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ABSTRACT
Owing to its hygroscopicity biodiesel may accumulate water during storage, which becomes
favorable to the growth of microorganisms. In order to control microbial contamination, use of
various chemical biocides has been studied. However, the addition of a natural substance
simultaneously with antioxidant and microbial growth inhibition could prove advantageous in
the prevention of biodiesel oxidation and microbial contamination. Curcumin and pyrocatechol
are antioxidant agents, which also exhibit microbial growth inhibition abilities. This research
effort aimed at evaluating the addition of curcumin and pyrocatechol to biodiesel produced
from various vegetable sources (waste frying oil, soybean oil, cottonseed oil, sesame oil,
maca�uba almond oil and microalgae oil). The combined addition of 1% (w/w) water and
curcumin (viz. 0.2% (w/w) for biodiesel from spent frying oil, 0.5% (w/w) for biodiesel from
soybean oil, 0.1% (w/w) for biodiesel from cotton seed oil, 0.5% (w/w) for biodiesel from
sesame seed oil, 0.2% (w/w) for biodiesel from maca�uba almond oil, and 0.2% (w/w) for
biodiesel from microalgae oil) were those processing variables that promoted the best
fungistatic and antioxidant effects, allowing maintenance of an unfavorable environment for
microbial growth in biodiesel inoculated with the ubiquitous filamentous mold Paecilomyces
variotii Bainier.
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Introduction

Biodiesel is a fuel derived from renewable sources such
as vegetable oils and animal fat, and is a good alterna-
tive to fossil oil and diesel oil. Biodiesel has been used
by several countries to minimize the effects of green-
house gas emissions.[1] The CO2 released in the com-
bustion of biodiesel is equal to that captured by plants
during photosynthesis and, thus, it does not promote
the increase of CO2 in the atmosphere.[2] Biodiesel is
composed of a mixture of alkyl esters (methyl, ethyl or
propyl) obtained in the transesterification of triglycer-
ides from vegetable oils and animal fats, which is a
conventional method for obtaining biodiesel. The tri-
glycerides react with a low molecular weight alcohol,
usually methanol or ethanol, resulting in the formation
of fatty acid esters and releasing glycerol as a byprod-
uct. The reaction is catalyzed by acids, bases or
enzymes. Considering the costs involved, sodium and
potassium hydroxides promote satisfactory yields and
have been widely used.[3] Microbial contamination of
fuels has been reported for more than a century, since
it can be spread throughout the storage and distribu-
tion systems with serious economical damages.[4,5]

Although the distillation process involved in the pro-
duction of biodiesel is able to sterilize the biofuel,
water, dust and microorganisms can easily enter the
system through the storage and transport of the fuel.
[4] Furthermore, due to its hygroscopicity water can
accumulate during storage of biodiesel, creating a
favorable condition for the proliferation of microorgan-
isms.[1] Microbial contamination may gradually
degrade the quality of the fuel, favoring the loss of
chemical stability.[6,7] Contaminated biodiesel favors
the formation of bio-sludge, causing clogging of filters,
accelerates the corrosion of various components and
features turbidity and unpleasant odor.[1,4] For the
prevention or control of biofouling, monitoring and
cleaning measures are required, together with the use
of chemicals (biocides) capable of inhibiting and con-
trolling microbial growth.[8] Bacteria and fungi are
able to proliferate in biofuels, being metabolically
more active in interfaces within fuel systems.[5,9]
Microorganisms that have been detected in fuel stor-
age systems include fungi, yeasts, and aerobic and
anaerobic bacteria.[6,7] A good biocide should be able
to act both on the oil and water phases, exhibit a broad
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spectrum activity, maintain its inhibitory effect in the
presence of other substances, not be corrosive to the
system, be inexpensive and safe to use, and have a low
environmental impact.[1,8,10,11] Another problem
that biodiesels feature is susceptibility to oxidation.
[12,13] Biodiesels are unstable, particularly when
exposed to moisture and atmospheric oxygen, due to
their own chemical structure degrading over time.
[1,13] Typically, vegetable oils have natural compo-
nents with antioxidant capacity such as, for example,
tocopherols. However, in the (chemical) process of
obtaining biodiesels these substances are lost. Thus,
addition of chemical substances with antioxidant
capacity is a common practice, aiming at maintaining
the quality of biodiesel.[13,14] Some natural substan-
ces, such as curcumin and pyrocatechol, have antimi-
crobial and antioxidant activities. In this regard, it may
be interesting to add any of these substances to bio-
diesels so as to minimize both microbial contamination
and oxidation. Curcumin [1,7-bis(4-hydroxy-3-methox-
yphenyl)-1,6-heptadiene-3,5-dione] is a naturally occur-
ring polyphenol in turmeric (Curcuma longa Linn)[15]
possessing several properties, including anti-inflamma-
tory, analgesic, antioxidant[13] and antimicrobial.
[16,17] Pyrocatechol (benzene-1,2-diol) is a phenolic
compound present in several plant species,[18] pre-
senting antimicrobial[19] and antioxidant[20,21] prop-
erties. The mechanisms responsible for microbial
toxicity include enzyme inhibition possibly by reaction
with hydrogen sulfide groups, or by non-specific reac-
tions with proteins.[22] Considering all the aforemen-
tioned facts, the major goal of the research effort
entertained herein was to evaluate the use of curcumin
and/or pyrocatechol in biodiesels as antimicrobial and
antioxidant agents, aiming at determining the lowest
concentration that allowed to maintain their antimicro-
bial and antioxidant activities.[15�21] These natural
substances may exert their toxicity to microbial cells
possibly by mechanisms involving intracytoplasmatic
enzyme inhibition.[22] Hence, in the research effort
entertained herein, the long-term effects of the addi-
tion of curcumin to several different biodiesels was
studied, in terms of the maintenance of both their oxi-
dative stability and harsh environment for microbial
growth.

Materials and methods

Materials

Chemicals
The reagents utilized in this research work were all of
analytical grade or better, and were used without any
type of additional purification. Tap water was purified
in a Milli-Q Elga Purelab system (Molsheim, France) to a
final conductivity of ca. 18.2 MV.cm¡1. Curcumin was
purchased from Merck (Hohenbrunn, Germany) and

pyrocatechol was acquired from Fluka (Buchs SG, Swit-
zerland). For the microbiological assays, nutritive
medium Sabouraud Dextrose Agar was purchased
from Promidol Biotecnologia (Belo Horizonte MG, Bra-
zil) and disposable sterile Petri plates were acquired
from J. Prolab (S~ao Jos�e dos Pinhais PR, Brazil). The
microorganism utilized in all biodiesel inoculation
experiments was the filamentous mold Paecilomyces
variotii Bainier (code CMMAI 0543), acquired from the
Brazilian Collection of Environment and Industry Micro-
organisms (CBMAI) of the Multidisciplinary Center for
Chemical, Biological and Agricultural Research at the
Campinas State University (CPQBA/UNICAMP, Campi-
nas SP, Brazil). To synthesize the various biodiesels uti-
lized in this research effort, refined soybean oil was
acquired at the local commerce in the city of Campinas
(Campinas SP, Brazil), spent frying oil was collected
through the Selective Waste Collection Program of the
Environment Division of the State University of Campi-
nas, cotton seed oil and microalgae oil were a kind gift
from EXTRAE/FEA/UNICAMP, sesame seed oil was a
kind gift from S�esamo Real Ind�ustria e Com�ercio de
Produtos Aliment�ıcios Ltda. (Valinhos SP, Brazil), and
maca�uba almond oil was acquired from Community
Association of Small Farmers of Dantas Creek and Mon-
tes Claros adjacencies (Minas Gerais MG, Brazil). The
reagents utilized to prepare the different biodiesels
were absolute methanol, purchased from Synth
(Diadema SP, Brazil), and sodium methoxide solution
at 30% (w/w) in methanol, purchased from Vetec (Rio
de Janeiro RJ, Brazil), used as catalyst for the transester-
ification reactions.

Analytical equipment
The lipid oxidation induction times of the several bio-
diesels studied were determined in a Biodiesel Ranci-
mat from Metrohm AG (model 873, Herisau,
Switzerland). All refractive index (RI) measurements
were carried out in a Digital Refractometer from Met-
tler-Toledo (model Refracto 30GS, Greifensee,
Switzerland).

Experimental procedures

Preparation of biodiesel
The syntheses of biodiesels were carried out in three
sequential steps. In the first step, 16% (w/w) methanol
and 0.58% (w/w) of methanolic solution of sodium
methoxide (at 30%, w/w) were added, relative to the
initial mass of oil. This mixture was maintained at 60 �C
with reflux, under mechanical stirring at 900 rpm, for
1 h. Subsequently, the reaction mixture was transferred
into a separatory funnel for decantation, separation
and removal of glycerol. After removal of the glycerol,
the second reaction step took place with the addition
of an extra 4% (w/w) of ethanol and 0.14% (w/w) of
methanolic solution of sodium methoxide (at 30%, w/
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w), percentages relative to the initial mass of oil, under
the same experimental conditions of stirring, tempera-
ture, time and reflux. In the third stage, the biodiesel
produced was washed with 5£50 mL of water at 60 �C,
dried in an oven set at 100 �C for 1 h and purified on a
column packed with ion exchange resin (Amberlite
BD10 DRY, from Dow Chemical Brazil, S~ao Paulo, SP,
Brazil), employing ca. 180 g of resin per liter of biodie-
sel and a biodiesel flow rate of 4 mL min¡1.

Preparation of biodiesel samples with curcumin and
pyrocatechol for antimicrobial screening
Biodiesel samples were added with curcumin or pyro-
catechol at variable weight percentages of 0%, 0.1%,
0.2%, 0.5%, 1.0%, and 1.5% (w/w). The presence of
water was also evaluated, with addition of 1% water
(w/w) to biodiesel samples containing added curcumin
or pyrocatechol. Figure 1 presents the experimental
design utilized. All biodiesel samples added with curcu-
min or pyrocatechol, in the absence or presence of 1%
(w/w) added water, were stored in amber glass bottles
and kept at 4 �C until use.

Evaluation of the potential microbial growth
inhibition properties of curcumin and pyrocatechol
in biodiesel
For determination of the minimum concentration of
curcumin and pyrocatechol able to produce fungistatic
effects in the biodiesels studied, the filamentous mold
Paecilomyces variotii Bainier was utilized. The microor-
ganism (in the form of a lyophilized pellet) was reacti-
vated by the addition of ca. 5 mL of sterile saline
solution (at 0.9% NaCl (w/w) in ultrapure water). After
complete rehydration of the pellet, the solution was
gently shaken and poured into Petri plates containing
solid Sabouraud Dextrose Agar, and the plates incu-
bated for 48 h at 25 �C in an incubation chamber from
QUIMIS (model Q-316-14, Diadema, SP, Brazil). After
incubation, a colony forming unit (CFU) was selected
and withdrawn using a flamed metallic loop, and

suspended in sterile liquid nutritive broth, after which
the tube was incubated for 48 h at 25 �C. After this
time period, and following homogenization of the
inoculum, a sterile swab was introduced and sub-
merged in the liquid culture suspension, the excess
solution was withdrawn via gentle compression
against the tube walls, and the surface of the Sabour-
aud Dextrose Agar in Petri plates was inoculated in the
form of striae in three directions, in each (previously
marked) quadrant. Immediately after inoculation, 20
mL of each biodiesel sample with a given weight per-
centage of curcumin or pyrocatechol (with and without
added water) were poured in the centre of each quad-
rant in the form of a simple (tiny) drop, using sterile
tips and a Gilson automatic pipette. For each biodiesel,
samples added with either curcumin or pyrocatechol
were poured into four Petri plates with solid Sabour-
aud Dextrose Agar using the following sequence: Petri
plate #1: top right quadrant, 0% (w/w) curcumin; top
left quadrant, 0.1% (w/w) curcumin; bottom right
quadrant, 0.2% (w/w) curcumin; bottom left quadrant,
0.5% (w/w) curcumin; Petri plate #2: top right quadrant,
0% (w/w) curcumin; top left quadrant, 0.5% (w/w) cur-
cumin; bottom right quadrant, 1.0% (w/w) curcumin;
bottom left quadrant, 1.5% (w/w) curcumin; Petri plate
#3: top right quadrant, 0% (w/w) pyrocatechol; top left
quadrant, 0.1% (w/w) pyrocatechol; bottom right quad-
rant, 0.2% (w/w) pyrocatechol; bottom left quadrant,
0.5% (w/w) pyrocatechol; Petri plate #4: top right quad-
rant, 0% (w/w) pyrocatechol; top left quadrant, 0.5%
(w/w) pyrocatechol; bottom right quadrant, 1.0% (w/w)
pyrocatechol; bottom left quadrant, 1.5% (w/w) pyro-
catechol. All Petri plates were incubated at 25 �C for 48
h, after which they were visually inspected for the pres-
ence of growth inhibition halos. Measurement of halo
diameters was carried out using a caliper rule and
reflected light to illuminate the Petri plates (in inverted
position) placed on a black and opaque background.
All procedures were carried out under aseptic condi-
tions in a laminar flow chamber from Trox Technik
(model FLV-II, Sorocaba, SP, Brazil). The Petri plates
containing solid culture medium were prepared
according to procedures from the manufacturers and
following instructions from CLSI.[23]

Evaluation of the potential antioxidant activity of
curcumin and pyrocatechol in biodiesel and of the
oxidative stability of biodiesels added with curcumin
The induction period that expresses the oxidative sta-
bility was determined by following the procedure of
the norm EN 14112,[24] in a Biodiesel Rancimat from
Metrohm AG (model 873, Herisau, Switzerland). All
measurements were performed in triplicate. This
method consisted in using 3 g of biodiesel which were
heated up to 110 �C, and maintained at this tempera-
ture, under a constant air flow of 10 L�h¡1.

Figure 1. Experimental design for assessing the effect of curcu-
min or pyrocatechol as antimicrobial and/or antioxidant agents
in biodiesel samples, in the presence or absence of added
water.
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Preparation of biodiesel samples with curcumin for
antimicrobial and oxidative stability screening
Biodiesels were added with curcumin at variable (previ-
ously optimized) weight percentages of 0.1% (w/w)
(biodiesel from cotton seed oil), 0.2% (w/w) (biodiesel
from spent frying oil), and 0.5% (w/w) (biodiesels from
sesame seed oil and soybean oil). All four biodiesels
added with curcumin were also added with 1% water
(w/w) and further inoculated with a sterile Drigalski
loop full with mycelium from Paecilomyces variotii Bain-
ier previously grown in solid nutritive medium Sabour-
aud Dextrose Agar in a Petri dish. All biodiesels were
subsequently stored in amber glass bottles and stored
for six months at 25 �C. At pre-determined time inter-
vals (0, 30, 60, 90, 120, 150 and 180 days), aliquots of
all biodiesels were withdrawn and analyzed for RI
(always at 25 �C), lipid oxidation induction times and
presence of viable cells of Paecilomyces variotii Bainier.
Plain biodiesel samples were also evaluated for RI and
lipid oxidation induction time.

Evaluation of the antimicrobial properties of
biodiesels added with curcumin
All biodiesels prepared according to the procedure
described in section “Preparation of biodiesel”. were
screened for the presence of viable cells of Paecilomyces
variotii Bainier. At pre-determined time intervals, 100 mL
samples of each biodiesel added with curcumin and
water and further inoculated with the filamentous mold
were withdrawn and poured and duly spread into Petri
plates containing solid Sabouraud Dextrose Agar, using
a sterile Drigalski loop, with the plates being incubated
for 48 h at 25 �C in an incubation chamber from QUIMIS
(model Q-316-14, Diadema, SP, Brazil). After the incuba-
tion period, all Petri plates were observed for the pres-
ence of fungal growth and any colony forming units
(CFUs) duly counted. All procedures were carried out
under aseptic conditions in a laminar flow chamber
from Trox Technik (model FLV-II, Sorocaba, SP, Brazil).
The Petri plates containing solid culture medium were
prepared according to procedures from the manufac-
turers and following instructions from CLSI.[23]

Results and discussion

Undoubtedly, one of the biggest problems with biodie-
sel is related to its stability, and the most significant
factors for its degradation include exposure to air and/
or light, high temperatures and even to the presence
of metals that can eventually act as catalysts in the pro-
cess of its oxidation. The presence of microorganisms
has also been reported as a factor that promotes bio-
diesel degradation, with a significant drop in its qual-
ity.[4,5,9,11,25] Hence, to minimize this problem, the
research work entertained herein aimed at studying
the effects of the addition to biodiesel of natural

substances with reported antimicrobial and antioxi-
dant properties. Thus, the research work undertaken
was divided into two major parts, the first of which
aimed at determining the lowest concentrations of
pyrocatechol or curcumin exercising inhibition of
microbial growth and/or antioxidant activities in bio-
diesels produced from oils from different plant origins.
The second part aimed at following over a relatively
long storage time, the effect of such natural additives
in the maintenance of the properties and quality of
biodiesel. All newly prepared biodiesels were screened
for microbial loads, but all produced negative results,
which is in clear agreement with the processing condi-
tions leading to the production of this biofuel.[4]
Saponification is an important side-reaction in this
type of system, influencing both catalyst and soaps dis-
tribution between the biodiesel and the glycerine
phases. A very important fraction of the hydroxides are
consumed by the saponification reaction, thus decreas-
ing the final acyl-glycerides conversion. By carrying out
the reaction in two steps, improvement was obtained
regarding the consumption of catalyst and soap forma-
tion, in part promoted by the water formed by free
fatty acid neutralization. Hence, when using crude oils
(including wasted frying oil), the two-step transesterifi-
cation process allowed minimization of soap formation
and its solubility in the biodiesel phase.

Evaluation of the potential microbial growth
inhibition activity of curcumin and pyrocatechol
in biodiesel

To test the potential of the addition of natural substan-
ces such as curcumin or pyrocatechol to biodiesel, in
preventing and/or controlling microbial (fungal) con-
tamination and oxidation, it was decided to inoculate
all newly prepared biodiesels with an ubiquitous
microorganism able to withstand the prevailing condi-
tions in such a medium and at the same time able to
thrive in them. The microorganism chosen was the fila-
mentous mold Paecilomyces variotii Bainier, due to the
fact that it is a common contaminating agent in diesel
fuels[5] and also because of the availability to acquire a
strain of guaranteed origin. In a first stage, we were
interested in studying a single microorganism and not
a cocktail of different organisms. The presence of water
as a facilitator or inhibitor of the activity of the added
natural agent(s) was also evaluated and, for this, all
newly prepared biodiesels were added with 1% (w/w)
ultrapure water, aiming at simulating biodiesel hydra-
tion during storage up to 20 times the maximum
legally permitted water level (500 ppm) in Brazil (ANP
42/[26]). In real conditions of storage, biodiesel can suf-
fer accidental contamination with water from infiltra-
tions (e.g. rain, washing of the refueling points,
microcracks in the storage tanks) and, in this sense, it
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Figure 2. Results obtained for the fungal inhibition ability of biodiesel samples added with variable amounts of curcumin. a1: bio-
diesel from spent frying oil without added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin;
bottom right quadrant, 0.2% (w/w) curcumin; bottom left quadrant, 0.5% (w/w) curcumin; a2: biodiesel from spent frying oil with
1% (w/w) added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin; bottom right quadrant,
0.2% (w/w) curcumin; bottom left quadrant, 0.5% (w/w) curcumin; b1: biodiesel from soybean oil without added water, top right
quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin; bottom right quadrant, 0.2% (w/w) curcumin; bottom left
quadrant, 0.5% (w/w) curcumin; b2: biodiesel from soybean oil with 1% (w/w) added water, top right quadrant, 0% (w/w) curcumin;
top left quadrant, 0.5% (w/w) curcumin; bottom right quadrant, 1.0% (w/w) curcumin; bottom left quadrant, 1.5% (w/w) curcumin;
c1: biodiesel from cotton seed oil without added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.5% (w/w) cur-
cumin; bottom right quadrant, 1.0% (w/w) curcumin; bottom left quadrant, 1.5% (w/w) curcumin; c2: biodiesel from cotton seed oil
with 1% (w/w) added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin; bottom right quad-
rant, 0.2% (w/w) curcumin; bottom left quadrant, 0.5% (w/w) curcumin; d1: biodiesel from sesame seed oil without added water,
top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.5% (w/w) curcumin; bottom right quadrant, 1.0% (w/w) curcumin;
bottom left quadrant, 1.5% (w/w) curcumin; d2: biodiesel from sesame seed oil with 1% (w/w) added water, top right quadrant,
0% (w/w) curcumin; top left quadrant, 0.5% (w/w) curcumin; bottom right quadrant, 1.0% (w/w) curcumin; bottom left quadrant,
1.5% (w/w) curcumin; e1: biodiesel from maca�uba palm oil without added water, top right quadrant, 0% (w/w) curcumin; top
left quadrant, 0.5% (w/w) curcumin; bottom right quadrant, 1.0% (w/w) curcumin; bottom left quadrant, 1.5% (w/w) curcumin; e2:
biodiesel from maca�uba palm oil with 1% (w/w) added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/
w) curcumin; bottom right quadrant, 0.2% (w/w) curcumin; bottom left quadrant, 0.5% (w/w) curcumin; f1: biodiesel from microal-
gae oil without added water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin; bottom right quad-
rant, 0.2% (w/w) curcumin; bottom left quadrant, 0.5% (w/w) curcumin; f2: biodiesel from microalgae oil with 1% (w/w) added
water, top right quadrant, 0% (w/w) curcumin; top left quadrant, 0.1% (w/w) curcumin; bottom right quadrant, 0.2% (w/w) curcu-
min; bottom left quadrant, 0.5% (w/w) curcumin.
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was considered important to define the microbial
growth inhibition properties the closest as possible to
the real conditions. The results of the microbial growth
inhibition trials obtained for all biodiesel samples
added with either curcumin or pyrocatechol, in the
presence of 1% (w/w) added water or in its absence,
are displayed in Figure 2 for curcumin and in Figure 3
for pyrocatechol, in the form of inhibition halos.

As can be seen from inspection of Figures 2 and 3,
when no curcumin or pyrocatechol were added, the
mycelium grew and entangled above the biodiesel
droplet, producing a ‘fake’ inhibition zone. To allow a
better comparison of the halos produced in the differ-
ent situations, for every biodiesel tested the halos pro-
duced were normalized by the dimension of the
inhibition zone produced solely by biodiesel (i.e., with-
out any addition of either curcumin or pyrocatechol). A
close inspection of the results depicted in Table 1, in
the form of normalized growth inhibition halo diame-
ters, allows to draw as a general conclusion that the
combined addition of 1% (w/w) water and a low mass
concentration of curcumin (viz. 0.2% (w/w) for biodie-
sel from spent frying oil, 0.5% (w/w) for biodiesel from
soybean oil, 0.1% (w/w) for biodiesel from cotton seed
oil, 0.5% (w/w) for biodiesel from sesame seed oil, 0.2%
(w/w) for biodiesel from maca�uba almond oil, and
0.2% (w/w) for biodiesel from microalgae oil) were
those processing variables that promoted the best
inhibition of fungal growth (see Table 1).

Due to legal restrictions, the amount of any additive
added to biodiesel must be kept to a minimum. For all
biodiesels produced from different vegetable sources
and added with 1% (w/w) water, curcumin and pyro-
catechol produced quite similar results in preventing
microbial growth. However, due to the ease of curcu-
min availability, compared to pyrocatechol, the former
was chosen for further work. Additionally, the halos of
microbial growth inhibition produced by curcumin
were in general larger than those promoted by pyro-
catechol (see Table 1).

Evaluation of the potential antioxidant activity of
curcumin and pyrocatechol in biodiesel, and of the
oxidative stability of biodiesels added with
curcumin

The potential antioxidant effect of curcumin in all bio-
diesels added with 1% (w/w) ultrapure water was also
evaluated. As can be seen in Table 2, lipid oxidation
induction times (average of three determinations and
associated standard deviations) of biodiesels added
with (minimum) variable amounts of curcumin and 1%
(w/w) water (see section “Evaluation of the potential
microbial growth inhibition activity of curcumin and
pyrocatechol in biodiesel”) suffered a generalized
increase when compared with their pure counterparts
(see Table 2). Except for the biodiesel produced from

soybean oil, which suffered a 16% reduction in the lipid
oxidation induction time, meaning that this biodiesel
was more prone to oxidation after the combined addi-
tion of water and curcumin, all other biodiesels proved
to be more resistant to oxidation, with large increases
in their lipid oxidation induction times (see Table 2).
Additionally, plain biodiesel produced from maca�uba
almond oil proved to be very resistant to oxidation,
exhibiting a lipid oxidation induction timeframe of
more than 60 h, making irrelevant the addition of any
antioxidant. Even more, the addition of curcumin to
this biodiesel catapulted the induction of lipid oxida-
tion to more than 140 h. Thus, this biodiesel was dis-
continued from further studies. The same happened to
biodiesel produced from microalgae oil, due to the dif-
ficulty in obtaining this still experimental biodiesel in
large amounts. But for the remaining biodiesels (see
Table 2), and except for the biodiesel produced from
soybean oil, lipid oxidation induction times suffered
large increases, from ca. 28% in the case of biodiesel
produced from sesame seed oil to ca. 41% in the case
of biodiesel produced from spent frying oil. In our
opinion, these results demonstrate the potential of the
addition of curcumin to biodiesels in preventing both
lipid oxidation and fungal growth. Although the results
presented in the present research effort shed some
light onto the use of curcumin as a potential additive
to biodiesel, an in-depth study will be required in order
to definitely establish curcumin as a suitable additive
to biodiesel, namely by using the methodology
described by the Clinical and Laboratory Standards
Institute (formerly, the NCCLS),[27] and also by inocu-
lating the biodiesels with different microorganisms,
either isolated or in consortium. The definite validation
of curcumin as a suitable additive to biodiesel would
also be accomplished through the use of the protocol
described in ASTM Standard E1259-10.[28]

Lipid oxidation induction times of the several bio-
diesels studied, before and after addition of curcu-
min and 1% (w/w) water and throughout a storage
timeframe of six months, in the presence of water,
can be found in Table 3 and Figure 4 as average val-
ues of three replicates and associated standard
deviations.

As can be seen in Table 3 and Figure 4, lipid oxida-
tion induction times (average of three determinations
and associated standard deviations) of biodiesels
added with curcumin in the presence of 1% (w/w)
water suffered a generalized increase immediately
after addition of curcumin, except in the case of biodie-
sel produced from soybean oil, which suffered a 16%
reduction in the lipid oxidation induction time, mean-
ing that this biodiesel was more prone to oxidation
after the combined addition of water and curcumin.
However, after the first month of storage, the biodiesel
produced from soybean oil was relatively stable from
the oxidation point of view. Except for biodiesel

6 G. A. SANTOS ET AL.



Figure 3. Results obtained for the fungal inhibition ability of biodiesel samples added with variable amounts of pyrocatechol. a1:
biodiesel from spent frying oil without added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.5% (w/w)
pyrocatechol; bottom right quadrant, 1.0% (w/w) pyrocatechol; bottom left quadrant, 1.5% (w/w) pyrocatechol; a2: biodiesel from
spent frying oil with 1% (w/w) added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocate-
chol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocatechol; b1: biodiesel from soybean
oil without added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right
quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocatechol; b2: biodiesel from soybean oil with 1% (w/w)
added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2%
(w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocatechol; c1: biodiesel from cotton seed oil without added water, top
right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2% (w/w) pyrocate-
chol; bottom left quadrant, 0.5% (w/w) pyrocatechol; c2: biodiesel from cotton seed oil with 1% (w/w) added water, top right quad-
rant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom
left quadrant, 0.5% (w/w) pyrocatechol; d1: biodiesel from sesame seed oil without added water, top right quadrant, 0% (w/w)
pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant,
0.5% (w/w) pyrocatechol; d2: biodiesel from sesame seed oil with 1% (w/w) added water, top right quadrant, 0% (w/w) pyrocate-
chol; top left quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5%
(w/w) pyrocatechol; e1: biodiesel from maca�uba palm oil without added water, top right quadrant, 0% (w/w) pyrocatechol; top left
quadrant, 0.1% (w/w) pyrocatechol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocate-
chol; e2: biodiesel from maca�uba palm oil with 1% (w/w) added water, top right quadrant, 0% (w/w) pyrocatechol; top left quad-
rant, 0.5% (w/w) pyrocatechol; bottom right quadrant, 1.0% (w/w) pyrocatechol; bottom left quadrant, 1.5% (w/w) pyrocatechol; f1:
biodiesel from microalgae oil without added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyro-
catechol; bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocatechol; f2: biodiesel from micro-
algae oil with 1% (w/w) added water, top right quadrant, 0% (w/w) pyrocatechol; top left quadrant, 0.1% (w/w) pyrocatechol;
bottom right quadrant, 0.2% (w/w) pyrocatechol; bottom left quadrant, 0.5% (w/w) pyrocatechol.
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produced from spent frying oil (see Figure 4), where a
marked decrease in oxidative stability was observed
throughout storage, all other biodiesels proved to be
more resistant to oxidation following addition with cur-
cumin, with only slight decreases over time in their
lipid oxidation induction times (see Table 3 and
Figure 4). Biodiesel produced from sesame seed oil
exhibited a high oxidative stability, which was kept
throughout all storage timeframe. Except for the bio-
diesel produced from soybean oil, lipid oxidation
induction times suffered large increases, from ca. 28%
in the case of biodiesel produced from sesame seed oil

to ca. 41% in the case of biodiesel produced from
spent frying oil, when comparing the lipid oxidation
induction times of biodiesels added with curcumin
with their plain counterparts (see Figure 4). These
results clearly demonstrate the potential of the addi-
tion of curcumin to biodiesels in maintaining (and in
some cases increasing) their oxidative stability.

The results obtained for the RI of the several bio-
diesels throughout storage time are displayed in
Figure 5.

As can be observed from inspection of Figure 5, an
increase (although slight) of the RI of all biodiesels

Table 1. Normalized growth inhibition halos produced using the filamentous fungi Paecilomyces variotii Bainier and biodiesels from
different vegetable origins added with variable weight percentages of either curcumin or pyrocatechol.

Normalized inhibition halos produced

BIODIESEL
ORIGIN

Additive added to
biodiesel (%, w/w)

With curcumin/
Without water

With curcumin/
With water

With pyrocatechol/
Without water

With pyrocatechol/
With water

Spent frying oil 0 8/8 D 1.000 7/7 D 1.000 10/10 D 1.000 10/10 D 1.000
0.1 10/8 D 1.250 10/7 D 1.429 10/10 D 1.000 10/10 D 1.000
0.2 7/8 D 0.875 10/7 D 1.429 7/10 D 0.700 8/10 D 0.800
0.5 8/8 D 1.000 8/7 D 1.143 8/10 D 0.800 10/10 D 1.000
1.0 8/8 D 1.000 6/7 D 0.857 12/10 D 1.200 9/10 D 0.900
1.5 8/8 D 1.000 7/7 D 1.000 12/10 D 1.200 5/10 D 0.500

Soybean oil 0 10/10 D 1.000 10/10 D 1.000 9/9 D 1.000 7/7 D 1.000
0.1 10/10 D 1.000 9/10 D 0.900 11/9 D 1.222 6/7 D 0.857
0.2 16/10 D 1.600 7/10 D 0.700 10/9 D 1.111 8/7 D 1.143
0.5 12/10 D 1.200 10/10 D 1.000 10/9 D 1.111 7/7 D 1.000
1.0 8/10 D 0.800 6/10 D 0.600 10/9 D 1.111 5/7 D 0.714
1.5 8/10 D 0.800 8/10 D 0.800 9/9 D 1.000 5/7 D 0.714

Cotton seed oil 0 11/11 D 1.000 13/13 D 1.000 11/11 D 1.000 7/7 D 1.000
0.1 9/11 D 0.818 14/13 D 1.077 10/11 D 0.909 11/7 D 1.571
0.2 9/11 D 0.818 12/13 D 0.923 8/11 D 0.727 9/7 D 1.286
0.5 9/11 D 0.818 10/13 D 0.769 7/11 D 0.636 8/7 D 1.143
1.0 9/11 D 0.818 8/13 D 0.615 9/11 D 0.818 1/7 D 0.143
1.5 11/11 D 1.000 13/13 D 1.000 10/11 D 0.909 0/7 D 0.000

Sesame seed oil 0 7/7 D 1.000 8/8 D 1.000 8/8 D 1.000 7/7 D 1.000
0.1 8/7 D 1.143 7/8 D 0.875 7/8 D 0.875 9/7 D 1.286
0.2 8/7 D 1.143 9/8 D 1.125 8/8 D 1.000 9/7 D 1.286
0.5 9/7 D 1.286 10/8 D 1.250 8/8 D 1.000 9/7 D 1.286
1.0 10/7 D 1.429 7/8 D 0.875 0/8 D 0.000 7/7 D 1.000
1.5 11/7 D 1.571 9/8 D 1.125 7/8 D 0.875 9/7 D 1.286

Maca�uba almond oil 0 8/8 D 1.000 10/10 D 1.000 13/13 D 1.000 11/11 D 1.000
0.1 9/8 D 1.125 11/10 D 1.100 10/13 D 0.769 8/11 D 0.727
0.2 11/8 D 1.375 15/10 D 1.500 10/13 D 0.769 10/11 D 0.909
0.5 12/8 D 1.500 11/10 D 1.100 8/13 D 0.615 12/11 D 1.091
1.0 8/8 D 1.000 10/10 D 1.000 10/13 D 0.769 7/11 D 0.636
1.5 10/8 D 1.250 8/10 D 0.800 10/13 D 0.769 6/11 D 0.545

Microalgae oil 0 8/8 D 1.000 8/8 D 1.000 13/13 D 1.000 9/9 D 1.000
0.1 12/8 D 1.500 8/8 D 1.000 12/13 D 0.923 0/9 D 0.000
0.2 11/8 D 1.375 9/8 D 1.125 9/13 D 0.692 9/9 D 1.000
0.5 9/8 D 1.125 9/8 D 1.125 10/13 D 0.769 8/9 D 0.889
1.0 9/8 D 1.125 6/8 D 0.750 8/13 D 0.615 7/9 D 0.778
1.5 8/8 D 1.000 6/8 D 0.750 8/13 D 0.615 6/9 D 0.667

Table 2. Lipid oxidation induction times of the several biodiesels studied, before and after addition of curcumin in the presence of
water.

Average (n D 3) lipid oxidation induction time (h § s)

BIODIESEL
ORIGIN

Density @ 25 �C
(g/mL)

Refractive index
@ 25 �C

Pure
biodiesel

Biodiesel added with
curcumin and 1% (w/w) water

Curcumin added
(%, w/w)

Variation
(%)

Spent frying oil 0.8669 1.4572 7.12 § 0.02 10.01 § 0.21 0.2 C 40.59
Soybean oil 0.8681 1.4561 6.01 § 0.20 5.03 § 0.85 0.5 ¡ 16.31
Cotton seed oil 0.8714 1.4531 3.06 § 0.06 4.10 § 0.04 0.1 C33.99
Sesame seed oil 0.8692 1.4522 8.70 § 0.12 11.13 § 0.12 0.5 C 27.93
Maca�uba almond oil 0.8666 1.4351 60.84 § 5.40 141.26 § 2.18 0.2 C 132.18
Microalgae oil 0.8609 1.4509 7.58 § 0.07 8.79 § 0.52 0.2 C 15.96
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added with curcumin and 1% (w/w) water can be
noticed throughout storage time. This trend was con-
firmed by performing linear adjusts to the RI data of
each biodiesel, producing positive slopes, viz.
0.00051430 for biodiesel produced from cottonseed
oil, 0.00040356 for biodiesel produced from sesame
seed oil, 0.00053572 for biodiesel produced from spent
frying oil, and 0.00043215 for biodiesel produced from
soybean oil (see Figure 5). The RI is a physical property
that is sensitive to the effects of fatty acid oxidation,
and is related to the dielectric permittivity of a material,
with higher RI materials being considered highly dis-
persive media (such as plain vegetable oils) as com-
pared to lower RI materials (such as biodiesels).[29,30]
In general, the RI of a vegetable oil reduces tremen-
dously after the transesterification process that leads
to biodiesel, indicating that heavier molecules have
been converted into lighter ones, enabling interface
detection, enhancing lubricity and increasing function-
ality of the fuel oil.[31,32] This was actually observed in
the research effort described herein, viz. the RI was
reduced from 1.4743 (plain soybean oil, data not
shown) to 1.4561 (biodiesel produced from soybean
oil, see Table 3), from 1.4620 (plain cottonseed oil, data
not shown) to 1.4531 (biodiesel produced from cotton-
seed oil, see Table 3), from 1.4740 (plain sesame seed
oil, data not shown) to 1.4522 (biodiesel produced
from sesame seed oil, see Table 3), and from 1.4800
(plain spent frying oil, data not shown) to 1.4572 (bio-
diesel produced from spent frying oil, see Table 3). Our
results are, therefore, in clear agreement to what is
described in the specialty literature. However, the
slightly marginal trend of increase of the RI during stor-
age reflects the maintenance of the physical properties
of the several biodiesels, which is confirmed by the oxi-
dative stability attained following addition of curcumin
to all biofuels, in clear agreement with results pub-
lished elsewhere.[3]

Evaluation of the antimicrobial properties of
biodiesels added with curcumin

Biodiesels added with curcumin maintained a harsh
environment that prevented microbial growth, which
was confirmed by the screening of biodiesels for viable
microbial cells throughout all storage timeframe, but
all produced negative results (see Table 3 and
Figure 6).

Addition of water to biodiesel, coupled to the pre-
vailing carbon sources in such a medium, would allow
ubiquitous microorganisms (such as Paecilomyces vari-
otii Bainier, a common contaminating agent in diesel
fuels according to Passman [5]) to thrive in them. How-
ever, addition of curcumin to biodiesel proved to be
successful in fully preventing microbial growth (see
Figure 6), which was confirmed by the research effort
undertaken.Ta
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Conclusions

An analysis of the results obtained in the research
effort described herein allows us to conclude that the
natural substances added to biodiesel (curcumin and
pyrocatechol) presented fungistatic characteristics and
were able to prevent the growth of the selected micro-
organism. However, from those two natural substan-
ces, curcumin was selected due not only to its ease of
acquisition but also to its higher fungistatic activity.
Additionally, curcumin was able to provide biodiesel
with a harsh environment for contaminating fungi and
to substantially increase the lipid oxidation induction

times of all biodiesels tested, except for the one pro-
duced from spent frying oil which suffered a substan-
tial decrease in its oxidative stability after only the first
month of storage at room temperature. The general-
ized maintenance of the oxidative stability of biodie-
sels was supported by the observed trend in their lipid
oxidation induction times. Therefore, curcumin
appears as a promising antioxidant and antimicrobial
natural additive for use in low mass concentrations
that allows biodiesels produced from different plant
sources to maintain their quality even during pro-
longed storage at normal ambient temperature.
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Figure 4. Oxidative stability of the several biodiesels produced, following addition with 1% water (w/w) and variable mass percen-
tages of curcumin, and further inoculated with the ubiquitous filamentous fungi Paecilomyces variotii Bainier.
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