Superquadrics Objects Representation for Robot
Manipulation

Eliana Costa e Silva*, M. Fernanda Costa’, Wolfram ErlhagenT and Estela Bicho**

*CIICESI, ESTGF;, Polytechnic of Porto and Centre Algoritmi, University of Minho, Portugal
TCentre of Mathematics/Dept. of Mathematics and Applications, University of Minho, Portugal
**Centre ALGORITMI/Dept. of Industrial Electronics, University of Minho, Portugal

Abstract. Superquadric are mathematically quite simple and have the ability to obtain a variety of shapes using low order
parameterization. Furthermore they present closed-form equations and therefore can be used in the formulation of robotic
movement planning problems, in particular in obstacle-avoidance and grasping constraints. In this paper we explore the
modeling of objects using superquadrics. The classical nonlinear optimization problem for fitting shapes is extended by adding
nonlinear constraints. The numerical results obtained by two different optimization methods are presented and a comparison
of the volume of the superquadrics to the volume of simple ellipsoids is made.
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INTRODUCTION

Modeling objects is essential in several areas such as assistance and services robotics, computational mechanics and
computer graphics (e.g. [1]; [2]; [3]; [4]). Superquadrics have been extensively used in object modeling. The main
reason is that superquadrics: (i) present a close-form equation; (ii) are mathematically quite simple, involving a few
sines, cosines, and exponents; (iii) have the ability to obtain a variety of shapes using only a small number of parameter;
(iv) the control parameters affect global properties of the shapes in a comprehensible manner. Additionally, the solids
can be easily modified by bending and twisting, and have the potential to become widespread in three-dimensional
geometric design [5]. The closed-form equations obtained when using superquadrics can be used in the formulation of
movement planning problems for robots, in particular in obstacle-avoidance constraints. In this paper we explore
the modeling of objects using superquadrics. The classical nonlinear optimization problem for fitting 3D shapes
is extended by adding nonlinear constraints. Traditionally fitting superquadric models to 3D data is performed by
formulating an unconstrained nonlinear least squares problem and using the well known Levenberg-Marquardt method
to solve it (see e.g. [1]; [2]). However, in this work the nonlinear least squares problem has constraints, and methods
for solving constrained nonlinear optimization problems must be used. The numerical results are obtained using two
optimization methods, provided by the MATLAB OPTimization Interface (OPTI) Toolbox [6], and a comparison of
the volume occupied by the superquadrics and the volume of ellipsoids for modeling the same objects is made.

SUPERQUADRIC FOR OBJECTS REPRESENTATION

Superquadrics are a family of parametric shapes which can be classified into superellipsoid, supertoroid and superhy-
perboloid with one and two parts [5]. Superellipsoids and supertoroids are useful for a volumetric part-based object
description. In fact they are compact in shape and have a closed surface. In this paper we focus on superellipsoids. The
implicit form to describe a superellipsoid is:
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where A = (a1,a2,a3,€1,&) are the parameters of the superellipsoid, being €;,& > 0 the shape parameters and
ai,az,az > 0 the scale parameters along the x,y and z—axis of the superquadric. The function f is known as the
inside-outside function. For an object in a general position, (py, py, p;) and orientation given by the Euler angles,



(¢,w,0) , the new inside-outside function is calculated by inverting the transformation and substituting into the old
inside-outside function (see [5] for details). Therefore, without loss of generality, here we consider objects that are
located at the origin of the world frame and are aligned with its axis, i.e. (px, py,p;) = 0 and (¢,y,0) = 0. The
volume of a superellipsoid is given by V = 2ajaxaze1&,B (% +1,€) B (522 , %), where B is the beta function.

The inside-outside function is used to determine if a point Py (xy, vk, 2x) lies outside or inside the superquadric surface.
The inside of each solid is given by f(A;P;) < I; the surface is indicated by f(A;P;) = 1; and the outside by
S(A;P) > 1. Therefore, determining the parameters of the superquadric that better fits a set 3D- points P, k=0,...,n,
is equivalent to solving a minimization problem whose objective function is o(f(A;P) — 1)2. In order to avoid
false approximations when the set of points is not closed to the superquadric surface but some of them still approximate
it correctly, a special coefficient ,/ajazas is used. Additionally, for making the process time efficient, in [2] the

authors propose to use the mean distorsion per point, Lﬂ'ﬁ@ (f8/2(A;P) —1)2. Thus, the problem of determining the
superquadric that better fits the 3D points is solved by determining the parameters A such that:
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This is a bounded nonlinear optimization problem where A,,;;;, and A,y are the vectors of lower and upper bounds. For
the problem of a robot grasping and manipulation objects, in order to guarantee collision-free movement (see e.g. [4]),
we impose that every point P lies inside the superquadric. This is accomplished by adding the nonlinear constraints
f(A;P) <1, k=0,...,n, to the above optimization problem:
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RESULTS

Here we focus on modeling objects in the context of human-robot collaboration (see Figure 1 and e.g. [4]). The nu-
merical results were obtained using an Intel(R)Core(TM)2Duo-2.13GHz, 4Gb RAM. The choice of the optimization
method took into account that: the objective function is highly nonlinear and the analytic expression of its derivatives
is not easy to determine. For these reasons we consider two different optimization methods, provided by the OPTI
Toolbox [6], one applies a global derivative-free technique and the other a local derivative-based method. The solvers
used were: (i) NLOPT_GN_ISRES - Improved Stochastic Ranking Evolution Strategy algorithm for nonlinearly-
constrained global optimization which is a population-based stochastic derivative-free algorithm that implements a
evolution strategy that is based on a combination of a mutation rule and a Nelder-Mead-like update rule; (ii) Ipopt
- an interior point filter line search method that aims to find a (local) solution of a twice continuously differentiable
nonlinear problem. OPTI Toolbox[6] was used with its default options, with the exception of the maximum number
of function evaluations and maximum number of iterations that were set to 5.00e+4 and 5.00e+3, respectively. The
problems were coded in MATLAB and no information of the first derivatives was supplied, therefore for Ipopt, the
first derivatives were approximated using finite-differences and the BFGS update was used to approximate the Hessian
matrix.
We consider that the objects are at the origin of the world frame and are aligned with its axis. We denote its
dimensions on the main three axis by R,,R, and R,. The 3D point coordinates are given by a CAD model of
each object (see Table 1). As initial guess the following values were used: a; = Ry/2 = dy, a» = R,/2 = d,,
=R;/2 =d;, & = & = 1. The bounds, Apin and Apay, Were set to: Ayin = (0.49d,,.49d,,0.49d;,0.1,0.1) and
Amax = (0.51d,,0.51d,,0.51d,,2,2). Table 2 shows the numerical results of the ISRES and Ipopt solvers concerning
superellipsoid fitting of the several objects, namely, a column, a base, a wheel, a nut and the torso of ARoS (see Fig-
ure 1). The first columns are relative to the solutions of problem (2) and the last are relative to problem (3). In this
table we present the superquadrics parameters, a;,as, a3, € and &, the objective function value, obj, the computational
time in seconds, cpu, the percentage of points of the object outside the superquadric, o.p., the maximum distance to
the superquadric of a point outside the superquadric to the superquadrics, m.d., and finally the percentage of volume
decrease relatively to the ellipsoid model (see also Table 1). For each object it was possible to determine the superel-
lipsoid that better fits its 3D points. For all objects the best results to problem (2), in terms of the objective function



TABLE 1. Dimensions of the objects considered in the numerical tests. In brackets, are presented the semi-
axes of the ellipsoids and of the elliptic cylinder depicted in Figure 1

Column Base Wheel Nut Torso
Ry 80 (60) 320 (180) 140 (85) 100 (60) 156 (120)
Ry 80 (60) 250 (145) 140 (85) 90 (60) 506 (300)
R, 340 (190) 15 (27.5) 40 (35) 40 (35) 800
Number of points* 92 392 101 112 400

Volume of the ellipsoid | 2.865133e+06  1.345858e+07  1.059240e+06  5.277876e+05 -

* Number of points on the 3D CAD model of each object

FIGURE 1. The image on the left corresponds to ARoS - an Anthropomorphic robot designed and built at University of Minho;
the plots in the middle show ARo0S’ torso modeled as an elliptic cylinder and objects (column - yellow; red - base; green wheel; nut
- purple) modeled using ellipsoids; the plots on right show objects modeled using superquadrics.

value and the computational cost, were obtained by Ipopt. The solutions of problem (2) present a significant reduction
of the volume of the enveloping surface (approximately 58%, 51%, 71% and 35%) when compared to the ellipsoid
used in [4]. However, a significant percentage of the data points are outside the superquadric. This is not desired if we
consider that the closed-form equation of the objects is going to be used in the definition of the obstacle avoidance for
movement planning of the robotic arms and hands. The numerical solutions for problem (3) present a slightly higher
volume of the superquadric when compared to the volume obtained for the solutions of problem (2), but still signif-
icantly bellow the volume of the enveloping ellipsoid. Once more, Ipopt presents better results in terms of objective
function value and cpu time. We can also observed that £ < 1 and & ~ 1 for the objects similar to cylindroids (i.e.
for the column and base) and €1,& < 1 for the cuboids (i.e. the torso). Furthermore, by observing Figure 1 we can
see that for the wheel (green object) and for the nut (purple object), superellipsoid are not the best superquadric form.
Supertoroids:
&)2 2/g
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with A = (a1,a;,a3,4,€1, &), where as = 4/ a% + a% and a is the torus radius, is an alternative that we will explore
in the future.

DISCUSSION AND FUTURE WORK

In this paper we have explored the modeling of objects using superellipsoids. We extended the classical nonlinear
least squares problem for fitting shapes by adding nonlinear constraints. The numerical results were obtained by two
different optimization methods provided by the MATLAB OPTI toolbox [6]. The results show that when superellipsoid
are used a significant decrease of the volume enveloping the object is observed. However, we need to extend to other
superquadric, as for example supertoroids. In the future we expect to include the superquadric object representation in
the movement planning of an anthropomorphic robot.



TABLE 2. Numerical results. The best objective function value is highlighted.
) Apax = (0.55dy,0.55d,,0.55d;,2,2); ) Exceeded Iterations/Function Evaluations/Time
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Algorithm ISRES IPOPT ISRES IPOPT
Numerical solutions for (2) Numerical solutions for (3)
Column
aj 4.0800e+01 4.0800e+01 4.0800e+01 4.0800e+01
a 4.0800e+01 4.0800e+01 4.0626e+01 4.0626e+01
a3 1.6660e+02 1.6660e+02 1.7062e+02 1.7062e+02
€ 5.7277e-01 5.7281e-01 2.4528e-01 2.4528e-01
& 6.7914e-01 6.7870e-01 9.9990e-01 9.9990e-01
obj / cpu / vol. 4.8836e+00/3.029  4.8836e+00 / 0.068 8.0368e+00/13.837  8.0368e+00 / 0.095
o.p./ m.d. 70% /1.4 /58% 70% /1.4 /58% 0% | — 1 60% 0%/ — 1 60%
Base i) i)
ai 3.1361e+02 3.1360e+02 3.3242e+02 3.3232e+02
a 2.5452e+02 2.5460e+02 2.7192e+02 2.7457e+02
as 1.4976e+01 1.4979¢+01 1.5494e+01 1.5498e+01
€ 1.0017e-01 1.0000e-01 1.0000e-01 1.0000e-01
& 1.2222e+00 1.2126e+00 1.3419e+00 1.3696e+00
obj / cpu 5.2984e+00/6.855  5.2970e+00 / 0.231 8.3835e+00/47.779  8.3808e+00 / 0.483
o.p./ m.d. / vol. 88%/2.5/51% 88%/2.5/51% 0% I—/ 56% 0% I—/ 56%
Wheel
aj 7.1400e+01 7.1400e+01 8.4995e+01 8.5000e+01
a 7.1009¢+01 7.1009e+01 8.4988e+01 8.5000e+01
as 2.0113e+01 2.0113e+01 2.0031e+01 2.0031e+01
€ 1.0000e-01 1.0000e-01 1.0004e-01 1.0000e-01
& 4.6997e-01 4.6881e-01 9.9970e-01 1.0000e+00
obj / cpu 3.3172e-02 / 3.466 3.3168e-02 /0.129 4.2373e-04 / 10.942 4.2090e-04 /0.119
o.p./ m.d. / vol. 37% 1 1.6/ 71% 37% /1.6 71% 0/—/85% 0/—/85%
Nut ) )
ai 4.0800e+01 4.0800e+01 4.4000e+01 4.4000e+01
a 3.5334e+01 3.5334e+01 3.8105e+01 3.8105e+01
as 1.6089¢+01 1.6089¢+01 1.6139¢+01 1.6139e+01
€ 1.0000e-01 1.0000e-01 1.0000e-01 1.0000e-01
& 1.2846e-01 1.0000e-01 1.2594e-01 1.0335e-01
obj / cpu 2.6463e-02 / 2.684 2.6460e-02 / 0.082 8.6036e-03 /9.489 8.5996e-03 / 0.123
o.p./ m.d. / vol. 29% /1.6 / 35% 29% /1.6 /35% 0% | —/ 40% 0% | —/ 40%
Torso i) i)
aj 7.6440e+01 7.6440e+01 8.0641e+01 8.0646e+01
a 2.4792e+02 2.4792e+02 2.6255e+02 2.6253e+02
as 3.9200e+02 3.9200e+02 4.1531e+02 4.1528e+02
€ 7.6135e-01 7.6099¢-01 1.0000e-01 1.0000e-01
& 1.0000e-01 1.0000e-01 1.0001e-01 1.0000e-01
obj / cpu 7.1563e+01/13.302  7.1563e+01/0.179 | 1.9288e+02%) /52.359  1.9288e+02 /0.496
o.p./ m.d. 31% /2.1 31% /2.1 0% | — 0% | —
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