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The problem of estimating the tail index in heavy-tailed distributions is very important
in many applications. We propose a new graphical method that deals with this problem by
selecting an appropriate number of upper order statistics. We also investigate the method’s
theoretical properties are investigated. Several real datasets are analyzed using this new
procedure and a simulation study is carried out to examine its performance in small, mod-
erate and large samples. The results suggest that the new procedure  overcomes many of
the shortcomings present in some of the most common techniques—for example, the Hill
and Zipf plots—used in the estimation of the tail index, and it performs very competitively
when compared with other adaptive threshold procedures based on the asymptotic mean
squared error of the Hill estimator.
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1. INTRODUCTION

There has been a lot of interest over the last few years for the problem of estimating
the tail index (also known as the tail exponent) of a heavy-tailed distribution. This renewed
interest stems from new applications where heavy-tailed distributions are present, such as in
computer science and telecommunications (Adler, Feldman, and Taqqu 1998; Resnick 1997;
Chen et al. 2002), finance and economics (Adler, Feldman, and Taqqu 1998; Jansen and de
Vries 1991), and insurance (see Adler et al. 1998). Many approaches have been proposed
over the years, including those of Zipf (1949), Hill (1975), Csörgő, Deheuvels, and Mason
(1985) and more recently of Kratz and Resnick (1996), Beirlant, Vynckier, and Teugels
(1996), Feuerverger and Hall (1999), and Crovella and Taqqu (1999),  to name just a few.

The setting of the problem is as follows: the distribution F of the random variable of
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interest X satisfies

1 − F (x) ∼ cx−α, as x→ ∞, (1.1)

where c is a positive constant, α > 0 corresponds to the tail index, and the symbol ∼
indicates that the limit of the two functions is 1 as x→ ∞. The random variable X is said
to have a heavy-tailed distribution. The estimation of the parameter α based on a random
sample of size n {Xi}n

i=1 from F constitutes a basic statistical problem.
Although many of the methods for estimating the tail index over the years exhibit

optimal asymptotic properties (i.e., consistency), their performance in finite samples is a
different issue. The majority of them rely on plotting the statistic of interest against the
number of the sample upper order statistics and then inferring an appropriate value of the
tail index α from properties of the resulting graph. We discuss next some of the graphing
techniques and their rationale.

Let X(1) > · · · > X(n) denote the order statistics of a random sample coming from
a distribution F that satisfies (1.1), that is, for a large enough value of x the tail of the
distribution behaves as the tail of a Pareto distributed random variable. The most popular
and frequently used approaches in practice are based on the Zipf plot (Zipf 1949) [and its
variation, the QQ-estimator (Kratz and Resnick 1996)], the Hill estimator (Hill 1975), and
the CD plot (log-log complementary distribution plot), the latter being very popular among
engineers.

In the Zipf plot, the quantity
{

log n+1
i

}
is plotted against {logX(i)} for i = 1, . . . , n,

and the estimate of the parameter of interest α−1 is given by the least squares estimate of
the slope for the part of the plot that exhibits a linear behavior (Kratz and Resnick 1996).

The Hill estimator is given by

Hk,n =

{
k−1

k∑
i=1

(
logX(i) − logX(k+1)

)}−1

, for 1 ≤ k < n, (1.2)

and the Hill plot is based on graphingHk,n againstk. The value ofα is inferred by identifying
a stable region in the graph.

Finally, in the CD plot, log(x) is graphed against log F̄ (x), where F̄ (x) = P (X > x),
and an estimate of α is obtained by estimating the slope of the linear part of the CD plot,
since distributions satisfying (1.1) have the property that d log F̄ (x)

d log(x) ∼ −α, for large x. If

F (x) is estimated by its empirical counterpart Fn(x) = 1
n

∑n
i=1 1(−∞,x](Xi), where 1(.)

denotes the indicator function, then plotting log F̄n

(
X(i)

)
= − log n

i−1 against logX(i),
gives almost identical results to the Zipf plot. Hence, in this study only the Zipf plot results
will be shown.

In Figures 1 and 2 the Hill plot and the Zipf plot of a random sample of size 5,000
drawn from a Pareto distribution and an Inverted Gamma distribution with α = 1.5 are
presented. The Pareto distribution represents the ideal case, since it satisfies (1.1) throughout
its domain, while the Inverted Gamma only in its tail. It can be seen that for the ideal case
of our setting, to a large extent both plots perform satisfactorily allowing the data analyst to
identify correctly the underlying value of the tail index. However, this is not always the case
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Figure 1. The Hill plot for the Pareto (left panel) and the Inverted Gamma (right panel) distributions.

as the graph of the so-called “horror” Hill plot (see  Resnick 1997, p. 1,818) suggests. It
should also be noted that the high variability in the right region (the one determined by the
largest order statistics) of the Zipf plot is not a welcome feature, since it makes more difficult
the proper selection of the number of upper order statistics involved in the estimation of
the tail index. An important question that often arises in practice is whether one should
ignore those observations, thus ignoring useful information about the behavior of the tail,
or include them and get a biased estimate of α.

On the other hand, the situation is not clear at all for the Inverted Gamma distribution.
The Hill plot does not quite stabilize throughout its range and therefore it is hard to come
up with a value for α. For the Zipf plot the decision to exclude the largest 34 observations
changes the estimate of α from 1.944 to 1.371. A nice feature of the Zipf plot (CD plot)
is that the lack of linearity at the left part of the graph suggests a departure from a Pareto
tail behavior. Based on the Zipf plot, Kratz and Resnick (1996) introduced the QQ-plot as
an alternative to the Hill plot. Although the QQ-plot tends to be smoother than the Hill
plot, problems can still occur when departures from the Pareto distribution occur. Such
an example can be observed in the left hand-side of the Figure 3 where no value for α

Figure 2. The Zipf plot for the Pareto (left panel) and the Inverted Gamma (right panel) distributions.
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Figure 3.  The QQ-plot (left panel) and the alternative Hill plot (right panel) for a sample of size 5,000 drawn
from an Inverted Gamma distribution with tail index 1.5

is suggested from the QQ-plot, since no stable region can be inferred from it. The nice
theoretical properties of the Hill estimator—consistency (Deheuvels, Haeusler, and Mason
1988; Mason 1982) and asymptotic normality (Hall 1982)—have led researchers (Drees,
de Haan, and Resnick 2000; Resnick and Stǎricǎ 1997) to consider graphs closer to the Hill
plot, such as the alternative Hill plot (Resnick and Stǎricǎ 1997), that overcomes some of
the difficulties previously mentioned. Some of these modifications work well for the Pareto
case, but some still present problems for data drawn from other heavy-tailed distributions, as
Figure 3 shows (right panel). The graph suggests two possible stable regions corresponding
to values of α = 1.9 and 1.4, respectively.

The previous discussion indicates that the volatility of the Zipf plot especially in the
region of the largest order statistics, and the lack of stability that the Hill plot and its
alternatives exhibit throughout their range, make the correct identification of the tail index a
rather challenging task in finite samples. We propose next an alternative plot that overcomes
some of these difficulties and examine its theoretical properties as well as its performance
in practical situations and through an extensive simulation study.

The objectives and structure of the article are as follows: at the methodological level, it
develops a graphical procedure, called the Sum plot, that effectively determines the number
of upper order statistics where the Pareto tail behavior occurs. At the technical level, it
establishes several theoretical properties of the graph that prove useful when leveraged in
data analytic situations. In Section 2 the new plot is introduced and its properties discussed.
The results of the simulation study are given in Section 3, while its application to several
real datasets is presented in Section 4. Some final remarks are followed in Section 5.

2. THE SUM PLOT

Let the random variables Sk, for k = 1, . . . , n be defined as

Sk =
k∑

i=1

iVi =
k∑

i=1

i log
X(i)

X(i+1) , (2.1)
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where the order statistics X(i)’s come from a random sample (X1, . . . , Xn).
It is shown next that for the value of k such that for all x ≥ X(k+1), 1−F (x) = cx−α,

with c > 0 and α > 0, the Sk’s are Gamma distributed with parameters (k, α). Hence,

E(Sk) = kα−1 and by plotting Sk against k, it is expected that the resulting graph should

be linear in the corresponding region of the upper order statistics where relationship (1.1)

holds. The tail index can  then be estimated by the inverse of the slope of the linear part of

such a graph. We call this graph the Sum plot.

This defining property of the Sum plot is based on the following derivation. Let the

random variables Yi = X−1
i , for i = 1, . . . , n. Then FY (y) = P [Yi ≤ y] = P [Xi ≥

y−1] = cy α, for y < (X(k+1))−1 = Y (n−k). From Rényi’s representation (Rényi 1953),

Y (n−i+1) can be expressed as

Y (n−i+1) = F−1
Y


exp


−

n−i+1∑
j=1

En−j+1

n − j + 1




 for i = 1, . . . , n, (2.2)

where the Ei’s are independent exponential random variables with unit mean.

Because − logFY (Y (n−i+1)) =
∑n−i+1

j=1
En−i+1

n−i+1 , and conditioning on the value of k

such that 1 − F (x) = cx−α for c > 0, α > 0 and x ≥ X(k+1), the random variables Ei

can be written as follows:

Ei = i
[
logFY (Y (n−i)) − logFY (Y (n−i+1))

]
= i

[
log

c(Y (n−i))α

c(Y (n−i+1))α

]
= αi log

X(i)

X(i+1) ,

for i = 1, . . . , k. Therefore, αiVi = Ei, i = 1, . . . , k. Hence, the random variables iVi

are independent exponential distributed with mean equals to α−1 and, consequently, the

random variables Sk are Gamma distributed with parameters (k, α).

2.1 EXAMPLES

Some examples of the Sum plot are shown in Figures 4 and 5 for a sample of size 5,000

drawn from a Pareto and an Inverted Gamma distribution, and a sample of size 10,000

generated from a symmetric α-Stable distribution, all with tail index α = 1.5.

The two most striking features of the Sum plot are, first, the stability of the generated

pattern, and second, its linearity for the Pareto distribution (top panel). This strongly linear

pattern suggests that all the observations in the sample should be used for estimating the tail

index. Furthermore, the strong linear pattern in the left part of the Sum plot (the region that

corresponds to the largest order statistics, i.e., the one that captures the behavior of the tail

of the distribution) exhibited in the other two plots (middle and bottom panels), suggests

that a procedure that identifies where the linear behavior stops effectively, identifies the

value of k from which the assumption of the Pareto tail behavior is violated.

In Figure 5 the results of this strategy are shown. For comparison purposes, the Hill

and Zipf plots for an appropriately chosen number of upper order statistics are also given.
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Figure 4.  The Sum plot for a Pareto (top), an Inverted Gamma (middle), and an α-Stable (bottom) distribution.
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Figure 5.  The Sum plot (top), the Hill plot (middle), and the Zipf plot (bottom) for an Inverted Gamma distribution
focusing only on the top 1,000 observations.
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Notice that the stability of the Sum plot facilitates spotting departures from linearity. An

algorithm that formalizes how to detect such departures is given in Section 2.3.

For this example, the Sum plot suggests k = 160. Then, one can use this value of k

in the Hill estimator (which is the conditional maximum likelihood one) and estimate a

value for the tail index by H160,5000 = 1.579. The Hill plot does not quite stabilize in any

particular region. The erratic behavior of the largest order statistics shown in the right part

of the Zipf plot suggest a value for k = 34, with an estimate for α̂ = 1.944 based on the

QQ-estimator.

It can be seen that the Sum plot overcomes the difficulty of identifying a stable region in

the Hill plot, and the unstable behavior of the Zipf plot in the area of the largest observations.

We show next that the observed linearity is an inherent property of the Sum plot, which

helps the data analyst in identifying departures from a Pareto tail behavior. We also discuss

a connection between the estimate of α obtained from the Sum plot and the Hill estimator.

2.2 PROPERTIES OF THE SUM PLOT

Proposition 1. Consider a random variable X that satisfies 1 −F (x) = cαx−α, for

x > c, α > 0 and c > 0. Then the random variables {Sk, k = 1, . . . , n − 1} defined in

(2.1) are stochastically increasing linear (SIL).

The proof of this Proposition, which is based on stochastic convexity results, is given

in the electronic version at www.ingenta.com.

The next result establishes a connection between the generalized least squares estimator

of the slope of the Sum plot under (1.1) and the Hill estimator.

The fact theE(Sk) = kα−1 suggests that the parameter of interestα−1 can be estimated

by the regression coefficient for the slope of the simple linear regression model Si =
β0 + β1i + εi, i = 1, . . . , k for an appropriately chosen k. The covariance matrix of the

error terms is given by Ω = α−2
[
min(i, j)

]k
i,j=1

.

This result follows from the following facts: (1) theSk’s are Gamma distributed random

variables with parameters (k, α); (2)  Sj = Si + S
′
j−i for every i < j with S

′
j−i =∑j

k=i+1 kVk independent of Si =
∑i

k=1 kVk; and (3)

cov
(
1, Si, Sj

)
= E[Si(Si + S

′
j−i)] − E[Si]E[Sj ] = E(S2

i ) + E(Si)E(S
′
j−i) − ij

α2

=
i(i + 1)

α2
+

i(j − i)
α2

− ij

α2
=

i

α2
. (2.3)

Therefore, the generalized least squares estimator is given by β̂GLS = (X ′Ω−1X)−1

X ′Ω−1y, where y = (S1, . . . , Sk)′, X = [1 i]ki=1 and β̂GLS = (β̂0, β̂1)′.

Proposition 2. Suppose that 1−F (x) = cx−α for x ≥ X(k+1) for some 1 ≤ k < n,

and consider the regression model y = Xβ+ε, with y, X and β defined as above. Then, the

parameter α−1 can be estimated by the GLS estimate of the slope, β̂1, and can be written
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as

α̂−1 = β̂1 =
k

k − 1
H−1

k,n − 1
k − 1

logX(1), (2.4)

where Hk,n is the Hill estimator of α.

The proof of this proposition is given in the electronic version at www.ingenta.com.

Proposition 2 establishes the connection between an estimator based on the Sum plot

and the conditional maximum likelihood Hill estimator. In case β0 = 0 the GLS estimator

corresponds to the inverse of the Hill estimator.

Corollary 1. Assuming the conditions of the proposition above, and if β0 is zero, then

α̂−1 = β̂GLS = H−1
k,n, where Hk,n is the Hill estimator of α.

The proof of the corollary is given in the electronic version at www.ingenta.com

The Hill estimator has served as the basis of other statistics for the problem at hand.

Some examples include the H(k) and the K(k) statistics proposed in (Hill 1975) and fur-

ther studied in (Hsieh 1999; de Sousa 2002); however, unlike the Sum plot they exhibit a

more erratic behavior in finite samples. Other procedures for selecting the threshold in the

estimation of the tail index were proposed, for example, by Matthys and Beirlant  (2000),

Danielsson, de Haan, Peng, and de Vries (2001), and Guillou and Hall (2001). These pro-

cedures are based on bootstrap methods and will be included in a comparison study on the

estimation of the tail index in a future project.

The above properties suggest the following strategy for estimating α: (1) use the Sum

plot to identify the correct value of k∗ and (2) plug the value of k∗ in Hk,n to obtain

the desired estimate. The second step avoids the computationally expensive procedure for

large datasets of calculating the GLS estimator. For the first step the following procedure

identifies the correct value of k, by detecting departures from linearity.

2.3 ALGORITHM  FOR IDENTIFYING k FROM THE SUM PLOT

The idea behind the algorithm is to determine where there is a distinct break from

linearity. Hence, a sequential testing procedure based on the regression model previously

discussed is a natural candidate for this task. The following statistic discussed by McGee

and Carleton (1970) tests the hypothesis that a new point y0 is a point adjacent to the left

or to the right of the set of points y = (y1, y2, . . . , yk)

F = s−2

[
(y0 − ŷ∗

0 )2 +
k∑

i=1

(ŷi − ŷ∗
i )2

]
, (2.5)

where the * represents the predictions based on k + 1 observations, and s2 = y′y−β̂X′y
k−2 .

The null hypothesis is rejected if F ≥ F1, k−2, α, where F1, k−2, α is the 1 − α percentile

of an F (1, k − 2) distribution. Experience has shown that the results are very similar for

datasets with up to 10,000 observations for the 10%, 5%, and 1% levels of significance.

To find the value of k used in the estimation of the tail index consider the following

stepwise procedure:
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Algorithm 1.
1. Fit a least-squares regression line to the initial k = βn top observations, y = [yi]ki=1.

2. Using the test statistic (2.5), determine whether a new point y0 = yj for j > k,

belongs to the original set of points y (k × 1 matrix). Continue adding points until

the hypothesis that y0 is a point adjacent to the set of points y is rejected.

3. Set knew = max
(
0, {j : F < F1,k−2,α}). If knew > 0, return to Step 1 with this

new value for k. If knew = 0, that is, no new points are added to the set of points y,

go to Step 4.

4. Estimate the tail index using the k top observations of the dataset.

A good choice for the value of the proportion β of points used in the first step of the

algorithm is .02 for datasets with up to 10,000 observations. Some experience with larger

sets consisting of 100,000 points suggest that the value has to be adjusted to β = .002.

Other approaches of the use of the Sum plot in the selection of k were discussed by

de Sousa (2002). The results of these procedures are to a large extent similar to the ones

presented here.

3. A SIMULATION STUDY

This section presents the results of the simulation study where the observations are

drawn from a Pareto, an Inverted Gamma, and a α-Stable distribution. Small (n = 200),

moderate (n = 1, 000), and large (5,000) sample sizes are considered, and the values of the

tail index examined are α = 1.1, 1.5, and 1.9. For all possible combinations, 100 samples

were generated and the results were compared in terms of the standard deviation (STD),

the bias (BIAS), and the mean squared error (MSE). Although not presented here, similar

results were obtained for values of α equal to 1.3 and 1.7.

The techniques used to estimate the tail index are briefly described next. For the Zipf

plot we have X =
[
1 log n+1

i

]k
i=1

and y = [logX(i)]ki=1 in Algorithm 1. The tail index

is estimated by the inverse of the least squares estimator for the slope of the linear part in

the graph. This estimator was proposed by Kratz and Resnick (1996) and is known as the

QQ-estimator.

Recall from the previous section that the covariance matrix of the error terms when

yi = Si is given by the matrix Ω = α−2[min(i, j)]ki,j=1. Using the Cholesky decomposition,

we have seen that the matrix [min(i, j)]ki,j=1 could be written as ΘΘ′ (see proof of Propo-

sition 2, available in the electronic version at www.ingenta.com). Hence, cov
(
1,Θ−1ε

)
=

Θ−1cov (1, ε) (Θ′)−1 = α−2Θ−1Ω(Θ′)−1 = α−2I . Therefore for the Sum plot, Algorithm

1 will be applied to Θ−1y with y = [Si]ki=1, and Θ−1X with X = [1 i]ki=1, and the tail

index will be estimated by the Hill estimator.

In analyzing the above approaches, it was considered that at least 2% of the upper order

statistics should be used in the estimation of the tail index. This assumption seems quite

reasonable, not only for the Inverted Gamma and the Stable distributions  studied here, but

also in general for the sample sizes considered in this study. With less than 2% of the data,
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any of the methods considered exhibit large variability and it becomes hard to justify a

particular choice for α̂. The level of significance used in the stepwise procedure described

in Section 2.3 was 1%, 5%, and 10%. Since the results obtained were very similar for these

three cases, only the 5% significance level case is reported.

Two other adaptive procedures are also included in the simulation study. These proce-

dures are based on the asymptotic mean squared error of the Hill estimator. Under certain

conditions on model (1.1), Feuerverger and Hall (1999), and Beirlant, Dierckx, and Stǎricǎ

(2002) determined that

i
(

logX(i) − logX(i+1)
)

≈
(
α−1 + bn,k

(
i

k + 1

)−ρ
)

ei, for i = 1, . . . , k, (3.1)

where the random variables ei’s are independent exponential distributed with unit mean, α

is the tail index, bn,k = b
(

n+1
k+1

)
for a positive function b such that b(x) → 0 as x→ ∞,

and k = 1, . . . , n − 1.

Therefore, the asymptotic mean squared error of the Hill estimator can be determined

by AMSEH−1
k,n

=
(

bn,k

1−ρ

)2
+ α−2

k , for k = 1, . . . , n − 1.

The optimal value of k is calculated by kop = min1≤k<n AMSEH−1
k,n

. It can be shown

that the AMSEH−1
k,n

is minimal for

kop ∼ b
− 2

1−2ρ

n,k (k + 1)− 2ρ
1−2ρ

(
(1 − ρ)2α−2

−2ρ

) 1
1−2ρ

.

Algorithms 2 and 3 (Beirlant, Dierckx, and Stǎricǎ 2002; Matthys and Beirlant 2000) are

based on these results. Furthermore it was found that for most distributions the algorithms

seem to perform better for a fixed value ofρ, even if this parameter is misspecified. Following

the suggestion by Matthys and Beirlant  (2000) we consider ρ = −1.

Algorithm 2.
1. In the exponential regression model (3.1) consider ρ = −1 and determine the least-

squares estimates for α̂−1 and b̂n,k for k = 3, . . . , n.

2. Calculate an estimate of the AMSEH−1
k,n

by substituting ρ, α−1, and bn,k with the

values determined in Step 1.

3. Determine k̂1
op by the value of k that minimizes the estimates of the AMSEH−1

k,n
in

Step 2, and estimate α by Hk̂1
op,n

.

Algorithm 3.
1. In the exponential regression model (3.1) consider ρ = −1 and determine the least-

squares estimates for α̂−1 and b̂n,k for k = 3, . . . , n.

2. Calculate k̂op,k according to equation kop defined earlier, substituting ρ, α−1, and

bn,k by the values determined in Step 1, for k = 3, . . . , n.

3. Determined k̂2
op = median

{
k̂op,k, k = 3, . . . , n

2

}
, and estimate α by Hk̂2

op,n
.
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Table 1. Simulation Results for the Pareto(1,α) Distribution With n = 200 and 5,000

200 5,000

n A1ZQQ A1SH A2 A3 H100 QQ100 A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .1005 .0890 .0953 .2892 .0834 .1033 .0194 .0163 .0150 .0499 .0154 .0211
BIA −.0384 .0126 .0131 .0451 .0050 −.0291 .0015 .0024 .0021 .0120 .0011 −.0018
MSE .0116 .0081 .0093 .0857 .0070 .0115 .0004 .0003 .0002 .0026 .0002 .0004

ααα = 1.5
STD .1527 .1224 .1628 .4927 .1100 .1413 .0319 .0231 .0202 .0726 .0209 .0294
BIAS −.0395 .0124 .0286 .1197 .0067 −.0374 .0009 .0047 .0038 .0162 .0013 -.0033
MSE .0249 .0151 .0273 .2570 .0122 .0214 .0010 .0006 .0004 .0055 .0004 .0009

ααα = 1.9
STD .5705 .1331 .1652 .5347 .1304 .1736 .0389 .0298 .0273 .0846 .0275 .0381
BIAS .0786 .0222 .0358 .0887 .0151 −.0373 −.0054 .0023 .0013 .0064 .0008 −.0062
MSE .3317 .0182 .0286 .2937 .0172 .0315 .0015 .0009 .0007 .0072 .0008 .0015

In what follows, the performance of Algorithm 1 applied to the Zipf plot and the Sum

plot is going to be compared to the two adaptive procedures defined in Algorithm 2 and

Algorithm 3. These algorithms suggest a value of k for the estimation of the tail index.

Except for the Zipf plot, the estimation of the tail index is determined by the Hill estimator,

Hk,n.

3.1 PARETO DISTRIBUTION

The observations drawn from a Pareto distribution with parameters (c, α) as defined in

Proposition 1 were generated using the inversion method assuming c = 1. The approaches

to be compared are: Algorithm 1 and the Zipf plot together with the QQ-estimator (A1ZQQ),

Algorithm 1 and the Sum plot together with the Hill estimator (A1SH), Algorithm 2 (A2)

and Algorithm 3 (A3). Since for this particular distribution the optimal value of k coincides

with the sample size n, we also included the results of the Hill estimator (H100) and the

QQ-estimator (QQ100) based on all the observations. The results are presented in Table 1.

The case of n = 1,000 can be seen in the electronic version at www.ingenta.com.

In terms of mean squared error, the results based on A1SH are almost identical to those

of H100, although the Sum plot procedure exhibits a little higher bias. It is also worth noting

that the bias and the mean squared error are of the same magnitude for all the different

values of α. These results suggest that the proposed iterative procedure for fitting a line to

the Sum plot identifies correctly the number of upper order statistics to be used.

The A1ZQQ procedure exhibits the largest bias and mean squared error in most situa-

tions. Only Algorithm 3 performs, in some cases, worse than A1ZQQ. This behavior is not

surprising due to the nature of the Zipf plot, where the estimation procedure is affected by

the “jumpiness” present in the upper order statistics region of the graph. Even considering

all observations, QQ100 exhibits larger mean square error than H100 and A1SH.

In general, Algorithm 3 tends to perform worse than Algorithm 2, except for moderate
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Table 2. Simulation Results for the IG(α,1) Distribution With n = 200 and 5,000

200 5,000

n A1ZQQ A1SH A2 A3 H5 H10 A1ZQQ A1SH A2 A3 H5 H10

ααα= 1.1
STD .6003 .7303 .5932 .3333 .4506 .2622 .0460 .0701 .0325 .0599 .0687 .0482
BIAS −.1357 −.1783 −.1371 .0557 .1094 .0205 −.1461 −.0145 −.1502 −.0199 −.0130 −.0330
MSE .3788 .5651 .3707 .1142 .2150 .0692 .0235 .0051 .0236 .0040 .0049 .0034

ααα= 1.5
STD .6604 .9980 1.0196 .4501 .6071 .3447 .0900 .1056 .0514 .0830 .0918 .0618
BIAS −.2894 −.3503 −.1461 .0346 .0923 −.0414 −.2479 −.0611 −.2599 −.0727 −.0572 −.0994
MSE .5198 1.1187 1.0609 .2038 .3770 .1205 .0695 .0149 .0702 .0122 .0117 .0137

ααα= 1.9
STD 1.3957 .8256 1.6259 .7945 .7003 .4036 .0680 .1290 .0710 .1161 .1111 .0736
BIAS −.3735 −.4130 −.0939 .0675 .0586 −.1157 −.4167 −.1239 −.3881 −.1170 −.1195 −.1905
MSE 2.0875 .8522 2.6524 .6357 .4938 .1763 .1783 .0320 .1556 .0272 .0266 .0417

sample sizes (n = 1, 000). In such cases, there does not exist a uniformly better procedure

for all the different values of α. Overall, all the approaches considered perform reasonably

well, as expected since the Pareto distribution represents the baseline case.

3.2 INVERTED GAMMA DISTRIBUTION

The Inverted Gamma random variables X , IGa(α, β), are generated from Gamma

random variables Y , Ga(α, β), and then computing X = Y −1. In this study, the value of

β was fixed to 1. The methods compared are the same as the ones in the preceding section,

except for the last two procedures, H100 and QQ100. Instead the value of α is estimated

from the Hill estimator by considering the largest 5% (H5) and 10% (H10) observations,

respectively, a procedure commonly used in practice. The full results are given in the

electronic version at www.ingenta.com, and the cases on n = 200 and n = 5,000 in Table

2.

Algorithm 3 and the fixed rule H10 give the best results for small and moderate sample

sizes. Notice that for large sample sizes, n = 5, 000, H5 seems to be the preferable choice

for α = 1.5 and 1.9. For n = 5, 000, the approaches A1SH, A3, H5, and H10 give very

similar results. It is clear that Algorithm 1 applied to the Zipf plot together with the QQ-

estimator is the procedure that gives in general higher mean squared errors. Also notice that

for n = 1,000 and 5,000, the results produced from Algorithm 1 together with the Sum plot

and the Hill estimator are in general between the two adaptive procedures A2 and A3.

It is quite interesting that a simple fixed rule such as H10 or H5 gives such good results.

As can been seen in Figure 6, where the Pareto and the Inverted Gamma densities are graphed

for α = 1.5, the departure of the Pareto tail behavior occurs between the 90th and the 95th

percentiles. Therefore, it does not come as a surprise that these particular choices for the
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Figure 6. Probability density functions of a P(1,1.5) (−−) and an IGa(1.5,1) ( ) distribution.

fixed rules will perform reasonably well for the Inverted Gamma distribution. However, as

the results for the α-Stable distribution show, this good performance cannot be taken for

granted.

3.3 α-STABLE DISTRIBUTION

The observations are generated from a symmetric α-Stable distribution using the

method of Chambers, Mallows, and Struck (1976). The procedures analyzed for the α-

Stable distribution were the same as the ones in the previous section and are given in Table

3, and in its full extent in the electronic version at www.ingenta.com. The results for large

sample sizes show why relying on fixed rules is not a particularly good practice, since they

have very high MSE. The adaptive procedure A3 outperforms its competitors for α = 1.1,

while for the remaining values of α both A2 and A3 perform well for moderate and large

Table 3. Simulation Results for the Symmetric α-Stable Distribution With n = 400 and 5,000

200 5,000

n A1ZQQ A1SH A2 A3 H5 H10 A1ZQQ A1SH A2 A3 H5 H10

STD .4759 .9250 .7045 .3427 .4539 .2806 .0731 .0686 .0389 .0605 5.3822 1.7885
BIAS −.1589 −.0476 .0391 .0921 .1448 .0697 −.0586 .0262 −.0596 .0145 1.2291 .5758
MSE .2517 .8579 .4978 .1259 .2270 .0836 .0088 .0054 .0051 .0039 30.4782 3.5302

STD .7148 .4578 .6183 .4685 .6850 .4425 .1049 .1006 .0774 .1061 6.7560 2.0452
BIAS −.3005 −.2592 .1838 .2994 .3370 .2971 .0743 .2063 .1398 .1512 1.6475 .7076
MSE .6012 .2768 .4161 .3091 .5827 .2841 .0165 .0527 .0255 .0341 48.3580 4.6836

STD 2.0651 1.3476 2.9124 2.2986 1.9511 1.0248 .3353 .2669 .0804 .1053 5.2538 2.6140
BIAS .4760 .4444 2.0264 2.7208 2.4106 1.9065 .7587 1.6443 −.2635 −.2503 1.9633 1.0009
MSE 4.4914 2.0136 12.5884 12.6864 9.6176 4.6849 .6881 2.7750 .0759 .0737 31.4575 7.8348
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sample sizes. The A1SH performs well for smaller values of α and for moderate and large

sample sizes, while the A1ZQQ procedure performs satisfactorily in similar settings. It can

also be seen that among the two adaptive procedures, A3 tends to outperform A2, especially

in the presence of very heavy tails (α = 1.1).

This simulation study illustrates that the proposed method performs well for different

heavy tailed distributions. It also shows that the adaptive procedures are very competitive,

while fixed rules can be misleading. The advantage of the proposed method is that is

accompanied by a diagnostic graph that identifies successfully where the behavior of the

tail that is consistent with (1.1) ends. On the other hand, a close examination of several of

the generated samples used in the simulation study shows that when the Hill plot does not

quite stabilize, the results of the adaptive algorithms are not particularly good.

4. DATA EXAMPLES

In this section the Sum plot is used on three real datasets. Because the Sum plot is used

together with the Hill estimator, in some of the following graphs we will present both plots

in a single graph, making it easier to determine the value of k and the estimated value for

α given by Hk,n.

4.1 AUSTRALIA COMMUNITY SIZE DATA

A famous example of city size data is the Australian Community Size dataset, used in

the original work of Zipf (Zipf 1949) and more recently re-examined by Feuerverger and

Hall (1999). The dataset includes all the communities with more than 2,000 people in 1921,

and the sample size is 256. Feuerverger and Hall (1999) suggested using the transformation

Y = N0 −X , where N0 is a large positive value. In practice, N0 can correspond to the size

of the 5th, the 10th, or the 20th largest community. We settled on N0 = X(10) and used the

Y −1 values as our data. In Figure 7, the Hill, the Sum, and the Zipf plots for this dataset

are shown. The Hill plot is not particularly informative, since it fails to stabilize; possible

candidate values for α range from 1.15 to 1.30. On the other hand, the Sum plot exhibits a

strong linear pattern for the largest order statistics. The Sum plot clearly indicates a break

from linearity at the order k = 50, which corresponds to a value of H50,246 = 1.291, which

is in agreement with values given by Feuerverger  and Hall (1999). Algorithm 2 suggests a

value of 1.5333 for α based on the 71 largest observations, and Algorithm 3 estimates the

tail index by H29,246 = 1.267.

The Zipf plot shows large volatility at the top observations, which will highly influence

the outcome of the procedure introduced in the simulation study. The value suggested for k is

5, with the QQ-estimator giving a value of .709 for α. Removing the top three observations,

we obtain an estimate for the tail index of 1.185, based on the 20 largest observations of

this reduced dataset. The two different fitted lines can be seen in the right panel of Figure 7.

All the values suggested are within the expected results for this data and in accordance
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Corrupt file.

Figure 7. The Sum and Hill plots (left panel) and the Zipf plot (right panel).

to the results obtained by Zipf (1949) and Feuerverger and Hall (1999). The great advantage

of the Sum plot is its stability towards the top observations in a dataset. The Sum plot uses

all the information available in making the difficult decision of selecting the number of

order statistics in the estimation of the tail index, without the subjectivity that takes place

with the removal of the top three observations in the Zipf plot. It is important to notice that

the results from the Sum plot together with the Hill estimator are within the ones obtained

from the two adaptive procedures (A2 and A3). We are currently investigating whether the

perturbed Pareto suggested in Feuerverger  and Hall (1999) gives rise to a concave Sum

plot, as shown in Figure 7. It is clear that our approach properly identifies the portion of the

data exhibiting a heavy-tailed behavior, providing a good estimate for the tail exponent.

4.2 NETWORK CONNECTION DATA

The next dataset describes the degree of connectivity between autonomous systems

(AS—networks under a single administrative authority) on the Internet for the year 2000 and

is provided by the National Laboratory for Applied Network Research. The information has

been used to characterize the topology of the Internet (Faloutsos, Faloutsos, and Faloutsos

1999; Chen et al. 2002) and its impact on TCP/IP protocol dynamics (Feldmann, Huang,

Gilbert, and Willinger 1999). The size of the data is 6,474 and each observation indicates

to how many other ASs any system is connected to. The histogram plotted on a log-scale

indicates that the vast majority of ASs are connected to only one of their peers, but there

are a few ASs that are connected to almost 30% of their peers. This finding contradicts the

long held hypothesis that the topology of the Internet can be captured by that of a random

graph, to be replaced by the hypothesis of a power-law graph (Barabasi and Albert 1999).

The Hill, the Sum, and the Zipf plots are given next.

In Figure 8 (middle panel), we take a closer look at the first 500 observations from the

Sum and Hill plots (top panel). Once again the Hill plot fails to stabilize, while the Sum plot
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Figure 8. The Sum and Hill plots based on all (top), on the largest 500 (middle) observations, and the Zipf plot
(bottom).



18 B. DE SOUSA AND G. MICHAILIDIS

exhibits a strong initial linear pattern. The Sum plot suggests using around 125 observations,

estimating the parameter α by H125,6474 = 1.203, which confirms the results reported by

Faloutsos, Faloutsos, and Faloutsos (1999). It is interesting to note the sawtooth pattern

in both graphs, which is a consequence of the repeated integer values of the observations.

However, there is an unmistakable linear pattern for the largest order statistics, which helps

us to identify the value of k. We are currently investigating ways to best make such plots

for this type of data.

The Zipf plot in Figure 9 (bottom panel) is less affected by the nature of the data,

because we are dealing with a log-log scale graph. The suggested value for the tail index is

1.233, based on all the 6,474 observations. Algorithms 2 and 3 suggest a value for the tail

index of .8258 and 1.1651, respectively. The proposed estimate from Algorithm 2 seems to

be a little too low since all the other procedures suggest values above 1. As can be seen in

Matthys and Beirlant (2000) and confirmed by our simulation study, Algorithm 3 is usually

preferable to Algorithm 2.

4.3 WORLD NATURAL GAS DATA

The data consist of the volumes of 369 natural gas world provinces. The data can

be found in Table 1 at http://greenwood.cr.usgs.gov/energy/WorldEnergy/OF97-463. The

study of the patterns in these types of data will help in understanding the development of

future natural gas resources leading to better assessments of the reserve growth potential of

the world’s provinces. We show next the Sum, the Hill and the Zipf plots for this dataset.

By looking at Figure 9 we realize that the Hill plot does not quite stabilize in any

particular region, making it extremely hard to decide upon a specific value forα simply from

this graph. The Zipf plot shows as usual a little variability towards the larger observations,

suggesting a value of k equals to 122 with a QQ-estimate of .7994. The Sum plot clearly

detects the departure of linearity aroundk = 19 with a value ofα given byH19,369 = 1.2448.

Also, the values of the tail index given by A2 and A3 are 1.3931 and 1.1098, respectively.

It can be seen that the shape of the Sum plot suggests the existence of a Pareto like tail in

the data and provides to the data analyst a good estimate for the tail index.

5. CONCLUDING REMARKS

The main contribution of this article is the development of a diagnostic plot (the Sum

plot) that allows the data analyst to identify successfully the order statistic that signals

the beginning of a power law behavior in the tail of the data’s distribution. The Sum plot

overcomes many of the problems encountered in previous approaches, such as the difficulty

in locating a stable region in the Hill plot and the high variability present in the region of the

upper order statistics in the Zipf plot. The main advantage of the Sum plot is that the power

law behavior in the tail coincides with a strong linear pattern; thus, transforming the problem

of identifying the number of upper order statistics to be used in the estimation of the tail
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Figure 9. The Sum plot (top), the Hill plot (middle), and the Zipf plot (bottom).
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Figure 10. The Sum plot based on the largest 200 (left), and the largest 1,000 (right) observations from a sample
of size 1,000 and 1,000,000, respectively, from a lognormal distribution with µ = 0 and σ = 2.

index to one of detecting departures from linearity. Moreover, an extensive simulation study

confirms that the Sum plot combined with the Hill estimator outperforms approaches based

on the Zipf plot and its variants and on fixed rules favored in practice. It is also competitive

against adaptive procedures that minimize the asymptotic mean squared error of the Hill

estimator. Although the Sum plot has shown to be very useful in the applications presented

in this study, where the volatile behavior in the Hill plot and in the top of the Zipf plot is

taken away, its performance has not been tested for certain situations. For example, when

mixtures occur in the tails of a distribution, such as in insurance, the Sum plot should be

used with caution. The Sum plot should always be interpreted as one more tool to be used

in the estimation of the tail index and compared to the methods available to date.

An extension currently under investigation is to study the patterns produced by some

specific distributions that have been suggested in the literature as good models for cap-

turing the behavior of certain aspects of Internet traffic [e.g., the double-Pareto lognormal

distribution (Reed 2001)].

We conclude with a short discussion regarding the lognormal distribution, which has

proved to be an extremely interesting case in the study of heavy-tailed distributions. In many

studies (Crovella and Taqqu 1999; Adler, Feldman, and Taqqu 1998) the techniques used

for estimating the tail index failed to correctly assess the non-heaviness of the tail for data

drawn from a lognormal distribution withσ = 2. These approaches generally suggest values

of α < 1.5. We briefly discuss the difficulties that the lognormal distribution presents. In

Figure 10 the Sum plots of a small number of upper order statistics from samples of size

1,000 (left panel) and 1,000,000 (right panel) of a lognormal distribution with mean zero

and standard deviation 2 are shown.

It can be seen that for n = 1,000, the Sum plot fails to detect the presence of a light

tail, since the suggested value of k is 100 corresponding to a α̂ = 1.2349. However, the

same holds true for all the other approaches discussed in the article. On the other hand, in

the presence of a very large sample the Sum plot clearly detects the departure from linearity

at around k = 110, with a corresponding value for the tail index of 2.1768. On the other
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hand, the A2 and A3 algorithms suggest values for α̂ = 1.54 and 1.74, respectively, while

the QQ-estimator gives a value for α̂ = 1.438. These results further illustrate the usefulness

of the Sum plot in data analysis studies.
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APPENDIX

Proof of Proposition 1: If the random variable X follows the Pareto distribution as

defined in the proposition, then the distribution function of the random variable Y = c−1X

isP [Y > y] = P [c−1X > y] = P [X > cy] = y−α, for y > 1, that is, the random variable

Y has a Pareto(1, α) distribution. Hence, without loss of generality, for the remainder of

the proof we will assume that the constant c = 1.

The proof of this proposition is based on the following two results given by Shaked

and Shanthikumar (1988).

Definition 1. Let {X(θ), θ ∈ Θ} be a set of random variables with distribution

function Fθ. If for any θi ∈ Θ, i =1, 2, 3, 4, such that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ1 + θ4 =
θ2 + θ3, there exist four random variables X̂i, i =1, 2, 3, 4 which satisfy:

1. X̂i =st X(θi), for i = 1, 2, 3, 4. The symbol =st denotes equality in distribution,

2. [X̂1, X̂2, X̂3] ≤ X̂4almost surely, that is, all the random variables in the brackets

are ≤ than the random variable on the right side of the inequality almost surely

3. X̂1 + X̂4 = X̂2 + X̂3almost surely, then {X(θ), θ ∈ Θ} is said to be stochastically

increasing and linear in the sample path sense, SIL(sp).

Proposition 3. If {X(θ), θ ∈ Θ} ∈ SIL(sp), then {X(θ), θ ∈ Θ} ∈ SIL. In other

words, for A, the class of all increasing and linear real functions on R, and Aθ, the class

of all increasing and linear real functions on Θ, we have φ ∈ A ⇒ Eφ(X(.)) ∈ AΘ.

See Shaked and Shanthikumar (1988) for a proof of this result.

Let i1 ≤ i2 ≤ i3 ≤ i4 such that i1 + i4 = i2 + i3. Consider the four random variables

Si1 , Si2 , Si3 , Si4 such that:

Si1 =
i1∑

i=1

iVi,

Si2 =
i2∑

i=1

iVi = Si1 + S
′
i2−i1

, where S
′
i2−i1

=
i2∑

i=i1+1

iVi,

Si3 = Si1 + S
′
i2−i1

+ S
′
i3−i2

, where S
′
i3−i2

=
i3∑

i=i2+1

iVi,

Si4 = Si1 + S
′
i2−i1

+ S
′
i3−i2

+ S
′
i4−i3

, where S
′
i4−i3

=
i4∑

i=i3+1

iVi.

Considering the Pareto distribution, the random variables {iVi, i = 1, . . . , n − 1} are

independent exponentially distributed with mean equal to α−1 (see Section 2). Since i2 −
i1 = i4 − i3, the random variables S

′
i2−i1

and S
′
i4−i3

are equally Ga(i2 − i1, α) distributed.

Consider now the following random variables: Ŝi1 = Si1 , Ŝi2 = Si2 , Ŝi3 = Si1 + S
′
i3−i2

+
S

′
i4−i3

, and Ŝi4 = Si4 . Then Conditions 1 and 2 from the previous definition are obviously



satisfied. For Condition 3, notice that Ŝi2 + Ŝi3 = 2Si1 + S
′
i2−i1

+ S
′
i3−i2

+ S
′
i4−i3

and

Ŝi1 + Ŝi4 = 2Si1 + S
′
i2−i1

+ S
′
i3−i2

+ S
′
i4−i3

. Hence Ŝi1 + Ŝi4 = Ŝi2 + Ŝi3 , almost surely.

By Definition 1 we conclude that the random variables {Sk, k = 1, . . . , n − 1} are SIL(sp),
and from Proposition 1 we can conclude the SIL of the random variables in question. ✷

Proof of Proposition 2: The matrix Ω can be decomposed as α−2Θ′Θ, where the

matrices Θ =
[
1{j ≤ i}

]k
i,j=1

and Θ−1 = I − [1{j−i =−1}
]k
i,j=1

with I the identity matrix

and 1{.} the indicator function. Substituting Ω by its decomposition and proceeding with

the definition of the generalized least squares estimator, β̂GLS = (X ′Ω−1X)−1X ′Ω−1y,

the result follows immediately. The estimator of α−1 is the estimated slope of the fitting

line, that is, β1. Thus,

α̂−1 =
1

k − 1

k∑
i=2

iVi =
1

k − 1

{
k∑

i=2

logX(i) − k logX(k+1)

}

=
1

k − 1

{
k∑

i=1

logX(i) − k logX(k+1) − logX(1)

}

=
k

k − 1
H−1

k,n − 1
k − 1

logX(1).

✷

Proof of Corollary 1: The proof is identical to the previous one, with X = [i]ki=1 a

k × 1 matrix and β = (β1) an unknown regression parameter. Calculating the generalized

least squares estimator we have

α̂−1 =
1
k

k∑
i=1

iVi =
1
k

{
k∑

i=1

(logXi − logXk+1)

}
= H−1

k,n.

✷



TABLES

Table A.1. Simulation Results for the Pareto(1,α) distribution with n = 200

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .1005 .0890 .0953 .2892 .0834 .1033
BIAS −.0384 .0126 .0131 .0451 .0050 −.0291
MSE .0116 .0081 .0093 .0857 .0070 .0115

ααα = 1.5
STD .1527 .1224 .1628 .4927 .1100 .1413
BIAS −.0395 .0124 .0286 .1197 .0067 −.0374
MSE .0249 .0151 .0273 .2570 .0122 .0214

ααα = 1.9
STD .5705 .1331 .1652 .5347 .1304 .1736
BIAS .0786 .0222 .0358 .0887 .0151 −.0373
MSE .3317 .0182 .0286 .2937 .0172 .0315

Table A.2. Simulation results for the Pareto(1,α) Distribution With n = 1,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .0498 .0365 .0366 .1341 .0346 .0475
BIAS −.0105 .0022 .0020 .0261 .0007 −.0093
MSE .0026 .0013 .0187 .0013 .0012 .0023

ααα = 1.5
STD .0511 .0306 .0413 .1271 .0478 .0658
BIAS −.0098 −.0015 .0131 .0072 .0004 −.0149
MSE .0027 .0009 .0163 .0018 .0023 .0046

ααα = 1.9
STD .0859 .0682 .0673 .1952 .0615 .0875
BIAS −.0137 .0071 .0067 .0170 .0036 −.0140
MSE .0076 .0046 .0046 .0384 .0038 .0079



Table A.3. Simulation Results for the Pareto(1,α) Distribution with n = 5,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .0194 .0163 .0150 .0499 .0154 .0211
BIAS .0015 .0024 .0021 .0120 .0011 −.0018
MSE .0004 .0003 .0002 .0026 .0002 .0004
ααα = 1.5
STD .0319 .0231 .0202 .0726 .0209 .0294
BIAS .0009 .0047 .0038 .0162 .0013 −.0033
MSE .0010 .0006 .0004 .0055 .0004 .0009

ααα = 1.9
STD .0389 .0298 .0273 .0846 .0275 .0381
BIAS −.0054 .0023 .0013 .0064 .0008 −.0062
MSE .0015 .0009 .0007 .0072 .0008 .0015

Table A.4. Simulation Results for the IG(α,1) Distribution with n = 200

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .6003 .7303 .5932 .3333 .4506 .2622
BIAS −.1357 −.1783 −.1371 .0557 .1094 .0205
MSE .3788 .5651 .3707 .1142 .2150 .0692

ααα = 1.5
STD .6604 .9980 1.0196 .4501 .6071 .3447
BIAS −.2894 −.3503 −.1461 .0346 .0923 −.0414
MSE .5198 1.1187 1.0609 .2038 .3770 .1205

ααα = 1.9
STD 1.3957 .8256 1.6259 .7945 .7003 .4036
BIAS −.3735 −.4130 −.0939 .0675 .0586 −.1157
MSE 2.0875 .8522 2.6524 .6357 .4938 .1763

Table A.5. Simulation Results for the IG(α, 1) Distribution with n = 1,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .1714 .2401 .0851 .1419 .1581 .1070
BIAS −.1721 −.0187 −.1775 .0077 .0004 −.0298
MSE .0590 .0580 .0388 .0202 .0250 .0123

ααα = 1.5
STD .1725 .2188 .1108 .1620 .2134 .1377
BIAS −.3046 −.1622 −.3211 −.0464 −.0271 −.0866
MSE .1226 .0742 .1154 .0284 .0463 .0264

ααα = 1.9
STD .2520 .2978 .1576 .2268 .2430 .1648
BIAS −.4436 −.2070 −.4446 −.1136 −.0974 −.1850
MSE .2603 .1316 .2225 .0643 .0685 .0614



Table A.6. Simulation Results for the IG(α, 1) Distribution with n = 5,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .0460 .0701 .0325 .0599 .0687 .0482
BIAS −.1461 −.0145 −.1502 −.0199 −.0130 −.0330
MSE .0235 .0051 .0236 .0040 .0049 .0034

ααα = 1.5
STD .0900 .1056 .0514 .0830 .0918 .0618
BIAS −.2479 −.0611 −.2599 −.0727 −.0572 −.0994
MSE .0695 .0149 .0702 .0122 .0117 .0137

ααα = 1.9
STD .0680 .1290 .0710 .1161 .1111 .0736
BIAS −.4167 −.1239 −.3881 −.1170 −.1195 −.1905
MSE .1783 .0320 .1556 .0272 .0266 .0417

Table A.7. Simulation Results for the Symmetric α-Stable Distribution with n = 400

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .4759 .9250 .7045 .3427 .4539 .2806
BIAS −0.1589 −0.0476 .0391 .0921 .1448 .0697
MSE .2517 .8579 .4978 .1259 .2270 .0836

ααα = 1.5
STD .7148 .4578 .6183 .4685 .6850 .4425
BIAS −.3005 −.2592 .1838 .2994 .3370 .2971
MSE .6012 .2768 .4161 .3091 .5827 .2841

ααα = 1.9
STD 2.0651 1.3476 2.9124 2.2986 1.9511 1.0248
BIAS .4760 .4444 2.0264 2.7208 2.4106 1.9065
MSE 4.4914 2.0136 12.5884 12.6864 9.6176 4.6849

Table A.8. Simulation Results for the Symmetric α-Stable Distribution with n = 2,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .1848 .1693 .9667 .1209 .1657 .1147
BIAS −.0829 .0040 .0157 .0222 .0289 .0173
MSE .0410 .0287 .9348 .0151 .0283 .0135

ααα = 1.5
STD .2123 .2243 .1513 .2288 .2575 .1834
BIAS −.0170 .1660 .1078 .1990 .1748 .2404
MSE .0454 .0779 .0345 .0920 .0969 .0914

ααα = 1.9
STD .9740 1.0268 .6015 1.0929 .6675 .3886
BIAS .8901 1.3679 1.3003 1.8677 1.8631 1.6840
MSE 1.7410 2.9253 2.0527 4.6821 3.9166 2.9867



Table A.9. Simulation Results for the Symmetric α-Stable Distribution with n = 10,000

A1ZQQ A1SH A2 A3 H100 QQ100

ααα = 1.1
STD .0731 .0686 .0389 .0605 5.3822 1.7885
BIAS −.0586 .0262 −.0596 .0145 1.2291 .5758
MSE .0088 .0054 .0051 .0039 30.4782 3.5302

ααα = 1.5
STD .1049 .1006 .0774 .1061 6.7560 2.0452
BIAS .0743 .2063 .1398 .1512 1.6475 .7076
MSE .0165 .0527 .0255 .0341 48.3580 4.6836

ααα = 1.9
STD .3353 .2669 .0804 .1053 5.2538 2.6140
BIAS .7587 1.6443 −.2635 −.2503 1.9633 1.0009
MSE .6881 2.7750 .0759 .0737 31.4575 7.8348


