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Abstract. The subject of topology optimization methods in structural de-
sign has increased rapidly since the publication of [?], where some ideas from
homogenization theory were put into practice. Since then, several engineering
applications have been developed successfully. However, in the literature, there
is a lack of analytical solutions, even for simple cases, which might help in the
validation of the numerical results. In this work, we develop analytical solu-
tions for simple minimum compliance problems, in the framework of elasticity
theory. We compare these analytical solutions with numerical results obtained
via an algorithm proposed in [?].

1. Introduction. The efficient use of materials is one of the major goals of engi-
neering sciences. In the field of structural optimization, we can identify three main
types of design problems (independent of the objective function): to determine the
optimal thickness distribution, where the domain of the design and state variable
is a priori known and fixed in the optimization process — size problem; to find
the optimal shape of the design — shape problem; to determine the number and
location of holes and the connectivity of the domain — topology problem. During
the last decades several powerful algorithms were developed in order to address all
these types of problems.

One of the algorithms that proved to be applicable to practical problems in
the area of topology optimization was introduced in [?], giving a new impulse to
the most complex design problem. There, the first introduced novelty was the
transformation of the initial problem into a material distribution problem, where
composite materials were used as the base material. Another novelty was the
application of Homogenization Theory (eg., [?], [?]) to determine the macroscopic
material properties from the microscopic material constituents (cf. [?], [?], [?], [?]).

In this work we are interested in studying some analytical solutions of that
method, in order to provide a basis for comparison with the numerical results. To
do so, we use laminates because for this type of composite materials there is an
explicit dependence of the homogenized coefficients on the design variables.
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The type of problems we wish to address may be described by the following
abstract setting: let V be a Hilbert space (state space), Λ be a Banach space and
Φ be an open subset of Λ (control space), where we give the functionals

a : Φ× V × V −→ R
(τ, u, v) 7−→ a(τ ;u, v),

` : Φ× V −→ R
(τ, v) 7−→ `(τ ; v),

J : Φ× V −→ R
(τ, v) 7−→ J(τ ; v).

For each τ , a(τ ; ·, ·) is supposed to be bilinear, continuous, symmetric and coercive
in u and v and `(τ ; ·) is supposed to be linear and continuous in v. Both are
supposed to be of class C1 with respect to τ in the spaces of continuous bilinear
functionals and continuous linear functionals, respectively. As for J , it is supposed
to be of class C1 with respect to the pair (τ, v).

By application of Lax-Milgram’s Lemma, the hypotheses imposed in functionals
a and ` garantee that, for a fixed τ , the state equation

a(τ ; uτ , v) = `(τ ; v), ∀v ∈ V

possesses a unique solution. Therefore, we may define the functional

j : Φ −→ R
τ 7−→ j(τ) = J(τ ; uτ ).

The problem we are studying is formulated as

min
τ

j(τ)

st : a(τ ; uτ , v) = `(τ ; v), ∀v ∈ V,

τ ∈ Φ.

In order to determine the necessary stationarity conditions, we need to differen-
tiate j(τ) with respect to τ . We have the classical result ([?]):

Theorem 1.1. Under the above conditions, the functions

u : Φ −→ V j : Φ −→ R
τ 7−→ uτ , τ 7−→ j(τ)

are of class C1. Moreover, we have

dj

dτ
(τ) · δτ =

∂J

∂τ
(τ ;uτ ) · δτ − ∂a

∂τ
(τ ;uτ , pτ ) · δτ − ∂`

∂τ
(τ ; pτ ) · δτ, ∀δτ ∈ Λ,

where pτ ∈ V is the adjoint state variable, which is given as the unique solution of
the equation

a(τ ; w, pτ ) =
∂J

∂v
(τ ; uτ ) · w, ∀w ∈ V.
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This result can be generalized to the case where there is more than one control
(design) variable.

Although this abstract setting is capable of describing a large variety of problems
in one dimension (eg., extension and bending of a rod), in two dimensions (eg., heat
transfer and torsion of a bar) and in three dimensions (elasticity), in this work and
without any loss of generality we address the most complex problems (elasticity
case), but in order to keep the analytical solutions to a reasonable size we restrict
ourselves to the two dimensional plane stress case.

In the next section we state the problem we wish to address together with some
classical results on the subject. In section 3 we prove the existence of a solution
to the problem together with some fixed point results that will be useful in the
numerical applications. In section 4 we describe the numerical procedure employed
with the adaptations introduced. Finally, in section 5, we present several examples
comparing the analytical and the numerical solutions.

2. Problem definition. During all this paper, we will use the usual notation in
Elasticity theory, where latin indices take the values 1, 2 and 3 while greek indices
take the values 1 and 2. The summation convention on repeated indices will also
be assumed.

Let us consider a solid occupying volume Ω, an open bounded simply-connected
subset of Rn, n = 2, 3, with surface ∂Ω. Moreover, consider that the body is fixed
in a part of its surface, Γ0, and that we have ∂Ω = Γ0 ∪ Γ1,Γ0 ∩ Γ1 = ∅. Let
f = (fi) and g = (gi), denote the force per unit volume and the force per unit
surface area applied to the body, respectively. Denoting the independent variable
by x = (xi), the displacement field by u = (ui), the strain tensor by e = (eij),
where eij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, and the stress tensor by σ = (σij), where σij = Eijklekl,

Eijkl being the elasticity coefficients, the elasticity boundary value problem can be
written as

− ∂

∂xj

(
Eijklekl(u)

)
= fi in Ω,

ui = 0 on Γ0,
σijnj = gi on Γ1,

where n = (ni) is the outward-pointing normal to Γ1.
From now on, we will only consider the two-dimensional case. It should be noted,

however, that everything that will follow has an immediate generalization to the
three-dimensional case.

Let us assume, now, that the material the solid is made of possess a laminated
microstructure formed by two materials. These materials are supposed to be ho-
mogeneous and isotropic of Young’s modulus E+ and E− and with specific mass
ρ+ and ρ−, respectively, both with Poisson’s ratio ν. We will assume that the
materials are well ordered, that is, E+ > E− and ρ+ > ρ−.

We will consider two kinds of microstructure: in the first one, the material repre-
sented by the pair (E+, ρ+) is vertically intercalated with the material represented
by the pair (E−, ρ−), in the proportions τ and 1−τ , respectively, with 0 6 τ 6 1 —
this is called the rank−1 microstructure (left-hand side of Figure ??); in the second
one, the material represented by the pair (E+, ρ+) is again vertically intercalated
with proportions τ and 1− τ , but this time with a new material, that we identify
by the pair (EH−, ρH−); this new material is a rank−1, formed once again with
the two base materials with proportions µ and 1 − µ (0 6 µ 6 1), being the two



1016 G. MACHADO AND L. TRABUCHO

scales of layers orthogonal — this is called the rank−2 microstructure (right-hand
side of Figure ??).

Figure 1. rank−1 and rank−2 layered microstructure, where the
system of axes Oy1y2 represents the microscopic level

If we apply the Homogenization Theory ([?]), the non-null homogenized elasticity
coefficients have the following expressions:

ĒH
1111 =

E+
1111E

−
1111

τE−
1111 + (1− τ)E+

1111

,

ĒH
1122 =

(
τ

E+
1122

E+
1111

+ (1− τ)
E−

1122

E−
1111

)
E+

1111E
−
1111

τE−
1111 + (1− τ)E+

1111

,

ĒH
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2222 + (1− τ)E−
2222 −

(
τ

(E+
1122)

2

E+
1111

+ (1− τ)
(E−

1122)
2

E−
1111

)
+

+
(

τ
E+

1122
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1111

+ (1− τ)
E−

1122

E−
1111

)2
E+

1111E
−
1111

τE−
1111 + (1− τ)E+

1111

,

ĒH
1212 =

E+
1212E

−
1212

τE−
1212 + (1− τ)E+

1212

,

(1)
where, in plane stress, we have for the non-null coefficients E+

αβγδ (both for rank−1
and rank−2 microstructures):

E+
1111 =

E+

1− ν2
, E+

1122 =
νE+

1− ν2
, E+

2222 =
E+

1− ν2
, E+

1212 =
E+

2(1 + ν)
, (2)

and for the non-null coefficients E−
αβγδ the expressions:

E−
1111 =

E−

1− ν2
, E−

1122 =
νE−

1− ν2
, E−

2222 =
E−

1− ν2
, E−

1212 =
E−

2(1 + ν)
, (3)

for a rank−1 microstructure and

E−
1111 = I2 +

ν2I1

1− ν2
, E−

1122 =
νI1

1− ν2
, E−

2222 =
I1

1− ν2
, E−

1212 =
I1

2(1 + ν)
, (4)
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for a rank−2 microstructure, and where

I1 =
E+E−

µE− + (1− µ)E+
and I2 = µE+ + (1− µ)E−.

If we consider an angle θ made by the microstructure reference axes Oy1y2 with
respect to the macroscopic axes Ox1x2, the homogenized elasticity coefficients are
given by ([?])

EH
αβγδ(τ, µ, θ) = ĒH

εζηξ(τ, µ)RαεRβζRγηRδξ

where

R =
(

cos θ sin θ
− sin θ cos θ

)
.

The homogenized specific mass is given by

ρH(τ) = τρ+ + (1− τ)ρ− (5)
if a rank−1 microstructure is considered, or by

ρH(τ, µ) = ρ+(τ + (1− τ)µ) + ρ−(1− τ)(1− µ) (6)
if rank−2 microstructure is considered.

If instead of plane stress, we have plane deformation, we just have to alter the
expressions (??), (??) and (??), but qualitatively there is no difference between
these two situations.

The problem we are addressing considers as objective function the work of the
applied forces plus a term which penalizes the stiffest material, supposed to be
more expensive than the weakest material. If we consider a rank−2 microstructure
with rotation, we want to determine the functions τ , µ and θ (the design variables),
which minimize the objective function, subject to the equilibrium equation and to
the lower and upper bounds in τ and µ. If we write the equilibrium equation in its
variational form, the problem can be stated as

min
τ,µ,θ

j(τ, µ, θ)

st : a(τ, µ, θ; uτµθ, v) = `(τ, µ, θ; v), ∀v ∈ V,

0 6 τ 6 1,

0 6 µ 6 1,

where

j(τ, µ, θ) =
∫

Ω

fαuτµθ
α dx +

∫

Γ1

gαuτµθ
α ds + k

∫

Ω

ρH(τ, µ) dx,

a(τ, µ, θ; u, v) =
∫

Ω

EH
αβγδ(τ, µ, θ)eγδ(u)eαβ(v) dx,

`(τ, µ, θ; v) =
∫

Ω

fαvα dx +
∫

Γ1

gαvα ds,

V = {v ∈ [H1(Ω)]2 : vα = 0 on Γ0},
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where constant k represents the work done in order to add to the solid a unit of
mass and V denotes the space of kinematically admissible displacement fields.

In order to solve the problem under consideration, and for a rank−2 microstruc-
ture with rotation, we construct the Lagrangian

L = j(τ, µ, θ) + λ

(
a(τ, µ, θ; uτµθ, v)− `(τ, µ, θ; v)

)
+

+
∫

Ω

τ+(τ − 1) dx−
∫

Ω

τ−τ dx +
∫

Ω

µ+(µ− 1) dx−
∫

Ω

µ−µdx,

(7)

where τ+, τ−, µ+, µ− and λ are the Lagrange multipliers associated to constraints
τ 6 1, τ > 0, µ 6 1, µ > 0 and the equilibrium equation, respectively. From the
necessary conditions of stationarity one obtains, in Ω:

v =
1
λ

uτµθ, (8)

a(τ, µ, θ; uτµθ, v) = `(τ, µ, θ; v), (9)

τ+ > 0, τ− > 0, τ+(τ − 1) = 0, τ−τ = 0, (10)

µ+ > 0, µ− > 0, µ+(µ− 1) = 0, µ−µ = 0, (11)

k
∂ρH

∂τ
− ∂EH

αβγδ

∂τ
eγδ(uτµθ)eαβ(uτµθ) + τ+ − τ− = 0, (12)

k
∂ρH

∂µ
− ∂EH

αβγδ

∂µ
eγδ(uτµθ)eαβ(uτµθ) + µ+ − µ− = 0, (13)

∂EH
αβγδ

∂θ
eγδ(uτµθ)eαβ(uτµθ) = 0, (14)

where the last three equations are the result of applying a generalized version of
Theorem 1.1.

Now, let

χτ = k
∂ρH

∂τ
− ∂EH

αβγδ

∂τ
eγδ(uτµθ)eαβ(uτµθ), (15)

χµ = k
∂ρH

∂µ
− ∂EH

αβγδ

∂µ
eγδ(uτµθ)eαβ(uτµθ). (16)

Then, equations (??) and (??) can be rewritten as

χτ + τ+ − τ− = 0 and χµ + µ+ − µ− = 0. (17)
Therefore, considering (??), from the first equation of (??), we have





χτ < 0 ⇒ τ+ > 0, τ− = 0 ⇒ τ = 1
χτ = 0 ⇒ τ+ = 0, τ− = 0 ⇒ τ ∈ [0, 1]
χτ > 0 ⇒ τ+ = 0, τ− > 0 ⇒ τ = 0,

(18)
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where the same reasoning can be applied to χµ. So, if the cost k is sufficiently low
we just have the stiffest material; if the cost is too high, we just have the weakest
material; for intermediate values of k, we have a real laminate with a mixture of
the two base materials.

Following [?], if α denotes the angle formed by the principal strain axes with
the macroscopic system of axes Ox1x2 and ψ the angle of rotation of the material
frame Oy1y2 with respect to the principal strain axes (we denote by eI and eII the
principal strains), that is if θ = α + ψ, then, from (??), it can be shown that, if
eI = eII , then ψ can take any value (in this case, we consider θ = 0); if eI 6= eII ,
then

sin(2ψ) = 0 or cos(2ψ) =
eI + eII

eI − eII
, (19)

and one should choose the value that maximizes the strain energy

1
2
EH

αβγδeαβeγδ. (20)

3. Analytical formulation. We shall now address the question of existence of a
solution to the problem under consideration. Simultaneously, we shall also prepare
the iterative algorithm to be used later on.

In order to simplify the notation, the proof will be done only for the case of
a single design variable, namely, τ . Thus, we specifically have the Hilbert space
V = {v ∈ [H1(Ω)]2 : vα = 0 on Γ0}, the Banach space Λ = L∞(Ω) and the subset
Φ = L∞(Ω; ]0, 1[), together with the following functionals

a : Φ× V × V −→ R

(τ, u, v) 7−→ a(τ ; u, v) =
∫

Ω

EH
αβγδ(τ)eγδ(u)eαβ(v) dx,

` : V −→ R

v 7−→ `(v) =
∫

Ω

fαvα dx +
∫

Γ1

gαvα ds,

where fα, gα ∈ L2(Ω) and EH
αβγδ ∈ L∞(Ω), whose expressions were given in the

previous section.
The fact that for a fixed control τ the elasticity problem possesses a unique

solution is stated in the following result:

Lemma 3.1. Let τ ∈ Φ be given. Then, ∃1uτ ∈ V : a(τ ;uτ , v) = `(v), ∀v ∈ V .

Proof.

The proof relies on standard results in elasticity theory. In fact for a given τ ∈ Φ,
functional a(τ ; ·, ·) is bilinear, continuous and coercive, due to Korn’s inequality and
the fact that the homogenized elasticity coefficients EH

αβγδ(τ), as given by (??), (??)
and (??), are strictly increasing functions of τ . On the other hand, functional `(·) is
linear and continuous and the conclusion now follows from Lax-Milgram’s Lemma.

Let us now consider the functionals,
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J : Φ× V −→ R

(τ, v) 7−→ J(τ ; v) = `(v) + k

∫

Ω

ρH(τ) dx,

j : Φ −→ R
τ 7−→ j(τ) = J(τ ; uτ ),

where k > 0 represents the cost of the work done in order to add a unit of mass to
the system, ρH ∈ L∞(Ω), whose expression was given in the previous section, and
uτ stands for the unique solution of the elasticity problem for a fixed τ . Thus the
problem we wish to address is the following:

min
τ

j(τ)

st : a(τ ;uτ , v) = `(v), ∀v ∈ V,

τ ∈ Φ.

In order to prove the existence of a solution for this problem we start by esta-
blishing the following result:

Lemma 3.2. Let τn, τ0 ∈ Φ, τ0 > τn ae. in Ω. Then, `(uτn)− `(uτ0) > 0.

Proof.

Since the homogenized coefficients, EH
αβγδ(τ), are positive and strictly increasing

functions of its argument, one has:

∃c > 0 : τ2 > τ1 ⇒
(
EH

αβγδ(τ2)− EH
αβγδ(τ1) > c(τ2 − τ1)

)
.

So, we have:

`(uτn)− `(uτ0) = `(uτn)− 2`(uτ0) + `(uτ0) + a(τn; uτ0 , uτ0)− a(τn;uτ0 , uτ0)

= a(τn;uτn , uτn)− a(τn; uτn , uτ0)− a(τn; uτ0 , uτn)+

+a(τ0; uτ0 , uτ0) + a(τn;uτ0 , uτ0)− a(τn; uτ0 , uτ0)

= a(τn;uτn − uτ0 , uτn − uτ0) + a(τ0;uτ0 , uτ0)− a(τn; uτ0 , uτ0)

> a(τ0; uτ0 , uτ0)− a(τn;uτ0 , uτ0)

>
∫

Ω

c(τ0 − τn)
∑

α,β,γ,δ

eγδ(uτ0) eαβ(uτ0) dx

=
∫

Ω

c(τ0 − τn)
( ∑

α,β

eαβ(uτ0)
)2

dx

> 0.

We are now in a position of proving a lower semicontinuity type result for func-
tional j(·).
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Lemma 3.3. Let τ0 ∈ Φ, (τn) ⊂ Φ, τ0 > τn ae. in Ω, such that τn
w∗
⇀ τ0. Then,

lim inf
n

j(τn) > j(τ0).

Proof.

From Lemma ?? and the fact that from the definition of the homogenized density
ρH(τ), defined by (??), one has

∫
Ω

ρH(τn) dx −→ ∫
Ω

ρH(τ0) dx, we have:

lim inf
n

j(τn) = j(τ0) + lim inf
n

(
j(τn)− j(τ0)

)

= j(τ0) + lim inf
n

(
`(uτn)− `(uτ0)

)
+

+k lim inf
n

∫

Ω

(
ρH(τn)− ρH(τ0)

)
dx

> j(τ0).

From these preliminary results we now deduce the existence of a solution for the
problem under study.

Theorem 3.1. Under the previous conditions there exists τ0 ∈ Φ such that j(τ0) =
min
τ∈Φ

j(τ).

Proof.

Let M > 0, be such that M = infτ∈Φ j(τ), which always exists since j(τ) >
0, ∀τ ∈ Φ. Then, there exists a subsequence, (τn) ⊂ Φ such that j(τn) → M . But
since (τn) is bounded in L∞(Ω), by Alaoglu’s theorem, there exists a subsequence
τn′ ≺ τn and an element τ0 ∈ Φ such that τn′

w∗
⇀ τ0.

Since this subsequence (τn′) is bounded in Ω we consider the following:
i) If (τn′) is increasing we define τn = τn′ ,
ii) If (τn′) admits an increasing subsequence (τn′′), we define τn = τn′′ ,
iii) If (τn′) does not admit an increasing subsequence, we take a decreasing

subsequence (τn′′), which in this case always exists. Since this subsequence is also
bounded we take τn = limn′′ τn′′ .

In this way we have an increasing sequence (τn) ⊂ Φ, such that τn
w∗
⇀ τ0 and that

j(τn) → M . Moreover, lim infn j(τn) > j(τ0), by Lemma ??. Thus M > j(τ0), but
since M = infτ∈Φ j(τ) one must have j(τ0) = M , that is, the infimum is attained.

We shall now give a different characterization of the minimum of the problem
under study in such a way that is suitable to apply a numerical algorithm of the
type described in [?].
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Theorem 3.2. Let

F(τ) =





1 if χτ (τ) > 1,
τ if χτ (τ) = 0,
0 if χτ (τ) < 1

with χτ (τ) =
1

k dρH

dτ (τ)

dEH
αβγδ

dτ
(τ)eγδ(uτ )eαβ(uτ ).

Then, j(τ0) = min
τ∈Φ

j(τ) ⇒ τ0 = F(τ0) in Ω.

Proof.

Let τ0 ∈ Φ be such that j(τ0) = minτ∈Φ j(τ). Then,

dj

dτ
(τ0) · (τ − τ0) > 0, ∀τ ∈ Φ.

Applying Theorem 1.1 one obtains:

dj

dτ
(τ) · δτ =

∫

Ω

(
k

dρH

dτ
(τ)− dEH

αβγδ

dτ
(τ)eγδ(uτ )eαβ(uτ )

)
· δτ dx, ∀δτ ∈ Φ,

from which one gets:

χτ (τ0)·(τ−τ0) > 0, ∀τ ∈ Φ,with χτ (τ0) = k
dρH

dτ
(τ0)−

dEH
αβγδ

dτ
(τ0)eγδ(uτ0)eαβ(uτ0),

which implies that
i) χτ (τ0) > 1 ⇔ χτ (τ0) < 0 ⇒ (τ − τ0) 6 0, τ ∈ Φ ⇒ τ0 = 1;
ii) χτ (τ0) = 1 ⇔ χτ (τ0) = 0 ⇒ (τ − τ0) ∈ Φ ⇒ τ0 ∈ Φ;
iii) χτ (τ0) < 1 ⇔ χτ (τ0) > 0 ⇒ (τ − τ0) > 0, τ ∈ Φ ⇒ τ0 = 0,

that is to say,

τ0 =





1 if χτ (τ0) > 1,
τ0 if χτ (τ0) = 1,
0 if χτ (τ0) < 1

⇔ τ0 = F(τ0),

where we have chosen τ0 whenever χτ (τ0) = 1.

From the numerical point of view it is more suitable to use the algorithm des-
cribed in the next result.

Theorem 3.3. Let

F(τ) =





1 se χτ (τ) > 1,
τ se χτ (τ) = 1,
0 se χτ (τ) < 1,

G(τ) =





min{(1 + ξ)ξ0, 1} if min{(1 + ξ)τ, 1}<τχτ (τ) and τ = 0,
min{(1 + ξ)τ, 1} if min{(1 + ξ)τ, 1}<τχτ (τ) and τ 6= 0,

τχτ (τ) if (1− ξ)τ 6τχτ (τ)6min{(1 + ξ)τ, 1},
(1− ξ)τ if τχτ (τ)<(1− ξ)τ,

where ξ, ξ0 ∈ (0, 1) and χτ : Φ −→ L∞(Ω). Then, for all τ0 ∈ Φ, τ0 = F(τ0) in Ω ⇔
τ0 = G(τ0) in Ω.
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Proof.

(⇒) i) first branch of F : let χτ (τ0) > 1; then, τ0 = F(τ0) = 1; looking at
function G, one has:
• first branch of G: impossible condition since τ0 6= 0;
• second branch of G: since τ0 6= 0 and min{(1+ξ)τ0, 1} < τ0χτ (τ0) ⇔

1 < χτ (1), one has G(τ0) = min{(1 + ξ)τ0, 1} = 1;
• third branch of G: impossible condition since (1− ξ)τ0 6 τ0χτ (τ0) 6

min{(1 + ξ)τ0, 1} ⇔ (1− ξ) 6 χτ (1) 6 1;
• fourth branch of G: impossible condition since τ0χτ (τ0) < (1−ξ)τ0 ⇔

χτ (1) < 1;
ii) second branch of F : let χτ (τ0) = 1; then, F(τ0) = τ0; looking at function

G, one has:
• first branch of G: impossible condition since

(
min{(1 + ξ)τ0, 1} <

τ0χτ (τ0) and τ0 = 0
) ⇔ 0 < 0;

• second branch of G: impossible condition since
· if (1 + ξ)τ0 < 1, then

(
min{(1 + ξ)τ0, 1} < τ0χτ (τ0) and τ0 6=

0
) ⇔ (

ξτ0 < 0 and τ0 6= 0
)
;

· if 1 6 (1 + ξ)τ0, then
(
min{(1 + ξ)τ0, 1} < τ0χτ (τ0) and τ0 6=

0
) ⇔ 1 < τ0;

• third branch of G: since
· if (1+ξ)τ0 < 1, then (1−ξ)τ0 6 τ0χτ (τ0) 6 min{(1+ξ)τ0, 1} ⇔

(1− ξ)τ0 6 τ0 6 (1 + ξ)τ0 ⇔ 0 < τ0 < 1;
· if 1 6 (1+ξ)τ0, then (1−ξ)τ0 6 τ0χτ (τ0) 6 min{(1+ξ)τ0, 1} ⇔

(1− ξ)τ0 6 τ0 6 1 ⇔ 0 < τ0 6 1;
one obtains G(τ0) = τ0;

• fourth branch of G: impossible condition since τ0χτ (τ0) < (1−ξ)τ0 ⇔
ξτ0 < 0;

iii) third branch of F : let χτ (τ0) < 1; then, τ0 = F(τ0) = 0; looking at
function G, one has:
• first branch of G: impossible condition since min{(1 + ξ)τ0, 1} <

τ0χτ (τ0) and τ0 = 0 ⇔ 0 < 0;
• second branch of G: impossible condition since τ0 = 0;
• third branch of G: since (1− ξ)τ0 6 τ0χτ (τ0) 6 min{(1 + ξ)τ0, 1} ⇔

0 6 0 6 0, one obtains G(τ0) = τ0χτ (τ0) = 0;
• fourth branch of G: impossible condition since τχτ (τ0) < (1−ξ)τ0 ⇔

0 < 0;
thus, we have, τ0 = G(τ0);

(⇐) i) first branch of G: impossible condition since
(
min{(1+ξ)τ0, 1} < τ0χτ (τ0)

and τ0 = 0
) ⇔ 0 < 0;

ii) second branch of G:
• if (1 + ξ)τ0 < 1, then this is impossible since

((
min{(1 + ξ)τ0, 1} <

τ0χτ (τ0) and τ0 6= 0
) ⇒ τ0 = min{(1 + ξ)τ0, 1}

) ⇔ ((
(1 + ξ)τ0 <

τ0χτ (τ0) and τ0 6= 0
) ⇒ τ0 = 0

)
;

• if 1 6 (1 + ξ)τ0, then, since
((

min{(1 + ξ)τ0, 1} < τ0χτ (τ0) and τ0 6=
0
) ⇒ τ0 = min{(1 + ξ)τ0, 1}

) ⇔ ((
1 < τ0χτ (τ0) and τ0 6= 0

) ⇒ τ0 =
1
) ⇔ χτ (τ0) > 1, one has F(τ0) = 1;

iii) third branch of G:
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• if (1 + ξ)τ0 < 1, then, since
(
(1 − ξ)τ0 6 τ0χτ (τ0) 6 min{(1 +

ξ)τ0, 1} ⇒ τ0 = τ0χτ (τ0)
) ⇔ (

(1 − ξ)τ0 6 τ0χτ (τ0) 6 (1 + ξ)τ0 ⇒
τ0 = τ0χτ (τ0)

) ⇔ χτ (τ0) = 1, one has F(τ0) = τ0;
• if 1 6 (1 + ξ)τ0, then, since

(
(1 − ξ)τ0 6 τ0χτ (τ0) 6 min{(1 +

ξ)τ0, 1} ⇒ τ0 = τ0χτ (τ0)
) ⇔ (

(1 − ξ)τ0 6 τ0χτ (τ0) 6 1 ⇒ τ0 =
τ0χτ (τ0)

) ⇔ χτ (τ0) = 1, one has F(τ0) = τ0;
iv) fourth branch of G: impossible condition since

(
τ0χτ (τ0) < (1 − ξ)τ0 ⇒

τ0 = (1− ξ)τ0

) ⇔ (
τ0χτ (τ0) < (1− ξ)τ0 ⇒ τ0 = 0

) ⇔ 0 < 0;
thus, τ0 = F(τ0);

4. Numerical solution. In order to solve the problem numerically, we use the
finite element method to solve the boundary value problem. We start by discretizing
the domain Ω in a finite element mesh, where we assume a constant value for
the design variables in each finite element. As an iterative algorithm, an initial
approximation for the design variables in each finite element should be given, after
what we can compute the homogenized elastic properties. Then, we determine
an approximation for the displacement field. A new approximation of the design
variables is calculated in each element and a stopping criteria, based in the infinity
norm of the difference in two consecutive iterations of the design variables, is tested.
If the criteria is satisfied, the iterative process is stopped. Otherwise, the process
restarts. Following [?] and considering Theorem ??, the next fixed-point update
algorithm for τe,p — the value of τ in iteration p and at element e —, is proposed:

τe,p =





min{(1 + ξ)ξ0, 1} if A < τe,p−1

(
χe,p−1

)η and τe,p−1 = 0,

A if A < τe,p−1

(
χe,p−1

)η and τe,p−1 6= 0,

τe,p−1

(
χe,p−1

)η if (1− ξ)τe,p−1 6 τe,p−1

(
χe,p−1

)η 6 A,

(1− ξ)τe,p−1 if τe,p−1

(
χe,p−1

)η
< (1− ξ)τe,p−1,

where A = min{(1 + ξ)τe,p−1; 1}, η is a weighting factor, ξ is a move limit in order
to control design changes between iterations and ξ0 is a reference value (in our
computations we consider η = 0.8, ξ = 0.5 and ξ0 = 0.5). The variable µ in each
finite element is updated in a similar manner and θ in each iteration and in each
element is updated according to (??) and (??). In order to avoid checkerboard
patterns, which are usual in this type of problems when four-node quadrilateral
elements are involved, we use nine-node quadrilateral elements ([?]).

5. Examples. In this section we will present three examples, all in plane stress,
where we tested different loading type conditions and geometries. For each example,
we tested different values of k, as well as different types of the microstructure. We
identify each tested case by a sequence formed of three parts, separated by a dot:
the first one refers to the load conditions and the geometry; the second indicates the
order in the sequence of the values of k; the last one identifies the microstructure
type: suffix 10 if rank−1 without rotation, suffix 11 if rank−1 with rotation, suffix
20 if rank−2 without rotation, suffix 21 if rank−2 with rotation. For each example,
we also indicate the number of iterations the process took to reach convergence
(n) and the value the objective function attained (j). In all the examples, the
considered base materials have the following properties: E+ = 2, ρ+ = 2, E− = 1,
ρ− = 1, ν = 0.25, since the major role is played by the ratio between homologous
quantities. However different values could have been considered.
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5.1. Example 1. Consider a square plate with principal axes Ox1 and Ox2 sub-
jected to uniform loads on its boundary — σ11 = σ̄11, σ22 = σ̄22 and σ12 = σ̄12 —
in a plane stress state (Figure ??).

Figure 2. Example 1 — geometry and boundary conditions

For a homogeneous solution, if we a consider a rank−1 layered microstructure
without rotation and from the constitutive equations σαβ = Eαβγδeγδ, the associ-
ated strain field is given by

e11(uτ ) = σ̄11

(
1− ν2

I1
+

ν2

I2

)
− σ̄22ν

I2
, e22(uτ ) =

σ̄22

I2
− σ̄11ν

I2
, e12(uτ ) = − σ̄12(1 + ν)

I1
,

where I1 = E+E−
τE−+(1−τ)E+ and I2 = τE+ + (1− τ)E−. So, we have

χτ = k(ρ+ − ρ−)− E+ − E−

E+E−

(
(1− ν2)σ̄2

11 + E+E−( σ̄22 − νσ̄11

I2

)2 + 2(1 + ν)σ̄2
12

)
,

which will enable us to determine the analytical solution.
In this subsection we will present two cases corresponding to two different loading

conditions. Tables 1 and 2 present the analytical solution for rank−1 microstructure
without rotation (represented by τ̄). Tables 3 to 6 illustrate the corresponding nu-
merical solutions. These are represented just by one element if the design variables
take the same value in all elements, where we also indicate the respective value.
Some examples where the numerical solution is not constant all over its domain,
are detailed for finer meshes. The values of k were chosen taking into consideration
the qualitative different parts of the presented analytical solution, with particular
care to the transition points.

τ̄(x) =





0 if 0.484375 6 k√
2

32k−15 − 1 if 0.53125 6 k 6 0.484375
1 if k 6 0.53125

Table 1. Example 1-100: σ̄11 = 1, σ̄22 = 0, σ̄12 = 0

τ̄(x) =





0 if 9.75 6 k√
4

4k−35 − 1 if 9. 6 k 6 9.75
1 if k 6 9.

Table 2. Example 1-421: σ̄11 = 4, σ̄22 = 2, σ̄12 = 1
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ex1-100.1.10 ex1-100.1.11 ex1-100.1.20 ex1-100.1.21
n = 13/j = 2.00 n = 35/j = 2.00 n = 34/j = 2.00 n = 34/j = 2.00
τ = 0, τ̄ = 0 τ = 0.02/θ = 90 τ = 0/µ = 0.02 τ = 0/µ = 0.02/θ = 0

ex1-100.2.10 ex1-100.2.11 ex1-100.2.20 ex1-100.2.21
n = 95/j = 1.54 n = 10/j = 1.47 n = 20/j = 1.47 n = 20/j = 1.47
τ = 0.03, τ̄ = 0 τ = 0.36/θ = 90 τ = 0/µ = 0.36 τ = 0/µ = 0.36/θ = 0

ex1-100.3.10 ex1-100.3.11 ex1-100.3.20 ex1-100.3.21
n = 106/j = 1.53 n = 10/j = 1.46 n = 20/j = 1.46 n = 20/j = 1.46
τ = 0.05, τ̄ = 0 τ = 0.37/θ = 90 τ = 0/µ = 0.37 τ = 0/µ = 0.37/θ = 0

ex1-100.4.10 ex1-100.4.11 ex1-100.4.20 ex1-100.4.21
n = 107/j = 1.53 n = 10/j = 1.46 n = 20/j = 1.46 n = 20/j = 1.46
τ = 0.06, τ̄ = 0.01 τ = 0.37/θ = 90 τ = 0/µ = 0.37 τ = 0/µ = 0.37/θ = 0

ex1-100.5.10 ex1-100.5.11 ex1-100.5.20 ex1-100.5.21
n = 175/j = 1.43 n = 9/j = 1.41 n = 22/j = 1.41 n = 22/j = 1.41
τ = ..., τ̄ = 0.41 τ = 0.41/θ = 90 τ = 0/µ = 0.41 τ = 0/µ = 0.41/θ = 0

(see table 4)
ex1-100.6.10 ex1-100.6.11 ex1-100.6.20 ex1-100.6.21
n = 170/j = 1.42 n = 9/j = 1.40 n = 23/j = 1.40 n = 23/j = 1.40
τ = ..., τ̄ = 0.71 τ = 0.43/θ = 90 τ = 0/µ = 0.43 τ = 0/µ = 0.43/θ = 0

ex1-100.7.10 ex1-100.7.11 ex1-100.7.20 ex1-100.7.21
n = 214/j = 1.41 n = 9/j = 1.39 n = 23/j = 1.39 n = 23/j = 1.39
τ = ..., τ̄ = 1 τ = 0.44/θ = 90 τ = 0/µ = 0.44 τ = 0/µ = 0.44/θ = 0

ex1-100.8.10 ex1-100.8.11 ex1-100.8.20 ex1-100.8.21
n = 105/j = 1.41 n = 9/j = 1.39 n = 23/j = 1.39 n = 23/j = 1.39
τ = ..., τ̄ = 1 τ = 0.44/θ = 90 τ = 0/µ = 0.44 τ = 0/µ = 0.44/θ = 0

ex1-100.9.10 ex1-100.9.11 ex1-100.9.20 ex1-100.9.21
n = 3/j = 0.70 n = 3/j = 0.70 n = 3/j = 0.70 n = 3/j = 0.70
τ = 1, τ̄ = 1 τ = 1/θ = 0 τ = 1/µ = 1 τ = 1/µ = 1/θ = 0

Table 3. Example 1-100: σ̄11 = 1, σ̄22 = 0, σ̄12 = 0 — numerical
solution with k = 1, k = 0.54, k = 0.53125, k = 0.53, k = 0.5,
k = 0.49, k = 0.484375, k = 0.48 and k = 0.1 (top to bottom)
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ex1-100esp1.5.10 ex1-100esp2.5.10
n = 1/j = 1.49 n = 98/j = 1.43

ex1-100esp3.5.10 ex1-100esp4.5.10
n = 175/j = 1.43 n = 118/j = 1.43

Table 4. Example 1-100.5.10: σ̄11 = 1, σ̄22 = 0, σ̄12 = 0 — nu-
merical solution with k = 0.5 and rank−1 microstructure without
rotation; in cases esp1 and esp2 we considered 100 elements, in
esp3 we considered 400 elements and in esp4 900 elements. The
initial approximation of τ for esp1 was 0.41 (the analytical solu-
tion); for the other cases, the initial approximation was 0.5

We remark that for the transition values of k and for the case where the rank−1
laminates are not allowed to rotate (examples .10), the structure has a certain
difficulty in transmitting the applied loads (σ11 = σ11) while, at the same time,
minimizing the work done by the applied loads, as required. As can be seen from the
above calculations, the numerical solution is no longer homogeneous and isotropic
and the structure tries to spread the applied load through a region, as large as
possible near the border, while, in the interior a rod like structure is developed in
order to collect and transmit the applied loads. It might be interesting to study the
ellipticity conditions associated to the stored energy functions of such limit cases as
the number of elements grows. For a review of necessary and sufficient conditions
leading to the ellipticity of stored energy functions that are isotropic we refer to
[?]. We also remark that for the other cases (.11, .20, .21), where an alignment of
the microstructure with the direction of the applied loads is possible, the solution
is homogeneous according to the analytic result.

The next table corresponds to a general loading with all the components σ11,
σ22 and σ12 different from zero.
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ex1-421.1.10 ex1-421.1.11 ex1-421.1.20 ex1-421.1.21
n = 91/j = 28.51 n = 12/j = 27.40 n = 30/j = 27.73 n = 22/j = 27.41
τ = 0.02, τ̄ = 0 τ = 0.35/θ= 67.5 τ = 0/µ = 0.33 τ = 0/µ = 0.35/θ=−22.5

ex1-421.2.10 ex1-421.2.11 ex1-421.2.20 ex1-421.2.21
n = 113/j = 28.26 n = 11/j = 27.08 n = 32/j = 27.41 n = 23/j = 27.08
τ = 0.05, τ̄ = 0 τ = 0.37/θ= 67.5 τ = 0/µ = 0.36 τ = 0/µ = 0.37/θ=−22.5

ex1-421.3.10 ex1-421.3.11 ex1-421.3.20 ex1-421.3.21
n = 113/j = 28.25 n = 11/j = 27.06 n = 32/j = 27.40 n = 23/j = 27.06
τ = 0.06, τ̄ = 0 τ = 0.37/θ= 67.5 τ = 0/µ = 0.36 τ = 0/µ = 0.37/θ=−22.5

ex1-421.4.10 ex1-421.4.11 ex1-421.4.20 ex1-421.4.21
n = 114/j = 28.24 n = 11/j = 27.05 n = 32/j = 27.38 n = 23/j = 27.05
τ = 0.06, τ̄ = 0.01 τ = 0.37/θ= 67.5 τ = 0/µ = 0.36 τ = 0/µ = 0.37/θ=−22.5

ex1-421.5.10 ex1-421.5.11 ex1-421.5.20 ex1-421.5.21
n = 260/j = 26.53 n = 10/j = 26.15 n = 38/j = 26.49 n = 26/j = 26.15
τ = ..., τ̄ = 0.69 τ = 0.43/θ= 67.5 τ = 0/µ = 0.43 τ = 0/µ = 0.43/θ=−22.5

ex1-421.6.10 ex1-421.6.11 ex1-421.6.20 ex1-421.6.21
n = 257/j = 26.40 n = 10/j = 26.02 n = 39/j = 26.36 n = 26/j = 26.03
τ = ..., τ̄ = 0.96 τ = 0.44/θ= 67.5 τ = 0/µ = 0.44 τ = 0/µ = 0.44/θ=−22.5

(see table 6)
ex1-421.7.10 ex1-421.7.11 ex1-421.7.20 ex1-421.7.21
n = 172/j = 26.40 n = 10/j = 26.01 n = 39/j = 26.34 n = 27/j = 26.01
τ = ..., τ̄ = 1 τ = 0.44/θ= 67.5 τ = 0/µ = 0.44 τ = 0/µ = 0.44/θ=−22.5

ex1-421.8.10 ex1-421.8.11 ex1-421.8.20 ex1-421.8.21
n = 210/j = 26.38 n = 10/j = 25.99 n = 39/j = 26.33 n = 27/j = 26.00
τ = ..., τ̄ = 1 τ = 0.44/θ= 67.5 τ = 0/µ = 0.44 τ = 0/µ = 0.44/θ=−22.5

ex1-421.9.10 ex1-421.9.11 ex1-421.9.20 ex1-421.9.21
n = 3/j = 19.25 n = 5/j = 19.25 n = 5/j = 19.25 n = 6/j = 19.25
τ = 1, τ̄ = 1 τ = 1/θ= 0 τ = 1/µ = 1 τ = 1/µ = 1/θ=0

Table 5. Example 1-421: σ̄11 = 4., σ̄22 = 2., σ̄12 = 1. — numeri-
cal solution with k = 10, k = 9.76, k = 9.75, k = 9.74, k = 9.1,
k = 9.01, k = 9, k = 8.99 and k = 5 (top to bottom)
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ex1-421esp1.6.10 ex1-421esp2.6.10
n = 1/j = 27.27 n = 127/j = 26.52

ex1-421esp3.6.10 ex1-421esp4.6.10
n = 257/j = 26.40 n = 132/j = 26.38

Table 6. Example 1-421: σ̄11 = 4., σ̄22 = 2., σ̄12 = 1. — nume-
rical solution with k = 9.01 and rank−1 microstructure without
rotation; in cases esp1 and esp2 we considered 100 elements, in
esp3 we considered 400 elements and in esp4 900 elements. The
initial approximation of τ for esp1 0.96 (the analytical solution);
for the other cases, the initial approximation was 0.5

Once again, near the critical value of k the difficulty in orienting the structure
leads to a nonhomogeneous solution whose pattern is shown in Table 6. The ob-
tained pattern shows a reinforcement of the direction of the larger principal stress.

According to the examples presented, one sees that in the cases where σ̄11 > σ̄22

there are some values of k where the numerical solutions for rank−1 microstructure
without cell rotation (suffix 10) are not constant throughout the domain. That is,
this occurs when the orientation of the layers is perpendicular to the direction of
application of the dominated applied force. When we detail some of these cases
with finer meshes it is possible to see that there is a tendency for an alignment of
the strong material with the larger principal stress. Near the boundary there is a
mixture of both materials, which is the way to transmit the applied forces to the
solid, while keeping the total work done to a minimum.

5.2. Example 2. In this example, we consider a cantilever having a narrow rec-
tangular cross section of unit width, with height h and length L, bent by a force
having a resultant P applied on x1 = L. All the other edges are free from loading
(Figure ??).
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Figure 3. Example 2 — geometry and boundary conditions

Denoting by I = bh3

12 the moment of inertia with respect to an axis perpendicular
to the plane x1x2, we have

σ11(uτ ) = −P

I
(L− x1)x2, σ22(uτ ) = 0, σ12(uτ ) =

P

2I

(
x2

2 −
(h

2
)2

)
,

which enables us to write

χτ =k(ρ+−ρ−)−E+ − E−

E+E−

((
(1−ν2)+E+E− ν2

I2
2

)P 2

I2
x2

1x
2
2+(1+ν)

P 2

2I2

(
x2

2−
(h

2
)2

)2)
.

Considering h = 1, L = 4 and P = 1, we have that

τ̄(x) =





0 if 306 6 k
... if 0 < k < 306
1 if k = 0

Table 7. Example 2 — part of the analytical solution for rank−1
microstructure without rotation

The corresponding numerical examples are shown in Tables 8 and 9. One ob-
serves that as the material cost k becomes lower the stiffest (more expensive) ma-
terial is progressively added from the regions where the internal stresses are higher
to the lower stressed ones, as expected.

ex2.1.10 ex2.1.11
n = 67/j = 163.78 n = 113/j = 163.78

ex2.1.20 ex2.1.21
n = 115/j = 163.75 n = 203/j = 163.59

Table 8. Example 2 — numerical solution with k = 4
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ex2.2.10 ex2.2.11
n = 52/j = 153.14 n = 167/j = 153.05

ex2.2.20 ex2.2.21
n = 133/j = 153.14 n = 509/j = 153.05

Table 9. Example 2 — numerical solution with k = 2.5

ex3.1.10 ex3.1.11
n = 238/j = 57.99 n = 107/j = 57.97

ex3.1.20 ex3.1.21
n = 202/j = 58.04 n = 167/j = 57.96

Table 10. Example 3 — numerical solution with k = 20

5.3. Example 3. As a last example, we consider a square plate simply-supported
on the bottom side, where there are tip forces along the sides, which make with
them an angle of thirty degrees (Figure ??).



1032 G. MACHADO AND L. TRABUCHO

Figure 4. Example 3 — geometry and boundary conditions

The confidence the previous examples gave to us and the results obtained for
the case in which the applied loads act perpendicularly to the border (not shown),
enable us to apply the method to this more complex example, even if in this case
there is not an explicit analytical solution.

The numerical examples are shown in Table 10.
As expected, one observes the adaptation and the orientation of the microstruc-

ture to the applied loads and if one considers that each finite element is in the
situation of the whole problem of example 1, it is possible to verify that the ob-
tained solution, in each finite element, is in agreement with the analytical one,
shown in the first example.
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