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Abstract: This paper presents the effectiveness of soft cbimp algorithms in analyzing the bond
behavior of fiber reinforced polymer (FRP) systénserted in the cover of concrete elements, comynonl
known as the near-surface mounted (NSM) techniduéocuses on the use of Data Mining (DM)
algorithms as an alternative to the existing gumnds’ models to predict the bond strength of NSMPFR
systems. To ease and spread the use of DM algajitamveb-based tool is presented. This tool was
developed to allow an easy use of the DM prediatimalels presented in this work, where the userlgimp
provides the values of the input variables, theesas those used by the guidelines, in order tdhget
predictions. The results presented herein showttleddM based models are robust and more accirate t

the guidelines’ models and can be considered akwaant alternative to those analytical methods.
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1. Introduction

The strengthening technique that uses fiber retefibpolymers (FRP) inserted in the concrete cofver o
the element to be strengthened is known as netaesumounted (NSM) technique. In the last 15 years
intensive research has been devoted to the NShitpady becoming a widespread technique in practical
applications in the last years [1, 2].

Nevertheless, the NSM technique presents manyestggbs to overcome. In particular, the
characterization of the transfer of stresses betwlee FRP system and the surrounding concretehee.
bond behavior of NSM FRP systems, is not yet cotapplainderstood. The bond behavior has been
studied through direct pullout tests (DPT) and/eau pullout tests (BPT). Figure 1 presents a generi
example of both tests including some of the paramseised to quantify the bond strength discusded la
in this paper.

In Coelho et al. [2], a review on these bond tegts presented and two databases collecting a
wide range of DPT and BPT results were presentdduaad for better understand key parameters
affecting the bond performance of the NSM systehesE databases were also used to evaluate the
accuracy and limitations of two of the most releévguidelines for predicting the bond strength ofMlNS
FRP systems in concrete. The first formulatiomi@@uded in the “Guide for the Design and Constarcti
of Externally Bonded FRP Systems for Strengthed@ngcrete Structures” from the American Concrete
Institute [3]. The second guideline is the “Desigmdbook for reinforced concrete structures reteafi
with FRP and metal plates: beams and slabs” frandatrds Australia [4]. In this paper, those guitsi
will be referred to as ACI and SA, respectively.

The difficulties in modeling the bond performancisafrom the high complexity of the NSM
technique which involves three different mater{&RP, adhesive and concrete) and two different
interfaces (FRP/adhesive and adhesive/concrete)vatiety of properties (physical and mechanichl) o
each material and interface leads to the existefiseveral failure modes. However, ACI and SA
guidelines are not able to capture explicitly dlittem. On the other hand, that large variety ofperties
is associated to a large number of variables agid itifluence on the bond behavior of NSM FRP is fa
from being completely understood [2].

In an attempt to provide an alternative to therref guidelines, this paper introduces the use of
prediction models based on Data Mining (DM) alduris. In order to provide some insights on the tdise o

DM in structural engineering, the following sectipresents a brief overview on DM, focusing on &s u
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in the context of this work. However, contrarilywtat is common in the literature, no theoretiaal o
mathematical formulations will be provided herelternatively, basic concepts will be presenteatsin
once the fundamental concepts are perceived, éxteagisting literature exists on the mathematical
background and implementation of these algoritt®asne examples will be provided latter.

Finally, the results of a comparison between tleaigcy of the existing guidelines (ACI and
SA) and DM models is presented. This comparisonmade using the same databases of pullout tests as

used before to assess the accuracy of the guidetioeels [2].

2. Data Mining

Traditionally, the procedure adopted to achieve@dasign model is fundamentally empirical and eruls u
being a trial and error process. Three generic si@ps can be outlined: (i) identify the problertie

an initial hypothesis and define a method for tegt{ii) run the test; (iii) analyze the test reéswnd try

to infer them to identical situations. In the prais@ork the problem to be studied is the estimatibn
bond strength between FRP and concrete, whichisvied to be assessable by bond tests. The traditio
procedure is to perform a large set of bond testalyze the results and extrapolate them to idaintic
situations. For instance, the guidelines preselated in this work were developed in this way. Relizg
the third step, the most common procedure is barid error fitting of a mathematical expression
(normally chosen in order to have physical sigaifice in that context) to the results obtained éntésts
using a set of previously chosen input parametetlsregression analysis. If the tests are represeniaf
the phenomenon being studied and if the obtainpdession fits well the tests results, then it wdugd
possible to use that expression in identical séesiahll these steps are iteratively run until @eeptable
solution is found for the model describing the phraenon being studied.

Data Mining (DM) [5], which aims at the semi-autdinaxtraction of useful knowledge from
raw data, is an interesting alternative tool tceearsd speed up the last step of the process dedcrib
above. In fact, one of the several tasks that Dydrthms are capable of performing is regressien, i
finding a data-driven model that is capable of iy the real value of some (dependent) varialiien
some (independent) input variable(s) is(are) predid’he main drawback of using DM rather than
traditional data analysis procedure is that thenfyy depending on the algorithm used, might nowall
obtaining a closed form expression (easy to undeddtfor the prediction model. Instead, several DM

models are based in terms of complex mathematications or rules, thus the user can only see the
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input and output variables, in what is often terrasdblack-box” models [6]. As an advantage, the DM
approach simplifies the data analysis procesdr@ffect, DM models tend to be more flexible, fmgin
capable of predicting complex nonlinear mappings dealing with large amounts of data or noise. Such
model learning flexibility often leads to higheregictive performances when compared with classical
statistical models (e.g., multiple regression).

DM algorithms have been successfully used in regpagasks in many areas, including Civil
Engineering [8-11]. More specifically, in the fietdl concrete structures strengthened with FRP syste
there are examples where DM algorithms have beed taspredict the lateral confinement coefficiemt f
reinforced concrete columns wrapped with CFRP [t#],strength of FRP confined concrete cylinders
[13], the shear strength of reinforced concretartsereinforced with FRP systems using either the
externally bonded (EBR) [14] or the NSM [15] teaiurés or even the bond strength of FRP EBR
systems in concrete [16]. According to the authbest knowledge, only one work of their authorsghip
available where DM algorithms were applied to pecethe bond strength of NSM FRP systems in
concrete [17].

In this work, two DM algorithms were used: the Adiial Neural Networks (ANN) and the

Support Vector Machines (SVM). These DM algorithens briefly presented in the following sections.

2.1. Artificial Neural Networks
The Artificial Neural Network (ANN) is an algorithitinat is inspired in the behavior of the human i@@nt
nervous system. Hence, the learning ANN algoritimmsaat finding the best connection weights in which
a set of artificial neurons should communicate \eiéich other in order to attain a certain targe}.[18
Figure 2 presents two ANN examples: (i) Figure 2@)yesponds to a multiple linear regression,
which is a widely known and commonly accepted tgpeegression model. This is an example of the
simplest ANN, without hidden nodes; (ii) Figure R@mrresponds to a more complex ANN with one
hidden layer and two hidden neurons (HN). As it barseen, the only difference between them is the
existence or not of an intermediate layer of hiddeuarons.
In the multiple linear regression, several inpuialales ) affected by different weights are
combined and an output variabig (s obtained. In the ANN with one hidden layeeimhediary weights

are also introduced thus a nonlinear relation betwendy can be obtained. The number of hidden
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layers and neurons can be different from this exarapd, by increasing them, the degree of nonlityear
increases.

If the value ofy is knowna priori, then the multiple linear regression model is goression
identic to expression (1), where the only unknogvthe set of weightsM that make the equality true. In
the case of ANN with hidden layers, such an exjpoess no longer straightforward to obtain. However
a similar procedure minimizing the difference beswéhe predicted and observed values can be used to
find the optimal weights, in a process called fran

The type of ANN adopted in this work uses only drdden layer since this is the simplest
nonlinear ANN and was found to attain good resutie. number of hidden neurons determined during
the analysis by comparing the quality of fit witftieasing number of neurons (between 0 and 9) and

selecting the one which presents lower predictivare (when considering training data).

y:V%*'ZV‘M )

2.2. Support Vector Machines

Support vector machines (SVM) can be seen as aradpdo the ANN and were initially developed for
classification tasks [19]. Considering the classifion purpose, the basic concept of SVM is finding
optimal hyperplane for linearly separate patteies, finding the plane which maximizes the separat
between the different patterns that exist in thely@ed data. To ease the understanding of SVM
functioning in a classification task, Figure 3 pmets an example of a database with two input veasab
(x1 andxy) divided in two patterns (circles and squaresthindatabase real space (middle chart in Figure
3) those patterns can only be separated usingvadline. However, it can be found a functignwhich,
applied to the original data, can transform it iatnew high dimensional space where the two pattern
can actually be separated by a straight line. S\@drghm optimizes the position of that single lisiech
that it maximizes the separation of the two page8everal division lines can exist and are repiteseas
full lines in the left side of Figure 3. Howeven,this case, the line that maximizes the separatidine
patterns is the thicker one represented in thatdigRemark that, in more complex examples (with
several variables), the lines would be actuallyengtanes, as referred before. In the end, since the
optimal hyperplane is known, the relative positidrall the data points, especially those passeithdy

dashed lines (designated by support vectors) éskaewn. Hence, a model traducing the separation of
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the patterns can be defined which correspondsetaltssification model that was sought in the
beginning.

SVM were latter extended to also perform regrestsks, which are the important ones in the
scope of this work, being its functioning similarthe classification case. However, in regressioother
function gz will transform the original data in order to fiadine that passes through all data points (right
chart in Figure 3). That line is the regressiorcfion which allows predict the value of each datap
Since finding such a line is quite complex, theretao new important parameters in the SVM for
regression, namely the regularization paraméafd a loss function that in this work is the
insensitive £). The first defines the tradeoff between compieaitd accuracy of the model to be found,
while the second defines the width of a region iniclr the data points inside it are assumed to ben
regression line, thus an insensitive region. Tta gaints outside this region are the support vedto
the regression SVM.

Besides these two parameters, the success of SW¥Mdoession tasks is influenced by a kernel
function. In this work, the Gaussian radial bagislel function was adopted (2). This has only one
hyperparametery, which was adjusted using a greedy search (bet®&&eand 2). Similar procedure

was also adopted for parametewhile paramete€ was considered equal to 3 [20].

k(xx) =ep(-yx-x{").y>0 2

2.3. Rminer tool

Nowadays, there are several tools that allow ay apglication of DM algorithms with a limited
knowledge of the mathematical background requicedniplementation. In this work, the rminer library
[20] of the R Statistical Environment [21] was athap since it is particularly suited for generatiigN
and SVM data-driven models.

Among the several features included in rminerhia tvork the functionsining, fit andpredict
were used. For simplicity, the functions will besdgbed using a parallel with a simple regressiadah
The functiorfit allows finding an analytical expression in thenfigr= mx + b with m andb
adjusted to the database in analysis. Having theesgion calibrategyredict gives the results/) for new
values of the independent variabi@ iy replacing it in the expression foundfity The functiommining
is a more sophisticated function. It performs saevains (i.e., sequencesfdfandpredict executions)

under a user selected validation method. It is it@m to emphasize that, whilié uses the entire
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database to adjust a modwmining only uses part of it, being the fitted model tdsteunseen data (i.e.,
test set). This aspect is very important sincHlatng evaluating the performance of the adjustedeho
when applied to new data (depending on the vatidatiethod), thus measuring the true generalization
capacity of the DM model. In this work, a holdoptisvalidation method was adopted, in which 2/3 of
the data entries were randomly selected as traitétg and the remaining 1/3 samples were usedtfas te
data. Another important difference is that ofityfunction allows storing a model that can be theedy

like an analytical expression, to perform new pecgdns. In fact, depending on the chosen divisibsets
and number of runs, for exampieining function can produce a huge number of models pFaxtical

reasons, the rminer library does not store anhedd models.

3. Tests and analyses
The following paragraphs present the databasessts tised in this work. Then the ACI and SA
analytical formulations, used as reference, aregmted. Finally, the DM analyses carried out is thi

work are detailed.

3.1. Databases of pullout tests
As referred, two databases of pullout tests weik, lsme including 363 direct pullout tests (DPTida
other with 68 beam pullout tests (BPT). In the eahbf the present work, it was decided to buildaup

webpage to store the referred databases (www.fgdtarcivil.uminho.pt). It is believed that providin

the scientific community free access to the vagbnta of pullout tests available in the literatumakes
the process of continuously improving the existimgdiction models faster and easier. It is expetiiat
with the contribution of all the researchers wogkin this field, this website will be continuously
updated.

The referred website includes, besides the datapageage to perform predictions of the
maximum pullout forceRmax) using different formulations. It includes ACI aB& guidelines and the
DM models developed herein. It is also believed, tha providing in the website an easy way of using
and testing DM models, the acceptance and usecbfawerful tools will increase. Hence, providiheg t
required input variables, results obtained usihthal prediction formulations described herein il

readily available.



Coelho, M.R.F.; Sena-Cruz, J.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T. (2016) “Using data mining algorithms
to predict the bond strength of NSM FRP systems in concrete.” Construction and Building Materials, 126: 484—495.

To help the community in improving prediction maglédr NSM bond behavior a detailed and
comprehensive data visualization tool is also idetliin the webpage. In addition, a Forum is also
available to ease the interaction between all ésearchers contributing for the website.

Regarding the details of the databases used invthis, for the sake of brevity, Table 1 presents
an overview of the variables available in each lizda included in the final models only. This teddko
shows the range of values used for each parangaitjfying bounds of application of the proposed
models.

More detailed information regarding the other Valéa included in the databases, as well as an
overview of some of the main conclusions that canfawn from these databases can be found in the

webpage referred above and in [2].

3.2. Analytical formulations
ACI and SA formulations are summarized in Tablé 2letailed description of the guidelines and ofrthe
application to the databases presented can be fayail

Since in all the analyses, mean values for the ar@chl properties and no additional safety
factors or strength reductions were consideretightsnodification was made to ACI and SA
formulations. This included the use of FRP ultimatesile strengthfi)) and concrete mean compressive
strength {or), instead of using their design values as defindgtle guidelines. Those valudgs andfem)

were estimated experimentally by the authors oftterimental works included in the databases.

3.3. Data mining analyses
A total of eight DM analyses were performed forfedatabase, as shown in Table 3. Firstly, two tydes
analyses, denoted A and B, were considered. Ifirfiethe input variables were defined based @n th
guidelines (ACI and SA). In the second type thautn@riables were estimated during the analysis by
using an automatic selection process (RM) or bykinimg that with expert judgment (User). This
resulted in 4 sets of input variables. For eaclositput variables, models using both ANN and SVM
algorithms were generated. The next paragraphd datdh of these analyses.

Analyses Type A were conducted assuming for DM rteotdee same input variables as used by

the guidelines’ models. Hence, one analysis usedhtiut variables considered by ACL(pr, Ay, fi)
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while the other used those from Si&,(Ay, fru, dg, by, Es, fem). This allowed the direct comparison between
the performance of DM and guidelines’ models.

Each analysis of Type A consisted on runminging function over each database. A total of 20
runs were imposed being the database divided inrBmdom sets of equal size (3 for training andrl f
testing). Then the prediction error metrics flutinia was analyzed in order to check generalization
capacity of each DM algorithm. To this purpose, 3686 t-student confidence interval was adopted.
Finally, the error metrics obtained in all the 2@s were averaged to allow comparisons between lrmode
accuracy.

In analyses Type B, it was assumed that the ingriables were not knowapriori. Hence,
besides the four and seven variables used by ACE#y respectively, all the numeric variables pnése
in more than 2/3 of the records in each database aso included. This resulted in more than 2@inp
variables available on each database at the begimifithe calibration process.

The same procedure used in the analyses Type Aiseasfor these new and larger databases. In
the end of thenining sequence, a sensitivity analysis was performendlder to identify the most
important variables in a backward selection procedéfter identifying the most important variabléise
procedure was repeated with the limited input \deis. This process was carried out several tineiagb
the number of input variables successively redutethe end, a final set of input variables coutd b
proposed as well as the DM models using those ivgidbles.

Since this sensitivity analysis is influenced bg thpresentativeness of each variable in the
database, in some cases the final set of varia@defound to be meaningless for design purposewxéje
a different type of models were generated, takiig account the evolution of the variable’s impoc&a
in the sensitivity analyses and also includingtadl variables thought meaningful for design.

Since in the first case the variables were chogking into account only the rminer sensitivity
analysis, these were designated by RM. In the skcase, since the choice was made by the user, the
designation User was adopted instead.

Finally, it should be emphasized that all the asedycarried out used the maximum pullout force
(Fmax) as the only output variable. Also, in all the lgsas, variables normalization was considered using
a zero mean and a one standard deviation transfiormfar all input and output variables (-1 to hf&).
Then, the inverse procedure was performed for titud variable in order to export it in its origina

scale.
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4. Results

For each analysis three error metrics were caledjatamely, the mean absolute erddAE), the root
mean squared erroRKSE) and squared correlation coefficieRe), Those are defined in the equations
(3) to (5), respectively. In these equations, tiieres for thei specimen of the totd, is the difference
between the numerical prediction of the maximuniqutiforce Fmaxnum) and its experimental value
(Fimaxexp), @s illustrated in equation (6). In equation (6 parameters with an upper bar, represent the

average value of the corresponding parameter.

MAE = iz:“|e| N -
e gﬁz/ " (4)
= g((':f max,Exp)i _(Ff maxExp)i)((Ff ma)Num)i _(Ff ma;Num)i)
\/iZ:;((Ff max,Exp)i _(Ff maxExp)i )2 XZ::((Ff ,mawum)i _(Ff maNum)i )2 ©)
& =(Fumaoun), ~(F: o), ©
Analyses Type A

Tables 4 and 5 present the average error mea&(RMSE andR?) obtained in the 20 runs of
mining function performed for all the analyses with DRIO&PT databases, respectively. Those metrics
include, in parenthesis, the correspondent 95%destt confidence intervals to allow verifying the
stability of the predictions. For all the analypessented, it was found that they are quite staide
capable of being used in unseen data since thegmpied simultaneously low errors and low dispersion
values along the 20 runs performed on differera dats as shown by the low values of 95% t-student
confidence intervals obtained.

Additionally, in these tables are also includedghme error metrics obtained when applying to
each database ACI and SA formulations, as defineéch guideline. Note that the number of specimens
considered was not the same in all the analysds.ntimber depends on the input variables required i

each analysis, which were not always availabl&éndatabases because the authors of the corresgondi
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experimental tests did not provide them. Neversgglthe analyses can still be compared since the sa
number of specimens was used for each group ofsemblsing the same input variables.

Comparing the analyses Type A (using ACI and SAlin@riables) it can be seen that, for both
databases, the worst results (highe"€ andRMSE and lowerR?) were obtained by the guidelines. As
already verified in a previous work, SA presentsdsgoerformance than ACI even thoughRfsvalue is
lower [2].

In terms of DM models, for both databases, usingripAit variables attained better results.
Regarding DPT database, when ACI input variablesiasedMAE andRMSE of both DM models (ANN
and SVM) are at least 20% lower whiRéis at least 40% bigger. When SA input variablesused,

MAE andRMSE of both DM models (ANN and SVM) are at least 24%vér whileR? is at least 50%
bigger. In the case of BPT database, the improveimehe results is even bigger. The major differen
when compared with the results of DPT databagégifact that the error metrics are almost the same
both analyses Type A and B. This means that theawgments achieved with the DM models obtained

in analyses Type B were lower for BPT database.

Analyses Type B

For analyses Type B, the first result to be considés the importance of each variable in the
prediction of the bond strength. In Tables 4 anth&se variables are presented by decreasing ofder
importance. Further discussion about this subjétbe given in following paragraphs.

A common aspect for both databases is that alyaealType B presented better results than
those from the guidelines, being the best restitained using SVM and ANN algorithms for DPT and
BPT databases, respectively. When compared withraslllts, the three metrics of the all four DM
models are at least 50% better. When comparedS#ithesults, the three metrics of the all four DM
models are at least 40% better. In both case®rbettans tha¥lAE andRMSE are lower whileR? is
bigger.

In the case of DPT database, the RM input variatdelection, lead to include, as input variable,
the concrete block length{— see Figure 1). Howeveg is not relevant from design viewpoint. On the
other hand, RM selection did not included any ingariable related with concrete nor adhesive
mechanical properties. Hence, User selection pspedsich took into account both importance and

relevance of each variable, proposes a differarafdaput variables where adhesive and concrete
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mechanical properties are also represented. Amaj\thie error metrics, it can be seen that RM aealys
are slightly better. However, taking into accoungttUser input variables are more reasonable tsbd,
the error metrics are still acceptable.

In the case of BPT database, the major differeetedrrn RM and User input variables is
related with the removal of FRP modulus of elastiff), since there was already a more important
variable related with FRP mechanical propertied, the inclusion of adhesive compressive strenigih (
in order to have the adhesive mechanical propedigesented. Regarding the error metrics, User
analyses attained better results.

The relative importance of each input variable wigtd in all analyses Type B is summarized in
Figure 4. Comparing the relative importance of eamfiable when the RM input variable’s selection is
used, the results differ between DPT and BPT datxhdn DPT (Figure 4a), since the geometric
variables appear in larger number, it seems tleagometry of specimen and the configuration of the
strengthening have more impact in the predictibas the mechanical properties of the involved
materials. In BPT (Figure 4c), both geometric arethanical parameters appear in the same number.

Another interesting aspect is related with thealaas’ interaction that was found during the
process of selecting the input variables. For exapgonsidering the importance ranks depicted guré
4a and b it can be seen that, besldgshere is no other common variable in the tworggu However, as
referred above, the only actions taken when mofriigp RM to User analysis, were the removalef
and the addition df; andfcm. But when the sensitivity analysis was re-runngshe new set of variables,
it was found thapr, pg anda. were more important than their equivalents in R se.As, dg andb,
respectively a variable referring to FRP geomegrgpve geometry and location of the NSM FRP system
in the concrete element. This suggests that tisdrgdraction between variables which is the reagon
the final set of variables suggested by the Usigiu(E 4b) is completely different from RM final set

(Figure 4a).

5. Using DM models

As referred before, the analyses carried out usingng function do not allow storing a prediction
model. Hence, the final DM models to be proposecevabtained by runninfit function over each entire
database. Since those final models were intendbd toade available in the website that stores the

databases (see section 3.1), where also guidelinaufations can be easily applied, only DM models
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using guideline input variables were generated.ddethose willing to compare the maximum pullout
force Fimax) Obtained in their pullout tests, just need tovide the guidelines input variables and specify
the type of test they are comparing with. Thencligking the “Calculate” button available in the
website’s page, six values Bfwx prediction are obtained. The first two corresptmthe guidelines ACI
and SA (the step-by-step calculation procedureatsmbe seen). The remaining four predictions
correspond to those obtained by DM models. Twoespond to the two DM models based on ANN
algorithm using either ACI or SA input variables€llast two predictions are identic to the fornvew,t

but are based on SVM algorithm instead. Figureesgmts an example of a prediction run in the websit
Remark that the experimental value of that examgle 20.4 kN.

Table 6 presents the error metrics for these fmal models for both DPT and BPT databases.
As it can be seen, the error metrics of these nsaatel even lower than all the corresponding anslyse
presented so far. This is mainly related with et thaffit function uses the entire database to adjust a
model while in all the analyses withining function only 3/4 of each database were being fmed
models adjustment.

To ease the comparison between guidelines and Diela@rediction capability, Figure 6
presents the relationship between experimentapagdicted pullout force obtained when each DM
model included in Table 6 is applied and also wA&h and SA guidelines are applied. As it can bensee
the clouds of points related with the guidelinedais are larger than those of the DM models, ravgal
higher dispersion of the predictions.

In the importance charts presented in Figure dtmled lengthl() was always found to be the
most important variable in the prediction of theximaum pullout force. Hence,, was selected to access
the stability of the predictions obtained by eaadel. Figure 7 presents the relationship of thie rat
between the quantities plotted in Figure 6, i.eximam pullout force predicted by each mod&hfxnum)
and that obtained in the experimental teBts{exp), versus the bonded length. This figure allows to see
that the guidelines’ models performance is infliezhbyLy, producing safe results for lower valued pf
and results successively more unsafesdacreases. Contrarily, this ratio for DM modelsiimost
constant, revealing that the performance of DM nwienot influenced by the variation bf.

Nevertheless, it is interesting to verify that, fmth guidelines (ACI and SA) and with both

databases (DPT and BPT), the amount of data plo@htsv the 45° line in Figure 6 or below the line
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where the rati¢-maxnum/Fimaxexp IS 1 In Figure 7, is in general greater than alibese lines. This means
that the guidelines’ predictions tend to be constive, as already verified in a previous work [2].

In order to show the generalization capabilitylef proposed DM models, Figure 8 presents
variable effect characteristic (VEC) curves [6,&%]bonded length,». These curves reproduce the
influence ofL,, in the predictions, as it changes from its minimionits maximum value in each database.
The VEC curves were obtained by dividing, in eaatatlase, the range lof into several parts. Then, all
the final DM models included in Table 6, as welbash ACI and SA guidelines, were applied usingheac
value ofL, and the average values of all the remaining viegatequired by each model.

As can be seen, in terms of ACI and SA guidelinesligtions, Figure 8b is just a zoom of
Figure 8a, due to the smaller rangd_p¥alues available in BPT database. If ACl and SAves in both
figures were overlapped, they will coincide, sitice same variables were applied for both DPT ant BP
databases. These curves show that using SA guedibkn“average specimen” (fictitious specimen with
all parameters on their average value) has a demaot lengthlg, of about 270 mm. Such threshalg
was not predicted by ACI guideline.

Analyzing DM models predictions, two main conclusi@can be drawn. The first is that, except
for the model SVM_ACI (using SVM algorithm and Aldput variables) in Figure 8a, all other DM
models in both figures present either ACI or SAdglines’ trends. Secondly, for those DM models that
captured_q, for values oL, greater thahy, the maximum pullout forcd=max) remained almost constant,
as it should be. These two conclusions show tleabti models developed herein have the required

generalization capacity.

6. Conclusions
In this work, a better understanding of the bondgseance of NSM FRP systems was achieved by
using data mining (DM) as an alternative to thestxg analytical formulations (ACI and SA guidelne
models) to predict the bond strength of such stieming systems. All the analyses presented in this
work were based on two large databases of diretbaam pullout tests with NSM FRP systems.
Regarding analyses Type A (using the input varmbleggested by ACI and SA guidelines):
- they showed a direct comparison between the piedicapacity of guidelines models and DM
models using the same input variables. In the ah@M models performed better than the equivalent

guidelines models;



Coelho, M.R.F.; Sena-Cruz, J.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T. (2016) “Using data mining algorithms
to predict the bond strength of NSM FRP systems in concrete.” Construction and Building Materials, 126: 484—495.

- the DM models were find to be stable since thetflation of the error metrics was found to be
quite low along the 20 runs conducted for each Dtieh.

Regarding analyses Type B (using sets of inputsées suggested in this work):

- they showed that the maximum pullout force in NERIP bond tests could be better predicted
if a set of input variables different from thosepted by guidelines is used;

- the sensitivity analyses conducted to choosadreinput variables can lead to include
variables that are not relevant for design, thugit necessary to replace some input variableshgy o
thought more significant. However, the impact ia firedictive capacity of the DM models with thissne
set of input variables was quite low, thus thene loa obtained DM models suitable for design and
maintaining high accuracy.

Regarding the database website:

- in order to spread and encourage the use of Ditiigfield, the best DM models obtained
herein were made available in a website built fiat purpose. Only DM models using the same input
variables as used in the analyzed guidelines wasidered,;

- the guidelines models predictive capacity seentmetinfluenced by the value of the bonded
length. Contrarily, the predictive capacity of firml DM models were found to be independent frdus t
important variable.

Finally, the generalization capacity of the progbB# models was demonstrated. For this
purpose, the bonded length was selected to comlgeigtarametric studies. These studies provedhbat t

DM models are in agreement with the guideliness tiney have the required generalization capacity.
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Table Captions

Table 1 — Range of the variables used in the ptiedicodels.

Table 2 — Summary of ACI and SA guidelines’ forntigas.

Table 3 — Summary of the analyses performed.

Table 4 — Average error metrics obtained afteri2® rofmining function in the DPT database (best
values inbold).

Table 5 — Average error metrics obtained afteri2® rofmining function in the BPT database (best
values inbold).

Table 6 — Error metrics for the final models ob¢airby fitting DM algorithms to each entire database

(best values iold).
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Table 1 — Range of the variables used in the ptiedicodels.

Direct pullout tests database

Beam pullout tesisbdese

Variable | Number of recordls Range Variable| Number of recofds Range

be [mm] 325 [90-300] | Larm [mm] 56 [67-212.4]
Lc [mm] 361 [152-1000] | Ly [mm] 68 [40-304.8]
by [Mmm] 340 [3-50] by [Mmm] 68 [3.3-25.4]
dg [mm] 359 [5-60] dg [mm] 68 [7-26]

Py [Mm] 340 [27.2-100] | fon [MPa] 68 [26.7-73.5]
ae [mm] 325 [11.5-150] | fu [MPa] 68 [2.47-6.01]
Ly [mm] 363 [30-510] | Ec[GPa] 68 [29.54-47.88]
fom [MPa] 309 [18.4-65.7]| df [mm] 68 [4.55-20]

E: [GPa] 361 [37.17-273] E:[GPa] 68 [33.93-171]
fru [MPa] 363 [512-3100]| fu [MPa] 68 [773-2833]
Eu [%0] 363 [7.4-30] &u [%o] 68 [11.21-32.72]
A [mm?] 363 [12-201.06]| A¢ [mn¥] 68 [12.65-143.14]
pr [mm] 363 [18.85-84.8] pr[mm] 68 [15.1-45]

fa [MPa] 307 [8-62.05] | fao [MPa] 56 [44.4-87.7]

Note:from a total of 363 specimeréiom a total of 68 specimens.
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Table 2 — Summary of ACI and SA guidelines’ forntigas.

Parameter ACI guideline SA guideline
Development length Af, rﬂL
max —per
[Ld] P Tag J_(EA),
Maximum pullout force Afy ifLzL VoG L (BA), S A, if L 2L,
L, . L .
[Ffmax] 'Af ffd L_ If Lb < Ld \/Tmaxdmax \/Lper(EA)f L_b < Af ffd If Lb < Ld
d d
I..=(08+0078, J*°
3. =(0.7321°7) /..,
Comments r,, =6.9 MPa

¢ =(,+7)/(b,+2

L, =2(d, +1)+b,+2
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Table 3 — Summary of the analyses performed.

Type A Type B
Database (Input variables knowa priori) (Input variables unknowa priori)
Input variables DM algorithm Input variables DM afghm
ANN ANN
ACI RM
SVM SVM
DPT
ANN ANN
SA User
SVM SVM
ANN ANN
ACI RM
SVM SVM
BPT
ANN ANN
SA User
SVM SVM
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Table 4 — Average error metrics obtained afterni2& rofmining function in the DPT database (best valuelsal).

Type A Type B
Inputs origin
ACI A RM User
Input variables Lo, pr, Ay, fr Lo, Ay, fru, dg, bg, Ef, fom Lo, A, b, L, dg, &u Ly, pr, fat, &u, Pgs e, fom
Model ACI* ANN SVM SA* ANN SVM ANN SVM ANN SVM
MAE [kN] 14.85 | 10.10 (+0.14)9.82 (+0.12) 11.56 7.92 (+0.16) 7.07 (£0.11) 5.64 5.75 6.14 5.70
RMSE [kN] 19.34 | 15.38 (+0.29)14.93 (+0.2) 15.16 | 11.52 (+0.27)10.67 (+0.16 8.60 8.17 8.71 8.22
R?[-] 0.58 | 0.82(+0.01) 0.83 (+0.01) 0.53 | 0.80 (+0.01) 0.83 (+0.01) 0.89 0.90 0.88 0.89
Specimens [-] 363 286 208

Note: The values in parenthesis are the corresp®dés t-student confidence intervals. *Analysisading to the guideline.
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Table 5 — Average error metrics obtained afteri2& ofmining function in the BPT database (best valudsalu).

Type A Type B
Inputs origin
ACI A RM User
Input Variables Lb, pr, Ay, T Ly, Ay, fru, dg, by, Es, fom Lb, &u, Larm, fetm, Ecm, Et, O Lb, &u, Larm, fetm, O, fac

Model ACI* ANN SVM SA* ANN SVM ANN SVM ANN SVM
MAE [kN] 10.65 |3.98 (+0.17) 4.63 (+t0.31) 7.18 |3.18 (+0.26) 3.62 (+0.16 3.62 3.67 3.56 3.56
RMSE [kN] 13.56 | 5.51 (+0.26) 6.94 (+0.39) 8.90 |4.42 (+0.56) 5.54 (+0.23 4.86 5.10 4.76 4.97

R?[-] 0.43 |0.88(+0.01) 0.80 (+0.03) 0.62 |0.92 (x0.02) 0.88 (+0.01 0.88 0.88 0.89 0.88
Specimens 68

56

Note: The values in parenthesis are the corresp®dés t-student confidence intervals. *Analysisading to the guideline.
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Table 6 — Error metrics for the final models ob¢airby fitting DM algorithms to each entire database

(best values ibold).

Inputs origin ACI SA
Input variables Lo, pr, Ay, fr Lo, Ay, fru, dg, bg, Es, fom
Database DPT BPT DPT BPT
Model ANN SVM ANN SVM| ANN SVM ANN SVM
MAE [kN] 7.36 6.93 1.87 1.53 3.78 3.87 1.10 0.62

RMSE [kN] 10.77 10.26 2.50 2.49 5.61 5.77 1.48 1.12

R?[] 0.84 0.86 0.95 0.95 0.91 0.91 0.98| 0.99

Specimens [-] 363 68 286 68
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Figure Captions

Figure 1 — Direct (left) and beam (right) pulloasts for NSM FRP in concrete.

Figure 2 — Example of ANN: (a) without hidden lagiefb) with one hidden layer.

Figure 3 — Example of SVM classification (left) aradjression (right) of non-linear data (middle).
Figure 4 — Relative importance of each input vdeab the analyses Type Bdtabase andinput
variables): (a) DPT andRM; (b) DPT andUser; (c) BPT andRM; (d) BPT andUser.

Figure 5 — Maximum pullout force prediction caldeldin the website developed.

Figure 6 — Experimentakrsus predicted pullout force for the final models obtd by fitting DM
algorithms @latabase andinput variables): (a) DPT andACI; (b) DPT and$A; (c) BPT andACI; (d) BPT
andSA.

Figure 7 — Variation of the ratio between experitaéand predicted pullout force with the bondedytén
(database andinput variables): (a) DPT andACI; (b) DPT andSA; (c) BPT andACI; (d) BPT andSA.
Figure 8 — VEC curves fdr, considering (apPT or (b) BPT databases. Note: composite designations

include the DM model and the type of input variablkes defined in Table 6.



Coelho, M.R.F.; Sena-Cruz, J.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T. (2016) “Using data mining algorithms
to predict the bond strength of NSM FRP systems in concrete.” Construction and Building Materials, 126: 484—495.

Larm

bg
Il ngIdf

bc [0l

ae

Figure 1 — Direct (left) and beam (right) pulloasts for NSM FRP in concrete.
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Figure 2 — Example of ANN: (a) without hidden lagiefb) with one hidden layer.
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Figure 3 — Example of SVM classification (left) aradjression (right) of non-linear data (middle).
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Figure 4 — Relative importance of each input vdeai the analyses Type Bldtabase andinput

variables): (a) DPT andRM; (b) DPT andUser; (c) BPT andRM; (d) BPT andUser.
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Figure 5 — Maximum pullout force prediction caldeldin the website developed.
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Figure 7 — Variation of the ratio between experitaéand predicted pullout force with the bondedytén

(database andinput variables): (a) DPT andACI; (b) DPT andSA; (c) BPT andACI; (d) BPT andSA.



Coelho, M.R.F.; Sena-Cruz, J.; Neves, L.A.C.; Pereira, M.; Cortez, P.; Miranda, T. (2016) “Using data mining algorithms
to predict the bond strength of NSM FRP systems in concrete.” Construction and Building Materials, 126: 484—495.

140 1 1 1 1 1 80 Il L 1
—=—ACI —=—ACl
1204 —*— ANN_ACI L —e— ANN_ACI P
—4— SVM_ACI —4— SVM_ACI P
1004 —2 SA L 601 .o sA i
o ANN_SA o ANN_SA
= go{ 4 SVM_SA L = |-+-sws
&, =
5 40+ -
L E
o
| 20- L
0 T T T T T 0 T T T
0 100 200 300 400 500 600 0 100 200 300 400
L, [mm] L, [mm]
(a) (b)

Figure 8 — VEC curves fdr, considering (aPPT or (b) BPT databases. Note: composite designations

include the DM model and the type of input variablkes defined in Table 6.
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Notation

The following acronyms /symbols are used in thiggra

Acronyms

ACI American Concrete Institute guideline

ANN Artificial Neural Network

BPT beam pullout tests

DM Data mining

DPT direct pullout tests

FRP fiber reinforced polymer

NSM near-surface mounted technique

SA Standards Australia guideline

SVM Support Vector Machine

Symbols

e Distance from FRP to closest concrete block edge
A FRP cross-section area

b Concrete block width

by Groove width

o FRP width or diameter in quadrangular or round J@spectively
dg Groove depth

Ec Concrete modulus of elasticity

E FRP modulus of elasticity

&u FRP ultimate strain

fac Adhesive compressive strength

far Adhesive tensile strength

f Concrete design compression strength

fom Concrete cylinder mean compressive strength
fu Concrete tensile strength

fia FRP design tensile strength

fiu FRP ultimate tensile strength

Firrex Maximum pullout force

Larm Vertical distance from the centroid of the centegk to FRP centroid
Ly Bonded length

Lc Concrete block length

P FRP perimeter

Py Groove perimeter



