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ABSTRACT

Four novel heterocycle dyes 3a-d were synthesized in order to study the variations produced in the
optical, electronic and photovoltaic properties by substitution of different electron-rich heterocyclic
groups to the thieno[3,2-b]thiophene system. The final push-pull conjugated dyes 3a-d were syn-
thesized by Suzuki-Miyaura coupling reaction followed by Knoevenagel condensation of the corre-
sponding aldehyde precursors with cyanoacrylic acid 2a-d. These new push-pull systems are based on
a thieno[3,2-b]thiophene spacer, a cyanoacetic acid anchoring group and several electron-rich
heterocycles (thiophene, pyrrole and furan) as donor groups. The multidisciplinary study concerning
the optical, redox and photovoltaic characterization of the dyes reveals that compound 3b bearing a
hexyl-bithiophene donor group/heterocyclic spacer exhibits the best overall conversion efficiency
(2.49%) as sensitizer in nanocrystalline TiO; dye sensitized solar cells. Co-adsorption studies between
N719 and 3b revealed that upon addition of N719 co-adsorbent, the optimized cell efficiencies were
improved by 16—77%. The best efficiency was 4.40%, corresponding to 54% of the photovoltaic per-

formance of the N719-based DSSC fabricated and measured under similar conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modern civilization is reliant on energy resources, like non-
renewable fossil fuels. As such, in the last decades we observed a
greater focus on renewable energy sources and sustainable devel-
opment in order to diminish the greenhouse effect and ensure
economic growth. Solar energy is a very interesting energy source
due to its inexhaustibility, cleanness, and the capacity to be con-
verted directly into electrical power by photovoltaic cells devices.
Consequently, among several new technologies, solar cells based on
dye sensitizers (DSSCs) adsorbed on nanocrystalline TiO, elec-
trodes have received significant attention, mainly because of their
high incident solar light-to-electricity conversion efficiency. The
light absorber or dye sensitizer is a crucial element since it plays an
important role on the conversion efficiency as well as on the sta-
bility of the devices. Therefore, dyes are required to fulfil some
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essential characteristics, such as having a push-pull structure,
broad spectral response (visible and near-infrared region), photo-
stability, controlled aggregation and recombination, proper elec-
tronic energies (HOMO, LUMO), good intramolecular charge
transfer, and an anchoring group to strongly bind onto the semi-
conductor surface [1-3].

Dye sensitizers applied in solar cells were mainly ruthenium
complexes, consisting of the central metal ion with organic ligands
containing an anchoring group. The best photovoltaic perfor-
mances both in terms of conversion yield and long term stability,
with efficiencies surpassing 11%, have been achieved by polypyridyl
complexes of ruthenium. However, ruthenium is a trace element on
top of being a heavy metal, and its lack of abundance in nature, in
addition with the latent risk to the environment, complicated
synthetic processes and difficult purification of the dyes, makes Ru-
based dye sensitizers not suited in terms of cost efficiency and
environmental friendliness. Nevertheless, transition metal com-
plexes are still playing a role in DSSC development [1].

Metal free sensitizers such as organic dyes and natural dyes
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have received attention as an alternative DSSC applications and
have been extensively developed as convenient substitutes to
metal-based dyes as a result of their high molar extinction coeffi-
cient, simple synthesis and purification routes, diversity in molec-
ular structures which offers infinite possibilities to tune the
photophysical and electrochemical properties, colourful and
decorative natures, low cost and environmental friendliness. The
molecular structure for efficient metal free organic dyes generally
used is a donor — m-bridge — acceptor (D-w-A) system that pro-
motes efficient charge transfer from the ground state to the excited
state. As a result, in the last two decades, a wide range of structural
modifications to the donor or acceptor group and m-bridge have
been implemented for the preparation of organic chromophores
with high performance for DSSCs [1d,3]. It is well known that the
structure of the organic dye (donor group, w-spacer and acceptor/
anchoring group) has profound repercussions on the performance
as sensitizers for DSSC. Common donors groups are N,N-dialkyl-
amine, triphenylamine, carbazole, indoline, etc. The electronic na-
ture, the length of conjugation and the planarity of the w-spacer are
other important factors for an efficient charge separation and can
be addressed by modifying the m-bridge. m-Bridges are usually
composed of electron rich heterocycles (pyrrole, thiophene, furan),
by ethene, ethine, or benzene units. The acceptor/anchoring group
is also an important part in DSSCs being the carboxylic acid
(-COOH) the standard anchoring group for sensitizers due to its
relative stability and easy synthesis, and is typically used in the
form of a cyanoacetic acid [3]. Nevertheless, other groups are also
commonly developed, such as rhodanine-3-acetic acid, phosphoric
acid, sulfonic acid, acetic anhydride, ester, acid chloride pyridine,
aldehyde etc. Results have shown that rhodanine-3-acetic acid as
an anchoring group leads to a significant bathochromic shift due to
the extension of the m-conjugation system, however cyanoacrylic
acid favours better properties of DSSCs, not only due to its copla-
narity with respect to spacer unit and good electron coupling with
TiO,, but also because the LUMO level of rhodanine-3-acetic acid
based dyes is centred on the carbonyl and thiocarbonyl groups (DFT
calculations) which results in the position of the LUMO being iso-
lated from the —COOH anchoring group due to the presence of the
methylene moiety [4]. The first metal free organic dyes used as
sensitizers for DSSCs exhibited very poor performances, but since
then numerous dyes have been developed and their devices
showed good photovoltaic performance, which achieved similar
efficiencies compared to those of Ru complexes (12%) [5a-k]|. More
recently Yano Hanaya and collaborators reported a high conversion
efficiency of over 14% using collaborative sensitization between
two organic dyes bearing two different anchoring groups an
alkoxysilyl and a carboxy moiety [51].

The most efficient DSSCs, very frequently, contain thiophene
units, (e.g. oligothiophenes, fused thiophenes, alkylenediox-
ythiophenes, etc.) due to their excellent charge-transport proper-
ties. Additionally, thienothiophene derivatives offers better -
conjugation and smaller geometric relaxation energy upon oxida-
tion when compared to bithiophene [3,5,6]. Furthermore, the
introduction of sterically hindered alkyl chains in the dye structure
is expected to suppress the aggregation tendency which allow best
photovoltaic performances [5g].

Having in mind the work reported before in this area as well as
our experience on the synthesis and characterization of push-pull
heterocyclic m-conjugated systems for several optical applications
[7], we report in this manuscript the synthesis and evaluation of
four novel push-pull organic dyes bearing electron-rich heterocy-
clic groups (thiophene, n-hexyl-2,2’-bithiophene furan and pyr-
role) as donor groups/ bridges, a thienothiophene as spacer group,
and a cyanoacetic acid as the acceptor/anchoring moiety.

2. Results and discussion
2.1. Synthesis and characterization

A series of heterocyclic dyes were designed in order to study
the effect of different donor moieties (different electron-rich
heterocycles) in their optical, redox and photovoltaic proper-
ties. All designed m-conjugated systems were functionalized with
the cyanoacetic acid group, due to the best efficiency of this
acceptor/anchoring group in DSSCs [4]. As m-bridge/spacer we
employed the thieno[3,2-b]thiophene, not only because of the
great charge transfer properties of thiophene but also due to the
superior m-conjugation and low geometric relaxation energy
upon oxidation of the this conjugated system [6a-d,g,7]. Instead
of the “classical” donor groups we used electron-rich heterocy-
cles such as thiophene, pyrrole and furan having in mind that
they can have a dual role as electron donor groups and as m-
spacers [7¢,7g,8].

The precursor aldehydes 2a-d were prepared, in fair to
excellent yields (26—84%), by Suzuki-Myiaura coupling of
5-bromothieno[3,2-b]thiophene-2-carbaldehyde 1 with commer-
cially available heterocyclic boronic acids. The final push-pull
conjugated dyes 3a-d were synthesized by Knoevenagel conden-
sation of the corresponding aldehyde precursors 2a-d with cya-
noacetic acid in refluxing ethanol, using piperidine as catalyst
(Scheme 1, Table 1). The novel dyes 2—3 were completely char-
acterized by the usual spectroscopic techniques.

2.2. Study of the optical properties

The UV—Vis spectra of dyes 3 in ethanol at room temperature
are provided in Fig. 1. All dyes exhibit a strong and broad band
between 364 and 433 nm that can be assigned to an internal charge
transfer process (ICT) between the donor and acceptor groups,
which depends on the heterocyclic group linked to the thieno-
thiophene spacer [10]. The addition of a 2-hexylthiophene unit, as
seen in dye 3b, induces a bathochromic shift in the longest wave-
length absorption of 34 nm compared with dye 3a. This result can
be explained having in mind that the incorporation of an additional
thiophene ring increases the charge transfer properties in a push-
pull compound due to the bathochromic effect of sulphur, the
partial decrease of aromatic character of the thiophene heterocycle,
and the increase of the conjugation [8b,10]. On the other hand,
compound 3d, having a N-methyl pyrrole donor unit exhibits a
65 nm hypsochromic shift of absorption maxima compared to
compound 3a functionalized with a thiophene donor moiety. That
can be explained by realizing that the pyrrole electron pair is
involved in the aromatic system and, thus, not available for delo-
calization to the cyanoacetic acceptor group resulting in an
increased energy gap between HOMO and LUMO orbitals
[7a,9,10,11].

The novel synthesized push-pull dyes 3a-c have higher molar
extinction coefficients (23,315-25666 M~! cm~') when compared
to the standard ruthenium dyes N3 (13,900 M~! cm™!) [12] and
N719 (14,000 M~ ! cm™1) [13].

Dyes 3 were excited at the wavelength of maximum absorption,
at room temperature, in order to study their fluorescence proper-
ties (Fig. 2). With the exception of dye 3b, all dyes showed weak
emissive properties, with relative fluorescence quantum yields
ranging from 0.015 to 0.021. As expected, due to an extension of the
conjugated m-system, we observed an increase in the fluorescence
quantum yield when a second thiophene unit was introduced [14].
(3a, oF = 0.020; 3b, ¢ = 0.356).
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Scheme 1. Reagents and conditions: (a) DME, Pd(PPhs)s, Ny, EtOH, Na,COs; (b) cyanoacetic acid, piperidine, EtOH, reflux.

Table 1
Yields, UV—visible, Fluorescence, IR and 'H NMR data of compounds 2—3.
Cpd Yield (%) UV—vis® Fluorescence® IR® TH NMR©)
Amax (nm) eM 'em™) Aem (NM) Stokes shift (nm) OF y(cm™ ) 0 (ppm)

Cc=0 OH CN CHO H3 H3' H6’
2a 79 371 15,358 460 89 0.574 1667 - — 9.94 - - —
2b 76 413 17,000 556 143 0.938 1661 — — 9.94 - — —
2c 26 371 22,390 466 95 0.565 1650 — — 9.94 — — —
2d 84 326 16,470 470 144 0.013 1652 - — 9.94 - - —
3a 68 399 23,315 476 77 0.020 1634 3426 2190 - 8.12 7.76 7.98
3b 43 433 25,666 527 94 0.356 1642 3423 2208 — 8.39 7.81 8.17
3c 24 398 24,348 469 71 0.015 1639 3428 2217 — 8.13 7.77 8.00
3d 11 364 5996 471 107 0.021 1638 3411 2213 - 8.13 7.58 7.96

2 All the UV—Vis and fluorescence spectra were performed in ethanol, using DPA as a quantum yield standard, except for compounds 2b and 3b where rhodamin-6G was

used.

b IR spectra were performed in Nujol for compounds 2a-d and dichloromethane liquid film for compounds 3a-d.
¢ For compounds 2a-c, 'H NMR was performed at 400 MHz, using CDCl; as solvent, and for compounds 2d and 3a-d, 'H NMR was performed at 400 MHz, using DMSO-dg as

solvent.
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Fig. 1. Normalized absorption spectra of dyes 3 in ethanol (Amax: 3a = 399 nm;
3b = 433 nm; 3c = 398 nm; 3d = 364 nm).
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2.3. 'H NMR study

The comparative electron donating strength of the donor moiety
can be assessed by examining the 'H NMR spectra for the chemical
shifts of 3’-H, which is the closest located proton relative to the
donor group. A stronger electron donating ability of the donor
moiety will improve the internal charge transfer (ICT) in the push-
pull system, moving the electron density towards the acceptor end
group, which leads to a downfield of 3’-H (higher chemical shift).
Dye 3b, functionalized with a 5-hexyl-2,2'-bithiophene unit, pre-
sents the highest chemical shift for the 3’-H at 7.81 ppm, meaning
the strongest electron donor effect, while dyes 3a and 3¢ show the
equivalent proton located at 7.76 and 7.77 ppm, respectively. For
dye 3d, 3’-H is the most upfield positioned for all dyes (7.58 ppm)
due to the large contribution of the non-ligant electrons at the
nitrogen atom that stabilizes the donor ring, and consequent lower
electron push [7¢,9,11].

3¢ 3d
1 — Abs ! / —— Abs
=——Em / Em
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340 440 540 300 400 500 600 700
A (nm) A\ (nm)

Fig. 2. Normalized absorption and emission spectra for dyes 3, in ethanol.
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2.4. Electrochemical study

Cyclic voltammetry is a widely used technique to obtain HOMO
and LUMO energy levels of a compound. It is well known that the
position of the HOMO and LUMO of the heterocyclic dye used as
sensitizer in DSSCs affects their photovoltaic performance. The
electronic nature of the heteroaromatic rings in the 7t-bridge affects
significantly the oxidation potential values. Therefore, heterocyclic
systems bearing more electron rich heterocycles are easier to
oxidize due to the stronger electron-donating ability of the system
resulting in a higher HOMO energy level (estimated from its first
oxidation potential) [9,10].

In order to get a bigger inside to the electronic properties of
compounds 3a-b, which exhibit the best photovoltaic perfor-
mances, we performed an electrochemical study by cyclic voltam-
metry and the results can be found in Table 2. Both dyes display a
reversible oxidation process at +0.90 V for 3a and +0.65 V for 3b
which are more positive than the iodine redox potential (0.42 V).
This is an important issue having in mind that an oxidation po-
tential higher than that of redox potential of iodine couple is
necessary to reduce the backward electron transfer to electrolyte
solution in DSSCs. These results reveal that, the dispositive could
show a good performance because of its higher difference with the
iodide/triiodide redox couple and then, a better regeneration of the
oxidized dye after electron injection into the conduction band of
TiO, [15].

Upon reduction, the dyes exhibit waves at —1.68 V for 3a
and —2.01 V for 3b. The addition of a second thiophene heterocyclic
in the donor moiety/m-spacer in compound 3b lowered the half-
wave potential of the oxidation wave [16] but not the reduction
wave, resulting in a broader bang gap (2.58 eV for 3a and 2.70 eV for
3b).

2.5. Photovoltaic performance of DSSCs

Table 3 and Fig. 3 present the performance parameters (short-
circuit current density, Jsc; open circuit voltage, Voc; fill factor, FF;
and efficiency, 1) of the prepared DSSCs sensitized with 3a-d dyes,
as well as the standard ruthenium-dye N719 for comparison.

Dyes 3a, 3c and 3d bearing one thiophene, furan or pyrrole
heterocycle, linked to the thieno[3,2-b]thiophene spacer, exhibit
very low photovoltaic performances with efficiencies in the range
of 0.04—0.22%. The thiophene derivative 3a exhibits a higher value
compared to 3c and 3d which is in accordance with their optical
and electronic properties [7a-c,9,11]. In contrast, dye 3d exhibits
the lowest performance of all dyes (7 = 0.04%) which could be due
to the higher HOMO energy values for the compounds bearing this
electron-rich heterocycle [9].

On the other hand, dye 3b shows the best performance of all
dyes, presenting an efficiency of 2.49%, with a Jsc of 6.92 mA/cm?
and a Ve of 0.550 V. This efficiency value represents ca. 30% of the
power conversion efficiency generated by the reference DSSC using

Table 2
Electrochemical data of synthesized dye 3b and dye N719.

Table 3
Photovoltaic performance of DSSCs based on dyes 3 and dye N719.

Dye Voc (V) Jsc (mAjecm?) FF (%) n (%)
3a 0.450 0.75 0.629 0.22
3b 0.550 6.92 0.653 2.49
3c 0.400 0.24 0.614 0.06
3d 0.350 0.20 0.485 0.04
N719 0.750 15.58 0.692 8.09
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Fig. 3. Photocurrent density-voltage characteristics of the devices prepared with dyes
3a-d.

N719 dye. The increased photocurrent density observed for dye 3b,
when compared to dye 3a, should be ascribed to the incorporation
of an additional thiophene m-bridging unit that when incorporated
in a push-pull compound enhances their charge transfer properties
and induces a bathochromic shift on the absorption spectrum to-
ward longer wavelengths [3,16a].

The long hexyl hydrocarbon chain linked to the bithiophene
donor moiety/m-spacer will improve also the solubility of the dye
suppressing the dark current by blocking electrolytes from close
contact with the TiO; surface [3,5g,17]. Therefore, the higher open-
circuit voltage of compound 3b may be due to a decreased electron
recombination with triiodide redox pair.

DSSCs with ruthenium-based dyes yield maximum efficiencies
by using thick TiO, films due to low molar extinction coefficients
(<20,000 M~! ecm™!) credited to the metal-to-ligand charge
transfer molecular excitation. On the other hand, organic dyes
commonly have higher molar extinction coefficients, which allows
for thinner films and reduction of charge transport loss [5g], but
displays narrow absorption bands decreasing the light harvesting
ability [1,3]. For better understanding the performance difference
between reference DSSC (with N719 dye) and the ones prepared
with push-pull thieno[3,2-b]thiophene 3a-d derivatives, and in
order to combine the different advantages of both dye families, co-
adsorption was performed between N719 and 3b dye which exhibit

Dye Reduction® Oxidation® Enomo” (eV) Erumo” (eV) Band gap© (eV)
~"Epe (V) —2Epe (V) —3Epe (V) "Epa (V)

3a 1.68 2.78 - -5.29 -2.71 2.58

3b 2.01 2.46 2.81 -5.04 —-2.34 2.70

N719 2.04 2.52 2.99 —4.85 -2.35 2.50

¢ Measurements made in dry DMF containing 1.0 mM in each compounds and 0.1 M [NBuy4][BF4] as base electrolyte at a carbon working electrode with a scan rate of
0.1 Vs~ All E values are quoted in volts vs the ferrocenium/ferrocene-couple. E,c and Ep, correspond to the cathodic and anodic peak potentials, respectively.

 Enomo = —(4.39 + Eoy) (eV) and Erymo = —(Ered + 4.39) (eV).

¢ Calculated form the difference between the onset potentials for oxidation and reduction.
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the best photovoltaic performance. Co-adsorption with different
dyes covering a larger visible spectral region might be an effective
and economic way to increase the efficiency of the solar cells but
also might be very useful in the aggregates suppression usually
observed on these systems. The correspondent photovoltaic per-
formance results are presented on Table 4. For the five proportions
prepared (100% N719 - 0% 3b, 75% N719 - 25% 3b, 50% N719 - 50%
3b, 25% N719 - 75% 3b, 0% N719 - 100% 3b) it is noticed that Jsc
decreases almost linearly with 3b dye percentage, explained by the
decrease on the absorption peak of N719 dye at 530 nm (Fig. 4). On
the other hand, the variation on the V¢ is more visible for the
percentage 100% N719 - 0% 3b (Fig. 5). This means that when 3b dye
is used, the back electron transfer is favoured since the iodide/
triiodide electrolyte has a better access to the electrons on the TiO,
conduction band.

Upon addition of N719 co-adsorbent, the optimized cell effi-
ciencies were improved by 16—77%. The best efficiency was 4.40%,
corresponding to 54% of the photovoltaic performance of the N719-
based DSSC fabricated and measured under similar conditions.

3. Conclusions

Starting from commercially available precursors as well as by
using simple and convenient procedures, novel push-pull thieno
[3,2-b]thiophenes 3a-d were obtained in fair to excellent yields by
Suzuki-Miyaura coupling reaction followed by Knoevenagel
condensation of the corresponding aldehyde precursors with cya-
noacetic acid 2a-d.

The optical and the redox properties of these push-pull 7-con-
jugated systems can be readily tuned varying the electron donor
ability of the heterocyclic donor moiety linked to the thieno[3,2-b]
thiophene spacer as well as by increasing the m-spacer.

The multidisciplinary study concerning the optical, redox and
photovoltaic characterization of the dyes reveals that compound 3b
bearing a 5-hexyl-2,2'-bithiophene donor group/heterocyclic
spacer exhibits the best overall conversion efficiency (2.49%) as
sensitizer in nanocrystalline TiO, dye sensitized solar cells. This
result demonstrates that the addition of the second m-bridging
thiophene broadens the visible absorption spectra as well as en-
hances the electron-donating ability of this dye.

Additionally, the introduction of a longer alkyl chain into the
bithiophene spacer/donor moiety will retard recombination and
the introduction of an additional thiophene as the conjugate bridge
will increase the photocurrent response; features which lead to
enhanced Js.. Therefore we conclude that the introduction of both
hexyl-chain and a thiophene heterocycle into DSSC can improve the
cell efficiency significantly.

Consequently, it is expected that, higher efficiency could be
achieved for thienothiophene-based metal-free dyes by adjusting
the molecular structure of this dyes.

Co-adsorption studies between N719 and 3b revealed that upon
addition of N719 co-adsorbent, the optimized cell efficiencies were
improved by 16—77%. The best efficiency was 4.40%, corresponding
to 54% of the photovoltaic performance of the N719-based DSSC

Table 4
Photovoltaic parameters of DSC sensitized 3b dye mixed with N719 compared with
commonly standard cells.

Dye Voc (V) Jsc (mAjem?) FF (%) 7 (%)
100% N719 — 0% 3b 0.750 1558 0.692 8.09
75% N719 — 25% 3b 0.610 1225 0.589 4.40
50% N719 — 50% 3b 0.580 10.16 0.625 3.68
25% N719 — 75% 3b 0.570 8.54 0.595 2.90
0% N719 — 100% 3b 0.550 6.92 0.653 2.49
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Fig. 4. Normalized absorption spectra of dye 3b mixed, in different percentages, with
N719 dye, in ethanol.
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Fig. 5. Photocurrent density-voltage characteristics of the devices prepared with
compound 3b mixed in different percentages with N719 dye.

fabricated and measured under similar conditions.

4. Experimental
4.1. Materials and methods

2-Thiopheneboronic acid, 5'-hexyl-2,2'-bithiophene-5-boronic
acid pinacol ester, 2-furanboronic acid, N-methyl-2-
pyrroleboronic acid pinacol ester and cyanoacetic acid were pur-
chased from Aldrich. All commercially available reagents and sol-
vents were used as received. 5-Bromo-thieno|[3,2-b]thiophene-2-
carbaldehyde was synthesized using the experimental procedure
reported before [5h|. Reaction progress was monitored by thin
layer chromatography, 0.25 mm thick precoated silica plates
(Merck Fertigplatten Kieselgel 60 F254), and spots were visualised
under UV light. Purification was achieved by silica gel column
chromatography (Merck Kieselgel, 230—400 mesh). NMR spectra
were obtained on a Brucker Avance I1 400 at an operating frequency
of 400 MHz for 'H and 100.6 MHz for '3C, using the solvent peak as
internal reference. The solvents are indicated in parenthesis before
the chemical shifts values (¢ relative to TMS). Peak assignments
were made by comparison of chemical shifts, peak multiplicities
and J values, and were supported by spin decoupling-double
resonance and bidimensional heteronuclear HMBC (heteronuclear
multiple bond coherence) and HMQC (heteronuclear multiple
quantum coherence) techniques. Melting points were determined
on a Gallenkamp apparatus and are uncorrected. Infrared spectra
were recorded on a BOMEM MB 104 spectrophotometer. UV—Vis
absorption spectra were obtained using a Shimadzu UV/2501PC
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spectrophotometer. Fluorescence spectra were collected using a
FluoroMax-4 spectrofluorometer. Luminescence quantum yields
were measured in comparison with ethanol solution of 9,10-
diphenylanthracene (¢r = 0.95) [18], or rhodamine 6G
(b = 0.95) [19] as standards. Mass spectrometry analysis were
performed at the C.A.C.T.I. — Unidad de Espectrometria de Masas of
the University of Vigo, Spain.

4.2. Synthesis

4.2.1. General procedure for the synthesis of thieno[3,2-b]thiophene
derivatives 2 through Suzuki coupling [20]

5-Bromothieno[3,2-b]thiophene-2-carbaldehyde 1 (0.5 mmol,
125 mg) was coupled to heterocyclic boronic acids (0.6 mmol) in a
mixture of DME (8 mL), ethanol (2 mL), aqueous 2 M Na>COs3 (1 ml)
and Pd(PPhs)4 (5 mol %) at 80 °C, under nitrogen. The reaction was
monitored by TLC, which determined the reaction time (24—48 h).
After cooling, the mixture was extracted with chloroform
(3 x 20 ml) and a saturated solution of NaCl were added (20 mL)
and the phases were separated. The organic phase was washed
with water (3 x 10 mL) and with 10 mL of a solution of NaOH (10%).
The organic phase obtained was dried (MgSQy), filtered, and the
solvent removed to give a crude mixture. The crude product was
purified through a silica gel chromatography column using mix-
tures of chloroform and light petroleum of increasing polarity to
afford the coupled products 2. Recrystallization from n-hexane/
dichloromethane gave the pure compounds.

4.2.1.1. 5-(Thiophen-2'-yl)thieno[3,2-b]thiophene-2-carbaldehyde
(2a). Light brown solid (79%). Mp: 155—157 °C. IR (Nujol): 1667,
1532, 1500, 1229, 1163, 1125 cm™' JApax(ethanol)/nm 371
(e/dm® mol~! cm~! 61,650). 'H NMR (CDCl3, 400 MHz) 6 7.08 (1H,
dd,J = 5.2 and 3.6 Hz, 4’-H), 7.31 (1H, dd, J = 3.6 and 1.2 Hz, 5’-H),
7.35(1H, dd, J = 5.2 and 1.2 Hz, 3’-H), 7.39 (1H, d, ] = 0.4 Hz, 6-H),
7.87 (1H, d, ] = 0.8 Hz, 3-H), 9.94 (1H, s, CHO) ppm. >C NMR (CDCls,
100.6 MHz) 6 115.95, 125.43, 126.47, 128.22, 128.95, 136.59, 137.59,
144.61, 145.67, 146.51, 182.99 ppm. MS (EI) m/z (%) = 250 ([M]™,
100), 249 (46), 221 (18), 176 (23). HMRS: m/z (EI) found [M]*
249.9582; C11HgOSs3 requires [M]" 249.9581.

4.2.1.2. 5-(5'-(5"-Hexylthiophen-2"-yl)thiophen-2'-yl)thieno[3,2-b]
thiophene-2-carbaldehyde (2b). Light orange solid (76%). Mp:
156—158 °C. IR (Nujol): 1661, 1226 cm™ Amax(ethanol)/nm 413
(e/dm® mol~! cm~' 92,068). '"H NMR (CDCls, 400 MHz) 6 0.89—0.93
(3H, m, CH3), 1.31—1.44 (6H, m, CH3(CH,)3), 1.67—1.74 (2H, m,
CH3(CH3)3CH>), 2.82 (2H, t, CH3(CH2)4CHa, J = 7.4 Hz), 6.71 (1H, d,
J=3.2Hz,4"-H),7.03 (1H, d,] = 3.2 Hz, 3"-H), 7.05 (1H, d,] = 3.6 Hz,
4'-H), 719 (1H, d, ] = 3.6 Hz, 3'-H) 7.36 (1H, s, 6-H), 7.87 (1H, s, 3-H),
9.94 (1H, s, CHO) ppm. 3C NMR (CDCl3, 100.6 Hz) 6 14.1, 22.6, 28.7,
30.2, 31.5, 115.4, 115.5, 123.7, 124.1, 125.0, 126.1, 128.9, 133.8, 134.3,
1374, 139.2, 144.5, 145.6, 146.6, 146.7, 182.9 ppm. MS (EI) m/z
(%) = 416 ([M]*, 28), 347 (13), 346 (13), 345 (100), 183 (10). HMRS:
m/z (EI) found [M]" 416.0396; C21H200S4 requires 416.0397.

4.2.1.3. 5-(Furan-2'-yl)thieno[3,2-b]thiophene-2-carbaldehyde (2c).
Light brown solid (26%). Mp: 159—161 °C. IR (Nujol): 1650, 1305,
1233 cm-1 Amax(ethanol)/nm 371 (¢/dm® mol~! em~! 10,580). H
NMR (CDCls, 400 MHz) 6 6.52 (1H, dd, J = 3.4 and 1.6 Hz, 4'-H), 6.69
(1H, dd, J = 3.6 and 0.4 Hz, 5'-H), 7.45 (1H, d, ] = 0.4 Hz, 6-H), 7.50
(1H, dd, J = 1.6 and 0.8 Hz, 3'-H), 7.89 (1H, d, ] = 0.4 Hz, 3-H), 9.94
(1H, s, CHO) ppm. 13C NMR (CDCls, 100.6 MHz) é 107.78, 112.23,
114.67, 129.02, 137.55, 141.43, 143.16, 144.74, 146.54, 148.42,
182.97 ppm. MS (EI) m/z (%): 233 ([M]*, 100), 232 (20), 205 (24), 176
(43). HMRS: m/z (EI) found [M]" 233.9807; C11Hg0,S, requires
233.98009.

4.2.1.4. 5-(N-Methylpyrrol-2'-yl)thieno[3,2-b]thiophene-2-
carbaldehyde (2d). Orange solid (84%). Mp: 108 °C (dec). IR (Nujol):
1652, 1548, 1233, 1206 cm~ ! Amax(ethanol)nm 326 ef
dm? mol~! cm~14060). '"H NMR (DMSO0-dg, 400 MHz) 6 3.81 (3H, s,
NCHs3), 6.10 (1H, dd, J = 3.9 and 3.0 Hz, 3’-H), 6.44 (1H, dd, ] = 3.9
and 1.8 Hz, 5'-H), 6.99 (1H, t, ] = 2.1 Hz, 4-H), 7.64 (1H, s, 6-H), 8.34
(1H, s, 3-H), 9.94 (1H, s, CHO) ppm. '*C NMR (DMSO-ds, 100.6 MHz)
035.5,108.3,111.3,116.1,126.1,126.9, 131.3,136.7,143.3, 143.4, 145.9,
184.4 ppm. MS (EI) m/z (%) = 247 ([M]*, 100), 246 (24), 218 (19), 176
(10), 69 (25). HMRS: m/z (EI) found [M]* 247.0129; C12HgNOS; re-
quires 247.0126.

4.2.2. General procedure for the synthesis of thieno[3,2-b]thiophene
derivatives 3 from the respective precursors 2 through Knoevenagel
condensation

To a solution of aldehyde 2 (2.5 mmol) and 2-cyanoacetic acid
(26 mg, 3 mmol) in ethanol was added 4 drops of piperidine. The
mixture was refluxed for 6 h then cooled down to room tempera-
ture. The crude product was concentrated and ethyl ether was
added to induce precipitation. The precipitate was filtered and
washed with ethyl ether to give the pure product.

4.2.2.1. 2-Cyano-3-(2'-(thiophen-2"-yl)thieno[3,2-b]thiophen-5'-yl)
acrylic acid (3a). Orange solid (68%). Mp: 175—177 °C. IR (liquid
film): 3426, 2305, 2190, 2096, 1634, 1265 cm™' Amax(ethanol)/nm
399 ¢/dm> mol~! cm~'31,288). 'H NMR (DMSO-dg, 400 MHz) 6 7.14
(1H,dd, J = 5.2 and 3.6 Hz, 4”-H), 7.43 (1H, dd, ] = 3.6 and 1.2 Hz, 5"~
H),7.61(1H, dd,J = 5.0 and 1.2 Hz, 3"-H), 7.76 (1H, 5, 3'-H), 7.98 (1H,
s, 6'-H), 8.12 (1H, s, 3-H), 8.85 (1H, s, OH) ppm. 13C NMR (DMSO-dg,
100.6 MHz) 6 109.39, 116.75, 119.19, 125.28, 126.89, 127.26, 128.63,
136.29, 137.03, 138.95, 140.97, 141.87, 143.44, 163.00 ppm. MS (ESI)
m/z (%) = 318 ([M+H]", 100), 316 (59), 313 (39), 279 (61), 273 (41),
271 (39), 251 (37), 229 (34), 209 (31), 207 (95). HRMS: m/z (ESI)
[M+H]™ found 317.9712; C14HgNO,S3 requires 317.9717.

4.2.2.2. 2-Cyano-3-(2'-(5"-(5"-hexylthiophen-2""-yl)thiophen-2"-yl)
thieno[3,2-b]thiophen-5"-yl)acrylic acid (3b). Orange solid (43%).
Mp: 202—-204 °C. IR (liquid film): 3423, 2359, 2331, 2208, 2096,
1642 cm-1 Amax(ethanol)/nm 433 (¢/dm® mol~! cm~! 16,574). 'H
NMR (DMSO-dg, 400 MHz) 6 0.82—0.88 (3H, m, CH3), 1.22—1.31 (6H,
m, CH3(CH,)3), 1.61-1.66 (2H, m, CH3(CH,)3CHz), 2.99 (2H, t,
J=5.6 Hz, CH3(CH;)4CH>), 6.83 (1H, d, ] = 3.6 Hz, 4""-H), 7.20 (1H, d,
J = 3.6 Hz, 3""-H), 724 (1H, d, ] = 3.6 Hz, 4"-H), 742 (1H, d,
J=3.6Hz,3"-H), 7.81 (1H, s, 3'-H), 8.17 (1H, s, 6’-H), 8.39 (1H, s, 3-
H) ppm. 3C NMR (DMSO-dg, 100.6 MHz) ¢ 13.9, 21.6, 22.21, 281,
30.9, 43.7,116.7, 117.5, 124.5, 124.6, 125.9, 126.8, 130.6, 133.0, 134.0,
137.3, 137.7, 137.8, 143.3, 145.1, 145.9, 163.2, 163.4, 166.2 ppm. MS
(ESI) m/z (%) = 531 (7), 513 (8), 500 (17), 499 (29), 498 (100), 497
(29), 484 ([M+H]", 7), 417 (20), 364 (8). HRMS: m/z (ESI) [M+H]*
found 484.0528; C24H22N0,S,4 requires 484.0533.

4.2.2.3. 2-Cyano-3-(2'-(furan-2"-yl)thieno[3,2-b]thiophen-5"-yl)
acrylic acid (3c). Orange solid (24%). Mp: 185—187° C. IR (liquid
film): 3428, 2525, 2358, 2217, 2099, 1639 cm-1 Apax(ethanol)/nm
398 (¢/dm® mol~! cm~! 32,084). 'H NMR (DMSO-dg, 400 MHz)
6 6.64 (1H, dd, ] = 3.4 and 2.0 Hz, 4"-H), 6.93 (1H, d, ] = 3.2 Hz, 5"-
H), 7.77 (1H, s, 3’-H), 7.79 (1H, d, ] = 2.0 Hz, 3”-H), 8.00 (1H, s, 6'-H),
813 (1H, s, 3-H), 9.00 (1H, brs, OH) ppm. *C NMR (DMSO-ds,
100.6 MHz) ¢ 107.59, 109.09, 112.62, 115.52, 119.13, 127.44, 137.06,
137.80, 139.01, 141.10, 143.48, 143.65, 148.10, 163.15 ppm. MS (ESI)
m/z (%) = 302 ([M+H], 100), 296 (28), 279 (38), 273 (40), 271 (39),
207 (73). HRMS: m/z (ESI) [M+H]" found 301.9943; C;14HgNO3S;
requires 301.9946.
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4.2.2.4. 2-Cyano-3-(2"-(N-methylpyrrol-2"-yl)thieno[3,2-b]thio-
phen-5"-yl)acrylic acid (3d). Brown solid (11%). Mp. 183 °C (dec). IR
(liquid film): 3411, 2359, 2328, 2213, 2098, 1638 cm-1 Amax(-
ethanol)/nm 364 (¢/dm® mol~! cm~! 38,948). 'H NMR (DMSO-dg,
400 MHz) 6 3.78 (3H, s, CH3), 6.09 (1H, dd, J = 3.8 and 2.4 Hz, 4”-H),
6.39 (1H, dd, J = 3.6 and 1.6 Hz, 5”-H), 6.95 (1H, t, ] = 2.2 Hz, 3”-H),
7.58 (1H, s, 3/-H), 7.96 (1H, s, 6'-H), 8.13 (1H, s, 3-H) ppm. 13C NMR
(DMSO-dg, 100.6 MHz) 6 43.58,108.10, 110.72,116.24, 119.23, 126.26,
126.37, 127.37, 136.45, 137.96, 140.48, 141.36, 143.82, 163.57 ppm.
MS (ESI) m/z (%) = 315 ([M+H]", 70), 313 (19), 280 (21), 279 (100),
257 (34). HRMS: m/z (ESI) [M+H]" found 315.0258; C15H11N20,S;
requires 315.0262.

4.3. Cyclic voltammetry

The measurements were performed using an AUTOLAB elec-
trochemical station and a three electrode cell equipped with a
vitreous carbon disc working electrode (3 mm), a platinum wire as
counter-electrode and an Ag/AgCl electrode as reference electrode.
The concentration of dyes was 1 mM with 1 mM of [NBugy|[BF4] as
supporting electrolyte in dry N,N-dymethylformamide solvent. The
cyclic voltammetry was conducted at different scan-rates (20, 50,
100 and 200 mV s ') and the solutions were deoxygenated by
bubbling nitrogen before each measurement. In non-aqueous sol-
vents, the electrode potentials are often measured against the po-
tential of the Fc*/Fc redox couple [21].

4.4. DSSC preparation

A dye-sensitized solar cell consists of: i) TiO, photoelectrode
where the dye molecules are adsorbed, both comprising the
working electrode; ii) platinum counter-electrode; and iii) elec-
trolyte containing the iodide/triiodide redox couple. To prepare the
working electrodes, FTO glasses (TCO22-7, 2.2 mm thickness, 7 Q/
square, Solaronix, Switzerland) cleaned in a detergent solution
using ultrasonic bath rinsed with water and dried at 60 °C were
used. After treated in a UV- O3 system for 15 min, the FTO substrates
were immersed into a 40 mM aqueous TiCly solution at 70 °C for
20 min and washed with ethanol and dried with N. A layer of TiO;
paste (Ti-Nanoxide T/SP, Solaronix, Switzerland) was coated on the
FTO glass by screen-printing, kept at room temperature for 20 min
and then dried for 5 min at 120 °C. The screen-printing procedure
was repeated 2 more times, in order to reach 3 layers of TiO, paste
(0.2 cm? of circular active area, and 12 pm of thickness). After
drying the photoelectrode at 120 °C, it was gradually heated (10 °C
min~') up to 475 °C for 30 min. The TiO, electrode was then
immersed into a 0.5 mM dye solution in ethanol and kept at room
temperature for 12 h.

To prepare the counter electrodes, two holes were drilled in the
FTO glass with a drilling machine with diamond tip. The FTO sub-
strates were then washed as described before. Pt catalyst (Platisol T/
SP, Solaronix, Switzerland) was deposited on the FTO side of the
glass by screen-printing and then heated up to 450 °C for 10 min.

The dye-covered TiO, electrode and the Pt counter-electrode
were assembled into a sandwich type cell and sealed with a hot-
melt gasket of 25 um thickness — Surlyn (Meltonix 1170-25,
Solaronix, Switzerland) by hot-pressing. The electrolyte (lodolyte
AN-50, Solaronix, Switzerland) was injected into the cell through
the holes presented in the counter-electrode side. These holes were
then sealed by Surlyn® and a cover glass using a soldering iron.

4.5. Photovoltaic performance measurements

A 150 W Xenon light source (Oriel class a solar simulator,
Newport, USA) was used to give an irradiance of 100 mW cm 2

(equivalent of one sun at AM 1.5G) at the surface of solar cells. The
simulator was calibrated using a single crystal Si photodiode
(Newport, USA). The current-voltage characteristics of the cell un-
der these conditions were obtained applying an external potential
bias to the cell and measuring the generated photocurrent with
ZENNIUM workstation (Ref. 2425-C, Zahner Elektrik, Germany).
Photovoltaic performance was measured using a metal mask with
an aperture area of 0.2 cm?.
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