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The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix
metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that
display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer)
was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric
protein 6mer + FNII was purified by non-chromatographic methods. Films prepared from 6mer + FNII
by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the perfor-
mance of the material in terms of cell adhesion was significantly improved when 6mer + FNII was com-
bined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe
a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue
engineering and regenerative medicine.
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Biomaterials Statement of Significance

This work reports the development of biocompatible silk-based composites with enhanced cell adhesion
properties suitable for biomedical applications in regenerative medicine. The biocomposites were pro-
duced by combining a genetically engineered silk-elastin-like protein with a genetically engineered
spider-silk-based polypeptide carrying the three domains of the fibronectin type Il module from human
metalloproteinase-2. These composites were processed into free-standing films by solvent casting and
characterized for their biological behavior. To our knowledge this is the first report of the exploitation
of all three FNII domains as a functional domain for the development of bioinspired materials with
improved biological performance. The present study highlights the potential of using genetically engi-
neered protein-based composites as a platform for the development of new bioinspired biomaterials.
© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recombinant protein-based polymers (rPBPs) are a class of bio-
materials with unique chemical, physical and biological character-
istics of interest particularly for tissue engineering [1,2]. Within
the class of rPBPs, silk-like polymers (SLP) are being utilized in a
range of studies in materials science. For instance, silk fibroin from
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the silkworm Bombyx mori has been processed into different struc-
tures to create various biomaterials such as films, fibres, hydrogels
and porous sponges [3,4]. Spider silks such as the dragline silk from
Nephila clavipes have been extensively studied due to their out-
standing mechanical properties and thermal stability [4,5]. This
particular spider silk is composed of two major proteins, major
ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2
(MaSp2) [6,7].

Recombinant spider silks functionalized with bioactive domains
highlight the potential of these chimeric proteins for new biomate-
rials with relevant features for biomedical applications [4,8-11].
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Cell adhesion is one of the most important concerns when develop-
ing biomaterials for tissue engineering and regenerative medicine
since it is essential for several cell-function mechanisms such as
cell migration and proliferation, which are crucial for the assembly
and maintenance of tissues [12-14].

As rPBPs can be manipulated at the genetic level, bioactive
domains such as fibronectin can be introduced for improved bio-
logical performance [15,16]. Fibronectin is a multidomain/multi-
functional glycoprotein of the extracellular matrix that binds to
several members of the integrin receptor family, playing an impor-
tant role in processes such as cell adhesion, migration and differen-
tiation [17-19]. This disulfide-bounded dimeric protein consists of
two subunits that each contain three types of modules: type I, type
Il and type 111 [17,20,21]. Fibronectin type II (FNII) modules can be
found in a small number of proteins including matrix
metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9
(MMP-9) [22,23]. MMP-2 comprises three tandem gelatin/
collagen-binding FNII domains (Supplementary Fig. S1) in its cat-
alytic domain and all three FNII modules contribute to binding to
gelatin/collagen [22,24-27]. Thus, the FNII module from human
MMP-2 displays promising characteristics for the improvement
of cell adhesion and collagen-binding activity of biomimetic mate-
rials, being a promising candidate for functionalization of spider
silks with biomedical application purposes

Recombinant production of spider silk proteins has, however,
been hampered by its low bioproduction levels, usually in the
milligram per liter range [28,29], most likely due to translational
and transcriptional limitations [30-32] such as translational
pauses during synthesis [33]. Although expression levels up to
1gL"! have been reported [29], the final yield is significantly
decreased during protein purification. The polyalanine region in
the silk primary sequence spontaneously self-assembles into crys-
talline B-sheets reducing the solubility of spider silks [34,35],
therefore restricting the purification process.

Blending spider silk with silk-elastin-like proteins (SELPs) can
be a suitable approach for cost-effective manufacture of silk
polymers. SELPs are an exceptional family of rPBPs, consisting of
alternate amino acid repetitions of silk blocks (GAGAGS) derived
from silk fibroin, and elastin blocks (VPGXG, X: any amino acid
except for proline) derived from mammalian elastin, repeated in
tandem [36]. Within the SELP family, SELP-59-A has been effort-
lessly expressed and purified with high volumetric productivities
(4.3 g.L71) [37]. Furthermore, this SELP copolymer has been pro-
cessed into fibre mats by electrospinning for tissue engineering
applications [38] and into free standing films by solvent casting
[39], demonstrating its versatility of processing as well as its
unique physical, mechanical and biological properties that high-
light potential biomedical purposes.

Aiming at creating novel non-cytotoxic biopolymers, the
complete FNII module from MMP-2 was explored as a new cell
adhesion motif to be used in biomaterials. In this work, a chimeric
protein composed of the FNII module and a spider silk block carry-
ing six repeats of the consensus region of MaSp1 (6mer) was pro-
duced through genetic engineering in Escherichia coli. In addition, a
number of silk-based blends combining this novel polymer with
SELP-59-A were produced with the purpose of developing bioma-
terials for biotechnological applications at a reduced cost while
enhancing their biological performance.

2. Materials and methods

2.1. Gene construction

Genetic constructions were prepared by standard genetic
engineering techniques using DNA sequences optimized for E. coli

codon usage. All constructs were confirmed by DNA sequencing
(Eurofins Genomics).

2.1.1. 6mer + FNII gene

The pET30L vector carrying the spider silk block (6mer) was
prepared as previously described [40]. The plasmid contains a Spel
restriction digestion site at the C-terminus of the 6mer sequence,
allowing for the subcloning of functional domains. The nucleotide
sequence coding for the FNII module from MMP-2 with flanking
Spel restriction sites was chemically synthesized (GenScript) and
cloned into the vector pUC57 (Novagen, San Diego CA). The DNA
was digested with Spel and subcloned into pET30L. The insertion
and sequence orientation were confirmed by restriction digestion,
followed by DNA sequencing and then transformed into E. coli BL21
(DE3) (Novagen, San Diego CA) and used for production.

2.1.2. SELP-59-A gene

The genetic construct for expression of SELP-59-A (56.6 kDa)
protein was obtained by seamless cloning as previously described
[36]. The complete amino acid composition of SELP-59-A was pre-
viously reported [36] and consists of 9 tandem repetitions of S5E9,
where S is the silk block with sequence GAGAGS and E is the elastin
block with sequence VPAVG (Supplementary Fig. S2).

2.2. Production and purification of SELP-59-A

Optimal growth conditions for SELP-59-A expression were pre-
viously described by our group, either using auto-induction media
[36], or by using high-cell density approaches [37,41]. In this study,
the SELP-59-A protein was produced in E. coli BL21(DE3) using a
fed-batch approach [37] and purified by a non-chromatographic
method involving acid-based cell lysis followed by ammonium sul-
fate purification [36]. Finally, the protein-enriched solution was
dialysed and lyophilised. From here on in this publication SELP-
59-A will be referred to as SELP.

2.3. Production of 6mer + ENII

In an attempt to optimize the production of 6mer + FNII various
previously optimized production approaches were investigated
using both batch [36] and fed-batch [37] culture conditions. The
highest production was obtained with high cell density culture
(dry cell weight of 60 g/L) using 1 mM IPTG induction for 4 h with
pre and post-induction growth rates of 0.4 h~! and 0.1 h~!, respec-
tively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on a 10% gel, followed by Coomassie blue staining,
was used to analyse and compare productivities in both the soluble
and insoluble intracellular fractions.

2.4. Purification of 6mer + ENII from inclusion bodies

Bacterial cell pellets were resuspended in TE buffer solution
(50 mM Tris-HCl + 1 mM EDTA at pH 8.0), disrupted by ultrasonic
lysis sonication using a Vibra cell™ 75043 (Bioblock Scientific) with
a 25 mm diameter probe (3 s pulse on, 9 s pulse off, total sonication
time: 10 min) and centrifuged at 11,500xg, for 20 min at 4 °C. The
inclusion bodies-enriched pellet was resuspended and washed four
times in washing solution (50 mM Tris-HCl, 150 mM NacCl, 1%
Triton X-100 and 20% Sucrose, pH 8.0) with centrifugation at
11,500xg, for 20 min, at 4 °C to remove contaminants. Purified
inclusion bodies were then solubilized in buffer (8 M Urea,
100 mM HNa,PO4, 10 mM Tris-HCl at pH 8.0), filtered through a
0.45 pm filter, and desalted into deionized water with a HiPrep
26/10 desalting column (GE Healthcare) and lyophilised.
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2.5. Western blot analysis

Following 10% SDS-PAGE analysis, protein bands were trans-
ferred from the SDS-PAGE gel to a nitrocellulose membrane in a
Mini trans-Blot® Cell (Bio-Rad) at 100V for 1 h. The membrane
was blocked for 1 h with 5% non-fat dried milk in TBS-T buffer
(50 mM Tris-HCI, 150 mM Nacl, 0.05% Tween 20 at pH 8), washed
with TBS-T and incubated overnight with mouse monoclonal anti-
polyHistidine antibody (Sigma-Aldrich) diluted 1:3000 in the
blocking solution. Following incubation the membrane was
washed with TBS-T and incubated with goat anti-mouse IgG perox-
idase (HRP) antibody (Sigma-Aldrich) diluted 1:5000 in the block-
ing solution. Protein detection was made by chemiluminescence
using WesternBright ECL spray (Grisp) and X-ray films were devel-
oped with a Curix 60 film processor (AGFA HealthCare).

2.6. Solvent casting and post-processing treatment of films

Films of 6mer + FNII, SELP and SELP blended with 6mer + FNII
(SELP/6mer + FNII) were prepared by solvent casting using formic
acid (98-100%, Merck) as solvent [39]. 6mer + FNII films were
produced by dissolution of the pure lyophilized protein to a final
concentration of 10% (w/v). SELP films were produced by dissolving
the pure lyophilized protein to a final concentration of 3% (w/v).
Silk-based blends were produced by combining SELP with different
percentages of 6mer +FNII (5, 15 and 30 wt%) regarding the
amount of SELP. Then, 100 pl of each protein solution was cast into
a 15mm (diameter) polytetrafluoroethylene (PTFE, Teflon®)
surface and allowed to dry at room temperature until complete
solvent evaporation. For post-processing treatment, the free stand-
ing films were treated with methanol-saturated air at 25 °C for
48 h in a vapor chamber [39] and air-dried at room temperature
for at least 48 h before characterization.

2.7. Fluorescein isothiocyanate (FITC) labelling

6mer + FNII was linked to FITC (100/1, w/w) in sodium carbon-
ate buffer pH 8.5 for 8 h at 4 °C in dark conditions. Free FITC was
removed by sequential washing steps and monitored by measuring
the absorbance in the range of 300-600 nm (FITC absorption max-
imum =495 nm) in a UV-1700 PharmaSpec Shimadzu spectropho-
tometer. Blend films of FITC-labelled 6mer + FNII and SELP were
produced using the methodology described above (Section 2.6).
The distribution of 6mer + FNII within the SELP matrix was anal-
ysed on a Leica DM-5000B epifluorescence microscope with appro-
priate filter settings. Three random images for each sample were
acquired with a Leica DCF350FX digital camera and processed with
LAS AF Leica software.

2.8. Mechanical characterization

Uniaxial tensile failure measurements were carried out at ambi-
ent conditions (~25°C) with a Shimadzu Universal Testing
Machine (AG-IS with a load cell of 50 N) with a defined strain rate
of 0.5 mm/min. The ultimate tensile strength (UTS), the strain-to-
failure (&) and the modulus of elasticity (E) were determined, with
the latter being calculated in the linear zone of elasticity, between
0 and 1% of strain, for all samples.

2.9. Attenuated total reflection-fourier transform infrared analysis
(ATR-FTIR)

FTIR spectra from 4000 cm~! to 600 cm™! were acquired at
room temperature with a Spectrum Two spectrometer from Perkin
Elmer in ATR mode. FTIR spectra were collected after 64 scans with
a resolution of 4 cm™! followed by ATR correction using the man-

ufacturer’s software (Spectrum 10, Perkin Elmer). Atmospheric
CO,/H,0 was automatically corrected during spectra collection
using theoretical water vapor and carbon dioxide spectra. Quantifi-
cation of the secondary structure was based on the analysis of the
amide I region (1700-1600 cm™!) by second derivatization and
Gaussian curve fitting [39,42-45] using OriginPro 9.0 software
(OriginLab, Northampton, MA). Derivatization analysis can be used
to separate overlapping bands and can be performed objectively
without choosing arbitrary deconvolutional parameters [45]. The
original spectral data (non-smoothed) in the amide I region was
truncated and normalized, followed by linear baseline correction.
For component analysis, the second-derivative spectra of the
amide I region were smoothed with an eleven-point Savitsky-
Golay smoothing function. As the data was collected with an inter-
val of 1cm™!, the selection of eleven-point windows covers a
11 cm~! spectral region which is less than the half width at half
maximum for almost all amide I band components [45]. The num-
ber of components and their peak positions were determined by
second derivatization and used as starting parameters for curve-
fitting iteratively with a Gaussian function using the Levenberg-
Marquardt algorithm [43,45,46]. To make the secondary structure
assignment comparable between all the samples, curve fitting was
performed with the same set of parameters. During fitting, the
amplitude of components were allowed to vary freely but the fre-
quency and bandwidth were constrained to a 2 cm~! variation. A
Gaussian function was used over Lorentzian band shape as it gave
the best fit with a coefficient of determination (R?) higher than
0.99 for all the spectra. Fitting quality was also evaluated by
examination of residuals between the original and the fitted curve.
Secondary structure composition was estimated from the relative
area of the single bands assigned to the different structures assum-
ing that the extinction coefficient for the C=0 stretch vibration is
the same for the different structural components [47,48]. The con-
tribution of each fitted component to the amide I band was thus
determined by integration of the area under the curve and normal-
izing for the total area of amide I. The absorbance values of
methanol-treated SELP and methanol-treated SELP/6mer + FNII
blend films were comparable to those obtained with untreated
films.

2.10. In vitro cytotoxicity evaluation of films

In vitro cytotoxicity evaluation was assessed with telomerase-
immortalized normal human skin fibroblasts cell line (BJ-5ta)
obtained from the American Type Culture Collection (ATCC). Cells
were cultured according to ATCC recommendations in complete
medium (4 parts Dulbecco’s modified Eagle’s medium containing
4 mM r-glutamine, 4.5 g.L! glucose, 1.5 g.L~! sodium bicarbonate
and 1 part Medium 199) supplemented with 10% (v/v) fetal bovine
serum (FBS), 1% (v/v) penicillin/streptomycin and 10 pg.mL™!
hygromycin B at 37 °C with 5% CO, in a humidified environment.
Short term cell viability in response to the methanol-treated films
was assessed by indirect contact using the MTT (3-(4,5-dimethyl
thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay according
to the manufacturer’s (Sigma-Aldrich) instructions. 6mer + FNII
and SELP/6mer + FNII films were sterilized with 1% (v/v) peni-
cillin/streptomycin (3 x 20 min), washed with sterile phosphate-
buffered saline solution (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM
Na,HPO,4, 1.8 mM KH,PO,4 at pH 7.4) and incubated with 1 mL of
cell culture medium for 24 h at 37 °C with 5% CO, in a humidified
environment. In parallel, a suspension of 1 x 104 BJ-5ta cells.mL™!
was seeded in surface treated 24-well plates (Nunclon polystyrene
24-well MicroWell, Thermo Scientific) for 24 h under the condi-
tions described above. Following incubation the cell culture med-
ium was removed and replaced with the medium conditioned by
the 24 h contact with the films. Cell viability was then evaluated
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after 24 h using the MTT proliferation assay. SELP films were used
as controls for the assay wherein cells cultured in standard culture
medium and in 30% DMSO (Sigma-Aldrich) were used as positive
and negative controls, respectively. Results were expressed as per-
centage of viability in relation to the positive control (set as 100%
viability).

2.11. Cell adhesion

Previously sterilized films were transferred to sterile 24-well
plates and BJ-5ta cells were seeded at a density of 1 x 104 cells
per well and incubated for 12, 24 and 48 h on the different film sur-
faces. For immunofluorescence microscopy, cells were fixed with
3.7% formaldehyde (Merck) in PBS for 10 min, washed with PBS
and permeabilized in 0.1% TritonX-100 in PBS for 5 min. Cells were
then washed with PBS and incubated with phalloidin (Alexa Fluor®
594 phalloidin, Life Technologies™) in the dark for 20 min. After-
wards, cells were washed with PBS and cell morphology and
spreading was observed using a fluorescence microscope (Olympus
[X71 inverted microscope) with photos from random locations
being digitally recorded and compared. Cell adhesion was further
assessed by scanning electron microscopy (SEM) for a detailed
visualization of cell-material interactions. For SEM analysis, sam-
ples were soaked in a fixation solution (1 mL of 2.5% glutaralde-
hyde (Merck) in PBS) for 1h at room temperature, rinsed with
distilled water and dehydrated by immersion for 30 min in a series
of successive ethanol-water solutions (55%, 70%, 80%, 90%, 95% and
100% v/v of ethanol). The samples were then dried at room temper-
ature and coated with a thin gold layer using a sputter coater

(Fision Instruments, Polaron Sputter Coater SC502) prior to SEM
analysis (Leica Cambridge S360, UK) with an accelerating voltage
of 20 kV.

2.12. Statistical analysis

One-way analysis of variance (ANOVA) with Bonferroni’s post-
test was carried out using GraphPad Prism 6 software to compare
the means of the different data sets within each experiment. A
value of p <0.05 was considered to be statistically significant. All
experiments were performed in triplicate.

3. Results and discussion
3.1. Expression of 6mer + FNII

The chemically synthesized FNII coding sequence was success-
fully ligated in frame to the 3’ end of the 6mer spider silk-based
gene in the vector pET30L [40] via the Spel restriction site
(Fig. 1). This construct (pET30L::6mer + FNII) was then trans-
formed into E. coli BL21(DE3) for subsequent protein production
studies. Production of rPBPs often constitutes a major bottleneck
for development but in this work 6mer + FNII was efficiently pro-
duced with the approaches investigated. The protein accumulated
as inclusion bodies in the intracellular insoluble fraction (Fig. 2A).
Attempts were made to produce soluble 6mer + FNII [49], namely
by lowering the fermentation temperature (to 18 °C) and by co-
expression with chaperones induced by incubation for 30 min on
ice in the presence of 2% ethanol, but without success (not shown).

MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMAASGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGR

GGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGA

GQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSRVKY

GNADGEYCKFPFLFNGKEYNSCTDTGRSDGFLWCSTTYNFEKDGKYGFCPHEALFTMGGNAEGQPCKFPFRFQGTSYDSCTTEGRTDGYR

WCGTTEDYDRDKKYGFCPETAMSTVGGNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATTANYDDDRKWGFCPDQGYSTSStop

Fig. 1. Complete amino acid sequence of recombinant 6mer + FNII. The monomeric unit of the 6mer is represented in bold and the three domains of FNII are underlined
(structure and amino acid sequence of FNII is further detailed in the Supplementary data, Fig. S1).
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Fig. 2. Electrophoretic patterns showing 6mer + FNII expression in auto-induction media (a) and purification from inclusion bodies (b). (a): MWM - broad range SDS-PAGE

molecular weight marker (Bio-Rad); C

- cell crude extract; SF - soluble fraction; IF -

insoluble fraction. The broader band at ~42 kDa indicates an overexpression of 6mer

+ FNII with accumulation in the insoluble fraction. (b): Lanes 1-4 - washing steps. Lane 5 - solubilization of inclusion bodies in urea buffer solution.



54 A.M. Pereira et al. /Acta Biomaterialia 47 (2017) 50-59
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M (kDa.) M (kDa.)
- 216 - 216
- 132 - 132
- 78 - 78

= 45,7 - 45,7
= 32,5 - 32,5
= 18,4 - 18,4

Fig. 3. Western Blot analysis of (a) cell crude extracts and (b) purified fraction of
6mer + FNII without and with the addition of reducing agents. (a): lane 1 - cell
crude extract of untransformed E. coli; lane 2 - cell crude extract of E. coli cell
cultures expressing 6mer + FNIL (b): lane 3 - non-reduced 6mer + FNII; lane 4-
6mer +FNII+ 1 mM DTT; lane 5-6mer+FNII+10 mM pB-mercaptoethanol. The
presence of several bands at higher molecular weights indicates various degrees
of multimerization (monomeric protein ~42 kDa). These multimers are very stable
and do not disassemble with the addition of reducing agents. The bands observed at
a molecular weight lower than 42 kDa are most likely due to truncated forms of
6mer + FNIl. MWM - broad range Kaleidoscope™ SDS-PAGE (Bio-Rad).

6mer + FNII production by auto-induction [36,50] in batch fermen-
tation resulted in volumetric productivities, quantified after purifi-
cation, of approximately 180-200 mg.L~'. This is about 10-fold
higher than that previously reported for other functionalized spi-
der silk 6mer-based proteins [10,51-53] and similar to the quanti-
ties of SELPs produced using this approach [36]. In addition, similar
to that previously reported, a 10-fold [37] increase in biomass was
achieved with a fed-batch fermentation process which allowed for
a corresponding increase in polymer productivity to g/L quantities
(data not shown). While this latter process is technically more
challenging and labor intensive than the other approaches, the
high productivities attained here point to the potential of 6mer
+ FNII for the development of future applications.

3.2. Purification of 6mer + FNII

As 6mer + FNII accumulated in inclusion bodies (Fig. 2A) these
were purified from the cell lysate and cellular debris by successive
washing and centrifugation steps, followed by solubilization in 8 M
urea, desalting and drying by lyophilisation (Fig. 2B). SDS-PAGE
analysis revealed the presence of a strong band at the expected size
(~42 kDa) but with other higher molecular weight bands also vis-
ible. Western blot analysis using anti-polyHistidine antibodies
(Fig. 3A) demonstrated that all bands showed reactivity, thereby
indicating the presence of 6mer + FNII multimers and breakdown
products. Indeed, this multimerization of 6mer and 6mer chimeric
proteins has been observed in previous studies and are reported as
being the consequence of monomer aggregation and pre-
terminated products [5,10,51-53]. This outcome might be due to
the polyalanine blocks of the 6mer silk domain forming a highly
hydrophobic core leading to aggregation and precipitation above
a critical concentration [10]. On the other hand, 6mer + FNII
oligomerization can also be disulfide bond-mediated, since each
of the three FNII modules comprises four cysteine residues
involved in disulfide bridges [54]. Considering this feature, two dif-
ferent reducing agents, dithiothreitol (DTT) and B-
mercaptoethanol, were added to the purified protein fraction.
However, the multimers were stable to the reducing agents
(Fig. 3B) further suggesting that the higher molecular weight bands
are likely due to 6mer+ FNII aggregation mediated through
hydrogen-bonding between the alanine residues of the silk block.

3.3. Structural analysis by ATR-FTIR

Films were prepared following dissolution in formic acid by
casting on PTFE Teflon moulds with evaporation at room tempera-
ture. Formic acid has been previously used as solvent in the fabri-
cation of silk fibroin films, yielding a transparent and stable
solution [39] and here transparent free standing films were
obtained in all cases. As-cast SELP cast films readily dissolved after
a few minutes in contact with water [39] thereby limiting potential
applications, in particular where the films are in contact with an
aqueous environments such as culture media or body fluids. Treat-
ment with methanol circumvents this limitation, rendering aque-
ous insolubility by promoting the formation of insoluble B-sheet
structures that maintain the SELP films structural integrity
[38,39,48,55,56]. For this reason, the films were exposed to
methanol-saturated air to render aqueous insolubility and change
the secondary structure as assessed by FTIR spectroscopy. Second-
ary structure analysis was performed in the amide I region (1600-
1700 cm™') which originates from the C=0 stretching vibration of
the amide group coupled with the in-phase bending of the N-H
bond and out-of-phase C-N stretching vibrations [57-59], corre-
sponding to the most sensitive spectral region used for protein
studies. This region is sensitive to small variations in molecular
geometry and hydrogen bonding and therefore gives valuable
information about the secondary structure and conformational
changes of proteins [45,60]. Before the methanol treatment, the
IR spectrum of all samples was characterized by an amide I absorp-
tion band centered around 1625 cm~! which is attributed to an
antiparallel B-sheet conformation [35,48] (Fig. 4A). Moreover, a
pronounced shoulder at 1645 cm™! attributed to random coils/
extended chains [48] was also observed (Fig. 4A). The broadness
of the amide I band indicates the presence of other conformations
however, the peak center located around 1625 cm~! suggests that
the secondary structure is dominated by B-sheets with a relevant
contribution arising from other structures. In all films, after the
methanol treatment, the amide I band was narrower and shifted
to 1622 cm™!, suggesting that major contributions arise from p-
structures and less from other secondary structures. This behavior
was previously observed for SELP films [39] and fibres [38] in
which the amide I band shifted to lower wavenumbers after the
methanol treatment.

Although the amide I band is useful for the analysis of protein
conformation, it is usually a single broad band with overlapping
components that arises from various secondary structure elements
[61] Band-narrowing or resolution enhancement techniques such
as second derivative analysis provide a more detailed characteriza-
tion of protein conformation by providing a basis for the quantita-
tive estimation of protein secondary structure [45,62,63]. Despite
the limitations and drawbacks associated to the technique
[57,60,64,65] resolution enhancement and curve fitting analysis
can represent a valuable tool to compare the secondary structure
content of samples in different conditions, considering that all
the parameters for fitting and band narrowing are maintained.

To study the secondary structure composition in more detail
and especially to assess the evolution of the B-structure content
after the methanol-treatment, second derivative analysis and curve
fitting methods were employed in the amide I band region of the
FTIR spectra (Fig. 4B). For each fitted band, a structural conforma-
tion was assigned by reference to the literature (Supplementary
Table S1). The B-structure content of the SELP films was higher
than that observed for the blend films reaching values of ~52%
and ~60% for the non-treated and methanol-treated films, respec-
tively (Fig. 4C). In comparison, the B-structure content in the non-
treated blend films was of approximately 40%, increasing to ~52%
after exposure to methanol. This clearly indicates that methanol
induces a molecular reorganization leading to the formation of
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Fig. 4. Infrared spectra of amide I band (A) and curve-fitted second derivative spectrum with band assignment (B) of non-treated and methanol-treated samples of SELP and
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bends [86].

extensively hydrogen-bonded stable B-structures that likely pro-
vide more robust physical cross-links and result in water insolubil-
ity [39,55].

3.4. In vitro cytotoxicity and cell adhesion

An important aspect to be taken into account when developing
polymers for biomedical applications is the absence of cytotoxicity.
Viability of normal human skin fibroblasts cell line (BJ-5ta) in
response to the films was assessed in vitro by indirect contact using
the colorimetric MTT assay. In this assay, metabolically active cells
reduce tetrazolium salts into a formazan dye insoluble in tissue
culture medium and the amount of formazan dye formed, which
can be spectrophotometrically measured at 490 nm, is directly
related to the number of living cells in culture. Results of the expo-
sure of BJ-5ta cells to the leachates of the polymeric films revealed
no statistically significant cytotoxicity (p < 0.05) (Fig. 5). Similar
metabolic activity of cells in contact with pre-conditioned medium
and cells cultured in standard medium indicates that putative
leached components from the films in solution, if existing, are
non-toxic.
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Fig. 5. Viability of BJ-5ta cells cultured on SELP, 6mer + FNII and SELP/FNII + 6mer
with different concentrations determined by the MTT assay. Results are represented
as % cell viability in relation to cells cultured in standard medium (positive control).
Bars represent means + SD (ns - non significant,” p < 0.0001).
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5% 6mer+FNII SELP positive control

SELP blended with
15% 6mer+FNII

30% 6mer+FNII

6mer+FNII

(a)

(b)

Fig. 6. Micrographs with (a) x200 and (b) x400 magnifications of normal human skin fibroblasts (BJ-5ta) seeded and cultured on the different films surface for 48 h. Cells
seeded and cultured on the bottom of a surface treated 24-well plate were used as positive control. Samples were incubated with fluorescent phalloidin and visualized by
fluorescence microscopy. Scale bars represent 100 pm for x200 magnifications and 50 pm for x400 magnifications.

To evaluate the ability of the films to promote cell adhesion,
BJ-5ta cells were cultured on the surface of the films for 12, 24
and 48 h. As a positive control, cells were cultured on surface trea-
ted wells. Qualitative evaluation of BJ-5ta adhesion was performed
by immunofluorescence analysis using fluorescent phalloidin,
which binds to filamentous actin (F-actin) and, interestingly, scarce
cell adhesion was observed for the neat 6mer + FNII films (Fig. 6).
This result, however, might not be unexpected as it is believed that
the amount and distribution of adhesion domains surfaces affect
cell adhesion. Several studies have reported that cell adhesion is
affected by the density and spatial distribution of RGD, the tripep-

tide cell adhesion motif found in fibronectin and other extracellu-
lar matrix proteins [66-70]. To overcome this limitation, we
investigated the potential of developing a novel biomaterial com-
bining 6mer + FNII with SELP. Here, it was postulated that the
6mer + FNII would be homogenously distributed in the SELP matrix
and its content would influence cell adhesion. The distribution of
6mer + FNII in the blend films was assessed via FITC labelling
and indeed, the blend films produced with FITC-labelled 6mer
+ FNII demonstrated an evenly distribution of 6mer + FNII without
any evidences of clustered zones (Supplementary Fig. S3). As demon-
strated by the micrographs in Fig. 6, SELP with 6mer + FNII induces



A.M. Pereira et al. /Acta Biomaterialia 47 (2017) 50-59 57

Fig. 7. SEM micrographs of normal human skin fibroblasts (BJ-5ta) cultured for 48 h on SELP/15% 6mer + FNII films. (a) Spherical cell in the early stage of spreading: while the
upper cell surface is still blebbed, some filopodia are radially branching (highlighted by long arrows) and some lamellipodia are already being formed (small and broad
arrow). (b) Already flattened cell (marked by the star) spreading with an enclosing lamellipodium (highlighted by the broad arrows). Scale bars represent 10 pm.

Table 1
Mechanical properties of methanol-treated SELP and SELP/15% 6mer + FNII films. E -
modulus of elasticity; UTS - ultimate tensile strength; € - strain-to-failure.

E £ StdDev UTS % StdDev €z StdDev

[GPa] [MPa] [%]
Methanol-treated SELP 1.8+0.5 76.9+3.5 143 +48
Methanol-treated SELP/15% 1.9+04 719+13.9 11.6 £4.5

6mer + FNII

higher adhesion of fibroblasts to films, especially for SELP/15% 6mer
+ FNII films. Reduced cell adhesion was observed at a higher content
of FNII (SELP/30% 6mer + FNII), possibly due to a high FNII density (as
discussed above) and at a lower content (SELP/5% 6mer + FNII), prob-
ably as a consequence of insufficient FNII domains. In fact, SELP/15%
6mer + FNII films showed the greatest cell adhesion for any culture
time point as well as a higher number of fibroblasts adhered to
the film when compared with the positive control. These results
highlight the potential of these proteins for biomaterial applications.
Higher magnification micrographs (Fig. 6B) further support this
observation, as the prominent cytoskeleton structures known to con-
tain actin microfilaments that form integrin-mediated contact with
adjacent cells, extracellular matrix and other substrates, can be
clearly seen [71,72].

Cell adhesion and spreading onto substrates involves cell
attachment, centrifugal growth of filopodia, cytoplasmic webbing,
lamellipodia formation, flattening of the cell and ruffling of the
cytoplasm [73]. Representative SEM micrographs of BJ-5ta cells
adhered to the SELP/15% 6mer + FNII films were taken to better
examine the cell-substrate interaction. Fig. 7A shows a roughly
round-shaped cell adhered to the film in the early stage of spread-
ing and with radial filopodia protruding (highlighted by the long
arrows). The radial projection of these actin and integrin-rich
filopodial extensions has been reported to have substrate-
exploring functions being responsible for the initial cell-matrix
contact [74,75]. On two-dimensional surfaces, these transient
filopodia are known to quickly disappear in favor of a
lamellipodia-mediated spreading of the cells as it can be seen in
Fig. 7B. These results confirm that fibroblasts interact and adhere
properly onto the SELP/15% 6mer + FNII films, which are able to
support cell adhesion and proliferation of normal human fibrob-
lasts. Cell-substrate interactions with the remaining films further
confirmed that SELP/15% 6mer + FNII films are better fitted to sup-
port fibroblast adhesion and proliferation (Supplementary Fig. S4).

3.5. Mechanical properties

The mechanical properties of SELP/15% 6mer +FNII were
assessed under uniaxial tensile strength analysis, demonstrating

that there were no significant differences attributed to the 6mer
+FNII content (Supplementary Fig. S5). The methanol-treated
SELP/15% 6mer + FNII films revealed an average modulus of elastic-
ity of 1.9+0.4 GPa, an average ultimate tensile strength of
719+ 139 MPa and an average strain-to-failure of 11.6 +4.5%.
These values do not differ significantly from those obtained for the
methanol-treated SELP films in which the modulus of elasticity, ulti-
mate tensile strength and strain-to-failure were of 1.8 + 0.5 GPa,
76.9 + 3.5 MPa and 14.3 + 4.8%, respectively (Table 1).

The stress-strain curves were similar for both samples, showing
a linear stress-strain relationship up to the yield point, followed by
a post-yield plateau and strain-hardening (Supplementary Fig. S5).
This behavior was previously observed for other silk-based pro-
teins and attributed to a series of events involving unfolding,
breaking of weak intramolecular hydrogen bonds, and alignment
of protein chains and stretching of protein backbones and molecu-
lar network [76-78]. Interestingly, although displaying compara-
ble mechanical values, this stress-strain profile found for the
formic acid-based SELP films was not found when water was used
as solvent as previously reported by our group [39]. Furthermore,
we must point out that in this work we used different experimen-
tal conditions (e.g. solvent, atmospheric humidity, strain rate) that
may play a role in the molecular organization of the protein chains,
leading to a different mechanical behavior.

4. Conclusions

Advances in recombinant DNA technology and protein engi-
neering allow for the design and production of fine-tuned
protein-based materials. Due to biocompatibility, mechanical
properties and processing versatility, silk-based recombinant
materials are attractive for biomedical applications. Synthetic pro-
tein biotechnology approaches allow the tailoring of the molecular
structure of rPBPs with precise control over sequence and the
incorporation of biologically active functionalities [79,80]. This
opens up an unprecedented possibility to customize novel materi-
als for specific applications [81]. In this work, we designed and pro-
duced a silk-based blended material with cell adhesion properties.
All three domains of the fibronectin type II (FNII) module from
human matrix metalloproteinase-2 (MMP-2) were exploited for
the functionalization of protein-based polymers (PBPs). By genetic
engineering the FNII domain was fused with a spider-silk-based
polypeptide (6mer) creating the chimeric protein 6mer + FNII.
Regardless the difficulties allied to the expression and purification
of spider silk proteins, the production of the functionalized chi-
meric protein 6mer + FNII was successfully optimized and attained,
with yields 10-times higher than those previously reported
for other functionalized 6mer-based spider silk proteins. For
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biotechnological purposes, blends of 6mer +FNII and the silk-
elastin-like protein SELP-59-A were formulated and efficiently
processed into free-standing films by solvent casting. The blend
materials revealed mechanical properties comparable to other
biopolymers such as PLA [82], blend films of fibroin with human-
like recombinant collagen [83] and recombinant spider silk films
[84,85]. Cytotoxicity evaluation of these films revealed no cytotox-
icity with normal human skin fibroblasts cell line and promoted
cell adhesion. A critical percentage of 6mer + FNII was found. The
present study outlines the formulation of new biocompatible
silk-based blends with cell adhesion properties able to support cell
proliferation. Furthermore, this biomaterial provides a platform for
the creation of novel biomaterials including hydrogels and fibre
mats suitable for biomedical applications in regenerative medicine.
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