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Abstract 

Major depression is a highly prevalent disorder that poses a significant social burden in society 

nowadays. The pathophysiology of this disease is still poorly understood but growing evidence suggests 

that impaired neuroplasticity may be a key underlying mechanism for the precipitation of the disorder. 

This theory is substantiated by the fact that depression leads to a decrease in neurogenesis and several 

antidepressants (ADs) stimulate hippocampal neurogenesis, but it is still unclear if these pro-neurogenic 

effects are responsible for their mood-, emotional- and cognitive-improving actions. Recent studies also 

showed an important role for astrocytes in the pathophysiology of this disorder, which are crucial for 

neurotransmission and neurovascular coupling, evidenced by astrocytes loss in major depressive 

disorder (MDD). However, the importance of astrocytes in the precipitation of and recovery from MDD is 

still largely unknown. 

Therefore, we proposed to study the role of astrocytes and adult gliogenesis, more precisely the 

generation of new astrocytes, in the precipitation of and recovery from depressive-like cognitive behavior 

in rats both untreated and treated with ADs in a longitudinal manner - at short-term, long-term and 

recurrence perspective -, using a pre-validated model of depression - the unpredictable chronic mild 

stress (uCMS).  

Regarding the cognitive behavior assessment, although short-term memory seems to be impaired 

through the course of the disease, at short-term, long-term and recurrence, administration of fluoxetine 

and imipramine was effective in reverting the cognitive impairments induced by depression. The long-

term memory was also highly affected by this disorder in all analyzed time-points, but the treatment 

with the ADs was not effective in reverting the cognitive impairments observed. Regarding the 

hippocampal dentate gyrus (DG) astrocytic population, at the long-term perspective of the disease, 

imipramine, but not fluoxetine, was able to elicit a strong pro-gliogenic effect. The same does not 

happen at recurrence for both ADs, suggesting that an adaptation to the stressful environment by these 

specific type of cells might be happening throughout time. Thereby, we provide some consistent 

evidences for the causative implication of gliogenesis and astrocytes in the pathophysiology of 

depression, having significant impacts in the long-term development and maintenance of cognitive 

deficits, as well as in the long-term recovery of those impairments by ADs. Our results endorse the view 

of the adult hippocampal DG gliogenesis process as a promising therapeutical target in future therapies 

in the neuropsychiatric field. Moreover, this study shows for the first time that alterations in the 

hippocampal DG resident astrocytes can be further analyzed as a predictive target for depression. 
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Resumo 

A depressão é uma doença bastante prevalente que, atualmente, representa um peso importante na 

sociedade. A fisiopatologia desta doença é ainda pouco compreendida, mas evidências crescentes 

sugerem que o comprometimento da neuroplasticidade pode ser um mecanismo fundamental 

subjacente à precipitação da doença. Esta teoria é apoiada pelo facto de a depressão induzir uma 

diminuição da neurogénese e, também, ao facto de vários antidepressivos levarem à estimulação da 

neurogénese. No entanto, ainda não é claro se esses efeitos pró-neurogénicos são responsáveis pelas 

melhorias a nível de humor, emocionais e/ou cognitivas, nos pacientes. Estudos recentes 

demonstraram a importância dos astrócitos na fisiopatologia desta doença, mostrando ser cruciais para 

a neurotransmissão e acoplamento neurovascular, evidenciada por uma perda de astrócitos em 

episódios depressivos. Contudo, a importância dos astrócitos na precipitação e recuperação desta 

doença ainda é, em grande parte, desconhecida. 

Por isso, propusemo-nos a estudar o papel dos astrócitos e da gliogénese adulta, mais 

precisamente da geração de novos astrócitos, na precipitação e recuperação de défices cognitivos 

associados à depressão. Este estudo foi elaborado com ratos tratados e não tratados com 

antidepressivos e seguiu uma linha longitudinal no episódio depressivo - a curto prazo, a longo prazo e 

na recorrência da doença -, usando um modelo pré-validado de depressão – um protocolo de exposição 

crónica a stress. Quanto à avaliação comportamental a nível cognitivo, embora a memória a curto 

prazo ser afetada com o decorrer da doença, a administração de fluoxetina e imipramina foi eficaz na 

reversão dos danos cognitivos induzidos pela depressão. A memória a longo prazo foi igualmente 

afetada por esta doença em todos os tempos experimentais analisados, mas o tratamento com os 

antidepressivos não se mostrou eficaz em reverter os défices cognitivos observados. Quanto a 

alterações da população astrocítica no girus denteado do hipocampo, o tratamento com imipramina, 

contrariamente ao tratamento com fluoxetina, foi capaz de induzir um efeito pró-gliogénico, a longo 

termo. O mesmo não acontece na recorrência para ambos os antidepressivos, sugerindo que uma 

adaptação ao novo ambiente hostil por parte das novas células que estão continuamente a ser 

geradas, esteja a ocorrer ao longo do tempo. Neste trabalho, fornecemos algumas evidências 

consistentes do envolvimento ativo da gliogénese e dos astrócitos na fisiopatologia da depressão, tendo 

impactos significativos no desenvolvimento e manutenção de défices cognitivos a longo termo, bem 

como na recuperação desses mesmos défices após o tratamento com antidepressivos. Os resultados 

apresentados apontam para a gliogénese no girus denteado do hipocampo como um alvo terapêutico 

promissor neste contexto patológico. Mais ainda, este estudo demonstra, pela primeira vez, que 

alterações a nível da população astrocítica residente no girus denteado do hipocampo poderão ser 

futuramente analisadas como um alvo preditivo para a depressão. 
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1. Introduction 

 

“Canst thou not minister to a mind diseased, Pluck from the memory a rooted sorrow, Raze out the 

written troubles of the brain, And with some sweet oblivious antidote Cleanse the stuffed bosom of that 

perilous stuff Which weighs upon the heart?” 

William Shakespeare, Macbeth 

 

 

1.1. Depression: Current Status, Treatment and Cognitive related aspects 

 

Depression is a complex mood disorder that poses a massive burden in current society and is 

foreseen as the leading cause for disability during an individual’s most productive years. This disorder 

affects several behavioral domains in patients, such as mood, anxiety and cognition (Bessa, Mesquita, 

et al., 2009; Clelland et al., 2009) and is characterized by emotion dysregulation – the hallmark of 

depression -  and sustained negative effect. Although impairments in cognitive processes, such as 

attention and memory, can be correlated with depressive episodes, they can also increase individual´s 

susceptibility for a first hit and recurrence of this disorder. In fact, more than 75% of the depressed 

individuals relapse within two years of recovery from the first depressive episode (Gotlib & Joormann, 

2010), leading us to believe that there are some specific factors that are empowered to increase 

patients´ risk for a new depressed episode. Even though there is no knowledge of a real cause for the 

precipitation of Major depressive disorder (MDD), it is accepted that there is a familial basis for 

susceptibility to this disorder; however, on the majority of the population only the interplay between a 

genetic predisposition and some environmental factors (e.g. stress-related factors) are sufficient to 

cause depression (Nestler et al., 2002). Furthermore, this disorder is characterized by several 

pathophysiological alterations in the brain such as differences in size of specific brain regions, changes 

in neuronal morphology, neurochemical and signaling alterations and also changes in genetic and 

epigenetic regulation. Taking this into account, it is imperative to understand the neural mechanisms 

behind the onset, maintenance and recurrence of this gradually decadent disorder. 
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There are currently several leading hypotheses that attempt to elucidate the neural and molecular 

mechanisms of depression. The monoamine hypothesis of depression has been the most prevalent. In 

fact, the current treatments in clinics were developed based on the classical monoamine hypothesis of 

depression (Charney, 1998) as most classic antidepressants (ADs) operate through increasing the levels 

of serotonin and noradrenaline. It is noticeable that this neurophysiologic theory of depression stands 

from the drugs that are used to treat it. The most widely ADs used in the clinics are the tricyclic agents 

(e.g. imipramine), the serotonine-selective reuptake inhibitors (SSRIs; e.g.fluoxetine) and norepinephrine-

selective reuptake inhibitors. Despite these drugs have provided the possibility to develop a high range 

of behavioral tests to allow the validation of phenotypes of depressed-like animals, the number of 

patients that present a total remission after treatment with these ADs is still far from the desired one – 

around 50% (Nestler et al., 2002). Furthermore, the monoamine hypothesis theory states that 

depression is the result of underactivity of monoamines, being almost all ADs monoamine agonists. 

However, several other hypotheses on the etiology of depression have been put forward - the 

neurotrophin hypothesis, the cytokine hypothesis, the hypothalamic pituitary adrenal (HPA) axis 

modulation hypothesis and the neurogenic hypothesis. Importantly, none of these hypotheses are 

mutually exclusive.  

Regarding the several dimensions commonly affected in this neuropsychiatric disease, cognition is, 

indeed, one of the less marked but still relevant behavioral dimension affected in depressed individuals, 

being attention and memory the most strongly impaired. In 1976, a cognitive model have emerged and 

highly contributed to our current knowledge regarding the neuropathophysiology of depression. This 

model states that early adverse events combined with other intrinsic factors, such as genetic factors, 

can lead to the self creation of depressive schemas, powered enough to interfere with attention, 

memory and cognition. By continuously interpreting their experiences in a negative way, these 

individuals will be susceptible to depression. Actually, the same author claimed that changes in 

cognition can lead to an amelioration of others symptoms related with this disorder, such as sustained 

negative affect and anhedonia (Beck, 1976). Anhedonia, commonly defined as the loss of interest or 

pleasure in all or almost all activities, is an important symptom experienced by depressed patients (Der-

Avakian & Markou, 2012). Hereupon, the idea of an interplay and continuity between emotional changes 

and cognitive impairments has emerged (Swaab et al., 2005; Sotiropoulos et al., 2008). So, tackling 

this major dimension – cognition – we can possibly revert some of the other symptoms that usually 

come along with MDD. 
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It is, though, of major importance to elucidate the cognitive and neurobiological factors that are 

involved in the onset, resilience and recurrence of this disorder in order to prevent and treat it by 

developing targeted strategies. 

 

 

1.2. Neurogenesis in the adult brain: relevance for the pathology of depression 

 

One of the most surprising findings in the context of depression was the involvement of adult 

neurogenesis imbalances, along with dendritic arborization impairments, in the pathophysiology of 

MDD, as in the action of ADs, leading to the substantiation of the so called “neurogenic hypothesis of 

depression” (Warner-Schmidt & Duman, 2006). In a simplified version, this hypothesis states that new 

neurons in the adult brain are needed for both proper mood control and AD efficacy (Petrik et al., 2012).  

Although Cajal´s had claimed that the central nervous system (CNS) was immutable, a great deal of 

evidences has proved the opposite: CNS features regenerative and plasticity potentials. Moreover, 

neurogenesis, a process that comprises the generation, differentiation and integration of new neurons in 

the preexisting brain neuronal networks, occurs in the adult brain and persists throughout life in specific 

brain locus (Doetsch et al., 1999; Gage, 2002). Nowadays, adult neurogenesis is known to occur mostly 

in two defined mammalian brain regions: the subependymal zone of the lateral ventricles (SEZ) and the 

subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Within these regions, there are located 

resident progenitor cells, also known as neural stem cells (NSCs). These particular subtype of cells have 

both morphological and antigenic glial properties, being constantly described as stem cells with glial 

properties and radial-glia like appearance (Filippov et al., 2003; Rakic, 2003). NSCs can give rise to 

intermediate progenitor cells, designated as transit amplifying neural progenitors (tANPs, or Type-2 

cells) that are mitotically active and divide to give rise to neuroblasts (also known as Type-3 cells). 

These latter cells will then fully maturate into granule neurons, elongating their axons and making the 

appropriate axonal connections. The neuroblasts are born in the SEZ and migrate along the rostral 

migratory stream (RMS) becoming mostly mature GABAergic granule and periglomerular interneurons in 

the olfactory bulb (OB), whereas those which are born in the adult SGZ migrate into the granular cell 

layer (GCL) of the DG and differentiate into glutamatergic granule cells. The adult-born neurons become 

integrated in the pre-existing neuronal network 5 to 7 weeks after their birth (Van Praag et al., 2002; 

Ambrogini et al., 2004; Espósito et al., 2005; Zhao et al., 2006). Shortly, this complex phenomenon is 

nothing more than a synchronized orchestra that culminates in the formation of new neurons. 
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Interestingly, the initial proposal saying that the neurogenic modulatory effects of ADs were 

responsible for all behavioral improvements observed after chronic treatment with these drugs was an 

oversimplification, as demonstrated by many studies (Holick et al., 2008; Boldrini et al., 2009; Jayatissa 

et al., 2009). In fact, it was observed that the short-term mood-improving actions of ADs depend on 

neuronal remodeling, rather than on neurogenesis (Bessa, Ferreira, et al., 2009). This observation 

makes all sense since a large number of studies were successful in showing that the time window 

required by a newborn cell to be fully mature and integrated in the pre-existing neural network is around 

5 (Espósito et al., 2005; Zhao et al., 2006) to 7 (Van Praag et al., 2002; Ambrogini et al., 2004) weeks, 

like mentioned above. Thus, to unravel the importance of neurogenesis in the recovery from depression 

after treatment with ADs, we need to consider the long-term perspective of this disease, taking in 

consideration the time that new neurons need to integrate the network and become functional. Indeed, 

recent data from our group shows, for the first time, that despite triggering an immediate pro-

neurogenic response, the neurobiological importance of this ADs effect becomes of particular relevance 

later on the course of the disease (4 weeks after the treatment with ADs). At this time point, the 

suppression of cytogenesis (with methylazoximethanol (MAM) administration) significantly compromises 

behavioral long-term recovery, an effect that is counteracted by ADs treatment (Mateus-Pinheiro et al., 

2013). This particular study suggests that slower neuroplastic changes, regarding neurogenesis and 

remodeling of the neuro-glial networks, are apparently necessary to determine the extent of recovery 

from depressive symptoms. 

 

 

1.3. Adult Neurogenesis and Glial Biology: the missing link 

 

Along the entire scientific history, there have always been some secondary actors, forgotten towards 

the brightest ones. Glial cells are the perfect example of those secondary actors, always obfuscated by 

neurons. In fact, glia´s central role in cortical and neuronal function was always underestimated and 

glial cells were frequently seen only as neuron partners, supporting them (Coyle & Schwarz, 2000). 

However, this particular view has changed dramatically when it was found that NSCs in the developing 

brain and in the adult neurogenic zones exhibit astroglial properties (Morrens et al., 2012). Hereupon, 

glial cells immediately jumped to the front line and a vast number of studies were conducted in order to 

elucidate the role of these cells. Glia was found to interact closely with neuronal cells, participating in 

brain metabolism, synaptic neurotransmission and in interneuronal communication (Volterra & 
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Meldolesi, 2005). Moreover, glial cells occupy about half the volume of the brain (Jessen, 2004) and 

are responsible for actively maintaining the tissue homeostasis (Devinsky et al., 2013). These neuron-

partners, the glial cells, are subdivided into distinct classes, possessing different characteristics: 

Astrocytes, Oligodendrocytes, Microglia and NG2- positive cells.  

Starting by describing oligodendrocytes, these mature glial cells are mostly involved in the 

production of myelin in the brain and spinal cord (Bradl & Lassmann, 2010). Axons are unsheathed 

with this lipoprotein – Myelin - and, periodically, some gaps are formed, named as Nodes of Ranvier 

(Morrens et al., 2012), enabling axons to accelerate the conduction of the action potential, by a 

saltatory mode (Hartline & Colman, 2007). The absence of myelin (demyelination) severely 

compromises the conduction of the action potential trough the axon, resulting in several neurological 

deficits (Patel & Balabanov,2012). Due to the absence of myelin, axons can be even more predisposed 

to severe injury because of the deprivation of the trophic effects of the oligodendrocytes (Trapp et al., 

1998; Waxman, 2001).  

A great number of oligodendrocyte progenitor cells are generated in the SEZ (Morrens et al., 2012) 

being, just like adult oligodendrocytes, very vulnerable to certain conditions such as oxidative stress and 

inflammation. Thus, several pathologies, such as spinal cord injury, Parkinson´s and Alzheimer´s 

diseases, lead to oligodendrocytes dysfunction or even dead. However, some data reports spontaneous 

replacement of these cells, under specific conditions (McTigue & Tripathi, 2008). 

Regarding Microglia, these parenchymal tissue macrophages constitute about 10% of all cells in the 

CNS (Aguzzi et al., 2013). Microglia can have a ramified appearance, ordinarily found in the brain 

parenchyma, or be attached to the vasculature and within the perivascular extracellular matrix (ECM), 

named as perivascular microglia. Although microglia activation seems not to be pro- or anti-neurogenic 

per se, the molecules secreted by them are the ones responsible for the cellular net outcome (Morrens 

et al., 2012). These cells can be activated by neurons and are responsible for eliminating and 

maintaining synapses, thus leading to a normal function of the neural circuit (Aguzzi et al., 2013).  

Microglia functions are closely related with phagocytosis, being these cells the ones responsible for 

eliminating the neural precursor cells and thus regulating adult neurogenesis (Sierra et al., 2010). 

Several studies regarding the contribution of microglia to disease states have shown beneficial, adverse 

and dispensable functions of these cells, putting forward an angel/devil perspective of microglia 

(Morrens et al., 2012). However, more studies are needed to really address the microglial function on 

both health and disease states. 
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Mentioning now the NG2 chondroitin Sulfate Proteoglycan expressing cells, the discovery of these 

cells lead to the existence of a fifth major cell population in the CNS, having as colleagues neurons, 

astrocytes, mature oligodendrocytes and microglia (Xu et al., 2011). Although NG2 expressing cells are 

known as oligodendrocyte progenitor cells because of their property to differentiate into 

oligodendrocytes (Nishiyama et al., 1997; Lu et al., 2002; Zhou & Anderson, 2002; Kitada & Rowitch, 

2006; Ligon et al., 2006; Zhu et al., 2008; Komitova et al., 2009), recent data also showed that these 

specific cells, which are expressed on immature myelinating glia in the CNS, can also give rise to 

subpopulations of astrocytes during normal development. Besides acting as a plastic progenitor pool for 

more differentiated cells, this cell population may constitute a unique glial network, constantly 

interacting with neurons (Jabs et al., 2005; Bergles et al., 2010). NG2 expressing cells represent the 

most numerous population of proliferating cells in the adult brain (Dawson et al., 2003) and can be 

found in both neurogenic zones, although in a fewer percentage in the SGZ. Some reports argue about 

the multipotency of these cells but they seem to be controversial (Nishiyama et al., 2009; Richardson et 

al., 2011), being the most solid aspect the fact that NG2 positive cells receive synaptic input from 

neurons and may be involved in glutamate signaling modulation (Bergles et al., 2010; Mangin & Gallo, 

2011). 

Lastly, regarding astrocytes, the main glial subtype, these cells interact closely with neurons, 

participating in the regulation of synaptic neurotransmission by releasing chemical transmitters: the so 

called “tripartide synapse” (Araque et al., 1999) (see Figure 1). These star-shaped cells have functional 

receptors for neurotransmitters and respond to their stimulation by releasing gliotransmitters, including 

glutamate. Astrocytes can increase the intracellular calcium ([Ca2+] i) upon an elevation of synaptically 

released neurotransmitters, resulting in the release of glutamate via regulated exocytosis (Rossi & 

Volterra, 2009). Data reports that this increase in [Ca2+]i is extremely important, in a functional view, 

for astrocyte-astrocyte and also astrocyte-neuron intercellular communication (Sofroniew & Vinters, 

2010; Cornell-Bell et al., 1990; Charles et al., 1991).  
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Figure 1. The tripartide synapse. Astrocytes express many of the same receptors as neurons. When 

neurotransmitters are released from the presynaptic terminal of a neuron, astrocytic receptors are thought to be 

activated, leading to a rise in calcium ions in the astrocyte and the release of various active substances, such as 

ATP, which act back on neurons to either inhibit or enhance neuronal activity. Astrocytes also release proteins, 

which control synapse formation, regulate presynaptic function and modulate the response of the postsynaptic 

neuron to neurotransmitters  (Allen & Barres, 2009). 

 

 

Astrocytes can also couple to neighboring astrocytes through gap junctions and, putting this in a 

multicellular network perspective, they can play a role in both normal function and CNS disorders 

(Nedergaard et al., 2003; Seifert et al., 2006). These findings led astrocytes to the spotlight, bringing a 

new concept of neuron–glia intercommunication where astrocytes play an active role by integrating 

neuronal inputs and modulating synaptic activity (Rossi & Volterra, 2009). It is also noteworthy that 

astrocytes are able to synthesize glutamate de novo and to store glucose in the form of glycogen, unlike 

neurons (Hertz & Zielke, 2004), thus contributing to brain metabolism (Hertz et al., 2007). This 

phenomenon is only possible due to astrocytes´ high oxidative metabolism. 

As mentioned above, NSCs express several radial glia and astrocytic markers, including brain lipid 

binding-protein (BLPB) and the glutamate aspartate transporter - GLAST (Steiner et al., 2006). Although 

they express the common glial fibrillary acidic protein isoform alpha (GFAP)-a, the progenitor cells also 

specifically express the GFAP isoform delta and can be isolated based on its specific expression (Van 

Den Berge et al., 2010). The fact that NSCs in both neurogenic zones of the adult brain (SGZ and SEZ) 
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have plenty of astroglial properties makes it possible to link adult neurogenesis and glial cells (Morrens 

et al., 2012). In fact, genetic ablation of GFAP-expressing cells showed to be capable of eliminating 

adult neurogenesis (A. D. R. Garcia et al., 2004; Imura et al., 2003; Morshead et al., 2003). Moreover, 

astrocytes from the SEZ and SGZ were shown to promote the proliferation of progenitor cells and their 

neuronal differentiation ex vivo (Lim & Alvarez-Buylla, 1999; Song et al., 2002). Although astroglia 

seems enough to support synaptic integration and functional maturation of newly born neurons (Hong-

jun Song et al., 2002), the same cells derived from a non-neurogenic region fosters glial over 

neurogenic fate (Lie et al., 2002). In vivo, astrocytes seem to provide highly physical support to 

progenitor cells and newly born neurons (Shapiro et al., 2005; Plümpe et al., 2006), thus also playing a 

possible role in adult neurogenesis regulation in vivo (Morrens et al., 2012). 

Citing Ben Barres, an expert in neuron-glial interactions: “Quite possibly saving astrocytes from dying 

in neurological disease would be a far more effective strategy than trying to save neurons (glia already 

know how to save neurons, whereas neuroscientists still have no clue)” (Barres, 2008). 

 

 

1.4. Glial Cell Pathology in the disease context 

 

Astrocytes dysfunction has been related with neural impairments, mostly because of the tripartide 

synapse disturbance. There is now a growing body of evidences showing that either loss of normal 

astrocytic functions or gain of abnormal effects can contribute to the progress of several diseases, with 

these cells playing numerous roles in clinical and pathological mechanisms (Sofroniew, 2005; Seifert et 

al., 2006; Barres, 2008; De Keyser et al., 2008; Takano et al., 2009). 

Focusing in genetic diseases with cognitive delays, astrocytes seem to have a preponderant role, 

being the alteration of the astrogliogenesis timing more associated with mental impairments, in animal 

models (Gauthier et al., 2007). Moreover, a recent and specific study focused in Down Syndrome, was 

successful in showing a gliogenic shift from neural progenitors from Down syndrome patients, with a 

concomitant decrease in neurogenesis (Lu et al., 2011).  

Astrocytes were also found to be related with epilepsy due to their effects both on glutamate 

transport and release as in buffering potassium and interstitial volume control (Wetherington et al., 

2008; De Lanerolle et al., 2010). Astrocytic dysfunction has been shown to be related with abnormal 

neuronal excitability, regarding adult model systems (Gómez-Gonzalo et al., 2010); additionally, data 

showed that inducing reactive astrocytosis can lead to the formation of hippocampal epileptic foci 
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(Ortinski et al., 2010). All these observations have raised several questions, mostly regarding the 

possibility of increased susceptibility to epileptogenesis resulting from an abnormal astrocyte 

development (which could result in an alteration of excitatory-inhibitory balance of the developing brain) 

(Molofsky et al., 2012). 

Astrocytes can also see themselves involved in Alzheimer´s disease, being the reactive astrogliosis a 

well-known feature of this neurodegenerative disease. This specific process seems to be focal in this 

disease, such that reactive astrocytes are closely associated with amyloid plaques, surrounding them 

with a high density of processes and acting like neuroprotective barriers (Sofroniew & Vinters, 2010). 

Some reports state that reactive astrocytes have the capability of taking up and degrade extracellular 

deposits of a specific form of amyloid beta (Aβ42), leading to the belief on a role for astrocytes in the 

progression of the disease (Wyss-Coray et al., 2003). Some other studies reported the decrease of 

astrocyte glutamate transporters in Alzheimer´s disease, suggesting a resulting increased vulnerability 

of local neurons to excitotoxicity (Simpson et al., 2010). 

Giving us a new insight about astrocytes´s role in cognitive functions, an amazing study came out 

this year, claiming that the engraftment of human glia progenitor cells in mice was enough to 

differentially enhance both activity-dependent plasticity and learning of the animal (Han et al., 2013). 

With this study, the authors were able to show that human astrocytes generated within the mouse brain 

were able to maintain their complex phenotype in a cell-autonomous fashion, suggesting that the 

specific aspects of human cognition could reflect the course of astrocytic evolution (Oberheim et al., 

2006).  

To further analyze astrocytes´ specific functions, transgenic mice models have been used along the 

scientific route, in which some astrocytic functions are blocked or attenuated. An example of this 

approach is the transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate 

absorbent is capable to attenuate astrocytic Ca2+ signaling. With this specific model, researchers showed 

that the attenuated activity of Ca2+ was correlated with reduced astrocytic coverage of asymmetric 

synapses in a specific hippocampal region, resulting in behavioral impairments in reference memory 

and remote contextual fear memory (Tanaka et al., 2013). 

Although controversial, these studies gave as a first clue about the possible role of glial cells and 

gliogenesis in the disease context, leaving an open window to be further explored.  
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1.5. Gliogenesis in Depression 

 

Unlike neurons, glial cells retain their ability to proliferate in most brain areas of postnatal and adult 

subjects (Kraus-Ruppert et al., 1975; Gensert & Goldman, 2001; Kornack & Rakic, 2001). The 

generation of astrocytes is detectable in the neocortex and the hippocampus of adult human brain and, 

although the majority of newly generated cells in the adult rat hippocampal DG are neurons (about 

75%), there is still around 15% of new cells that are positive for the astrocytic marker GFAP and might 

be astrocytes. This neuron to glia ratio does not change with AD treatment, indicating that these 

treatments increase the number of newly generated glial cells in the adult brain (Rajkowska & Miguel-

Hidalgo, 2007).  

It is well known that there are multiple extrinsic and intrinsic mechanisms acting in concert to 

repress gliogenesis during the neurogenic period, and further induce gliogenesis when an appropriate 

number of neurons have been reached (Miller & Gauthier, 2007). However, in contrast to neurogenesis, 

the function of gliogenesis in the healthy adult brain has so far not been elucidated. 

During development, several molecules act together to further determine the fate of multipotent 

precursor cell, later generating either neurons or glial cells (see Figure 2 for a schematic representation 

of the gliogenic process).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Gliogenic Process in the Young Adult Mouse Hippocampus under basal conditions. There are at 

least three critical choice points: (1) a radia glia (RGL) cell decides to remain in quiescence or to become 

activated and enter the cell cycle; (2) an activated RGL can undergo one of three models of self-renewal: (i) 

symmetric self-renewal to expand the RGL pool, (ii) neurogenic, or (iii) astrogliogenic asymmetric self-renewal to 

generate a differentiated progeny while maintaining the RGL pool; and (3) The RGL makes a choice between 

returning to quiescence and maintaining the stemness or differentiating into an astrocyte via transition to 

astroglia. It is also possible that a quiescent RGL can directly differentiate into an astrocyte without cell division.  

(Bonaguidi et al., 2011) 
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After several years of controversy, it is now well accepted that radial glial cells in the developing CNS 

are multipotent cells that have the capacity to give rise to separate precursors for neurons and mature 

glial cells (Campbell & Götz, 2002; Malatesta et al., 2003). These glial precursors can differentiate into 

astrocytes or oligodendrocytes, due to specific factors in the microenvironment of the cell: when 

exposed to platelet derived growth factor (PDGF) the differentiation culminates in the generation of 

oligodendrocytes, whereas when exposed to leukemia inhibitory factor (LIF), they produce astrocytes 

(Bonni et al., 1997; Rajan & McKay, 1998). Moreover, basic FGF (bFGF) has been proved to be relevant 

in both early neuronal development, maintaining the multipotent precursors, and postnatally, being 

produced by astrocytes and some neurons and inducing the oligodendrocyte lineage by glial precursors 

(Rogister et al., 1999; Rajkowska & Miguel-Hidalgo, 2007).  

Similarly to the effects on the production of glial cells that occur during development, the factors 

mentioned above can also act in the proliferative zones of the adult brain and may, according to some 

reports, participate in the pathophysiology of depression (Horner & Palmer, 2003). Moreover, those 

factors can be manipulated to further achieve an effective AD action. Regarding this, bFGF, a stimulator 

of astrocyte and oligodendrocyte proliferation, can be an important factor in the depression field (Skaper 

& Varon, 1987; Hunter et al., 1993). Depressed patients showed a reduction in the mRNA level of bFGF 

in the dorsolateral prefrontal cortex, contrarily to ADs treatment that increased bFGF expression in the 

hippocampus and neocortex in an animal model (Mallei et al., 2002; Evans et al., 2004; Maragnoli et 

al., 2004). 

Besides all these observations, there are still several gliogenic windows that must be further studied 

and explored in the context of this disease.  

Regarding in vivo results, data from our lab showed that impairments induced by unpredictable 

chronic mild stress (uCMS) exposure, a validated animal model of depression (Bessa, Mesquita, et al., 

2009), were reversed by both imipramine and fluoxetine ADs. Interestingly, whereas fluoxetine failed to 

restore working memory when neurogenesis was blocked, the cognitive-improving efficacy of 

imipramine did not depend on active neurogenesis. Fluoxetine treatment, as previously reported  

(Boldrini et al., 2009), was more effective at promoting differentiation of newly-born cells into neurons 

rather than astrocytes, contrarily to imipramine treatment, that showed to elicit a strong pro-gliogenic 

effect (Mateus-Pinheiro et al., 2013). These striking preliminary results suggest that the efficacy of 

imipramine in the recovery from depression depends directly on active gliogenesis and not 

neurogenesis. 
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However, until now little is known about the molecular changes regulating the decreased adult 

gliogenesis in depression, as well as about the counteracting mechanisms triggered by ADs. With 

growing evidence supporting the possible role of glial cells in the ethiopathogenesis of depression and 

the pro-gliogenic action of ADs, such as imipramine, adult gliogenesis becomes a promising area to 

study that may help to unravel novel therapeutic options for this pathology. 

Since ADs treatment have showed to reverse the reduction in astroglial density in animal models of 

depression, and being the glial alterations more pronounced than those experienced by neurons, glial 

cells may represent a good target to give an anticipated and better prognosis of this deleterious 

disorder. 

 

 

1.6. Impact of Astrocytes in Depression 

 

During the last years, some studies came up showing the involvement of astrocytes in the 

pathophysiology of MDD (Hercher et al., 2009). Indeed, as mentioned above, astrocytes have been 

pointed out as an important player in brain function (Wang & Bordey, 2008; Perea et al., 2009), cross-

talking with neurons, complementing and modulating neurotransmission (Araque et al., 1999); and to 

possess unique phenotypic features that allow them to monitor their neighbourhood, dynamically 

responding to neurovascular changes (Wang & Bordey, 2008). 

In depression, a loss of astrocytes in specific regions of the brain was observed and this 

phenomenon lead us to an open window that was ill explored (Gosselin et al., 2009). Several studies, 

conducted in postmortem brain tissue of subjects diagnosed with MDD and/or bipolar disease (BPD), 

reported prominent decreases in the packing density and number of glial cells in several different 

frontolimbic areas, including prefrontal and medial prefrontal cortex, the dorsolateral and orbitofrontal 

cortex, the amygdala and also the hippocampus (Cotter et al., 2001; Harrison, 2002; Rajkowska & 

Miguel-Hidalgo, 2007; Drevets et al., 2008; Hercher et al., 2009). 

However, the opposite pattern - increased glial cell density - was also seen in the GCL of the DG in 

depressed patients. Actually, this phenomenon could be explained by a reduction on glial processes, 

rather than a loss of glial cells, which could induce a decrease in hippocampal volume, currently seen in 

neuroimaging studies in the depression field (Stockmeier et al., 2004). Importantly, the study of glial 

pathology in mood disorders has not been extensive enough in subcortical structures to draw valid 

conclusions. It is also crucial to mention that several findings indicate that lower density of astrocytes 
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and decreased GFAP expression are associated with younger depressed subjects who had early onset 

of depression. Indeed, some studies indicate that GFAP expression levels are reduced in younger but 

not older depressed subjects. Thus, an increase in GFAP expression might not simply be related to 

biological aging, it may also be associated with the progression of cellular changes of depressive illness. 

This last observation implies that the involvement of GFAP expression is different in early versus late life 

depression. Increasing clinical evidence confirms that late onset depression (first depressive episode 

when older than 50 years) differs from early-onset depression by its etiology, phenomenology and 

cerebrovascular pathology (Rajkowska, 2000; Rajkowska et al., 2005). 

Besides cell density, it seems that glial cell size and shape also suffer alterations in mood disorders. 

Some studies reported the increase of the glial cell bodies (Rajkowska et al., 1999, 2001; Chana et al., 

2003) in depressed individuals and, regarding this observation, Rajkowska et al. proposed the existence 

of a compensatory mechanism capable of responding to the metabolic needs of the surrounding 

neurons. Since reduction in glial density was followed by increased glial nuclei, the authors claimed that 

the functional glial cells (the ones not affected by stress - related mechanisms) would be forced to work, 

due to the shrinkage of the damaged ones (Rajkowska & Miguel-Hidalgo, 2007). Afterwards, their nuclei 

would be bigger and with a different conformation. Fascinatingly, this adaptation – more specifically the 

increased size of glial nuclei - seems to be targeted to depressive disorders, since the glial size was not 

found to be altered in other disorders, such as schizophrenia (Rajkowska et al., 1998; Selemon et al., 

1998).   

Although astrocytes represent the most numerous type of glial cell, we cannot forget about the other 

glial cells, which also suffer alterations in this disease context. Furthermore, specific decreased number 

of oligodendrocytes was seen in the amygdala in MDD (Hamidi et al., 2004), as additional alterations in 

the microglial population in BPD (Manji et al., 2000).  

With these observations, we can conclude that those alterations currently seen in depression models 

are not astrocytes – directed, affecting also the other glial populations (despite the astrocytic alteration 

are the most reported ones). 

Lately, an exciting study came out showing that the specific ablation of astroglial cells in the 

prefrontal cortex (PFC) of adult rats (with L-alpha-aminoadipic acid) was enough to induce a depressive-

like behavior on the animals. They presented a phenotype quite similar to those animals that are 

submitted to uCMS, an animal model of depression (Banasr & Duman, 2008). In order to show that it 

was specific for astrocytes, the researchers also injected neurotoxic ibotenate but it showed to be 

harmless to the animals. 
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Regarding the ADs administration, some studies also suggest that the treatment not only affects 

neurons, but also activates astrocytes. This activation can lead them to carry out specific functions that 

result in the reactivation of cortical plasticity and may cause the readjustment of neuronal networks, 

thus helping depressed individuals to recover (Czéh & Di Benedetto, 2012). Indeed, in a study 

conducted in Tupaia belangerie, a specie phylogenetically close to primates (Martin, 1993), animals 

were subjected to a chronic stress paradigm (Fuchs & Flügge, 2002) and the reduced number of 

astroglia found in response to stress was prevented by concomitant fluoxetine treatment (Czéh et al., 

2006). Besides treatment with fluoxetine, chronic administration of lithium and antipsychotic 

medication have led to an increased glial number both in hippocampus and PFC of rats and nonhuman 

primates (Rocha et al., 1998; Selemon et al., 1999). As seen in other studies, chronic treatment with 

lithium induced an upregulation of GFAP expression and an alteration of astrocytes original morphology, 

more specifically in astrocytic orientation. 

Taken together, further studies are needed to address the importance of all these glial alterations at 

the onset, maintenance and recurrence of a depressive episode. It is extremely relevant to determine 

whether therapies based on gliogenic factors will attenuate all the depressive symptoms. Moreover, it is 

of major importance to establish a state marker related with glial alterations, during episodes of 

depression.  
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1.7. Research Objectives 

 

This project aims to correlate cognitive behavior with alterations in astrocytic cells and gliogenesis in 

the hippocampal DG of adult rats exposed to uCMS and treated with ADs, in a longitudinal manner: at 

short-term, long-term and recurrence time-points. Since treatment with the AD imipramine, but not 

fluoxetine, has been shown to elicit a strong pro-gliogenic effect, we also aim to establish a hippocampal 

derived-neurospheres culture to further study the differentiation of astrocytes in vitro, conditioning the 

culture with norepinephrine or serotonine (the neurotransmitters that mediates the effect of imipramine 

and fluoxetine, respectively).  

In order to do that, our main objectives are: 

 To study the impact of the uCMS model of depression in astrocytic cells; 

 To explore how exposition to uCMS and treatment with distinct ADs (fluoxetine and imipramine) 

modulate hippocampal gliogenesis, more precisely the generation of new astrocytes, at different time-

points: immediately after ADs treatment (short-term); 4 weeks after the end of the uCMS protocol and 

ADs treatment (long-term) and after exposition to a second period of uCMS (recurrence); 

 To correlate the cognitive performance of depressive-like rats (rats exposed to uCMS) and AD-

treated rats, with astrocytes morphological alterations at short-term, long-term and recurrence; 

 To establish a hippocampal-derived neurosphere culture to further assess the proliferation and 

differentiation of astrocytes versus neuronal cells induced by the administration of distinct ADs in vitro, 

conditioning the neurospheres with serotonin or norepinephrine. 
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II. MATERIALS AND METHODS  
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2. Materials and Methods 

 

2.1.  Animals 
 

Male Wistar rats (Charles-River Laboratories), with 2 months of age and weighing 200-300g were group-

housed (three per cage) under 12h light: 12h dark cycles, at 22°C, relative humidity of 55% and with 

food and water ad libitum. 

Forty animals were randomly assigned to five main experimental groups (n=8): one control group 

(CTRL) not exposed to stress and treated with saline; three groups exposed to uCMS and treated with 

saline (CMS), fluoxetine (FLX) or imipramine (IMIP); and one group with the same treatment as the 

ones before but exposed to an extra stress period (DOUBLE). 

All procedures were carried out in accordance with EU Directive 2010/63/EU and NIH guidelines on 

animal care and experimentation. 

 

2.2.  Chronic mild stress protocol 
 

A protocol of uCMS was applied for 6 weeks as previously validated and described (Willner, 2005; 

Bessa, Ferreira, et al., 2009; Bessa, Mesquita, et al., 2009). Briefly, the uCMS protocol comprises 

several mild stressors (confinement to a restricted space for 1h; overnight food deprivation followed by 

1h of exposure to inaccessible food; overnight water deprivation followed by 1h of exposure to an empty 

bottle; overnight damp bedding; inverted light/dark cycles; exposure to stroboscopic lights during 4h 

and noise exposure during 4h) to which animals were random- and uninterruptedly exposed during 6 

weeks. In the last 2 weeks of the uCMS protocol, subsets of animals were administered daily with the 

ADs imipramine or fluoxetine and all other animals were injected daily with saline. On the following 4 

weeks, all the animals were allowed to recover due to the stress protocol´s cessation, being kept 

unexposed to any kind of stressor. After 4 weeks resting, three of the five groups (FLX, IMIP and 

DOUBLE) were exposed to a second period of uCMS during 6 weeks. The behavioral analysis were 

performed during the stress protocol (week 4), after the cessation of the stress period (week 6) – short 

term analysis - ; after the recovery period (week 10) – long term analysis - ; and after the second 

exposure to the stress protocol (week 16) – recurrence analysis (Figure 3). 

For the molecular and cellular analyses, the subsets of rats exposed to only one period of uCMS during 

6 weeks and the ones exposed to one period of uCMS that were allowed to recover for additional 4 
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weeks, were already performed by other researchers and were available for this project for molecular 

and cellular analyses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of the behavior analysis. The cognitive dimension was evaluated by the 

novel object recognition test (NOR) in animals exposed to uCMS; the assessment was done at weeks 4, 6, 10 

and 16 (after the exposition to the second period of uCMS). The mood dimension was assessed by both Sucrose 

Preference Test (SPT), giving us an anhedonic information regarding the animals profile, and Forced Swimming 

Test (FST) at weeks 4 and 6. Anxiety dimension was evaluated trough the Open Field Test (OF) at week 6. 

 

2.3.  Drugs 

 

The ADs fluoxetine (10mg.kg-1; Kemprotec, Middlesborough, UK) and imipramine (10mg.kg-1; Sigma-

Aldrich, St.Louis, USA) were administered intraperitoneally (i.p.: 1 ml.kg -1). These drugs were dissolved 

in DMSO (5%; Sigma-Aldrich) and saline (0,9%; B.Braun) and administered daily during the last two 

weeks of the uCMS protocol (Figure 3). 

 

2.4.  BrdU injections 

Short-term analysis.  BrdU (100mg.Kg-1; i.p.) was administered for one day at the end of the uCMS 

period.  

Long-term analysis. In order to assess cell proliferation, BrdU (50mg.Kg-1; i.p.) was administered daily 

for five consecutive days at the end of the uCMS period, including the last two days of uCMS protocol 

and the first three days of the recovery period. 
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Recurrence analysis. At this time-point, BrdU (50mg.Kg-1; i.p.) was administered daily for seven 

consecutive days at the end of the first uCMS period, including the last three days of uCMS protocol 

and the next four days of the recovery period. 

 

2.5.   Behavioral Tests 

2.5.1. Novel Object Recognition 

The cognitive function was assessed longitudinally by the novel object recognition test (NOR) and was 

performed at weeks 4, 6, 10 and 16 (always with objects different from each other in terms of shape, 

colour and texture), as schematized on Figure 3 by the blue dots. For this purpose, a black acrylic box 

(50x50x150cm) with an open field space (51x51x39,5cm) and illuminated with a white lamp (100-140 

lux) was used. This test is phased in 4 days and was already tested and described in the literature 

(Bevins & Besheer, 2006; Dere et al., 2007; Winters et al., 2008; Ennaceur, 2010):  

 

Exploration.  On the first day, the animals were allowed to explore the test apparatus without any object 

during 10 minutes (min).  

 

Sample Phase.  On the second day, two identical objects were placed in the back left and right corners 

of the apparatus and the animal was able to explore them during 10 min. Within an interval of 

approximately one hour, a second sample object exposure (3 min) was performed. This time, one of the 

sample objects (left object) was repositioned in a new corner of the apparatus (middle of the left wall). 

This second trial gives an insight on hippocampus function and it works as a memory “reinforcement” 

of the sample object.  

 

Choice Phase – Long-term memory.  On the third day, the long-term memory was assessed 24 hours 

after the memory reinforcement (done on the second day of the test) by a 3 min trial with the 

replacement of one of the sample objects for a novel object.  

 

Choice Phase – Short-term memory.  Lastly, on the fourth day, animals were tested for their short-term 

memory condition. The previous objects were switched for two identical new sample objects and the 

animal was left for exploration in the apparatus, during 10 min. Within an interval of approximately one 

hour, a choice phase test was performed. To do this, one of the sample objects was replaced for a 
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completely new object and, for 3 min, the exploration of the animal was determined in order to test its 

memory. 

 

Trials were video-recorded and the discrimination index (D) was calculated by the following formula: D = 

(N-F)/(N+F); being N the time spent exploring the Novel object and F the time spent exploring the 

Familiar object. For this test, it is crucial to define what we considered as the object exploration by the 

animal; for that, we assumed exploration of an object as directing the nose to the object at a distance of 

less than 2 cm or touching it with the nose. 

 

2.5.2. Sucrose Preference Test  

To assess anhedonia, the sucrose preference test (SPT) was conducted at week 4 and 6 of the uCMS 

period (Figure 3). Animals were allowed to habituate to the sucrose solution (2% m/v) 1 week prior to 

the uCMS protocol, in order to establish the baseline values for sucrose preference. For both assays, 

animals were food- and water-deprived for 12h during the non-active period. The room was cleaned with 

ethanol 96% and the test was performed under dimly illumination. Animals were placed in each cage, 

further covered with both the grid and the lid. Two pre-weighted bottles containing the sucrose solution 

and tap water were placed simultaneously in the cage and consumption was measured for 1h.  

Sucrose preference was calculated by the following formula: sucrose preference=[(sucrose consumption 

/ Total consumption) x 100] like previous described (Bessa, Mesquita, et al., 2009). Anhedonia was 

defined as a reduction in sucrose preference in relation to the baseline levels. 

 

2.5.3. Forced Swimming Test 

Learned-helplessness was assessed through the forced swimming test (FST) and was conducted at 

week 6 of the uCMS protocol (Figure 3). The test was performed 24h after the 5 min pre-test session, 

consisting in placing the animals in cylinders filled with water (25°C; 50cm of depth) during 10 min. 

Trials were video-recorded and both the immobility time and the latency to immobility were measured 

through the Etholog (vs.2.2) software. Learned-helplessness was defined as an increase in the 

immobility time and a decrease in the latency to immobility.  
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2.5.4. Open Field Test 

Anxiety-like signs were assessed through the open field (OF) test like some authors have reported (Prut 

& Belzung, 2003), in the week 6 of the uCMS protocol (Figure 3). The test apparatus consisted of a 

brightly illuminated square arena of 43.2 x 43.2 cm closed by a wall of 30.5 cm high. Animals were 

placed individually in the center of the arena and their movement was traced during 5 min, using a two 

16-beam infrared system. The resulting data was analysed using the Activity Monitor software (Med 

Associates,Inc.), considering two previously defined areas: a central and an outer area. Time spent in 

each of the zones was recorded and analysed, further. 

 

2.6. Measurement of Plasma Corticosterone Levels 

Blood samples were collected from the rat’s tails in different time-points: 8.00 am and 8.00 pm, at 

weeks 4 and 6 of the uCMS protocol. 

Blood plasma was separated by centrifugation (2500 rpm, 30 min) and corticosterone levels were 

determined using the Correlate(tm)-EIA ELISA Kits (Assay Design Inc., Ann Arbor, MI, USA).   

 

2.7.  Tissue Preparation and Sectioning 

Animals were deeply anaesthetized with sodium pentobarbital (20%; Eutasil, Sanofi) and were 

transcardially perfused through the ascending aorta with saline (0.9% NaCl; B Braun). Brains were 

dissected from the skull, embedded in Neg-50 Frozen Section Medium (Thermo Scientific) and further 

frozen in liquid nitrogen. The tissue was processed in series of 20µm cryosections, extending over the 

entire length of the hippocampus formation. The slides where then maintained at -20°C for 

immunostaining procedures. 

 

2.8.  Immunostainings 

2.8.1. Immunofluorescence 

Cryosections were immersed in 4% paraformaldeyde (PFA; Sigma-Aldrich) for 30 min at room 

temperature (RT) and then rinsed in Tris-Buffered Saline (TBS). Eventual pretreatment of the sections is 

mentioned in the list of used antibodies in Table 1. After 10 min of permeabilization in TBS-Triton (T; 

Thermo Scientific) 0,2%, sections were incubated with the primary antibody in solution (TBS/10% Fetal 

Bovine Serum (FBS)) overnight, at 4°C. On the second day, sections were washed 3 times in TBS and 

incubated with secondary antibody for 2h, at RT. The used secondary antibodies are listed in the Table 
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2. Sections were rinsed with TBS and further stained with DAPI (1:1000; Invitrogen) and mounted with 

immune-mounting medium (Immumount, Thermo Scientific) for following analysis by confocal 

microscopy. Solutions composition is described in Table 3. 

For each animal, GFAP-positive cells and GFAP co-localized with BrdU-positive cells within the DG were 

analyzed in the confocal microscope Olympus FluoViewTM FV1000 (Hamburg, Germany).  

Estimation of cell density in the DG was obtained by crossing the GFAP+ cell number values within the 

corresponding DG areas, determined using the same confocal microscope. Moreover, in order to 

analyze the density of newborn astrocytes within the area of the DG (from the short-term, long-term and 

recurrence), cells that co-localized GFAP+ and BrdU+ were selected and analyzed. 

For morphologic analysis of the new astrocytes (BrdU+GFAP+), we used the Neurolucida software, with 

the AutoNeuron extension module (MBF Bioscience). 

 

2.8.2. DAB (3,3`diaminobenzidine tetrahydrochoride) immunohistochemistry  

For the purpose of analyzing the astrocytic morphology, this specific technique was used. Basically, the 

first day of the protocol is similar to the one explained on the section before, except the blockage of 

endogenous peroxidases, performed immediately before the primary antibody incubation. This blocking 

solution consists of TBS with 10% H2O2 and it was added for 10 min, shaking. On the second day, the 

slides were washed with TBS buffer and then incubated with biotinylated secondary antibody 

(ThermoScientific) for 30 min. After that, streptavidin peroxidase (ThermoScientific) was added for 30 

min. A washing step took place with TBS buffer and, before the develop step, the tissue was washed 

with a Tris-HCl solution for 5 min. The develop solution (0,025 g DAB on 100 ml Tris-HCl solution and 

500 µl H2O2) was added to the tissue and the reaction was stopped around 5 min after with TBS. The 

sections were then dehydrated manually, staying 2 minutes in alcohol 96° and 2 min more in alcohol 

96° for total tissue dehydration, 2 min in alcohol 100° and 2 final min in xylol.  

For each selected astrocyte (localized on the DG of the hippocampus), all processes were reconstructed 

at 100x (oil) magnification using a motorized microscope (Axioplan2; Carl Zeiss) and Neurolucida 

software. A three-dimensional analysis of the reconstructed astrocytes was performed using 

NeuroExplorer software (Microbrightfield). 
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Table 1. Primary Antibodies. 

Prim. Antibody / 
Specie 

Working 
Dilution 

Pretreatment Company 

BrdU Mouse 1:50 30 min. in HCL (2 M) + 20 min. in pre-heated 
Cytrate buff. (80ºC) 

Dako 

GFAP Rabbit 1:200 None Milipore 

 

Table 2. Secondary Antibodies. 

Sec. Antibody / Antigenicity Working 
Dilution 

Pretreatment Company 

Alexa Fluor 488 anti-mouse 1:1000 None Invitrogen 
Alexa Fluor 568 anti-rabbit 1:1000 None Invitrogen 

 

Table 3. Solutions Composition. 

Solution Composition 

TBS 50 mM Tris base, 150 mM NaCl, pH 7.6 
TBS-T TBS, 0.2% TritonX – 100 
PFA 4% TBS, 4% PFA, pH 7.4 
Cytrate Buffer 0.1 M Sodium citrate, pH 6.0 

 

2.9.  Neurospheres Culture Set Up 

For establishing the neurospheres culture, 10 rats, 6 days old, were sacrificed and their brains 

removed. The hippocampal DGs were isolated and minced using a bisturi and the dissociated tissue 

was digested in 0.1% trypsin (Sigma-Aldrich) for 15 min at 37°C. After that, the tissue was triturated 

with a 5 mL pipette (10 times up and down), and the resulting solution was filtered through a 70 µm 

strainer (BD Biosciences), followed by a centrifugation at 1300 rpm for 5 min. The resulting pellet was 

resuspended in 1 ml of neurosphere medium (supplemented with growth factors), and a single cell 

suspension was achieved by gentle trituration. The growth factors added were 10 ng/ml epidermal 

growth factor (EGF; Invitrogen) and 10 ng/ml basic fibroblast growth factor (bFGF; Invitrogen). The cells 

were then plated in a T25 flask at a clonal density of 8-10 cells per µL and the growth factors were 

added every 2 days. 
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2.10.  Data Analysis 

All the statistical analysis was performed with GraphPad Prism 5.01. The unpaired Student´s t-test was 

used to examine whether data sets differed significantly, when the experimental setup was composed 

by only two experimental groups, and also to compare the control group with the uCMS group. One-way 

ANOVA was used in multiple statistical comparisons between groups and with only one level of analysis, 

with Tukey’s multiple comparison test post hoc analysis. Statistical significance was accepted for 

p<0.05. 
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III. RESULTS   



30 
 

 

  



31 
 

0

50

100

150

200

250

CTRL CMS

***

Im
m

o
b

il
it

y
 t

im
e

 (
s)

     3. Results 
 

3.1.   Study of the cognitive behavioral dimension of depressive-like rats treated 

with the ADs fluoxetine and imipramine at short-term, long-term and recurrence 

 

3.1.1. Establishment and validation of the animal model of depression 

As it was reported by our group, the appliance of the uCMS paradigm, the same used in this study, 

induces typical depressive-like signs in all three behavioral dimensions that are commonly affected by 

depression – anxiety, mood and cognition (Bessa, Mesquita, et al., 2009). In order to proceed to further 

tasks, it was imperative to first assess and characterize both the behavioral profile of the animals and 

the levels of corticosterone as a powerful tool to measure stress induction, since the increased levels of 

plasma corticosterone can be related with a stressful episode (Kant et al., 1987). 

Four weeks after starting the uCMS protocol (described in the 2.2 section of materials and 

methods), animals were tested in order to evaluate the extension of the psychological damages, which 

can lead to several affected behavioral dimensions. Therefore, learned helplessness was assessed 

through the FST, anhedonia was assessed by the SPT and the cognitive domain was evaluated through 

the NOR test (Figure 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Behavioral characterization of the animals on the fourth week of the uCMS protocol. (A) Learned-helplessness 

was assessed through the FST; (B) Cognition integrity was assessed through the NOR test; and (C) Anhedonia was 

evaluated with the SPT. Data is represented as mean ± sem. *p<0.05, **<0.01, ***<0.001. Abbreviations used: CTRL – 

Control Group; CMS – uCMS group. 

A B C 

0

20

40

60

80

+

CTRL CMS

*

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

20

40

60

80

100

CTRL CMS

***

su
cr

o
se

 p
re

fe
re

n
ce

 (
%

)

0

20

40

60

80

+

CTRL CMS

*

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

50

100

150

200

250

CTRL CMS

***

Im
m

o
b

il
it

y
 t

im
e

 (
s)

0

20

40

60

80

100

CTRL CMS

***

su
cr

o
se

 p
re

fe
re

n
ce

 (
%

)



32 
 

Consistent with previous results, four weeks after uCMS exposure, the stressed rats presented 

impairments in the three behavioral dimensions commonly affected in a depressive state. Regarding the 

FST, this test showed a significant increase in the immobility time of the subgroup of uCMS rats 

(t15=3.834, p=0.0008) in comparison to the control group, evidencing a depressive-like phenotype of 

these rats (Figure 4A). Although cognition is one of the dimensions less marked at the first instance, 

comparing to anxiety and anhedonia, it is already affected after 4 weeks of stress exposure. This was 

confirmed by a significant decrease in the percentage of time that the uCMS animals spent exploring 

the novel object (t11=1.873, p=0.0439), when comparing with the control group (Figure 4B). Lastly, 

stressed animals revealed clear signs of anhedonic behavior corroborated by a significant decrease in 

the sucrose consumption by the uCMS group (t15=5.978, p<0.0001, Figure 4C). 

After administration of the ADs fluoxetine and imipramine daily during the last 2 weeks of the uCMS 

protocol, we decided to re-validate the model at the behavioral level in order to proceed to further 

studies. For that, at the sixth week of the uCMS protocol (short-term analysis), animals were tested for 

the same parameters than in week 4 and also for anxiety, namely for learned helplessness assessed 

through the FST, anhedonia by the SPT, anxiety by the Open Field Test and the cognitive domain, 

evaluated through the NOR test (Figure 5). 

Once more, results were consistent with the ones obtained at week 4 of the uCMS protocol, 

suggesting a depressed phenotype of the stressed group. Most of the tested dimensions presented 

impairments after 6 weeks of uCMS exposure, which is in agreement with previous results regarding a 

short-term assessment (Bessa, Mesquita, et al., 2009). Animals exposed to uCMS showed increased 

immobility time (t18=2.564, p=0.0118) in the FST and ADs treatment led to a recovery from learned 

helplessness (F2,13=5.803, p=0.0158). Comparing with stressed rats, that did not receive drug 

treatment, immobility time was significantly reduced by both fluoxetine (p<0.05) and imipramine 

(p<0.05, Figure 5A) to levels comparable to control rats. Cognitive evaluation at short-term assessed by 

the NOR test was successful in revealing significant differences between control and stressed animals in 

short-term memory (t7=3.396, p=0.058, Figure 5B). This impairment was reversed by AD treatment 

(F2,9=8.731, p=0.0078, Figure 5B) and it was represented by a higher exploration of the new object, 

similarly to the control rats. It is important to mention that the objects used in the NOR test were all 

different in terms of color, shape and texture; therefore, we could make this test highly discriminative, 

making all the results more consistent. 

 Regarding the SPT, stressed animals revealed clear anhedonic signs, comparing with the control 

group (t14=4.406, p=0.0003, Figure 5C). Once more, both imipramine and fluoxetine treatments were 
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able to rescue the depressive phenotype of the uCMS animals, with animals presenting sucrose 

preference values similar to the ones exhibited by the control group (F2,14=6.924, p=0.0081, Figure 5C).  

In term of anxiety, animals did not exhibit major differences although there was a tendency for a 

higher anxiogenic phenotype in uCMS animals, when comparing with control animals. Both ADs showed 

a tendency to revert the anxiogenic effect and, moreover, the imipramine treatment showed a tendency 

to be more effective than fluoxetine (Figure 5D). 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5. Behavioral characterization of the animals on the sixth week of the uCMS protocol. (A) Learned-helplessness was 

assessed through the FST; (B) Cognition integrity was assessed through the NOR test; (C) Anhedonia was evaluated with 

the SPT and (D) anxiety was assessed by the OF test. Data is represented as mean ± sem. * represents the effect of uCMS; 

# represents the effect of ADs treatment; *p<0.05, **<0.01, **<0.001. Abbreviations used: CTRL – Control Group, SAL – 

uCMS Group injected with saline, FLX – Fluoxetine treated Group, IMIP – Imipramine treated Group. 

 

As we also wanted to have a molecular proof of the consistency of our animal model of depression, 

we have decided to test the plasma corticosterone levels, since it is a powerful tool to correlate with 

stress episodes. Moreover, it is known that stress is accompanied by hypothalamic-pituitary-adrenal axis 
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(HPA) hyperactivity, resulting in the release of glucocorticoids into the blood (Schoenfeld & Gould, 

2011). For that, animals were tested for corticosterone levels at week 4 (Figure 6A) and week 6 (Figure 

6B) of the uCMS protocol. 

 

 

 

 

 

 

 

Figure 6.  Effect of stress on corticosterone plasma levels, (A) at 4 weeks after the beginning of uCMS protocol ; (B) and 

at week 6 of uCMS, after the ADs administration. Data is represented as mean ± sem. *p<0.05, **<0.01, **<0.001. 

Abbreviations used: on Figure A, CTRL – Control Group, CMS – uCMS Group; on Figure B, CTRL – Control Group, SAL – 

uCMS Group injected with saline, FLX – Fluoxetine treated Group, IMIP – Imipramine treated Group. 

 

 

Besides all the behavioral information, corticosterone levels showed to be altered already at 4 weeks 

after the beginning of uCMS. In fact, the day and night corticosterone values of the control group 

showed to be significantly different, being the night peak the increased one (t10=8.165, p<0.0001, 

Figure 6A), as previously described (D’Agostino et al., 1982). Moreover, this difference was not found in 

the uCMS group, suggesting a disruption of the HPA axis (Figure 6A), which has also been described 

(Ottenweller et al., 1994). After the ADs administration, animals were also tested for corticosterone 

levels (at 6 weeks of the uCMS protocol) and the same disruption was observed in the uCMS group, 

comparing with the control animals, that presented again a significantly difference between the night 

and day peaks (t21=8.300, p<0.0001). The same did not happen in the stressed animals (presenting 

similar values between night and day, Figure 6B). However, both imipramine (t12=3.445, p=0.0024) and 

fluoxetine (t7=5.978, p=0.003) were successful in re-establishing the differences between the day and 

night levels of corticosterone, as observed in the control animals (Figure 6B). 
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3.1.2. Cognitive evaluation of depressive-like behavior in animals treated with ADs in a 

longitudinal manner – at short-term, long-term and recurrence  

Since cognition is one of the affected dimensions in depressed patients, and being astrocytes lately 

related with different states of memory impairments, we wanted to understand better the cognitive 

impairments resulted from the uCMS protocol in a longitudinal manner, at short-term (6 weeks of 

uCMS), long-term (after 4 weeks of recovery from the 6 weeks of uCMS - week 10 of the protocol) and 

recurrence (after a second uCMS period of 6 weeks – week 16 of the protocol: see Figure 3). For 

cognitive evaluation, we used the NOR test with high discriminative objects (see Materials and Methods 

on section 2.5.1. and Figure 7). In this test, two different measures regarding the memory function 

arose: the short-term memory (measured in the same day than the objects’ image acquisition) and the 

long-term memory (measures 24h after the objects’ image acquisition). Although the short-term 

memory has been highly affected with stress exposition at 6 weeks, comparing with control animals 

(t7=3.396, p=0.0058), ADs treatment was able to counteract this effect (Figure 7A). In fact, both 

fluoxetine and imipramine showed to be effective in reverting the cognitive impairments, at a short-term 

memory level, experienced by the uCMS group (F2,9=8.731, p=0.0078). Regarding the long-term 

memory (Figure 7B), this dimension was also affected by the stress exposure, showing a significant 

decrease in comparison to control animals (t21=3.637, p=0.0008). However, fluoxetine and imipramine 

treatments were not powerful enough to revert the long-term memory impairments caused by the stress 

exposure, at the short-term time-point (Figure 7B). 

In the long-term perspective of the disease (at week 10), the short-term memory was drastically 

affected on the uCMS group (Figure 7C), whereas animals showed less than half the value of the new 

object exploration time of the control group (t14=4.030, p=0.0006). Once more, both imipramine and 

fluoxetine treatments were capable to restore the same new object exploration values of the control 

animals (F2,14=12.97, p=0.0006). Regarding the long-term memory assessment, the stress exposure 

seemed to not be so drastically affected as observed at short-term (6 weeks), although it was 

statistically different to the control group (t13=2.356, p=0.0174). In accordance with the results 

observed at 6 weeks regarding the long-term memory, the ADs were not able to significantly rescue the 

impairments experienced by the uCMS animals (Figure 7D). 

We next analyzed the impact of a recurrence episode of depression (at week 16 of the protocol, see 

Figure 3 and 7) on rats´ cognitive function. 
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Figure 7. Longitudinal Cognitive Assessment through the NOR test. The test was performed at week 6 (Short-term), 10 (Long-term) and 16 (Recurrence) of the uCMS and both short-term and long-

term memories were assessed. Data is represented as mean ± sem. * represents the effect of uCMS; # represents the effect of ADs treatment; *p<0.05, **<0.01, **<0.001. Abbreviations used: CTRL 

– Control Group, SAL – uCMS Group injected with saline, uCMS (2x) – Group submitted to two uCMS protocol; FLX – Fluoxetine treated Group, IMIP – Imipramine treated Group. The striped bars 

represent the groups that were submitted to a second period of stress. 

Short-term Long-term Recurrence 

S
h

o
rt

-t
e

rm
 M

e
m

o
ry

 
Lo

n
g

-t
e

rm
 M

e
m

o
ry

 

A 

B 

C 

D 

E 

F 

0 

36 

0

40

60

80

CTRL SAL FLX IMIP

uCMS

MA
M

-

**

#

#

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

20

40

60

80

CTRL SAL FLX IMIP

uCMS

MA
M

-

*

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

40

60

80

CTRL SAL FLX IMIP

uCMS

MA
M

-

##

##

***

##

##

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

40

60

80

CTRL SAL FLX IMIP

uCMS (2x)

MA
M

-

**

#

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

20

40

60

80

CTRL SAL FLX IMIP

uCMS (2x)

MA
M

-

**

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n

0

20

40

60

80

CTRL SAL FLX IMIP

uCMS

**
***

***
***

***

%
 n

e
w

 o
b

je
ct

 e
x

p
lo

ra
ti

o
n



37 
 

The second exposure to stress (hereinafter designated as DOUBLE stressed animals) induced long-

lasting deficits in short-term memory of uCMS animals (t10=3.600, p=0.0024; Figure 7E). Imipramine 

administration, but not fluoxetine, counteracted these deficits, increasing the exploration of the new 

object (F2,14=4.259, p=0.0359; Figure 7E). Regarding the long-term memory analysis, the double 

stressed rats showed a significant decrease in the new object exploration, compared with the control 

rats (t11=3.392, p=0.030; Figure 7F). However, neither the SSRI drug fluoxetine, nor the trycyclic drug 

imipramine revealed cognitive improving effects in the recurrence perspective of the disease. Moreover, 

the ADs treated animals (FLX and IMIP group) showed a similar performance in the NOR test to the 

stressed rats, regarding the long-term memory assessment (Figure 7F). 

 

3.2.   Morphological alterations and total number of astrocytes analyses in the 

hippocampal DG in depression and after ADs treatment   

 

3.2.1.  Total number of astrocytes analyses in depression and after ADs treatment  

Several studies reported prominent decreases in the number of glial cells in several different 

frontolimbic areas, including prefrontal and medial prefrontal cortex, the dorsolateral and orbitofrontal 

cortex, the amygdala and also the hippocampus of depressed patients (Cotter et al., 2001; Harrison, 

2002; Rajkowska & Miguel-Hidalgo, 2007; Drevets et al., 2008; Hercher et al., 2009). Having this fact 

into account, we have first decided to look at the total number of astrocytes in the hippocampal DG of 

all the experimental groups at the different time-points on the course of the disease: in the short-term, 

long-term and recurrence perspective of depression (see Figure 3).  

All the cell counts were performed on stainings from hippocampal DG and analyses were performed 

in the confocal microscope (4DGs per animal, n=3 for each group). 

The Figure 8 represents one of the images that were analyzed. 
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Figure 8. Total number of astrocytes analysis on the hippocampal DG. This image represents an immunostaining for GFAP 

(red), showing several astrocytes present in the hippocampal DG. Dapi (blue) was used to label the nucleus. Abbreviations 

used: GCL - Granule Cell Layer, SGZ – Subgranular Zone. 

 

On the short-term analysis (week 6), no major differences regarding the total number of GFAP – 

positive cells per area (100 µm2) in the hippocampal DG were found, suggesting that the uCMS 

exposition did not induce alterations on glial number (Figure 9A).  

However, on the long-term analysis (week 10), there was a significant increase in the total number 

of GFAP-positive cells per 100 µm2 of DG in the uCMS group, comparing with the control animals 

(t22=3.728, p=0.0006, Figure 9B). Although this result is not in accordance with the studies mentioned 

above (in the Introduction section), the hippocampal DG is a completely new area that was not 

contemplated in these studies, so far. Moreover, the imipramine treatment showed to be capable of 

significantly reduce the number of GFAP – positive cells in the DG (F2,33=4.676, p=0.0163, Figure 9B) to 

levels similar to the control group. 

On the recurrence perspective of the disease (week 16), no major differences were found, although 

there was a high tendency for an increased number of GFAP-positive cells in the DG in the DOUBLE 

stressed animals, comparing with all other experimental groups (Figure 9C). 
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Figure 9. Total number of astrocytes in the hippocampal DG. Data is presented in terms of total number of GFAP+ cells per 

100 um2 of DG. * represents the effect of uCMS; # represents the effect of ADs treatment. Data is represented as mean ± 

sem. *p<0.05, **<0.01, **<0.001. Abbreviations used: CTRL – Control Group, SAL – uCMS Group injected with saline, 

uCMS (2x) – Group submitted to two uCMS protocol, FLX – Fluoxetine treated Group, IMIP – Imipramine treated Group. The 

striped bars represent the groups that were submitted to a second period of stress. 

 

 

3.2.2.  Morphological alterations of astrocytes by depression and after ADs treatment  

Several studies have reported that astrocytes have the capacity to change their morphology in 

stressful situations, adding several functions to them (Parpura et al., 2012). Furthermore, recent 

reports suggest that chronic stress can induce profound atrophy of astrocyte process length and volume 

(Tynan et al., 2013). Considering those reports, we have decided to study the astrocytic morphology, 

specifically of the astrocytes present in the hippocampal DG, in all time-points of this study: at short-

term, long-term and also recurrence. For that, we used the Neurolucida software and examined 

astrocytes (8 astrocytes per animal, n=3 for each group) in terms of volume and total processes length. 

At short-term, no major differences were found in the total processes length in astrocytes from the 

hippocampal DG (Figure 10A). However, in terms of volume, astrocytes from the uCMS animals showed 

a significantly higher volume comparing with control animals (t29=1.988, p=0.0282, Figure 10B). 

Moreover, both treatments with fluoxetine and imipramine significantly restored the volume value to the 

control animals levels, being significantly lower than the uCMS values (F2,58=5.424, p=0.0069, Figure 

10B). 
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Figure 10. Morphological assessment of astrocytic population in hippocampal DG. Data is presented in terms of total 

processes length (µm2) and total volume (µm3). * represents the effect of uCMS; # represents the effect of ADs treatment 

and δ represents the effect between treatments. Data is represented as mean ± sem. *p<0.05, **<0.01, **<0.001. 

Abbreviations used: CTRL – Control Group, SAL – uCMS Group injected with saline, uCMS (2x) – Group submitted to two 

uCMS protocol, FLX – Fluoxetine treated Group, IMIP – Imipramine treated Group. The striped bars represent the groups 

that were submitted to a second period of stress. 

 

 

Interestingly, at long-term, the fluoxetine treatment promoted a significant increase in the astrocytic 

process length, in comparison to the stressed animals (t22=0.06273, p=0.4753, Figure 10C). This effect 

was significantly different from the values reached by the animals treated with imipramine (F2,37=60.66, 

p<0.0001), being these animals´astrocytes restored to values similar to the control group (Figure 10C). 

In terms of astrocytic volume, fluoxetine treatment showed consistency with the values regarding the 

process length, being significantly increased in comparison with both the uCMS animals (t22=0.6743, 

p=0.2536) and imipramine treated animals (F2,37=82.27, p<0.0001, Figure 10D). 
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Regarding the recurrence analysis, both the uCMS animals and DOUBLE stressed animals showed a 

significant decrease in the total process length, comparing with the control animals. Furthermore, the 

astrocytic process length of the DOUBLE stressed animals revealed a significant increase in comparison 

to the uCMS group (F2,41=45.89, p<0.0001, Figure 10E). The fluoxetine treatment induced a significantly 

higher value of the astrocytic processes length, when comparing with the DOUBLE group (F2,39=4.466, 

p=0.0179; Figure 10E). In terms of total astrocytic volume, the same differences were found. The 

astrocytes from the DOUBLE stressed animals showed a significant higher volume than the ones from 

the uCMS animals, and both presented a significantly decreased volume, comparing with the control 

group (F2,41=45.89, p<0.0001; Figure 10F). Once more, the fluoxetine treated animals showed a 

significant higher astrocytic volume in comparison with the DOUBLE animals (F2,39=4.467,p=0.0179, 

Figure 10F).  

In Figure 11, some 3D visualization examples of the astrocytes that were manually analyzed with the 

Neurolucida software are represented. 
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Figure 11. 3D visualization of astrocytes analyzed with the Neurolucida software, at short-term, long-term and recurrence 

perspective of depression. Abbreviations used: CTRL – Control Group, CMS – uCMS Group, FLX – Fluoxetine treated Group, 

DOUBLE – Double stressed Group. 

 

3.3.  Impact of adult Gliogenesis in depression and after ADs treatment 

3.3.1.  Cell-fate and density of newborn glial cells analysis on hippocampal DG 

Since one of our main interests was to understand the impact of hippocampal gliogenesis in 

depressive animals, further treated with ADs, to correlate with cognitive performance, we decided to 

characterize and quantify at the different time-points (short-term, long-term and recurrence) the 

newborn astrocytes (double stained with GFAP and BrdU, Figure 12) in all the conditions: control group, 

stress group and AD treated groups (4 DGs per animal, n=3 per group). With that information we can 

better understand what is the contribution of newborn astrocytes to the neurodegenerative processes 

and cognitive behavioral impairments, observed in depression (Figure 13).  

All the cell counts were performed on stainings from hippocampal DG.  

The Figure 12 represents one of the images that were analyzed. 
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Figure 12. Glial differentiation in the hippocampal DG, 4 weeks after the recovery (week 10 of the protocol, see Figure 1).  
Rats were injected with BrdU for a period encompassing the last 2 days of uCMS and the first 3 days of recovery. 
Micrographs from A to E describe immunostaining for Dapi (blue, to label all nuclei), BrdU (green) and GFAP (red), showing 
that proliferative cells have differentiated into astrocytes that successfully survived and incorporated in the hippocampal DG. 
Micrographs from B to E represent one cell co-localizing BrdU (green) and GFAP (red). Dapi (blue) was used to label the 
nucleus. Abbreviations used: GCL - Granule Cell Layer, SGZ – Subgranular Zone. 

 

After analyzing the different time-points of the disease, several differences were observed. Regarding 

the short-term analysis (week 6), no major differences were presented neither relative to the percentage 

of GFAP and BrdU – double positive cells per total BrdU positive-cells (named as glial fate from now on; 

Figure 13A), nor to the number of GFAP and BrdU – double positive cells per area (100 µm2) of the DG 

(named as density of newborn glial cells hereinafter) analyzed (Figure 13B). Though, already a tendency 

for both an increased glial fate and newborn glial density was observed in animals treated with the 

trycyclic drug imipramine (Figure 13A and B). 

 

 

 

 

 

 

b 

c 

d 

a 

A B 

C 

D 

E 

Hilus 

GCL SGZ 



44 
 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 13. Glial Cell-fate and density of newborn glial cells analysis on hippocampal DG. Data is presented in terms of 

GFAP+BrdU+ double positive cells per total number of BrdU+ cells and number of GFAP+BrdU+ double positive cells per 100 

um2 of DG. * represents the effect of uCMS; # represents the effect of ADs treatment and δ represents the effect between 

treatments. Data is represented as mean ± sem. *p<0.05, **<0.01, **<0.001. Abbreviations used: CTRL – Control Group, 

SAL – uCMS Group, uCMS (2x) – Group submitted to two uCMS protocol, FLX – Fluoxetine treated Group, IMIP – 

Imipramine treated Group. The striped bars represent the groups that were submitted to a second period of stress. 

 

 

Focusing now on the long-term analysis (week 10), a strong and significant pro-gliogenic effect was 

observed with the imipramine treatment in the glial fate analysis, traduced in an increased percentage 

of GFAP and BrdU – double positive cells per total BrdU – positive cells, comparing with the uCMS 

group (Figure 13C). This result is in accordance with recent studies performed by our group (Mateus-

Pinheiro et al., 2013). Moreover, that increase was significantly different from the animals that received 

the fluoxetine treatment (F2,33=13.99, p<0.0001, Figure 13C). This difference was traduced in a 

concomitant significant increase in the density of newborn glial cells in the imipramine treated animals 

(F2,33=3.662, p=0.0366, Figure 13D), comparing with the uCMS group. Moreover, the density of 
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newborn glial cells of the stressed animals was significantly decreased in comparison to the control 

animals (t22=2.241, p=0.0177), resulting in a reduced number of GFAP and BrdU- double positive cells 

per 100 µm2 of DG (Figure 13D).  

Regarding the recurrence analysis, no major differences were observed in terms of glial fate, 

although a tendency for a decreased percentage of GFAP and BrdU – double positive cells per total 

BrdU – positive cells was observed in the stressed groups (Figure 13E). Moreover, a significant increase 

in density of newborn glial cells was observed in the DOUBLE stressed animals (F2,6=0.2186, p=0.8097, 

Figure 13F), traduced in approximately twice the value presented by the control group. 

 

3.3.2. Morphological alterations of newly born astrocytes by depression and after ADs treatment, 

at long-term 

Furthermore, we decided to look to the morphology of the newly born astrocytes that would integrate 

the hippocampal DG, at long-term, which means after 4 weeks of recover from the uCMS protocol. This 

parameter could give as a clue about the impact of stress and ADs treatment in the morphology of the 

new astrocytes. For that purpose, we selected astrocytes with double staining for BrdU and GFAP and 

analyzed them with the Neurolucida software, using the AutoNeuron extension module. This analysis 

gave us the information regarding both the processes length and total volume of the astrocytes from the 

hippocampal DG (Figure 14, 15A and 15B). The next figure (Figure 14) shows one of the astrocytes 

that were submitted to the AutoNeuron analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure14.Morphologic characterization of 

the BrdU+GFAP+ cells present in the 

hippocampal DG, at long-term. Selected 

astrocytes that co-localized the BrdU (green) 

and GFAP(red) markers were subjected to 

AutoNeuron extension module analysis, which 

resulted in automatic total process length and 

total volume analysis. The label in green 

represents the seeds applied by the 

Autoneuron module into the astrocyte 

processes to analyze the processes length and 

volume of that precise astrocyte. Abbreviations 

used: GCL - Granule Cell Layer, SGZ – 

Subgranular Zone. 
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In terms of total processes length, the newly born astrocytes from the uCMS group showed 

significantly higher processes length in comparison to the control animals (t17=3.634, p=0.0010, Figure 

15A). The imipramine treatment triggered a significant decrease of the astrocytic processes length, 

when compared with the stressed animals, to the levels of the control group. Moreover, this reduction 

was not seen on animals that were treated with the SSRI fluoxetine, showing a significant increase of 

the processes length of the astrocytes, contrasting with the effects of imipramine on the newborn 

astrocytes (F2,20=8.477,p=0.0022, Figure 15A).  

Regarding the total volume analysis, fluoxetine treated animals exhibited an increased astrocytic 

volume, comparing with the uCMS group. Moreover, this increased volume effect was also significantly 

higher than the one belonging to astrocytes from animals treated with imipramine 

(F2,20=5.004,p=0.0173, Figure 15B), evidencing once again the contrasting effect of both ADs on 

astrocytes and gliogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Morphological assessment of newly-born astrocytes in the hippocampal DG, at long-term. Positive cells for both 

BrdU and GFAP markers were selected from the DG and further analyzed in the Neurolucida with the Autoneuron extension 

module. Data is presented in terms of total processes length (µm2) and total volume (µm3). * represents the effect of uCMS; 

# represents the effect of ADs treatment and δ represents the effect between treatments. Data is represented as mean ± 

sem. *p<0.05, **<0.01, **<0.001. Abreviations used: CTRL – Control Group, SAL – uCMS Group, FLX – Fluoxetine treated 

Group, IMIP – Imipramine treated Group. 

 

Taken together, in order to correlate all alterations in pre-existing and newborn astrocytes (adult 

gliogenesis process) with the behavioral cognitive changes induced by stress and by ADs treatment at 
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short-term, long-term and recurrence, we included the Table 4 to summarize all results described and 

obtained with this work.  

 

 

 

Short -Term Long – Term Recurrence 

  

uCMS 
vs CTRL 

FLX vs 
uCMS 

IMIP vs 
uCMS 

uCMS 
vs CTRL 

FLX vs 
uCMS 

IMIP vs 
uCMS 

uCMS 
vs CTRL 

2xuCMS 
vs CTRL 

FLX vs 
uCMS 

IMIP vs 
uCMS 

Cognition 
ST Memory  Rescue Rescue  Rescue Rescue   = Rescue 

LT Memory  = =  = =   = = 

  
          

Astrocytes 

Total density = = =  = Rescue = = = = 

Processes length = = = =  =   Rescue = 

Volume  Rescue Rescue =  =   Rescue = 

            

Gliogenesis 

Glial fate = = = = =  = = = = 

Density of new glia = = =  =  =  = = 

Processes length        = Rescue         

Volume           =  =         

 

Table 4. Schematic representation of all the results regarding the cognition assessment, the astrocytic 

alterations and adult gliogenesis processes.  represents an increase in each evaluated parameter, comparing  

between the groups in each column;  represents a decrease in each evaluated parameter, comparing between 

the groups in each column; = represents no change seen in each evaluated parameter, comparing between the 

groups in each column; “Rescue” represents a recovery, after ADs administration, re-establishing the values 

obtained by the control group. All the comparisons are made between AD treated animals and stressed animals, 

except the 1st column of each time-point, which is composed by the comparison between control animals and 

stressed animals. Abreviations used: CTRL – Control Group, uCMS – uCMS Group, FLX – Fluoxetine treated 

Group, IMIP – Imipramine treated Group; vs – versus; ST Memory– short-term memory; LT Memory- long-term 

memory. 

 

 

 

3.3.3.  Study of glial proliferation and differentiation in vitro, using neurosphere cultures  

 

Evaluation of ADs treatment effects have been widely performed in vitro by using hippocampal-

derived neurospheres cultures. Since treatment with the AD imipramine, but not fluoxetine, has been 

shown to elicit a strong pro-gliogenic effect, we also wanted to study the differentiation of astrocytes in 

vitro using hippocampal derived-neurospheres cultures conditioned with norepinephrine and compare 

CTRL CMS 
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with serotonine (the neurotransmitters that mediates the effect of imipramine and fluoxetine, 

respectively). For that purpose, we established a neurospheres culture in 2 weeks (Figure 17), being 

able to observe the progression of rat hippocampal DG neural stem cells from a single cell to a 

neurosphere (Figure 17A and B, respectively) during a period of 10 days. We also differentiated the 

neurospheres and although we did not perform a specific staining for neurons, astrocytes and 

oligodendrocytes, to prove that neurons and glial cells were present, we could see by their morphology 

that neurospheres were multipotent and successfully differentiated into different cell types (Figure 18A 

and 18B). This observation supports the conclusion that the neurosphere cultures were well 

established. 

 

Figure 17. Neurosphere culture was established after 10 days, making possible the observation of rat 

hippocampal DG neural stem cells progression from (A) a single cell stage to (B) a neurosphere. Scale bar: 200 

µm. 

 

Figure 18. Neurospheres were successfully differentiated into different cell types, represented on Figures (A) 

and (B). Scale bar: 200 µm. 

A B 

A 
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Further studies will include the administration of dexamethazone to mimic stress exposure and 

serotonin and norepinephrine to the cultures in order to evaluate the effects of these neurotransmitters, 

which are known to be implicated in the ADs actions, on cellular differentiation. Serotonin and 

norepinephrine will be used to study in vitro the effect of fluoxetine and imipramine, respectively, on 

glial differentiation and thus correlate with our analyses in vivo. Proliferation will be assessed by 

immunocytochemistry using markers for ki67. Cellular differentiation will be assessed by 

immunocytochemistry, using markers for both neurons (MAP2, NeuN) and astrocytes (GFAP, GS, 

S100β). Cell counts will be performed in a fluorescence microscope. 
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IV. DISCUSSION   
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4. Discussion 

 

It is well known and proved that there are alterations of the brain network function on depressed 

individuals, on the onset and maintenance of the disease. Although the main focus around the 

mechanisms underlying this disorder has been put into neurogenesis, due to the reports showing that 

deficits in adult neuroplasticity are present in depressed individuals (Sahay & Hen, 2007; Bessa, 

Ferreira, et al., 2009; Mateus-Pinheiro et al., 2013), the process of gliogenesis seems now to be a new 

mechanism influencing certain cellular processes in the brain of these individuals (Rajkowska & Miguel-

Hidalgo, 2007).  

In fact, glial cells have been forgotten towards neurons along the neuroscience history. However, 

these cells have been related with several preponderant functions in the brain, interacting with neuronal 

cells and supporting them. Moreover, glial cells are known to actively participate in brain metabolism, 

synaptic transmission, interneuronal communication and are also responsible for maintaining the tissue 

homeostasis (Volterra & Meldolesi, 2005; Wang & Bordey, 2008; Devinsky et al., 2013). Specifically in 

the case of astrocytes, the main glial subtype, the interaction with neurons was shown to be really 

close. In fact, these cells were found to participate in the regulation of synaptic neurotransmission by 

sensing the activity of vicinal neurons, propagating calcium signals and releasing chemical transmitters: 

the gliotransmitters (Araque et al., 1999; Perea et al., 2009). Furthermore, studies in vivo suggested a 

possible role for astrocytes in adult neurogenesis, where they reported that astrocytes seem to provide 

highly physical support to progenitor cells and newly born neurons (Shapiro et al., 2005; Plümpe et al., 

2006; Morrens et al., 2012). 

Gliogenesis, the process that comprehends the generation of non-neuronal glia populations derived 

from neural stem cells (NSCs), has been recently involved in the pathophysiology of depression. In fact, 

several studies reported alterations in the astrocytes number after stress exposure (Rajkowska & Miguel-

Hidalgo, 2007) and, moreover, glial loss in the prefrontal cortex has been proved to induce depressive-

like behavior (Banasr & Duman, 2008). Furthermore, astrocytic dysfunction has been implied in 

cognitive impairments, when an attenuated astrocytic Ca2+ signaling led to behavioral impairments in 

reference memory and remote contextual fear memory (Tanaka et al., 2013). Altogether, these studies 

might support an underlying mechanism to the precipitation of depression, related with astrocytic 

dysfunction that apparently leads to cognitive deficits, commonly observed in depressed subjects. 
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Taking these results into account, the main objective of this work was to study the function of 

gliogenesis and astrocytes in the pathophysiology of depression, using a pre- validated animal model of 

depression (Bessa, Mesquita, et al., 2009). Moreover, we wanted to correlate the cognitive performance 

of the depressed animals and animals treated with antidepressants (ADs) with their possible 

dysregulation in astrocytic morphology and density, as well as in gliogenesis/glial cell fate at the 

hippocampal dentate gyrus (DG). All these parameters were assessed longitudinally in several time-

points on the course of the disease, more precisely at short-term (immediately after the uCMS protocol 

and AD treatment), long-term (after 4 weeks of the uCMS protocol) and recurrence (after exposition to a 

second uCMS protocol). 

To evaluate the function of gliogenesis and pre-existing astrocytes in the precipitation of- and recover 

from depression, we had first to validate the uCMS protocol applied to our animals. The obtained data 

confirmed the validity of the employed uCMS paradigm in both analyzed time-points: 4 and 6 weeks 

after the beginning of the uCMS exposure. In fact, already at 4 weeks after the uCMS protocol exposure, 

the stressed animals revealed clear signs of depressive-like mood (assessed trough the Forced 

Swimmimg Test (FST)), anhedonic behavior (assessed through the Sucrose Preference Test (SPT)) and 

also impairments in the cognitive domain (assessed by the Novel Object Recognition test (NOR)). These 

alterations on the cognitive performance go along with our expectations based on previous studies 

(Beck, 1976), since the mechanisms related with cognitive impairments are much more complex than 

those related with anxiety alterations, for instance. Additionally, these behavior alterations were 

correlated with the disruption of the corticosterone levels during day and night in the uCMS animals, a 

measure for the hyperactivity of the Hypothalamic-Pituitary-Adrenal (HPA) axis by the stress exposition, 

as previous described (Kant et al., 1987).  

After 6 weeks of uCMS exposition, our results were also successful in confirming, once more, the 

depressive phenotype, traduced in general impairments in all the domains commonly affected in 

depression – mood, anxiety and cognition. In terms of the cognitive evaluation, stressed animals 

showed marked deficits, comparing with the results after 4 weeks of stress exposure. Moreover, 

stressed rats were able to completely recover from a depressive-state with the administration of some of 

the most commonly used ADs in the clinics: the tricyclic agent imipramine and the serotonine-selective 

reuptake inhibitor (SSRI) fluoxetine, restoring all the experienced deficits to normal values (observed for 

control animals).  
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Once again, corticosterone levels of the uCMS animals showed the same disruption between the 

levels during day and night as previously observed, at week 4, which were re-established by imipramine 

and fluoxetine administration. 

In terms of cognitive assessment, stress seems to affect the animals throughout the time, at short-

term, long-term and also recurrence perspective of this disorder. The same statement can be applied to 

the different types of memory that were assessed – short-term memory and long-term memory.  

Regarding the disease perspective, at short-term, several cognitive deficits were experienced by the 

stressed animals, reflected in both short- and long-term memory impairments. It is though important to 

mention that the hippocampus is responsible for long-term object recognition, whereas the short-term 

memory is a cognitive function that involves prefrontal cortex (PFC) activity (Reger et al., 2009). These 

observations might suggest that not only the hippocampal cell populations are affected by the uCMS 

exposition, but also a decreased population of newborn cells that integrates the hippocampal formation 

is not able to establish projections with the PFC, under stress conditions. An additional hypothesis is 

that both the hippocampus and PFC cells are affected by the uCMS, thus also leading to disruption of 

the normal connectivity between both regions and impairments in short- and long-term memories. In 

fact, several studies already reported altered cell numbers and morphological changes in the 

hippocampus and PFC of stressed animals (Cerqueira, Taipa, et al., 2007; Bessa, Ferreira, et al., 

2009), which may lead to an increased difficulty in the communication between these two regions 

(Cerqueira, Mailliet, et al., 2007; Oliveira et al., 2013) and can explain our results. However, it is still 

important to clarify which is the cell type (or cell types) essential for the regulation of these connectivity 

impairments between the hippocampus and PFC under depressive-like conditions that lead to such 

marked cognitive dysregulations. In an astrocytic perspective, we can think of a deficient support 

provided by astrocytes to the pre-existing and newborn neurons that can be causing all these 

connectivity alterations and short-term memory impairments, seen not only at short-term but also 

throughout the disease periods taken in consideration in this study. It is noticeable that the short-term 

memory, but not the long-term memory, deficits were markedly rescued by the administration of either 

fluoxetine or imipramine.  This interesting result suggests that both ADs might be acting on the 

reestablishment of the neural circuits connecting the hippocampus and the PFC, but locally at the 

hippocampus they are not enough to rescue all cellular and molecular changes induced by depression.  

From our results, these stress-induced impairments in short- and long-term memory seem to be 

related with alterations in the volume of resident astrocytes at the hippocampal DG, which was 

drastically increased with the stress exposure. Moreover, with the ADs administration, there was both a 
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rescue in short-term memory deficits and in astrocytic volume, whose values were restored to values 

similar to the ones presented by the control animals. Furthermore, the long-term memory does not 

seem to be related with volumetric alterations of the pre-existing astrocytes of the DG, since the rescue 

of the astrocytic volume was not accompanied by a rescue of the long-term memory deficits (caused by 

the stress exposition). These volume alterations can be explained by an astrocytic effort/increased 

activity to re-establish the system or compensate lost functions after the stress assault. Actually, it was 

already reported that, among several factors, stress exposure and stress hormones were the first 

regulatory factors acknowledged to modulate DG neurogenesis (Cameron & Gould, 1994; McEwen, 

1997; Sapolsky, 2000). Moreover, since stress exposure induces decreases in hippocampal 

neurogenesis (Duman et al., 2001), the neuronal atrophy can be counteracted by an increased 

astrocytic action reflected in terms of volume, perhaps to support the debilitated neuronal network and 

improve functioning. Probably astrocytes can become activated when their partners need an extra help, 

like in major depressive disorder (MDD). 

In contrast with the volume alterations registered in the pre-existing astrocytes, gliogenesis do not 

seem to be related with any alterations seen immediately after the stress exposure - at short-term. 

Indeed, neither the density of astrocytes nor the glial fate was altered when animals were exposed to 

uCMS and further treated with ADs. Nonetheless, it is important to notice that, at short-term, animals 

were injected with BrdU 24 hours before the sacrifice. Therefore, at this time-point we are still 

evaluating the progenitor cells (which are described to be GFAP-positive (Casper & McCarthy, 2006), 

not allowing us to detect the effect of stress in glial or neuronal fate. Interestingly, this result also shows 

us that the population of GFAP expressing progenitors is not affected by stress, neither by the ADs 

treatment. 

 At the long-term perspective of the disease, after allowing the animals to recover from the stress 

exposition during four weeks, cognition seems to be affected in the same extension, as it is at short-

term. Actually, the stress exposure affected both the short- and long-term memories, as previously 

observed at short-term. Likewise, the impairments in the short-term memory experienced by the 

stressed animals were reversed by both fluoxetine and imipramine administration. Once more, the long-

term memory deficits were not counteracted by the ADs administration. These cognitive deficits were 

accompanied by several alterations related with both astrocytic alterations and gliogenesis per se. 

Regarding the astrocytic alterations, an increase in the total density of astrocytes seemed to be directly 

correlated with short-term memory deficits, in the stressed animals. Moreover, the fluoxetine treatment 

induced profound alterations in the pre-existing astrocytes, reflected in a large increase of the astrocytic 
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volume and processes length of these cells. These alterations induced by the treatment with fluoxetine 

can be related with astrocytes´activation by the stress disturbance of the system, leading to a 

readjustment of the neuronal network. Indeed, several studies suggest that ADs treatment can activate 

astrocytes, leading them to a state of over-working, in an attempt to re-establish the neuronal network, 

thus helping depressed individuals to recover (Czéh & Di Benedetto, 2012). This state of over-working 

can cause profound alterations in astrocytic morphology, resulting in an increased volume and 

processes length. Interestingly, in contrast to the fluoxetine treated animals, imipramine treatment did 

not induce alterations in pre-existent astrocytes neither in terms of volume, nor in processes length. 

However, one of the mechanisms that according to our results seems to be helping the hippocampal 

DG system to recover after treatment with imipramine is through a rescue in the density of astrocytes in 

this brain region (Mateus-Pinheiro et al., 2013). 

When we proceeded to the gliogenesis analysis at the long-term perspective, a brand new story 

arose. Indeed, the new cells that are born in the adult neurogenic regions take between 5 to 7 weeks to 

fully differentiate and establish new contacts with the neighbor cells. Thus, at this time-point of our 

analyses, it makes sense that newborn astrocytes are already differentiated and attempting to establish 

new contacts with nearby cells, becoming more important in the contribution to the normal functioning 

of the system. Therefore, the gliogenic process becomes an important factor in this long-term 

perspective of depression, as previously pointed out by our group (Mateus-Pinheiro et al., 2013). 

Indeed, stress induces a decrease in the density of newborn astrocytes, traduced in less GFAP and 

BrdU – double positive cells in the hippocampal DG. Although less glial cells seem to born in the DG 

after the stress exposure, it was also reported recently that the total number of BrdU+ cells is decreased, 

at long-term, in the uCMS animals (Mateus-Pinheiro et al., 2013). These results are then traduced in an 

unaltered glial-fate in stressed animals when compared with the control group. Moreover, those 

newborn glial cells that are analyzed at long-term show an increased processes length, which can also 

be related with an attempt to compensate the decreased density of newly generated glia, by 

establishing more contacts with the neuronal network. It is also important to mention that for these 

gliogenesis analyses at long-term, BrdU administration was performed during 5 days, and the 

proliferation/differentiation results reflect the proliferative status of the cell population immediately after 

the end of uCMS protocol as well as after the conclusion of the AD treatment, encompassing the 3 

initial days of the recovery period.  

Although fluoxetine treatment had induced several morphological alterations in the pre-existent 

astrocytes (like mentioned above), the same does not happen with the gliogenic process. Indeed, this 



58 
 

AD did not rescue the alterations in the density of newborn astrocytes and total process length of the 

same cells and thus the recover of the cognitive performance (short-term memory) induced by 

fluoxetine might not be related with gliogenesis. In fact, several studies reported that fluoxetine 

treatment seems to be more related with neurogenesis rather than with gliogenesis (Wang et al., 2008; 

Xi et al., 2011; Mateus-Pinheiro et al., 2013). However, it is also important to notice here, that the 

newborn glial cells in the DG after treatment with fluoxetine show an increased volume that can also be 

a mechanism through which these glial cells try to compensate the decreased density of newly 

generated glia and be able to rescue short-term memory.  

 Contrarily to fluoxetine, imipramine treatment showed to elicit a strong pro-gliogenic effect, reflected 

in a positive staining for GFAP in around 40% of the newborn cells (BrdU-positive). Moreover, this pro-

gliogenic effect caused by the imipramine administration can be associated with an increase in the 

density of new glial cells to compensate the decreased number of these newly generated cells reached 

after the stress exposure, compensating in this way the lost function. Furthermore, the increase in the 

astrocytic processes length seen in the uCMS animals was re-established to values similar to control 

animals, after imipramine treatment, suggesting that the neuronal network could be already restored 

and astrocytes were no longer needed to establish more contacts with the neighbor cells. Again, 

contrarily to fluoxetine treatment, no astrocytic alterations were seen regarding the total volume analysis 

of the newborn cells.  

Altogether these evidences suggest that, at the long-term perspective of depression, the cognitive 

rescue promoted by imipramine administration is related with underlying astrocytic density and 

gliogenic mechanisms. On the contrary, the mechanisms that might mediate the cognitive 

improvements induced by fluoxetine treatment are more neurogenesis-dependent, as previously 

suggested (Mateus-Pinheiro et al., 2013), and related with morphological alterations of astrocytes.  

These evidences also indicate that stress exposure leaves persistent morphological and behavioral 

scars on AD-treated animals. In this context, it is conceivable that the severity of the effects of a first 

depressive episode on cytogenic and remodeling processes may determine the rate and extent of 

relapse and recurrence of a subsequent depressive episode. Moreover, and taking into account the 

previous statement, in the first 5 years after recovery, around 50-70% of depressed patients suffer 

recurrent episodes (Burcusa & Iacono, 2007), so it becomes crucial to understand the neurobiological 

mechanisms behind this phenomenon of recurrence. It is also of the upmost importance to study the 

impact of treatment with typical ADs and uncover strong indicators of susceptibility to experiment 

recurrent depression. 
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Therefore, we included in our study the recurrence perspective of this disorder, by subjecting our 

animals to a second exposition to uCMS after the 4 weeks of recovery. Regarding the cognitive 

performance of our animals, both the short- and long- term memories were strongly affected with the 

second exposure to uCMS. Interestingly, imipramine treatment showed to be effective in promoting the 

recovery of the short-term, but not long-term, memory deficits caused by the stress exposition, and 

therefore seems to be resilient for a second hit of stress. However, fluoxetine treated animals were not 

able to rescue the cognitive impairments induced by stress exposure, in both analyzed dimensions, thus 

not being capable of preventing a relapse episode at the cognitive level. 

Taking in consideration the impact on the astrocytic population residing in the hippocampal DG, 

after the second exposition to uCMS, we observed a decrease in both processes length and total 

volume of the resident astrocytes. These results can be explained by a higher susceptibility of astrocytes 

for a second hit of stress, being supported by the fact that, at the short-term perspective of depression, 

only an increase in terms of volume was observed in the astrocytes (when astrocytes were exposed to 

the first hit of stress). Thus, the DG resident astrocytes when exposed to a first episode of stress are 

resistant and get activated to help in the recover of the affected neural circuits. However, if astrocytes 

encounter a new stressful event, they become more susceptible and probably less active in the recover 

of the hippocampal DG system, thus contributing to the persisting cognitive impairments observed in 

recurrence. On the other hand, an increase in the density of newly generated astrocytic cells apparently 

took place in the DG at recurrence. As  we do not observe an increased number of total astrocytic cells, 

this result might rather be explained by an increased expression of GFAP in the newborn cells, like 

sustained by several studies (Rajkowska, 2000; Rajkowska et al., 2005). Indeed, the GFAP expression 

has been related with the progression of cellular changes by depressive illness, which might be 

happening with the double stressed animals resulting in an increased number of GFAP and BrdU – 

double positive cells in the hippocampal DG. 

In the case of ADs treatment, after a second exposition to uCMS, fluoxetine seems to lose efficacy in 

recurrence, like previously mentioned. The explanation for that fact does not rely neither in astrocytic 

nor gliogenic factors, but might rely on the adult neurogenic process, as observed for the long-term 

perspective of the disease. The same conclusion can be applied to the imipramine treatment in 

recurrence, as this AD induced the recovery of the cognitive deficits, in short-term memory, not by 

means of astrocytic changes or gliogenesis - related processes, once both processes were impaired 

similarly to the double stressed group. However, the imipramine was inefficient in the recovery from the 

long-term memory deficits observed by the double stressed animals. This loss of efficacy in this specific 
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cognitive dimension could be explained by the impossibility of imipramine to rescue the morphological 

alterations in the resident and newly generated astrocytes induced by the second exposition to stress. 

These morphological alterations might be interfering with the local hippocampal neural circuits, 

impeding their normal activity and thus interfering with the long-term object recognition. 

Altogether, having all these results into account, it seems that both astrocytic changes and 

gliogenesis alterations in the hippocampal DG are more relevant for the cognitive rescue at long-term. 

Moreover, it seems that the different ADs treatment (with fluoxetine or imipramine) induce differential 

effects in the glial populations, which might be reflected in the final outcome. Taking in consideration 

the cognitive dimension of depression, fluoxetine seems to be efficient in the recovery of the 

impairments observed in stressed animals at long-term, through neurogenic-dependent mechanisms. 

However, this AD seems to be more susceptible to a second stressful episode, loosing its cognitive 

efficacy, again via neurogenic-dependent processes (Figure 19). On the other hand, imipramine seems 

to be a more complex AD in terms of mechanisms of action, since at long-term the cognitive 

improvements observed are gliogenic-dependent, but in recurrence, its action seems to be more 

neurogenic-dependent (Figure 19). Importantly, imipramine treatment is more resilient to a second hit 

of stress at some cognitive levels, thus probably indicating that this AD might be more efficient to treat 

the cognitive dimension of depression in the clinics.    
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Figure 19. Differential effect of Fluoxetine and Imipramine treatment in Cognition, in astrocytic alterations and 

also in Gliogenesis, on the hippocampal DG, at short-term, long-term and recurrence. 
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5. Concluding Remarks and Future Perspectives 

 

In the last decades, significant efforts have been done in the attempt to understand the complex 

pathological basis that underlie several neuropsychiatric disorders, such as MDD. Since neurogenesis 

has not been able to unravel all the causative neurobiological mechanisms of depression, we have put 

gliogenesis forward as a process underlying this disorder. In fact, some reports suggested that 

astrocytes might be responsible for the precipitation of the disease, presenting several impairments 

both in terms of basic functions as also in alterations of their morphology. 

In this work, we have been able to show that cognition seems to be affected in both components 

examined (short – and long- term memories) throughout the course of the disease. Short-term memory 

seems to be the only one that can be rescued by the ADs treatment, contrarily to the long-term 

memory, whose deficits seem to persist even after ADs administration. Moreover, these cognitive 

deficits seem to be correlated with alterations in the morphology and density of the hippocampal DG 

resident astrocytes as with the gliogenesis process. On the recurrence perspective of the disease, ADs 

treatment seems not to be related with gliogenesis per se, but rather with alterations of the pre-existing 

astrocytes, which might also be reflecting the neurons state. However, at long-term, the ADs treatment 

show differential actions, being imipramine the only one capable of reverting the cognitive and gliogenic 

deficits that arose after the stress exposure. Indeed, imipramine was demonstrated to elicit a strong 

pro-gliogenic effect in the newborn cells of the hippocampal DG, at long-term. This effect was 

accompanied by a rescue in the number of the resident astrocytes (Figure 19). It is tough possible that 

a deficient function of the neuronal network can lead to a readjustment of astrocytic number and 

functions, in order to compensate the system failure.  

Regarding the fluoxetine treatment, this AD induced a state of astrocytic activation, in which the 

gliogenesis process was not involved. Rather, a morphologic alteration in terms of volume and 

processes length of the pre-existing astrocytes was the strategy of fluoxetine action (Figure 19). This 

activation can be related with an attempt to readjust the neuronal network by inducing a state of over-

working in the pre-existing astrocytes. 

Thereby, we provide consistent evidence for the causative implication of gliogenesis and astrocytes 

in the pathophysiology of depression, having significant impacts in the long-term development and 

maintenance of cognitive deficits, as well as in the long-term recovery of those impairments promoted 
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by ADs treatment. Thus, our results strongly endorse the view of the hippocampal gliogenesis process 

as a promising therapeutic target in future therapies in the neuropsychiatric field. Moreover, this study 

shows for the first time that alterations in the hippocampal DG resident astrocytes can be further 

analyzed as a predictive target for depression. 

Further studies will include the evaluation of ADs treatment effects in vitro, using hippocampal-

derived neurospheres culture conditioned with norepinephrine or serotonine to prove all our in vivo 

results.  

It will also include the addition of S100 β and other markers for mature astrocytes in glial 

morphology and density analysis, which will complement the results presented here by adding this 

additional characterization of the astrocytic population. Furthermore, it will be important to study the 

differential effects of imipramine and fluoxetine, looking at the neurotransmitter level, and further 

correlate with the cognitive performance. 
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