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Abstract 

This paper present a design approach to predict the shear capacity of reinforced concrete (RC) beams strengthened 

with fiber reinforced polymer (FRP) laminates/rods applied according to the near surface mounted (NSM) technique. 

The new approach is based on the simplified modified compression field theory (SMCFT) and considers the relevant 

features of the interaction between NSM FRP systems and surrounding concrete, like debond and concrete fracture. 

In the SMCFT model, the shear strength of a RC element is a function of two parameters: the tensile stress factor in 

the cracked concrete (  ), and the inclination of the diagonal compressive stress in the web of the section ( ). 

However, this approach is not a straightforward design methodology due to its iterative nature. 

A sensitivity analysis is carried out to assess the relative importance of each input parameter that mostly affect the 

shear capacity of RC beams shear strengthened according to the NSM technique. Taking into account the obtained 

results, equations to determine   and   without recurring to an iterative procedure are derived. The experimental 

results of 112 beams shear strengthened with NSM FRP are used to appraise the predictive performance of the 

developed approach. By evaluating the ratio between the experimental results and the analytical predictions, an 

average value of 1.14 is obtained, with a coefficient of variation of 13.1%, being safe estimations 87% of the 

predictions. 
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Introduction 

The prediction of the shear capacity of reinforced concrete (RC) beams is a challenging task because shear mobilizes 

several complex resisting mechanisms such as: i) shear resistance assured by the uncracked concrete in the 

compression zone; ii) interface shear transfer by aggregate interlocking in the cracked concrete; and iii) dowel action 

of the longitudinal reinforcement (Bellamkonda 2013). There are two prominent approaches that have been used to 

predict the shear strength of RC beams with and without shear reinforcement: Truss Model (TM) and Modified 

Compression Field Theory (MCFT).  

Truss model (TM) is based on the following two assumptions: 1) the diagonal compression struts, before and after 

concrete cracking are inclined at an angle of 45 degrees to the longitudinal axis of the RC member; 2) the concrete 

tensile strength is negligible. Hence, the truss model predicts conservative values for the ultimate shear strength of the 

RC elements (Blanksvärd 2009). ACI (2011) and EuroCode2 (2001) are based on the truss model. In ACI, the 

inclination of the concrete crack is assumed 45 degrees but does not neglect the tension in the concrete, while the 

EuroCode2 neglects the tension but suggests a range of angle values  for the shear crack inclination (21.8 and 45 

degrees). 

The Modified Compression Field Theory (MCFT) was developed by Vecchio and Collins (Vecchio and Collins 1986) 

by taking into account the resisting contribution of cracked RC member in tension. By applying this theory for the 

prediction of the shear strength of 102 panels tested experimentally, an average predictive level of 1.01 (ratio between 

experimental and model results), with a coefficient of variation (COV) of 12.2%, was obtained (Bentz et al. 2006). 

Nevertheless, solving the equations of the MCFT to evaluate shear capacity of a RC member requires an iterative 

procedure and the knowledge of a relatively high number of parameters, which introduces extra difficulties in the 

designer perspective. AASHTO LRFD (2014) is based on MCFT model. 

Bentz et al. (2006) proposed a simplified approach of the MCFT (SMCFT) method. In this model, the shear strength 

of a section is a function of two parameters: the tensile stress factor in the cracked concrete (  ), and the inclination 

of the diagonal compressive stress in the web of the section ( ). In spite of the simple format of the equations for   

and  , the method provides excellent predictions of shear strength of RC beams. By adopting the SMCFT, an average 

ratio of experimental to predicted shear strength of 1.11, with a COV of 13.0%, was obtained when applied to 102 RC 

specimens tested experimentally (Bentz et al. 2006).  
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Recently, Bianco et al. (2010) suggested a new formulation to predict the contribution of near surface mounted (NSM) 

carbon fiber reinforced polymer (CFRP) laminates/rods for the shear strengthening of RC beams. NSM technique with 

CFRP laminate/rod is an effective strengthening technique for the shear strengthening of RC beams. According to this 

technique, slits are opened on the concrete cover of the beam’s lateral faces, filled with an adhesive (in general of 

epoxy type), and CFRP laminate/rods are inserted into these slits (De Lorenzis and Nanni 2001, Barros and Dias 

2010). This technique requires no surface preparation, and after opening the slits on the lateral concrete cover, 

minimum installation time is required (Barros and Dias 2010). 

One of the input parameters in Bianco et al. approach is the inclination of the critical diagonal crack (CDC),  . 

However, due to lack of an appropriate approach to predict the  , this model gives conservative estimates of the shear 

strength contribution of NSM systems. This model was applied to an experimental program formed by 72 RC beams, 

and an average ratio of the predictions versus the experimental values of 0.69, with a COV of 42%, was obtained 

(Bianco et al. 2014).  

In the present paper a new model is presented to predict the shear capacity of typical RC building beams shear 

strengthened with FRP laminates/rods applied according to the NSM technique (where crack spacing less than 300 

mm is expected to occur). The new technique is based on the SMCFT and Bianco et al. formulations. To assess the 

relative importance of each input parameter that affects the shear capacity of RC beams strengthened with FRP, the 

tensile stress factor in cracked concrete (  ), and the inclination of the diagonal compressive stress in the web of the 

section ( ), a sensitivity analysis is carried out. Based on the results, equations for obtaining   and   without 

recurring to any iterative procedure were derived.  

To assess the predictive performance of the proposed analytical formulation (Baghi, Barros, and Bianco (BBB)), a 

database (DB) composed of 112 experimental results of RC beams shear strengthened with NSM FRP systems was 

set from published literature. The performance of the BBB is appraised using the collected data registered in the DB. 

 

The proposed model (BBB) 

A new shear design approach is developed to predict the shear capacity of RC beams shear strengthened with FRP 

laminates/rods applied according to the NSM technique. The new approach is based on the SMCFT and considers the 

relevant features of the interaction between NSM FRP laminates/rods and surrounding concrete, like debond and 

concrete fracture (Baghi 2015). The new model is based on combining the formulation of NSM technique, suggested 



by Bianco et al. (Bianco et al. 2014), with the simplified MCFT, to which it is attributed the acronym BBB. According 

to the BBB model, the shear capacity of a NSM-FRP shear strengthened RC element is obtained from the following 

equation: 

' cotc s f c sy y yield fv v v v f f v         (1) 

where v  is the shear stress and is assumed to be constant over the cross section, thus 
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cf  is the concrete 

compressive strength, 
sy  and 

y yieldf  are the ratio and the yield stress of the transverse steel reinforcement, 

respectively. d  and 
wb  are effective depth and width of the beam, respectively. In Eq. (1),   and   are the tensile 

stress factor in the cracked concrete (  ) and the inclination of the diagonal compressive stress in the web of the 

section ( ), determined from Eq. (2) and Eq. (3), respectively. 
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representing physically the crack spacing, where 
xs  and ga  are the vertical distance between longitudinal 

reinforcement and the maximum dimension of aggregates, respectively. If the longitudinal reinforcement is not 

yielded, Eq. (5) can be used to calculate the 
x : 
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otherwise 
x = sly , where 

slE , 
sl , and sly  are the modulus of elasticity, longitudinal reinforcement ratio and yield 

strain of this reinforcement, while 
cv  and v  are the shear strength of concrete and of the RC member, respectively.  

The shear strength contribution provided by a system of NSM FRP laminate/rod ( fv ) is determined by Bianco et al. 

(2014).  



Bianco et al. (2014) proposed a 3D mechanical model to predict the shear strength contribution of NSM CFRP 

laminates/rods. The mode of failure of an NSM FRP laminate/rod subjected to an imposed end slip can be categorized 

into four groups: debonding, tensile rupture of laminate, concrete semi-pyramid tensile fracture, and a mixed shallow 

semi-pyramid plus debonding failure mode (Fig. 1e).  

During the loading process of a RC beam, when the concrete average tensile strength is attained at the bottom part of 

the web, some shear cracks originate, and successively progress towards the flange of the beam. These cracks can 

generate a single crack, Critical Diagonal Crack (CDC), with inclination of   with respect to the beam longitudinal 

axis (Fig. 1a). At load step 
nt , the two web parts become separated by the CDC and they start moving apart by rotating 

around the crack tip (point E in Fig. 1a). From that step, by increasing the applied load, the CDC opening angle  nt  

progressively widens. The laminates that bridge the CDC offer resistance to its widening. The load imposed to the 

laminate, in consequence of the loaded end slip (
Li ) evolution, is transferred by bond to the concrete surrounding the 

laminate along its effective bond length, fiL  that is the shorter length between the two parts into which the crack 

divides its actual length. The following paragraphs introduce the formulation of this approach: 

Step 1: Determine the average available resisting bond length ( RfiL ) and the minimum integer number of FRP 

reinforcements that cross the CDC ( ,int

l

fN ) (Fig. 1a): 

sin (cot cot )

4sin( )

w f

Rfi

f

h
L

  

 





 (6) 

,int

cot cot fl

f w

f

N round h
s

  
  

  

 
(7) 

Step 2: Evaluation of various constants (Fig. 1c and 1d): 

There are three types of constants: 

1) Geometric constants: 

Perimeter of FRP cross section ( pL ), cross sectional area of the relevant surrounding concrete prism (
cA ), 

and CDC length (
dL ): 
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2) Mechanical constants: 



The ultimate tensile force of FRP reinforcement (
tr

fV ), concrete average tensile strength (
ctmf ), and concrete 

Young's modulus (
cE ): 

tr
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3) Bond-Modeling constants encompass: 

Bond modeling constant (
1J ), integration constant for the softening frictional phase (

3C ), constant entering 

the governing differential equation for elastic phase (  ), effective resisting bond length (
RfeL ), and 

maximum value of force transferable through bond by the given NSM- FRP reinforcement ( 1

bd

fV ): 
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Step 3: Determine the reduction factor of the initial average available resisting bond length ( ), and equivalent value 

of the average resisting bond length (
eq

RfiL ): 

The average resistance bond length is determined from: 

eq

Rfi RfiL L  (11) 

where: 
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representing the concrete average tensile strength above which concrete fracture does not occur, where: 

Rfi Rfi Rfe

Rfi

Rfe Rfi Rfe

L if L L
L

L if L L

 
 


 (14) 



Step 4: Determine the value of imposed slip in correspondence of which the maximum force transmissible by 
eq

RfiL  is 

attained (  ;eq

fi Rfi LiV L  ): 

 

   

1 1

1 1min ;

eq db tr

L Rfi f f

Lu eq tr db tr

L Rfi Li f f f

L if V V

L V if V V




 

 


 
    

 (15) 

where  1

eq

L RfiL  is the value of imposed end slip in correspondence of which the bond-based constitutive law 

 ;bd eq
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and  tr

Li fV  is the imposed end slip in correspondence of which the strip tensile strength is attained (
tr

fV ): 
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Step 5: Determine the maximum effective shear capacity 
max

,fi effV  of the NSM-FRP reinforcement with equivalent 

average resisting bond length 
eq

RfiL . The 
max

,fi effV  is evaluated by neglecting the post-peak behavior of the constitutive 

law: 
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Step 6: Determine the shear strength contribution provided by a system of NSM-FRP reinforcements: 

max

,int ,2 sinl

f f fi eff fV N V   (20) 

max

,int ,2 s / ( )inl

f f fi eff f wv N V b d  (21) 

Figure 2 presents the solution procedure to calculate the shear strength of a RC beam according to the BBB. In case 

of FRP rods, 2f f fa b D  , 
2 4f fA D , and p fL D . The solution procedures based on BBB is available 

in Appendix A. 



Sensitivity analysis 

Sensitivity analysis means to evaluate model output dependence (shear capacity of RC beams with and without 

strengthening system, Eq. (1)) on the values adopted for the input parameters (
wh , 

wb , 
fa , 

fb , 
fs , 

f , 
fE , 

fuf ,  , 

0  ,
l , 

'

cf , 
ga , 

slE , 
y yieldf , 

sl , 
sy ). Sensitive analysis can be useful for a range of purposes, such as: i) model 

simplification; ii) searching for errors in a model; and iii) uncertainty reduction (Saltelli et al. 2008). 

There are two approaches to execute sensitivity analysis. The first approach is local sensitivity analysis, which is 

efficient for simple cost function. Local sensitivity analysis evaluates the model output by varying one input parameter 

in each running keeping the other parameters fixed. In this model the influence of the interactions between parameters 

on the cost function is neglected (MathWorks 2015). This type of analysis is not an appropriate approach for the BBB 

due to the iterative nature and complexity of this model. The other approach is the global sensitivity analysis (Monte 

Carlo analysis) (MathWorks 2015), where the output is evaluated by varying all the input parameters simultaneously 

(Gilman et al. 1998).  

The Monte Carlo method, also called Monte Carlo analysis, is a process of running a model numerous times with a 

random selection of each input parameter simultaneously. There are always some errors involved with this technique, 

but this error can be decreased by increasing the number of random samples. Thanks to the continuous advance of 

computer processors, this approach is becoming quite attractive for determining the most influencing parameters in 

engineering models, and how they interact. 

A sensitivity analysis was carried out to assess the relative importance of each input parameter on the shear capacity 

of the NSM-FRP shear strengthened RC beams (Eq. (1)) in order to figure out what are the input parameters that most 

affect the result. Based on the previous work (Bianco et al. 2014), all of the input parameters were characterized by a 

uniform probability distribution, which means a range of possible values with the same likelihood of occurrence (Table 

1). 

For sensitivity analysis, Eq. (1) was implemented in a spreadsheet that is re-calculated two hundred thirty thousand 

times, each time with a set of random new possible values of the input parameters. The number of samples (230000) 

was adopted after some preliminary study to reduce the computational time and error simultaneously. 

The dimensionless r  parameter, coefficient correlation, is used to measure the influence of each input parameter on 

the output variable (Eq. (1),  , and  ) (Fig. 3). The r  is obtained from the following equation: 
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where n  is the number of the samples, 
ix  is the input parameter and 

iy  is output (value of BBB,  , and  ). The r  

parameter can varies between -1 and +1, where + and – signs are used for positive and negative linear correlations, 

respectively. Positive values of r  indicate that when x  increases, y  also increases and when x  decreases, y  

decreases. Negative values of r  indicate that y  decreases with the increase of x  and y  increases with the decrease 

of x . Finally r  is close to 0 when no linear correlation or a weak linear correlation exists. 

According to the results presented in Fig. 3, the input parameters that most affect the value of BBB,   and   are the 

shear percentage of steel stirrups (
sy ), longitudinal steel reinforcement ratio (

sl ), the yield stress (
y yieldf ) of steel 

stirrups, the concrete compressive strength ( '

cf ), ultimate tensile strength of FRP (
fuf ), and shear percentage of FRP 

laminates/rods ( f ). As shown in Fig. 3b, the values of   and   are also effected by the value of the angle ( ) 

between axis and generatrices of the concrete fracture surface, the beam cross-section web’s depth (
wh ) and width (

wb ), while the value of BBB is not significantly affected by these input parameters.  

Figure 4 shows the relation between   vs 
'

sl s

c

lE

f


 and 

' '

sy f

c

y yield fu

c

f f

f f

 
  for more than 230000 generated samples 

with Monte Carlo simulation. In this figure, the surface that best fits the   vs x  and y  is presented. This surface is 

defined by the following equation: 
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, respectively. The surface is adopted after some preliminary fitting 

in terms of assuring surface objectivity of Goodness-of-Fit Statistics (MathWorks 2015). These statistics parameters 

are:  

i) Sum of Squares due to Error (SSE), is the sum of the squares of residuals (Eq. 24). A small SSE 

indicates of tight fit of the model to the data;  
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where ( )if x  is the value of the adopted function (surface or line) (
ix ). 

ii) R-square, is a number that indicates how well data fits a statistical model (Eq. 25), this statistic can 

take any value between 0 and 1, where a value equal to 1 indicates that the regression line fits perfectly 

the data; 
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where y  is the mean value of 
iy : 

1

1 n

i

i

y y
n 

    
(26) 

iii) Root Mean Squared Error (RMSE), is an estimate of the standard deviation of the random component 

in the data (Eq. 27); an RMSE value closer to 0 indicates of tight fit of the model to the data.  
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More information about these Goodness-of-Fit Statistics can be found in (MathWorks 2015). The SSE, R-square, and 

RMSE for this fitted surface are 466, 0.374, and 0.046, respectively. In Eq. (23) '

cf , 
y yieldf , 

fuf , 
slE  are in MPa. In 

this equation if the longitudinal Young’s Modulus is not available, it can be assumed 200000 MPa. Furthermore, 
sy

, f , and 
sl  are introduced like ratio and not in percentage.  

As mentioned, the shear strength of a concrete section is a function of   and  . As shown in Fig. 5 for more than 

230000 generated samples with Monte Carlo simulation, these two parameters are interdependent (Bentz et al. 2006; 

Baghi 2015). In the present work this interdependence is assumed, and Eq. (28) is suggested for obtaining 
s  from 

s : 

0.823.36 21.5s s             29 60s   (28) 



The SSE, R-square, and RMSE for this fitted curve are 155000, 0.9714, and 0.8354, respectively. In Fig. 4 the results 

are fitted for 2 variables (x and y), but in Fig. 5 the results are fitted for just one variable. Hence, it is reasonable the 

R-square value for 
s  is not so good as the one of 

s . 

 

Assessment of the predictive performance of the developed model 

A database (DB) containing 112 experiments are used to appraise the predictive performance of the developed 

approach (De Lorenzis and Nanni 2001; Dias 2008; Dias and Barros 2008; Islam 2009; Rizzo and De Lorenzis 2009; 

Dias and Barros 2010; Rahal 2010; Chaallal et al. 2011; Dias and Barros 2011; Rahal and Rumaih 2011; Dias and 

Barros 2013; Baghi 2015). More experiments are available in the literature, however they are not included in this 

database because critical parameters are missing in their description. This DB includes beams of different size, 

different longitudinal and transverse steel reinforcement ratios, and different NSM CFRP shear strengthening 

configurations and ratios. All the beams in this DB failed in shear.  

The DB contains values from experiments performed on 90 beams with T cross section, and 22 beams with rectangular 

cross section (Fig. 6a). From 112 beams, 87 beams are shear strengthened by CFRP laminate/rod (Fig. 6b). From the 

87 beams, 31 are shear strengthened with CFRP rods, and the remaining by CFRP laminates (Fig. 6c). All the collected 

data are reported in Table 5.  

The beams tested by Dias and Barros (2008; 2010; 2011; 2013) were of type T cross section with the same shear span 

to effective depth ratio (2.5), CFRP laminates, and epoxy adhesive. These beams differed on the amount of existing 

still stirrups ( sy  0.1% and 0.17%), percentage of longitudinal reinforcement (
sl  2.8% and 3.2%), and concrete 

compressive strength ( '

cf  18.6, 39.7, and 31.1 MPa). These series were strengthened with different configurations 

of NSM laminates in terms of both inclination f  and spacing fs . However, the series V and VI of these authors 

(Dias 2008) were formed by beams of a higher shear aspect ratio (3.3) and concrete average compressive strength (

'

cf  59.4 MPa).  

Those beams were characterized by the following common geometric and mechanical parameters: 
wb  180 mm; 

wh 

300 mm; fuf  2952 MPa (for the series I, II, III, IV) and
fuf =2848 MPa (for the series V and VI); fE  166.6 GPa 

(for the series IV), fE  174.3 GPa (for the series III, V, and VI), and fE  170.9 GPa (for series I and II); 
fa  1.4 

mm; fb  9.5 mm (for the series I, II, III, V and VI) and 
fa  1.4 mm; fb  10 mm (for series IV).  



The beams tested by Chaallal et al. (2011) were of T cross section type, and were strengthened in shear by CFRP rods, 

and tested under three point bending. These beams were characterized by cross-section dimensions of 
wb  152 mm 

and 
wh  304 mm. Concrete had average compressive strength of 25 MPa and 35 MPa in the series I and II, 

respectively. CFRP rods of 9.5 mm diameter, with tensile strength of 
fuf  1270 MPa and modulus of elasticity of 

fE  148 GPa, were used.  

The beams tested by De Lorenzis and Nanni (De Lorenzis and Nanni 2001) were of T cross section type, strengthened 

in shear with CFRP rods, and tested under four point bending. These beams were characterized by cross-section 

dimensions of 
wb  150 mm and 

wh  305 mm. The concrete had an average compressive strength of 31 MPa. CFRP 

rods of nominal diameter around 9.5 mm, with tensile strength fuf   1875 MPa and modulus of elasticity fE  104.8 

GPa, were adopted. Two different percentages of steel stirrups were used (
sy  0.0% and 0.26%).  

The beams tested by Rizzo and De Lorenzis (2009) were of rectangular cross-section type, strengthened in shear by 

either rods (NR) or laminates (NL), and tested under four point bending. These beams were characterized by cross-

section dimensions of 
wb  200 mm and 

wh  210 mm. The concrete had an average compressive strength of 29.3 

MPa. Round CFRP rods of 8 mm diameter, with tensile strength fuf  2210 MPa and modulus of elasticity fE  145.7 

GPa, were used. The laminates had cross-section dimensions 
fa  2.0 mm and fb  16.0 mm, and mechanical 

properties of fuf  2070 MPa and fE  121.5 GPa.  

The beams tested by Islam (2009) were of rectangular cross-section type, strengthened in shear with CFRP round rods 

and tested under four point bending. These beams were characterized by cross-section dimensions of 
wb  254 mm 

and 
wh  305 mm. The concrete had an average compressive strength of 49.75 MPa. Round CFRP rods of 9 mm 

diameter, with tensile strength fuf  2070 MPa and modulus of elasticity fE  124 GPa, were used.  

The beams tested by Baghi (2015) were of rectangular and T cross-section type, strengthened in shear with CFRP 

laminates, and tested under three point bending. Rectangular beams were characterized by cross-section dimensions 

of 
wb  150 mm and 

wh  300 mm, while the T cross section beams had a cross section dimensions of 
wb  180 mm 

and 
wh  400 mm. In rectangular and T cross sections type of beams the length of monitored shear span, a, was 3.0 

and 2.5 times the effective beam’s depth, d, respectively. The concrete had an average compressive strength of 32.7 



MPa. CFRP laminates of 
fa  1.4 mm; 

fb  10 mm, with tensile strength 
fuf  2620 MPa and modulus of elasticity 

fE  150 GPa, were used.  

The RC beams tested by Rahal (2010) and by Rahal and Rumaih (2011) were of T cross-section, and were strengthened 

in shear by NSM bars or steel (their label includes a letter R) or CFRP (their label includes a letter F) and tested under 

four point bending. These beams were characterized by T cross-section dimensions of 
wb =150 mm and 

wh =400 mm. 

The ratio between the shear span and the beam effective depth was a d =3.0. Concrete average compressive strength 

ranged from 36.2 MPa to 37.8 MPa. NSM FRP bars with 8 mm diameters, 
fuf = 1900 MPa and 

fE  124 GPa were 

used.  

The RC beams tested by Cisneros et al. (2012) were of rectangular cross-section strengthened in shear by either bars 

(their label starts by B) or laminates (their label starts by S) and tested under three point bending. The cross-section 

dimensions of the beams were
wb =200 mm and 

wh =350 mm. Each beam was tested twice at each end and the ratio 

between the shear span and the beam’s effective depth was equal to 2.9a d   (Fig. B.8). Concrete average 

compressive strength ranged from 
cmf =22.84 MPa to 

cmf =29.11 MPa. The NSM FRP bars were characterized by 8 

mm diameter, while the laminates had cross section dimensions of 
fa =2.5 mm and 

fb =15 mm. FRP mechanical 

properties were 
fuf =2500 MPa and fE =165 GPa.  

The angle   is assumed equal to 28.5° for all the experimental programs. To define the local bond stress-slip 

relationship, the following values are assumed: 
0  20.1 MPa; 

1  7.12 mm (Bianco et al. 2014). When CFRP rods 

are used, the equivalent square cross-section is adopted in the calculations (Bianco et al. 2014). In the BBB model the 

aggregate size ( ga ) is assumed 25 mm for all the experimental programs. 

For the Baghi, Barros, and Bianco (BBB) model and the new Simplified BBB model, herein designated by SBBB, the 

obtained values of 
.anaV  are compared with 

exp.V  of the DB, and the values of the   factor corresponding to the 

exp. ./ anaV V  ratio are included in Table 2 and represented in Fig. 7. In the BBB approach the average value of 
exp. ./ anaV V  

is 1.09, with a COV of 11.0%. This approach provided 82% safe estimations and 18% overestimations. The new 

model, SBBB, has assured an average value of 
exp. ./ anaV V  of 1.14 with COV of 13.1%, composed of 86.6% of safe 

estimations and 13.4% overestimations. 



A systematic trend in the error can be highlighted if the results are plotted in non-dimensional form, as it is shown in 

Fig. 8, where the shear resistance is normalized by a force dimensional parameter '

w cb df . In this figure, two lines 

limiting to 25%  the deviation of the predicted values from the experimental values are also represented, and it is 

verified that 91% of the results are inside of these bounds. 

The values of   are also classified according to the modified version of the Demerit Points Classification (DPC) 

(Moraes Neto et al. 2014) proposed by Collins (2001), where a penalty (PEN) is assigned to each range of λ parameter 

according to Table 3, and total of penalties (Total PEN) determines the performance of each analytical approach.  

According to the results included in Table 4, the predictive performance of BBB model is better than SBBB, since the 

former approach has a large number of predictions in the appropriate safety interval according to the DPC (Table 3), 

 0.85 1.15   : 69 samples with the BBB and 53 samples with the SBBB. However, the gain in design simplicity 

when SBBB is adopted seems to justify the increase in the conservative predictions (  1.15 2   ): 55 and 39 samples 

when using the SBBB and BBB model, respectively. It is of upmost relevance to verify that both BBB and SBBB do 

not have predictions on the extremely dangerous and extremely conservative intervals. 

Figure 9a presents the influence of the '/sl sl cE f  on the predictive performance of the studied analytical models. As 

shown in this figure for SBBB, the average of the   for R1 is in the appropriate safety interval, while for R2 and R3 

is in the conservative interval. In the BBB model the   is in the appropriate safety interval for all the three R ranges 

of values. According to SMCFT, the large ratio of longitudinal reinforcement decreases the 
x (Eq. (5)), which 

increases   (Eq. (2)) and decreases   (Eq. (3)). In fact the increase of the aggregate interlock resisting mechanisms 

due to this effect is not modelling directly in BBB model, but indirectly through the 
xes . Hence, Fig. 9a indicates the 

BBB model considers the effect of 
x  provided by longitudinal reinforcement on shear capacity of RC beams, while 

the SBBB is not considering so effectively the effect of the longitudinal reinforcement. The influence of 
'/y yie cs ldy f f  

on the   parameter is represented in Fig. 9b. While in the BBB an almost constant   parameters was obtained 

regardless the intervals of values adopted for T=
'/y yie cs ldy f f  parameter, in the SBBB model the   parameter has 

the tendency to decrease with the increase of T. However, SBBB has only provided   values in the conservative 

interval when applied to RC without steel stirrups, therefore for current situations where a certain percentage of steel 

stirrups exists, the SBBB is providing   values in the appropriate safety interval. 



Figure 9c presents the average of the   parameter regarding to four classifications of F=
'/fuf cf f  as defined in this 

figure. For F smaller than 0.3, which includes the major part of the FRP shear strengthening interventions, the   

parameter obtained with the SBBB model is in the appropriate safety interval, while   values in the interval of 

conservative predictions are determined for F above 0.3. Values of   in the appropriate safety interval are obtained 

with the BBB model for all the ranges of values considered for the F parameter.  

 

Conclusion 

In this paper, a global sensitivity analysis (Monte Carlo simulation) was carried out for deriving, from known data, 

the equation to determine the values for two crucial parameters of the simplified modified compression field theory 

(SMCFT) used to estimate the shear capacity of reinforced concrete (RC) beams, namely, the tensile stress factor in 

cracked concrete (  ), and the inclination of the diagonal compressive stress in the web of the section ( ) . These 

equations were integrated into the SMCFT, which was coupled with an already published analytical formulation to 

derive a new approach (designated by SBBB) for the prediction of the shear capacity of RC beams shear strengthened 

with the near surface mounted (NSM) technique using fiber reinforcement polymer (FRP) systems.  

Based on an extensive literature review regarding the shear strengthening of RC beams with FRP systems applied 

according to the NSM technique, a comprehensive database was assembled containing experimental results of 112 

beams.  

By evaluating the ratio between the experimental results and the analytical predictions (
exp. ./ anaV V  ), an average 

value of 1.14, with a COV 13.1% and 87% of safe estimations were obtained by using the SBBB. The developed 

approach is simple of using, quite convenient for design practice, and, conceptually, it can be extended to other FRP-

based shear strengthening techniques, like the externally bonded reinforcement (EBR) and the embedded through 

section (ETS). 

 

Appendix A 

The procedure solution for one beam strengthened with NSM CFRP laminate (2S-4LI45-I (Dias and Barros 2010), 

Fig. 10) is herein explained: 

BBB Approach: 

file:///E:/Shear_strengthening/Paper_3/New%20folder/ASCE_Version/Manuscript_Baghi_Barros_revise.docx%23_ENREF_45


Step 1: Assume a value for 
x . 

Step 2: Calculate the crack spacing based on Eq. (4).  

Step 3: Calculate   (Eq. (2)) and   (Eq. (3)). 

Step 4: Calculate the shear strength based on Eq. (1). 

Step 5: Calculate the longitudinal strain (Eq. (5)), 
x , and compare to 

x  that was estimated in Step1. Return to Step 

1 with 
x  that has been calculated in Step 5 until 1 6/ 10q q

x x y yield     .  

This procedure solution for the 2S-4LI45-I beam is presented in Table 6.  

SBBB Approach: 

Step 1: Calculate 
s  and 

s  according to Eqs. (23) and (28), respectively. 

Step 2: Calculate the shear strength based on Eq. (1). 

This procedure solution for the 2S-4LI45-I beam is presented in Table 7. The inclination of the shear crack in the 2S-

4LI45-I beam is presented in Fig. 11, that shows the BBB and SBBB can predict the crack inclination in reasonable 

accuracy. 
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Notation 

fA   Area of the strip’s cross section 

2A   Integration constant entering the expressions to evaluate the
max

,fi effV  

3A   Integration constant entering the expressions to evaluate the
max

,fi effV  

3C   Integration constant for the softening friction phase 

fD    Diameter of FRP rod 

cE   Modulus of elasticity for concrete 

fE   Modulus of elasticity of FRP 

slE   Modulus of elasticity of longitudinal reinforcement 

1J   Bond modeling constant 

dL   CDC length 

pL   Effective perimeter of the strip cross section 

RfeL   Effective resisting bond length 



RfiL   
thi strip resisting bond length 

eq

RfiL   Equivalent average resisting bond length 

RfiL   Average available resisting bond length 

,int

l

fN   Equivalent average resisting bond length 

V   Shear force 

cV   Shear force in Concrete 

fV   Shear resistance contribution of fibers 

tr

fV   Strip tensile rupture capacity 

fdV   Design value of the NSM shear strengthening contribution 

max

,fi effV   Maximum effective capacity 

1

bd

fV  Maximum value of force transferable through bond by the given FRP NSM system 

sV   Shear resistance contribution of steel reinforcement 

fa   Width of FRP laminate 

ga   Aggregate size 

fb   Thickness of FRP laminate 

wb   Width of strengthened cross section 

d   Effective depth 
'

cf   Cylinder compressive strength of concrete 

*

ctmf  Value of concrete average tensile strength for values larger than which concrete fracture does not 

occur 

ctmf   Concrete average tensile strength 

fuf    Ultimate tensile strength of FRP 

y yieldf   Yield stress in reinforcement 

wh   Beam web height 

n  Number of samples 

r  Coefficient correlation 

s   Horizontal distance between steel stirrup 

fs   Spacing of NSM shear reinforcement 

xs   Distance between longitudinal reinforcement 

xes   Effective longitudinal crack spacing 

v   Shear stress 

cv   Shear stress in concrete 

fv   Shear stress in FRP laimates/rods 

sv   Shear stress in transverse reinforcement 

ix    Input parameter 

iy    Out put 

y    Mean value of out put 

   Angle defining the concrete fracture surface 

   Factor accounting for the tensile stress in the cracked concrete  

1   Slip corresponding to the end of softening friction 

Li   Imposed slip at the loaded extremity of the 
thi  strip 

Lu  Imposed slip in correspondence of which the comprehensive peak force transmissible by
eq

RfiL is 

attained 



1L   Value of
Li  defining the end of the first phase of the bond-based constitutive law 

f   Effective tensile strain in FRP reinforcement 

x   Longitudinal strain 

max   CDC opening angle for which the maximum effective capacity is attained 

   Reduction factor of the initial average available resisting bond length 

   Constant entering the governing differential equation for elastic phase 

   Direction of the principal stress/strain 

f   Inclination of FRP laminates 

f   Shear percentage of FRP laminate/rod 

sl   Longitudinal steel reinforcement ratio 

sy   Transverse steel reinforcement ratio 

0   Adhesive-cohesive initial bond strength 

  Constant necessary to evaluate the maximum effective capacity provided by the equivalent average 

resisting bond length 
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Fig. 1: Schematic representation of the Bianco et al. (2014) approach; a) average-available-bond-length NSM strip 

and concrete prism of influence; b) adopted local bond stress-slip relationship; c) NSM strip confined to the 

corresponding concrete prism of influence and semi-pyramidal fracture surface; d) sections of the concrete prism; e) 

The mode of failure of an NSM FRP laminate subjected to an imposed end slip. 

 



 

Fig. 2: Calculation procedure of BBB model



 
 

a) b) 

Fig. 3: Sensitivity analysis for a) BBB; b) the tensile stress in the cracked concrete (  ); and the inclination of the 

diagonal compressive stress in the web of the section ( ) 

 



 

Fig. 4: Results of Monte Carlo simulation



 

Fig. 5: Relation between s  and s  (Eq. (28)) 



 

 

  

a) Distribution of rectangular and T cross section beams  b) Distribution of strengthened beams 

  

c) Distribution of strengthened beams with FRP laminates and rods 

Fig. 6: Characteristics of the database  
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Fig. 7: Ratio between experimental and analytical model
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Fig. 8: Predicted non-dimensional shear failure force of the RC beams DB, in comparison with experimental values 
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a) 50 R1<150 (47 beams); 150 R2<250 (41 beams); R3  250 (24 beams) 

  

b) T0=0 (15 beams); 0.0< T1<0.015 (25 beams); 0.015 T2<0.03 (44 beams); T3  0.03 (28 beams) 

  

c) F0=0 (25 beams); 0.0< F1<0.1 (34 beams); 0.1 F2<0. 3 (31 beams); F3  0. 3 (22 beams) 

Fig. 9: Influence of the: a) R=
'/sl sl cE f ; b) T=

'/y yie cs ldy f f ; and c) F=
'/fuf cf f on the predictive 

performance of the models 
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Fig. 10: geometry of the beam 2S-4LI45-I  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 11: Crack inclination in 2S-4LI45-I beam 

 

  



Table 1: Values characterizing the uniform probability distribution of the input parameters. 

Table 2: Summary of experimental and analytical results applied to the DB 

Table 3: Demerit points classification criteria 

Table 4: Predictive performance of different approaches according to the modified version of the DPC 

Table 5: Geometrical and mechanical data of the experimental RC beams 

Table 6: BBB approach  

Table 7: SBBB approach 

 

 



Table 1: Values characterizing the uniform probability distribution of the input parameters. 

 wh  

mm 
wb  

mm 

fa  

mm 

fb  

mm 

fs  

mm 

f  

° 

fE  

GPa 

fuf  

GPa 

  

° 
0  

MPa 

1  

mm 

'

cf  

MPa 

ga

mm 

slE  

GPa 

y yieldf  

MPa 

sl

(%) 

sy  

(%) 

Range of 

variation 

200-

700 

150-

400 

1.0-

5.5 

5-

35 

50-

300 

30-

90 

100-

200 

1.0-

4.0 
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15.
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Table 2: Summary of experimental and analytical results applied to the DB 

Beam Label 

'

cf  

(MPa) 

Reinforcement 

exp.V

(kN) 

exp.

SBBB

V

V
 

 

'

sl s

c

lE

f



 

f  
'

y yielsy

c

df

f



 

'

f

c

fuf

f



 

exp.

BBB

V

V
 

Dias and Barros (2010; 2013) 

C-R-I 

39.7 146.7 

- 0 0 207 1.12 1.11 

2S-R-I - 0.0143 0 304 1.27 1.18 

7S-R-I - 0.038 0 467 1.22 1.25 

2S-4LV-I 90° 0.0143 0.056 337 1.18 1.09 

2S-7LV-I 90° 0.0143 0.09 374 1.20 0.99 

2S-10LV-I 90° 0.0143 0.12 397 1.08 1.03 

2S-4LI45-I 45° 0.0143 0.055 393 1.24 1.18 

2S-7LI45-I 45° 0.0143 0.09 422 1.07 1.05 

2S-10LI45-I 45° 0.0143 0.13 446 1.13 1.09 

2S-4LI60-I 60° 0.0143 0.049 386 1.29 1.22 

2S-6LI60-I 60° 0.0143 0.076 394 1.19 1.13 

2S-9LI60-I 60° 0.0143 0.11 413 1.04 1.01 

4S-R-II - 0.0237 0 371 1.25 1.10 

4S-4LV-II 90° 0.0237 0.055 424 1.23 1.19 

4S-7LV-II 90° 0.0237 0.09 427 1.16 1.12 

4S-4LI45-II 45° 0.0237 0.055 442 1.18 1.17 

4S-7LI45-II 45° 0.0237 0.09 478 1.06 1.07 

4S-4LI60-II 60° 0.0237 0.048 444 1.25 1.22 

4S-6LI60-II 60° 0.0237 0.076 458 1.18 1.16 

Dias and Barros (2011) 

C-R-III 18.6 313.1 - 0 0 147 1.04 1.08 



2S-R-III - 0.0304 0 226 1.09 1.08 

4S-R-III - 0.0508 0 304 1.14 1.17 

2S-7LV-III 90° 0.0304 0.199 274 1.17 1.04 

2S-4LI45-III 45° 0.0304 0.122 283 1.18 1.14 

2S-7LI45-III 45° 0.0304 0.199 306 1.11 1.08 

2S-4LI60-III 60° 0.0304 0.107 282 1.22 1.17 

2S-6LI60-III 60° 0.0304 0.168 298 1.21 1.16 

4S-7LV-III 90° 0.0508 0.199 315 1.07 1.05 

4S-4LI45-III 45° 0.0508 0.122 347 1.16 1.17 

4S-7LI45-III 45° 0.0508 0.199 356 1.06 1.07 

4S-4LI60-III 60° 0.0508 0.107 346 1.19 1.19 

4S-6LI60-III 60° 0.0508 0.168 362 1.19 1.19 

Dias and Barros (2008) 

C-R-IV 

31.1 193.9 

- 0 0 243 1.42 1.47 

2S-R-IV - 0.0182 0 315 1.38 1.35 

6S-R-IV - 0.0303 0 410 1.21 1.27 

2S-3LV-IV 90° 0.0182 0.057 316 1.31 1.24 

2S-5LV-IV 90° 0.0182 0.095 357 1.36 1.29 

2S-8LV-IV 90° 0.0182 0.152 396 1.28 1.25 

2S-3LI45-IV 45° 0.0182 0.057 328 1.12 1.11 

2S-5LI45-IV 45° 0.0182 0.095 384 1.18 1.18 

2S-8LI45-IV 45° 0.0182 0.152 382 1.05 1.05 

2S-3LI60-IV 60° 0.0182 0.057 374 1.52 1.45 

2S-5LI60-IV 60° 0.0182 0.085 392 1.29 1.28 

2S-7LI60-IV 60° 0.0182 0.123 406 1.23 1.22 

Dias (2008) 

C-R-V 59.4 108.6 - 0 0 252 0.97 0.97 



3S-R-V - 0.0095 0 360 1.12 1.05 

3S-6LV-V 90° 0.0095 0.025 387 0.96 0.91 

3S-10LV-V 90° 0.0095 0.041 497 1.11 0.91 

3S-5LI45-V 45° 0.0095 0.025 492 1.09 1.07 

3S-9LI45-V 45° 0.0095 0.041 564 0.97 0.99 

3S-5LI60-V 60° 0.0095 0.022 498 1.18 1.14 

3S-8LI60-V 60° 0.0095 0.035 585 1.22 1.20 

5S-R-VI - 0.0143 0 410 1.11 1.05 

5S-5LI45-VI 45° 0.0143 0.025 560 1.12 1.12 

5S-9LI45-VI 45° 0.0143 0.041 627 0.99 1.03 

5S-5LI60-VI 60° 0.0143 0.022 556 1.17 1.16 

5S-8LI60-VI 60° 0.0143 0.035 655 1.24 1.24 

Chaallal et al. (2011) 

S0-CON-I 

25.0 304.0 

- 0 0 122 1.01 0.99 

S1-CON-I - 0.0812 0 351 1.03 1.07 

S0-NSM-I 90° 0 0.54 331 1.51 1.13 

S1-NSM-I 90° 0.0812 0.54 356 1.01 0.98 

S3-CON-II 

35.0 217.1 

- 0.0386 0 295 0.98 0.98 

S3-NSM-II 90° 0.0386 0.39 306 1.11 1.04 

De Lorenzis and Nanni (2001) 

BV 

31.0 154.8 

- 0 0 181 1.13 1.09 

B90-7 90° 0 0.31 230 1.43 1.08 

B90-5 90° 0 0.44 255 1.38 1.07 

B45-7 45° 0 0.45 331 1.25 1.07 

B45-5 45° 0 0.63 356 1.43 1.02 

BSV - 0.029 0 306 1.05 1.12 

BS90-7A 90° 0.029 0.31 414 1.33 1.27 



Rizzo and De Lorenzis (2009) 

C 

29.3 317.3 

- 0.0401 0 244 1.12 1.04 

NR90-73-b 90° 0.0401 0.5191 297 1.33 1.04 

NR90-45-b 90° 0.0401 0.8421 305 1.27 0.99 

NR45-146-a 45° 0.0401 0.3671 326 1.32 1.11 

NR45-73-a 45° 0.0401 0.7341 300 1.19 0.94 

NL90-73-a 90° 0.0401 0.3097 345 1.34 1.20 

NL45-146-a 45° 0.0401 0.219 310 1.16 1.06 

Islam (2009) 

Beam1 

49.75 68.3 

- 0.0338 0 365 0.77 0.86 

Beam2 90° 0.0338 0.1404 454 0.89 0.93 

Beam3 90° 0.0169 0.1404 427 1.24 1.09 

Beam4 90° 0.0008 0.1404 436 1.42 1.28 

Baghi (2015) 

C-R-1 

32.7 

96.6 

- 0 0 81 0.9 0.9 

NSM-4L90-I 90° 0 0.082 143 1.20 1.1 

C-R-II 

171.2 

- 0 0 214 1.25 1.15 

7S-R-II - 0.046 0 530 1.39 1.15 

NSM-3L45-II 45° 0 0.064 291 1.38 1.14 

Rahal (2010) and by Rahal and Rumaih (2011) 

B1 37.6 125 - 0.017 0 300 1.08 1.02 

B2-B90-R200 

37.3 126 

90° 0.017 0.045 410 1.06 1.07 

B2-B90-F200 90° 0.017 0.169 440 1.22 1.14 

B3-B90-R200A 

37.8 124.3 

90° 0.017 0.045 466 0.84 1.13 

B3-B90-F200A 90° 0.017 0.169 510 0.96 1.22 

B4-B45-R200 

36.2 129.8 

45° 0.017 0.064 526 1 1.16 

B4-B45-F200 45° 0.017 0.240 576 1.08 1.2 



 

B6-B45-R300 

37.2 126.3 

45° 0.017 0.042 380 0.81 0.98 

B6-B45-F300 45° 0.017 0.160 410 0.83 1.01 

Cisneros et al. (2012) 

Control 27.97 150 - 0.015 0 113 1.05 0.78 

B90-6a 26.69 157 90° 0.016 0.41 170 1.11 1.05 

B90-6b 24.09 174 90° 0.017 0.45 163 1.12 1.06 

B90-3a 22.84 183 90° 0.018 0.24 117 0.98 0.84 

B90-3b 26.02 161 90° 0.016 0.21 117 0.94 0.79 

B45-6a 22.98 182 45° 0.018 0.67 180 1.07 1.08 

B45-6b 28.48 147 45° 0.015 0.54 212 1.11 1.15 

B45-3a 29.11 144 45° 0.015 0.26 189 1.11 1.06 

B45-3b 23.91 175 45° 0.018 0.32 155 1.01 0.95 

S90-6a 26.69 157 90° 0.015 0.30 189 1.18 1.17 

S90-6b 24.09 174 90° 0.017 0.34 147 0.98 0.95 

S90-3a 22.84 183 90° 0.018 0.18 117 0.96 0.84 

S90-3b 26.02 161 90° 0.016 0.16 131 1.01 0.89 

S45-6a 22.98 182 45° 0.018 0.50 183 1.05 1.09 

S45-6b 28.48 147 45° 0.014 0.40 221 1.12 1.19 

S45-3a 29.11 144 45° 0.014 0.20 206 1.17 1.16 

S45-3b 23.91 175 45° 0.017 0.24 173 1.09 1.06 

 

Average 1.14 1.09 

SD 0.15 0.12 

COV 13.1% 11.0% 



Table 3: Demerit points classification criteria 

exp. ./ VanaV    Classification Penalty 

<0.5 Extremely Dangerous 10 

[0.5-0.85[ Dangerous 5 

[0.85-1.15[ Appropriate Safety 0 

[1.15-2[ Conservative 1 

 2.0 Extremely Conservative 2 

 



Table 4: Predictive performance of different approaches according to the modified version of the DPC 

exp. ./ VanaV   
SBBB BBB 

Nº samples Total Nº samples Total 

<0.5 0 0 0 0 

[0.5-0.85[ 4 20 4 20 

[0.85-1.15[ 53 0 69 0 

[1.15-2[ 55 55 39 39 

 2.0 0 0 0 0 

 PEN 112 75 112 59 

 



Table 5: Geometrical and mechanical data of the experimental RC beams 

Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

Dias and Barros (2010; 2013) 

C-R-I 

180 400 300 360 2.5 39.7 759 2.8 

- - - 

- 

- 

- - - - - 

207 

2S-R-I 300 

542 

0.105 304 

7S-R-I 112.5 0.279 467 

2S-4LV-I 

300 0.105 13.3 

90° 180 

218.4 2863 1.33 

337 

2S-7LV-I 90° 114 374 

2S-10LV-I 90° 80 397 

2S-4LI45-I 45° 275 393 

2S-7LI45-I 45° 157 422 

2S-10LI45-I 45° 110 446 

2S-4LI60-I 60° 243 386 

2S-6LI60-I 60° 162 394 

2S-9LI60-I 60° 108 413 

4S-R-II 

180 0.175 

- - - - - - 371 

4S-4LV-II 

13.3 

90° 180 

218.4 2863 1.33 

424 

4S-7LV-II 90° 114 427 

4S-4LI45-II 45° 275 442 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

4S-7LI45-II 45° 157 478 

4S-4LI60-II 60° 243 444 

4S-6LI60-II 60° 162 458 

Dias and Barros (2011) 

C-R-III 

180 400 300 360 2.5 18.6 734 2.8 

- - - 

- 

- 

- - - - - 

147 

2S-R-III 300 

539 

0.105 226 

4S-R-III 180 0.174 304 

2S-7LV-III 

300 0.105 

13.3 

90° 114 

174.3 2848 1.63 

274 

2S-4LI45-III 45° 275 283 

2S-7LI45-III 45° 157 306 

2S-4LI60-III 60° 243 282 

2S-6LI60-III 60° 162 298 

4S-7LV-III 

180 0.174 

90° 114 315 

4S-4LI45-III 45° 275 347 

4S-7LI45-III 45° 157 356 

4S-4LI60-III 60° 243 346 

4S-6LI60-III 60° 162 362 

Dias and Barros (2008) 

C-R-IV 180 400 300 356 2.5 31.1 444 2.9 - - - - - - - - - - 243 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

2S-R-IV 300 

533 

0.105 315 

6S-R-IV 130 0.241 410 

2S-3LV-IV 

300 0.241 14 

90° 267 

166.6 2952 1.77 

316 

2S-5LV-IV 90° 160 357 

2S-8LV-IV 90° 100 396 

2S-3LI45-IV 45° 367 328 

2S-5LI45-IV 45° 220 384 

2S-8LI45-IV 45° 138 382 

2S-3LI60-IV 60° 325 374 

2S-5LI60-IV 60° 195 392 

2S-7LI60-IV 60° 139 406 

Dias (2008) 

C-R-V 

180 400 300 360 3.33 59.4 716 3.1 

- - - - 

- 

-    - 

252 

3S-R-V 

300 551 0.105 13.3 

360 

3S-6LV-V 90° 180 

174.3 2848 16.3 

387 

3S-10LV-V 90° 114 497 

3S-5LI45-V 45° 275 492 

3S-9LI45-V 45° 157 564 

3S-5LI60-V 60° 243 498 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

3S-8LI60-V 60° 162 585 

5S-R-VI 

200 0.157 

- - - - - - 410 

5S-5LI45-VI 

13.3 

45° 275 

174.3 2848 16.3 

560 

5S-9LI45-VI 45° 157 627 

5S-5LI60-VI 60° 243 556 

5S-8LI60-VI 60° 162 655 

Chaallal et al. (2011) 

S0-CON-I 

152 406 304 350 3 

25 470 

3.7 

- - - 

- 

- - - - - - 

122 

S1-CON-I 175 540 0.376 351 

S0-NSM-I - - - 

9.5 90° 

130 

148 1885 1.27 

331 

S1-NSM-I 175 540 0.376 130 356 

S3-CON-II 

35 650 262.5 650 0.251 

- - - - - - 295 

S3-NSM-II 9.5 90° 130 148 1885 1.27 306 

De Lorenzis and Nanni (2001) 

BV 

152 406 304 356 3 31 414 2.4 - - - - 

- - - - - - 181 

B90-7 

9.5 

90° 178 

104.8 1875 1.79 

230 

B90-5 90° 127 255 

B45-7 45° 178 331 

B45-5 45° 127 356 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

BSV 

356 345 0.291  

- - - - - - 306 

BS90-7A 9.5 90° 178 104.8 1875 1.79 414 

Rizzo and De Lorenzis (2009) 

C 

200 210 210 173 3 29.3 544 4.4 160 665.3 0.177 

- - - - - - - 244 

NR90-73-b 

- 8 

90° 73 

145.7 2214 1.52 

297 

NR90-45-b 90° 45 305 

NR45-146-a 45° 146 326 

NR45-73-a 45° 73 300 

NL90-73-a 

32  

90° 73 

121.5 2068 1.7 

345 

NL45-146-a 45° 146 310 

Islam (2009) 

Beam1 

254 305 305 261 2.34 49.75 414 1.7 

152 

414 

0.34 

- 

- - - - - - 365 

Beam2 152 0.34 

9 

90° 152 

124 2068 1.66 

454 

Beam3 305 0.168 90° 305 427 

Beam4 610 0.085 90° 152 436 

Baghi (2015)  

C-R-1 

150 300 300 264 3 

32.7 

580 1.6 - - - 

- 

- 

- - - - - 81 

NSM-4L90-I 14 90° 180 150 2620 1.6 143 

C-R-II 180 400 300 360 2.5 625 2.8 - - - - - - - - - 214 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

7S-R-II 112.5 500 0.279 - - 530 

NSM-3L45-II - - - 14 45° 275 150 2620 1.6 291 

Rahal (2010) and by Rahal and Rumaih (2011)  

B1 

150 500 400 430 3 

37.6 

446 2.35 

200 

338 

0.188 

- 

- - - - - - 300 

B2-B90-R200 

37.3 

8 

90° 200 210 510 0.24 410 

B2-B90-F200 90° 200 124 1900 1.53 440 

B3-B90-R200A 

37.8 

90° 200 210 510 0.24 466 

B3-B90-F200A 90° 200 124 1900 1.53 510 

B4-B45-R200 

36.2 

45° 200 210 510 0.24 526 

B4-B45-F200 45° 200 124 1900 1.53 576 

B6-B45-R300 

37.2 300 0.126 

45° 300 210 510 0.24 380 

B6-B45-F300 45° 300 124 1900 1.53 410 

Cisneros et al. (2012)  

Control 

200 350 350 310 3 

27.97 

446 2.0 230 338 0.123 - 

- - - - - - 113 

B90-6a 26.69 

8 

90° 115 

165 2500 1.51 

170 

B90-6b 24.09 90° 115 163 

B90-3a 22.84 90° 230 117 

B90-3b 26.02 90° 230 117 

B45-6a 22.98 45° 115 180 



Beam label 
wb  

(mm) 

h  

(mm) 

wh  

(mm) 

d  

(mm) 

/a d  

'

cf  

(MPa) 

l yieldf  

(MPa) 

sl  

(%) 

s  

(mm) 

y yieldf  

(MPa) 

sy  

(%) 

f fa b  

(mm2) 

fD  

(mm) 

f  
fs  

(mm) 

fE  

(GPa) 

fuf  

(MPa) 

fu  

(%) 

V 

(kN) 

B45-6b 28.48 45° 115 212 

B45-3a 29.11 45° 230 189 

B45-3b 23.91 45° 230 155 

S90-6a 26.69 

37.5 - 

90° 115 189 

S90-6b 24.09 90° 115 147 

S90-3a 22.84 90° 230 117 

S90-3b 26.02 90° 230 131 

S45-6a 22.98 45° 115 183 

S45-6b 28.48 45° 115 221 

S45-3a 29.11 45° 230 206 

S45-3b 23.91 45° 230 173 
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Table 6: BBB approach  1 

Iteration 

A=
x  

Estimated 

xeS      cv  
sv  fv  v  

B=
x  

Eq. (5) 

A-B 

1 0.001 276.58 0.1629 35.66 1.03 0.79 0.84 2.66 4.55e-4 5.45e-4 

2 5.11e-4 276.58 0.2307 32.27 1.45 0.90 0.95 3.30 7.43e-4 -2.32e-4 

3 7.43e-4 276.58 0.1926 33.88 1.21 0.84 0.90 2.95 6.17e-4 1.26e-4 

4 6.17e-4 276.58 0.2115 33.01 1.33 0.87 0.93 3.13 6.81e-4 -6.40e-5 

5 6.81e-4 276.58 0.2015 33.45 1.27 0.86 0.91 3.04 6.48e-4 3.30e-5 

6 6.48e-4 276.58 0.2066 33.22 1.30 0.87 0.92 3.09 6.65e-4 -1.70e-5 

7 6.65e-4 276.58 0.2039 33.34 1.28 0.86 0.91 3.06 6.55e-4 1.00e-5 

8 6.55e-4 276.58 0.2053 33.28 1.29 0.86 0.92 3.07 6.61e-4 -6.00e-6 

9 6.61e-4 276.58 0.2046 33.31 1.29 0.86 0.92 3.07 6.61e-4 0 

 2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Table 7: SBBB approach 26 

Iteration ' '

y yield fusy f

c c

f f
x

f f

 
   

'

s

c

sl lE
y

f


  

s  
s  v  

1 0.0693 146.7 0.195 34.35 2.93 

 27 

 28 

 29 


