Band gap [eV]

This Work GGA 6.24 8.76 0.87
[62] GGA 6.24 8.72 0.91
[56] GGA 6.27 8.72 0.91
[63] GGA 0.80
[62] HSE 6.24 8.72 1.56
[56] HSE 6.27 8.66 1.51

Table 5.2: DFT results from different works including ours. We include the
exchange-correlation functional (XC), the lattice constants a and b, and the
band gap which is at Γ. We could not obtain the lattice constant of work [63].
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By looking at table 5.2, we see that our band gap and lattice parameters are
in good agreement with the works that used the GGA functional. However,
we can see that for the works that used the functional HSE, the band gap
is much larger. The HSE [41] functional is often used to achieve a larger
band gap than the ones obtained by LDA or GGA (which underestimate it
in semiconductors).

DFT is not enough to describe the electronic properties and other better
approximation is necessary. Unfortunately we could not find experimental
data for the lattice parameters but we could find two works that estimate
experimentally the band gap of phosphorene with a value of 2.05 eV [54] and
2.2± 0.1 [64]. These values are far from being in agreement with the results
from our work and the other DFT works. So it is important to do calculations
that take into account many-body effects like the GW approximation.

The absorption spectrum which is proportional to the imaginary part of
the macroscopic dielectric function was calculated using the post processing
code of Quantum ESPRESSO epsilon.x. The graphic is shown in figure 5.4
where we calculated the dielectric function for light polarized along the zigzag
(x axis) and armchair (y axis) direction. This spectrum will be discussed with
more detail in section 6.4.
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Figure 5.4: Imaginary part of the macroscopic dielectric function at DFT-
GGA+RPA level of phosphorene. We just computed the dielectric function
for light polarized along the x axis (blue colour) and y axis (red colour).
Local field effects are not included.
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5.3 G0W0 calculations on phosphorene

It is clear from the previous section that DFT is not reliable to predict the
electronic band-structure of phosphorene. We use the GW approximation
to study with more accuracy the electronic properties of this material. The
BerkeleyGW package [30] is used where G0W0 is computed with DFT
calculations as the starting point. The Generalised-Plasmon-Pole (GPP)
model proposed by Hybertson e Louie [28] is used. In chapter 3 we talked
about important factors about the G0W0 calculations which are useful for
this section. It is important to remember that at DFT level the convergence
was achieved for a plane wave cut-off of 70 Ry (952 eV) with a mesh of k-
points of 9 × 9 × 1 and a vacuum size between the layers greater or equal
than 20 bohr is sufficient to avoid interactions with the periodic images.

Our first G0W0 calculations uses a grid of 9 × 9 × 1 and a vacuum size
of 40 bohr. Figure 5.5 shows the convergence of the quasi-particle band gap
using the G0W0 calculations with the PPA.
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Figure 5.5: Quasi-particle direct gap vs number of bands in the Coulomb
hole calculation for or a G0W0 calculation that used a grid of 9 × 9 × 1.
The legend on the box represents the number of bands used to construct the
plane-wave matrix elements for the dielectric function. We used a criterion
for convergence within approximately 0.02 eV.

The band gap is converged for 1000 bands for the construction of the
plane-wave matrix elements which corresponds to a dielectric cut-off of 9.73
Ry (see equation B.2) and for 1100 bands in the Coulomb hole calculation (see
equation B.15). The quasi-particle band gap is 1.84 eV which is much higher
than the DFT value (0.87 eV). It is important to note the behaviour of the
convergence by looking at graphic 5.5. It is clear that for the data with 300
bands to construct the plane-wave matrix elements for the dielectric function,
the band gap converges for 500 bands in the Coulomb hole calculation with
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a value approximately 1.6 eV. But when we increase the number of bands
to construct the plane-wave matrix elements for the dielectric function, we
see that for achieving the convergence is necessary more than 500 bands in
the Coulomb hole calculation. So the convergence parameters are dependent
and we can not fix one and converge the other and then fix the converged
one and study the convergence of the one that was fixed. That leads very
often to a false converged value. The reason why this happens is because a
low cut-off energy for the dielectric matrix (or for a lower number of bands to
construct the plane-wave matrix elements for the dielectric function) prevents
the contribution from high-energy conduction bands to the Coulomb-hole
self-energy which are important to the screening effect [43]. Figure 5.6 shows
the quasi-particle electronic band-structure that corresponds to the graphic of
figure 5.5 compared to the obtained by DFT. We saw from DFT calculations
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Figure 5.6: Quasi-particle band-structure (red) and DFT band-structure
(brown).

that the converged grid is achieved for a mesh of 9 × 9 × 1. Unfortunately
this does not mean that for GW approximation the convergence happens at
the same grid. So we have to do the same study but now with a grid of
11× 11× 1 to see if and how the quasi-particle energies change. The figure
5.7 shows the study of the convergence of the quasi-particle band gap direct
and indirect band gaps with the same parameters of the previously study
but now with a grid of 11× 11× 1.
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Figure 5.7: Quasi-particle direct gap vs number of bands in the Coulomb
hole calculation for a G0W0 calculation that used a grid of 11× 11× 1. The
legend on box represents the number of bands used to construct the plane-
wave matrix elements for the dielectric function. We used a criterion for
convergence within approximately 0.02 eV.

When compared to the graphics with a grid of 9× 9× 1 we see that for
the grid of 11 × 11 × 1 the converged band gap is lower with a difference
of 0.02 eV. This means that it is not necessary to do more calculations for
different grids but to make sure we have done one more calculation for the
grid 13× 13× 1 where the result is shown in table 5.3.

The study of the convergence of the quasi-particle energies with the vac-
uum size between the layers is also important. The number of G-vectors,
which are present in all GW equations, increase with the increase of the vol-
ume of the supercell. It is necessary then to repeat the previously studies for
different vacuum sizes. The table 5.3 shows our G0W0 with GPP obtained
gap for all different vacuum sizes.

k-points sampling
Vacuum space [bohr]

c=20 c=30 c=40 c=70
9× 9× 1 1.74 1.77 1.84 2.05

11× 11× 1 1.75 1.78 1.82 1.98
13× 13× 1 1.77 1.78 1.81 1.88

Table 5.3: G0W0 calculated indirect gap for 2D h-BN for four vacuum sizes.

62



Detailed studies were done for a vacuum size of 40 bohr with a grid of
9× 9× 1 and 11× 11× 1 which were shown in figures 5.5-5.7. For the other
studies with different vacuum sizes we choose two high values for the number
of bands in the construction of the plane-wave matrix elements and for each
value we used two high values for the bands at Coulomb hole calculation
and tested the convergence in those four calculations. We could not find the
converged value for a vacuum size of 70 bohr because calculations started to
be computationally expensive for grids greater than 13× 13× 1.

We can see from table 5.3 that for different vacuum sizes, we have different
converged values for the quasi-particle band gap. This can be explained by
the non-local screening effects of the GW approximation which makes the
gap converges with 1/L, where L is the inter-layer distance or vacuum size.
A possible explanation of what is happening here is that when we increase
the vacuum size the screening is becoming more weaker, which increases
the electron-electron correlation. The weaker the screening the larger the
band gap becomes. The detailed physics beyond this convergence with 1/L
can be consulted at [45]. These effects do not happen in DFT because the
potentials are local. We could get the band gap for an infinite L, if we do an
extrapolation in the limit of infinite L. For that, more calculations are data
needed but we can easily see that the band gap is converging to a value that
is in the range of 1.8 to 1.9 eV.

In table 5.4 we summarize the results from other works to compare with
our work.

Reference Type of calculation L [bohr] Band gap [eV]

This Work G0W0 40.00 1.81
[61] G0W0 28.34 2.31
[65] GW0 ≈ 28.34 1.85
[63] G0W0 - 2.00
[54] GW0 34.00 1.94
[66] G0W0 ≈ 37.79 1.60

Table 5.4: Summarized results for different works that use GW calculations
for phosphorene. In our work we present the results with a vacuum distance
of 40 bohr. In the first row of table L stands for the vacuum size between
the layers. The calculation GW0 is a calculation is an update of the G0W0

calculation where only G is updated by a converging the quasi-particle ener-
gies.
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In table 5.4 we see that our results are in line with most of the other
works, with a band gap ranging from 1.8 to 2.0 eV. The only work that is
more deviated from our work is [61] where the band gap calculated is 2.31
eV. In that work, 326 bands and a vacuum size of 28.34 bohr were used for
the G0W0 calculations. That number of bands is very small when compared
with the number of bands used in our work. A vacuum space greater than
30 bohr is also important to achieve convergence. The works [63,65,66] have
used only a few empty bands, ranging from 80 to 360. The work [54] uses
parameters close to the ones used in our work. They use a grid 9×12×1 and
an energy cutoff for the response function was 150 eV. The only difference is
that they do a GW0 calculation and that can explain the difference with our
results.

The experimental values for the fundamental band gap (not optical) that
we have found are 2.05 eV [54] and 2.2±0.1 [64]. In contrast to DFT values,
the G0W0 values are much closer to these experimental ones, but there are
still some deviations.

We have just found two experimental works. More experimental data on
the band gap of phosphorene would be very convenient. We know that there
are factors like doping, defects and substrate interactions that can influence
the band gap of the material.
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5.4 BSE calculations on phosphorene

In this section we perform BSE calculations where we use the previous results
of the G0W0 calculation. The important factors about the BSE calculations
that are done in this section are discussed in the chapter 3 section 3.3.

First we choose a fine grid of 24×24×1 that corresponds to 576 k-points.
We included 2 conduction and 2 valence bands for the construction of the
kernel matrix and for the interpolation. The obtained absorption spectrum
is shown in figure 5.8.
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Figure 5.8: Absorption spectrum of phosphorene. The G0W0+RPA calcula-
tion does not include electron-hole interactions, while in G0W0+BSE exci-
tonic effects are included. A gaussian broadening of 0.1 eV is used.

Now we increase the number of valence and conduction bands for 4 in the
construction of the kernel matrix and for the interpolation and we compare
to the previously result as can be seen in figure 5.9.
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Figure 5.9: The red curves are the same from figure 5.8. The blue curves are
the same spectrum but with the inclusion of 4 valence and conduction bands
for the construction of the kernel matrix and for the interpolation.

The difference is very significant as we can see from the two graphics of
figure 5.9 which means that we have to increase the number of bands again
to verify if the absorption spectrum changes.

In figures 5.10 we increase the number of conduction bands and valence
bands to 6 and compare with the previous calculation.
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Figure 5.10: The red curves are from the same spectrum of figure 5.9 with
blue curves. The blue curves represent the same spectrum but with inclusion
of 4 valence and conduction bands for the construction of the kernel matrix
and for the interpolation.
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We can conclude that it is necessary to include more conduction and
valence bands if we want a full converged absorption spectrum. For that
we would need to compute the quasi-particle energies for energies up to 10
eV and construct the kernel by including bands that corresponds to that
energy. But we are interested only in the absorption spectrum for the range
of energies between 0 to 3 eV, where we can measure the optical gap. For that
range of energy the absorption spectrum is practically converged for 4 valence
and conduction bands, so we choose that number for the next calculations
always considering that for high energies the absorption spectrum is not fully
converged.

In the next calculation we use a fine grid of 48 × 48 × 1 which has 2304
k-points. The comparison with the graphic with 576 k-points is shown in
figure 5.11. We can see that there is less “wiggle” for the graphic with a
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Figure 5.11: Absorption spectra of phosphorene for different fine grids used
on the interpolation. For red curves we have a fine grid of 576 k-points and
for blue curves we have a fine grid of 2304 k-points. We used 4 valence and
4 conduction bands for the construction of the kernel matrix and for the
interpolation. A gaussian broadening of 0.1 eV is used. For energies greater
than 3 eV the spectrum is not converged as discussed above in the text.

denser a grid. This is because we have a better interpolation when including
more k-points. In the graphic without electron-hole interaction the peaks are
almost in the same position whereas in the BSE graphic there is a red-shift,
because the peaks are positioned in lower energies for the denser grid. The
first peak is “red-shifted” about 0.17 eV which is a significant difference. It
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Figure 5.12: Absorption spectra of phosphorene for different fine grids used
on the interpolation. For red curves we have a fine grid of 2304 k-points
and for blue curves we have a fine grid of 5184 k-points. We used 4 valence
and 4 conduction bands for the construction of the kernel matrix and for the
interpolation. A gaussian broadening of 0.1 eV is used. For energies greater
than 3 eV the spectrum is not converged as discussed above in the text.

is necessary to increase the number of k-points of the fine grid to converge
the peak’s position.

In the next calculation we use a fine grid of 72 × 72 × 1 which contains
5184 k-points. In figure 5.12 we can see the comparison with the results for
48 × 48 × 1. Once again we can observe a reduction of the wiggle for the
spectrum obtained with more k-points. The first peak is red-shifted about
0.13 eV. Our convergence criterion is 0.1 eV so we do one more calculation
with a finer grid to see if that criterion is achieved. In the next calculation
we use a fine grid of 96× 96× 1 which contains 9216 k-points. In figure 5.13
we can see the comparison with the results for 72× 72× 1.
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Figure 5.13: Absorption spectra of phosphorene for different fine grids used
on the interpolation. For red curves we have a fine grid of 5184 k-points
and for blue curves we have a fine grid of 9216 k-points. We used 4 valence
and 4 conduction bands for the construction of the kernel matrix and for the
interpolation. A gaussian broadening of 0.1 eV is used. For energies greater
than 3 eV the spectrum is not converged as discusses above.

The first peak is red-shifted about 0.1 eV. This is our convergence cri-
terion which means that the BSE spectrum is converged for a fine grid of
96 × 96 × 1. The first peak is positioned at an energy of 0.8 eV. From the
results for the G0W0 calculation we saw that he band gap value was 1.8 eV.
This means that the binding energy of the first exciton is 1.0 eV. We have
also done the same calculations but now with the previous G0W0 calculation
but with a vacuum size of 40 bohr. The results were almost the same as
the results with 30 bohr. The convergence was achieved for a grid of 9216
k-points. The only difference was the position of the first exciton which is
0.9 eV. The absorption spectrum is shown in figure 5.14.
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Figure 5.14: Absorption spectrum of phosphorene. The G0W0+RPA cal-
culation does not include electron-hole interactions, while in G0W0+BSE
excitonic effects are included. This calculation is computed in a coarse grid
of 11 × 11 × 1 k-points and then interpolated in a finer grid of 96 × 96 × 1
k-points. We used 4 valence and 4 conduction bands for the construction of
the kernel matrix and for the interpolation. A gaussian broadening of 0.1 eV
is used.

Looking at figures with calculations at the DFT level (figure 5.4) and
G0W0+RPA we can see that both do not present peaks for energies lower
than the band gap. In the DFT calculation we have a band gap of 0.9 and the
first peak which is due to the light polarization parallel to the armchair direc-
tion is positioned at the energy 1.0 eV. The G0W0+RPA absorption spectrum
is just a blue shift of the DFT absorption spectrum. This blue-shift is due
to the quasi-particle corrections that are done in the G0W0 calculation. It is
important to note that the G0W0+RPA spectrum includes both light polar-
ization along the armchair direction and zigzag direction. What we can see
from the DFT spectrum it that phosphorene is transparent to polarized light
along the zigzag direction for a good range of energies. That only shows the
optical anisotropy of this material. When the excitonics effects are included
using the BSE calculations, we can observe that the absorption spectrum is
red-shifted and we can clearly see that peaks are more discrete. The first
peak of the G0W0+BSE absorption spectrum of figure 5.14 is positioned at
an energy of 0.9 eV which coincides with the position of the first peak in
the DFT absorption spectrum. But this time we know that the band gap
obtained by the G0W0 calculations is 1.8 eV giving us an excitonic bind-
ing energy of 0.9 eV. This result shows the importance of doing calculations
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with energies corrected by the G0W0 and including the electron-hole inter-
actions if we really want to study the optical properties of such materials.
This high excitonic binding energy is expected in this material because of its
low dimensionality and the low screening. The low dimensionality increases
the confinement between the electron and hole which enhances its Coulomb
interaction.

Few works have been done with the GW and BSE formalism for phos-
phoerene. In table 5.5 we summarize the results of our work and two works
that we have found that use G0W0+BSE. When we look at table 5.5 we can

Reference Type of calculation 1o peak [eV] EBE [eV]

This Work G0W0+BSE 0.9 0.9
[61] G0W0+BSE 1.6 0.7
[63] G0W0+BSE 1.2 0.8

Table 5.5: Summarized results for different works that use the BSE for phos-
phorene. In our work we use the results with a vacuum distance of 40 bohr.

observe that there are some differences in the results. First, every work is
in qualitative agreement in relation to the physics of the absorption spectra.
The first excitonic peak appears for light polarized along the armchair direc-
tion and the rest of the absorption is dominated for light polarized along the
zigzag direction. The only thing that is different is the energy of the optical
gap and the fundamental band gap.

These differences can be explained when we look to the parameters used
in other works. In work [61] a grid of 9 × 13 × 1 k-points is used for the
computing the BSE while in work [63] a grid of 56 × 40 × 1 is used. We
show in our results that a much larger grid of 96× 96× 1 k-points is needed
in order to achieve convergence. We have also discussed in section 5.2 that
the number of bands those works used for the G0W0 calculations were small.
This will have influence in the screened potential and thereby in the BSE
results.

There is also a lacking of experimental works about this material. This
is because its exfoliation to single-layer is very complicated. We found an
experimental work [64] that used photoluminescence techniques in order to
obtain the optical gap and the fundamental band gap. The measured optical
gap is 1.3± 0.02 eV and the fundamental band gap 2.2± 0.1 eV; the binding
energy measured is 0.9±0.12 eV. This value is in agreement with the binding
energy of our work.

Other experimental work [57] also used photoluminescence techniques in
phosphorene. A peak at an energy of 1.45 eV is observed and it is likely to
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be of excitonic nature. That experimental value is not in total agreement
with the theoretical works. But there are factors like the substrate effects,
defects and doping that can have significant influence in the measurements
of the optical gap and band gap energies.

Nevertheless we can see that phosphorene is indeed a material with large
excitonic effects with an excitonic binding energy that can achieve values
near 1.0 eV. This means that the difference between the optical gap and the
fundamental gap is large.
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Chapter 6

Conclusion and outlook

The goal of this dissertation was to study the electronic and optical proper-
ties of bidimensional materials, namelly single layer h-BN and phosphorene.
It is well known that independent particle theories like DFT frequently do
not predict correctly the electronic and optical properties of materials. For
example the band gap value of the semiconductors is often underestimated
when the functional LDA or GGA is used. To correct this, a theory that
includes many-body effects is needed. In this work we use the GW ap-
proximation which includes electron-electron interactions by considering the
quasi-particles.

The quasi-particles come from the electron-electron interaction and they
interact with each other by a weaker potential than the Coulomb potential.
We call that interaction the dynamical screening Coulomb potential. The
GW formalism is not sufficient to predict accurately the optical properties.
For that we need to include the electron-hole interactions, that is, excitonic
effects. These effects have great importance for materials with low dimen-
sionality and reduced screening which is the case of bidimensional materials.
We use the BSE formalism, which uses the results from GW and then solves
an eigenvalue problem with the electron-hole interactions.

To study the single layer h-BN and phosphorene electronic properties we
did G0W0 calculations with the GPP model. These calculations used DFT
as starting point. Our main goal was to calculate the band gap of these two
materials.

For h-BN we obtained a fundamental band gap of 6.92 eV from K-Γ which
corrects the band gap of 4.43 eV from K-K obtained by DFT. Due to the
complexity of the GW approximation formalism, the results are influenced
by many parameters and a convergence study is always needed, as can be
seen in figure 4.9 and table 4.3. These parameters are, for instance, the
dielectric cut-off, the number of bands in the Σ calculation, the vacuum size
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between the periodic cells and the number of k-points.
For phosphorene the fundamental band gap calculated was 1.82 eV from

Γ− Γ correcting the 0.87 eV obtained by DFT. Just like h-BN, the value of
the gap is influenced by the number of k-points and the vacuum size. The
vacuum size dependence can be explained by the non-local nature of the
GW approximation formalism where the screening is going to be influenced
by the vacuum size. The k-points dependence can be explained by significant
variation of the dielectric function for bidimensional materials in regions for
k-points near the Γ point. To capture those points, finer grids are necessary,
and so GW needs more k-points than DFT.

The same happens when we studied the optical properties of this mate-
rials. The optical gap is influenced by the vacuum size and the number of
k-points used to solve the BSE equation. For h-BN an optical gap of 4.2
eV was obtained and the binding energy was 2.8 eV. For phosphorene the
optical gap was 0.9 and the binding energy was 1.0 eV. These results were
compared to other works as can be seen in tables 4.4, 4.5, 5.4 and 5.5. We
saw that those works do not provide the necessary information about the
GW and BSE calculations to have a clear comparison with our results. And
from the information that is provided we can conclude that most of those
other works did not treat the convergence studies as well as we did.

From our results it is clear that GW and BSE calculations are very com-
putationally demanding because the convergence is achieved for large number
of bands, dense grids and long vacuum sizes. Other works do not seem to
have used such large resources, but it is doubtful that they converged their
results properly.

Materials with low dimensionality are more susceptible to electron-electron
and electron-hole interactions, and so theories like DFT are far for being
sufficient to predict these excited properties. We showed that many-body
theories like GW approximation and BSE can give a deeper understanding
of the properties of such materials.
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Appendix A

DFT convergence studies

A.1 2D h-BN

In this appendix we show the DFT convergence studies for 2D h-BN. In figure
A.1 we show the convergence of the plane-wave cut-off energy. We can see

40 60 80 100 120
E

cut
 [Ry]

-25,8

-25,6

-25,4

-25,2

-25

E
n
er

g
y
 R

y
]

E
cut

 convergence for h-BN

Figure A.1: Convergence study of the plane-wave cut-off energy for 2D h-BN.

that for a plane-wave cut-off (Ecut) greater than 80 Ry there is no significant
difference in the energy value. So we choose 80 Ry as the converged value.
Figure A.2 shows the convergence for the mesh of k-points. For a mesh
greater than 6 × 6 × 1 there is no significant difference in the energy value.
We choose then that mesh as the converged grid. In figure A.3 we show
how we found the optimized lattice parameter for 2D h-BN. When we fit a
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Figure A.2: Convergence study of the mesh of k-points for 2D h-BN.
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Figure A.3: Convergence study of the lattice parameter for 2D h-BN.

parabolic curve do the data, we can obtain a optimized lattice parameter of
2.54 Å. The final convergence study is the vacuum size between the periodic
images, which is shown in figure A.4. We see that for a vacuum size greater
than 15 bohr there is no significant difference in the energies vales. So at
DFT level a vacuum size of 15 bohr is sufficient to avoid periodic interactions.
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Figure A.4: Convergence study of the vacuum size between the periodic cells
for 2D h-BN.

A.2 Phosphorene

Here we show the DFT convergence studies for phosphoerene. Figure A.5
shows the convergence study of the plane-wave cut-off Ecut. The difference
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Figure A.5: Convergence study of the plane-wave cut-off energy for phospho-
rene.

between the energy for the Ecut of 70 Ry and the higher Ecut’s is insignificant.
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Figure A.6: Convergence study of the mesh of k-points for phosphoerene.

So we choose 70 Ry as the converged value. Figure A.6 shows the con-
vergence for the mesh of k-points. We can see that the energy difference
between the grid 8× 8× 1 and the finer grids is very small. We choose this
grid as the converged one, but we used the grid 9×9×1 because of symmetry
questions. In figure A.7 we show the study of the vacuum size between the
periodic images. For a vacuum size greater than 20 bohr the convergence is
achieved.
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Figure A.7: Convergence study of the vacuum size between the periodic cells
for phosphorene.
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Appendix B

BerkeleyGW equations

In this appendix we show how the BerkeleyGW package [30] has the GW
and BSE equations implemented numerically. The plane-wave representation
is used and more detail in the BerkeleyGW manual and paper.

B.1 Calculation of Σ

BerkeleyGW (BGW) package performs GW -BSE calculations in three
steps. In the first step the ground state properties are calculated through a
single-particle formalism. This calculations can be performed by independent-
particle theories, like DFT. In the second step the quasi-particle energies and
wave-functions are calculated using the GW approximation. In the third step
the excited states of the two-particle electron-hole are calculated through the
Bethe-Salpeter equation. When the first step is finished, the first quantity
that needs to be calculated is the polarizability or polarization function. It
is implemented in the BGW package with the following expression

P
r/a
GG′(q, ω) =

occ∑
n

emp∑
n′

∑
k

M∗
nn′(k,q,G)Mnn′(k,q,G

′)

× 1

2

∣∣∣∣ 1

En,k+q − En′,k − ω ∓ iδ
+

1

En,k+q − En′,k − ω ± iδ

∣∣∣∣ , (B.1)

where
Mnn′(k,q,G) = 〈n,k + q| ei(q+G).r |n′k〉 (B.2)

are the plane-wave matrix elements. The quantity q is a vector in the first
Brillouin zone, G is a reciprocal-lattice vector, |n,k〉 and En,k are the MF
eigenvectors and eigenvalues respectively. The ω is the evaluation parameter
and the the δ is a broadening parameter. This last parameter is chosen to
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be consistent with the energy space afforded by the k-point sampling of the
calculation. The upper (lower) signs corresponds to the retarded (advanced)
function. The plane-wave matrix elements are evaluated up to |q + G|2,
where |q + G′|2 < Ecut defines the dielectric cut-off Ecut. The number of
empty states included in the summation must be such that the highest empty
state must have the same energy of the Ecut. This means that the number
of empty states in the summation and the Ecut do not have to be converged
separately. With the polarizablity matrix computed, the dielectric matrix is
calculated by using the following expression

εGG′(q, ω) = δGG′ − v(q + G)PGG′(q, ω), (B.3)

where v(q + G) = 4π
|q+G|2 is the Coulomb interaction. For bidimensional ma-

terials it is recommended to include truncations to avoid interactions with
the periodic images. This truncations helps to speed the convergence with
the super-cell size. For more information about truncations see Berke-
leyGW paper [30]. The screened Coulomb interaction is calculated using
the following expression

WGG′(q, ω) = ε−1GG′(q, ω)v(q + G). (B.4)

The computation of the WGG′(q, ω) is then performed in three steps.
First step, the plane-wave matrix elements are determined by equation B.2
where we have to define the Ecut. The second step is the summation of the
plane-wave matrix elements in equation B.1. Then it is necessary to construct
the dielectric matrix by using equation B.3 and invert it to compute the
screened Coulomb interaction with equation B.4. In equation B.1 we have
to study the convergence of the dielectric cut-off Ecut in conformity with the
empty bands. We also have to study convergence with the increasing of k-
point sampling adjusting the broadening parameter. Because we are doing
calculations in a frequency grid of real frequencies, it is necessary to check
the convergence with the frequency grid that is chosen. With the epsilon
matrix calculated, we can calculate the self energy operator Σ. It is divided
in two terms, Σ = ΣSX +ΣCH , where ΣSX is the screened-exchange term and
the ΣCH is the Coulomb-hole term and they have the following expression

〈nk|ΣSX(ω) |n′k〉 = −
occ∑
n′′

∑
qGG′

M∗
nn′(k,−q,−G)Mn′′n′(k,−q,−G′)

× ε−1GG′(q, ω − En′′k−q)v(q + G′), (B.5)
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〈nk|ΣCH(ω) |n′k〉 = − i

2π

∑
n′′

∑
qGG′

M∗
nn′(k,−q,−G)Mn′′n′(k,−q,−G′)

×
∫ ∞
0

dω′
[εrGG′ ]

−1 (q, ω′)− [εaGG′ ]
−1 (q, ω′)

ω − En′′k−q − ω′ + iδ
v(q + G′), (B.6)

where er and ea are the retarded and advanced dielectric matrices. Berke-
leyGW packages performs the computation of the matrix elements of the
bare exchange ΣX and of ΣSX − ΣX where the ΣX is just the equation B.5
but with ε−1GG′ being replaced by δGG′ . For computing these matrices it is
necessary to construct the plane-wave matrix Mn′′n′ just like the case of the
polarizability matrix. For the terms ΣSX and ΣCH we have to chose the
screened-Coulomb cut-off (scc). This cut-off have the same function of the
dielectric cut-off, which is to define an energy truncation for the evaluation
of the elements of Mn′′n′ . The scc has to be less or equal to the dielectric
cut-off. For the ΣX term we have the bare-coulomb cut-off (bcc) and it can
take any value up to the energy cut-off used in the DFT calculation. Be-
sides, the convergence with respect to the number of bands included in the
summation of B.6 has to be studied. The integral of equation B.6 has to be
done numerically on the same frequency grid where the dielectric matrix was
constructed. Now that the construction of Σ is computed, equation 3.10 can
now be solved.

B.1.1 Generalised-Plasmon-Pole

The equations represented above are frequency dependent and they have to
be computed in a chosen frequency axis. There is a model, called Generalised-
Plasmon-Pole (GPP) proposed by Hybertson e Louie [28], where we compute
the static dielectric matrix and then extend it to finite frequencies. This is
done by considering the static polarizability matrix

χGG′(q, 0) =
∑
k

occ∑
n

emp∑
n′

M∗
nn′(k,q,G)Mnn′(k,q,G

′)
1

En,k+q − En′,k
. (B.7)

The static dielectric matrix is calculated by using the following expression

εGG′(q, 0) = δGG′ − v(q + G)χGG′(q, 0) (B.8)

and the static screened Coulomb interaction is

WGG′(q, 0) = ε−1GG′(q, 0)v(q + G). (B.9)
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To compute the static dielectric matrix, there is only one convergence pa-
rameter, which is the dielectric cut-off or the number of empty bands (which
have to be in conformity with each other).

The imaginary part of W is in generally characterized by a strong peak
that corresponds to the plasmon excitations at the plasmon frequency. The
PPA assume that all weight of the Im W is at the plasmon excitation. Then
we can write the imaginary part of dielectric functions as

Im ε−1
GG′

(q, ω) = AGG′(q)δ(ω − ω̃GG′(q)), (B.10)

where AGG′ and ω̃GG′ are parameters that we need to determine. The real
part is given by:

Re ε−1
GG′

(q, ω) = δGG′ +
Ω2

GG′(q)

ω2 − ω̃2
GG′

(q)
(B.11)

where ΩGG′ is the effective plasma frequency. The unknown parameters
AGG′(q) and ωGG′(q) can be determined by using the static limit of ε−1,

Re ε−1GG’(q, 0) = δGG’ +
2

π
P

∫ ∞
0

dω
1

ω
Im ε−1GG’(q, ω), (B.12)

and by the f-sum rule,∫ ∞
0

Im ε−1GG’(q, ω) = −π
2
ω2
p

(q + G).(q + G′)

|q + G|2
ρ(G−G′)

ρ(0)
= −π

2
Ω2

GG′ ,

(B.13)
where ρ is the electron charge density in reciprocal space and ω2

p is the clas-
sical plasma frequency defined by ω2

p = 4πρ(0)e2/m. This allows us to write
equation B.5 and B.6 as

〈nk|ΣSX(ω) |n′k〉 = −
occ∑
n′′

∑
qGG′

M∗
nn′(k,−q,−G)Mn′′n′(k,−q,−G′)

×
[
δGG′ +

Ω2
GG′(q)(1− i tanφGG′(q))

(ω − En′′k−q)2 − ω̃2
GG′(q)

]
v(q + G′), (B.14)

〈nk|ΣCH(ω) |n′k〉 = −1

2

∑
n′′

∑
qGG′

M∗
nn′(k,−q,−G)Mn′′n′(k,−q,−G′)

×
∫ ∞
0

dω′
Ω2

GG′(q)(1− i tanφGG′(q))

ω̃GG′(q)(ω − En′′k−q − ω̃GG′(q))
v(q + G′). (B.15)
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The ΩGG′ and ω̃GG′ are related by

ω̃GG′(q)) =
|λGG′(q)|

cosφGG′(q)
, (B.16)

|λGG′(q)| eiφGG′ (q) =
Ω2

GG′(q)

δGG′ − ε−1GG′(q, 0)
, (B.17)

where λGG′(q) and φGG′(q) are the amplitude and the phase of the renor-
malized Ω2

GG′(q) respectively.

B.2 Bethe Salpeter equation

In the BerkeleyGW package the BSE is given by

(Eck − Evk)ASvck +
∑
v′c′k′

〈vck|Keh |v′c′k′〉 = ΩSAvck (B.18)

where Eck and Evk are the conduction and valence quasi-particle energies,
Keh the electron-hole Kernel, ASvck and ΩS the excitonic wavefunction and
excitonic energy respectively for a excitonic state S. The Tamm-Dancoff ap-
proximation is considered, where only valence to conduction transitions are
included. The first step before solving the BSE is to compute the electron-
hole kernel. It can be separated in two terms, Keh = Kd +Kx, where Kd is
the screened direct interaction term and Kx is the bare exchange interaction
term. They are defined in the following way

〈vck|Kd |v′c′k′〉 =

∫
drdr′ψ∗ck(r)ψc′k′(r)W (r, r′)ψ∗v′k′(r

′)ψck(r′), (B.19)

〈vck|Kx |v′c′k′〉 =

∫
drdr′ψ∗ck(r)ψvk(r)v(r, r′)ψ∗v′k′(r

′)ψc′k′(r
′), (B.20)

where the static approximation for W is considered. This matrix is often
calculated using the same grid of k-points used in the previous GW calcula-
tion where the dielectric matrix ε−1(q) for q = k− k′ was constructed. The
matrices B.19 and B.20 are constructed in the G-space in the following way

〈vck|Kd |v′c′k′〉 =
∑
GG′

M∗
c′c(k,q,G)WGG′(q, 0)Mv′v(k,q,G

′) (B.21)

〈vck|Kx |v′c′k′〉 =
∑
G 6=0

M∗
vc(k,q,G)vk+G(q, 0)Mv′c′(k,q,G

′) (B.22)
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where M is defined in equation B.2 which means that we have to chose a
cut-off for the kernel matrix construction. The excitonic properties are very
sensitive to the grid of k-points that is used because the contributions of
q → 0 are very important. This means we have to compute the kernel in
very fine grids. The problem is that such thing is prohibitively expensive and
another method has to be used. The BerkeleyGW package computes the
kernel with a coarse grid of k-points by using the kernel executable and then
interpolate it in a very fine grid of k-points before the diagonalization using
the absorption executable. In the absorption executable the coarse and
fine grid wavefunctions are needed as input so we have to do DFT calculations
in a finer grid. This interpolation is done in such way that now the BSE
depends on the number of valence bands and conduction bands from the
coarse, as can be seen in equation B.21 and B.20, and it also depends on the
number of valence bands and conduction bands from the fine grid.

After the diagonalization we can get the set of excitonic eigenvalues ΩS

and eigenfuctions ASvck which can be used to calculate the absorption spec-
trum.
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Appendix C

BerkeleyGW calculation
tutorial

In this tutorial we show how to perform a simple G0W0 calculation using the
Generalised-Plamon-Pole proposed by Hybertson and Louie [28] and solve the
Bethe-Salpeter equation (BSE) by using the Quantum ESPRESSO [36]
(QE) and BerkeleyGW [30] (BGW) packages. We choose the semicon-
ductor h-BN has the reference material and we will show the procedure to
calculate its quasi-particle energies and the absorption spectrum.

C.1 G0W0 calculation

First it is necessary to perform DFT calculations that will be the starting
point for the G0W0. We use QE to perform DFT calculations. A plane-wave
cut-off of 80 Ry and a grid of k-points of 12× 12× 1 with a shift of 1× 1× 0
are used. When the DFT calculations are done, we have to convert the in-
formation to new files that will be read by the BGW. The recommended
approach for the QE calculations is the following (see figure from the link
“http://www.nersc.gov/assets/Uploads/Davidpracticalcalc.pptx.pdf” page 10):

1. scf calculation with pw.x (uniform grid with a shift of 0.5 and number
of bands (nbnb) equal to the number of occupied bands).

2. bands calculation with pw.x (uniform grid with a shift of 0.5 and a
large number of bands possible). After the pw.x calculation we have to
convert the data using the pw2bgw.x to create the file WFN.

3. bands calculation with pw.x (uniform grid with a shift of 0.5, a q-
shift and number of bands (nbnb) equal to the number of occupied
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bands). After the pw.x calculation we have to convert the data using
the pw2bgw.x to create the file WFNq.

4. bands calculations with pw.x (uniform grid with no shift and a large
number of bands possible). After the pw.x calculation we have to
convert the data using the pw2bgw.x to create the file WFN inner.

5. bands calculations with pw.x (in our case we will use the program
inteqp.cplx.x to do an interpolation for plot the quasi-particle elec-
tronic band-structure where we have to choose the k-point path and
include few unoccupied bands). After the pw.x calculation we have to
convert the data using the pw2bgw.x to create the file WFN fi.

In the step 1, a scf calculation is done. It is not necessary to include
more bands than the occupied ones. A good plane-wave cut-off and a grid
of k-points has to be used (it is necessary to study the convergence). A
automatic grid of k-points with a shift of 0.5 has to be used, for example:
12 × 12 × 1 with a shift of 1 × 1 × 0. The following calculations must have
the same plane-wave cut-off used in the scf calculation.

In the setp 2 it is necessary to do a bands calculation with a large value of
unoccupied bands with a generated uniform grid of k-points with 0.5 shift.
To generate this grid the kgrid.x program that is included in the BGW
package can be used. The input structure for the kgrid.x can be seen in
the BGW manual page 23. In our case (h-BN, plane-wave cut-off 80 Ry,
12 × 12 × 1 with shift 1 × 1 × 0) the input for the kgrid.x for the step 2,
which we call kgrid.wfn.inp, has the following content:

#kgrid.wfn.inp for WFN

12 12 1 #k-points

0.5 0.5 0.0 #shift in k-points

0.0 0.0 0.0 #shift in q-points

#lattice vectors in Cartesian coordinates:

4.14 2.391 0.00

4.14 -2.391 0.00

0.00 0.000 50.00

2 #Number of atoms

1 0.0000000 0.0000000 0.0000000 #Cartesian coordinates

2 2.7603155 0.0000000 0.0000000

27 27 288 #FFT dimensions

.false. #use time -reversal symmetry. Set to false for BerkeleyGW

The FFT dimensions can be taken from the output file of the scf calcula-
tion done in the step 1. For generate the k-points with kgrid.x we have to
execute the following command:
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kgrid.x kgrid.wfn.in kgrid.wfn.out kgrid.wfn.log

The kgrid.wfn.out gives us the k-points list for the input file for the pw.x

calculation in step 2. In our case we have:

&CONTROL

title = ’BN ’ ,

calculation = ’bands ’ ,

wf_collect = .true. ,

...

/

&SYSTEM

...

ecutwfc = 80.0,

nbnd = 1000,

...

/

&ELECTRONS

...

diagonalization =’cg’

...

/

CELL\_PARAMETERS hexagonal

..

ATOMIC\_SPECIES

...

ATOMIC\_POSITIONS (crystal)

...

K_POINTS crystal

78

0.041666667 0.041666667 0.000000000 1.0

0.041666667 0.125000000 0.000000000 2.0

0.041666667 0.208333333 0.000000000 2.0

0.041666667 0.291666667 0.000000000 2.0

0.041666667 0.375000000 0.000000000 2.0

0.041666667 0.458333333 0.000000000 2.0

0.041666667 0.541666667 0.000000000 2.0

0.041666667 0.625000000 0.000000000 2.0

0.041666667 0.708333333 0.000000000 2.0

0.041666667 0.791666667 0.000000000 2.0

0.041666667 0.875000000 0.000000000 2.0

0.041666667 0.958333333 0.000000000 2.0

0.125000000 0.125000000 0.000000000 1.0

0.125000000 0.208333333 0.000000000 2.0

0.125000000 0.291666667 0.000000000 2.0

0.125000000 0.375000000 0.000000000 2.0

0.125000000 0.458333333 0.000000000 2.0

0.125000000 0.541666667 0.000000000 2.0

0.125000000 0.625000000 0.000000000 2.0

0.125000000 0.708333333 0.000000000 2.0

0.125000000 0.791666667 0.000000000 2.0

0.125000000 0.875000000 0.000000000 2.0

0.125000000 0.958333333 0.000000000 2.0

0.208333333 0.208333333 0.000000000 1.0

0.208333333 0.291666667 0.000000000 2.0

0.208333333 0.375000000 0.000000000 2.0

0.208333333 0.458333333 0.000000000 2.0

0.208333333 0.541666667 0.000000000 2.0
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0.208333333 0.625000000 0.000000000 2.0

0.208333333 0.708333333 0.000000000 2.0

0.208333333 0.791666667 0.000000000 2.0

0.208333333 0.875000000 0.000000000 2.0

0.208333333 0.958333333 0.000000000 2.0

0.291666667 0.291666667 0.000000000 1.0

0.291666667 0.375000000 0.000000000 2.0

0.291666667 0.458333333 0.000000000 2.0

0.291666667 0.541666667 0.000000000 2.0

0.291666667 0.625000000 0.000000000 2.0

0.291666667 0.708333333 0.000000000 2.0

0.291666667 0.791666667 0.000000000 2.0

0.291666667 0.875000000 0.000000000 2.0

0.291666667 0.958333333 0.000000000 2.0

0.375000000 0.375000000 0.000000000 1.0

0.375000000 0.458333333 0.000000000 2.0

0.375000000 0.541666667 0.000000000 2.0

0.375000000 0.625000000 0.000000000 2.0

0.375000000 0.708333333 0.000000000 2.0

0.375000000 0.791666667 0.000000000 2.0

0.375000000 0.875000000 0.000000000 2.0

0.375000000 0.958333333 0.000000000 2.0

0.458333333 0.458333333 0.000000000 1.0

0.458333333 0.541666667 0.000000000 2.0

0.458333333 0.625000000 0.000000000 2.0

0.458333333 0.708333333 0.000000000 2.0

0.458333333 0.791666667 0.000000000 2.0

0.458333333 0.875000000 0.000000000 2.0

0.458333333 0.958333333 0.000000000 2.0

0.541666667 0.541666667 0.000000000 1.0

0.541666667 0.625000000 0.000000000 2.0

0.541666667 0.708333333 0.000000000 2.0

0.541666667 0.791666667 0.000000000 2.0

0.541666667 0.875000000 0.000000000 2.0

0.541666667 0.958333333 0.000000000 2.0

0.625000000 0.625000000 0.000000000 1.0

0.625000000 0.708333333 0.000000000 2.0

0.625000000 0.791666667 0.000000000 2.0

0.625000000 0.875000000 0.000000000 2.0

0.625000000 0.958333333 0.000000000 2.0

0.708333333 0.708333333 0.000000000 1.0

0.708333333 0.791666667 0.000000000 2.0

0.708333333 0.875000000 0.000000000 2.0

0.708333333 0.958333333 0.000000000 2.0

0.791666667 0.791666667 0.000000000 1.0

0.791666667 0.875000000 0.000000000 2.0

0.791666667 0.958333333 0.000000000 2.0

0.875000000 0.875000000 0.000000000 1.0

0.875000000 0.958333333 0.000000000 2.0

0.958333333 0.958333333 0.000000000 1.0

We can see that it is a bands calculation, with a plane-wave cut-off
ecutwfc of 80 eV and we choose the value 1000 as the number of bands
(nbnds). The 78 k-points are generated by the kgrid.x. We choose the flag
diagonalization =’cg’ because it is more robust than diagonalization

=’david’ calculation (see BGW manual page 22). Note: The input file for he
pw.x calculation in step 2 is equal to the scf file in step 1 with the difference
being in the type of calculation, the number of bands, and the k-points.
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After the pw.x calculation in step 2 is done, it is necessary to convert the
information/data of QE files to new files that will be read by the BGW. For
that we have to use the pw2bgw.x which is included in the QE package. The
input structure of this file can be seen in the BGW manual page 25). We
have the following example which we call BN.wfn.pp.in:

&input_pw2bgw

#BN.wfn.pp.in file

prefix = ’BN’

outdir = ’./’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFN ’

wfng_kgrid = .true.

wfng_nk1 = 12

wfng_nk2 = 12

wfng_nk3 = 1

wfng_dk1 = 0.5

wfng_dk2 = 0.5

wfng_dk3 = 0.0

/

The more important flag in this file is the real or complex. If the sys-
tem has inversion symmetry and time-reversal symmetry than we can use
real or complex = 1 which will turn the calculations more faster. Other-
wise we have to use real or complex = 2. Our example has not inversion
symmetry. The other flags are just information for converting the data of the
pw.x calculation to the file WFN (see BGW manual page 25). Now we have
to execute the command:

pw2bgw.x <BN.wfn.pp.in> pp.wfn.out.

If everything is done correctly, a file named WFN is going to be created. To
create the files WFNq and WFN inner the procedure is the same of step 2. In
step 3 we can generate the k-points with kgrid.x just like in step 2. The
difference is that we want a small shift in the q-points. The input file, which
we call kgrid.wfnq.in, has the following content:

#kgrid.wfnq.inp for WFNq

12 12 1

0.5 0.5 0.0

0.001 0.0 0.0

... # The rest is equal to kgrid.wfn.in

After executing the command

kgrid.x kgrid.wfnq.in kgrid.wfnq.out kgrid.wfnq.log,
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it will be generated a file kgrid.wfnq.out with more k-points than kgrid.wfn.out

because of the additional shift. Now that the list of k-points is generated we
have to create the pw.x file for step 3. This file will be the same as the file
of step 2 but now the list of k-points is the one given by kgrid.wfnq.out

and it not necessary to include empty bands. After the pw.x calculation, we
have to use pw2bgw.x again to create the WFNq file. The pw2bgw.x input file,
which we call BN.wfnq.pp.in, has the following structure:

#BN.wfnq.pp.in file

&input_pw2bgw

prefix = ’BN’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFNq ’

wfng_kgrid = .true.

wfng_nk1 = 12

wfng_nk2 = 12

wfng_nk3 = 1

wfng_dk1 = 0.5012

wfng_dk2 = 0.5

wfng_dk3 = 0.0

/

After executing the command

pw2bgwx.x <BN.wfnq.pp.in> wfnq.pp.out,

a file named WFNq is going to be created.
In the step 4 we can also generate the k-points with the kgrid.x but this

time we do not want any shift and we want many empty bands. The input
for the kgrid.x, which we call kgrid.wfn inner.in, is the following:

#kgrid.wfn_inner.inp for WFN_inner

12 12 1

0.0 0.0 0.0

0.0 0.0 0.0

... # the rest is the same of kgrid.wfn.in

The pw.x file will be the same as BN.wfn.in but with the list of k-points given
by kgrid.wfn inner.out. The input file for pw2bgw.x is going to have more
content than BN.wfn.pp.in and BN.wfnq.pp.in. This file, which we call
BN.wfn inner.pp.in, will have the following content:

92



#BN.wfn_inner.pp.in file

&input_pw2bgw

prefix = ’BN’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFN_inner ’

wfng_kgrid = .true.

wfng_nk1 = 12

wfng_nk2 = 12

wfng_nk3 = 1

wfng_dk1 = 0.0

wfng_dk2 = 0.0

wfng_dk3 = 0.0

rhog_flag = .true.

rhog_file = ’RHO ’

vxcg_flag = .false.

vxcg_file = ’vxc.real ’

vxc_flag = .true.

vxc_file = ’vxc.dat ’

vxc_diag_nmin = 1

vxc_diag_nmax = 1000

vxc_offdiag_nmin = 1

vxc_offdiag_nmax = 1000

/

This file has more content than the previous files because this one is going to
create the file for electronic charge density (RHO) and it will create a file with
the elements of exchange-correlation potential (vxc.dat). See page 27-29
of BGW manual for more information about the flags. After executing the
command

pw2bgw.x <MoS2.wfn innner.pp.in> wfn inner.pp.out,

the files WFN inner, RHO and vxc.dat are going to be created.
In the step 5 we will do a bands calculation with pw.x but this time we

choose the k-points path. This path is going to be used to do an interpolation
more later. It is not necessary to generate the k-points with the kgrid.x

and include many unoccupied bands (only few). An example of the chosen
path (K-Γ-M-K) for the file BN.kpath.in which is the input file for the pw.x

calculation in step 5, is represented below:

K_POINTS crystal_b

4

0.3333333333 0.6666666667 0.0000000000 25.0

0.0000000000 0.0000000000 0.0000000000 25.0

0.0000000000 0.5000000000 0.0000000000 25.0

0.3333333333 0.6666666667 0.0000000000 1.0

It is necessary to create the WFN fi file using the pw2bgw.x. The input file
for pw2bgw.x for step 4, which we call MoS2.kpath.pp.in, has the following
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structure:
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#BN.wfn_fi.pp.in file

&input_pw2bgw

prefix = ’MoS2 ’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFN_fi ’

/

After executing the command

pw2bgw.x <MoS2.wfn fi.pp.in> wfn fi.pp.out ,

the file WFN fi will be created. At this stage we have done all calculations
with DFT for the G0W0 calculation. The files that were created are WFN ,
WFNq , WFN inner, WFN fi, RHO and vxc.dat. These are the files that BGW
needs in order to do a G0W0 calculation with the GPP.

So to synthesise what has been written till here, we write the whole
procedure of the DFT calculations (which can be done in the same folder
one by one or can be done in different folders with the necessity of using
links):

• pw.x <BN.scf.in> scf.out (scf calculation with uniform grid and
a shift of 0.5 with only occupied bands).

• pw.x <BN.wfn.in> wfn.out (bands calculation with uniform grid with
a shift of 0.5 and many unoccupied bands).

• pw2bgw.x <BN.wfn.pp.in> pp.wfn.out (convert QE data with pw2bgw.x

to create the WFN file).

• pw.x <BN.wfnq.in> wfnq.out ( bands calculation with uniform grid,
a shift of 0.5 and small shift only with occupied bands).

• pw2bgw.x <BN.wfnq.pp.in> pp.wfnq.out (convert QE data with pw2bgw.x

to create the WFNq file).

• pw.x <BN.wfn inner.in> wfn inner.out (bands calculation with uni-
form grid and many unoccupied bands).

• pw2bgw.x <BN.pp.wfn inner.in> pp.wfn inner.out (convert QE data
with pw2bgw.x to create the WFN inner, RHO and vxc.dat files).

• pw.x <BN.kpath.in> kpath.out (bands calculation with with a k-
point path chosen by us and few empty bands).
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• pw2bgw.x <BN.kapth.pp.in> pp.kpath.out (convert QE data with
pw2bgw.x to create the WFN fi).

Now that we have all necessary files for the starting point of G0W0 calcu-
lation, it is time to compute the dielectric matrix of equation B.3. Because
we use the GPP model we do not need to compute the frequency dependent
dielectric matrix but the static one of equation B.8. The epsilon.cplx.x is
the program to construct the dielectric matrix. If the system had inversion
and time-reversal symmetry we could use the epsilon.real.x which can be
faster than epsilon.cplx.x. This program needs the files WFN, WFNq and the
epsilon.inp which is the input file (see page 59 of BerkeleyGW manual).
In our example the epsilon.inp has the following content:

epsilon_cutoff 21.1

number_bands 998

band_occupation 4*1 994*0

frequency_dependence 0

begin qpoints

0.001000000 0.000000000 0.000000000 1.0 1

0.000000000 0.083333333 0.000000000 1.0 0

0.000000000 0.166666667 0.000000000 1.0 0

0.000000000 0.250000000 0.000000000 1.0 0

0.000000000 0.333333333 0.000000000 1.0 0

0.000000000 0.416666667 0.000000000 1.0 0

0.000000000 0.500000000 0.000000000 1.0 0

0.000000000 0.583333333 0.000000000 1.0 0

0.000000000 0.666666667 0.000000000 1.0 0

0.000000000 0.750000000 0.000000000 1.0 0

0.000000000 0.833333333 0.000000000 1.0 0

0.000000000 0.916666667 0.000000000 1.0 0

0.083333333 0.166666667 0.000000000 1.0 0

0.083333333 0.250000000 0.000000000 1.0 0

0.083333333 0.333333333 0.000000000 1.0 0

0.083333333 0.416666667 0.000000000 1.0 0

0.083333333 0.500000000 0.000000000 1.0 0

0.083333333 0.583333333 0.000000000 1.0 0

0.083333333 0.666666667 0.000000000 1.0 0

0.083333333 0.750000000 0.000000000 1.0 0

0.083333333 0.833333333 0.000000000 1.0 0

0.166666667 0.333333333 0.000000000 1.0 0

0.166666667 0.416666667 0.000000000 1.0 0

0.166666667 0.500000000 0.000000000 1.0 0

0.166666667 0.583333333 0.000000000 1.0 0

0.166666667 0.666666667 0.000000000 1.0 0

0.166666667 0.750000000 0.000000000 1.0 0

0.250000000 0.500000000 0.000000000 1.0 0

0.250000000 0.583333333 0.000000000 1.0 0

0.250000000 0.666666667 0.000000000 1.0 0

0.333333333 0.666666667 0.000000000 1.0 0

end

96



First we have to choose the epsilon cutoff which is the cut-off used
for the construction of the matrix of equation B.2. This cut-off should have
the same energy of the last band that is included in the polarization func-
tion of equation B.1. We choose 998 as the number of bands where the
last band has an energy of 287 eV. Such information can be taken from the
outputs of DFT calculations. We set then the epsilon cutoff as 21.1 Ry.
In bands occupation we have to write the number of occupied bands and
empty bands where 1 is for the occupied and 0 for the empty bands. For
the flag frequency dependence we can choose the value 0 which is to com-
pute the static epsilon matrix and 2 for compute the frequency dependent
dielectric matrix. We are doing a PPA calculation so we choose 0. Then we
have to write a block with the q-points which are the q-points where the
dielectric matrix is going to be computed. These q-points are the same as
the WFN inner (or WFN without any shift). The zero vector has to be replaced
by a very small vector like 0.001 0.000 0.000. This is due to divergence issues.

Now that we have created our epsilon.inp we can execute the command

epsilon.cplx.x <epsilon.inp> epsilon.out.

If the calculation is done without any problems, the files eps0mat, epsmat,
epsilon.out, epsilon.log and chi converge.dat are created. The file
eps0mat is the construction of the inverted dielectric matrix for the small q-
point of the block list of epsilon.inp. The file epsmat is the construction of
the inverted dielectric matrix for the rest of the q-points. In the epsilon.out
we can see the output with the calculation procedure where we can see for
example the computational time for each q-point. In the epsilon.log we
can see the data of the dielectric matrix and in chi converge.dat we can
see the convergence of the polarization function with the number of bands.

With the static-dielectric matrix we can now use the GPP model to ex-
tend the matrix for finite frequencies and calculate the self-energy operator.
That is done with the program sigma.cplx.x. To use this program the files
WFN inner, RHO, vxc.dat, eps0mat, epsmat are needed. The input file is
sigma.inp where its content can be seen in the BGW manual page 69. In
our example, the sigma.inp has the following content:

screened_coulomb_cutoff 21.1

bare_coulomb_cutoff 80.0

number_bands 998

band_occupation 4*1 994*0

frequency_dependence 1
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band_index_min 1

band_index_max 10

screening_semiconductor

begin kpoints

0.000000000 0.000000000 0.000000000 1.0

0.000000000 0.083333333 0.000000000 1.0

0.000000000 0.166666667 0.000000000 1.0

0.000000000 0.250000000 0.000000000 1.0

0.000000000 0.333333333 0.000000000 1.0

0.000000000 0.416666667 0.000000000 1.0

0.000000000 0.500000000 0.000000000 1.0

0.000000000 0.583333333 0.000000000 1.0

0.000000000 0.666666667 0.000000000 1.0

0.000000000 0.750000000 0.000000000 1.0

0.000000000 0.833333333 0.000000000 1.0

0.000000000 0.916666667 0.000000000 1.0

0.083333333 0.166666667 0.000000000 1.0

0.083333333 0.250000000 0.000000000 1.0

0.083333333 0.333333333 0.000000000 1.0

0.083333333 0.416666667 0.000000000 1.0

0.083333333 0.500000000 0.000000000 1.0

0.083333333 0.583333333 0.000000000 1.0

0.083333333 0.666666667 0.000000000 1.0

0.083333333 0.750000000 0.000000000 1.0

0.083333333 0.833333333 0.000000000 1.0

0.166666667 0.333333333 0.000000000 1.0

0.166666667 0.416666667 0.000000000 1.0

0.166666667 0.500000000 0.000000000 1.0

0.166666667 0.583333333 0.000000000 1.0

0.166666667 0.666666667 0.000000000 1.0

0.166666667 0.750000000 0.000000000 1.0

0.250000000 0.500000000 0.000000000 1.0

0.250000000 0.583333333 0.000000000 1.0

0.250000000 0.666666667 0.000000000 1.0

0.333333333 0.666666667 0.000000000 1.0

end

The first flag is screened coulomb cutoff which is used to calculate the
terms ΣXC and ΣCH (see appendix B). These cut-off’s can not be greater than
the epsilon cut-off. We use then the epsilon cut-off for the screened coulomb cutoff.
The bare coulomb cutoff is the cut-off that is used for calculate the term
ΣX . Because the calculation of this term is not expensive, we use the
same of the plane-wave cut-off used in the DFT calculation which is 80
Ry. The number bands is the number of bands used in equation B.15.
Because we choose frequency dependence 1, we are using the GPP. The
band index min and band index max is the range in which we want to com-
pute the quasi-particle correction, that is, calculate 〈nk|Σ(ω) |nk〉. The
screening semiconductor is chosen because our system is an insulator.
And finally we have to add a block of k-points, which are the same of the
WFN inner. The execution of this program is done executing the command
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sigma.cplx.x <sigma.inp> sigma.out.

The files sigma.out, sigma.log, sigma hp.log and ch converge.dat will
be created. The sigma.out gives us computational information where we can
see for example the time that the calculations take. The file sigma hp.log

is the high-precision of sigma.log and we can see the values of the quasi-
particles energies for the desired sates that we choose in sigma.inp. Finally
the ch converge.dat gives us the convergence of the term ΣCH with respect
to the number of bands.

So far we have calculated the quasi-particle energies for the states with
k-points of WFN inner. To compute the electronic band-structure in a cho-
sen path an interpolation is necessary. First we execute the command

eqp.py eqp1 sigma hp.log eqp co.dat

to generate the file eqp co.dat which is a file with the quasi-particle corrected
energies. Now we have to use the program inteqp.cplx.x to do the interpo-
lation. This program needs the files WFN fi (which has the information about
the pw.x calculation on our chosen k-points path), WFN co, eqp co.dat and
inteqp.inp. The WFN co file is the wave-function on a coarse grid and we
can use the WFN inner file for that grid. We have then to create the following
link with the command: ln -s WFN inner WFN co. The inteqp.inp is the
input for the inteqp.cplx.x (see BerkeleyGW manual page 86). Our
inteqp.inp has the following content:

number_val_bands_coarse 4

number_val_bands_fine 4

number_cond_bands_coarse 6

number_cond_bands_fine 6

use_symmetries_coarse_grid

no_symmetries_fine_grid

no_symmetries_shifted_grid

Because we used 1 as band index min and 10 as band index max in the
sigma.inp, we have 4 valence bands and 6 conduction bands that are cor-
rected. We have to choose the number of conduction and valence bands for
the coarse grid, which can not be greater than the corrected ones. Then
we have choose the number of valence and conduction bands from the DFT
calculation along the chosen path (that is the reason why inteqp.cplx.x

need the WFN fi file do the interpolation). Those bands are the number of
conduction and valence bands from the fine grid. The rest of the flags are
symmetry considerations. After executing the command
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inteqp.cplx.x <inteqp.inp> inteqp.out,

the file bandstructure.dat is going to be created and it is the interpolated
band-structure along the k-point path used for creating the WFN fi.

To synthesise the procedure of the G0W0 calculations we write the fol-
lowing list:

• Create a folder for the epsilon.cplx.x calculation. Link the files
WFN and WFNq to this folder. Create the epsilon.inp and execute the
command: epsilon.cplx.x <epsilon.inp> epsilon.out. The files
eps0mat and epsmat are created.

• Create a folder for the sigma.cplx.x calculation. Link the files WFN inner,
eps0mat and epsmat to this folder. Create the sigma.inp and ex-
ecute the command: sigma.cplx.x <sigma.inp> sigma.out. The
file sigma hp.log is created.

• In the same folder of sigma.cplx.x calculation, execute the command
eqp.py eqp1 sigma hp.log eqp co.dat. the file eqp co.dat is cre-
ated.

• Create a folder for the inteqp.cplx.x calculation. Link the files
WFN inner to this folder but with the name WFN co. Link the file
WFN fi, and eqp co.dat to this folder. Create the inteqp.inp and exe-
cute the command inteqp.cplx.x <inteqp.inp> inteqp.out. The
file bandstructure.dat is created.
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C.2 BSE calculation

With the G0W0 calculation finished, we can now compute the BSE. The files
that are needed from the G0W0 calculation are the eps0mat and epsmat,
which are the files that contain the inverse dielectric matrix information, the
file eqp co.dat which is the file with the information of the corrected quasi-
particles and the WFN co which are the wave-functions on a coarse grid. First
we have to compute the kernel matrix of equations B.21 and B.22. For that
only the files eps0mat and epsmat and WFN co are needed. The program to
compute the kernel matrix is the kernel.cplx.x (cplx and not real because
of the same reason discussed above) and its input is the kernel.inp (see
BerkeleyGW manual page 77). In our example, the kernel.inp has the
following content:

number_val_bands 4

number_cond_bands 6

screened_coulomb_cutoff 21.1

bare_coulomb_cutoff 80.0

use_symmetries_coarse_grid

screening_semiconductor

First we have to say how many valence (number val bands) and con-
duction bands (number cond bands) we want to include in the construction
of the matrices M of equations B.21 and B.22. Then we have to choose
the screened coulomb cutoff and bare coulomb cutoff just like we did
in sigma.inp. In our case we choose them to be the same as sigma.inp. We
select the screening semiconductor as the type of screening used in this
calculation. Now we can execute the command

kernel.cplx.x <kernel.inp> kernel.out,

and two files named bsedmat and bsexmat which corresponds to the the
screened direct interaction term and the bare exchange interaction term of
the kernel respectively are created.

As written in appendix B, after computing the kernel in the coarse grid
using the information of WFN co, we have to interpolate it in a very fine grid
of k-points before solving equation B.18. For that we need to perform three
DFT calculations. The first one is the calculation of the step 1 in the G0W0

calculation. The second one has the same procedure of the calculation of
the step 4 in the G0W0 calculation. But this time we have to use in the
pw.x calculation a list of k-points generated by the kgrid.x with a finer grid
without shift and include few empty bands. Our input file for generating the
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k-points, which we call kgrid.wfn fi.inp, has the following content:

48 48 1

0.0 0.0 0.0

0.0 0.0 0.0

... # the rest is the same of kgrid.wfn.in

We can see that it is just like the kgrid.wfn.in but with a finer grid and
no shift. After calculating the pw.x calculation with the grid generated by
the file kgrid.wfn fi.inp and with few empty bands, we have to convert
the information of QE using the pw2bgw.x program just like we did in the
previous calculations. The input file for the pw2bgw.x in our example has
the following content:

&input_pw2bgw

prefix = ’bn’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFN_fi ’

wfng_kgrid = .true.

wfng_nk1 = 48

wfng_nk2 = 48

wfng_nk3 = 1

wfng_dk1 = 0.0

wfng_dk2 = 0.0

wfng_dk3 = 0.0

/

After converting the information using the pw2bgw.x program, the file WFN fi

is going to be created. It is important to note that this file is not the same that
was created in the previous G0W0 calculation. The final pw.x calculation is
just like the previous calculation but with a q-shift and only occupied bands.
The input for the kgrid.cplx.x, which we call krgid.wfnq fi.inp, has the
following content:

48 48 1

0.0 0.0 0.0

0.048 0.048 0.0

... # the rest is the same of kgrid.wfn.in

After the pw.x calculation is done we have to use the pw2bgw.x, where the
input file, which we call BN.wfnq fi.pp.in, has the following content:

&input_pw2bgw

prefix = ’bn’

real_or_complex = 2

wfng_flag = .true.

wfng_file = ’WFNq_fi ’

wfng_kgrid = .true.

wfng_nk1 = 48

wfng_nk2 = 48

wfng_nk3 = 1

wfng_dk1 = 0.048

wfng_dk2 = 0.048

wfng_dk3 = 0.0

/
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The file WFNq fi is going to be created and together with the files WFN fi,
bsedmat, bsexmat, epsmat, eps0mat and eqp co.dat we can now proceed
to the final step of the BSE calculation. The program that is used is the
absorption.cplx.x and the input file is absorption.inp (see page 81 of
BerkeleyGW manual). This program is going to interpolate the kernel in a
finer grid and then solve equation B.18. In our example the absorption.inp
has the following content:

number_val_bands_fine 4

number_val_bands_coarse 4

number_cond_bands_fine 6

number_cond_bands_coarse 6

coarse_grid_points 144

use_symmetries_fine_grid

no_symmetries_shifted_grid

use_symmetries_coarse_grid

eqp_co_corrections

diagonalization

#haydock

#number_iterations 500

screening_semiconductor

use_velocity

q_shift 0.001 0.001 0.000

energy_resolution 0.1

gaussian_broadening

Just like the inteqp.inp, we have to choose the number of bands used
in the coarse grid and in the fine grid. In the flag coarse grid points we
have to write the number of k-points on the coarse grid. This number can be
taken from the kernel.out. The flag eqp co corrections is to include the
quasi-particle corrections. We can compute the equation B.18 using the flag
diagonalization to do a diagonalization or use the flag haydock together
with the flag number iterations to do an iterative solution by Haydock
recursion (see page 20 of literature [30] and BerkeleyGW manual page 83
to see more detail about this options). Then we have to write the operator
to calculate optical transition probabilities where we can choose the velocity
operator (use velocity) or the momentum operator (use momentum). In-
formation about this operators can be found in page 30 of literature [30]. We
have to choose a q shift that has the same shift between the WFN fi and
WFNq fi. The flags energy resolution and gaussian broadening are the
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numerical broadening width and type respectively (see page 84 of Berke-
leyGW manual to see the other options). Now we can finally execute the
command

absorption.cplx.x <absorption.inp> absorption.out,

to obtain the absorption spectrum. The two files that correspond to the ab-
sorption spectrum are the absorption noeh.dat and absorption eh.dat.
The first one gives the the non-interacting (RPA) dielectric and joint density
of states. The second file gives the dielectric function with the excitonic ef-
fects included and the density of excitonic states. There are more files that
are created that gives us information like the eigenvalues and excitonic wave-
functions (see page 81 BerkeleyGW manual for more information).

To summarize, after performing G0W0 calculations, we have to use two
programs to compute the BSE calculation. The first program is kernel.cplx.x
and it needs the WFN co, esp0mat and epsmat of the previous G0W0 calcu-
lations. So we have to create a folder and link the three previously files to
that folder. Then create the kernel.inp and execute the kernel.cplx.x

program. After executing this program, the files bsedmat and bsexmat

are created and we can now proceed to the next step which is to use the
program absorption.cplx.x. This program also needs the files WFN fi,
WFNq fi which are created by using pw.x and pw2bgw.x calculations and the
file eqp co corrections which were created in the G0W0 calculation. So
we have to create a new folder, link the 5 files for that folder and create the
absoprtion.inp to execute the absorption.cplx.x. After executed, we can
obtain the absorption spectra that is written in the file absorption eh.dat.
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