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Qubit transient dynamics at tunneling Fermi-edge singularity
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Abstract – We consider tunneling of spinless electrons from a single-channel emitter into an
empty collector through an interacting resonant level of the quantum dot. When all Coulomb
screening of sudden charge variations of the dot during the tunneling is realized by the emitter
channel, the system is described with an exactly solvable model of a dissipative qubit. We derive
the corresponding Bloch equation for its quantum evolution. We further use it to specify the
qubit transient dynamics towards its stationary quantum state after a sudden change of the level
position. We demonstrate that the time-dependent tunneling current characterizing this dynamics
exhibits an oscillating behavior for a wide range of the model parameters.
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The generic response of conduction electrons in a metal
to the sudden appearance of a local perturbation results in
the Fermi-edge singularity (FES) initially predicted [1,2]
and also recently studied in the non-equilibrium sys-
tems [3]. It was observed experimentally as a power-law
singularity in X-ray absorption spectra [4,5]. Later, a pos-
sible occurrence of the FES in transport of spinless elec-
trons through a quantum dot (QD) was considered [6] in
the regime when a localized QD level is below the Fermi
level of the emitter in its proximity and the collector is ef-
fectively empty (or in equivalent formulation through the
particle-hole symmetry). The Coulomb interaction with
the charge of the local level acts as a one-body scatter-
ing potential for the electrons in the emitter. Then, in
the perturbative approach assuming a sufficiently small
tunneling rate of the emitter, the separate electron tun-
nelings from the emitter change the level occupation and
generate sudden changes of the scattering potential lead-
ing to the FES in the I-V curves at the voltage thresh-
old corresponding to the resonance. Direct observation of
these perturbative results in experiments; however, is dif-
ficult because of the finite lifetime of electrons in the local-
ized state of the QD, and in many experiments [7–10] the
FESs have been identified simply by the appearance of
the threshold peaks in the I-V dependence. According to
the FES theory [1,2] such peaks could occur when the ex-
change effect of the Coulomb interaction in the tunneling
channel exceeds the Anderson orthogonality catastrophe

effects in the screening channels and, therefore, it signals
the formation of an exciton electron-hole pair in the tun-
neling channel at the QD. This pair can be considered as
a two-level system or qubit which undergoes dissipative
dynamics. In the absence of the collector tunneling and,
if the Ohmic dissipation produced by the emitter is weak
enough, its dynamics are characterized [11,12] by the os-
cillating behavior of the level occupation, which is beyond
the perturbative description.

Therefore, in this work we study the qubit transient
dynamics and its manifestation in the collector tunneling
current in a simplified, but still realistic system described
by a model permitting an exact solution. It can be real-
ized, in particular, if the emitter is represented by a single
edge-state in the integer quantum Hall effect. In this sys-
tem the Ohmic dissipation produced by the emitter is ab-
sent and the qubit coherent oscillations are only destroyed
by the collector tunneling. Our solution to this model will
demonstrate when the observation of an oscillatory behav-
ior of the transient tunneling current is possible and useful
for further identification of FES in tunneling experiments.
We also find the stationary states of the qubit to which the
transient dynamics converge. We describe the dependence
of their Bloch vector on the experimentally adjustable
parameters of the setup and express their entanglement
entropy through the tunneling current. Being controlled
by the tunneling into the empty collector, the stationary
states in this model remain independent of temperature.
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Model. – In the system we consider below, the tunnel-
ing occurs from a single-channel emitter into an empty col-
lector through a single interacting resonant level of the QD
located between them. It is described with the Hamilto-
nian H = Hres +HC consisting of the one-particle Hamil-
tonian of resonant tunneling of spinless electrons and the
Coulomb interaction between instant charge variations of
the dot and electrons in the emitter. The resonant tun-
neling Hamiltonian takes the following form:

Hres = εdd
+d+

∑
a=e,c

H0[ψa] + wa(d+ψa(0) + h.c.), (1)

where the first term represents the resonant level of the
dot, whose energy is εd. Electrons in the emitter (collec-
tor) are described with the chiral Fermi fields ψa(x), a =
e(c), whose dynamics are governed by the Hamiltonian
H0[ψ] = −i∫ dxψ+(x)∂xψ(x) (h̄ = 1) with the Fermi level
equal to zero or drawn to ∞, respectively, and wa are the
corresponding tunneling amplitudes. The Coulomb inter-
action in the Hamiltonian H is introduced as

HC = UCψ
+
e (0)ψe(0)(d+d− 1/2). (2)

Its strength parameter UC defines the scattering phase
variation δ for the emitter electrons passing by the dot
and, therefore, the screening charge in the emitter pro-
duced by a sudden electron tunneling into the dot is equal
to Δn = δ/π (e = 1) according to Friedel’s sum rule.
Below we assume that the dot charge variations are com-
pletely screened by the emitter tunneling channel and
δ = −π.

Next we implement bosonization and represent the

emitter Fermi field as ψe(x) =
√

D
2πηe

iφ(x), where η de-
notes an auxiliary Majorana fermion and D is the large
Fermi energy of the emitter. The chiral Bose field φ(x)
satisfies [∂xφ(x), φ(y)] = i2πδ(x − y) and permits us to
express

H0[ψe] =
∫

dx
4π

(∂xφ)2, ψ+
e (0)ψe(0) =

1
2π
∂xφ(0). (3)

Substituting these expressions into eqs. (1), (2) we find
the alternative form for the Hamiltonian H. By applying
the unitary transformation U = exp[iφ(0)(d+d − 1/2)] to
this form we come to the Hamiltonian of the dissipative
two-level system or qubit:

HQ = εdd
+d+ H0 + wc(ψ+

c (0)eiφ(0)d+ h.c.)

+ Δη(d− d+) +
(
UC

2π
− 1

)
∂xφ(0)

(
d+d− 1

2

)
, (4)

H0 = H0[φ] + H0[ψc],

where Δ =
√

D
2πwe. This Hamiltonian is further simpli-

fied. Since in the bosonization technique the relation [13]
between the scattering phase and the Coulomb strength
parameter is linear δ = −UC/2, the last term of the

Hamiltonian on the right-hand side of eq. (4) vanishes
and also the bosonic exponents in the third term can be
removed because the time-dependent correlator of the col-
lector electrons is 〈ψc(t)ψ+

c (0)〉 = δ(t).

Bloch equations for the qubit evolution. – We use
this Hamiltonian to describe the dissipative evolution of
the qubit density matrix ρa,b(t), where a, b = 0, 1 denote
the empty and filled levels, respectively. In the absence
of tunneling into the collector at wc = 0, HQ in eq. (4)
transforms through the substitutions of η(d − d+) = σ1
and d+d = (σ3 + 1)/2 (σ1,3 are the corresponding Pauli
matrices) into the Hamiltonian HS of a spin 1/2 rotating
in the magnetic field h = (2Δ, 0, εd)T with the frequency
ω0 =

√
4Δ2 + ε2d . Then the evolution equation follows

from
∂tρ(t) = −i[ρ(t),HS ]. (5)

To incorporate in it the dissipation effect due to tunneling
into the empty collector we apply the diagrammatic per-
turbative expansion of the S-matrix defined by the Hamil-
tonian (4) in the tunneling amplitudes we,c in the Keldysh
technique. This permits us to integrate out the collector
Fermi field in the following way. At an arbitrary time
t each diagram ascribes indexes a(t+) and b(t−) of the
qubit states to the upper and lower branches of the time-
loop Keldysh contour. This corresponds to the qubit state
characterized by the ρa,b(t) element of the density ma-
trix. The expansion in we produces two-leg vertices in
each line, which change the line index into the opposite
one. Their effect on the density matrix evolution has
been already included in eq. (5). In addition, each line
with index 1 acquires two-leg diagonal vertices produced
by the electronic correlators 〈ψc(tα)ψ+

c (t′α)〉, α = ±.
They result in the additional contribution to the density
matrix variation: Δ∂tρ10(t) = −Γρ10(t), Δ∂tρ01(t) =
−Γρ01(t), Δ∂tρ11(t) = −2Γρ11(t), Γ = w2

c/2. Then,
there are also vertical fermion lines from the upper branch
to the lower one due to the non-vanishing correlator
〈ψc(t−)ψ+

c (t′+)〉, which lead to the variation Δ∂tρ00(t) =
2Γρ11(t). Incorporating these additional terms into eq. (5)
and making use of the density matrix representation
ρ(t) = [1 +

∑
l al(t)σl]/2, we find the evolution equation

for the Bloch vector a(t) as

∂ta(t) = M · a(t) + b, b = [0, 0, 2Γ]T , (6)

where M stands for the matrix:

M =

⎛
⎜⎝

−Γ −εd 0

εd −Γ −2Δ

0 2Δ −2Γ

⎞
⎟⎠ . (7)

Starting the evolution of the Bloch vector from its value
a(0) at zero time, we apply a Laplace transformation to
eq. (6). Its inverse gives us this vector a(t) at positive
time as follows:

a(t) =
∫

C

dzezt

2πi
[z −M ]−1 (a(0) +M−1b) −M−1b, (8)
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where the integration contour C coincides with the imagi-
nary axis shifting to the right far enough to have all poles
of the integral on its left side. These poles are defined
by inversion of the matrix [z −M ] and are equal to three
roots of its determinant det [z −M ] ≡ P (z), which is

P (z) = x3 + Γx2 + (4Δ2 + ε2d)x+ Γε2d, x = z + Γ. (9)

Its roots zl, l = {0, 1, 2} have their real parts negative.
Therefore, the stationary state of the qubit is character-
ized by the Bloch vector:

a(∞) = −M−1b =
[2εdΔ,−2ΔΓ, (ε2d + Γ2)]T

(ε2d + Γ2 + 2Δ2)
. (10)

In general, an instant tunneling current I(t) into the
empty collector directly measures the diagonal matrix
element of the qubit density matrix [14] through their
relation

I(t) = 2Γρ11(t) = Γ[1 − a3(t)]. (11)

It gives us the stationary tunneling current as I0 =
2ΓΔ2/(2Δ2 + Γ2 + ε2d). At Γ � Δ this expression co-
incides with the perturbative results of [6,15]. Another
important characteristic is the qubit entanglement entropy
Se = −tr{ρ lnρ}, which is just a function of the Bloch vec-
tor length. The length of the stationary Bloch vector in
eq. (10) is |a(∞)| =

√
1 − (I0/Γ)2. Therefore, the mea-

surement of the tunneling current gives us also the entropy
of the stationary state of the qubit. This entropy changes
from zero for the qubit pure state of empty QD far from
the resonance to its entanglement maximum approaching
ln 2 at the resonance with an infinitely small Γ.

The explicit form of the Laplace image ã3(z) in eq. (8) is

ã3(z) =
a3(∞)
z

+ F (z), (12)

where
F (z) =

1
P (z)

((f(z) · a(0)) + f0(z)) . (13)

The components of the vector f(z) are f1(z) = 2εdΔ,
f2(z) = 2xΔ , f3(z) = x2 + ε2d and f0(z) = −(f(z) · a(∞))
is equal to

f0(z) = − ε4d +
(
x2 + Γ2 + 4Δ2

)
ε2d + xΓ

(
xΓ − 4Δ2

)
(Γ2 + 2Δ2 + ε2d)

.

(14)
The inverse Laplace transform (8) results in

a3(t) = a3(∞) +
2∑

l=0

rl · exp[zlt], (15)

where zl are the poles of F (z) and rl are their correspond-
ing residues. In order to find these poles we bring the
cubic equation (9) to its standard form [16]:

y3 + 3Qy − 2R = 0 (16)

d

0.8 1.20.4

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1: (Colour online) Contour plot of the positive imaginary
part of the dimensionless root Im[y1]/Γ =

√
3

2Γ (S − T ). The
black area corresponds to the region where all three roots are
real. The red line corresponds to R = 0 and the gray line to
Q = 0. The black dashed curve shows Im[z1] = −Re[z1].

by applying the following notations z = (y − 4Γ)/3 and

Q = 12Δ2−Γ2+3ε2d, R =
(
18Δ2 − 9ε2d − Γ2) Γ. (17)

The three roots are

yl = e2/3πilS + e−2/3πilT, (18)

where l = 0, 1, 2 and

S =
(
R+

√
Q3 +R2

)1/3
and T = −Q

S
. (19)

Here the function Z1/3 of the complex variable Z is deter-
mined in the conventional way with the cut Z ∈ {−∞, 0}.
If the discriminant is positive: Q3 +R2 > 0, S and T are
real positive and negative, respectively. Therefore, the
root y0 is real and the two others y1,2 are complex conju-
gates of each other. In the case of Q3 +R2 < 0, S and T
are also complex conjugate. Hence, all three roots are real.
In this case the oscillatory behavior does not occur. This
parametric area of triangular form is depicted as black in
fig. 1. Its three vertices have coordinates (0, 0), (1/4, 0)
and (

√
2/27,

√
1/27).

Oscillatory transient current. – With Q3 +R2 > 0
we find from eqs. (11) and (15) that

I(t) = I0 − Γ
{
r0 · e−G0t + 2Re

[
r1 · e−(G1−iω)t

]}
,

G0 =
4
3
Γ − γ1, G1 =

4
3
Γ +

γ1

2
. (20)

The second term in eq. (20) describes decaying cur-
rent oscillations with frequency ω =

√
3

6 (S − T ) and
γ1 = 1

3 (S + T ). Note that the signs of γ1 and R coin-
cide. Therefore, above the line R = 0 in fig. 1 γ1 is nega-
tive and the first term of the current in eq. (20) vanishes
more quickly than the amplitude of the second-term oscil-
lations. Below this line γ1 is positive and the amplitude of
the oscillations vanishes more quickly than the first term.
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By differentiating eq. (20) we find the condition on time
location of the extrema of the current dependence as

−r0e
3
2γ1t

2|r1| =

√
G2

1 + ω2

G0
sin(ωt+ ϕr + χ), (21)

where ϕr is the phase of r1 and χ = arctan(G1/ω). In
the parametric area of R < 0 this equation shows that
the current is an infinitely oscillating function of time,
while for R > 0 the current will have a finite number of
oscillations only if r0/(2|r1|) exp(3πγ1/(2ω)) is less than
the coefficient in front of the sine function on the right-
hand side of eq. (21). This condition is not very restric-
tive and can be circumvented in general. Indeed, contrary
to the frequencies and the amplitude decay rates, the
residues r0,1 of the function F (z) in eq. (13) depend on
the choice of the initial condition a(0) for the Bloch vec-
tor. We can choose the initial condition by varying εd and
Γ to bring the qubit into any desirable stationary state
within the time of ∼ 1/Γ and further use this state as an
initial condition to the new transient evolution after an
abrupt change of these parameters. In particular, by tun-
ing (f(z0)·a(0)) = (f(z0)·a(∞)) we make r0 vanish. Then,
as follows from eq. (21) the transient current is always os-
cillating outside of the black area in fig. 1, but the direct
visibility of these oscillations imposes a stronger condition,
i.e., that ω > G1 as illustrated below. The border of this
area is marked by the black dashed line in fig. 1.

At the resonance (εd = 0) the root z0 of P (z) in eq. (9)
is found as z0 = −Γ. The vector f(z0) is zero and so
is r0 for any initial condition. The current is infinitely
oscillating with the frequency ωr =

√
4Δ2 − Γ2/4 if Δ >

1/16 and the decay rate of the oscillations’ amplitude is
G1 = (3/2)Γ. The general expression for the r1 residue’s
dependence on the initial conditions in eq. (20) can be
found as

r1 =
(

1 + i
Γ

2ωr

)
a3(0) − i

2Δ
ωr

a2(0)

− Γ
2ωrΓ + i(Γ2 + 8Δ2)

4ωr(Γ2 + 2Δ2)
. (22)

We consider first the experimentally feasible case of the
qubit evolution from the initial state corresponding to the
empty QD. The empty QD may be prepared by applica-
tion of the bias voltage to the emitter to make εd � Δ,Γ.
Then the state of the qubit, as follows from eq. (10), is
defined by a1(0) = a2(0) = 0 and a3(0) = 1 and corre-
sponds to the zero tunneling current. In the resonance
case the substitution of eq. (22) with these initial con-
ditions into eq. (20) produces a simple formula for the
current oscillations,

I(t) = I0

(
1 − Re

[
ωr − 3iΓ/2

ωr
· exp

[
−3

2
Γt+ iωrt

]])
.

(23)
This current dependence on time is depicted in fig. 2 by
thick lines for three different values of Δ, which corre-
spond to ωr = 0.8667 in the case of the dashed line and

t
1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

I

Fig. 2: Plot of the current I(t) in eq. (23) when Γ = 1 and
εd = 0. The black line corresponds to the parameter Δ = 3,
the gray line to Δ = 1, and the black dashed line to Δ = 0.5.
The thick lines correspond to the initially empty QD, the thin
lines to the evolution starting from the zero Bloch vector.

ωr = 1.94 and ωr = 5.98 for the gray and black solid lines,
respectively. From eq. (21) we find the extrema of the cur-
rent in eq. (23) to be exactly at tn = nπ/ωr. Although the
current is always an oscillating function, these oscillations
become visible first for the gray line in accordance with
our criterion ωr ≥ G1.

In fig. 2 we also draw three thin lines of the current de-
pendence on time for the same three values of the rate Δ
in the case of the qubit evolution with the initial condition
of the zero Bloch vector a(0) = 0. The current starts from
the finite value I(0) = Γ. This makes the oscillations of all
three lines more visible as their first extrema are located
at approximately twice smaller times. This initial state of
the qubit can be prepared, in particular, by making the
collector tunneling rate Γ infinitely small at the resonance.
It also could be reached through thermodynamical equili-
bration of the qubit with the high-temperature emitter in
the absence of tunneling between QD and the collector due
to some slow dissipation processes unaccounted for in our
model. We have performed our calculations in dimension-
less units with h̄ = 1 and e = 1. In the experiment [15,17]
the collector tunneling rate is Γ ≈ 0.1 meV and the param-
eter Δ ≈ 0.016 meV. This corresponds to the stationary
current I0 ≈ 1.2 nA. To observe the regime of oscillations
as shown in fig. 2 (gray line) one can take a heterostruc-
ture with Γ = Δ. For example, with Γ = Δ = 0.01 meV
the stationary current is I0 = 1.62 nA. The unit of time t
in fig. 2 for this value of Γ is equal to 65.8 ps.

Conclusion. – The spinless electron tunneling through
an interacting resonant level of a QD into an empty col-
lector has been studied in the especially simple, but still
realistic system, in which all sudden variations in charge
of the QD are effectively screened by a single tunneling
channel of the emitter. Making use of the exact solu-
tion to this model, we have demonstrated that the FES in
the tunneling current dependence on voltage should be ac-
companied by oscillations of the time-dependent transient
tunneling current in a wide range of model parameters.
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In particular, they occur if the emitter tunneling coupling
Δ or the absolute value of the resonant level energy |εd| are
large enough in comparison to the collector tunneling rate
Γ and either Δ > Γ/4 or ε2d > Γ2/27 holds. These oscilla-
tions result from the emergence of the qubit composed of
an electron-hole pair at the QD and its coherent dynam-
ics. The qubit can be manipulated by changing voltage
and the tunneling rates in the system.

∗ ∗ ∗

The work was supported by the Foundation for Science
and Technology of Portugal and by the European Union
Seventh Framework Programme (FP7/2007-2013) under
grant agreement No. PCOFUND-GA-2009- 246542 and
Research Fellowship SFRH/BI/52154/2013.

REFERENCES

[1] Mahan G. D., Phys. Rev., 163 (1967) 612.
[2] Nozieres P. and de Dominicis C. T., Phys. Rev., 178

(1969) 1097.
[3] Abanin D. A. and Levitov L. S., Phys. Rev. Lett., 94

(2005) 186803.
[4] Citrin P. H., Phys. Rev. B, 8 (1973) 5545.

[5] Citrin P. H., Wertheim G. K. and Baer Y., Phys.
Rev. B, 16 (1977) 4256.

[6] Matveev K. A. and Larkin A. I., Phys. Rev. B, 46
(1992) 15337.

[7] Hapke-Wurst I., Zeitler U., Frahm H., Jansen A.

G. M., Haug R. J. and Pierz K., Phys. Rev. B, 62
(2000) 12621.

[8] Frahm H., von Zobeltitz C., Maire N. and Haug R.

J., Phys. Rev. B, 74 (2006) 035329.
[9] Maire N., Hohls F., Lüdtke T., Pierz K. and Haug
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